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Resumé

Afhandlingen omhandler statistiske og data analytiske problemstillinger i forbindelse
med sensoriske eksperimenter. Der gives en kort introduktion til begrebet sensorisk
analyse 1 lyset af statistisk tankegang. I levnedsmiddelvidenskaben anvendes i dag
en lang rackke af klassiske statistiske modeller og metoder. Med udgangspunkt i data
fra sensoriske forsgg praesenteres i athandlingen alternative og supplerende metoder
til lgsning af flere centrale problemer, og disse sammenholdes med metoder af mere
konventionel art.

Metoder til at praediktere sensoriske vurderinger pa basis af kemisk /fysiske malinger
er sammenlignet, og det nyligt udviklede ‘continuum regression’ princip vises at fun-
gere omtrent som den mere velkendte ‘partial least squares’ teknik. Der foreslas at
fortolke preaediktionsfejlen som storrelsen af det sensoriske panel, der skal til for at
‘praediktere’ den gennemsnitlige sensoriske vurdering lige sa godt.

En model for sensoriske profil data, der explicit modellerer individuelle forskelle
bade i brug af skala og 1 reproducibilitet, praesenteres som et alternativ til almindelig
variansanalyse uden tilfeldige effekter. En generalisering af den foreslaede model
til at inkludere tilfeeldige dommereffekter foreslas som alternativ til den tilsvarende
saedvanlige variansanalyse med tilfaeldige effekter.

Den multivariate generalisering af samme variansanalyse med tilfaeldige dommer-
effekter anbefales som et udgangspunkt for at studere korrelationskomponenter i et
multivariat sensorisk eller sensorisk-kemisk /fysisk data materiale. Likelihood ratio
testet for simultan uathangighed hen over flere strata er udledt, og en saddelpunktsap-
proximation til fordelingen af —2log () teststgrrelsen baseret pa Gamma-fordelingen
foreslas og vises at give gode resultater.

Inden for rammerne af generaliserede lineaxre modeller udvikles der en quasi-
likelihood inferens procedure for en tilfaeldig taerskelvaerdimodel som anvendes i et
dosis-respons forsgg med gentagne malinger.

Trevejs principal komponent analyse praesenteres i sensorisk analyse sammenhang
og sammenholdes med andre multivariate teknikker. De vises at bibringe information
om de underliggende strukturer i relation til individuelle forskelle 1 et multivariat
sensorisk data materiale.

Endelig gives en kort oversigt over teorien for saddelpunktsapproximation og en
Gamma baseret approximation til fordelingen for linearkombinationer af y2-fordelte
stokastiske variabler vises at have relativ fejl, der konvergerer mod nul i begge haler for
ethvert endeligt antal observationer. Der vises endvidere hvordan dette kan udnyttes
til at approximere fordelingen af F'-teststgrrelser 1 non-standard situationer, der ofte
forekommer i sensoriske eksperimenter.
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Summary

The thesis addresses statistical and data analytical issues in connection with sensory
analysis experiments. A brief introduction to the field of sensory analysis is given
with a view towards points of statistical interest. Commonly used sensory experiments
produce data of diverse kinds ranging from binary data through ordinal to continuous
data, often of multivariate nature. Several classical statistical models and techniques
are frequently used in the food research literature. With real sensory data as starting
points the thesis presents alternative and supplementary approaches to a number of
central problems and relates those to methods of more conventional nature.

Methods to predict sensory perceptions from chemical /physical measurements are
compared and the newly developed principle of continuum regression is shown to
provide comparable results to the widely used partial least squares regression, and
a new way to interpret prediction ability in terms of an equivalent panel size is
presented.

A model for sensory profile data explicitly modelling individuals’ different use of
scale and different reproducibility is presented as an alternative to standard fixed
effects analysis of variance, and a random judge effects version is suggested as an
alternative to the mixed model analysis of variance.

The multivariate generalization of the mixed model analysis of variance is recom-
mended as a basis for studying sources of correlation in multivariate sensory and/or
sensory-chemical /physical data. The likelihood ratio test for overall independence
over several strata between sets of variates is formulated, and a saddlepoint approxi-
mation to the distribution of the —2log () test statistic based on the Gamma distri-
bution is suggested and indicated to give reliable results.

In the framework of generalized linear models a quasi-likelihood inference proce-
dure is proposed for handling a random threshold model for dose-response designs
with repeated measurements.

The methods of three-way principal components analysis are presented in the
context of sensory profile data, related to other multivariate methods and shown
to provide complex information about the underlying structures in relation to the
assessors in a multivariate sensory data set.

Finally saddlepoint approximation methods are given a brief review, a Gamma
based saddlepoint approximation of the tail probability for linear combinations of chi-
square distributed random variables is shown to provide limiting exactness in both
tails for any finite number of observations. It is revealed how this can be used for
F-testing in non-standard situations frequently occurring in sensory data.
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Chapter 1

Introduction

The research field of statistical analysis of sensory data, or shortly sensometrics,
will by nature encompass development of statistical methodology and theory. But
just as important is the communication and promotion of obtained knowledge and
developed methods. In acknowledgment of this, major parts of the present work was
written for a target group including as well the sensory analysts and sensometricians
as mathematical statisticians.

An overview of the thesis construction is given in this introductory chapter. For
the reason of broadening the target group it is natural to begin with a brief clarifica-
tion of what, why, where and how questions with respect to sensory data.

1.1 Sensory analysis

Broadly the notion of sensory analysis or science stands for any kind of investigation
of sensory properties of any imaginable object, where ‘sensory’ may refer to any
of the human senses. In the context of the present work objects are food related
only and sensory properties are odour and taste related. As such sensory science
is a contribution to flavour research in general. Pangborn (1987) pointed out that
advances in the sensory science field as opposed to research in analytical chemistry
of volatile components had been modest for the preceding three decades. One reason
for this was difficulties with proper handling of the inherent variability of behavioral
responses. Since 1987 progress has been done and this thesis can be seen as another
step in the direction of overcoming these inherent problems of sensory analysis.
Historically sensory analysis as an independent research discipline has been shaped
by the confluences of many fields of scientific research, Moskowitz (1992). One of its
origins is psychophysics, the study of the relation between stimulus variables and sen-
sory variables, that again dates back to the nineteenth century with Fechner (1860)
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2 Introduction

being a classical reference, see Pangborn (1981). Fechner’s famous law of sensation
says that the sensory perception (P) is linearly related to the logarithm of stimulus
intensity (log I). Stevens’ Power Law, see for instance Norwich (1992), states that in-
dependent of sensory property investigated the power relation P = constant/™ holds.
Historically the psychophysical influence has played an important role, for instance
by bringing the experimental approach of paired comparisons as a tool for difference
testing into the sensory science. Today the psychophysical laws of perception, at
least for the sensory science in the food research field, are of less importance. But
the psychometrical research continues to offer relevant methodology to sensory and
sensometrical science. Also the interest in sensory-instrumental correlations is in line
with psychophysical thinking.

The modern flagship of sensory analysis, the Descriptive Analysis, can be traced
back in history along another stream. It basically began with an ‘expert approach’
for product evaluation in food corporations. In the 1950’s this evolved to small pan-
els agreeing on a qualitative description of products through taste and discussion
sessions, the Flavour Profile, see for instance Stone and Sidel (1985) and references
therein. The more quantitative extensions of the Flavour Profile, QDA (Quantita-
tive Descriptive Analysis) and Spectrum were developed in the 1970’s, and are today
well-established and frequently applied methods. Both can be considered as an ‘in-
strument’ to measure, quantify and profile sensory properties in products in a precise
and reproducible way. The products may represent various factors under investi-
gation, for instance brands, ingredients, storage time etc. The modern descriptive
analysis of a given set of products is performed by having a trained panel of asses-
sors/judges, typical 8-12 persons, evaluate the products one at a time with respect to
a number of sensory properties under controlled and designed conditions. The QDA
and Spectrum methods differ in the principles set up for panel training and sen-
sory property vocabulary determination. Free Choice Profiling is another common
descriptive analysis technique where assessors use vocabulary of their own choice.

Sensory analysis will in the present work stand for an analysis performed with the
‘sensory instrument’, the trained panel. Apart from general food research benefits
such a sensory instrument has obvious opportunities for the food industry in con-
nection with product development and marketing. However, let us once and for all
point out the important distinction between sensory analysis and consumer preference
studies: a sensory analysis gives basically no information about consumer preferences.
Combining sensory analyses with consumer preference studies though, is likely to be
a powerful tool in the hand of the product developer and the marketing manager. In
this thesis, however, sensory data coming from trained panels are considered only.
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1.2 Sensory methodology with a view towards statis-
tics

It is useful to consider sensory data in the light of the major pure measurement
scales, as pointed out in McCullagh and Nelder (1989), p. 150: the nominal, ordinal
and interval scales. Roughly viewed sensory experiments can be arranged into the
following four groups:

1. Nominal categorizing (difference testing)
2. Ranking
3. Ordinal categorizing

4. Line scale scoring.

The numbering represents an increasing level of information but also an increasing
difficulty in the task required by the assessor.

Category 1 experiments provide data on nominal scale, and category 2 on ordinal
scale. Category 3 data is truly ordinal but in some instances the categories may be
sufficiently numerical interpretable to regard the data as interval scale data. The
ordinal scale is commonly used as a structured n-point intensity scale, n being rela-
tively small, 7-10, see for instance Amerine et al. (1965). Category 4 data ought to
be interval scale data, but it may be argued that the underlying psychophysical scale
is truly ordinal and hence even line scale data should be considered ordinal. Never-
theless it 1s today generally accepted to consider also line scale data as interval scale
data. A fourth scale, the ratio scale, is also met in sensory category 3 and 4 data,
O’Mahony (1986), but in the present work we shall concentrate on binary nominal
scale data and interval scale data.

The difference testing, based on classical binomial testing, usually formed as a
K-alternative forced choice experiment, see Frijters (1988), has, as mentioned, a
long tradition in this field. Repeated difference testings on varying concentrations
of a stimulus is also a widely used approach, that is used to determine stimulus
threshold concentrations. If more differentiated information is sought often a category
4 experiment is chosen right away and a descriptive analysis is performed, where the
actual assessment typically is done by putting a mark on a line segment. Consequently
this approach provides multivariate continuous (interval scale) data and the tool
box of almost all thinkable statistical methods is potentially relevant. Conventional
univariate analysis of variance (ANOVA) for each property, see e.g. Lea et al. (1991),
is widely used for making inference about the product differences. Multivariate data
analysis of almost any kind has been used to explore and analyse sensory profile data,
see for instance Piggott (1986).
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The consideration of category 1-3 data is important also for the reason that data
can always be viewed to be of lower category, decreasing the risk of overrating the
level of information. This may be of particular importance in the light of the sensory
scale discussion above. Examples of using a lower category approach to data originally
considered as interval scale data are seen in McEwan and Schlich (1991) and Hirst
and Nees (1994). In the former correspondence analysis is suggested as alternative to
principal component analysis for multivariate sensory evaluations, viewing the data
in a sense as nominal and in the latter plots based on cumulative ranks are developed,
viewing the data as derived ranks.

As for any experimental research the design of experiments is central in sensory
analysis. Recently cross-over designs were promoted in the sensory literature, see
Schlich (1993), as order and carry-over effects may be likely disturbers in sensory
experiments. Response surface techniques are also relevant in this context, see Vuataz
(1986). In the present work we do not consider any design problems at all.

The inherent problem of assessor variability has been acknowledged in the food
research literature only to a limited extent. For inference about the products in
question the assessor variability has to be ‘accounted for’ properly, and for panel
evaluation it is relevant to make inference about the assessors.

Basically the ‘assessor problem’ in a univariate setting may be viewed as one
of repeated measurements, using this expression in a broad sense. Consider the
following typical setup that we will return to repeatedly throughout the thesis: A
panel consisting of A assessors have assessed P products R times. Let X,,, denote a
univariate assessment of product p, the r’th time by assessor a. Accepting that the
assessors represent some population the natural model for the response may be the
two-way analysis of variance model with random assessor effects,

Xopr =+ vp + As + Bap + aprs (1.1)
where ¢4,,, A, and B,, are independent normal distributed random variables,
Eapr ~ N(0,0%), A, ~ N(0,0%), By~ N(0,0%p).

Model (1.1) is a simple form of a repeated measures model for this setup, and has as a
consequence that observations for the same individual are modelled to be correlated.
This classical approach is well-known in the sensory science, although maybe not fully
understood and it may go under other names. Below contributions of this thesis will
be discussed in the light of the univariate model (1.1).
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1.3 Thesis structure overview

The thesis is built up around the five papers:
Brockhoff, P.M., Skovgaard, .M., Poll, .. and Hansen K. (1993). A comparison of

methods for linear prediction of apple flavour from gas chromatographic mea-
surements. Food Quality and Preference 4, 215-222. (Chapter 2)

Brockhoff, P.M. and Skovgaard, I.M. (1994). Modelling individual differences be-
tween assessors in sensory evaluations. Food Quality and Preference 5, 215-224.

(Chapter 3)
Brockhoff, P.M. and Miiller, H.G. (1994). Random effect threshold models for dose-

response relations with repeated measurements. Submitted to: .J. Royal Stat.

Soc. Ser. B. (Chapter 4)

Brockhoff, P.M. and Guggenbiihl, B. (1995). Two-dimensional covariance compo-
nent models applied to sensory data. To be submitted to: Journal of Sensory

Studies. (Chapter 5)

Brockhoff, P.M., Hirst D. and Nees, T. (1995). Three-way factor methods in sen-
sory analysis. In: Multivariate Analysis of Data in Sensory Science, Ed. T.
Nes and E. Riisvik, Elsevier Science Publishers, Amsterdam, The Netherlands.
(Chapter 6)

Each paper names a chapter (Chapters 2-6) and the papers are presented in the
exact form they appear at their present status. This spans from published papers to
late stage working papers, and means that notation is only consistent within chapters,
although overlap occurs. However, section numbering were standardized throughout
and placement of figures and tables were reorganized to fit the format of the thesis in
general. At the beginning of each chapter there is a brief presentation of the status of
the paper (December 1994) and of the way it was or is intended to be published. After
the presentation each paper begins with a title-page with title and author information
together with an abstract, if present, as (to be) published.

At the end of the papers in Chapter 2-5 there are some additional sections with
supplementary work and/or discussions, that are of direct relevance for the papers
in question. These sections are indicated with Add: in the section titles. Chap-
ter 7 contains material written specifically for this thesis. As mentioned most of the
material is written also for readers who are not mathematical statisticians, but the
following parts are exceptions: Section 3.10, the paper Brockhoff and Miiller (1994) of
Chapter 4, Section 5.13 and Chapter 7. There is an extensive presentation in the be-
ginning of Chapter 4, though, that aims at less statistically minded readers. It should
be noted, however, that some basic knowledge in statistics is needed throughout to
capture the messages of this work.
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1.4 Thesis contents overview and related work

Often statistical inference is based on approximate distributional assumptions relying
on asymptotic results. In sensory analysis the number of replications is typically far
from infinity, say R = 1,2,3,4, and there is a need for good small sample approxima-
tions. Chapter 7 presents the saddlepoint approximation technique as a general tool
for approximating densities and distribution functions, see for example Reid (1988).
It has in recent years developed in statistics among other things as an alternative to
Bartlett correction techniques, see Bartlett (1937). The ‘magic formula’ of Barndorff-
Nielsen (1983) is a saddlepoint approximation formula for the density of the maximum
likelihood estimate in the one-parameter case. In Chapter 7 the emphasis is put on
the developments of approximations based on the Gamma distribution rather than
the Normal distribution, a research direction much influenced by J.L. Jensen, Aarhus
University, see e.g. Jensen (1988, 1991). For some cases a Gamma based saddle-
point approximation has particularly nice small sample properties. One situation is
the test for (single-stratum) independence between sets of variates in multivariate
(mixed) analyses of variance models, see for instance Anderson (1958). A multiple-
strata independence test together with a Gamma based saddlepoint approximation
of the —2log () test statistic is developed in Section 5.13 and applied in Brockhoff
and Guggenbiihl (1995). Another case is the distribution of linear combinations of
y2-distributed random variables, where the saddlepoint approximation is an alterna-
tive to the classical method due to Satterthwaite (1946). This becomes relevant in
sensory analysis whenever the effects of replication is modelled in addition to (1.1) as
random effects. A theoretical result of relative limiting exactness in the tails for any
sample size is outlined in the latter case, a result that applies to the more general
subclass of Gamma convolutions considered in Jensen (1992).

In Brockhoff and Guggenbiihl (1995), Chapter 5, the bivariate extension of (1.1) is
considered together with the just mentioned random replication effects situation. The
paper is to a large extent of expository nature promoting this in statistics well-known
but sparsely used model to sensory and sensometrical scientists. This amounts much
to a promotion of the ‘Danish” ANOVA thinking with the factor structure diagrams of
Tjur(1984, 1991) as a lubricating aid. Although it is a study of sensory-instrumental
relations, the focus is more on the detection and interpretation of the various sources
of correlation rather than on a sensory-predictive approach, as often otherwise the
case, see for instance Martens and Martens (1986). The estimation of covariance
components is based on the old approach of equating matrices of observed mean
squares with the expected dittos, although better methods exist also for multivariate
models, see Dempster et al. (1981).

The sensory-predictive approach is taken in Brockhoff et al. (1993), Chapter 2,
where the situation is that of a large number of physical measurements taken for each
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product in the sense of gas chromatographic spectra. These are used for predicting
assessor mean scores on three sensory properties. Facing the classical problem of
multicollinearity the problem is embedded into the field of multivariate calibration
that is highly connected to chemometrical research, see Nas and Martens (1989).
In the present work a comparative study of prediction methods was performed with
as much emphasis on the comparison methodology as the comparison itself. The
principle of continuum regression, see Stone and Brooks (1990), is introduced as a
new method in this context. Being based on a generalized factor selection criterion
embracing ordinary linear regression, principal component regression and partial least
squares regression as points in a continuum of possible choices, the method is almost
bound to work just as well as any of these methods used separately, apart maybe
from an over-fitting effect due to the additional estimated continuum parameter.
This expected performance of continuum regression is confirmed in the present study.
In Kowalski (1990) a stepwise multiple linear regression approach was conjectured
to be superior to any of the known biased regression techniques. The present work
confirms other work, see Cruciani et al. (1992), in that the conventional one-at-a-
time cross validation method used in Kowalski (1990) is unsuited to compare these
regression techniques; questioning highly the validity of the conclusions in Kowalski
(1990). In the light of the sensory scale arbitrariness and the effect of design on
overall correlation structure it is a hard task to quantify the predictive ability of
the gas chromatographic measurements. It is here suggested to interpret the size of
the prediction error in relation to the variability of the sensory panel as a prediction
method cannot ever be expected to predict a quantity with higher precision than the
‘measurement error’ of the quantity.

The papers of Chapter 3, 4 and 6 are all specifically devoted to the ‘assessor
problem’. Tt is not attempted to give an inclusive review of data analytical methods
in food research literature in connection with sensory panels. Some basic features
are, though, the wish to assess the performance of the panel(lists) by measures of
reproducibility and sensitivity, and possibly weigh assessors differently for the infer-
ence about the products involved. The F-statistics and variance estimates from the
individual one-way analyses of variance are common and quite sensible choices of sen-
sitivity and reproducibility measures, see Neaes and Solheim (1991). However, using
for instance F'-statistics for weighted inference about the products a severe selection
bias must be contemplated.

The idea underlying e.g. the F-statistic approach is that assessors can differ in
three ways, that is, with respect to level, range of scale and variability. The con-
tribution of Brockhoff and Skovgaard (1994), Chapter 3, is the explicit formulation
of the statistical model encountering these major ways that assessors can differ. In
relation to the repeated measurements discussion above this ‘assessor model’ can be
seen as model (1.1) conditional on the assessors with the generalization that vari-
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ances may differ, and the restriction that the assessor-product interaction is modelled
multiplicatively. The model is a variance heterogeneous version of Mandel’s ‘bundle
of straight lines” model, Mandel (1961). A formal likelihood approach leading to an
iterative partial maximization algorithm is performed, and is shown that this leads
automatically to a sensitivity weighted inference about the products.

In the additional sections of Chapter 3 the asymptotic results used for the assessor
model are thoroughly verified, based on Lehmann (1986). The algorithm is shown
to converge to the unique maximum likelihood estimate with a probability tending
to 1 as R — oo. The convergence properties for finite R is discussed in the light of
a straightforward extension of the global algorithm convergence result by Jensen et
al. (1991). Further a small simulation study was performed to investigate the small
sample validity of the used y?-approximations. Finally, Chapter 3 is ended by a
formulation of a random extension of the ‘assessor model’, which may then be seen
as an alternative to (1.1). This elaborate modelling of individual dissimilarities based
on formal statistical thinking is not very common in the sensory science literature.

In Chapter 4 the focus is on sensory thresholds and generalized linear models in
the sense of McCullagh and Nelder (1989). Odour thresholds of aroma compounds,
say, in strawberries vary extremely from compound to compound, see Larsen and
Poll (1992) and to assess the relative importance of the compounds in a food prod-
uct the concentrations should be seen in relation to the odour/taste thresholds, see
Teranishi (1991). A comprehensive presentation is given prior to the paper Brockhoff
and Miiller (1994) including two things: A brief introduction to generalized linear
models and a sensory methodological review of threshold determination. The latter
will indicate that the statistical approach can be seen as unifying with respect to
threshold definition and determination. In the additional section of Chapter 4 the
use of generalized linear models in sensometrics in general is discussed, indicating
that the features of such an approach is quite relevant for many sensory situations.

Thresholds are typically determined from binary dose-response experiments. The
generalized linear models pop up then since the model (1.1) for the unobservable
thresholds leads to a probit regression model for the binary response, see Finney
(1971), and in fact a model with random effects. Generalized linear models with
random effects are far from as well understood and widely used as their linear equiva-
lents, and the statistical research on the topic is still active, see Breslow and Clayton
(1993). The over-dispersion approach also suggested in McCullagh and Nelder (1989)
(and in the first edition of 1983) may in some cases be a way to account for random
effects.

Brockhoff and Miiller (1994) is a contribution to this research area. A marginal
based quasi-likelihood procedure is proposed specifically designed to allow for (vary-
ing) baseline probabilities, corresponding to correct-by-guessing chances in forced
choice experiments, and allowing for general random assessor intercept and error
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distributions. The important consequence of introducing these models in sensory
threshold determination is the acquisition of reliable confidence limits for the esti-
mated thresholds. In the paper the proposed method is shown through simulations
to be superior to the maximum likelihood approach of Anderson and Aitkin (1985)
with respect to correctness of length of confidence bands.

The final paper, Chapter 6, is of quite different nature than the rest of the thesis.
It is a fully multivariate data analytical approach to the typical sensory profile data
set. It reflects the fact that when you leave the nice univariate world you tend to
loose the detailed modelling and testing principles of classical statistics somewhere
between dimension 2 and p. (Chapter 5 indicates that by dimension 2 we are still able
to hold on to the principles.) Multivariate analysis of variance with canonical variates,
see Krzanowski (1988), is an approach where the principles in general are not lost,
and it is indeed suggested in the sensory literature as a tool for discrimination, see
Powers and Ware (1986). But still there is a tendency to use the bi-plots of principal
components analysis on assessor mean scores for exploratory analysis, see e.g. Piggott
and Sharman (1986). Maybe partly due to the fact that canonical variates analysis
still does not in its basic setup allow for the individual scale and variability differences
modelled in Chapter 3, and the exploratory opportunities of the approach are not so
well established.

Apart from the univariate dissimilarities assessors might now also disagree multi-
variately, for example due to property confusion effects. The method of Generalized
Procrustes Analysis, see Gower (1975), is particularly well suited to account for and
investigate confusion effects. The three-way factor methods utilized in Chapter 6
represents a general approach to the investigation of multivariate dissimilarities. The
methods are developed in psychometrical research, see for instance Tucker (1966),
and can be seen to include many other techniques for similar tasks: Generalized Pro-
crustes Analysis, PARAFAC-CANDECOMP models, multidimensional scaling. The
paper is expository with discussions of these mentioned relations to other approaches
and detailed discussion of interpretations based on a real data example.
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Chapter 2

A comparison of methods for linear
prediction of apple flavour from gas
chromatographic measurements

The paper was published in Food Quality and Preference, 1993. This journal has
as aim to “bridge the gap between research and application by bringing together
authors and readers in marketing, consumer research, sensory science and nutrition,
as well as in food research, development and quality assurance.” The journal’s cov-
erage includes: “sensory and motivational studies, sensory/instrumental correlation,
mathematical modelling in relation to food acceptability.”

The journal is central in what could be called the European sensometrics soci-
ety, for instance as publisher of contributed papers at the European Sensometrics
meetings. The ‘Second Sensometrics Conference’ was held in Edinburgh, September
1994.

Table 2.6 of this paper is here in a corrected version compared with the published
one.
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chromatographic measurements
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Abstract

A comparative study of linear methods for prediction of sensory profiles from
gas chromatography (GC) measurements was performed. The data used came
from an experiment on the effect of storing apples at various oxygen concen-
trations. Partial least-squares regression and continuum regression showed the
best performance, measured by a two-step cross validation principle. The tra-
ditional prediction error sum of squares (PRESS) overestimated the predictive
ability of a multiple linear regression approach. The quality of the predictions
of sensory properties from GC analyses was measured in terms of a ‘panel
size equivalent’. Thus, the predictions obtained in the present study were as
accurate as predictions from an assessor panel consisting of 2 to 6 assessors,
depending on the sensory property in question.

Keywords: Continuum regression, cross validation, gas chromatography, linear pre-
diction methods, multiple linear regression, partial least squares, prediction ability,
principal component regression, ridge regression, sensory analysis.
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2.1 Introduction

The idea of calibrating instrumental measurements with sensory information is of
major interest for food research and the food industry. This paper will compare and
discuss linear calibration methods based on data from sensory and gas chromatogra-
phy (GC) analyses of ‘Jonagold’ apples stored at various Oj-concentrations.

In building up sensory predictive models based on GC measurements of aroma
components we face the classical problem of multicollinearity, as these components
are closely related. A conventional multiple linear regression approach is not advis-
able owing to extreme uncertainty about the parameter estimates. Researchers have
turned to the biased regression techniques, of which the most common are principal
component regression, ridge regression and partial least-squares regression (see Hoerl
& Kennard, 1970; Neaes & Martens, 1989).

More recently, the approach of continuum regression was proposed by Stone &
Brooks (1990). The continuum regression embraces principal component regression,
partial least-squares regression and ordinary least-squares multiple linear regression.
This is achieved by the introduction of a parameter, varying in a continuum, in a
generalized factor selection criterion. The possible values of this parameter represents
a continuum of possible regression models with principal component regression and
multiple linear regression at the two extremes and partial least-squares regression as
an intermediate point.

Sundberg (1993) revealed a close connection between first stage continuum regres-
sion and ridge regression, which we have used in this paper to implement a version
of continuum regression as described in the Appendix. The continuum regression
and its relationships to the well-known methods are briefly outlined in the section
on statistical methods. We also include two variants of a multiple linear regression
approach where model selection is based on the PRESS statistic from cross validation.
This approach was taken by Kowalski (1990), and showed multiple linear regression
to be superior to any of the biased techniques for five data sets.

The main objectives of this paper are to compare the predictive abilities of these
methods and to find a suitable prediction model for the sensory properties of Jonagold
apples. We used two-step cross-validation to evaluate the predictive ability of the
various models. The idea of this is to partition the data into, say, three groups, and
then in turn treat two of the groups as ‘training sets’ and one as the ‘test set’. This
is referred to as the second cross-validation step. The first step refers to the use of
cross-validation for model/factor selection in each training set. In this way, we avoid
the criterion for the predictive performance being deflated by a selection based on the
same criterion.

Finally, we present a new way of reporting this predictive ability of a model based
on a given data set from a designed experiment, by reporting the number of assessors
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needed in a sensory panel to predict the sensory attribute in question equally well.

As the purpose of the present paper is to investigate the statistical aspects of the
prediction problem, the description of experimental materials and methods will be
brief and partly covered by references to other publications. For the same reason the
statistical method is presented in a section by itself.

2.2 Experimental materials & methods

2.2.1 Storage

Apples of the variety ‘Jonagold’” were harvested on 11 November 1987. Immediately
after harvest, the apples were transferred to four containers where the they were
stored at 2°C in (1% 02— 99%N3), (29%0,—98%N3), (4%02—96%N,) and (21%0,—
79%N,), respectively. Below, only oxygen concentrations are used as a shorthand
notation. Two storage periods, of 109 days and 190 days, were considered. Further
details on the apples and storage have been given by Hansen et al. (1992). After
storage, the apples were removed from the containers and allowed to ripen in normal
atmosphere at 20°C for up to 40 days (post-storage period).

2.2.2 Analysis of the volatiles

Gas chromatography (GC) measurements of the volatiles were performed by dynamic
headspace sampling as described in detail by Poll and Hansen (1990) and Hansen et
al. (1992). The volatiles produced by the apples were collected 10 or 11 times during
the post-storage period by a Poropac trap, eluted with ether and injected to the gas
chromatograph. However, as sensory evaluations and GC analyses were not made on
the same days, linear interpolations were performed on the GC data to obtain GC
values corresponding to the days of sensory evaluation. This seemed reasonable as
the time profiles of the GC results were fairly smooth.

As sensory evaluations were performed six times during the post-storage period,
the GC data set consists of 48 samples (six times, four storage conditions and two
storage periods). For computational reasons, only GC values for the 15 esters pro-
ducing more than about 1% of the total volatile production were chosen for further
statistical analysis.

2.2.3 Sensory analysis

The apples were evaluated by a trained sensory panel of 8-10 assessors six times during
the post storage period. Approximately six apples from each treatment was placed in



16 Flavour prediction from GC' measurements

3-litre glass jars with lids. The apples were covered to prevent assessors from gaining
any visual impression of the fruits, and were evaluated by profile analysis, where the
assessors were asked to evaluate the smell produced by the apples. The assessors
were instructed to give points on a 0-5 point scale for the properties: intensity, green,
banana, pineapple, anise, musty and preference. These properties were chosen by the
panel on the basis of discussions during the training sessions. For convenience we
refer to ‘preference’ as a sensory attribute as well, although it is not a descriptive

property.

2.3 Statistical methods

2.3.1 Analysis of variance

For each of the two storage periods (109 days and 190 days) the sensory data were
initially analysed by analysis of variance of the original assessor scores, according to
the model

E(score) = Assessor + Day 4+ Treatment + Day x Treatment (2.1)

where we have used a notation indicating the main effects and interaction included.
In this model ‘Treatment’ refers to the storage conditions and ‘Day’ refers to the
post-storage time.

To assess the overall treatment effect on the sensory attribute in question we then
tested the reduction to the model

E(score) = Assessor + Day (2.2)

by an F-test. Only attributes exhibiting clearly significant treatment effects were
considered in the further analyses.

2.3.2 Two-step cross-validation

The 48 samples in X-matrix were divided into three subsets of 16 observations. The
three subsets were chosen systematically to be similar with respect to short- or long-
term storage, average post-storage and average oxygen treatments. Each subset was
then in turn regarded as a test set, and the remaining two subsets as a training set.
We denote the three 32 x 15 dimensional training set matrices by X7, X5 and Xj,
respectively.

For each of the three training sets, full cross-validation was performed to ‘optimize’
each of the prediction methods. This means that each of the 32 samples was in turn
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left out of the estimation and then predicted. The ‘optimization’is to be understood
in a broad sense including model selection, variable selection and estimation, the
details depending on the method being investigated. For example, this kind of cross-
validation was used to include or exclude variables in multiple linear regression, and
to choose the number of factors in principal component regression and partial least-
squares regression.

We denote the mean score for the sensory attribute in question by y;, where 7 is
the observation number for the data set. Each method leads to a prediction function
and consequently to a ‘predicted value’ y;.

For each training set, indexed by k = 1,2, 3, the PRESS statistic is

32

PRESSk = Z:(y2 - 3)2)2

=1
and we define the mean root prediction error sum of squares for the training sets as

: :
MRPRESS] = %Z <3%PRESSk>

k=1

In a comparison of the methods we want to use error in predicting the test sets, as
a measure of predictive ability. To obtain this prediction error the model in question
was fitted to all 32 observations in the training set and used for prediction in the test
set. Thus, for each test set we obtained a prediction error sum of squares
16
PRESS2, = > (y; — 4:)°

=1

leading to the mean root prediction error sum of squares

-

3 S
MRPRESS2 = » 3 (iPREss-zk> :
3 \16
MRPRESSI gives the cross-validatory index traditionally reported in analyses, av-
eraged over the three partitions. Instead of this, we used MRPRESS2. Apart from
giving a more realistic estimate of prediction error, this gave a comparison of the
various models for equal conditions. In particular, in a comparison between multiple
linear regression (MLR) methods and principal component analysis (PCR) and par-
tial least-square regression (PLS) methods, MRPRESS1 can be expected to favour
MLR methods, as both variable selection and number of variables are determined
by cross-validation. For PCR and PLS only the number of factors are found by
cross-validation.
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2.3.3 Linear prediction methods

Assessor mean scores of the sensory attributes were related to GC measurements of
flavour volatiles by several methods; these included MLLR, PCR, PLS, ridge regression
(RR) and continuum regression (CR). Each of these methods obtains a linear function
of the GC measurements, predicting sensory attribute.

The 32 x 15 GC data matrices, the Xj-matrices, were in all applications centred
over samples; i.e. the mean of the 32 measurements was subtracted for each of the
esters.

Models with standardized as well as original data were used, except in MLR for
which scaling makes no difference. For the standardized versions two slightly different
standardizations were used. In the standardized PCR and PLS the Xj-matrices,

k = 1,2,3, were column-wise standardized by column standard deviation; i.e. for
each Xj-matrix the original (centred) z;;-element was replaced by the standardized
element
N Zij
Tij = —
5
where
1 32

2 2
iT 3] ; ij
For RR and CR the column root sums of squares were used to convert X to corre-
lation form; i.e the standardized element was
Lij

SS,

Tij =

where
32
_ 2
=1

We used the latter standardization for RR and CR in accordance with standard ridge
regression (see Hoerl & Kennard, 1970).

For MLR two approaches were applied. By MLR1 we denote a forward selection
procedure which at each step includes that variable among the remaining variables
giving the smallest cross-validation index (PRESS). This was continued until the
PRESS statistic increased. By MLLR2 we denote a corresponding backward selection
procedure starting with all variables included; this procedure was continued until the
last variable was excluded, and then the model with smallest PRESS statistic was
chosen.

The prediction of the sensory score by its average, before centring, for the 32
cases in the training set is included for comparison, and is referred to below as the
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‘constant’ prediction method. As this method does not use the GC measurements at
all, it provides a reference from which we may see how much is gained by use of the

GO data.

2.3.4 Continuum regression

We let X denote a column mean centered n x p-matrix of GC data and y an n-
vector of assessor mean scores for one sensory attribute. The ordinary least-squares
predictor (MLR) and any component of PCR and PLS is of the form c'z, where ¢ is
a p vector of parameter estimates and = is a p vector of GC measurements. For one
stage of the CR, the vector ¢ is chosen to maximize the criterion

T, = (c's)?(c!Sc)o=1/0=2) (2.3)

with s= X'y, § = X'X and 0 < o < 1. Here « is the continuum parameter
which can be chosen by cross-validation. In Stone & Brooks (1990) it is shown that
a = 0 corresponds to MLR, a = % corresponds to PLS and a = 1 corresponds to
PCR. Moreover, Stone & Brooks (1990) pointed out that the predictors for these
specializations may be referred to as ‘canonical correlation’, ‘canonical covariance’
and ‘canonical variance’ respectively.

Thus CR chooses the ‘best’” predictor among a huge set of possibilities, including
the standard methods, and a pre-decision of which to use is not necessary. If more
than one stage of CR is applied, every ¢ is chosen to maximize the criterion (2.3)
under the constraints of being orthogonal to all of the previous chosen ¢s. However,
we consider first stage CR only.

Sundberg (1993) argued that first-stage CR is no worse than the general approach
of RR. In the Appendix, the theoretical result by Sundberg relating first-stage CR to
RR is given, as this is applied directly in this paper to find the optimal a-value and
corresponding predictor ¢. It should be noted that this implementation of CR only
involves a search in the continuum ranging from MLR (a = 0) to PLS (a = 1), and
the part ranging from PLS to PCR (a = 1) is omitted.

2.3.5 Panel size interpretation of prediction ability

When attempting to predict the average score for a certain sensory attribute, say
banana flavour, it makes sense to ask how precisely this value is measured. Even a
perfect prediction function cannot hit the target without error, owing to the assessor
score variability. The variance of the mean score caused by this variability can be
estimated from the data by use of model (2.1). Let us consider the given experiment.
For each storage time and each combination of ripening times and oxygen concentra-
tions, n assessors judged the banana flavour, n being 8 or 10 depending on storage
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period. The mean score Y for a given treatment and ripening time then has the
variance

Var(Y) = l(72
n
where o is the individual assessor score variance estimated as the residual variance in
the analysis of variance based on model (2.1). This would be the resulting prediction
error for a ‘perfect’ method exactly hitting the mean . More realistically, an unbiased
predictor ﬂpred with a non-zero variance would result in the mean squared prediction
error

N o L. N
Var(,upred -Y)= gaz + Var(,upred)

Let us suppose now that the mean score from the sensory evaluation were to be pre-
dicted by another panel with m members assessing apples from the same combination
of treatment and storage time. The resulting mean squared prediction error would

be
N - L1y .
Var(,upred -Y)= <— + —) o’ (2.4)

n m

which may be used as a measuring stick for the prediction errors based on the GC
measurements. As n is the number of assessors in the investigation, and &? is esti-
mated from the analysis of variance, m may be determined so that the expression
above matches the mean squared prediction error achieved in each case. The result is
the number, m, of panel members required to obtain a prediction of the same quality
as that based on the GC measurements.

2.4 Results

2.4.1 Analyses of variance

The F' and P values for tests of model (2.2) against model (2.1) are listed in Table 2.1.
Flavour intensity, banana flavour and preference are seen to be the only attributes
showing clear significances for both 109 and 190 days of storage, and consequently
only prediction of these from the GC analyses was attempted.

2.4.2 Prediction results for intensity, banana and preference

The 15 esters chosen for predictions are listed in Table 2.2, together with their con-
centrations and relative headspace distributions at two particular combinations of
storage time and treatment. This shows the relative importance in magnitude of
the chosen volatiles, and also that a considerable percentage of the concentration of
flavour volatiles is not taken into account in the predictions.
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Table 2.1: F statistics and P values for the significance of storage treatment effects

based on analyses of variance of raw assessor scores for 109 days and 190 days, re-

spectively.

Variable 109 days 190 days

F P F P
Intensity  11.34  <0.0001 10.52  <0.0001
Green 0.68  0.83 0.83  0.66
Banana 10.36  <0.0001 11.58 <0.0001
Pineapple 1.11 0.35 2.99 <0.0001
Anise 0.91 0.57 .34 0.17
Musty 1.36 0.16 1.77 0.033
Preference  5.90 <0.0001 7.48 <0.0001

Table 2.2: Effect of Oy concentration on 15 flavour volatiles. Production and relative
distribution in headspace are values after 190 days in (1%02—99%N3) or (21%0,—
79%N3) (ambient atmosphere) and post-storage ripening for 7 days in ambient atmo-
sphere at 20°C.

No Compound Production of volatiles Relative distribution

in headspace

(1g/(kg - L)) (% of total)
1 Propyl acetate 0.02 0.74 0.75 4.62
2 2-methyl-propyl acetate 0.05 0.19 1.38 1.04
3 Propyl propanoate 0.01 0.20 0.18 1.31
4 Butyl acetate 0.21 5.37 5.74 24.09
5  2/3-methylbutyl acetate 1.44 2.57 38.30 14.92
6  Butyl propanoate 0.03 0.85 0.88 4.19
7 Pentyl acetate 0.02 0.21 0.56 1.13
8  Butyl butanoate 0.03 0.65 0.93 2.76
9  Butyl 2/3-methylbutanocate 0.05 0.30 1.42 1.56
10 Hexyl acetate 0.16 3.00 4.27 14.40
11 Propyl hexanoate 0.01 0.17 0.47 1.05
12 Hexyl propanoate 0.01 0.42 0.32 2.18
13 Butyl hexanoate 0.06 0.99 2.03 4.56
14 Hexyl 2/3-methylbutanoate 0.07 0.78 2.35 3.65
15 Hexyl hexanoate 0.03 0.59 1.27 2.53
Total 3.50 19.85 60.85 83.99
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Table 2.3: Prediction results for flavour intensity. Optimization parameter, which is
averaged over the three training sets, refers to the number of factors for PCR and
PLS, the number of variables for MLR1 and MLR2, the ridge parameter for RR and

the continuum parameter for CR.

Model Standard- MRPRESS1 Optimization MRPRESS2

ization parameter
PCR 1 0.476 1 0.464
PCR 1/s 0.490 2 0.483
PLS 1 0.474 1 0.458
PLS 1/s 0.493 1.3 0.481
MLR1 1 0.463 2.7 0.466
MLR2 1 0.435 6.3 0.640
RR 1 0.480 17.65 0.460
RR 1/V/SS 0.489 1.03 0.469
CR 1 0.474 0.62 0.457
CR 1/V/SS 0.489 0.25 0.472
Constant 1 0.716 0 0.702

The degree of multicollinearity for the 32 x 15 training data matrices, measured
by the matrix condition numbers for the corresponding 15 x 15 matrices of cross
products, were approximately 996 000, 663 000 and 1 048 000, respectively, for the
three training sets. These numbers indicate a high degree of multicollinearity.

The prediction results are presented in Tables 2.3-2.5. In terms of the MRPRESS2
results, the unstandardized PLS and CR performed best, with a slight superiority
of the PLS. Also, the number of factors was smallest for the PLS models. This
confirms previous PLS experience. In fact, only one factor is needed for the optimal
unstandardized PLS. Thus, this single-factor PLS is a special case of the first-stage
CR, which is reflected by the smaller MRPRESS1-values for CR as compared to
PLS. Nevertheless, we note that for two out of three test sets the prediction errors
(MRPRESS2) for PLS were slightly smaller than for CR, reflecting an increase in
prediction error as a result of the estimation of an extra parameter. An interesting
fact is that the unstandardized models in general perform better than the standardized
ones.

The MRPRESS2 values can be compared with the value corresponding to the
‘constant’ prediction which does not use the GC measurements at all. This shows
that even by optimal choice of prediction model, the reduction in standard prediction
error is only between 35 and 40 % compared with the most naive choice of prediction
— an illustration of the high degree of uncertainty in sensory data of this kind.

Also striking is the fact that if prediction ability were to be judged from the
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Table 2.4: Prediction results for banana flavour. Optimization parameter, which is
averaged over the three training sets, refers to the number of factors for PCR and

PLS, the number of variables for MLR1 and MLR2, the ridge parameter for RR and

the continuum parameter for CR.

Model Standard- MRPRESS1T Optimization MRPRESS2

ization parameter
PCR 1 0.514 1.3 0.533
PCR 1/s 0.561 1.3 0.577
PLS 1 0.515 1 0.519
PLS 1/s 0.561 1.3 0.578
MLR1 1 0.524 3 0.578
MLR2 1 0.493 5.7 0.743
RR 1 0.526 18.56 0.535
RR 1/V/SS 0.558 0.89 0.564
CR 1 0.513 0.75 0.525
CR 1/V/SS 0.555 0.40 0.565
Constant 1 0.858 0 0.855

Table 2.5: Prediction results for preference. Optimization parameter, which is aver-
aged over the three training sets, refers to the number of factors for PCR and PLS,
the number of variables for MLLR1 and MLR2, the ridge parameter for RR and the

continuum parameter for CR.

Model Standard- MRPRESS1T Optimization MRPRESS2

ization parameter
PCR 1 0.462 1.3 0.466
PCR 1/s 0.494 1.3 0.479
PLS 1 0.466 1 0.451
PLS 1/s 0.495 1 0.475
MLR1 1 0.469 2.3 0.505
MLR2 1 0.417 9.3 0.938
RR 1 0.474 19.67 0.469
RR 1/V/SS 0.495 1.17 0.489
CR 1 0.465 0.77 0.456
CR 1/V/SS 0.490 0.45 0.485

Constant 1 0.751 0 0.735
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MRPRESS1 values, the MLLR2 approach would clearly be the winner, and MLRI1
would be comparable with PLS and CR. However, in MRPRESS2 the MLR1 is clearly
worse than PLS and CR, and MLR2 is disastrous. For the preference attribute it
even performs much worse than using the training set preference average as test set
prediction.

2.4.3 PLS Analysis of banana flavour

In this section, a brief report of our sensory-instrumental study is presented. Fig-
ures 2.1-2.4 contain the results of an unstandardized PLS-analysis of banana flavour.
We base this presentation on ‘full” cross validation on all 48 observations. Variables
number 4, 5 and 10 have large loadings (see Table 2.2), consistent with the fact that
these are the major components measured in concentration. The scores scores from
the first PLS factor seem in particular to separate high and low oxygen treatments.
PLS analyses of flavour intensity and preference give almost identical pictures. Fig-
ure 2.4 shows the prediction function together with the 48 observations.

Press
0.5 0.6 0.7

0.4

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of PLS factors included

Figure 2.1: Cross-validated residual variance from the set of 48 observations from an
unstandardized PLS analysis of banana flavour and the 15 aroma components.
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Figure 2.2: Loadings of the 15 aroma components on the first PLS factor from an
unstandardized analysis predicting banana flavour.

PLS factor 1 score

[1 % Oxygen | 2 % Oxygen | 4 % Oxygen |21 % Oxygen |

Observations

Figure 2.3: Scores relative to the first PLS factor from an unstandardized PLS analysis
of banana flavour and the 15 aroma components. The 48 observations are ordered
according to the four storage conditions.
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Figure 2.4: Fitted linear relationship between factor 1 and banana flavour from an
unstandardized PLS analysis of banana flavour and the 15 aroma components; 72 %
of the variation in aroma component space is explained by factor 1.

2.4.4 Panel size interpretation of prediction ability

By substitution of the MRPRESS2 for the unweighted PLS for, say, banana flavour
(see Table 2.4), on the left hand side of (2.4) we get

10519 1

m g

2 n’

and the corresponding panel size m can be calculated. The results are summarized
in Table 2.6 for the sensory attributes in question and the PLS predictions. We see
that the GC measurements lead to predictions comparable with the results from a
sensory panel of between two and six assessors.

2.5 Discussion

The important sensory attributes for ‘Jonagold’ apples in the present study were
flavour intensity, banana flavour and preference. The PLS and CR methods were
shown to provide the best predictions of the three attributes in question, based on
GC measurements of 15 aroma volatiles. That PLS performs slightly better than (or
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Table 2.6: Panel size interpretation of PLS predictions.

Variable 109 days (n = 8) 190 days (n = 10)

6% Panel-size &2 Panel-size
Intensity  0.46 2.8 0.39 2.4
Banana 0.62 3.3 0.60 3.1
Preference 0.70 6.1 0.66 5.4

similar to) PCR with a small number of factors is in good agreement with previous
experience (see Naes & Martens, 1985; Nees et al., 1986; Kowalski, 1990). The CR
is new in this context. It is important to note that it was only used here in a very
restricted version. Only one factor was used and only the part of the continuum
ranging from MLR (a = 0) to PLS (o = ) was examined. This leaves CR in its
complete form as a strong candidate among the linear prediction approaches.

There are, of course, several other possible methods. For the given data, logarith-
mic transformations and MLLR models with multiplicative and quadratic terms were
tried at an earlier stage of our analysis, without any indications of improved results.
These approaches were therefore not pursued further. Non-linear and non-parametric
methods were not applied. Such methods have been developed, not only in the sta-
tistical literature, but also in chemometric literature (see Cruciani et al., 1992, and
references therein). Recently Sutter et al. (1992) advocated the selection of factors
in PCR based on predictive ability rather than from the top down; an idea already
proposed by Nas & Martens (1985).

A different approach to the predictions of sensory profiles is to build up models
based on raw data rather than pre-averaging over judges. Nas & Kowalski (1989)
present several ways of performing such analyses, including unfoldings and factor
models. This approach seems to be very attractive as the interaction between asses-
sors and treatment effects may be included in the modelling.

A two-step cross-validation procedure was applied to evaluate predictive ability.
One step was used to ‘optimize’ a particular method and the other to compare the
methods. This approach is different from that of Nees et al. (1986), who used a
single fixed test set for prediction evaluation. Moreover, Naes et al. (1986) did not
use cross-validation in their MLR modelling.

It has been shown that the classical PRESS-statistic based on ‘full’ cross validation
(MRPRESSI values) favours the MLR models. Cruciani et al. (1992) reached the
similar conclusion that this approach cannot be used to compare regression methods.
Nevertheless, Kowalski(1990) used this method to conclude that MLLR models give
a better prediction than biased methods. This conclusion therefore seems highly
questionable.
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The generality of the conclusions obtained from a single experimental study, such
as the one presented here, may be questioned, of course, and our findings should be
seen in conjunction with those presented by other workers. Concerning the experi-
mental conditions, the use of only four containers from which apples were taken at
varying times might cause some difficulties in the separation of treatment effects from
‘container variation’, although the comparison of prediction methods should not be
affected systematically by such confounding factors.

Finally, we have presented an interpretation of the predictive ability in terms of the
number of assessors required to obtain a prediction of equal accuracy. This approach
seems new, and offers a way of reporting and interpreting the results that reflects the
underlying idea of replacing sensory evaluations by instrumental measurements.
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2.8 Appendix

The relationship between CR and RR

In the notation from the section on CR, we let v = =—. Moreover, we let bR ()
denote the vector ¢ that maximizes (2.3), i.e. the CR estimates corresponding to
continuum parameter 7, and let 577(§) denote the RR estimates with ridge parameter
0, 1.e.

bRR(§) = (S +60)7's, 6>0
where [ is the n-dimensional identity matrix. Sundberg (1993) showed that for 0 <
v <1
bR (y) = (1 + IL) bR(8) (2.5)
-7
with

s 7 RS ()
L= 69F(5)bF ()
I R I LA GD) (2.6)
L=y OFR(4)' bR () '
This means that letting the ridge parameter ¢ vary from 0 to infinity (while calculating
bRE(§)) we obtain from (2.6) the continuum parameter 4 varying between zero and
one, and from (2.5) the CR estimates 6% ().
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2.9 Add: Panel size interpretation of prediction
ability

In this section we consider the uncertainty in the estimation of the panel size equi-
valent m of a prediction error v. Rewriting (2.4) we can express m as a function of v
and o2, )
9 v N~ .
m(v,0?) = (@2 - n) (2.7)
Both » and o2 are estimated with error in applications. Based on the standard error
of estimation of o? from the ANOVA, we will consider the functions

m('v7 6-2)7 m('v7 5‘%0)7 m('v7 a%]p)

where 67, and &7, are the lower and upper endpoints of the 95% confidence band for
o?. In Figure 2.5 we see the confidence bands for m given the observed prediction

Intensity Banana Preference
S S S
S S S
[oe} o] [ee)

0.1 0.203 0.4 0506 07 0.1 0.2 03 04 05 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
\Y \Y \

Figure 2.5: Panel size versus prediction error m(v, &%) (109 days). The dotted curves
are the lower and upper functions, m(v,&7,) and m(v,6¢,), and the vertical lines
indicate the best possible (6%/n) and observed PLS prediction error in each case.

errors as the intersection of the solid vertical line with the dotted curves. The Figure
also gives an impression of the additional uncertainty owing to ‘moving’ the predic-
tion error around the observed value. We see that large values of m will be poorly
estimated. This has the consequence in these cases that the prediction error must
be quite small for us to claim that the prediction method is better than the panel
prediction.

Refsgaard et al. (1994) calculate panel size equivalents for PLS predictions of
geranium leaves taste and odour in a storage experiment of aroma in aquavit. The
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design structure was basically the same as in the Brockhoff et al. (1993) and the
calculation of the panel sizes were performed equivalently and yielded 2.5 and 2.0
respectively. However, in the aquavit experiment a ‘true’ replicate of all treatments
were present, and a more reasonable choice for the variance estimate (and uncertainty
distribution) may be the Treatment x Storage-time x Assessor interaction mean square
(and degrees of freedom). From Figure 2.6 we see that the latter, by disregarding
the ‘within’ variance, gives a little larger equivalent panel sizes. Figure 2.6 moreover
shows that small changes in prediction error gives less changes in m than for the apple
experiment. Relative to the panel used in each experiment the predictions therefore
seem to be better in the apple experiment. We should note, that to compare values
along the z-axis of these diagrams from experiment to experiment the sensory scales
must be the same. An interesting thing to note also, is that the diagrams can be made
from an ANOVA only, and may therefore serve as a comparative tool with respect
to what may be expected from a future chemical/physical prediction attempt. The
scope of such an approach would need further study, though.

Geranium taste Geranium odour

3 3
o Pooled o Pooled
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o o
- -
o] [ee]
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Figure 2.6: Panel size versus prediction error m(v,5?). The dotted curves are the
lower and upper functions, m(v,s7,) and m(v,éf,), and the vertical lines indicate
the best possible (6%/n) and observed prediction error in each case. ‘Pooled’” means
that the interaction effect is left unmodelled, and ‘Stratum’ that the interaction mean
square is used as variance estimate.
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Chapter 3

Modelling individual differences
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Abstract

A parametric model for sensory panel data is presented. The model takes scale
differences between assessors into account as well as reproducibility differences.
Parameter estimates are derived leading to an iterative partial maximization
algorithm, and the scale parameters are shown to be closely related to the
‘stretching and shrinking’ constants of a 1-dimensional Procrustes analysis. A
measure of assessor precision is defined within the model, and the use and
interpretation of the model are illustrated by a real data example.

Keywords: Analysis of variance; assessor precision; individual differences; maximum
likelihood analysis; pairwise comparisons; reproducibility differences; scale differences;

sensitivity weights; sensory analysis.
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3.1 Introduction

Sensory panel data, where individuals evaluate different products on a continuous
scale, are often blurred by extensive individual variations. The approach to the
handling of such differences may affect the results of a statistical analysis considerably.
The purpose of the present paper is to present one possible approach to this by means
of a particular statistical model, together with theoretical as well as practical issues
associated with the model. The emphasis will be on the statistical methodology and
applications leaving more theoretical results concerning asymptotics and algorithm
convergence to a future publication, as these issues are parts of ongoing work by the
authors.

We will consider just one sensory property at a time. Let Y,,, denote rth replicate
of a score given by assessor a for product p, where r =1,...,R,,, a = 1,..., A and
p=1,...,P. Assume for simplicity that R,, = R for all « and p, and that replications
are included in the randomized sequence of assessments so that block effects are not
necessary in the model.

A straightforward approach for such a situation would be to use the model

Yopr = @ + Vp + €aprs Var &4, = 07, (3.1)

where {e,,,} are independent random variables. This is the usual model for two-
way analysis of variance with additive effects. Different values of the a,s correspond
to different basic ‘levels of assessment’ for the assessors, while the v,s represent the
product ‘values’ with respect to the property in question.

In reality, however, results from an assessor panel are often more complex. Even
trained assessors differ in their ability to distinguish certain tastes and flavours. This
may be reflected in the results in two ways. Firstly, some assessors separate the
products by more units on the subjective scale—an interactive effect referred to as
‘different use of scale’ in what follows. Secondly, the individual variances, measured
in terms of replications of the same experimental unit, may vary between assessors.
In practice, a higher total variation between the scores from a particular assessor does
not imply that he or she has a higher degree of uncertainty and therefore should be
given a lower weight, nor does it imply that this assessor spreads the products more
out on the scale, because the variation might be unsystematic. An important aspect
of the model presented here is that it includes all of the effects mentioned above, i.e.
different levels, different uses of scale, different individual variances, and, of course,
different product values as in (3.1).

In the following section the model is presented and initially discussed; parameter
estimates are then derived prior to a section on successive hypotheses testing. These
techniques are then illustrated by an application of the model to real sensory data.
Finally, the last two sections consist of suggestions of possible extensions of the model
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and a discussion of open questions and directions for future research. The more
technical parts of the presentation are placed in the Appendix at the end of the

paper.

3.2 The model

Let {Y.,-} denote the assessor scores as in the Introduction. The products are as-
sumed to have some (unknown) values v,, p = 1,..., P, with respect to the property
assessed. The assessors are assumed to score in agreement with these values, but
possibly with different baselines, uses of scale, and standard deviations. Thus we
assume that for each assessor, a, there are three values: «,, 3, and o, > 0, such that

Yopr = @a + Balp + Eapr Vare,,, = o’ (3.2)

where the {e,,,}s are independent normally distributed random variables with zero
expectations.

For convenience in connection with the estimation of the parameters entering the
model we impose the restrictions

v=0 MS,=1 (3.3)

where v and M S, are the averages over products of the v,s and the st, respectively.
These restrictions ensure that the model (3.2) is uniquely parametrized by the triplets
(a, Ba, 04) and the v,s whenever at least two products differ. This parametrization
will be used throughout the paper. The number of parameters in the model (3.2) is
thus 34 + P — 2 and we must assume that

3A+ P —-2< ARP (3.4)
which is satisfied if A > 2, P > 2 and R > 2.

A technical problem arises when all the products are alike, i.e. when all the v,s
are identical. In this case the ‘regression parameters’, o, and f3,, are not identifiable,
essentially because we are regressing on just one value of the covariate.

3.2.1 Interpretation and related models

Model (3.2) is a submodel of the model
1/a]m“ = Yap + Eapr Var Eapr = 0-2 (35)

where {z,,,} are independent, i.e. the model involving general interaction effects
between assessors and products, and with different assessor variances. Model (3.5)
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is thus equivalent to A independent one-way analyses of variance. Model (3.2) can
be seen as a linear regression of the scores for each assessor on the unknown product
values.

It gy = -+ = B4 and 6f = --- = ¢4 model (3.2) reduces to model (3.1) and
it is therefore possible to test these models successively starting from the general
interaction model (3.5). We return to this issue in a later section. Note further
that the model (3.5) with variance homogeneity, o = --- = &3, is the conventional
analysis of variance model, which Naes (1990) has stated to be generally applicable
to sensory profile data.

An approach related to the one described here was taken by Yates & Cochran
(1938). They interpreted a significant interaction by regressing the interaction ef-
fects on factor level means. Three points differ from the approach here: we ‘regress’
the total product effect rather than just the interaction, our regression is done on
‘unknown’ product levels incorporated into the model, and finally we allow assessor
variances to differ. The second difference arises because Yates and Cochran did not
specify a model corresponding to their regressional interpretation.

Mandel (1961) formulated the constant variance case of model (3.2) explicitly. He
referred to the model as representing a bundle of straight lines corresponding to the
A individuals, and differing from each other in both parameters, «, and 3,. Further,
the model include Tukey’s ‘one degree of freedom’ interaction model as a special case
(Tukey, 1949). Later in Mandel (1969; 1971), a more general interaction model, in-
cluding the counterpart of model (3.2) with variance homogeneity as a special case,
was developed, where a number of multiplicative terms were used to model the inter-
action. Although models were specified in these works, a formal maximum likelihood
approach was not taken.

Crowder (1980) suggested the use of proportional linear models with a parameter
of proportionality for each individual. That model allowed for different variances,
but differed from (3.2) by again requiring ‘known product values’ and identical linear
parameters for each individual. The latter requirement, though, could be omitted.

The f-parameters in model (3.2) are closely related to the procrustes-like ‘stretch-
ing and shrinking’ constants used to eliminate scale differences in Nas & Solheim
(1991). In the Appendix we show, using a slight reformulation of the definitions that
they are related as the slope in a regression of y on z is related to the slope in the
inverse regression of = on y.

3.2.2 Assessor precision

Naively we could use the estimates of the individual standard deviations, o,, a =
1,..., A as a measure of ‘how good’ an assessor is. This would, however, favour
an assessor scoring consistently within a narrow interval, whether the assessor is
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able to separate the products or not. By a weighted analysis this assessor might
inappropriately be given a heavier weight.

In the model (3.2) such a situation would lead to a low f3,-value for this assessor.
Intuitively an appropriate measure of ‘assessor precision’ could be f3,/c,. In the
Appendix it is shown that

ﬂz (MSprod MSZT’/’OT)
— x
o? E(MS?. ) ’

error

(3.6)

where MS? . and MS?

oo are the mean squares from a one-way analysis of variance
on the results from assessor a, ¢f. the appendix for details. Thus by ‘ignoring the

error

expectations’ the right-hand side becomes F, — 1, where F, is the F test statistic for
the product effect in the analysis of variance for assessor a. Examples of application
have confirmed that the proportionality

e~ F,—1 (3.7)

is a good approximation for some constant ¢. This agrees well with the use of the frac-
tion (3,/0, as an assessor precision measure, since the measure apparently expresses
the assessor’s ability to distinguish between the products.

3.3 Estimation

Consider a set {y,p,} of observations of the form described in the Introduction. We
seek maximum likelihood estimates in model (3.2) with the identifiability restrictions
(3.3) imposed on the parameters. From the normality assumption the log-likelihood
function becomes

log {H H H \/— exp ! (yapT — Qg — ﬂal/p)z] } = (3.8)

a=1p=1r=1

[\)l»—*

1 A P 1 )
_—APRlog(Zﬂ') - EPR Z log(o Z Z Z U— (Yapr — Qq — ﬂ(lz/p)2

a=1 a=1p=1r=1

with 7 = 0 and M S, = 1.

In general it is not possible to solve the resulting equations analytically and we use
instead an iterative approach to obtain the parameter estimates. The iteration scheme
derives from the interpretation of the model as regressions on the v,s. For given values
of 11, ... v, satisfying (3.3) the expression (3.8) splits up into A terms, the ath of which
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corresponds to a usual regression of y,11,...,y.pr o0 vq,...,vp. The corresponding
well-known maximum likelihood estimates for the remaining parameters are

P
ﬂa = Zgapl/p?
p=1

b, = gja (3.9)
. A . 2
05 = Z Z (yaw S — ﬂaz/p) ,
p 1r=1
for a = 1,..., A, where, for example, y,.. denotes the average of the y,,,s over the

indices replaced by dots.

Assuming now that the parameters (o, 34, 0,) for a = 1,..., A are known we may
obtain the maximum likelihood estimates of the v,s by noting that we have a set of
independent random variables

C 1/a r — Ya 2
] (3.10)

which corresponds to the model of a one-way analysis of variance with different, but
known, variances. The maximum likelihood estimate of v, is obtained as the weighted
mean o
apzzﬂ—;(y“p ) Z . (3.11)
a=1%a Ba a=19
If some of the ;s are zero it is easily seen that the scores from the corresponding
assessors do not contribute to the estimates of the v,s, and (3.11) still holds, cancelling
out the 3,s in the denominators, of course. Note that the weights in (3.11) are the
squared assessor precisions. Moreover, note that this ‘one-way ANOVA step’ does
not guarantee that the restrictions v = 0 and M S, =1 are fulfilled. This is achieved
by a subsequent reparametrization as shown in the iteration scheme below. Missing
observations cause no problems here — all sums should just be considered as sums
over indices corresponding to non-missing observations.
We may now set up an iteration scheme alternating between the regression step
from (3.9) and the estimation of the v,s from (3.11), thus arriving at the procedure
involving the following steps

1. Initialize the v,s by letting 19]()0) = (gj.p.—gj...)/\/Z;;l(gj.p. —y.)2forp=1,..., P.
2. Estimate (a,, 34,02) for a = 1,..., A according to (3.9).

3. Estimate v, according to (3.11), for p=1,..., P.
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4. Modify the v, estimates by first subtracting v from the vs, and then dividing
the result by \/Zle(z/p —v)?

Repeat steps 2—4 until convergence is achieved.

Step 4 is the reparametrization required for the restrictions (3.3) to be fulfilled. If
this algorithm converges we have found a local, possible global, maximum of the
likelihood function. It does not seem possible to prove the existence of a unique
maximum of (3.8) in general, but it can be shown that by use of this algorithm we
obtain a consistent and asymptotically efficient estimator of the entire parameter
vector, despite the fact this has not been proved to correspond to a global maximum
of the likelihood function for fixed R. The proof of this, however, will not be given
here.

In Crowder (1980) the parameter estimation is approached in a slightly different
way, that here would correspond to consideration of the likelihood function as a func-
tion of the triplets (g, B4, 04), a = 1,... A, obtained by substitution of (3.11) in the
likelihood function. Then an optimization algorithm is applied to the reduced func-
tion. Our approach offers a simple algorithm, and by the explicit description of this,
consistency and asymptotic efficiency of the solutions can be proved, as mentioned
above.

In the case of constant variances, o7 = --- = 0%, the steps 1 and 2 of the algorithm
correspond to the estimation method originally suggested by Mandel (1961) with the
modification that we have that MS, = 1.

3.4 Successive hypothesis testing

As mentioned, model (3.2) suggested in this paper is a submodel of the general
interaction model (3.5) with different assessor variances. For inferential purposes
it is useful to consider some further specializations as given in the following nested
sequence of models for the expectations:

Mo : EY,, = 74

M, : EY,,, = a, + B,
M,: EY,, =a,+v,
M;: EY,, = a,

where M is model (3.5) and My is model (3.2). For each of the models we assume
that the Y,,,s are independent, normally distributed random variables with variances,
o2, depending on the assessor. The hypothesis of equal variances could be invoked
at any level; though a natural starting point for reducing model complexity would
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be to test this hypothesis by a Bartlett test under Mg. In the following we allow for
different variances throughout but the analysis with variance homogeneity follows the
same path.

A logical way to proceed with the analysis is to test the various hypotheses from
My successively down to M3. For example, to test My against My we use minus twice
the log likelihood ratio test statistic:

—2log Q = PRZlog( m“) (3.12)

a=1 (0) a
where
a A (2
Ston =g 2 3 (o = 9)° (313
p=1r
for £ = 0,1 is the maximum likelihood estimate of the variance for assessor a in

model M, based on the predicted values y(f)T from this model. Asymptotically, if M;
holds, this test statistic follows a y? distribution with AP — (2A + P — 2) degrees
of freedom. Because all of the models considered belong to the so-called class of
curved exponential families (see Barndorff-Nielsen, 1978), the proof of this assertion
follows standard methods once the consistency and efficiency of the estimator has
been established.

In a similar way, the hypotheses M, and M3 may be tested. However, special
care must be taken with regard to the case when the products are alike. In that case
the slopes, 3., are not identifiable in M; and the usual asymptotic results, leading to
approximate \? tests for the likelihood tests, do not hold. As soon as some of the v,s
differ this problem disappears theoretically, but the approximation may be suspected
to be poor when we are close to the situation of equal products.

A practically feasible way of avoiding this problem is first to test for product differ-
ences by testing M3 directly against My. If product differences are not convincing the
entire modelling becomes less relevant, and otherwise we may proceed by testing the
various models successively by use of the asymptotic results for likelihood inference.

Since the identifiability problem only occurs when all the products are alike, we
are able to perform pairwise comparisons of the products based on model M;. A
pairwise comparison of products p; and py is a test of the model

M, : EY,,, = as+ Buvy , Vp, = 1y

2

against the model My. Estimation of parameters in 1\712 proceeds as for My with
the only modification that in step 3 of the algorithm the estimates for v, and v,
are obtained by substitution of y,,. in (3.11) by the average score over both of the
products. As test statistic we use minus twice the log-likelihood ratio statistic as
above. If M, holds this test statistic follows asymptotically a y2-distribution with
one degree of freedom.
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3.5 Example

In a sensory evaluation, five varieties (P = 5) of the same food product were com-
pared. Different recipes were used to produce the five products and they were com-
pared by a trained sensory panel consisting of eight assessors (A = 8) giving scores
for a number of different sensory properties on an intensity scale from 0 to 1. Only
one of these properties is considered here.

The data were kindly provided by Dansk Sensorik Center!'. In the Appendix a raw
data table is given containing the 160 original figures. For reasons of confidentiality
we can not reveal the type of food and the properties being assessed.

Each product was assessed by each assessor four times by means of four replicates
(R=4). Evaluations were ‘blind’ and the order of presentation of products randomized
within each replication. Although the replicates were organized as four different
sessions (blocks), we assume for now that no block effect is present. In the Extension
section below we outline how to handle the case with block effects. The observations
were continuous in the sense that the scores were given as marks on a line segment.

In Figure 3.1 the 160 observations are presented. Fach vertical line resembles the
line segment, scaled from 0 to 1, used for scoring by each assessor. There seems to
be a general tendency that the products 1 and 4 are judged to have a high intensity
of the property in question, while products 2, 3 and 5 have low intensities. There is,
however, a considerable variation between the assessors in the way they evaluate the
products. To investigate how model (3.2) reflects these variations, note for now the
following assessor characteristics:

1. Assessor 3 and 4 are similar with respect to use of scale and individual variation,
but have quite different levels.

2. Assessor 4 and 6 are similar with respect to individual variation, but use the
scale differently.

3. Assessor 7 seems to use the scale similar to assessor 6, but clearly has a larger
variation.

4. Assessor 8 seems to have turned the scale around compared to the others.
This is clearly not a complete list of information on assessor differences seen from

Figure 3.1, but it exemplifies the different types of assessor effects mentioned in the
Introduction, including the ‘scale reversal’ by assessor 8.

!Dansk Sensorik Center is a danish company specialized in performing and selling sensory eval-
uations to the food industry
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Figure 3.1: Original scores of the five products for each assessor. The five products
are represented by positions on the abscissae and the ordinates label the
actual scores. Each horizontal mark is one replicate.
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Prior to the further analysis we transform the data. Figure 3.2 shows the mean-
variance relationship for the data, resembling that of a binomial. We therefore con-
sider new observations, ¥,,, given by

Yapr = arcsin(/Yapr ),

as the function f(x) = arcsin(y/x) is the variance stabilizing function for the binomial
distribution, see, e.g. Weisberg (1985).

o
o o
0we8® %o o ¢ 0o 088 oo
0.0 0.2 0.4 0.6 0.8 1.0
Average score over replicates

Variance of replicates
0.0 0.05 0.10 0.15 0.20

Figure 3.2: Sample variance plotted against average for each combination of assessor
and product.

We now proceed as outlined in the previous section. The model My is fitted to the
data, i.e. the eight individual one-sided analyses of variance are performed. These
results are presented in Table 3.1. Note that all but assessors 1 and 8 distinguish
the five products significantly at the 5 % level. As indicated earlier, the individual
variances, MS((;I), also seem to differ considerably. This is confirmed by a Bartlett
test giving a y? test statistic of 45.3 on 7 degrees of freedom, which is extremely
significant. Here we have used the corrected test statistic due to Bartlett (1937), that
in our case takes the form

c {AR(P —1)log (% zijl MS@) — R(P—1) zijl log (MSS;’))} (3.14)

where

€= {1 + S(Al— 0 (R(PA— 0~ AR(}i _ 1)) }_1 (3:15)

is the Bartlett correction factor. Next the model M3 is tested against My, yielding

—2log Q = 199.0



46

Modelling individual differences

Table 3.1: Results from the eight individual one-way analyses of variance. F' is the

F test statistic for equality of the five products and P the corresponding p value, i.e.

F = MS,,00/MS.

Assessor \/MSpTOd

MS, F P

1

0 ~1 O O = W o

0.34
0.63
0.37
0.14
0.69
1.41
0.78
0.57

0.27
0.25
0.18
0.072
0.20
0.10
0.24
0.37

1.6 0.23
6.3 0.003
4.0 0.020
3.7 0.027
11.9 0.000
194 0.000
10.1  0.000
2.4 0.097

Table 3.2: Individual parameter and precision estimates under model My

Assessor &

B

& Bl

1

OO ~1 O Ut = LW o

0.19
0.91
0.32
1.09
0.72
0.73
0.75
0.72

0.24
0.57
0.36
0.14
0.67
1.41
0.76
-0.51

0.26 0.94
0.24 2.34
0.16 5.25
0.063  2.15
0.18 3.73
0.089 15.9

0.23 3.35
0.34  -1.50

which is highly significant on 48 — 16 = 32 degrees of freedom. Hence the data show
clear product differences, and we can proceed with the analysis as described in the

preceding section.

We now carry out the estimation algorithm. The algorithm was implemented in

Turbo Pascal and run on a personal computer. After 10 iterations convergence was
obtained in the sense that no parameter estimate changed on the first eight decimals
between the last two iterations. The estimates are listed in Tables 3.2 and 3.3. In
comparing Table 3.1 and Table 3.2 it should be noted that MS. in Table 3.1 is the
unbiased variance estimate, i.e. with 15 degrees of freedom, whereas & in Table 3.2 is
the maximum likelihood estimate.

The test for My under My gave

—2log Q = 17.4
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Table 3.3: Product parameter estimates under model My

Product 1%
1 0.49
2 -0.43
3 -0.32
4 0.60
5 -0.34

on 8-3 —5+ 2 = 21 degrees of freedom, yielding a p-value of 0.69. The model
M, thus seems to offer a satisfactory description of the data, and specifically of the
assessor dissimilarities. Finally the differences in use of scale are tested, i.e. model
M, is tested under My, yielding

—2log Q = 130.1

on 7 degrees of freedom. Thus, there certainly is a highly significant difference between
the assessors’ use of the scale. We therefore use model My as our final model, and
turn to the parameter estimates of Tables 3.2 and 3.3. To see how well the model did
in catching the four enumerated effects above, the relevant parameter estimates are
listed in Table 3.4. We see that the estimates indeed reflect the observations from
Figure 3.1. Even less obvious observations are consistent with parameter estimates,
for instance that scores from assessor 3 are slightly more variable than those from
assessor 4, and that those from assessor 6 are even more precise.

A graphical presentation of the fitted model is given in Figure 3.3. Note that
the arcsin-transformation changes the intensity scale from (0,1) to (0,7/2). For
each assessor (a) predicted values from the model are represented by the individual
regression line (v, &, + Baz/). This can be interpreted as a representation of the
individual scale. Moreover the individual standard deviation is pictured by lines,
which are the prediction line plus or minus the standard deviations. Finally the
observed means, (7,,1.,.), of the four replicates of each product are plotted. Tt is
our opinion that Figure 3.3 offers a clear and easily interpretable visualization of the
different assessor effects in the data.

Each assessor could also be evaluated by a single number, namely the assessor
precision estimate from The Model section,

Ba)5a

These numbers are listed in Table 3.2, and we see the close relationship with the
individual F' values from Table 3.1.
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Figure 3.3: Fitted regression lines based on transformed data for each assessor. The
ordinates represents the scores given by the assessors and the abscissae
are the estimated span of product values. The dotted lines are the fitted
lines shifted with plus and minus the individual standard deviations, and
the plotted points are the actual observed averages over replicates versus
estimated product levels from Table 3.3.
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Table 3.4: The four examples of individual differences from Figure 3.1 with corre-

sponding parameter estimates.

Observations from Figure 1

Estimates from Table 2

Case no Level Scale Std. Level Scale Std.

1 az # ay B3 & 34 05 A0y a3z =032 [(3=0.36 63=0.16
G4=1.09 B =014 &,=0.063
2 Ba # Pe 04 X Og By =0.14 64, =0.063
Bo=141 b6 =0.089
3 B = 7 o6 # 07 B =1.41 66 =10.089
B =076 67 =023

4 Bs # Ba Bg = —0.51

a=1,...,7 Ba>0
a=1,....7

Table 3.5: P values corresponding to y? test statistics from the pairwise comparisons

of products under model M;.

Product 1 2 3 4 5
1 — 0.000 0.000 0.008 0.000
2 — 0.018 0.000 0.053
3 — 0.000 0.573
4 — 0.000
5 _

A particularly nice feature of the precision estimates is that the ‘scale reversal’ by

assessor 8 is revealed. In this particular case, however, this effect will not worry us
too much, as assessor 8 is separating the five products at the 8 % level of significance

only.

Finally we perform the pairwise comparisons for each combination of products,
see Table 3.5. We see that all but one pairwise comparison turns up significantly on
5.3 % level, only products 3 and 5 can be said to be equal with respect to the property

in question.
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3.6 Extensions

Model (3.2) can be extended to be applicable in more general situations. In the present
section we sketch possibilities for handling block effects and factorial experiments.
Finally, we briefly comment on the case of multivariate observations.

3.6.1 Block effects

Consider the set-up from the previous sections with the additional complexity of
allowing a block effect representing the replications. This gives rise to the following
nested sequence of models for the expectations:

M;: BV, =

MT : E}/apr =, + ﬂanpr

M; : E}/apr =, + ﬂa(l/p + 67“)
M; : E}/apr =, + ﬂal/p

For each of the models we still assume that the Y,,,s are independent, normally
distributed random variables with variances, o2, depending on the assessor. Model
Mj is a saturated model and model M7 may be reformulated as a version of the
model (3.2) with no replicates within ‘product’ levels, and estimation breaks down
for both (see Discussion). Model M could, however, be tested against the model
with only first-order interaction terms:

E}/apr = q, ‘I’l;p‘I’ST‘I':}/ap‘I'ﬁpr ‘I’gar

Model M can be used to test whether the block effect is significant, If not, we are
back in the situation of the previous sections.

Model M3 is the model of primary interest here, as it represents a logical extension
incorporating block effect in the presence of individual differences in the use of scale.
The general idea is to invoke the linear structure ‘inside the 3,s’. Since any differences
in the products, including block effects, are measured through the evaluations of the
assessors only, all such effects ought to be affected by the assessors’ different use of
the scale. This consideration should not prevent us from checking the model in light
of the data, of course.

Estimation of parameters in model M3 is done as for model (3.2) in the Estimation
Section; the only difference being that the weighted one-way ANOVA step used to
estimate the v,s, becomes a weighted two-way additive ANOVA instead.

3.6.2 Factorial experiments

Consider again the basic set-up of the previous sections, but assume that P =

-

Fy - Fr, where F}, is the number of factor levels for factor number £ = 1,..., K
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from an A x (Fy X --- x Fk) factorial design. In analogy with the handling of the
block effects we consider, for example, the following nested sequence of models for
the expectations:

MS*  EYoppe = Yasiopi

Ml : Ei/afr"f]( = Qg —I_ ﬂanfl“'flx’ I;
*x 1 K

M3 s EYupge = a0+ ﬂa(yj(ﬁ) +oot V}I\")>

For R > 1, i.e. with ‘true replicates’, we can treat My" and M7™ as the earlier
defined Mg and My, since the product factor can be considered as a factor itself.
From M7* through the ‘additive’ model MJ" towards further simplifications, various
models could be relevant, depending on the experiment and the data, just as in a
usual multi-way analysis of variance.

Parameter estimates in any such model can be found as described in the Estima-
tion Section, with the appropriate modification of the weighted ANOVA step.

In a factorial design without replications the analysis may be based on a model
without some of the higher order interactions, analogously to the method for block
effects. If, for example, an A x (F;--- Fi) factorial design is used, the model with
interaction terms including at most K — 1 of the Fixs can be taken as the starting
point.

3.6.3 Multivariate observations

It is straightforward to extend the estimation procedure of this paper, including the
design extensions from above, to perform estimation in a multivariate version of model
(3.2):

Yapr ~ Ny(ap, ¥a) 5 flapl = Qat + Bavpr , [=1,...,q

with Y,,, independent and ¥, symmetric positive definite, ¢« = 1,..., A. This is
highly relevant for sensory data, as such typically consist of evaluations of several
closely related properties of the products.

For practical purposes, however, the large number of parameters in the A different
¢ X ¢ covariance matrices ¥q,..., Y 4 weakens the applicability and possible results
of the model considerably. Restrictions must be made on ¥q,...,¥ 4 to make this
approach feasible. This is, however, beyond the scope of the present paper.

3.7 Discussion

By use of model (3.2) we try to kill two birds with one stone: modelling assessor
differences and estimating product differences. The first seems to succeed fairly well.
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The estimation of the assessor parameters could be invoked in the training of the
assessors, increasing the possible power of subsequent product difference tests, and a
plot like Figure 3.3 is useful as feed-back to the panel leader.

Whether an improved estimation of the product values is obtained is more difficult
to judge. The desire to weight the results from different assessors according to their
abilities, or even to omit the scores from some assessors before averaging over the
rest, is frequently expressed by sensory scientists. If this is done on the basis of the
F tests from each assessor, for example, as shown in Table 3.1, a severe selection bias
must be accounted for. The analysis based on model (3.2) may be seen as a way of
doing that.

So far we have been less successful in providing a test for the overall product main
effect based on the model. The test of M3 against Mg in the Successive Hypothesis
Testing section is a test of both main and interaction effects of the product. In this
test we do not take the possibly differences among the /3 values into account. What
we would like to do, is to test equality of v;s in model (3.2). While this is certainly
possible, in principle, the un-identifiability of the 3,s makes it difficult to obtain even
an asymptotic distribution of the test statistic. One possibility is to use a permutation
test based on a randomization of the scores within assessors using, for example, the
likelihood ratio test statistic. However, the pairwise comparisons performed actually
accounts for the differences in use of scale. The main concern here is the accuracy of
the y? distributional approximation, which also is a subject of ongoing work.

Although we believe that the approach presented in this paper, possibly after a
transformation of the scores like the one applied here, is an improvement over the
frequently employed analyses of variance, a number of problems still remain, some of
which are discussed below.

The question of regarding assessor effects as fixed or random arises. For use in
training of assessors, the fixed effect model presented in this paper seems appropri-
ate. For the subsequent analysis of the products in question, a random assessor effect
model can be argued to be more relevant. Lundahl & McDaniel (1988) discuss this
issue and conclude that assessor effects in sensory evaluations usually should be con-
sidered random. The random effect equivalent of model (3.2) would be a random
coefficient regression model with ‘unknown regressors’ and heteroscedastic variance,
and could be an issue of future research.

The phenomenon of assessors using different ranges of the scale is sometimes called
the ‘rubber-yardstick’ effect. Gay and Mead (1992) use a maximum likelihood ap-
proach to data with such effects very much like ours, though assuming homogeneity
of variances. They mention the complexity of the implementation and possible non-
convergence of the iterative estimation scheme as drawbacks to this approach. The
simplicity of the algorithm in the Estimation Section and the stated convergence re-
sults refute these objections to some extent, though we acknowledge the fact that
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zero-probability events like ‘identical replicate observations’ can occur in these kind
of data, weakening the practical value of theoretical convergence results slightly. The
chance of such ‘singular’ observations increases with number of parameters and de-
creases with number of observations. For the example in this paper, no convergence
problems occurred.

The assumption of normality is, of course, never strictly fulfilled, since the scores
are limited to a fixed range and sometimes confined to a discrete scale. Least squares
methods are often used for such problems and our asymptotic results still hold for a
‘nice’ parametric family, but the possibility of ‘singular’ observations, as mentioned
in the previous paragraph, should be kept in mind.

Another possible violation of assumptions is heteroscedasticity due to products
rather than assessors. For fixed scale scoring one typically observes that the results
are ‘squeezed’ at the extremes of the scale, see Figure 3.2. Both this and the possible
non-normality could be approached by data transformation prior to analysis.

In the case of only one observation for each combination of product and assessor,
we can obtain a perfect regressional fit for one assessor maintaining finite residuals
for the remaining ones, by stretching the v, estimates appropriately. The likelihood
function thus tends to infinity as the variance for that assessor tends to zero, and
the maximum likelihood equation is therefore useless. This is in agreement with the
point made by Snee (1982), that in a two-way table with one observation per cell
it is not possible to distinguish interaction from row- (or column-) related variance
inhomogeneity.

When the number of replications is small one might expect some effect approaching
the behaviour from the case without replications. Thus, the quality of the asymp-
totic y? approximations may well be questioned for small R. This leads to the con-
sideration of another type of asymptotics corresponding to an increasing number of
assessors. Then, however, the number of parameters increases with the number of
assessors and it would be more natural to use a model with random assessor effects.
A non-asymptotic approach, based on simulations or permutation tests, might also
be considered.
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3.9 Appendix

3.9.1 The relation between scale parameters and Procrustes
constants

In Nees & Solheim (1991), constants g, that minimize the function 7},

Ti =323 (9a(Gap — Yo — 9a(ap — 9a-))” (3.16)

a,a p=1

are found. This is a one-dimensional version of general Procrustes analysis (Ten Berge,
1977). The g,s are chosen to make the scaled individual product profiles ‘close’ to
each other. An almost identical problem is to choose scaling constants g, such that
the scaled individual product profiles are all ‘close’ to the average product profile, i.e.
to find constants §, that minimize the function, 71,

T =33 (G = 5o) = GaGap — ) (3.17)

a=1p=1

The solution to the minimization of T} is the well-known least squares estimate,

o S Fap — Vo) (Fop — gj...).
’ St (Yop — Ya-)?

If we take the unstandardized initial v, estimate, v, = .,. — y... in model (3.2) in the
present paper, we get from (3.9):

(3.18)

2 _ Z:157321 gaﬂ(?j'}% - g)
R )

& S (e — o
S (Fape = Vo) (Yp — ¥.)

pet (U — 9-.)?

(3.19)

Examining expressions (3.18) and (3.19) we see that the g,s are the slopes in the
regressions of the (y.,. — y..)s on the (Yup. — ya..)s, whereas the [,s are the slopes in
the regressions of the (Yup. — ya..)s on the (y.,. — y..)s.

3.9.2 Assessor precision parameters and F-statistics

The mean squares from the one-way analyses of variance for each assessor are

prod

. 1 & .
MS( ) — r Z R(i/ap. - 3/(1..)2
p=1
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and

] 1 P R o
MSETZ“OT = m Z Z(E/GPT - 1/1120'>2

p=1r=1
It is well known that

E(MSS),,) = o?

error

and since -
E(Y,y — a,) = B.v, and Z(z/p )’ =1
p=1
we get
(@) \ _ 2 . R
E (MSpTOd) =04 + ﬂaP 1

Thus, we have

E(MS(“) )—E(MS(“) )_ R B

prod error

E(MS(“) ) P —102

error

confirming the proportionality claimed in (3.6).

3.9.3 Data table

Originally the scores were measured on a line segment represented by the interval
(0,15), although we have rescaled them to the interval (0,1) in Figure 3.1. The
original values are given in Table 3.6.
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Table 3.6: Original observations measured on a (0, 15) scale.

Assessor 1 2 3 4 5 6 7 8
Product 0.8 124 3.9 11.7 129 144 9.9 2.7
1 0.2 144 2.7 129 2.7 14.3 144 0.0
0.0 134 5.8 13.2 14.3 14.5 11.1 1.8
09 13.0 2.8 11.6 10.3 15.0 10.3 1.8
Product 0.0 7.8 2.7 102 25 1.0 1.7 0.
2 0.0 105 0.0 11.5 3.2 03 21 11.3
1.2 7.7 1.8 10.7 3.3 0.0 10.5 10.2
0.1 09 00 11.8 4.0 0.0 2.2 144
Product 0.0 125 1.6 104 22 3.0 2.1 26
3 1.1 107 0.0 12.3 2.1 0.8 1.9 14.5
1.1 9.3 0.0 114 38 0.7 0.7 4.7
09 25 15 114 24 09 4.1 14.2
Product 0.1 99 4.0 11.5 13.0 15.0 12.2 4.1
4 13.9 144 2.0 125 12.0 15.0 14.5 3.5
04 14.5 3.9 13.5 13.2 15.0 11.9 0.8
1.9 123 5.0 13.7 13.0 15.0 144 11.0
Product 0.0 1.7 25 108 1.7 0.9 2.2 11.0
5 0.1 21 00 106 19 06 109 7.5
0.1 34 21 104 59 04 2.0 5.5
0.0 84 0.0 123 52 24 0.8 12.6

57
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3.10 Add: Asymptotics and algorithm convergence

3.10.1 Asymptotics

Presented here are results and sketched proofs of the asserted asymptotic properties
for model (3.2) (or My). It may be seen as a formal verification of asymptotic re-
sults for curved exponential families. And although maybe generally accepted and
straightforward consequences of well-known theories, these results are difficult to find
explicitly in the literature. Ghosh (1994), p. 16, gives a general construction of an
mle in a curved family that resembles some of the following. Consider the basic model
M. This is a regular exponential family (Barndorff-Nielsen, 1978) of order A(P +1)

with canonical parameter

1 I pn f1p HA1 Hap
O = | — 5 s — T T s s e ey 3.20
( 20} 20% o} o} a? a? ( )

and canonical statistic

P P
T = (nypw"7Zy31p7y117"'7y1P7"'7yA17"'7yAP)
p=1 p=1

The canonical parameter § varies in the open set ©® = R* x RA”. Let us consider the
model of interest, M. For convenience we choose the parametrization of M; with
restrictions

ﬂl =1 , 01 = 0.
Model My can be specified then, as a sub-model of My by a mapping, 5, of

2 2
0= (Jl,...,JA,ag,...,aA,ﬂg,...,ﬂA,z/l,...,z/p) € 0,

with @ = R x R***P2\ {0 € O|y; = --- = vp} into O defined as
1 1
! 9 — T 5y T 5
77() ( '20% '205
2 vp g + [ain g + Bovp s + Bars a4+ Bavp
—U%,...,—U%7..., N p , =) 7...77031

Proposition 1 M, is a curved exponential family in the sense that
(i) n is three times continuously differentiable.

(i1) The matriz of partial derivatives of n has full rank 3A + P — 2.
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(iii) 1 is homeomorphic, i.e. one-to-one and both ways continuous.

Proof: (i) is clearly true and (ii) can be checked by explicitly writing up the matrix
and showing linearly independence of the columns. That 5 is one-to-one can also be
verified by basic arguments. The corresponding inverse is given by simple expressions,
that clearly are continuous and (iii) holds as well.

Proposition 2 There is a neighborhood U(0y) around the true parameter point 0y €
01, independent of R, such that the restriction of model My = {P|0 € 04} to
U(0y) C ©1 satisfies the following with Py, -probability tending to 1 as R — oo

(i) A unique mazimum likelihood estimate, O € U(,) exists.

(1) Or is consistent for estimating 6.

(tit) Let 1(0) be the Fisher information matriz. We then have
RI(0o) (0r — 05) = N(0.1)

Proof: From (i) and (ii) in Proposition 1 and properties of the regular exponen-
tial family Mg, the assumptions of Theorem 4.1 in Lehmann (1983) are obvious or
straightforward to verify. The assertions of the proposition thus hold.

Note that Proposition 2 does not ensure the asymptotic existence of a unique
global maximum for the likelihood function. However again using Proposition 1 and
a property of the regular exponential family we can obtain:

Proposition 3 With Py,-probability tending to 1 as R — oo the likelihood function
(3.8) has a unique maximum Og satisfying (ii) and (iii) of Proposition 2.
Proof: Choose U(y) C O according to Proposition 2. Denote the likelihood func-
tion L. We must show that

0 ¢ U(0y) = L(0) < L(bo) (3.21)

where the dependence on R of the likelihood function is suppressed in the notation.
Due to the continuity property of the inverse n-mapping, Proposition 1 (iii), there is
a neighborhood V(1) around n9 = 7(6y), such that

0 & U(bo) = n(0) & V(10) (3.22)
In the regular exponential family My we have P, -almost surely, that the likelihood
function is strictly concave, the maximum likelihood estimator 7z exists and satisfies
nr — N0 (Barndorff-Nielsen, 1978). Thus there exists an £ > 0 and an N > 0 such
that for R > N
mr € V(no) and [n & V(no) = L(n) < L(1r) — ] (3.23)
The wanted implication (3.21) is then a direct consequence of (3.22) and (3.23).
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3.10.2 On the estimation algorithm

The conjecture in Brockhoff & Skovgaard (1994) that the estimation algorithm will
converge to a local maximum of the likelihood function is not proved. I could have
chosen to stop the discussion here but as the problem seems quite general, 1 have
decided to present the framework in which such a convergence result may be obtained,
and the 'result’ is expressed as a Conjecture with a subsequent discussion of validity.

The idea of cyclically fixing some parameters and maximizing the likelihood func-
tion with respect to the remaining parameters is quite common and applied in several
cases, see Jensen et al. (1991) and references therein. Indeed in the present thesis the
alternating principle is used a number of times. Jensen et al. (1991) proves the fol-
lowing general convergence result: Let © C R* be the parameter space of a statistical
model, and let I denote a continuous function on ©. Assume the following:

(i) Let 0y be a starting value, such that
Do={0 € O|LO) > L(by)}
is compact.
(i) The function L is uniquely maximized over Dq for 8 = 4.
(iii) Suppose that we have given parameter functions
i Dg—0; (1=1,....k)
and let M;(0), 6 € Dg be the corresponding sections:

Mi(6) = {n € Doliii(n) = u(0)} (i = L., k).

Then we assume that, for : = 1,...,k and 8 € Dy, L is maximized uniquely by
T;(0) on the section M;(8) and that T;() is continuous on Dy.

(iv) Assume we have enough sections, or more precisely

sup L(n)=L(0) (i=1,...,k)

n€M;(6)
implies 0 = 0, or equivalently T(0)=0(1=1,...,k) implies § = 0.

Then the algorithm
Hn—l—l = Tl O0---0 Tk(9n>

converges to 0 for any starting value in Dy.
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We cannot, though, establish the unique existence of the maximum likelihood
estimator in model (3.2) for any fixed R. The following extension of the result of
Jensen et al. (1991) to cover the case of the likelihood function not being uniquely
maximized is straightforward to obtain:

Proposition 4 Under the assumptions (i), (iii) above and
(iix) The set Do of local maxima in Dg for the function L is finite.

(ivx) Assume we have enough sections, or more precisely

sup L(n)=L(0) (i=1,...,k)

n€M;(6)
implies 0 € Dy, or equivalently T(0)=0(i=1,...,k) implies 0 € Do

the algorithm
Hn—l—l = Tl O---0 Tk(9n>

converges to a point in DO for any starting value in Dyg.

Proof: The arguments of the proof in Jensen et al. (1991) may be copied directly to
obtain that (6,) has a convergent subsequence (6,,) with limit 6%, say, such that

0 = Ty(07) = Tp_y (07) = - Ty(67) (3.24)

end hence from (iv#) that 6* € Do. Tf other subsequences with other limits exist, say,
07,...,07, then

L(07) = L(07) = --- = L(0},)
for otherwise the points could not be limit points. But this is in contradiction with

the uniqueness property (iii), and the convergence result is proved.

The following conjecture expresses the aimed result.

Conjecture 1 Under the basic assumption (3.4) the following is true for the algo-
rithm in Section 3.3:

(1) If R > 1 we have Py,-almost surely that a mazimum of the likelihood function
exists and the algorithm converges to a such.

(i1) With Py, -probability tending to 1 as R — oo the algorithm will converge to the
unique maximum likelihood estimate 0.
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On the proof: First note that the algorithm in Section 3.3 equivalently can be viewed
as fixing all but one parameter at a time, and as such is on the form of the above. We
must verify the assumptions of Proposition 4. Although assumption (i) is satisfied for
a regular exponential family (Barndorff-Nielsen, 1978) it is not automatically satisfied
for the curved subfamily ©1, as O is an open set. However explicit examination of the
log-likelihood function (3.8) shows that letting any parameter tend to either of its two
possible extremes, while fixing the remaining parameters at arbitrary points, makes
the log-likelihood tend to —oo; at least if not "too many replicate observations” are
equal. But with Py, -probability 1 no replicate observations are equal, and assumption
(i) holds true. Assumption (iii) is the uniqueness in each maximizing step earlier
pointed out to be the fullfilled. Assumption (ii*) (and even Assumption (ii)) will hold
asymptotically since the starting value for the algorithm is chosen as the maximum
likelihood estimates under the regular exponential family My, see the argument in the
proof of Proposition 3. This is relevant for Conjecture 1(ii). For fixed R, Assumption
(ii*) may be verified by some compactness argument or may not be crucial.

It is Assumption (iv*) that represents the difficulty. This is the assumption that
should ensure that a limiting point is actually a local maximum and not, for example,
the ‘bottom’ of a saddlepoint in a diagonal direction nor the top of a diagonal ridge.
I will have to leave this point open.

If the second derivatives of the log-likelihood function are calculated it will, of
course, always be possible to check whether or not the convergence point of the
algorithm (for it is bound to converge to something) is a local maximum or not.

3.11 Add: Simulation

A small simulation study was carried out to investigate the validity of the asymptotic
approximations used in the paper. Now and then in this and the next section, model
M, will be referred to as the ‘assessor model’. Three scenarios were exploited:

1. Parameters set to estimates from the paper, from Table 3.2 and 3.3. The test
for My under My is examined.

2. 1 = --- = B4 = 1, and the remaining parameters set to estimates from the
paper. The test for My under M, is examined.

3. v3 = vs = —0.33, and the remaining parameters set to estimates from the paper.
The test for vs = v5 under M; is examined.

Together with an investigation of the y? statistic in each case we study the dis-
tribution of an equivalent approximate F' statistic. To me this idea was presented
by Ib Skovgaard, that again had it from Bent Jgrgensen. Consider a general linear
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Figure 3.4: Observed (dotted) based on 10000 simulations and true densities (solid)
for the x* (DF = 21) and F statistics (DF = (21,120)) for the test of M; under M.

normal model, where the mean vector p is tested to belong to I; under the model
that u € Lo, L1 C Lo C RN, dim(L;) = d;, i = 1,2. The relation between the
—2log () statistic and the F' statistic is given by

—QIOgQ:Nlog(i(;_le—l—l). (3.25)
— g

The conjecture by Bent Jgrgensen was that in non-linear models the approximate F'
statistics may in some cases have better small sample properties than the y? statistic.
We investigate this in the present setup by calculating the derived F statistics in the
three scenarios as

N — AP
Bo= () e e
<602/N_1)N_21:14__1P‘|‘2

Fy o= (9N —1)(N-24-P+2),

where N = APR and C; = —2log (Q; is the y? statistic in scenario 7. In each case
10000 simulations were performed for R = 2, R = 3 and R = 4 respectively, and the
two test statistics were calculated.
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Table 3.7: Observed 5% test levels (in %) for the y? and F' statistics. The standard
error for an estimated level based on 10000 simulations is at most 0.5, and for a true

5% level, 0.218

Scenario 1 Scenario 2 Scenario 3
R F % F % F
2 66.6 17.6 17.8  8.73 17.7  12.5
3 359 9.01 11.9  6.65 11.7 8.78
4 234  T7.06 9.83 6.09 9.18 7.08

In the Figures 3.4-3.6 the observed distributions are compared to the approxi-
mation ones, and in Table 3.7 the observed 5% test levels are listed. The plots of
observed densities are all smoothed estimates. It is seen that throughout, the F' test
provide better results than the y2. And by using the F' test not too unreliable results
are obtained, although improvements in the R = 2 case would be desirable. For
Scenario 1 the v, estimates were also investigated and compared to plain product
averages for R = 4. The average (of the five estimates) variance of the v, estimates
in the assessor model was 0.000673, whereas the corresponding value for the plain
averages was 0.00141, i.e. the model estimates are more efficient.

Since the distribution of —2log () is independent of the orthogonal projection of
the observation vector 2 € R™ onto Ly, it may be argued that the ‘sufficient reduction’
should be considered instead. This is then the projection onto Li and amounts to
having N — d; observations instead of N. This will increase the derived F' statistics,
and as the general problem in our application is observed distributions laying too far
to the right, we did not explore the reduction approach further in this case.

3.12 Add: Random model

In this section a random assessor effect version of model (3.2) is presented, a mean and
variance based estimation algorithm is suggested and finally the method is applied to
the data of the paper of this chapter, Brockhoff and Skovgaard (1994). The section
does not give an exhaustive treatment of the problem, and the suggested approach
should only be seen as an indication of possible directions the work with this type of
models may lead to.

Let the notation be as in the paper. Assume that we have sampled A individuals
from the ‘assessor population’, and let (A,, B,,log S?) denote the random triplet of
level, scale and log-variance for assessor a, @ = 1,..., A. The model is now specified
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Figure 3.5: Observed (dotted) based on 10000 simulations and true densities (solid)
for the x* (DF = T)and F statistics (DF = (7,141)) for the test of My under Mj.
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Figure 3.6: Observed (dotted) based on 10000 simulations and true densities (solid)
for the x* (DF = 1)and F statistics (DF = (1,141)) for the test of v3 = v5 under
M,
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by assuming that conditional on the sampled assessors, i.e. given
Z = ((Ah B17 1og 512>7 ey (AA7 BA7 10g Sfl))
= (a1, Br,log 7)., (a4, Ba,log o)) = =

the model (3.2) hold and by specifying the distribution of Z. The model is therefore
fully specified by,

i/apr = Aa + Bal/p + Eapr
Eapr | L=z ~ N(()?O—z) (326>
(AmBa?lOg Sj) ~ N((()? 17Ulog>72p0p)

where

0% 0B Oas

Yoop = | caB 0} OBs

O4s OBs 0%
is a symmetric, positive definite matrix, (A4, Ba,log S2),a = 1,..., A are independent
and the ¢,,,’s are conditionally independent given Z = z. The choice of population
mean structure, EA, = 0 and E B, = 1 merely makes the model parametrization
identifiable. Inference about the parameters vq,...,vp is based on the following
three-step principle, given ‘current’ values for v,, p=1,..., P,

1. Estimate the population parameters o1,, and ¥,,,.

2. ‘Predict’ the assessor random variables (A,, B,,log S2), a =1,..., A.

3. Estimate vq,...,vp conditional on the predicted values.
Add 1
Given Z = z we can obtain estimates (&,, 3,,62), a = 1,..., A from the individual

regressions together with conditional variance estimates for the parameter estimates,
that is, we have

E (6o 30.62) | Z) = (A4, Ba. S2) (3.27)
, 0
A T —-1¢q2
Cov (6w fms?) [ 7) = | K75 o (3.28)
00 .

where X is the PR x 2 design matrix for each individual. The estimation of the
population parameters is now based on the first two marginal moments of (&, 34, 62),
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a=1,...,A. Using the laws of iterated conditional expectation and covariance it is
easily found, since S? has the Log-Normal distribution, that

E ((OAQ“ BIM a'j)) e (07 17 eCTlog+U;2s‘/'2> (329)
P v Y
v Aa — 2 pP= P 010g+0'25 2 3.30
ar (&) UA—I—PRZ;;l(Vp_D)Qe (3.30)
« ) 1 2 .
Var (8,) = o+ - _CC’log‘i'Us/2 3.31
( ) B RZ;::l(Vp _ l/>2 ( )
~ v 2
Cov(Qu, Ba) = 04— — e7esH05/2 3.32
(o) R, 7 >
. . 2 > PR
Var(6;) = o5t <GUSPR —2 1) (3.33)
Cov (&a,log &2) = 0Ous (3.34)
Cov (Ba,log &2) = ORBg (3.35)

First (3.29) and (3.33) are solved to give &1, and o2 by inserting on the left hand
sides the observed equivalents,

2 1 4 2 X

5 - Fe4 — ~2

E (Ua) - A az::la-a =0

Var(#?) = -3 (62— 52)°
a A_l a

Next the estimates 1, and o% are substituted in the remaining equations and the
observed equivalents for any of the remaining left hand sides are inserted in an anal-
ogous way. Note that by this procedure the expected individual variance E.S? is

estimated by the average of the estimated individual variances &2.

Add 2

For the conditional expectation of (A, B,,log S?), a = 1,..., A given the observations
y = (y1,...,y4) we use an approximation given by the Normal distribution. This

leads to predictions given by
(Au. Baylog 82) = (0,1, 6105) + (ya — 7) S5k, Soan, (3.36)

where 7 is the PR-vector of v,-estimates corresponding to one assessor, X,,,, is the
marginal covariance matrix for the individual observation set Y, and X4 is the co-
variance between Y, and (A,, B,,logS?). As notation indicates they can be found
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not to depend on a, and they are specified by the following equalities,

Var (Y,,,) = o5+ 1/50?3 + 204V, + eTlosTo5/2 (3.37)

CoV (Yapirys Yapors) = 04+ Up Vo0 4+ 0a(Vy, + 1) (3.38)
Cov (A, Yap,) = o4 +0aBv, (3.39)
Cov (B,,Yuy) = 0pv,+ 0B (3.40)
Cov (log S2, Yam) = 04s+ Vpy0BSs (3.41)

Add 3
Given the predicted values the v,-estimates are calculated as in step 3 of the fixed
effects procedure in Section 3.3.

After step 2 in each iteration a modification of the predicted A,’s and B,’s is
inserted to make the algorithm converge to a solution corresponding to EA, = 0
and E B, = 1. Inference about vq,...,vp is now based on the final estimate of the
marginal covariance structure,

Cov (in,...,vp) = (XTE1X) 7, (3.42)

where now X denotes the AP R x P overall design matrix and ¥ is the block diagonal
APR x APR covariance matrix with A identical blocks of ¥,,,,.

3.12.1 Example

Using the average product levels as starting values the random model was fitted to
the data used earlier in this chapter, i.e. the arcsin(y/*)-transformed rescaled figures
of Table 3.6. For the sake of comparison the estimates in the fixed effects model,
Tables 3.2 and 3.3, were reparametrized to satisfy 32, 4, = 0 and 34, 3. = A.
We will go through the results of the approach and compare those with the earlier
obtained results.

First we note that by using the predicted values (Aa, Ba, Sf) we obtain information
about the individuals exactly of the same form as for the fixed assessor model. We
could thus make an equivalent to Figure 3.3. For the comparison here we will consider
Table 3.8 only. The estimates in the two models look quite similar with one major
exception: the individual standard deviations have been ‘drawn towards the mean’
in the random model. This implies the similar tendency for the precision predictions
B / S , and has the interesting consequence that the assessors will be weighted more
equally for the v, estimation in the random model than in the fixed model. One
may also note that a few changes in the assessors relative positions occur; this is not
studied in further detail.
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Table 3.8: Individual parameter and precision estimates under model My and pre-
dicted dittos under the random model

Assessor & A Ié; B o) S p/6  B/S
1 -0.17  -0.18 0.53 0.551]026 0.32| 2.07 0.80
2 0.059 0.062 | 1.25 1.25]024 0.16 | 5.14  3.62
3 -0.21  -0.21 0.79 0.79]0.16 0.27| 493 1.35
4 0.88 0.83 0.30 0.33]0.063 0.17 | 4.72  0.93
5 -0.29  -0.26 148  1.46 | 0.18 0.18 | 819 3.80
6 -1.38  -1.25 3.10  3.01 | 0.089 0.14 | 349 104
7 -0.38  -0.34 1.66 1.64|0.23 0.17 | 7.35 4.49
8 1.48 1.35 | -1.11 -1.03 | 0.34  0.28 | -3.29 -1.71

Table 3.9: Conventional fixed model ANOVA table

Effect SS DF F P
Assessor  11.96 7 327 0.000
Product 6.82 4 32.6 0.000
AssxPro  9.40 28  6.42 0.000
Error 6.27 120

The ANOVA table is the usual way of reporting the results of an analysis of
variance, see Table 3.9. In Table 3.10 we report the results of the fixed assessor
model in a similar way. The effects have been named in an ANOVA-like manner,
but refers in that order to the Bartlett test, the assessor fit test, the equality of
3.8 test and the equality of products ‘test’. The latter in quotation marks as we
do not actually test this hypothesis owing to the lack of asymptotic results due to
identifiability problems. For the two interaction effects we report both the y? and
the derived F' statistics, see Section 3.11. The fixed assessor model table is, of course,
not unique in the sense that every test statistic depends on what other effects are
included in the model.

Finally let us consider inference about the product parameters vq,...,vp. Tab-
le 3.11 lists the estimates under the two models together with the product averages.
The latter are the estimates under both the fixed and mixed ANOVA models. No
large differences can be observed. With both the test statistics from the fixed assessor
model, the fixed and random ANOVA models and the random assessor model we have
all together five possible approaches for performing paired comparisons of the product
levels. These are all listed in Table 3.12 For the tests in the random assessor model the
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Table 3.10: Fixed assessor model ‘ANOVA table’

Effect —2log) DF P F DF P
Reproducibility 45.3 7 0.000

FExcess interaction 174 21 0.69 0.66 (21,120) 0.86
Scale interaction 130.1 7 0.000 25.3 (7,141)  0.000
Product 181.6

Table 3.11: Product parameter estimates under model My and the random assessor
model

Product v v
fixed effect random effect .,
model model

1 0.90 0.89 0.85
2 0.48 0.47 0.51
3 0.53 0.51 0.54
4 0.95 0.94 1.00
5 0.52 0.49 0.50

normal distribution was used with a variance calculated from (3.42). The population
parameters needed for the variance estimation were estimated to

blog = —3.19

0.65 —0.87 0.21
—0.87 1.35 —0.53

1>
Il

0.21 —=0.53  0.39

The random assessor model seems in general to provide results similar to those of
the mixed ANOVA, whereas the fixed assessor model resembles the fixed ANOVA. In
one case, however, the vo—v5 comparison the fixed assessor model gives a test proba-
bility much smaller than the fixed ANOVA. This may be due to poor approximation
of the distribution in this case.
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Table 3.12: Pairwise product comparisons

Product 2 3 4 5 Method

1 .000 .000 .008 .000 Fix. Ass.(y?)

1 .000 .000 .012 .000 Fix. Ass.(F)

1 .000 .000 .015 .000 Fix. ANOVA

1 .000 .000 .149 .000 Rand. Ass.

1 .024 .040 .336 .020 Rand. ANOVA
2 018 .000 .053 Fix. Ass.(x?)

2 026 .000 .069 Fix. Ass.(F)

2 D547 .000 .846  Fix. ANOVA

2 539 .000 .774 Rand. Ass.

2 813 .002 .939 Rand. ANOVA
3 000 573 Fix. Ass.(x?)

3 000 .597 Fix. Ass.(F)

3 .000 .426 Fix. ANOVA

3 .000 .888 Rand. Ass.

3 .004 .755 Rand. ANOVA
4 000 Fix. Ass.(y?)

4 .000 Fix. Ass.(F)

4 .000 Fix. ANOVA
4 .000 Rand. Ass.

4 .002 Rand. ANOVA




72



Chapter 4

Random effect threshold models
for dose-response relations with
repeated measurements

The paper is a revised version under consideration by Journal of the Royal Statistical
Society Series B. Series B is the methodological oriented part of this journal pub-
lished by The Royal Statistical Society in Britain. It “aims to publish papers on the
theoretical and methodological aspects of statistics.”

The problem of estimating sensory thresholds triggered the work of this Chapter,
and as indicated this directs us into the world of generalized linear models (GLIM),
McCullagh and Nelder (1989). We thus give a brief introduction to generalized linear
modelling below, together with a sensory methodological review of threshold deter-
mination. This is based on Brockhoff (1993) and illustrates how statistical modelling
in some instances may offer a unifying approach to a topic otherwise approached in
various ad hoc ways. One might raise the question: what may GLIM’s in general
offer to the field of sensometrics? In the additional section after the paper in this
Chapter we address this question.

The generalized linear model

Let us briefly define the GLIM; the reader is referred to McCullagh and Nelder (1989)
for details. Let Y be a random n-vector of independent observations and X an n x p
design matrix. If 4 = EY the GLIM is defined by the density f(y;0), 0 € © C R? of

Y;, and by a real function ¢, that links the mean with a linear model,

9(1) = (g(m1)s- - 9(pa)) = BXY,  BER? (4.1)

73
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The function ¢ is called the link function. The density f(y;0) defines the error
distribution and is usually assumed to be in the class of exponential families. The
classical linear Normal model is a GLIM with the identity function as link and f(y;0)
as the Normal density. A basic feature of the GLIM is the allowance for a non-
trivial mean-variance relationship, usually denoted by a variance function V(g). The
variance function is specified through the specification of the error distribution f(y;0).
An example is the binomial distribution that has the parabolic variance function
V(p) = p(1 — g). Maximum likelihood estimates for the parameter vector 6 are
found numerically by an algorithm of various names and interpretations, e.g. Fisher
Scoring, Newton-Raphson and Iterative Weighted Least Squares (IWLS). A central
point to make here is that this algorithm depends on the first two moments of f(y;0)
only. The method of estimation can thus be applied to any situation, where the first
two moments have been specified, whether or not a parametric model is underlying.
In these cases the approach is referred to as a quasi-likelihood method.

Sensory thresholds

In the sensory literature, see for instance Amerine et al. (1965), a sensory threshold
is usually defined in the following way:

A threshold is the minimum concentration of a stimulus that can de de-
tected/discriminated /recognized 50% of the time.

The phrase ‘50% of the time’ leaves room for various interpretations, which certainly
can be seen in the sensory literature. The typical experiment for determining thresh-
olds is a K-alternative forced choice experiment, see for instance Frijters (1988),
with repeated observations on each assessor and a baseline guessing probability of
a = 1/K. At this point we consider also the basic test methods, the duo, duo-trio
and triangle tests, as 2- and 3-AFC methods, although not commonly done so. One
suggested approach, acknowledging the difference of ‘between’” and ‘within’ assessor
variability, see Meilgaard (1987), is to perform ‘individual experiments’ to determine
individual thresholds and then, subsequently, average these individual thresholds. Lea
(1988) suggest a similar two-step procedure in the basic setup of a single difference
test: count the number of assessors that individually is significant, and then make a
significance test on that number.

But even in a situation where replications and individuals are not mixed, the ‘50%
of the time’ has been given different interpretations. Guadagni et al. (1972) used the
‘significance” method, whereas Meilgaard (1987) points out that a direct ‘proportion’
approach is the proper one to use. The former amounts to defining a dose to be
above threshold level if the number of correct responses makes the statistical test of
a+(1—a)/2 significant, and the latter if more than a proportion of a4 (1—a)/2 of the
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responses are correct. None of these concepts are easily generalized to situations with
varying number of assessors from session to session, nor varying baseline probabilities,
of which at least the former situation will occur frequently.

Most of such definition controversies could be avoided if one agreed on the basic
model (1.1) (or a simplified version of it) in the Thesis Introduction for the unob-
servable thresholds. Introducing the notation of this Chapter we let T;; denote the
threshold of individual 2 when presented to dose d;;, j =1,...,n;,2 =1,...,m. The
doses d;; are assumed to be on log-scale and will often be the same across individuals
and some of them also within individuals, but this is not essential. A sub-model of
model (1.1) without the interaction effect, may now be written as

where the ¢;;s are independent zero-mean Normals N(0,02) and the Z;s are indepen-
dent Normals with the population mean threshold (on log-scale) as expected value,
Z; ~ N(B,0%). The probability p;; that the 7’th individual responds correctly when
given dose d;; is then
dij — 8
pij=a+(l—a)d | —— (4.3)
or

Defining so-called chance-corrected probabilities as pf9"™" =

2
EN 1

where 0% = 0% + o
(pij — @)/(1 — ), (4.3) may be written as

o~ (pr) = B (4.4)
ar arT

The mean population threshold 5 now automatically becomes the ‘median effective

dose’, E Dsq, in the corrected probabilities, and it can be estimated through a classical

dose-response approach, see for instance Finney (1971). In GLIM terminology (4.3),

or (4.4), defines the link function, and a formal maximum likelihood estimation of

the parameters is obtained by the IWLS algorithm mentioned above.

However, (4.2) and (4.3) in fact define a GLIM with random effects, that in this
case amounts to observations within individuals being correlated with a correlation
depending on the doses d;;. This is not accounted for in the classical IWLS algorithm.
The handling of such models is the topic of the paper in this Chapter, and as this
area 1is relatively new in statistical research, it has, not surprisingly, not found its
way into the sensory applications yet. For the rest of this presentation therefore,
whenever we refer to the dose-reponse setup and TWLS algorithm we consider the
classical independent case, bearing in mind that the random effect version should in
fact be employed, if repeated observations on different individuals are at hand.

Pangborn (1981) noted that the derivation of the threshold from the observed
frequencies of correct reponses could be done by interpolation or by statistical analysis
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(regression). Early applications resemble the ‘interpolation attitude’, see for instance
Guadagni et al. (1963). Patton and Johnson (1957) and Meilgaard (1975) use linear
regression on the intermediate concentrations. All these techniques correspond in the
light of the dose-response setup above to assuming linearity of ® for the intermediate
concentrations. Salo (1970) introduced the corrected probabilities and acknowledged
the non-linear relationship by the use of log-probability plots based on values of ®.
This was also used by Mulders (1973), but in both cases the determination of the
threshold was done by reading off the plot (based on some definition of ‘50% of the
time’). Punter (1983) performed ‘sigmoid-curve’ fitting on corrected probabilities,
referring to a Fortran-routine due to Drake (1975), which may be similar to the
IWLS algorithm.

Guadagni et al . (1973) allready viewed the situation as a classical dose-reponse
setup and they referred to Litchfield and Wilcoxon (1949) for the computational
technique. And as late as in Tekin and Karaman (1992) the same approach was used.
These techniques may be seen as one step of the general IWLS algorithm. But with
todays knowledge in GLIM’s in general, and available soft- and hardward, it should,
however, be quite straightforward to employ (a version of) the full IWLS algorithm.
MacRae (1987) notes that a computer program has been developed that fits a formal
model to triangle data, but the connection to GLIM’s was not made.

The GLIM approach opens up for generalizations in various ways: working on
original instead of corrected probabilities, allowing varying number of individuals
and baseline probabilities, and finally to include in a proper way the random assessor
effects in both estimation and evaluation of uncertainty in estimation. These gener-
alizations are all included in the approach of the following paper together with the
generalization that the distributions of Z; and ¢;; above need not be Normals.
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A random threshold model for dose-response designs with repeated measurements
is introduced. Inference procedures for this model are discussed. The framework of
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4.1 Introduction

We consider a dose-response study involving m individuals for which repeated binary
measurements are obtained by applying several stimuli to the same individual and
observing the responses. An example would be a sensory experiment in the area of
food science and food technology. The response of interest often is detection (yes or
no) of odour or flavour from a solution of a chemical substance which is presented
to an individual at various concentrations. Odour and flavour detection thresholds
across the population are then of primary interest. Other examples occur in Phase II
Clinical Studies where a number of subjects are given various doses of a drug, some of
them are treated repeatedly with varying doses, and success/failure of the therapy or,
alternatively, the occurrence of severe side effects (yes or no) is assessed, again with
interest focussed on population average behaviour . Further examples for repeated
binary measurement designs are mentioned in Anderson and Aitkin (1985).

As compared to other repeated measurements dose-response designs considered
previously by Pierce and Sands (1975), Elashoff (1981) and Anderson and Aitkin
(1985), Zeger et al. (1988), or more recently Breslow and Clayton (1993), the nov-
elty of our approach lies in the model and the proposed algorithm: In the model it
is assumed that the observed responses are determined by underlying unobservable
subject specific thresholds which are randomly distributed between individuals. The
random threshold determines an individual’s capability for reacting to a given stim-
ulus. A reaction will occur for a given subject, if the stimulus exceeds the subject’s
threshold. Such an approach makes sense biologically as dose-response relations are
usually inferred from distributions of such thresholds between individuals, see for
instance Im and Gianola (1988) and Morgan (1992), Section 1.5.

Since repeated responses obtained from the same individual are dependent, infer-
ence drawn from a standard dose-response approach which ignores those dependencies
is incorrect. Our random threshold based approach takes repeated measurements into
account by assuming that the random threshold effect is the same for repeated mea-
surements on the same subject. Besides its biological plausibility, this approach has
the attractive feature that it leads to a natural separation of individual threshold
random effect and measurement random effect. We show in Section 4.4 and 4.5 that
this model can be implemented with a quasi-likelihood based iterated weighted least
squares algorithm and is computationally very feasible.

Formally, let Y;; be a binary observation (response yes or no) made on the i-th
individual under administration of dose level d;; of the substance of interest, where
t=1,...,m, 5 =1,....n;. Let ;L’Zj; be a p-vector of individual covariates of which the
first typically will be 1, the corresponding parameter playing the role of an intercept.

Let T;; be the random threshold for individual : when given dose d;;, and let
[ € RP be a parameter vector. Qur basic random threshold model is then
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TZ']‘ = ;L’Zj;ﬂ —|— Z2 —|— 62']‘7 Z = 17 ceey MY j = 17 ceay Ny (45)

where 74, ..., Z,, are zero mean i.i.d. random variables independent of the errors {¢;; },
which are also i.i.d. zero mean random variables. The variances

0'% = Var(7;) and 0'3 = Var(e;)

are assumed to exist.

The “random thresholds” T;; thus are composed of a systematic component ;L’Zj; ,
which describes the covariate effects, assumed to be non-random, the random subject
effects Z; and the random error effects ¢;; which vary across measurements. The actual
observations are realizations of binary random variables Y;; defined as the indicators

of T;; being less than the doses d;;,

3/2‘7 - 1{I£/8+Zz+5zjsdz]} (4.6>

Given observations

one seeks inference procedures for the covariate parameter vector 4 and the variance
components 0% and o?.

We note that in the area of sensory experiments as well as in the other examples
mentioned above, interest is focussed on the distribution of the individual random
thresholds Tj}; across the population in dependency on the covariates, not so much
on the subject random effects Z;. Therefore, it is not of major interest here to
consider conditional likelihood and inference, given the Z;’s. For this reason, the
approach developed in the following is a marginal quasi-likelihood approach in the
sense of Breslow and Clayton (1993), respectively a population-average model in
the sense of Zeger et al. (1988). In this regard it is distinct from penalized quasi-
likelihood respectively subject-specific models which describe an individual’s response
to changing covariates rather than the population response. Such subject-specific
approaches for binomial regression with repeated measurements have been developed
by Schall (1991), who uses linearization methods to develop generalizations of an
estimation procedure for classical linear models with normal random effects (Harville,
1977).

Various population average respectively marginal quasi-likelihood methods which
are related to our proposal have been discussed in the literature. Prominent among
them is the work by Anderson and Aitkin (1985), who assume that the subject random
effects are normally distributed and that the error random effects have a logistic
distribution. Then a numerical integration method by Gaussian quadrature is invoked
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to maximize the likelihood. In our approach, the numerical evaluation of a complex
likelihood function is avoided. As we propose a quasi-likelihood procedure, only
second moments need to be evaluated.

Another well known but somewhat limited alternative approach to deal with re-
peated measurements in Generalized Linear Models is to assume that the measure-
ments are independent, but that there is heterogeneity of the response probabilities
due to the different threholds for different individuals. This approach leads to overdis-
persion in the binomial regression model (see Wedderburn, 1974, or McCullagh and
Nelder, 1989); an example would be the beta-binomial model. We will discuss these
alternative modelling approaches below in the context of data analysis for a sensory
tasting experiment in Section 4.4.

The likelihood approach is discussed in Section 4.2, and a more feasible quasi-
likelihood method is developed in Section 4.3. Section 4.4 contains an application to
a forced choice sensory experiment and Section 4.5 the results of some simulations.
One complicating feature of such experiments to be discussed in more detail below is
that they often involve nonzero baseline probabilities.

4.2 Likelihood approach and forced choice experi-
ments

We use the notation F., 'y to denote cumulative distribution functions of random

variables € and 7. In model (4.5), (4.6) the likelihood is

L(p,0% 0% y) =TI P (e < diy— Zi—al B, j=1,.m),
=1
and the conditional likelihood, conditioning on Z; = z, becomes

L) (8,02,0%; y)

mo n;

= ITT[P (< s = = = oTA)] ™ 1= P (e <y = 2 = al)]
=1 7=1
Hence,
L(apotsn) <T1 [ (ﬁ U”) Faldz), (4.7)
=177 \j=1
where

Uy = [F. (dy — = —a58)]™ 1= B (dy — = — aT8)]' 7 (4.8)
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If  is one of the components of the parameter of interest, the corresponding likelihood

equations == (log L) = 0 become
/ /OO | | Uij Fz(dz)

m 0 d g
TN
which even for common cases (normal or logistic distributions for Fz or F.) cannot

=1
be simplified further and must be solved numerically.

=0, (4.9)

A modification of the likelihood is necessary for forced choice experiments. Typi-
cally, in such experiments a subject chooses between a fixed number of alternatives,
and the response is recorded as a success if the choice is correct, a failure otherwise.
The distinguishing feature of such forced choice experiments is that there is a baseline
response probability o with e > 0, which corresponds to the probability of success for
a random choice. If for instance in a forced choice sensory experiment as described
in more detail in Section 4.4 each subject is presented with three samples to choose
from, only one of which actually contains the substance to be detected, the baseline
probability will be @ = 1/3.

Observing that in such a situation P(Y;; = 1) = a+(1—a)P(e; < dij— Zi—;z;g;ﬂ),

the obvious modification in equations (4.8) and (4.9) is to replace U;; = UZ»(]Q) by

i 1-Yi;
UZ»(;Y) = [a + (1 —a)F. (dij —z— xz;ﬂ)} [(1 — ) (1 — F, (dij —z— xz;ﬂ))}
(4.10)
One problem with incorporating a baseline into the likelihood approach is that
Silvapulle’s (1980) results on the existence of maximum likelihood estimates may not
apply: One crucial assumption is the convexity of —log G and —log (1 — &), where
(7 is the dose-response curve. Let ® denote the Gaussian distribution function and ¢
the Gaussian density. Taking (& to be the probit curve (see Finney, 1978, or Morgan,
1992) with baseline, G(z) = a+ (1 — a)®(z), a simple calculation shows that

1 (tog ) 2 0

is equivalent to
g(2) = 2 e+ (1= a)0(x)) + (1 — a)p(z) 2 0,

which for o > 0 is not satisfied for sufficiently negative x.

This problem and the considerable numerical difficulties when attempting to solve
the likelihood equations (4.9), (4.10), naturally lead to the consideration of a quasi-
likelihood approach (Wedderburn, 1972; McCullagh and Nelder, 1989).
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4.3 Quasi-likelihood approach and iterated weighted
least squares algorithm

We consider a quasi-likelihood approach in the sense that we obtain the second mo-
ment structure of the observations given current parameter values. Our focus is on
estimation with iteratively reweighted least squares, and asymptotic normality is as-
sumed to hold under certain regularity conditions. This can be justified rigourously
via the one-step iteration argument developed for instance in McCullagh and Nelder
(1989), Section 2.5.

From the outset, we will consider known baseline probabilities «;; for each response
probability. Usually, if the baseline probabilities are non-zero due to a forced choice
experiment, a;; = 1/(number of choices offered at observation y;;). In the classical
case without baselines, where no choices are made, set all «;; = 0. The basic model
(4.5) for the thresholds remains the same, but the actual outcomes of the experiment
are now the observations

Yi =1l (4.11)

S0+ Zitei;<dij }U{UU <aijt’

where the U;; s are independent uniform on [0, 1] and independent of all other random
variables € and Z. Thus defining the convolved distribution

Fr(v) = / T F (0= 2) Fa(dz), (4.12)
and setting
pis = Fr (dj —55).
we have that
E(Yy) = pij = aij + (1 — ay5)pij (4.13)

and

Var Yi; = pi;(1 — pij), (4.14)
Cov (Yi;, Yu,) =0 foralli#:, Cov(Yi, Yir) = pijr — pijpix for j # k, (4.15)

where

pie = F(Y;;Yi)
= P ([T” < dij or UZ']‘ < Ozi]'] and [Tzk < dij or Uy, < azk]) . (4.16)

If there is no baseline, i.e., all a;; = 0, we would have accordingly

pijr = R (dij —xlB, diy, — 1’3;5) ;
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where
o0

R(u,v) = / F.(u—2) F. (v — 2) Fz(d2). (4.17)

For given parameter values 3 and given F, and Fl, the p;;’s and p;;;’s can be
calculated by numerical integration. Alternatively, one may use Monte Carlo integra-
tion as follows. Let 2, ..., 2(™) he an independent sample from F for a given large
N, and let egl), s egN) and 6.(21), s 6.(2N) be two independent samples from F.. Further

let Ul(l)7 s Ul(N) and U.z(l)7 s UQ(N) be independent uniform (0,1) samples. Now set

1 N
D = — 1 4.1
Pij N; {xz;ﬁ+z(q)+c(1q)<di]} ( 8)
and
. 1 Y
Pijk = 57 > 1ans}s (4.19)
q=1
where

A = {(;L'z;ﬂ + 2@ 4 egq) < dij) or (U1 < aij)},
B = {(;L'z;ﬁ + 2@ 4 6.(2(1) < dik) or (Uy < aik)}.

If F. , Fi7 are parametrically specified, (4.12)-(4.19) imply that for given parameter
values one can calculate the mean and covariance structure of the observations to any
degree of accuracy. This enables us to develop a version of the iteratively reweighted
least squares algorithm for the current model.

Assume for the following that F, , Fiz and Fr depend on scale parameters o, oz
and o7 (as ¢, Z and T = ¢ + 7 are zero mean random variables) such that
x _ _ 2

) Fz(2) = Fz(—), Fr(z) = Fr(—), (4.20)

O oz ar

or =0l + 07, (4.21)

where F., F;, and Fr are standardized versions Pf these distributions with unit vari-
ance. Moreover, assume that Fr has a density fr. One then obtains for the means

;= EYy; = aij + (1 — aij) Fr (U;Fl(dij - :L‘z;ﬂ)) . (4.22)

The link function is therefore

g(p) = Fr' (M — a) : (4.23)
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Assume current values of all parameters are &1y, 67/, 6., and Bg. Defining a
(p + 1)-vector of linear parameters v = (71, ..., Yps1)’ with

y=o07"vi=—Pis1i)or,i=2,...p+1, (4.24)
and current estimates 4, = (%, ...,’Aygp_|_1)T, current linear predictor and mean are
then given by

eij = Andij + 2] (Fes s Aipr1)" and flos; = aij + (1 — i) Fr(7jes;)- (4.25)
Define
z0ij = i + (i — feiy) [(1 = ag)) fr (ﬁm)}_1~ (4.26)

We then carry out a generalized linear regression of the z;;;’s on the (dij,;z;g;)’s,
employing the covariance structure

Cov (20, z0rj1) = [(9'(f1e,i5)9 (fue,irj)Cov (yij, yiryr))] (4.27)
o _ -1
= (1= i )(1 = o) fr (eig) Fr (earin)| Cov (i)

The covariances Cov(y;;,yir;/) require calculation of p;; (4.13) and p;jr (4.16),
which can be done by approximating (4.12) and (4.17) with (4.18) and (4.19) for
sufficiently large N.

Let now M = 3~ n; denote the total number of available measurements. We order

=1
index pairs (i, j) lexicographically and then rewrite the observations as (dy, =}, yx), k =
1,..., M with single index. Define 2, = (21, ..., zsar)T, where the components are writ-

ten with single index. Define matrices

Wi = [(Wirs)lic, oenr» With elements
Wi.s = Cov (Zgr,_ng)_, as given in (4.27) and

X, = [Xips)icrens 1<s<pbl ) with elements
d, s=1
Xoys = 1 s=2 , 1<r<<M

Tps—1 3§5§p‘|’1

where z, = (2,1, ..., xw)T and d,, x, are r-th dose respectively r-th covariate vector
in single index notation.

Then the generalized linear regression iteration step yields the updated linear
(p + 1) dimensional parameter vector

000 = (XTWx) T xTw (4.28)
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with .
-1
Cov (41) = (X[ W' x,) (4.29)

AN A~
At convergence, assuming ) — 4, Cov (4)) =Cov(¥) = ¥ as { — oo and applying
the asymptotic normality assumption, this yields approximate large sample 100(1 —
a)% confidence regions

Cioa={4 eR* (59573 =) <eral. (4.30)

Here, ¢1_, is the 100(1 — )% quantile of the X?)+1 distribution, and 3 is estimated

by © :C/(\)V (AU*1) as given in (4.29), with estimates (4.18) and (4.19) substituted
into (4.27). Confidence intervals for linear combinations of individual parameters are
determined by corresponding projections, as usual.

Updating of 67 can be done in at least two ways.

Method A. If one has repeated measurements for the subjects, first find an estimate
of 6, by averaging corresponding individual estimates 6.;, ¢+ = 1,..., M, where &, is
obtained from the n; repeated measurements made on the i-th individual; individuals
with n; = 1 do not contribute. Estimates 6.; are obtained as ordinary maximum
likelihood estimators for the scale parameter which do not require knowledge of the
random effects Z;. Then &, is estimated by means of a weighted average,

M
be=> wib.;, (4.31)
=1

where the weights w; are determined in an obvious way from the inverse information
matrices for the M (or less) individual fits. Alternatively, the estimate &, can be
obtained from an analysis conditional on the random effects corresponding to an
independent probit regression with different but fixed levels for individuals. This is
done by a single probit analysis, entering all data.

Then in the (-th iteration, this estimate &, is used to determine F67g+1 = FE =
F.(-/5.). Since the iteration produces updated estimates for 67,41 according to (4.24),
(4.28) and thus of FT,ﬁ-I—l = Fr(-/oTs1), FZJ_H and thus the updated 67,41 can be
determined by deconvolution according to (4.12). Starting values may be obtained
from an initial (unweighted) linear regression, assuming independent data.

Method B. Updating % is also possible by first obtaining predicted values 7; for
the random subject effects Z;. Here, let (; be the random location parameter of F.
for the 2-th subject, i.e.,

P(Yiy=1)=aj+ (1 —ai) F- ((dij — G) [o2),
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where (; = 7Z; + 21 3.
We may now obtain “Restricted Maximum Likelihood Estimators” &.;, (; such
that

6%, = empirical (weighted) variance of ¢; — x! By
62, = empirical (weighted) mean of 52,

satisfy &%ﬁg = (Afig + &%ﬁg, in accordance with (17). One possibility is to rescale esti-
mators &Zﬁg, &%ﬁg accordingly. Analogous to Method A, an alternative is to perform
the analysis with different, fixed levels for the individuals providing the estimate &,
together with Qtl, ey fm and their standard errors of estimation.

A special case of particular interest is the probit model (Finney, 1971). Letting
® and ¢ be standard Gaussian distribution function respectively density, we obtain
this model by setting

F.=0 =0 =0, f[r=0 (4.32)

in (4.20), (4.21), (4.23)-(4.25). 1In this case, the link function F;' is the classical
probit link ®=1 and the proposed method then corresponds to probit analysis with
repeated measurements.

4.4 Data application: A forced choice sensory ex-
periment

Throughout this section we consider the special case of a probit model (4.32) as
described above. A sensory experiment was performed by one of the authors (P.B.) to
determine the odour detection thresholds for certain esters important for the flavour
of apples. It was performed as a forced choice experiment, see Frijters (1988), as
follows: Each of 10 individuals was given pairs or triplets of glasses with water or a
watery solution of a chemical substance in a given concentration. The subjects knew
that exactly one glass contained a substance, and they were asked to point out the
“substance glass” among the three glasses. The order of presentation of the various

concentrations of the different chemical substances was randomized.
T
7
and inference for the corresponding one-dimensional parameter /3 is of main interest,

In this particular experiment, the covariate vector x!- = 1 was one-dimensional

as this parameter then corresponds to the mean threshold in the population, ET;; in
model (1).

We report here the results obtained with the proposed method for the two sub-
stances propyl acetate and isopenthyl acetate and contrast them with results obtained
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Table 4.1: Design of two sensory experiments, each conducted with m = 10 subjects.
The n;’s are the number of repeated measurements made on the i-th subject out of
the array of different concentrations. The same dose was given at most twice to the
same subject.

Propyl acetate Isopenthyl acetate
(N1, ..oy N10) (12,9,12,12,12,12,12,6,12,9)  (13,9,13,13,13,13,13,10,13,10)
log10—concentrations -3,-2,-1,-0.6,-0.3,0 -5,-4,-3,-2.3,-2,-1.3,-1
ai;'s 1/2or1/3 1/2

with a classical generalized linear model with independence assumption as well as re-
sults from the maximum likelihood approach of Anderson and Aitkin (1985), properly
modified for the baselines «;;. Some information on the designs of these experiments
is given in Table 4.1.

The approach of Anderson-Aitkin corresponds to the case where F; = ® and
F. is the standardized logistic distribution function. This leads to the approximate

log-likelihood,

S (1) o]

where ¢ and A, are the normal quadrature points and weights respectively, and

. = oxplyimy (1) ay

L 1.33
T T +exp{n;} 1+ exp{n;} (4.33)

with
o

i = (dij —qoz — ), )

Reparametrizing and differentiating (4.33), the resulting estimating equations be-
come those of a weighted logistic regression with baselines. Different from Anderson
and Aitkin is the presence of the dose covariate d;;. As a consequence, both variance
parameters are identifiable. Due to the baseline it is not possible to apply the stan-
dard package EGRET, and the algorithm as described in Anderson and Aitkin (1985),
extended to cover baselines, as well as the algorithm of the present paper, were im-
plemented in the S-PLUS package. The results for the procedures and the two exper-
iments are listed in Table 4.2. Note that according to (4.24), 67 = 1/, B=—3/%.



88 Random effect thresholds

Table 4.2: Results for the proposed Repeated Measures Approach as compared to the
Anderson-Aitkin method and to assuming independent data (Independence Model)
for two sensory experiments. 3 is the estimated covariance matrix for the linear
parameters (41, 42)7T.

Method Estimates Propyl acetate Isopenthyl acetate
a2 0.68 1.55
6% 0.00 0.17
Repeated o] 1.27 0.76
Measures Y2 0.89 2.57
Model Ié; -0.70 -3.38
A 0.30 0.15 0.068 0.18
(Method A) > 0.15 0.13 0.18  0.56
[ A
1.961/ Var () 0.39 0.82
o’ 0.76 1.74
6% 0.00 0.10
M 2.07 1.38
Anderson and Y2 1.48 4.57
Aitkin Ié; -0.71 -3.32
- 0.56 0.32 0.46 1.22
Model > 0.32 0.32 1.22 3.4
AN ~
1.961/ Var (3) 0.37 0.93
M 1.27 0.77
Independence Y2 0.89 2.58

Model -0.70 -3.36

3
A A
(Probit) 1.964/ Var (3) 0.39 0.78
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The estimates of the linear parameters and of 3 do not depend much on whether
the correlation structure is taken into account. The confidence intervals, crucial for
inference, however, do widen considerably if the dependencies coming from the re-
peated measures structure are taken into account. We note that for Propyl acetate
the variance component 6% turns negative at an iteration step. When this happens,
6% is set to zero for the next iteration step, and if it happens again, the algorithm
terminates. Thus, in the case of propyl acetate, the random effect is found to be negli-
gible. It is noteworthy that this finding is coming out also of the Anderson and Aitkin
approach. The standard errors in the Anderson and Aitkin approach are found by
calculating the second derivatives of the log-likelihood function. Note that the stan-
dard errors arising from the weighted logistic regression in the estimation algorithm
are not the correct ones, as they correspond to regarding the weights as known. And
the weights do themselves depend on the parameters. For these computations and
the simulations below we used 5 quadrature points.

Calculating overdispersion factors, as described below, leads in both cases to the
independent model, as they were both smaller than 1, 5.83/8 and 8.68/9 respectively.

4.5 Simulation

A simulation study was performed to investigate the tendencies from the data appli-
cation above. Using 3 = —2.5, 0> = 3 and 0% = 3, data sets with assumed doses
corresponding to seven different log 10 dose concentrations as for the isopenthyl ac-
etate experiment, see Table 4.1, were generated according to (2). All baselines were
assumed to be zero. Each of 10 individuals was assumed to be presented with 14
doses, including two replicates at each dose level, i.e., n; = 14, 2 =1, ..., 10.

Three alternative methods were compared to two versions of our proposed method.
The five methods applied were:

Method 1 The independent probit model,

O~ (pij) = 72 + mdy;

Method 2 Overdispersion correction by means of correcting the variance of the pa-
rameter estimates by the overdispersion factor, h, which is obtained by Pearson’s

Y*(McCullagh and Nelder, 1989):

h:1

m— 11

" n; (OBS; — EXP;)?
— (n2 — EXPZ) EXP2 ’
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where EXP; is the expected number of responses for individual 2 in the inde-
pendent probit model,

EXP; =) ®(% + 41d;)),

7=1
and OBS; is the total observed number of responses for individual .
Method 3 The Anderson and Aitkin maximum likelihood approach.

Method 4 The marginal approach of this paper with a version of Method B for up-

dating variance parameters. Since the covariate ;L'z; is just a constant, Method
B is equivalent to pre-estimating the intra-class correlation o7 /(0% + o), and
using this fraction to deconvolve the estimated total variance, 67, in each it-
eration step. Special attention is required at the pre-estimation step due to
the considerable probability of extreme observations for an individual. The

following solution which proved to be feasible was adopted:

(i) Estimate (; and o2 from the model ®~' = §; + ~d,;, as 5} = —32/’? and

62 = 1/4*, omitting those individuals for which either no response or

response at all levels is recorded.

(ii) Set for the “extreme” individuals,

G = -5 ,if Z?lzl y;; =mn; (response at all levels)
2 -1 ,if Y%,y =0  (no response)

This choice comes from an interpretation of (; as the threshold for individ-
ual 2: if an individual can detect any given dose, then the threshold can
be interpreted to be smaller than the smallest dose, in this case —5, and
vice versa.

111) Calculate the empirical variance of Al . Am
p 9 9 9

1 m

0h = ey (G =Y

m_lizl

and the estimate of the intra class correlation.
(iv) At each step of the algorithm the intra class correlation fraction is used

to split the estimated total variance U%ﬁg into the two parts.

As starting values for the linear parameters the estimates from fitting the inde-
pendent model are used.
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Table 4.3: Results for 600 simulations of a repeated measures design. True value is

B=-25.

Average Average Non-coverage
Ié; 1.96+/ VAELI’(B> percentage
Method 1 -2.50 0.58 33.2
Method 2 -2.50 1.20 4.67
Method 3 -2.51 0.84 27.5
Method 4 -2.51 1.18 5.17
Method 5 -2.51 1.24 4.83

Method 5 The marginal approach of this paper with a version of Method B for
updating variance parameters: o2 is pre-estimated as in Method 4 above, and
kept fixed throughout. In each step of the algorithm this fixed estimated is used
for an additive updating, as described in Section 4.4 above:

A2 ) )
07, = max {O'Tl — ‘7570}

Table 4.3 shows the results for the 600 simulations.

It is clear that the analysis which ignores the dependencies in the data will lead to
actual confidence levels which are unacceptably off the nominal levels so that inference
is invalid when using this method for a repeated measurements design. This finding
is not unexpected. More unexpected is the poor behaviour of the Anderson and
Aitkin approach for determining confidence bands. The difference in the lengths of
corresponding confidence intervals is striking. The overdispersion approach and the
two versions of the present paper work comparably well and in accordance with the
nominal level. The feasibility of the overdispersion method should be seen in the
light of the relative simple experimental setup assumed for the simulation, notably
the assumption of vanishing baseline probabilities. It is apparent that in the data
analysis reported above only the results coming from our proposed repeated measures
analyses should be used.

4.6 Discussion

We proposed an approach for dose-response designs with repeated measurements
based on a random effects model for unobservable thresholds. Several authors have
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investigated generalized linear models with random effects using various approaches.
In some of these works (cf. Zeger and Karim (1991) and references therein), a condi-
tional approach is adopted: The GLM setting is expressed conditionally on random
effects with specified distributions and the parameters of these distributions are as-
sumed to follow certain priors in a Bayesian sense. In contrast, our approach is
unconditional and we estimate the unknown parameters directly, including the vari-
ance components. Neither the distributions of the random effects nor of the observed
data are assumed to belong to the exponential family.

Furthermore, our approach allows to incorporate a known background response
rate, laedning to nonzero baseline probabilities which are allowed to vary from obser-
vation to observation. This amounts to a change of link function, in fact the resulting
“link function” is not the same from observation to observation, and therefore these
models cannot be fitted with standard packages like EGRET. Assuming no baseline,
i.e., a;; = 0, a conditional approach would lead us to the link function F~(4.20)
in contrast to the unconditional link function Fi'(4.20),(4.22). Thus the treatment
of the random effects in our model leads to a new link function to be used in the
weighted iterated least squares algorithm as compared to the conditional approach.

An important feature of our proposed approach is the Monte Carlo calculation of
the covariance of the binary observations, (4.14)-(4.19). In other generalized estimat-
ing equations approaches this covariance is approximated to first order, Zeger et al.

(1988) and Breslow and Clayton (1993).

Both simulations and data analysis show that the proposed method is feasible
for dose-response designs with repeated measurements, is easy to implement, not too
computationally intensive and provides reasonable results. It is vastly superior to the
alternative which treats all the obtained data as independent.

In particular, when interest focuses on the behaviour of reaction random thresholds
across a population, the proposed statistical model for the random thresholds is an
attractive option. It leads to feasible inference procedures, and allows straightforward
interpretation of the parameters as biological thresholds.

Acknowledgements

The research of Per M. Brockhoff was supported by the Danish Research Academy
and the Danish Ministry of Education as part of the FOTEK Programme. The
research of Hans-Georg Miiller was supported in part by NSF Grant DMS 9305484.
A number of helpful comments from the two referees are gratefully acknowledged.



Random effect thresholds 93

References

Anderson, D.A. and Aitkin, M. (1985). Variance component models with binary
response: interviewer variability. J. Royal Statist. Soc. B47, 203-210.

Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear
mixed models. J. American Statist. Assoc. 88, 9-25.

Collet, D. (1991). Modelling Binary Data, Chapman & Hall, London.

Elashoff, J.D. (1981). Repeated-measures bioassay with correlated measures and
heterogeneous variances: A Monte Carlo study. Biometrics 37, 475-482.

Finney, D.J. (1971). Probit Analysis. Cambridge University Press, Cambridge.

Frijters, E.R. (1988). Sensory difference testing and the measurement of sensory
discriminability. In: Sensory Analysis of Foods, Ed. J.R. Piggott, Elsevier
Applied Science, London.

Goldstein, H. (1991). Non-linear multilevel models, with an application to discrete
response data. Biometrika 58, 45-51.

Harville, D.A. (1977). Maximum likelihood approaches to variance component esti-
mation and to related problems. J. American Statist. Assoc. 72, 320-340.

Im, S. and Gianola, D. (1988). Mixed models for binary data with an application
to lamb mortality data. Appl. Statist. 37, 196-204.

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models. Chapman and
Hall, London.

Morgan, B.J.T. (1992). Analysis of Quantal Response Data. Chapman and Hall,

London.

Schall, R. (1991). Estimation in generalized linear models with random effects.

Biometrika 78, 719-727.

Silvapulle, M.J. (1981). On the existence of maximum likelihood estimators for the
binomial response model. .J. Royal Statist. Soc. B43, 310-313.

Stiratelli, R., Laird N. and Ware, J.H. (1984). Random-effects models for serial

observations with binary response. Biometrics 40, 961-971.

Wedderburn, R.W.M. (1974). Quasilikelihood functions, generalized linear models
and the Gauss-Newton method. Biometrika 61, 439-447.



94 Random effect thresholds

Zeger, S.1., Liang, K.Y. and Albert, P.S. (1988). Models for longitudinal data: a
generalized estimating equation approach. Biometrics 44, 1049-1060.

Zeger, S.L. and Karim, M.R. (1991). Generalized linear models with random effects:
A Gibbs sampling approach. .J. American Statist. Assoc. 86, 79-86.



Random effect thresholds 95

4.7 Add: GLIMs in sensometrics

For the interval scale data in the typical multivariate sensory data set, a first thing
to notice is that GLIM’s were originally developed for univariate observations. This
excludes the situations in the subsequent Chapters 5 and 6 from being put in the
GLIM frame. The conventional univariate fixed effects ANOVA is, as mentioned,
a GLIM, and the mixed model ANOVA is a special case of a GLIM with random
effect, which we have discussed in further detail in the preceding paper. The assessor
models of Chapter 3 are not GLIM’s, but the estimation principles employed are
in essence of the quasi-likelihood type. And it is worth noting that adopting the
variance function feature of the GLIM, could lead to a direct modelling of the product
dependent variance heterogeneity, compensated for by transformation in Chapter 3,
by a suitable function. This may provide a more flexible and data driven way of
stabilizing variance.

The application of GLIM’s for ordinal scale data might be the sleeping beauty in
sensometrics. I have seen no examples of this in the food science literature but both
McCullagh and Nelder (1989) and Fahrmeir and Tutz (1994) include sensory examples
of this kind. In particular in the light of the scale discussion in the Introduction, this
approach seems intriguing, although the models might be difficult to grasp for non-
statistically minded experimenters.

The nominal scale data and in particular the binary data should offer a compre-
hensible motivation and explanation for the entrance into the GLIM world. Let us
consider the basic difference test situation, So, m individuals were ‘exposed’ to the
same ‘dose’ a number of times, say n;, 2 = 1,...,m. There is a huge amount of liter-
ature on the method of paired comparisons and I will and cannot give an exhaustive
review of it. Historically, these methods date back to Fechner in the nineteenth cen-
tury and Thurstone in the 1920’s, see David (1969) and references therein. T would
like, however, to try to relate the GLIM frame to the ‘signal detection’ approach of
estimating sensory differences, see Frijters (1988).

Given a ‘stimulus’ product and a number of ‘placebo’ products, two questions
arise: Has the stimulus product a detectable difference, and what/how much is the
difference. The former question may be answered by classical binomial testing, with
the duo, duo-trio and triangular methods being widely used, see for instance Lea
(1988), where the relative powers of these approaches are also discussed. One problem
in power discussions is that the underlying psychophysical processes are not the same
for different test methods. Ennis (1990, 1993) showed that the power of, for example,
the 3-alternative forced choice (3-AFC) method is superior to the triangular method.
In the 3-AFC, subjects are asked to point out the product with the most (or least) of
some attribute, whereas in the triangular method, subjects are asked to point out the
most different product. The presentation here is not a contribution to these power
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discussions but rather an attempt generally to relate a classical statistical approach to
the traditional psychophysical approach, as the latter forms the basis of the estimation
of sensory differences.

So for simplicity let us consider a K-AFC experiment, where subjects are asked
to point out the product with the most of some attribute. The results in Ennis (1990,
1993) are based on the basic psychometric relationships that comes from assuming
that the K — 1 placebo’s are realizations of independent standard Normal variates,
X, ~N(0,1),2=1,..., K — 1 and the stimulus is a realization of a N(d, 1)-variate,
d > 0. By a straightforward conditioning argument the probability of the stimulus
outcome being larger than all the others are, see for instance Ennis (1993),

g(d) = /_ O:O K1 (2)d(x — d)d (4.34)

where ® and ¢ denotes the standard Normal distribution and density functions re-
spectively. The ‘signal detection” method of sensory difference estimation is now
simply based on explicit calculations of the function ¢, relating an observed fraction
of correct responses to a sensory difference value d.

A statistical approach, as indicated in the Thesis Introduction and employed in
the preceding paper is as follows. We let Z; denote the individual threshold and Tj;
the threshold for individual 2 at the jth replication, j = 1,...,n;, 2 =1,...,m. The
model (1.1) of the Thesis Introduction, without interaction effect, becomes

where the Z;s and &;;s are independent Normals and the overall mean p is assumed
zero owing to unidentifiability. For the same reason all the variables may be assumed
to be standard Normals, and the probability of a threshold T;; being less than a
difference d is then

h(d) = (\%) (4.36)

From a GLIM viewpoint the functions h and ¢ are inverse link functions. The two
approaches differ in that the ‘signal detection” approach assumes randomness on the
samples whereas the ‘statistical” approach assumes randomness on individuals. How-
ever, the statistical random error ¢;; can also be said to include randomness on the
samples. For K = 2 the link functions, h(d) and ¢(d), indeed coincide, and the two
approaches are in principle the same.

For K > 2 the two link functions differ, and if one believes in the psychophysical
relationships, the function ¢(d) should be chosen. The GLIM approach, though, with
any link function, may offer a way to calculate uncertainties in the estimation of d.
Since the linear model specification in this case is just the one-parameter model of
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I as the link function

constant level, employing the IWLS estimation algorithm with ¢~
leads to the same estimation of d as the deterministic ‘signal detection” approach. But
at the same time it provides an estimate of standard error of estimation, that is based

on a first order Taylor approximation to the link function ¢=1!.

The model specified (4.35) and (4.36) is really a random effect GLIM, as discussed
in the paper. Thus a GLIM approach could also provide standard errors of estimation
for d, that properly takes the random assessor effects into account. Combining in this
way the psychophysical functions with formal random effects GLIM modelling, may
offer a nice common framework for the work with these methods, but future research
on this will have to show the reach of this approach.
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Chapter 5

Two-dimensional covariance
component models applied to
sensory data

This is a working paper intended for submission to Journal of Sensory Studies early
1995. This American journal has as purpose “to promote technical and practical
advancements of sensory science by publishing papers of broad coverage to include
observational and experimental studies in the application of sensory evaluation to
the food, medical, agricultural, biological, pharmaceutical, cosmetic, consumer and
material sciences. This includes research work dealing with new developments in
sensory methods, consumer testing, experimental design, statistical analysis, scaling,
psychophysics and computer applications.”
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Abstract

The two-dimensional generalization of the analysis of variance model with ran-
dom judge effects is presented as a way to analyse the correlation between a
sensory attribute and a chemical measurement, or any two paired observations,
in a designed experiment. The model is formulated and discussed in detail
and emphasis is put on interpretations. The approach is illustrated by two
time intensity sensory experiments on the effect of salivary flow rates on sen-
sory perception. An illustrative technique as aid for ANOVA modelling, the
factor structure diagram, is presented and used throughout the paper. A test
for significance of an overall relationship is presented and applied in the two
examples.
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5.1 Introduction

Correlating instrumental measurements with sensory evaluations is an important tool
for research in human perception. As a result the subject has been given much at-
tention in the sensory literature, see for example Kjglstad et al. (1990), Martens and
Martens (1986) or Brockhoff et al. (1993). A typical setup is that of calibrating panel
profile mean scores with near infrared(NIR) or gas chromatographic(GC) measure-
ments, imbedding the setup into the chemometrical field of multivariate calibration,

see Naes and Martens (1988).

Often in these studies a designed experiment was performed, and prior to the
calibration step analyses of variance were carried out to investigate the significances
of the designed effects on sensory as well as instrumental measurements. But in the
subsequent calibration analysis the design is often ignored; the partial least-squares
or principal components regression analysis is achieved by aggregating all observa-
tions. This is perfectly allright for an explorative analysis, but one must be careful
to quantify the strength of association, for example by a correlation coefficient, as it
depends heavily on the variability spanned by the observations, which is controlled
by the designer of the experiment. Such a correlation coefficient expresses mainly a
sample-to—sample relationship, but includes also a within-sample (residual) relation-
ship. It is the study of such associations on different levels, that is the main objective
of this paper.

Experimental studies, as referred to above, are usually performed such that for
each single instrumental measurement there are observations for all judges. This
makes the averaging over judges a reasonable approach, although other approaches
exist, see Neaes and Kowalski (1989). In the experiments of the present paper there
are for each judge a sensory evaluation as well as an instrumental measurement, that
is related to both the sample and the judge. This adds the further complexity, that
some of the observed correlation is induced by judge effects. We will give a systematic
approach to the detection and interpretation of the various sources of correlation.
For simplicity we consider only a two-dimensional setup, but the principles apply in
analogous way to the general multivariate setup.

Based on a one-dimensional formulation of the random judge effect model, we
present the two-dimensional equivalent. Quite some emphasis is put upon the basic
factor structure of an experiment, as this is important for the interpretations, which
is described in detail. Finally the method is applied to two experiments.
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5.2 Variance component models

Consider a balanced sensory experiment with 7 judges (factor .J), P samples (factor
S) and K replicates (factor R), i.e. we have observations, ., from random variables
Xipp » 0= 1,...,0, p=1,....,P, k =1,..., K. The most general fixed effects
analysis of variance model for this situation includes the three main effects and the
three interaction terms,

Xipk = p+ a; + By + 6k + (af)ip + (ad) ik + (8)pr + €ipk (5.1)

where the errors, g;,;s, are independent and Normal distributed. We have included
all effects with the R factor as this often represents a real effect, for instance day of
sensory session.

For inferential purposes going beyond the panel in use, it is more relevant to
consider a model where effects due to judges are random, see for instance Lundahl

and McDaniel (1988),
Xipk = p+ Ai 4+ By + 65 + (AB)ip + (Ad) ik + (B)pr + Cipk (5.2)

where all additional random variables on the right hand side, indicated by the use of
a capital A, are independent Normals:

Ai ~ N(0703> ) (Aﬂ>2p ~ N(()?O-?IXS) ) (A6>2k ~ N(()?O-?IXR) s Sipk ™ N(()?Ué) (5?))

This random effect model is also frequently called a mized model — as both fixed
and random effects are present. It is also called a repeated measures model with no
between factors and the two within factors R and S. In line with Searle et al. (1992)
we will denote the model (5.2)-(5.3) a variance component model. Fach observation
is modelled to consist of a component of variation for each random effect (apart from
the fixed effects). Theoretically this can be seen from (5.2) and (5.3) as the variance
of the sum of independent random variables is the sum of the variances:

Var Xipr = 05 + 05,5 + iy + 0 (5.4)

The analysis of data based on either (5.1) or (5.2)-(5.3), or similar models, to
detect and interpret significant effects is called analysis of variance (ANOVA), and
can be performed by many statistical software package on the market. Estimation
and interpretation of the variance components (5.4) themselves are less common, but
can be done for example with the Procedure Mixed of SAS.
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5.3 Two-dimensional covariance component mod-
els

Assume now that in addition to z;,; we also observe y;,;, that is, we observe two-
dimensional random variables

(szk) 7l:177]7p:177p7 kZl??I(
1/z'pk

Two kinds of inferential purposes emerge: (i) What and how are the treatment effects
on the two attributes in question and (ii) how are the two attributes related 7 Purpose
(i) can be achieved by performing an ANOVA as described above for both attributes
or by doing a single multivariate analysis of variance (MANOVA). The multivariate
equivalent of both (5.1) and (5.2)-(5.3) can be handled by Procedure GLM in SAS
by means of Wilks statistics, the multivariate equivalents of the F' statistics, see
for example Anderson (1958). It is the purpose (ii) that attracts our attention in
the present paper. It turns out that a deeper understanding of the multivariate
(two-dimensional) equivalent of the variance component model (5.2)-(5.3), the two-
dimensional covariance component model, is the key issue for this purpose.
Therefore we will formulate this model in detail:

() = O ) )+ () + () (6858
()« (60 )+ () o2

where all random variables on the right hand side are independent and bivariate

Normals:
AZ AB)E
( Aé/ ) ~ N2(072J)7 ( EAg;;p ) ~ N2(07EJ><S>7
2 v (5.6)
(Ad)% Eink
Y ~ V2 YUy, ZJxR )y Y ~ I¥2l\U, LLF
(A6, N2(0,XxR) kil N»(0,Sp)
) “ap
with 2 J 2 IxS
X
EJ = Uljj Oév Y b EJ xS — UI&&XSS O‘;y 9
o o o o
Ty y,J Ty y,J xS
(5.7)
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The model given by (5.5), (5.6) and (5.7) is basically the model (5.2)-(5.3) ex-
pressed for both X, and Yj,; together with a corresponding model for the covariance
between X, and Yz, as indicated by the two-dimensional equivalent of (5.4),

Cov (Xip, Yipr) = Xy + Zyxs + Xyxr + Xg (5.8)

where the four components of covariance come from the four random effects of the
model. Mean squares in this model become 2 x 2 matrices, with diagonal elements
that equal the mean squares from the two univariate ANOVA’s; and off-diagonal
elements that are mean cross products, the empirical covariances.

The two-dimensional covariance component model is not very often used. Stan-
dard textbooks on multivariate analysis do not explicitly formulate this model, but
Searle et al. (1992), p. 378-380 state that it is straightforward to generalize the
ANOVA method of variance components estimation to the two-dimensional (multi-
variate) setup.

5.4 Factor structure

A basic feature of the ANOVA modelling is the partitioning of the total variation
in the data into parts due to each effect in play. This partitioning is determined by
the design of the experiment, and as such has nothing to do with dimension of the
observations. If the design is orthogonal, see Tjur (1984), this partioning is unique,
meaning that there is no confounding/ambiguity in the ascription of variations to each
effect. The basic design of the present paper, with no missing values, is orthogonal.

As the design of an experiment is fundamental to the subsequent analysis, it makes
sense to adopt the approach of Tjur (1984, 1991) of visualizing the design by a factor
structure diagram, see Figure 5.1. In the Appendix we have given a short description
of the construction and possible use of such diagrams.

The calculated mean squares for a design, whether one- or multi-dimensional, are
also fundamental. It is in the interpretation of these mean squares the covariance
component model differs from the fixed effect model: some are modelled /interpreted
as variances(random effects) and some are modelled /interpreted as the variation be-
tween different but fixed levels(fixed effects).

5.5 Interpretations

5.5.1 Parameters of the covariance components model

The covariance component model (5.5)-(5.7) has as an underlying interpretation, that
the judges ‘has been sampled at random’ from ‘the population of judges’, and from
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I xS [T,

dyxs
IPK IK P
[E]dE X [ x R]d;xR S 0

PK K
SX Ry, R

Figure 5.1: Factor structure diagram for the variance component model (5.5)-(5.7).
Superscripts denote the number of levels for a factor, and subscripts denote degrees
of freedom. Brackets indicate that effects are random.

this the following interpretations come forth:
b3 E-
02 p (0 p): The variation in attribute X (Y) when all effects have been ac-

counted for, i.e. variation within judges, samples and replicates.

O'ZZ The covariation between attribute X and Y when all effects have been ac-
counted for, i.e. the relationship between X and Y that would be observed
if one had repeated observations for a single judge, sample and replicate.

02 7 (02 ;) The variation in attribute X (Y') from judge to judge within sam-
ples and replicates.
O';E]yZ The covariation between attribute X and Y from judge to judge within

samples and replicates, i.e. the relationship between X and Y seen from
judge to judge for the same sample and replicate.

Yrxs:

02 7xs (07 7s): The variation in attribute X (V) induced by the judges’
differences in sample differences
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U_:E];S: The covariation between attribute X and Y induced by the judges’
differences in sample differences, i.e. a measure of the relationship between
the interaction effects in X and Y, for example it will be positive if judges
have the same tendencies in both X and Y to evaluate, say, the difference
between sample 1 and sample 2 differently (a judge with a large positive

difference in X also has a large positive difference in Y)

Yixr: Analogous to ¥ ys.

For each covariance component there is also a corresponding correlation given by the
fundamental relationship between correlation and covariance. For the error compo-
nent, for example, the component of correlation, pg, becomes

O'E

Ty
PE= == = (5.9)
\/Ui,E\/Uj,E
The basic problem is that we do not observe these nice interpretable entities
directly, we ‘observe’ the mean squares instead.

5.5.2 Mean squares

FEach mean square for the random effects is a combination of different covariance
components. Exactly which combination can be seen from the expectations of the
mean squares, that has the same structure as in the univariate case, see Anderson

(1958),

E(MSg) = Xg (5.10)
E(MSjxs) = Yg+ K¥jxs (5.11)
E(MSjxr) = Yg+ PYjxr (5.12)

E(MS;) = Ygp+ K¥jxs+ PYjxr+ KPY; (5.13)

This means that the off-diagonal element of, say, MSy, is the observed covariance
over judges, that as above can be transformed to a correlation, which in fact pre-
cisely is the correlation between X and Y observations averaged over samples and
replicates for each judge. But this covariance/correlation not only expresses judge
covariance/correlation; it includes some of the other three components as well, as seen
n (5.13). Similar comments apply to MS;xs and MS yg.

The mean squares for the fixed effects consists of components from the random
effects as well as the fixed effects

E(MSsxr) = Zp+1Qsxr (5.14)
E(MSs) = Sp+ KSyxs + IQsxr + IKQs (5.15)
E(MSgr) = Yp+ PYjxr+ IQsxr+ [PQr, (5.16)
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where the ()s are the ‘variational components’ stemming from the variation between
the levels of a fixed effect. Conceptually these expected values have the same struc-
ture as for the random effects, and similar calculations and interpretations can be
performed although the () components and mean squares are not real covariances,
they are just measuring the (co)variability of the levels of a fixed effect.

5.5.3 Regressional equivalents

To begin with, consider a typical regressional setup with paired observations (z;,y;).
There are two possible approaches to investigating the relationship between x and y,
the ‘correlation’ approach and the ‘regression’ approach. The point is that although
the two approaches are conceptually different the test for ‘no relationship’ becomes
the same in the two approaches: the tests for zero correlation respectively zero slope
are the same t tests. The nice thing about the observed correlations in the mean
squares above, although they are combinations of different effects, is that they have
direct interpretations in terms regressions of certain averages of the data.

These related regressions serve as a good tool for the understanding of the various
levels of association the mean squares really measure. Consider the observed mean
square for factor .JJ, MS;. The off-diagonal element is the observed covariance between
2ipr and y;,p seen over judges, and the corresponding correlation is the correlation
that comes from a linear regression of ;.. on z;., i.e. a linear regression on averages
for each judge.

The off-diagonal element of MS ;. s is the empirical covariance corresponding to the
regression of estimated .J x S interaction effects, i.e. the regression of y;;. — ;.. —y.;.+7...
on i’ij. — i’z — Zz’.]‘. + ...

In an analogous way the off-diagonal element of MS;yr is the empirical covari-
ance corresponding to the regression of estimated .J x R interaction effects, i.e. the
regression of y;p — Ys.. — Yop + Y. ON Tpp — Tjoo — Top + T,

Finally the off-diagonal of MSg = Y g is the error covariance and corresponds to
a regression of the y residuals from the fixed effects model (5.1) on the z residuals
from the same model. The regression coefficient from this regression is the same that
emerges by including x,,; as an additional covariate in the fixed effects model (5.1)

for yipi.

5.6 Estimation

Estimates for the ‘clean’ variance components, Xp, ¥ 5vs, ¥jxr and ¥; can be found
by solving the equations (5.10)-(5.13). This is known as the ANOVA method of es-

timation, see Searle et al. (1992), and amounts in the present case to solving three
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sets of four linear equations with four unknowns. The issue of estimating variance
components is a huge research area of its own and various methods exist. For orthog-
onal designs, the ANOVA method is equivalent to the generally accepted method of
restricted maximum likelihood (REML), see Searle et al. (1992).

If there are missing values, leading to a non-orthogonal design, things get a little
complicated. The partitioning of variability is no longer unique and the expected
mean squares become complicated to calculate. A better solution would be a formal
REML approach, but this goes beyvond the scope of Searle et al. (1992) and certainly
beyond what we want to address in this context. In Dembster et al. (1981) a version
of the EM-algorithm was employed for estimation in covariance components models.
The way we proceede is to use the Random statement of Procedure Mixed in SAS in
a univariate setting, but with observations where either one or both observations are
missing, set to ‘missing’. This will make SAS calculate the expected mean squares
for each effect listed in the Random statement. If ‘variational components’ should be
calculated for fixed effects also, one merely lists these effects in the Random statement
as well, alone for the purpose of having SAS to calculate the equations to be solved.

As mentioned, the Procedure Mixed of SAS can handle the univariate case, but it
cannot estimate multivariate components of covariance in a mixed model. For this
reason it will be necessary to solve the equations (5.10)-(5.13) by other means in each
case. The factor structure diagram provides, in the orthogonal case, an easy way of
deducing the equations to be solved, as will be clear in the following.

Solving the equations (5.10)-(5.13) does not guarantee that the resulting varia-
tional components are non-negative nor that derived components of correlations are
within the required —1 to 1. The way to do this is to set ‘negative components’ to
zero and correlations to either —1 or 1.

5.7 The hypothesis of independence

The main objective is to investigate the relationship between the two variables X
and Y. This may lead to the hypothesis of independence, that is, of no association
between x and y on any (random) level. This hypothesis is therefore equivalent to

E _ _JxS _ _JxR _ _J _
Opy = Oy = 0Opy =0y, =0 (5.17)

which is seen from the equations (5.10)-(5.13) to be equivalent to the case, where the
four off-diagonal elements of E (MSg), E(MSyxs), E(MS;«r) and E (MS;) are zero.
As these mean squares are independent random variables with different distributions
defined by different parameters, the hypothesis splits up into four independent hy-
potheses, one for each random effect (stratum, see the Appendix). In other words the
test for independence really constitutes four independent tests, that each is a test for
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zero correlation, or equivalently, a test for zero slope in a linear regression, i.e. four
standard t-tests. One uses the phrase to test the effect in each stratum. The t test
statistic for independence in, say, J stratum is:

t=+/DFy — 1—2L_, (5.18)

2
1 —¢c35

where ¢; is the ‘observed’ judge correlation, that is, the correlation calculated from
MS];.

However, a single test for no correlation overall can be deduced by classical maxi-
mum likelihood theory, see the Appendix, and this test is applied in the present paper
as well.

5.8 Materials and sensory methods

5.8.1 Samples

D-Glucose (certified A.C.S., Fisher Scientific, Pittsburgh PA) and medium viscosity
Na-Carboxymethylcellulose (CMC; Sigma Chemical Co., St. Louis MO) were used
for the sample preparation. Aqueous solutions of three different levels of glucose
and three different levels of CMC as well as all combinations of the glucose and
CMC concentration levels were examined. A distilled water sample was included. In
Table 5.1 the composition of the sixteen samples presented in the experiment is given.
For samples containing CMC, glucose stock solutions of 40 g/1, 90 g/1 and 140 g/l
were prepared. Since glucose contributes to the viscosity of a solution, the amount of
gum added to the samples containing no sugar, 4%, and 9% of glucose was different
for each sample to achieve the same viscosity for all samples within a food thickener
level, see Table 5.1. Gum was added slowly while stirring the sugar solutions on a
magnetic stirrer until the gum was completely dissolved (10 to 20 minutes). For the
unsweetened samples the gum was added directly to de-ionized water. Fresh samples
were prepared every week and kept at room temperature until testing. The physical
viscosity of all samples was measured using a Carrimed viscometer (CS 500).

5.8.2 Sensory evaluation

Prior to the eight sessions of data collection the panel was trained using scalar rating
of sweetness and viscosity intensity and then in the use of the time intensity method.
In each of the scalar training sessions the judges rated eight samples on a 10 cm line
scale for either sweetness or viscosity. In the time intensity training the judges rated
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Table 5.1: Composition of experimental samples

Sample Glucose CMC
(g/L) (g/L)

1 0 0.00
2 40 0.00
3 90  0.00
4 140 0.00
b) 0 441
6 0 6.93
7 0 991
3 40 4.00
9 90  3.24
10 140 2.50
11 40 6.29
12 90  5.65
13 140 5.00
14 40 9.20
15 90  8.28
16 140 7.50

the same samples for sweetness and viscosity intensity using the procedure described
in the following.

A computerized time intensity system was used for recording the temporal sweet-
ness and viscosity characteristic of the sixteen samples. The sensory booths used
for testing were equipped with Apple Macintosh Plus computers which were con-
nected via a TOPS network to an Apple Macintosh II. A time intensity program, see
Borton (1990), allowed the judge to rate the intensity of sweetness and viscosity by
manipulating a mouse connected to the computer in the booth. Moving the mouse
to the right indicated an increase in intensity whereas moving the mouse to the left
indicated a decrease in intensity. The judges could see the intensity rating on a line
scale displayed on the computer screen. At the time a sample was ingested, rating of
sweetness or viscosity intensity was initiated by clicking on the ‘Go’ icon shown on
the screen below the line scale. After ten seconds a spit icon and an acoustic signal
prompted the judges to expectorate the sample. Intensity rating was continued until
the sensation was extinguished. In all tasting sessions (training sessions and formal
data collection sessions) two reference samples for each of the sensory attributes were
given to anchor the line scale. For the sweetness as well as for the viscosity ratings,
the intensity of the less intense sample corresponded to 10% of the scale whereas the
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more intensive sample corresponded to 90% of the scale. The judges were allowed to
taste the reference samples as many times as needed.

The sixteen samples were presented in a balanced design in duplicate and the
order of presentation was completely randomized over the sixteen samples and the
twenty judges. After evaluation of the low and high standards for the attribute
being rated in that session, eight samples were evaluated; thus, two sessions were
necessary to complete one replication. The same sensory attribute was evaluated
four times in a row in order to complete the two replications. All the samples were
evaluated in sensory test booths under red light. 20 ml aliquots were presented at
room temperature in 40 ml plastic cups coded with three digit random numbers.
Since the perceived viscosity of non Newtonian solutions is affected by shear rate,
judges were told to move the tongue as consistently as possible during evaluation of
the samples. Judges rinsed with de-ionized water between samples.

5.8.3 Saliva collection

Saliva was collected from the right parotid gland of the 20 judges who participated in
the time intensity part of the experiment. A modified Carlson-Crittenden vacuum cap
which was placed over the orifice of Stenson’s duct in the right cheek of the subjects,
see Shannon et al. (1962). The outer ring chamber of the cap was connected with
Tygon tubing (3.2 mm outer diameter, 1.6 mm inner diameter ) to the lab vacuum
(approximately 80 kPa) to hold the cap in place. Saliva flowed by gravitational force
to the inner chamber and then via Tygon tubing to the sialometer, see Pangborn et al.
(1971). The increasing weight of accumulating saliva caused a vertical displacement
of a spring which was converted in a voltage reading between 0 and 2 mV.

The sialometer was connected to a variable power supply and was interfaced to
a Macintosh 1T by an analog to digital signal Lab NB board (National Instruments
Co., Austin TX ). An amplifier (gain of 1000) was placed between the sialometer and
the board which was configured for a bipolar (=B15V) input, see Bonnans (1991). A
LabView II computer program recorded saliva readings twice a second. Furthermore,
the program extracted the saliva readings every 15 seconds starting at 0 seconds in a
separate file, see Bonnans (1991). The sialometer system was calibrated with water
from 0 ml up to 1.5 ml in steps of 0.05 ml. The mean of ten readings for every step
was used to calculate the calibration curve. For the calculation of the saliva weight,
the computer readings of all samples were corrected such that the value of the samples
corresponded to the value of the calibration curve at time 0.

The saliva flow was measured over a period of two minutes in response to thir-
teen of the samples used in the time intensity experiment. Because of the extremely
time-consuming nature of the saliva collection, samples 11-13 (Table 5.1) were ex-
cluded. Previous to any saliva measurements the salivary flow was stimulated by 20
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ml aqueous citric acid solution (2g/L) to fill the Tygon tubing from the cap to the
sialometer. After two minutes, parotid saliva flow (without ingestion of a sample)
was collected for two minutes to get an unstimulated or 'baseline’ measurement for
each judge. The saliva flow elicited by each of the thirteen samples was collected in
duplicate in two separate sessions. To have the same experimental conditions as in
the sensory part of the experiment, the judges rated the intensity of sweetness in the
first, and viscosity in the second session of saliva collection using the time intensity
procedure described above. Between the samples the judges rinsed with de-ionized
water and waited for one minute before starting with the next sample.

5.8.4 Two data sets

A second experiment similar to the one described above, although with only three
samples, was carried out, where the glucose concentration of the saliva were measured.
In this paper we only consider a small part of the total data material. To summarize,
we consider two data sets, referred to as the ‘sweetness data’ and the ‘glucose data’ in
the following. The sweetness data are bivariate observations for 20 judges, 13 samples
and 2 replicates, the two components being the time to maximum sweetness intensity
(Tmax) and the salivary flow rate (Sal). For this data there are 10 missing values
of which 6 were single replicates and the remaining 4 were both replicates for two
combinations of judge and sample. The glucose data are bivariate observations for
19 judges, 3 samples and 4 time points. One of the original 20 judges was left out
owing to too many missing observations. For simplicity the two original replicates
were averaged, and the final data set has no missing values. The two components of
the glucose data set are the glucose concentration (Gluc) and the salivary flow rate

(Sal).

5.9 Results and Discussion

For the sweetness data the effect of the S x R interaction was clearly non-significant
for both Tmax and Sal, and was left out of the subsequent modelling. The factor
structure diagram for the model used is shown in Figure 5.2 and the mean squares and
‘variational components’ are listed in Table 5.2. As mentioned, 10 observations were
missing leading to a superscript to [E] of 510 instead of 520 in the factor structure
diagram. Moreover, since for two combinations of judge and sample both replicates
were missing, the superscript of [.J x S] is 58 instead of 60, leading to correspondingly
adjusted degrees of freedom. As the partitioning of variance now is non-unique, a
choice has to made about which mean squares to use. The ones in Table 5.2 are the
‘sequentially’ calculated mean squares, in SAS terminology the Type | mean squares.
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Figure 5.2: Factor structure diagram for the final model of the sweetness data.

Also the expected mean squares from which the ‘variational components’ are to be
calculated cannot be deduced explicitly from the factor structure diagram. Instead
the Random statement is used with Proc GLM of SAS is used to get the expected
mean squares for random as well as fixed effects:

E(MSg) = g
E(MSjxs) = Yg+1.978 s
E(MSjxr) = Yg+0.014Y .5 + 12.74Y 54
EMS;) = Xp+4+1.99875 + 12.758 54 r + 25.48%;
E(MSs) = Yg+ 1998 45 + 0.016X 4 + 0.0213 7 + 39.23Q s
E(MSg) = Ygp+0.0128 45 + 12.8854r + 0.0074X; 4+ 0.015Q s + 255Q R

If these equations are compared to the equations derived from the factor structure
diagram, as described in the Appendix, one would see that the influence of the 10
missing values are quite inconsiderable.

Note again that we calculate ‘(co)variational components’ for random effects as
well as for fixed effects in a similar way, although interpretations in a strict sense
are different. From a data analysis point of view, however, it is convenient, and
sensible, just to observe where the (co)variations are, whether random or fixed, and
then subsequently make the appropriate interpretation.

The two leftmost columns in Table 5.2 are basically the usual (Type I) MANOVA
table. Without presenting the exact test etc. we note that the listed effects are all of
significance.
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Figure 5.3: Time to maximum sweetness intensity plotted versus salivary flow rate
over the various effects. (a) Raw data, (b) residuals from the model (5.1), (c¢) sample
averages, (d) judge averages, (e) J x S interaction effects and (f) J x R interaction
effects. Correlations in legends are the correlation between the plotted points
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Table 5.2: Observed mean squares, estimated ‘variational components’, and ‘cleaned’
correlations for Tmax and Sal in the sweetness data set.

Factor Mean squares Var. components  Correlations
T Y T Y

R 0.66  -0.11 0.0(®) 0.00077

-0.11 0.019  0.00077 0.0
S 103.5 0.44 2.31 0.011

0.44 0.055 0.011 0.00012  0.69
J 284.4 -1.45 10.4 -0.047

-1.45 0.55 -0.047 0.018 -0.11
J xR 17.0 -0.30 0.51 -0.018

-0.30 0.073 -0.018 0.0034 -0.44
J xS 12.6 -0.0095  1.15 0.032

-0.0095  0.050 0.032 0.010 0.30
E 10.4 -0.073 10.4 -0.073

-0.073 0.030  -0.073 0.030 -0.13

(4) Negatively estimated, set to 0.0

To get a better impression of the observed correlation structure expressed in the
mean squares we have in Figure 5.3 made scatterplots of the data in accordance with
the regressional interpretations described above. Figure 5.3(a) shows that ignoring the
design totally indicates an overall negative correlation between Tmax and Sal; the t
test for independence on 508 degrees of freedom gives a p value of 0.13. Figures 5.3(b)-
3(f) show that this overall tendency covers over a more pronounced negative error-
and J x R correlation together with a positive sample correlation. Table 5.3 shows
that of the observed ‘real” (random effects) correlations, only the error correlation is
significant. Note that the ¢ tests of Table 5.3 relates to the correlations in the legends
of Figure 5.3, apart from minor discrepancies due to the missing values.

Table 5.3: T test statistics and P values based on (5.18) for independence between
Tmax and Sal in each of the four strata.

Effect DF —1 t P

Error 231 -2.03 0.044
J xS 225 -0.18 0.86
J xR 18 -1.20 0.24

J 1§ -0.49 0.63




Covariance components 117

Remember that these observed mean squares do not express ‘clean’ effects. These
should be sought in the ‘variational components’. The derived ‘clean’ correlations,
as indicated by equation (5.9), are also listed in Table 5.2. We see that there is a
strong positive correlation between Tmax and Sal over samples, and a positive J x .S
correlation. The latter means that there is a tendency, not that clear though, that
judges with a higher salivary flow rate for sample 1 as compared to sample 2 use longer
time to reach maximum sweetness intensity for sample 1 as compared to sample 2.
More pronounced is the negative J x R-correlation. This has the interpretation, that
judges with a higher salivary flow rate at the second session than at the first session
tend to use less time to reach maximum sweetness intensity at the second session.

The test for independence overall, across the random effects, yielded a —2log ()
test statistic, see the Appendix, of 5.89. This gives a p value of 0.21 based on the i
distribution and 0.23 based on the more accurate type of approximation in Brockhoff
(1994). Assuming for a moment that the sample effect also is random and doing the
same test yields a test statistic of 6.30 on 5 degrees of freedom leading to p = 0.28
respectivly p = 0.31. This is less significant; not surprising as the overall correlation
was negative, whereas the sample correlation was positive.

Bl
JIXR
Bl s
J
l s
R
Tmax Sal

Figure 5.4: Relative sources of variation for sweetness data.

Finally the calculation of the ‘clean’ variational components makes it possible to
investigate the relative importance of the various effects. This is done univariately and
has nothing to do with analysis of covariance/correlation, other than the importance
of a correlation could be seen in the light of the relative importance of an effect in
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Figure 5.5: Factor structure diagram for the final model of the glucose data.

general. For each variable all variational components are added to give the total
variation in the variable, and then the relative size of each component is investigated.
These are illustrated in Figure 5.4, and we see that the error and judge variations
are the largest for both variables, although the .J x S-interaction variation also is
considerable for the salivary flow rate.

For the glucose data all effects were significant as illustrated in the factor structure
diagram in Figure 5.5. Figures 5.6 and 5.7 and Tables 5.4 and 5.5 show the results
for the glucose data in a similar way as above for the sweetness data.

Figure 5.6 illustrates how a pooled (ignoring design) moderately positive correla-
tion covers over an almost 100 % ‘designed’ association between Gluc and Sal together
with some less strong components. Figures 5.6(c), (e) and (g) show that from sample
to sample, from time to time and even in the way each combination of time and
sample deviates from the additive level of the combination, there is a strong positive
association between the glucose concentration and salivary flow rate. Looking at the
four plots to the right in Figure 5.6 and Table 5.5, we see that there is no significant
judge- or J x S-correlation. There is indeed a significant error correlation, which
means that whenever within a single person, time point and sample for some reason
the salivary flow rate becomes larger, the same is the case for the glucose concentra-
tion. There is a quite strong positive .JJ x T' correlation, which means that whenever
a judge deviates from the additive level on a sample, he/she tends to deviate in the
same direction for both Gluc and Sal. The test statistic for overall independence
over the four random effects is 21.3 that based on either the y3 distribution or the
approximation in Brockhoff (1994) is extremely significant.

Investigating the ‘cleaned’ components, see the rightmost column of Table 5.4,
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Table 5.4: Observed mean squares, estimated ‘variational components’, and ‘cleaned’
correlations for Gluc and Sal in the glucose data set.

Factor Mean squares Var. components Correlations
T Yy T Yy

T 64.7 8.47 0.94 0.14
8.47 1.20 0.14 0.020 1.00

S 210.6 9.22 2.61 0.11
9.22  0.41 0.11 0.0048  1.0%)

J 9.04 -0.13 0.57 -0.019

-0.13 0.31 -0.019 0.022  -0.17
JxT 0.48 0.062 0.088 0.017

0.062 0.032 0.017 0.0069  0.71
J xS 1.92 0.041 0.43 0.0078

0.041 0.022 0.0078  0.0028  0.23

SxT 10.6 0.58 0.55 0.030
0.58 0.036 0.030 0.0013 1.0
D) 0.22 0.0094  0.22 0.0094

0.0094 0.011 0.0094 0.011 0.19

(¢) Estimated larger than 1, set to 1.0

Table 5.5: T test statistics and P values based on (5.18) for independence between
Gluc and Sal in each of the four strata.

Effect DF —1 t P
Error 107 2.05 0.043
J xS 35 1.20 0.24
JxT 53  4.21 0.0001

J 17 -0.33 0.75
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Figure 5.6: Glucose concentration plotted versus salivary flow rate over the various
effects. (a) Raw data, (b) residuals from the model (5.1), (¢) sample averages, (d)
judge averages, (e) time averages, (f) J x S interaction effects, (g) S x T interaction
effects and (h) J x T interaction effects.
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we get interpretations that support the M S-interpretations above. In Figure 5.7 the
relative importance of the ‘cleaned’ variational components shows a quite different
behaviour as compared to Figure 5.4. The error-component is much less here, partly
because the two replicates were averaged out. The judge component is much smaller
for Gluc, instead the sample component is important. And the time component is
quite important for both variables.

IXT
JIxS

TxS

=

Glucose Sal

Figure 5.7: Relative sources of variation for glucose data.

5.10 Conclusion

We have presented a unified approach to the analysis of the relationship between two
(or more) variables, when a designed experiment is performed. It should be clear, that
the principles outlined can be generalized to any design structure of an experiment.
We have illustrated the importance of acknowledging the fact that correlation really
exists on different levels; the use of a single correlation coefficient to summarize a
relationship does not make sense. We suggested ways of graphically illustrating the
different components.

The basic design structure of an experiment is the key issue in understanding
which levels of correlation/covariance are present in a data set. We believe that
the factor structure diagrams are of great help to the analyst in handling complex
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structures, also in the non-orthogonal case, even though the rules of the appendix do
not apply explicitly.

The test for overall independence is a new development, and the approximation
results of Brockhoff (1994) make the use of the test very reliable.

We stated that SAS cannot handle the multivariate covariance component models.
This may not be quite true. If only the covariance structure is considered, that is, all
effects are assumed random, or the fixed effects are ‘removed’ prior to further analysis,
the model falls under the category treated by Joreskog (1978). In SAS the Proc Calis
can handle such models. This may in some cases be a reasonable way to proceed,
especially if more complex covariance structures are expected, but the flexibility in
our pragmatic approach to the handling of fixed and random effects would be lost. We
also believe, that ‘sticking to a close connection” with the MANOVA models enhances
the understanding of these quite complicated models.
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5.12 Appendix

5.12.1 Factor structure diagrams

This presentation is entirely based on Tjur(1984, 1991), and the rules described apply
only to orthogonal designs. The factor structure diagram for a model is a listing of
all factors/effects in the model with arrows from finer factors to coarser factors, see
Figure 5.1. A factor is finer than another if it corresponds to a subpartioning of the
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data. For example, J x S is finer than both S and .J, but not finer than R. These
concepts are mathematically defined in the two given references and we shall not
go into this here. The F and O are ‘pseudo-factors’ that are always present in an
experiment. The ‘factor’ F stands for the finest of all factors, the factor with a level
for each experimental unit, corresponding to the error effect, and the ‘factor’ O is
the coarsest of all factors, the factor with only one level, corresponding to the total
variability.

The square-bracketed factors are the random effects, and the remaining factors
the fixed effects. The diagram can help the analyst to get hold of all factors/effects
in play in a given experiment, and it can be explicitly helpful for calculating degrees
of freedom, expected mean squares, finding the appropriate F' statistics etc. In the
following we will need the two conventions about a factor G in a diagram:

Factors to the right of &
= all factors in the diagram that can be ‘hit’ by going to the right following
arrows in all possible directions starting from G.

Factors to the left of &
= all factors in the diagram with G to the right of them.

Degrees of freedom

Having constructed the raw diagram, we add as a superscript to each factor the
number of levels for the factor, e.g. I for the factor J. Moreover we add a subscript
1 for the factor O. The degrees of freedom for any factor G in the diagram can
now be found recursively, starting from the right and writing degrees of freedom as
subscripts, by the following rule:

Subtract from the superscript of G the sum of all subscripts of factors to the right
of G.

F statistics

The four random effects splits the factors into four disjoint strata. One might say
that the four random effects splits the fixed effects among them. These strata can be
mathematically defined, Tjur (1984, 1991) and can be read from the diagram:

The fixed effect G belongs to the first random (bracketed) effect that is met, by
going leftwards in the diagram from G.
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Table 5.6: The partitioning of factors into disjoint strata.

Stratum Factors
Error K, SxR
JudgexSample J xS, S
JudgexReplication J x R, R
Judge J, 0

The four strata are listed in Table 5.6.

The F test for each fixed effect is now to be performed in the stratum in which
it belongs, e.g. the S effect must be tested versus the J x S interaction mean square
term.

Expected mean squares

For both fixed and random effects the expected mean squares can be found from
the diagram based on the following rule, that applies to orthogonal and non-nested
designs:

The expected mean square for factor G is a linear combination of ‘variational com-
ponents’ of G itself and all factors to the left of G with coefficients that are the
total number of observations, I PK, divided with the superscript of the factor
in question.

The phrase ‘variational component’ refers to real variance components for the
random effects and variation between the fixed levels for the fixed effects.

5.12.2 Test for overall independence

Let MSq, ..., MSgk be the 2 x 2 mean squares corresponding to the collection of effects,
over which we test overall independence. From Brockhoff (1994) we get that the test
statistic —2log () is given by:

—'21ogQ:—§:dklog 1—L’“%2 (5.19)
= My 11 MSkag

where dj are the corresponding degrees of freedom and the notation given by

MSkll MSk1‘2
MS;, =
k ( MSkrz MSkQQ )
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is used. This test-statistic has asymptotically a y? distribution with K degrees of
freedom. For small samples this approximation will be poor, and in Brockhoff (1994)
a vastly superior approximation was developed based on so-called uniform saddlepoint
approximation methods, due to Jensen (1988, 1991). We refer to Brockhoff (1994) for
an exact computational description of this approximation, as this is rather technical,
including a numerical solution of a nonlinear equation and several iterative-based

function evaluations.
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5.13 Add: Test for overall independence

5.13.1 Introduction

In this section we present the likelihood ratio test for overall independence between
sets of variables in a multivariate covariance component model. This can be seen as
a supplement to a merely stratified approach. We show that this test is in the Box
class and we outline how to apply gamma saddlepoint methods for approximating the
distribution of —2log (). Both of these issues become straightforward consequences
of the fact, that the likelihood ratio, (), is a product of independent terms. The
performance of the approximation is illustrated by a small example. Finally the
assumptions necessary for the design are discussed and some relaxations are given.

5.13.2 Likelihood ratio test

Assume we have n independent p-dimensional observations. ILet B be the set of
random effects, {dg}pep the corresponding degrees of freedom. and assume that B
satisfies the four conditions of Tjur (1991) set up for a random effects design, see
Section 5.13.5 below.

We then have that the collection of random effect sums of squared deviations,
{SSDg | B € B} is G-sufficient for the collection of canonical covariance components
{Ap | B € B}, see Mgller (1984), p. 5.1. The marginal distribution is the product of

the independent p-dimensional Wishart distributions,
SSDg ~ W,(Ag,dg) , B € B. (5.20)
The maximum likelihood estimator, AB, of A becomes
_
dp
and the total likelihood is, see Anderson (1958), p. 154:

Ag SSD3g,

SSDp [3(@3=P=1) axp (= Ltr(AZ'SSD
LA | BeB) =] | 5D | p (—31r(A5'SSDs)

W im0

We want to test the hypothesis of overall independence between sets of variates. For
simplicity we consider only two sets with dimensions ¢; and ¢o, with ¢; + ¢ = p. It
is clear, however, that the following can be formulated similarly for arbitrary sets of
variables. The null hypothesis is that the Ag’s are block diagonal,

AD 0

Ho: A= .

],BEB
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where Ag) is a ¢;-dimensional square matrix corresponding to variate set ¢, 2 = 1, 2.

Under Hy the MLE, A%, of Agis

jo_ 1 sspy 0
B7dg| 0o ssp@ |’

where SSDg) and SSDg) are the block diagonal elements of Ag. The likelihood ratio

becomes

L(A}) [8SDp| ™" y
L( B) BB \| SSD g I SSDg |
or
Q=1] @s
BeB
where each component
~ SSD
yin _ 155Dz | (5.23)

~15SDY || SSDE |

is the well-known likelihood ratio for independence in a single stratum, see Anderson
(1958), p. 232-233 and Mgller (1984), p. 6.5. It should be noted, however, that in
Anderson (1958) the G-sufficient reduction is not performed, and the likelihood ratio
is deduced based on the profile likelihood function leading to the total number of
observations instead of dg in the expression above.

In the case of testing single stratum independence between two one-dimensional
variables the likelihood ratio test (5.23) becomes equivalent to a t-test on dg — 1
degrees of freedom. For general dimensions the distribution of the single stratum
test statistic log Q?g/dB has been approximated in various ways. In Anderson (1958)
and Mgller (1984) approximations based on an expansion due to Box (1949) are
given. In Jensen (1991) three alternative approximations are compared to the Box
approximations. One of the approximations in Jensen (1991) is a Gamma based
saddlepoint approximation. A Gamma based saddlepoint approximation is what we
will present for the overall independence test. For this we need the Laplace transform,

¢, of —2log Q. From (5.22) we get

| SSDp |
—2log Q) = — dp log{ _ 5.24
Z |SSDY) || SSDY | 24

In Anderson (1958) the moments of

| SSDp |
" 55D | 5D |
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are derived in the case with unconstrained error structure, i.e. B represents the error
component and the sums of squared deviations entering Ag are Wishart distributed
with n — 1 degrees of freedom. Only the degrees of freedom differ in the present case
(as the derived moments do not depend on the parameters), and we can ‘translate’
formula (3) of Anderson (1958), p. 235 directly to obtain the Laplace transform of

—2 log Q?

6(t) =F {ef<—‘2108Q>} = (5.25)

(257 [ %)

BeBi=1 (Cl.zB + TZ) BeBi=1 =1 —2t)de 4 =0

that is finite for dg > p — 1. This expression shows that the likelihood ratio test is

of the Box class, as it can be recognized as the class defining expression in Jensen
(1991). We can thus apply the gamma based saddlepoint approximation method of
Jensen (1991). Instead we will use the more general formulated approximation of
Jensen (1988), see Chapter 7. In Jensen (1994) the conjecture is made that this will
provide limiting relative exactness in the tails, though this is not proved.

5.13.3 Saddlepoint approximation

Let ¢ denote the Laplace transform of W = —2log ) and k the cumulant generating
function, k(1) = logo(t). As W is a positive random variable, the approximation
from Jensen (1988) becomes, see Section 7.5,

K(t)—tw t tcrt\//\_t/\/\t/.2 0 Ae—1
P(W > w) ~ ¢ e ! S / v e "dv, (5.26)
to,  (toy+ \//\_t> t S i(tortv/) T(Ag)
where
11 t 3
/\t = 4 r ( )

/{'/“l(t>2 9

and ¢ = 1, is the saddlepoint, that is, the solution to x'(#) = w. For calcula-
tion of (5.26) we need the Gamma, Incomplete Gamma, Digamma, Trigamma and
Tetragamma functions, see Abramowitz and Stegun (1964).

In the special case of ¢; = ¢ = 1 we have that

o= ("S5 ()
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And if we let D(z) = log'(2), 1 = dB_T_l —tdg and x5 = d_TB — tdg, we can write the

cumulants as

k(1) = BZEB{D(%B) - D(dBQ— 1) + D(a1) — D(Iz)}
K(t) = 3 dp {b(en) = b))

() = PO {¢'(21) =¥ (22)}
L) = PO {¢"(22) = ¥"(21)}

where 1(z) = D'(z) is the Digamma, ¢'(z) the Trigamma and " () the Tetragamma
function.

For the calculations in the paper of this chapter and the example below the
Splus software were used offering the Splus versions of the Gamma and Incomplete
Gamma functions. The Di- Tri- and Tetragamma functions were implemented in line
with Jensen(1995), that again is based on Bernardo (1976), Schneider (1978) and
Abramowitz and Stegun (1964):

7= x <1077
b(z) =< b (z), x> 8.5
— Yl iz k+1), 1077 <2<85
l,%, r <1078
IZ)/(LL') = 77;'2(1')7 x> 8.5
Sho g + ez k+1), 1077 <2 <85
—l%, r <1074
O (x) = Ws(), x> 8.5

250 G sz + k1), 1071 <2 <85
where v = 0.5772156649, k = max,, {z + m < 8.5} and

~ 1 1 1 1

— logz— — —
() 08T T T o0z T 12021 2560
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5.13.4 Example

Inspired by a real data example, we consider a somewhat reduced typical sensory
profile data set. Assume that 4 judges have assessed 2 products in 2 replications and
assume the model (5.2)-(5.3). To compare the actual distribution of —2log () under
the null hypothesis, observations were generated based on the following parameter

values: p” = p¥ = 10, 7 = { = (Bé)11 = (Bé)1a = (#0)a1 = 0, o = 4, &y = 2,

(ﬁ&)gg = —87 ELHd
10 15 0
AE:(O 2) ’ AJ:(O -27)

6 0 30
AJXS:(O 13) b AJXR:(O 4)

The four random effect SSD’s are all on 3 degrees of freedom. 500 simulations were
performed, and Figure 5.8 shows that the saddlepoint approximation is extremely
superior to the basic y?-approximation on 4 degrees of freedom.

5.13.5 Design assumptions

In the following discussion some concepts may not be explicitly defined. The meaning
should, however, be clear from the context and the reader is referred to Tjur (1991)
for detailed definitions. The four conditions in Tjur (1991) set up for the collection
of random effects B are:

B1) The error effect is included in B.

(
(B2) Any factor B € B is balanced.

(B3) B is closed under formation of infima.

(B4) If Xp denotes the n x | B| design matrix for n observations corresponding to the

factor B € B, then the matrices(vectors) (X BXE)BeB are linearly independent.

Condition (B3) will be violated when the replication (block) effect, and thus also
the R x S-interaction, in the example above is considered random. This situation,
or something similar, will often be relevant in sensory experiments. The unique
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Figure 5.8: Empirical density of —2log @ based on 500 simulations, the y?(4)-density
(the smooth curve) and the saddlepoint approximated density corresponding to the
approximation used for the tail probability (points), see Chapter 7

partitioning of factors into strata is then lost, but for the mentioned example the
test for overall independence can still be performed as outlined. This is so, since the
distribution of the collection of now five mean squares is still specified by (5.20), and
similarly under the hypothesis.

If missing values are present in a data set, the condition (B2) will typically be
violated, but if the missing data do not destroy the estimability of the parameters of
the fixed part of the model nor the variance component estimability condition (B4),
a test for overall independence as described can still be performed in the following
sequentially defined way:

Method: First pull out the fixed effects, next sequentially calculate the mean squares
for each of the random effects in some chosen order, and for these the test can be
performed as described earlier.

This corresponds to making a choice of one out of many possible orthogonal parti-
tionings of the observation space and basing the testing on that choice. The important
point is that the hypothesis of overall independence will still be equivalent to inde-
pendence in each expected mean square.

It is therefore clear that we can formulate the following proposition about the
validity of the test procedure just given.
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Proposition 5 Let F and B denote the fized resp. random effects of a mixed linear
normal model. If B satisfies (B1), (B2) and the following

(B5) No factor in F is finer than a factor in B,
then the test method just given is valid.

The condition (B5) ensures that each expected mean square corresponding to
random effects are linear combinations of variance components.
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Chapter 6

Three-way factor methods in
sensory analysis

This paper is in its final version as it will appear as a chapter in the book Multivari-
ate Statistics for Sensory Data in 1995. The book will have sensory scientists and
experimenters as target group together with, of course, sensometricians.
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6.1 Introduction

6.1.1 Advantages of three way methods in sensory analysis

Three-way factor analysis (TWFA) techniques first appeared in the psychometric
literature, see for instance Tucker (1966), Kroonenberg and De Leeuw (1980) and
Kloot and Kroonenberg (1985), and have been used in several applications (Henrion
et al. (1992), Leurgans and Ross (1992)). So far, however, there are few applications
within the field of sensory analysis. The aim of this chapter is to discuss these methods
within a sensory context and show that they can be useful for analysis of individual
sensory profile data.

TWFA techniques are generalizations of principal components analysis (PCA)
but while PCA works on two-dimensional matrices, TWFA techniques can be used to
analyse three-dimensional matrices with three ‘directions’ or ‘ways’ of information.
Therefore, they can be used to investigate similarities and differences between objects,
assessors and attributes at the same time. The kind of questions that can be answered
by these techniques are for instance:
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— Do the assessors use the attributes or the measurement scales differently?

— Are some of the assessors more sensitive than others to some of the at-
tributes?

— Are some of the assessors better at tasting differences among certain groups
of objects?

— Do all assessors distinguish equally well between the objects?

— Do the assessors use the same attributes to distinguish between the objects
and to span the underlying variable space?

All these questions are of interest to the panel leader who is responsible for the
quality of the panel and may wish to retrain or remove some of the assessors, to
the data analyst who has to make decisions about which analysis technique is most
appropriate, and to the manufacturer since they can highlight variability among con-
sumers’ perceptions of the objects. The results of a TWFA can be presented in simple
two- or three-dimensional scatter-plots, which may be relatively easy to interpret. In
the following sections several techniques will be discussed, emphasizing applications
and the relationship between TWFA methods and other techniques in this book.

6.1.2 The structure of profile data

Assume there are m assessors in the sensory panel measuring p attributes for n objects.
The data can then be collected in a three-way table v, 2 = 1,...,m, 3y =1,...,n,
and k£ = 1,...,p. Replicates will here be denoted by [ = 1,...,¢q. The handling of
replicates is discussed in Section 6.7. They can either be averaged over or treated
separately, in which case each of the m x n x p cells of the three-way matrix of data
consists of ¢ elements. This type of data can always be described by an analysis of
variance model, see Searle (1971),

Tijkl = Pk + ik + Bk + Oijk + €ijri (6.1)

The main effects aj; for assessor 7 (and attribute k) represent the differences
between this assessor’s average score for that particular attribute and the overall
average for the same attribute. The main effect 3;; describes how the average score for
object j and attribute k£ deviates from the overall average for the same attribute. The
interactions 0;;; represent the differences between assessors in measuring differences
between objects. Note that individual differences among assessors are present both
in the main effects a;; and in the interactions 6;;;. The error terms e, represent
variation due to replicates under the same experimental conditions.

The TWFA methods in this paper will model both these types of individual dif-
ferences if no pretreatment of the data is used. There exist preprocessing techniques,
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however (see below), which eliminate the main effects a;; from the analysis and only
concentrate on the interactions.

6.2 Different TWFA models

6.2.1 TWFA as a generalization of PCA

As discussed in detail elsewhere in this book, standard PCA of an n x p matrix X is
based on the following ‘model’

X=TP +FE (6.2)

where T' (n x a) is the matrix of object scores (defined to have orthogonal columns),
P’ (a x p) the variable loadings (orthogonal rows) and E (n x p) the matrix of
residuals, corresponding to those direction in principal component space that have
little variability and which are frequently interpreted as noise. The loadings P are
defined so as to describe as much of the variation in X as possible given the dimension
a, normally with P'P = I, and T is found as the projection of X on P.

Alternatively, this can be stated as the problem of finding the 7' and P matrices
that minimize the residuals F, i.e. the T and P that minimize the least squares
criterion ,

HX—TF

(6.3)

The T" and P matrices are usually plotted in low-dimensional scatter-plots to reveal
structures among the objects and among the attributes.

Three-way factor analysis techniques are generalizations of PCA developed for
matrices with an extra way (or order), see Figure 6.1. FEach slice in the stack of
matrices corresponds to one particular assessor and contains objects-by-attributes
information for that particular assessor. Of course it is equally possible to slice the
matrix in two other ways, with the slices then corresponding to either individual
objects or attributes. It would be possible to do a separate PCA on each slice of the
matrix, which would be to ignore any similarities between the assessors (or objects or
attributes depending on how the matrix was sliced) or to take a mean over the slices
and do a PCA on the resulting matrix, which would ignore any differences between
them. TWFA is a form of PCA for the slices of the matrix which takes account of
these similarities and differences.

6.2.2 Tucker-1 modelling

If we call the n x p slice of the three way matrix corresponding to assessor ¢’s individual
objects-by-attributes matrix X; where 2 = 1,...,m, then one possible way to analyse
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s
Objects Z

P Assessors
| /

~— Attributes =/

Figure 6.1: Three-way data matrix

the data is to model X; as
X, =T:P + E;, (6.4)

where P has dimension p X a (a < p). a is chosen to give a low dimensional approxi-
mation to the data as in PCA, and 7; and P are found for any a by minimization of

the least squares criterion
2

S |xi-np (6.5)
i=1
There are no constraints on the T; here, but P is usually constrained to have or-
thogonal rows, i.e. P'P = I,. This can be seen as a PCA of each X; where each
PCA is forced to have the same variable loadings matrix P, though the scores T; are
allowed to vary. An interpretation of this model is that the assessors perceive the
same underlying variables but rate the objects differently to obtain individual scores
matrices. It is generally known as the common loadings Tucker-1 model.

It is useful to note here that if we let the m x p slice corresponding to the assessors-
by-variables matrix for object j be Y, then we can write

Y; =U;P + Ej. (6.6)

2
will give exactly the same common loadings ma-

immmmmm%z;wm—mﬁ
trix P (and the same fit).
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Alternatively, TWFA models can be based on the model
X, =TP +E,i=1,...,m (6.7)

where now the loadings P, differ from assessor to assessor. T has dimension n x b
where b is the reduced dimensionality of the model. T' is generally constrained to
have orthogonal columns, i.e. T'T = I, but the P; are unconstrained. The assessors
have a common scores matrix 7', which describes relationships among the samples,
but differ in the way they perceive the variables. This is known as the common scores
Tucker-1 model. Tt is equivalent to writing Z, =TV, + Fi, k= 1,...,p, where Zj, is
the n x m slice of objects-by-assessors for variable k.
There is also a third Tucker-1 model formed by writing

Z, = QWi + B, (6.8)

or Y; = QR; + E;. Here () is the ‘assessor scores’ matrix with dimension m x ¢, ¢
(< m) being the reduced dimension. In general the three different models will give
different fits to the data.

Which of the three models one uses depends on the aim of the analysis. For
instance if one is interested primarily in the relationships among the objects, i.e.
which of the objects are similar and whether or not they can be represented in a low
dimensional ‘object space’, then the common scores model is appropriate. A possible
interpretation of this model is that the b new ‘object dimensions’ represent ‘ideal
object types’, and that each real object is made up of a linear combination of these
types. For example in the example discussed later it might be possible to represent
the objects in only one dimension going from ‘ideal cheddar’ to ‘ideal Norwegian’.
Mature cheddar would have a high score in this dimension, Norwegian a low score
and Norwegian Cheddar would lie somewhere in between.

Note that this model says nothing about the relationships among the attributes
or among the assessors. In fact the assessors could all use their own individual sets
of attributes without the analysis being changed.

If interest is primarily in the relationships among the variables, e.g. whether there
are some ‘underlying factors’ perceived by all of the assessors, then the common
loadings model is appropriate. The interpretation is exactly analogous to that for
the common scores model, i.e. that the attributes can be represented in a lower
dimensional space, with the new dimensions being interpreted as ‘ideal’ or ‘underlying’
attributes, perceived by all of the assessors. Taking the cheese example again, perhaps
one of the underlying variables could relate to texture, going from firm and rubbery
to crumbly and grainy. Again nothing is said about relationships among the assessors
or objects.
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If interest is in the relationships among the assessors, then the third Tucker-1
model is the best. The ‘common assessor scores’ () can be plotted to look for relation-
ships among the assessors. The implication is that the assessors can be represented in
a lower dimensional space, i.e. there are a few underlying ‘assessor types’, with each
assessor being a linear combination of some or all of them.

If there is interest in more than one mode, e.g. in both assessors and attributes
(as is often the case), then there are two possible approaches. The first is to take the
individual scores matrices from a common loadings Tucker-1 model, and to look for
similarities among them. This can be done by ‘stringing out’ the rows of each matrix
into long rows of length na, joining these rows into one new matrix of dimension m xna
and doing a PCA on this matrix. The scores on the first few PCs of this matrix can be
plotted to look for relationships among the assessors, and the eigenvalues examined
to decide on the dimensionality of the assessor space. This is equivalent to a Tucker-1
analysis on the individual scores matrices.

This is a two stage process, first the attribute dimension is reduced to approx-
imate the raw data, and the resulting ‘underlying attributes’ are examined. Then
the assessor dimension is reduced to find an approximation to this approximation,
and the resulting assessor dimensions examined. This means that the relationships
between the attributes are modelled as well as possible (in the chosen reduced dimen-
sionality), and the assessors are modelled less well. This is a sensible approach if the
variables are considered of primary interest. If the two modes are of equal interest,
then a Tucker-2 model is more appropriate.

6.2.3 Tucker-2 modelling

Tucker-2 modelling is a generalization of Tucker-1 modelling to reduce the dimen-
sionality of two modes simultaneously. There are three versions, one for each pair
of modes. The most usual is probably the one having common scores T', common
loadings P and individual assessor matrices W;, 2 = 1,...,m. These W, relate T" and
P through a different linear transformation for each assessor. This model is written
as

X; =TW,P’ (6.9)

where the W; have dimension b x a. T (n x b) and P (p x a) are found to minimize

the least squares criterion
2

>o||x =T (6.10)
=1
Note that this model can be written both as an individual loadings model and an

individual scores model. In the former case, the individual loadings are P; = PW, and

in the latter case, the individual scores are T; = T'W;. For the individual scores model,
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the individual scores T; = T'W,; can be interpreted as products of a common score
matrix multiplied by the individual transformation matrices W;, but this method will
not in general give the same fit as the Tucker-1 model.

The interpretation of this model is that the objects can be represented in a b (< n)
dimensional space, and the variables can be represented in an a (< p) dimensional
space. In other words there are a ‘underlying attributes’ which describe b ‘ideal object
types’. Each assessor uses the underlying attributes in a different way to describe the
ideal objects. The individual difference matrices W; describe how each assessor does
this. The matrix T gives the scores of the objects in the object space, and the first
two dimensions (for example) can be plotted to examine their structure. P gives the
loadings of the underlying attributes on the attributes, and is interpreted in the usual
way. Of course it is not possible to link the object scores to the attribute loadings
in any meaningful way, as the link is different for each assessor. As with the Tucker-
1 models, this Tucker-2 model is not well suited to provide information about the
assessors. It is possible to do a Tucker-1 analysis of the W; matrices in order to look
for associations among the assessors, in the same way as it is possible to analyse the
individual scores matrices from a Tucker-1 model. However, it is more sensible to
choose a Tucker-2 model to investigate the modes of interest directly. Hence if the
attributes and assessors are of interest, it is possible to write a Tucker-2 model as

Y; = QO;P (6.11)

() is now an m x ¢ matrix of ‘assessor scores’ and P an p X a matrix of attribute
loadings. The ) matrix then gives information on the relationships between the
assessors (common for each object), and the O;’s are the object difference matrices
that link together the ‘object-common’ loadings and scores. Alternatively, if there is
interest in all three modes, the Tucker-3 model is appropriate, as is the PARAFAC
model described later.

6.2.4 Tucker-3 modelling

The Tucker-3 model is the natural generalization of Tucker-2. There is only one
Tucker-3 model, and it can be represented as the Tucker-2 model in equation (6.9),
where the W, are expressed as linear combinations of a limited number, ¢, of fixed
matrices C; (a different linear combination for each assessor). This model can equally
well be written as equation (6.11) where the O; are linear combinations of fixed
matrices. This model links together all three modes in an interpretable way. It can
also be written as

Z=TC(Q @ P, (6.12)
where @ is the kronecker or direct product. 7 is the data unfolded to form an n x mp
matrix of objects-by-(assessors x attributes), with each assessor’s attributes kept
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together in a block. T'is the n x b matrix of object scores, P the pxa matrix of variable
loadings, () is the m x ¢ matrix of assessor scores, and (' is the bx ac matrix made up of
the core matrices placed side by side. The interpretation is as follows: The objects lie
in a b-dimensional space the axes of which represent ‘ideal object dimensions’. Each
object can be described as a linear combination of these ideal objects. The attributes
lie in an a-dimensional space, the axes of which represent ‘underlying attributes’.
Each attribute can be described as a linear combination of the underlying attributes
though it is more usual to consider the underlying attributes as linear combinations
of the original attributes. The assessors lie in a ¢-dimensional space, the axes of which
represent ‘ideal assessor types’ or underlying ways of perceiving the samples. Each
assessor 18 a linear combination of these types.

6.2.5 Interpreting the core matrices in a Tucker-3 model

The three modes are linked through the core matrix, and it is sometimes possible
to interpret this matrix in a helpful way. Suppose we have reduced each mode to
two dimensions, and so there are two ‘assessor types’, two ‘object types’ and two
‘underlying attributes’. The core matrix is a three way matrix so consider the slice
corresponding to assessor type 1. This is a 2 x 2 matrix which relates the object types
to the underlying attributes. Suppose the underlying attributes have been interpreted
as sweet/salt and rubbery/creamy, and the first object type is Norwegian/cheddar.
The first slice of the core matrix may be

10 2

4 8
The first row corresponds to the weight assessor type 1 gives to the two underlying
attributes in describing object type 1, in other words he/she describes ideal Norwegian

cheese mainly as sweet, but also with an element of rubberyness. Ideal cheddar would
then be described as very salty with a hint of creamyness.

Interpreting the core matrix can be very difficult, especially if the dimensions in
the three modes cannot be interpreted. One technique that can be helpful is drawing
a separate biplot for each assessor type, i.e. in each plot the scores would be given by
T and the variables by ' jP/. This gives a picture of how the assessor types relate the
actual objects to the measured attributes. Similarly biplots could be drawn for each
object type or each underlying attribute. The former would give a picture of which
attributes different assessors considered important in describing the object types, the
latter a picture of which objects each assessor considered to have the ideal attributes.
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6.2.6 The PARAFAC model

The other three mode method is the PARAFAC model which is defined by equation
(6.9) where the W; are forced to be diagonal with only positive elements on the
diagonal. This is also known as the CANDECOMP model, see for instance Carrol and
Chang (1970), and Harshman and Lundy (1984). This model is no longer symmetrical
in the three modes, and has a slightly different interpretation. This is that the
assessors perceive the same underlying attributes, but weight them differently when
scoring the objects. This model can be useful if the assessors disagree on which
attributes are most important for describing differences among objects. There are of
course three different versions of the PARAFAC model, corresponding to the three
different Tucker-2 models. Note that in order for the W; to be diagonal, two of the
modes are forced to have the same dimension. For example for the Tucker-2 model
(6.9) the object and attribute dimensions would have to be equal. This is not the
case with the Tucker-3 model.

6.2.7 Three mode analysis using single mode methods

As mentioned above, it is possible to move from a single mode to a two mode model by
successive application of a Tucker-1 model. It is then clearly possible to obtain a three
mode model by another application of the Tucker-1 model. This has computational
advantages since a standard principal components analysis program can be used (see
below), rather than specialized software. The procedure is: First a Tucker-1 model is
applied to the raw data, for example the common loadings model in equation (6.4).
This results in an a X p common loadings matrix P, and m individual n X a scores
matrices T;, 1 = 1,...,m. These T; can now be analysed using Tucker-1, using either
the common object scores or common assessor scores model. As an example the
former of these will result in an n x b common scores matrix 7', and m individual
b x a matrices ();. These (); can now be analysed by the common assessor scores
Tucker-1 model to give an m x ¢ matrix ), and a ¢ x b matrices W;, the core matrices.

This procedure can be followed in 6 different ways depending on the order in
which 7', P and @) are found, and in general they will all give different results. Also,
each will give a poorer fit to the original data than the Tucker-3 model, since this
directly minimizes the sum of squared residuals, equation (6.10). For these reasons
this method is not to be recommended if Tucker-3 programs are available.
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Figure 6.2: Unfolding of three-way data matrix.

6.3 Fitting the TWFA models

6.3.1 Tucker-1

The Tucker-1 model is based on unrestricted minimization over 7; and P of the
quantity
2

fj |xi—mpP|", PP=1 (6.13)
=1

for the common loadings model, and minimization of an analogous expression for the
other two models. If the three way matrix is unfolded to give an mn x p matrix, as
in Figure 6.2, then it is easy to see that the minimization is achieved by a standard
PCA or SVD of the unfolded matrix. Notice that the eigenvectors of the unfolded
matrix are identical to the eigenvectors of the sum of the S;, 2 = 1,...,m, where 5,
is the covariance matrix for assessor .

6.3.2 Tucker-2
For this case the minimization is over W;, T  and P of the equation

2

f) |x: = TwiP’ (6.14)
=1
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(or one of the other two forms) where T' is a set of common scores, P the common
loadings and W; are the individual difference matrices to be estimated.

The solution to this is more complicated than for Tucker-1 and must be done
by numerical optimization. A solution based on alternating least squares (ALS) was
proposed in Kroonenberg and De Leeuw (1980). The optimization works by finding
the best solution for T' given P, then the best P is found given the value of T'. This
procedure continues until convergence. Then finally the W; that minimize (6.14) are
found. Using ALS ensures that an improved fit is obtained for each cycle and so
convergence is guaranteed. There is, however, no guarantee that the global minimum
value of the criterion is obtained.

In more detail, the solution for P, T and W; can be found from the following
algorithm.

1. Construct starting values of P (e.g. from a Tucker-1 solution).
2. Compute D = Y7, X;PP'X].

3. Put the eigenvectors associated with the b largest eigenvalues of D into the
columns of a matrix 7.

4. Compute ) = 37", X;TT/XZ'.

5. Put the eigenvectors associated with the a largest eigenvalues of () into the rows

of P.
6. Repeat 2-5 until convergence.
7. Put W; = T'X;P.

This algorithm gives a solution in which P and T have orthogonal columns or
rows, since they are formed from eigenvectors. This is not, however, a constrained
minimization, the solution is the minimum over all 7" and P (though it may be a
local rather than global minimum). Any solution to the minimization of (6.14) is in
fact unidentified, since any of the matrices P, W; and T' can be multiplied by linear
transformation matrices without consequence for the fit, if the other two matrices
are corrected accordingly. For instance P can be multiplied by F', and W; by F~!
without changing the fit. It should be mentioned that even when constraining the
columns of P and T to be orthogonal the solution is unidentified.
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6.3.3 PARAFAC-CANDECOMP

In this case the optimization criterion is the same as above, namely

2

i | x: — TP (6.15)
=1

where P and T' are unrestricted, but now the W;’s are diagonal matrices. The solution
must be found by numerical methods such as the ALS method mentioned above. An
exact eigenvector-based estimation procedure for the parameters has been proposed
for certain chemical applications of the model, Sanchez and Kowalski (1990), but this
exact solution does not optimize the LS criterion.

The ALS solution, see for example Carrol and Przuzanski (1984), is found in a
similar way to that for the Tucker-2 model above. One starts with initial values
of T and P and estimates W;, then T is reestimated before P is reestimated. One
continues until convergence. The exact eigenvector solution mentioned above can be
used to find starting values. In more detail the algorithm is as follows:

1. Construct starting values of P and T'.
2. Find W; as diagonal matrices with the same diagonal as 7" X; P.
3. Compute D = Y7, X, (PW;) (PW;) X

4. Put the eigenvectors associated with the b largest eigenvalues of D into the
columns of a matrix 7.

5. Compute Q = 7, X, (TW;) (TW;) X,.

6. Put the eigenvectors associated with the a largest eigenvalues of @) into the
columns of P.

7. Repeat 2-6 until convergence.

It should be mentioned that in this case the solution is only unidentified with respect
to scalar multiplication of the matrices. This means for instance that no rotation
of the matrices is allowed. This was proved by Kruskal (1977) and is an interesting
feature of the model.

6.3.4 Tucker-3

For the Tucker-3 model, each W; is assumed to be a linear combination (dependent
on ¢) of matrices which are independent of k. In other words,

7=1
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where (/; are matrices independent of 7, and ¢;; are constants. Alternatively this can
be written as Z = TC(Q" @ P'), as described in section 6.2.4. T, @, P and C' are
found by an ALS procedure similar to that for the previous models. The algorithm
is as follows:

1. Unfold the three way data X in three ways to form three matrices:

e 7y is the n x mp matrix formed from the m objects-by-attributes slices.
e 7, is the m x np matrix formed from the n assessors-by-attributes slices.

e 73 is the p x nm matrix formed from the m attributes-by-objects slices.
2. Obtain starting values for 7" and P:

o T is formed from the first b eigenvectors of 7, Z,.

o P is formed from the first a eigenvectors of 737,

3. @ is formed from the first ¢ eigenvectors of Z, (TTI ® PP/) Z.;.

1

4. P is formed from the first a eigenvectors of Z3 (QQ/ ® TT/) s

5. T is formed from the first b eigenvectors of 7; (QQ/ ® PP/) 7.
6. Repeat steps 3 to 5 until convergence

7. Put C=T27(Q®P)

As before the solutions are unidentified, and the orthogonality of T',() and P is just
for convenience. Note that there is not complete freedom in choosing the dimensions
a,b and ¢: The scores matrix for any mode cannot be estimated if its dimensionality
is greater than the product of the dimensionalities in the other two modes. This can
be seen in step 3 for example where T'®@ P has dimension np x ab, and so ¢ cannot
be greater than ab.

6.4 Relationships to other work

6.4.1 Generalized Procrustes Analysis

The Procrustes rotation method discussed elsewhere in this book also models individ-
ual differences among assessors and is designed to obtain information about assessors,
attributes and samples simultaneously. In fact it can be regarded as a special case of
the Tucker-1 common scores model.
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Recall that in section 6.2.2 we wrote the common scores model as X; = TP; + F;,
where T is the matrix of common scores and P, the individual loadings, found to

2
. . . 1
minimize Y-, HX2 — TP,

. In this case P; is a general matrix, but if it is forced to
be orthogonal, then we can write

X,P, =T+ E,P, (6.17)

i.e. the common scores are found by rotating the original ‘configurations’ X; to min-
imize

S IXeP =T (6.18)
=1

This is the GPA criterion apart from two points: in GPA the dimension of P; is
not usually restricted, and the configurations are translated as well as being rotated.
This second point can however be regarded as a standardization, and included in the
TWFA model, see later. Tt is worth recalling at this point that in fitting this TWFA
model the fact that the assessors all measure the same variables is not used, as in
GPA which is often used for free choice profiling. It can therefore be seen that GPA is
simply the common scores Tucker 1 model with the individual loadings constrained to
be orthogonal. It should also be mentioned that the isotropic scaling of each assessor
used in GPA is already a part of the TWFA model, since W; always can be multiplied
by a constant without changing the model.

The TWFA model is clearly more general than GPA, and so will in general give
a better fit. In fact, if the dimensionality is not reduced at all, it will give a per-
fect fit which is not the case with GPA. We leave a full discussion of GPA to the
GPA-chapter, but it is worth considering the following point: In choosing whether to
use GPA or TWFA it is obviously necessary to decide whether or not the orthogonal
transformation in GPA is sensible. Although it may look unnatural in many cases,
certain types of confusion problems can be modelled very well by this transformation,
as described in Arnold and Williams (1987). For instance, switching of two attributes
by one of the assessors can be accounted for by an orthogonal transformation. This
aspect may indicate that GPA is best suited for detecting confusion and scaling prob-
lems related to names, definitions etc. (Arnold and Williams (1987)) and TWFA for
modelling more general individual differences. Very briefly we can state the follow-
ing: Procrustes rotation is best suited for detecting errors in the data while TWFA
is best suited for modelling individual differences. This may indicate that Procrustes
rotation is better suited for situations with untrained assessors and TWFA is best
suited for error-free reliable data.
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6.4.2 Individual differences MDS versus TWFA

Consider the common scores and common loadings Tucker-2 model (6.9). The ‘profile’
of object j for assessor 7, z;;, is the jth row of matrix X;, the objects-by-attributes
matrix for assessor ¢. This is approximated by f;; where

fi; = t,W; P’ (6.19)

where t; is the jth row of 7. The squared Euclidean distance D;;,;, between the
approximate profiles of samples 7; and j, for assessor 7 is

D Jz)VViP/PVVi/(tJi - tJé)I

ij1j2 = (tl -
1

— 1
Vil
= (tﬁ - t]2>I/ViVVi (tﬁ - t]é)
= (tﬁ - tj'z)‘/i(tﬁ - t]é)

where V is a general symmetric matrix. Hence we can write the Tucker-2 model as

(6.20)

1

(vijy — i) (@i, — wipy) = (b — 1) Vit —t5,) (6.21)

This is identical to the generalized subjective metrics model for individual differences

MDS.
If we consider the PARAFAC model the same way and in addition assume that
P and T are orthogonal matrices we obtain

1

Dijyjy = (tj, — ti, WP PW,(t;, —t5,) = (tj, — t;)Vi(ts, —15,) (6.22)

where now V; is diagonal with nonnegative diagonal elements. Therefore we have

b
Dijijy = D (tik — tiok)*oni (6.23)
k=1

which is exactly the INDSCAL model used for individual differences MDS.

The individual differences MDS models are treated elsewhere in the book and will
not be considered further here.

Whether there exists a similar analogy between Tucker-3 and an MDS model is
not known to us.

6.4.3 Relations to models for spectroscopy

Above it was mentioned briefly that the PARAFAC model is also used in some chem-
ical spectroscopy examples. The reason for this is that the PARAFAC model is
exactly Beer’s law for mixtures extended to two dimensions. This kind of model is
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relevant to, for instance some applications of multivariate chromatography and two
dimensional NMR. In such cases, P and T are interpreted as pure spectra for the two
dimensions and the W-values are interpreted as the chemical concentrations. In for
instance chromatography, 7' can be interpretated as the time profiles for the different
constituents and the P can be considered as the chemical spectrum matrix of the
wavelengths observed.

This type of model has usually been approached by a so called rank annihilation
technique, see Ho et al. (1978). There exist iterative versions of it and direct eigen-
vector based methods, the so-called GRAM methods (Sanchez and Kowalski (1990)).
These methods represent solutions to the general PARAFAC model structure, but
they are not least squares solutions as is the classical PARAFAC solution.

The GRAM methods are often applied to calibration problems of two-dimensional
instruments. They are particularly useful in cases where the unknown prediction
samples contain unknown interferences that were not present in the set of calibration
samples. Because of the uniqueness of the different directions, information about the
concentrations of the interesting constituents in one particular sample is enough to
estimate the concentration for the same constituents in any unknown sample, even if
this sample has unknown interferences. The drawback with the technique however is
that, at least in its present form, it puts quite strong assumptions on the data, which
sometimes can be inadequate.

6.4.4 Common principal components models

The common loadings Tucker-1 model is closely related to the common principal com-
ponents model, see Flury (1988) and Krzanowski (1988) This model was developed
for the situation where the same variables are measured on different groups of objects,
and it is believed that although the group covariance matrices are not equal, they
do share common principal axes. This is essentially the same model as the common
loadings Tucker-1 model, where although the objects are actually the same for each
assessor, this information is not used in the estimation procedure. Flury (1988) gives
a maximum likelihood method for estimating the common loadings, and Krzanowski
(1988) shows that sensible alternative estimates can be obtained from the eigenvectors
of a weighted sum of the individual covariance matrices. If the attributes are stan-
dardized within assessors, by subtracting assessor means, this is exactly equivalent to
the Tucker-1 solution.
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6.5 Data pretreatment in TWFA models

As for most multivariate analyses, centering and scaling of the raw data will affect
the results of a TWFA. Therefore it is important that the problems are properly
understood by the user of the techniques. Indeed in TWFA, pretreatment can be
done in many different ways and so the problem is much more difficult than for
standard PCA. In the following we consider the most common pretreatments and
discuss the relationships between them.

6.5.1 Centering

If there is no centering of the raw data then a large proportion of the variation will be
due to differences in assessor means and attribute means. These are often considered
to be of little interest, and so are removed from the analysis. Two types of centering
are usually considered; centering of attributes over all objects and assessors, and
centering of attributes for each assessor separately. The first option only standardizes
the attributes with respect to mean, and so the analysis will include variation due to
differences in assessor mean scores. This is sensible if this kind of difference between
assessors is of interest, but more often it is regarded as noise, and so removed from the
analysis by means of the second centering. This has the same effect as the centering
in Procrustes rotation, i.e. the elimination of translation effects. It is also equivalent
to estimating and removing main effects in the ANOVA model (6.1).

6.5.2 Weighting

In addition to standardizing the data by removing variation due to differences in
attribute and assessor means, it is often sensible to standardize variation. This can
be done by dividing each attribute by its standard deviation, and as with centering
there are two options: the standard deviation can be computed over the whole sample
or for each assessor separately. As above, the two options have quite different effects
on the results. The first option considers each assessor to be using the same scale,
so that if he/she uses a smaller part of the scale than the others, he will still after
weighting have less influence on the TWFA solution than the rest. In other words, this
type of weighting will only have an effect on the relative importance of the different
attributes, with no reference to the difference in scale among the different assessors.
The second option on the other hand also has an effect on the relative importance
of the different assessors by weighting them all equally. In this way, we can say that
each assessor is transformed to the same scale. The choice between the two weightings
depends on what is believed about the assessors’ performance: if it is thought that
an assessor will use a large part of the scale if he/she is confident about there being
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a large difference between the samples, and that a small difference means he/she
perceived very little difference, then the weighting should be across all assessors. If
on the other hand it is believed that each assessor perceives differences in the same
way, and simply chooses to use the scale differently, then the standardization should
be done within assessors.

This gives rise to another possible scaling, in which each assessor is given weight
proportional to his ability to detect differences among the objects. One way to do this,
if there is replication within assessors, is to give each assessor a weight proportional to
his average F-value for the different attributes. This could for instance be combined
with centering the different attributes within each assessor. Another possibility is to
give each assessor and attribute combination a weight proportional to its particular
F-value.

6.6 Relating three-way models to other data

Sometimes it is of interest to predict sensory profile data from external measurements.
This may be to improve understanding of the sensory data and the individual differ-
ences, or to replace the sensory measurements by some fast and reliable instrumental
measurement. In the first situation one would typically use chemical or physical
measurements, while in the second instrumental measurements such as near infra-red
spectral data are often more suitable. In both cases there is a situation as indicated in
Figure 6.3. There is a matrix Y of external information to be related to the individual
profiles Z. If the aim is improved understanding of 7 it may be of interest to see
the relationship between the external measurements and each individual assessor. If
the aim is replacement of sensory data by instrumental measurement, prediction of
the average score is often more relevant. This can be done by standard multivariate
regression techniques such as principal component regression and partial least squares
regression, although there are some indications that even in this case improved pre-
diction may be obtained by treating the assessors as individuals, Naes and Kowalski
(1989).

The simplest way to use TWFA models to link sensory data with external data is
to compute the score matrix T" and relate it to the external data Y by some regression
technique, i.e.

T =BY + E. (6.24)

The matrix T is estimated first, then related to Y to get a relationship between
7 and Y. This approach can be used for both prediction and understanding. An
alternative which is more goal-oriented and also sometimes easier to compute is to
apply the restriction 7' = BY directly in the factor model. In other words, the
restricted matrix T'= BY is substituted into the general model X; = TW:P" and the
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Figure 6.3: Data setup with external information.

parameters W, B and P are optimized by for instance the least squares criterion

2

i | x: — TP (6.25)
=1

Writing TW; P as (BY +E)W; P with E being the error term in the regression equation
T = BY +F, we see that the error in the restricted model is the sum of the error in the
unrestricted model and EW;P. The restricted approach certainly represents a more
direct and goal-oriented solution to the problem, but because of the more complicated
model error structure, it is likely that the unrestricted model better satisfies the usual
least squares (L.S) requirements of equal variance etc. In practice the Y variables may
often be highly collinear. In order to obtain stable solutions they can be replaced by
the principal components corresponding to the most interesting information.

CANDELINC, Carrol et al. (1980) is a method that is designed for optimization of
equations like (6.25). As shown in Carrol et al. (1980), if the W;’s satisfy a PARAFAC
or Tucker-2 model, .S optimization can easily be reduced to a minimization of the
same type as the unrestricted optimization. In the Tucker-2 model the solution can be
found as a simple eigenvector solution (Kloot and Kroonenberg (1985)). Therefore,
the restricted approach is solved much more easily than the unrestricted approach.

It should be mentioned that instead of doing any simultaneous modelling of the
scores before relating to Y, one could simply relate Y to each of the X;’s separately.
Using the simultaneous model is however, a way of obtaining better prediction ability
and better interpretation possibilities. As always, if the model is correct, the results
are better. If not, they are poorer.
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6.7 Handling of replicates

If there are ¢ replicates for each assessor in the experimental design there are several
options. The simplest are averaging over replicates before analysis, using the repli-
cates as extra assessors and using the replicates as extra attributes. The first of these
is easiest, but represents a loss of information. It is for example impossible to tell
whether an assessor fits badly because he is generating a lot of noise, or because he
has a different opinion to the other assessors.

The second approach can be used to distinguish between differences in opinion
and noise. After fitting of all the mq ‘assessors’ one can compare the ¢ replicates for
each assessor on an assessor plot. Those of the assessors creating little noise, on the
set of variables as a whole, should be close together. If an assessor has a different
opinion to the others but is consistent in his view, he should have ¢ replicates close
to each other but some distance away from the other assessors. It would be possible
to examine a separate assessor plot for several subsets of the variables.

The third option is used to examine which of the attributes are recorded with
little noise and which are very noisy, ‘averaged’ over all assessors. The variable plot
should be examined in the same way as the assessor plot above.

The same information on an individual attribute basis can be obtained by ANOVA
techniques. For instance one can compute residual errors and F-values for the different
attributes and assessors and plot them as advocated in e.g. Naes and Solheim (1991).
In this way, assessors’ performance for the different attributes can be compared and
used to get information about the reliability of each particular assessor.

From the point of fitting the model, taking means over replicates would usually be
the most sensible choice. The only point in doing otherwise (apart from the diagnostic
reasons given above) would be if there was some useful information in the replicates,
e.g. if they represented different orders of tasting and so there was a systematic reason
why the replicates should be different. If the only reason for differences between the
replicates is noise, then it makes little sense to model this noise and replicates should
be averaged over.

6.8 Detection of outliers

It is important to realize that the aim of the TWFA models is to look for and describe
similarities in structure among the representatives of each mode. For example in the
common scores Tucker-1 model it is assumed that each assessor perceives the relation-
ships among the objects in the same way, i.e. that they all regard the same objects
as similar and the same ones as different, though they may use different variables
to describe these relationships. It is quite possible that for one or more assessors
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this is not a valid assumption, and the best way to investigate this is to examine
the residuals. Any structure in the residuals implies that the model is not adequate,
and that the dimensionality is too low in one or more of the modes, or possibly that
the data pretreatment was inappropriate. Isolated large residuals however can reveal
interesting unusual cases. It is also possible to sum residuals over assessors or at-
tributes or objects to see which fit the model badly. Note that an assessor, say, who
is an outlier on the assessor plot need not have a large residual. This kind of outlier
fits in with the model, i.e. perceives the underlying variables and the relationships
between the objects, but relates the two in an unusual way. An assessor with a large
total residual either does not fit in with the model, or possible generates an unusual
amount of noise.

6.9 Missing values

In practice when working with large data-sets, there is always a chance that some
data will be missing. They could be individual data-points or whole vectors, for
instance one whole sample for one particular assessor. There is little advice about
what to do about this in the literature, but a few simple solutions are obvious. It
should, however, be remembered when using one of these techniques that the solution
is always ‘wrong’, i.e. different from that obtained from a full data matrix. If there are
replicates available, and for instance only one of the replicates is missing, a solution to
the problem is simply to replace the empty cell by the average of the other replicates.
If there are no replicates available, a possible solution is to replace each empty cell
by the LS-mean of a main effect ANOVA model. In terms of the model (6.1) in the
introduction, this means that interactions are left out, a;;’s and f3;;’s estimated and
the missing value is replaced by the corresponding estimate of pj + ap + Bk In a
balanced model this is equal to

This is identical to taking the sum of the mean over the assessors and the mean
over the samples and subtracting the grand mean.

6.10 Validation of the model

TWFA methods can be seen as purely descriptive ways of examining the data at hand,
but sometimes it is useful to know something about whether they have any relevance
to other data sets, for example whether the same groupings of samples (or variables
or assessors) will appear if other variables (or samples or assessors) are used. Also it
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is useful to know how much the final model depends on one or two odd observations.
One method used for this kind of investigation is cross-validation (Stone, (1974)).
Each observation in turn is omitted from the data set, and the model fitted to the
remaining data. The residual for the omitted data point is then found. This gives an
estimate of how representative of the data set each omitted observation is.

If there is no replication, there are three different ways of doing the cross-validation,
corresponding to the three possible definitions of an ‘observation’, i.e. object, attribute
or assessor. These three methods give information on the ‘unusualness’ of samples,
attributes and assessors respectively. Also, if any of these groups can be regarded as
a random sample from some population, then the appropriate method can be used
to estimate the proportion of the variance of that population that the model would
explain. Depending on the model fitted, it is possible to treat one or two (but not all
three) of these groups as the observations to be omitted.

The principle is as follows: suppose a Tucker-1 common loadings model has been
fitted, i.e. the individual samples-by-attributes matrices X; have been modelled as
X, =TP + E;, where P is the common loadings matrix. Since P has orthogonal
columns, i.e. P'P = I, for any assessor matrix X;, we can calculate the individual
scores matrix T; as T; = X;P. Hence the approximation of X; is )A(Z = X;PP and
the residuals E; from this model are X; — X; PP’. If we now omit assessor z from the
data, we can still fit the model, but we will get a different common loadings matrix
P.. We then calculate the residuals F, for this assessor as X, — XZPZPZ/. Usually
the squared elements of this matrix are summed up, to give the total squared cross
validated residual for assessor z. This procedure is repeated for all of the assessors.

If it is desired to omit objects rather than assessors in the cross validation, the
procedure is to fit the model as Y, = UjP/ + F; where Y] is the assessor-by-attribute
matrix for object j (recall that this gives the same P as previously). The residuals
for an omitted object w are then found in the obvious way, as Y, — Y,, P, P. . Tt is not
possible to omit attributes in this model, they can only be cross-validated if one of
the other two models is fitted, i.e. common object scores or common assessor scores.

In general it is only possible to cross-validate a group that has not been reduced
in dimensionality in the model. Therefore in the common scores-common loadings
Tucker-2 model, it is only possible to cross-validate the assessors. The procedure is
as follows: model assessor 2’s objects-by-attributes matrix X; as X; = TW.P + E;,
where T' (n x a) are the common scores, P (p x b) are the common loadings and
W; (a x b) is the individual difference matrix for assessor 7. Since T'T = I, and
PP = Iy, the residuals for assessor i are I; = X; — TT X;PP’. Hence any assessor
can be omitted from the model, the new T and P calculated and the cross-validated
residuals found as before. Clearly for the other two possible Tucker-2 models there
is only one possible way of cross-validation. Without replication it is not possible to
cross-validate a Tucker-3 model.
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If there is replication there is a wider choice of validation methods. All of the
above methods are available, as is the option of omitting the replicates one at a time.
This can be done even for the Tucker-3 model. An alternative is to regard one set of
replicates as a test set, fit the model on the other set and find the residuals for the
test set.

6.11 Discrimination among models

Choosing and validating a model are closely connected, as a poor validation result
could lead to the choice of another model. Choice of model refers here to choice
of underlying dimensionality. This is a problem that even in standard PCA has no
clearcut solution. It can be argued that a PCA or TWFA merely is a low dimen-
sional projection of the data picturing as much variation as possible. Since we can
only easily look at two- or three-dimensional plots, we simply choose two or three
dimensional models and note how much variation is explained by them. This is how
standard PCA is often used. It would however be convenient to have some criteria for
the choice of dimensionality. A method commonly used in PCA is a plot of residual
variation against number of components, the so-called scree diagram. The ‘elbow’ or
point on this plot where this variation stops decreasing rapidly is chosen as a reason-
able dimensionality. Generalizing this to Tucker-1 is straightforward. For Tucker-2
however, there is a different model /dimension for each combination of @ and b leading
to a 3-dimensional scree diagram, and for Tucker-3 the general scree diagram would
become 4-dimensional. It is unfortunately not possible to use separate scree diagrams
for each mode as the choice of dimension for one mode effects all of the other modes.
In other words two dimensions for the assessor mode may be appropriate if the other
two modes are also two dimensional, but if the object mode is then increased to three
dimensions it may be necessary to increase the assessor dimension also.

One approach is to restrict the dimensionality according to some other criterion.
One possibility is to set @ = b. This has the consequence that the assessors ‘configu-
rations’ or fitted values are all linear combinations of each other. This makes TWFA
more similar to Generalized Procrustes analysis and may in some cases be helpful.
It reduces the scree diagram by one dimension and makes it a practical proposition,
although the concept of an ‘elbow’ in three dimensions is a little difficult.

Any scree diagram can be based on cross-validated residual variance, and there
is a tendency for these plots to level out more quickly, and so lower dimensionalities
tend to be chosen. This is usually a good thing as there is no benefit in modelling
dimensions that are merely noise.
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No | Description Name

1 | Jarlsberg FHS Jarl _FHS
2 | Marks & Spencer Mature Marks

3 | Jarlsberg Lite H30 Jarl_H30
4 | Tesco canadian extra-mature | Tesc_mat
5 | Norvegia H30 Norv_H30
6 | Safeway home produced mild | Safeway
7 | Vel-Lagret Norvegia Norv_Vel
8 | Anchor mature Anchor

9 | Norsk Cheddar skorpefri Cheddar
10 | Tesco reduced fat Tesc_fat
11 | Skorpefri F.45 (Norvegia F45) | Norv_F45
12 | Tesco mild reduced fat Tescmil

Table 6.1: The 12 cheeses with the names used in plots.

6.12 Illustration by an example of a cheese tasting
experiment

Twelve cheeses were selected for this study, six Norwegian and six Cheddars. A
list of the brand names is given in Table 6.1. They were assessed by a Norwegian and
a Scottish panel, but for this example only the data from the Norwegian panel are
considered. Full details of the experiment are given in Hirst et al (1994). The panel
consisted of 10 trained assessors. The attributes are given in Table 6.2. They were
scored on a continuous line scale anchored at 1 and 9. The experiment was balanced
for order of tasting and session effects. There were two replicates, which have been
averaged throughout the example.

6.12.1 PCA of the cheese data

In order to compare TWFA with more conventional methods a principal com-
ponents analysis was performed on the object-by-attribute matrix averaged over all
assessors and replicates. The averaged attributes were centered and scaled to zero
mean and a standard deviation of unity. In Figures 6.4(a), (b) and (c) some re-
sults from the analysis are presented. The first two principal components explain
respectively 71% and 10% of the variation. From the score plot for the first two
components it is clear that the panel roughly discriminates the Norwegian from the
Cheddar cheeses along the first component, with the exceptions that the Safeway mild
cheese seems more ‘Norwegian’ than Cheddar, and the Norwegian Cheddar is closer
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Description Name
1 | Overall odour over_odo
2 | Creamy/milk odour | crea_odo
3 | Ammonia odour ammo_odo
4 | Overall flavour over_fla
5 | Creamy/milk flavour | crea_fla
6 | Sour flavour sour_fla
7 | Ammonia flavour ammo_fla
8 | Bitter flavour bitt_fla
9 | Salt flavour salt_fla
10 | Firmness texture firm_tex
11 | Rubbery texture rubb_tex
12 | Pasty texture past_tex
13 | Grainy texture grai_tex
14 | Mouth coating text. | coat_tex
Table 6.2: The 14 common attributes with the names used in plots.
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Figure 6.4: Results from PCA on assessor mean scores. (a) Residual variance, (b)

loadings and (c) scores for the first two factors.
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to the other Cheddars. The Norwegian Jarlsberg H30 is separated out by the second
component, which appears from the loading plot to be a texture component spanning
from firmness/grainyness to pastyness/moath coating texture. The Jarlsberg H30 is
apparently more firm than the other cheeses. The first principal component includes
together with texture properties creamy odour/flavour in one direction, characteriz-
ing the Norwegian cheeses, and the remaining flavour/odour properties in the other
direction characterizing the Cheddars. The real distinction between the cheeses ap-
pears therefore to be that compared to the Cheddars the Norwegian cheeses have a
pronounced creamy flavour/odour together with a more rubbery texture.

6.12.2 Tucker-1 analysis of the cheese data

As described above three possible approaches can be taken corresponding to the three
possible ways of ‘unfolding’ the three-way data matrix. We will here show some results
from the common scores model and the common loadings model: The common scores
model assumes that the assessors all perceive the relationships between the cheeses in
the same way. This is probably sensible here, though if the Scottish assessors had been
included in the analysis this may not have been valid as it is possible that they would
perceive different ‘underlying cheese types’. The common loadings model assumes
the existence of common underlying sensory attributes for cheese which again may
be valid for the Norwegian panel but possibly not if the Scottish panel were included.
In both cases the data were pretreated by centering and standardizing all variables
within assessors.

Scores and loadings for the first two factors are plotted in Figures 6.5(a) and (b)
(common scores model) and Figures 6.6(a) and (b) (common loadings model). First
note that the proportion of variation explained by two factors are 51% in the common
scores model and 53% in the common loadings model. This demonstrates firstly that
the two fits are not the same and more importantly that more variability remains
unexplained compared to the mean score PCA of the previous section. This is to be
expected as a lot of the variability in the PCA analysis was lost when the assessors
were averaged over.

Neither the common scores nor the common loadings plot show great differences
from the PCA plots. This indicates that averaging over assessors does not conceal
major relationships for this particular data set. However some changes do appear: the
Safeway cheddar has moved outside the group of Norwegian cheeses on the second
component, and the ammonia flavour/odour has moved upwards along the second
component.

The interpretation of a changed position of a sample is that the assessors do not
entirely agree on the use of certain attributes. In the mean score PCA the assessors are
‘forced’ to agree on the attributes as an average value is used, but the common scores
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Figure 6.5: Scores (a) and loadings (b) for the first two factors in the ‘common scores’
version of the Tucker-1 model. The numbers in the loadings plot (b) refers to the

attributes, cf. Table 6.2.
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model allows the assessors to use the attributes individually. A similar consideration
holds for the change of position of an attribute in the common loadings model. We
will return to this in further detail in the section on Tucker-2 modelling.

It is now useful to relate the common scores to the attributes (or common loadings
to the objects). One way to do this is to plot all 140 assessor loadings on the common
scores plot (Figure 6.5(b)) (or all 120 assessor scores on the common loadings plot,
Figure 6.6(b)). These plots contain so many points they are almost impossible to
interpret, though there are clearly similarities between the assessors. An alternative
is to produce a separate plot for each assessor, for whichever model is chosen. Again
there is too much detail to be interpreted, though it is highly likely that all assessor
plots would be similar. Therefore a Tucker-2 model to investigate both objects and
attributes is sensible. Note that the superposition of the common scores and common
loadings plots is not possible as they are the results of different models.
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Figure 6.7: Common scores (a) and common loadings (b) for the two factors in the
Tucker-2 model a = b = 2.

6.12.3 Tucker-2 modelling of the cheese data

As above the data is centred and standardized for each assessor and attribute. A
Tucker-2 model with a = b = 2, cf. section 6.11, was fitted by performing the
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algorithm of section 6.3.2. The amount of variation explained by fitting a model with
two factors in both assessor and object modes is 51.1%, approximately the same as for
the Tucker-1 models. Note that what we have done is to reduce the object dimension
to two as compared with the common loadings Tucker-1 model, which involved no
reduction of dimension for the objects (or equivalently the variable dimension has
been reduced compared with the common scores model). The fact that the variance
explained hardly changes means that the assumption of two underlying object types
is probably valid.

In Figure 6.7(a) and (b) the common scores and loadings, P and T, are plotted.
Again they look very much like those for the Tucker-1 model. The two plots cannot be
superimposed, unlike in PCA, as the connection between cheeses and attributes can
only be made through the individual 2 x 2 matrices W;. These matrices describe how
the assessors use the underlying attributes to describe the object types. In order to
investigate this further we consider the individual 12 x 2 scores matrices T'W,, though
it would be equally relevant to consider W;P'. The Figures 6.8(a)~(j) show these
individual scores plots, which can be directly interpreted together with the common
loadings plot, Figure 6.7(b). The individual scores can be interpreted as the way each
assessor places the 12 cheeses in the common attribute space defined by the common
loadings. Along the first axis, the component separating Norwegian from Cheddar
cheese, the assessors agree to a large extent, and the interpretation of the scores
plot from the mean score PCA, Figure 6.4(b) seems to be valid. There are however
differences between the assessors on the second axis. Assessors 3, 4, 7, 8, and 10 rank
the cheeses differently to the other 5 assessors on this axis. Recall that the second
axis was mainly a texture variable with firmness/graininess at the positive end, and
pastiness/moath coating texture at the other. There seem to be two different ways
of using these four attributes, maybe due to confusion. In the section on the effect of
different pretreatments of the data below we interpret this further. We now proceed
to investigate these differences between assessors by Tucker-3 modelling.

6.12.4 Tucker-3 modelling of the cheese data

Based on the same centering and standardization as above we used a Tucker-3 model
with @ = b = ¢ = 2, i.e. two components in each of the three modes. This gives a
2 x 14 common loadings matrix P, a 12 X 2 common scores matrix 7" and a 10 x 2
assessor scores matrix (), together with the two 2 x 2 core matrices C'y and €. These
scores are plotted in Figures 6.9(a), (b) and (c).

In the assessor plot Figure 6.9(c) we can see that the assessors all have similar
scores on the first dimension, indicating agreement about the main source of variation
in the cheeses, but there is a range of values on the second dimension, indicating con-
siderable disagreement about the less important sources of variation. This difference



% =q =D )M [opout

89 omSr,|

G-I9¥oNT, o)} Ul sIojdoe] OM7] 9} I0] SIOsSsosse 01 o[} IO} Sol00s Tenplatpuy

Factor 2

Factor 2

Jarl_Hgo
Jarl_H30
Chleddar ~ dheddar
Norv_F45 5
NordfisfS 3 Norv_Fg pud  Tescfgt
Tesc_Tat © —="Sresc_mia
P & Norv_H30
iy Anchor
NGRUEY aris
arks Tesc_mat
Tesc_mat
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4
Factor 1 Factor 1
Jarl_H30
Chefidar
~ Jarl_H30 Anchor
Tesc_fat = Cheddgr Tesc._fat
- [=]
Norv_G48 rrd Anchor 2 fresc_mild
rescmi <4
I Jarl_FH o mat
Norv_H30 w Nory F4 Markgse_!
oy
RN | \arks
Tesc_mat
6 4 20 2 4 6 6 4 2 0 2 4
Factor 1 Factor 1

Factor 2

Factor 2

Jarl |H30
reddar Jarl_H30
 Adict Anch
Tese_faichor o Chpddaresc_fal"™""
S
esc_mild ksl [Tesc_mild
o & Jarl_FHY
N H30 N&N’Fﬁcsao Maf@sc_mat
orv, v
N Marks r%‘ﬂ,way
weteway e mat
6 -4 2 0 2 4 6 6 4 2 0 2 4 6
Factor 1 Factor 1
Jarl_H30
Chefidar
Anchor o~ o s
Tesc fat s 1 -
Jarl_H3o Chefldescy@de mat g Jarl FHg  Tesc_fat
Ry w Norv_H30 [Tesc_milgAncnor
NoorFRAEEY| /|
Nsateway|
Marks
Tesc_mat
6 4 2 0 2 4 6 5 4 2 0 2 4 6

Factor 1

Factor 1

Factor 2

Factor 2

Jarl_H30

Cheddar

Norv_F45

JarlFHB Tesc far

NOV_H30
Tesc_mildnchor

Neatewal|
arks

Tesc_mat

-6

4 -2 0 2 4 6
Factor 1

8

Jarl_H30

Anch
Cheddamege (4"""

[Tesc_mild

Jarl_FHS
Norv_F45
Norv_H30
NeHEwR)

Maffigsc_mat

-6

-4 -2 0 2 4 6
Factor 1

8

spofjal 1030%] /(?AA—QQII{LL

LIT



168 Three-way factor methods

can be interpreted by examining the core matrices. They are:

¢y |att 1 att 2 Cy  |att 1 att2
sample 1 | 24.8 -1.1 sample 1 | -1.5 -2.9
sample 2 1.1 9.5 sample 2 4.5 3.0

These two matrices represent two assessor types, with each assessor being partly one
and partly the other. The first type, (1, is fairly simple. Sample type 1 is described
by attribute type 1, and sample type 2 by attribute type 2. Referring to the sample
and attribute plots (Figures 6.9(a) and (b)) it is clear that sample type 1 represents a
Cheddar-Norwegian difference, and sample type 2 seems to separate out the high fat
Jarlsberg. Attribute type 1 is a contrast between strong flavours such as bitter, salt
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Figure 6.9: Results from the two-factor Tucker-3 model. (a) Assessor scores, (b)
loadings and (c) cheese scores.

and overall flavour, and creamy flavour, and attribute type 2 seems to be a texture
variable contrasting sticky and doughy with hard, rubbery and grainy. Assessor type
1 therefore would describe cheddar cheese as being strongly flavoured, compared to
Norwegian cheese which is creamy. He/she would distinguish Jarlsberg by its hard
and rubbery texture.
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Assessor type 2 is more complex. He/she would say that although the strength
of flavour is important in distinguishing Cheddar and Norwegian cheese, the texture
seems more important and the other way around for the separation of Jarlsberg.

The range of individual core matrices can be investigated by noting that all as-
sessors have a weight of about 0.3 on Wi, but weights from 0.4 (assessors 1 and 3) to
—0.6 (assessor 7) on Wy. This pattern, seen in Figure 6.9(a), do not express any large
explanational power of assessor type 2 as compared to type 1, but merely expresses
that the assessors have different amounts of the less important assessor type 2 in
them. These weights correspond to core matrices ranging from

6.8 —15) 83 1.4
21 4.1 \ 24 1.0

First note that as the core matrices 'y and (5 listed in the beginning of this sec-
tion were representing ‘ideal’ assessor types the two matrices here represent actual
assessors. The two matrices both have large values on the upper diagonal, indicating
agreement that variation in sample type 1 is largely due to attribute type 1.

The assessors 1 and 3 also have a large value in the lower diagonal indicating that
variation in sample type 2 is largely due to attribute type 2, but this is not the case
for assessor 7.

Also there is disagreement in how important the other attribute should be in each
case. The change of sign indicates a significant difference between the assessors -
assessors 1 and 3 think cheddars should have negative scores on the texture variable, ie
that they are sticky and doughy, represented by the attributes past_tex and coat_tex in
Figure 6.9, whereas assessor 7 would describe them as grainy and hard, corresponding
to the positions of rubb_tex, firm_tex and grai_tex in Figure 6.9. There is a similar
difference in the sign of the strength of flavour attribute in describing the Jarlsberg.

The two matrices C; and 'y have the additional useful property, that they give
information about the amount of variation explained by each type of assessor mode.
This means that the sum of the squares of the four elements of (',

24.8° + (—1.1) + 1.1 + 9.5 = 708

is the amount of variation explained by the Tucker-3 model with a =b=2and ¢ =1
(Kloot and Kroonenberg(1985)). In an analogous way the sum of the squares of the
eight elements of 'y and C},

708 + (—1.5)% 4+ (—2.9)* + 4.5* + 3.0> = 748

is the amount of variation explained by the Tucker-3 model with @ = b = ¢ = 2. These
amounts must be seen relative to the total amount of variation in the data, which
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due to the pretreatment of the data is a fixed number, determined by the number
of assessors, objects and attributes alone. With the standardization in use, the data
consists of 140 ‘variables’ (assessors-by-attributes) of 12 observations divided by the
standard deviation of these 12 observations. Letting z;;; denote the original data
before pretreatment and SD;; the standard deviation of the 12 samples for assessor
1 and attribute k, the total variance can be found as

14 10 12 2 14 10
xzyk 115D2k
= 140 - 11 = 1540.
XYY =X,

The total percentage of explained variation for the Tucker-3 model witha =b=¢c =2
is thus 748 /1540 = 49%. This is almost the same as for the Tucker-2 model, indicating
that two assessor dimensions is probably reasonable.

6.12.5 Validation and choice of underlying dimensionality

In this example the dimensions of the attributes and samples have been kept the same.
There is no particular reason why this should be done, but it does mean that only
one dimension needs to be chosen for the Tucker-2 model, and two for the Tucker-3
model. Hence scree diagrams can be constructed.

100
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Figure 6.10: Regular and cross validated scree plots for Tucker-2 models with a = b.

Consider the Tucker-2 model first. In Figure 6.10 the accumulated percentage
residual variance is plotted together with the same for two different cross validation
principles: assessor-wise, replicate-wise. The replicate-wise cross validation variance
starts to increase from dimension 2. The residual variance and assessor-wise cross
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Figure 6.11: Regular and cross validated scree plots for Tucker-3 models with a =

b=2.

validated residual variance also seems to have leveled off at factor 2, maybe even at
factor 1.

Fixing @ = b = 2 we now turn to choice of dimension in the Tucker-3 model. In
Figure 6.11 the accumulated percentage residual variance is plotted together with
the same for the replicate-wise cross validation, this being the only cross-validation
possible in the Tucker-3 model. This again suggests that a choice of 2 for each
dimensionality seems sensible, maybe even only 1 factor is needed, but two is definitely
reasonable.

After choosing the dimensionality there are still some validatory tools of interest,
as mentioned in section 6.8. The Figures 6.12(a), (b) show how well the Tucker-2
model with @ = b = 2 explains the variation in each attribute and for each assessor.
We see that among attributes creamy odour, overall flavour and rubbery texture are
best and amonia flavour and salt flavour most poorly explained by the model. The
attributes with the highest amount of explained variation are the ones with the most
structure related to the cheeses. The actual structure could, however, differ from
assessor to assessor. Among the assessors number 1 seems to be poorly described
by the model compared to the others. Looking at assessor number 1’s individual
score plot, Figure 6.8(a) we see that number 1 is the assessor with the least spread
of the cheeses in the two-dimensional attribute space given by the common loadings.
Number 1 is thus the assessor that along the estimated common attribute components
is worst at distinguishing between the cheeses.

Similar plots could be made cheese-wise, and in the Tucker-1 and 2 cases the
assessor-wise and cheese-wise plots might be substituted with plots of corresponding
cross validated variance.
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Figure 6.12: Assessor-wise and attribute-wise relative explained variance by the
Tucker-2 model with a = b = 2.

6.12.6 The effect of pretreatment of the data

In the interpretations made above we must bear in mind that each attribute for each
assessor was standardized to have unit variance. As discussed in section 6.5.2 this
helps to remove differences in the assessors use of the scale and assumes implicitly
that such differences do not express real differences between the cheeses. If however
we want to put some emphasis on differences in use of scale two possibilities arise:
Firstly the data can be pretreated as above, and then the scale differences  investi-
gated by other means. This could be done by estimating a scale parameter for each
attribute, eg. the ‘stretching and shrinking’ values in Nees & Solheim (1991) or the
‘maximum likelihood” values in Brockhoff & Skovgaard (1994) together with some
kind of plots summarizing the information for all attributes as done in the former
of the two mentioned papers. This is, however, a univariate approach to the inves-
tigation of scale differences. A multivariate approach could be to choose the second
weighting option mentioned in section 5.2, namely to weight each attribute with the
inverse standard deviation computed over all assessors, i.e. based on 120 observations.
This way the individual scaling differences will be included in the TWFA modelling.
We still centre the data for each assessor before weighting, as we do not want to
include the differences in assessor levels. With this pretreatment we fitted a Tucker-2
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Figure 6.13: Common scores (a) and common loadings (b) for the two factors in the
Tucker-2 model with @ = b = 2 with the alternative pretreatment of the data.
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model with @ = b = 2. Figures 6.13(a) and (b) show the common scores and loadings.

Comparing with the Tucker-2 model for the former pretreatment, Figures 6.7(a)
and (b), and mean score PCA, Figures 6.4(b) and (c), we see that the difference
between the current Tucker-2 common loadings/scores and the standard PCA load-
ings/scores are more distinct. This goes together with the fact, that by introducing
more individual variability, by allowing the assessors to use different portions of the
scale, the standard PCA becomes less representative for a ‘typical’ assessor.

The individual score plots, Figures 6.15(a)—(j), show the same patterns as do Fig-
ures 6.8(a)—(j), but the differences between the assessors are more clear. Especially
the spread of the cheeses are varying quite a bit now. The spread is directly related
to the actual variation in the data for a particular assessor. Note that in the for-
mer pretreatment of the data, the variation in the data for the assessors were equal.
Figure 6.14(a) shows how much each of the 10 assessors contributes to the total
variation in the data, and we observe that the heights of the bars in Figure 6.14(a)
are directly related to the spread of the cheeses in the individual score plots, Fig-
ures 6.15(a)—(j). The ‘directions’ in the individual score plots are for the individual
assessor determined by the attributes for which he/she has a particular sensitivity.
We have documented this by examining the F-statistics from ANOVA’s for each as-
sessor and attribute. For example for assessor number 6 the attributes with the four
largest F-values are crea_odo, over_odo, crea_fla and rubb_tex. Taking the positions
of these four attributes in the common attribute plot Figure 6.13(a), they span the
direction of the individual scores of assessor 6. This tendency is observed for all the
individuals.

6.13 Conclusion

We have presented the concept of TWFA modelling in the setup of sensory profile
data. The fitting procedures and interpretations are thoroughly treated in a way
that should make it possible for the reader to adopt and apply the methods without
further literature search.

From Tucker-1 to Tucker-3 models we have outlined how these models embrace
most known multivariate methods of investigating sensory profile data: PCA, GPA,
INDSCAL, PARAFAC and ‘common principal components’. This generality could
be stressed to be both the strength and the weakness of the ‘Tucker-approach’ we
have taken in this chapter. The strength lies in the general principle of not making
any model selection errors, when the modelling is started at a sufficiently general
level and subsequently letting the data decide which simplifications can be assumed.
The weakness comes up due to the substantial number of possible models to fit and
investigate, which together with the various data pretreatment approaches requires
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a considerable task of the analyst. Also formal statistical testing of model simpli-
fications are not performed. Re-sampling methods, such as permutation tests and
bootstrapping, definitely has a role to play in that context. We leave this area open
here.

In spite of these weaknesses we believe, and have illustrated by the cheese data
example, that the TWFA methods as applied here offers additional information and
insight in a typical sensory profile data set.
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Chapter 7

Application of saddlepoint
approximations

7.1 Introduction

In this chapter a brief review of the saddlepoint approximations of densities and tail
probabilities are given. Saddlepoint approximations based on the Gamma distribution
are discussed. The density approximations will be derived though their properties not
proven, and tail probability approximations will just be given. This review is partly
based on Skovgaard (1994). The special case of linear combinations of chi-squares will
be given specific treatment and it will be shown how this can be used for a general
applicable approach to the handling of non-standard F-tests in mixed linear models.

7.2 Normal-based saddlepoint approximations of
densities

Let f be the density function of a real random variable X, let ¢ denote the Laplace
transform of X,

o(t) = E ()
and let T be the set where the Laplace transform is finite,

T={tcR|et) < oo}.

The saddlepoint of the density at € R, f(x), is based on the Laplace transform, and
two conceptual different ways of deriving the same approximation exist, see for in-
stance Reid (1988). We prefer the method of ‘exponential tilting’ that uses a rewriting
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of the density as
flz) = f(x)e O 1 T, (7.1)

where £(1) is the cumulant generating function (c.g.f.) of X,

k(t) = log (1)

and fi(z) is a member of the conjugate exponential family,

filw) = fla)e =,

with mean &'(t) and variance & (). The basic idea is simply to use a Normal ap-
proximation, corresponding to the one term Edgeworth expansion, of the density f;
instead of the original f. In general, a Normal approximation is only expected to
be reasonable in points close to the mean of the distribution to be approximated.
Now ¢ can be chosen such that fi(x) has mean z, say t,, i.e. {, is the solution to the
(saddlepoint) equation

/il(t) =z, (7.2)

and instead the density fi (z) is approximated by a Normal density with mean
/il(tx) = 7 and variance /fll(tl,), ie.

"

flz) ~ (27r/<; (tl,)) e e~ wtaetalta), (7.3)
The solution ¢, € T exists uniquely for a regular family, see Barndorff-Nielsen (1978),
when z is in the interior of the support of X, and as &'(t) is increasing, ¢, can always
easily be found by a numerical line search.

7.3 Convergence properties

Often the interest is in the density, f,, of the mean, z, of n independent identical
distributed observations, in which case (7.3) becomes

27k"”

n 1/2

where « is the c.g.f. corresponding to a single observation. This is an improvement
compared to 1. and 2. order Edgeworth expansions as can be seen from Table 7.1. A
main point is that Edgeworth approximations have unbounded relative error whereas
the saddlepoint approximations have bounded (or vanishing) relative error in the tails.

Case number four and five in Table 7.1 refer to uniformity results of Jensen (1988).
Under certain conditions the order of relative approximation error holds uniformly
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Table 7.1: Convergence properties for density approximations fn R,(z) is the abso-
lute error f,(x) — f(;l;) and RR,(x) the relative error R,(x)/f.(x). The statements
with ¢; and ¢y should be understood as an existence of constants ¢; and ¢y such that
the statement holds.

Asn — o0

1. order Edgeworth SUP_o <<, | Bn() |[= O (ﬁ),
RR,(x) unbounded

2. order Edgeworth SUP_o <<, | Bn() |[= O (%)7
RR,(x) unbounded

Normal-based saddlepoint SUP_, fr<o<es v | BB () |[= O (%)

Normal-based saddlepoint SUP_., /< | BB (7) |= O (%)

with additional assumptions
Normal/Gamma-based saddlepoint | sup_., s, | RR.(z) [= O (%)

with additional assumptions For n fixed: | RR,(z) |— 0
for # — oo

as x tends to the tail of the distribution, and even in some cases the approximation
becomes ‘exact in the limit’. This is a strong result that states, that for any n the
relative error tends to zero in the tail. These results also form the basis of using
saddlepoint approximations in a ‘non-asymptotic’ way as indicated by (7.3).

7.4 Gamma-based saddlepoint approximations of
densities

We now go back to the notation without n. The difference between case number four
and case number five in Table 7.1 really lies in the choice of distribution to use for
the approximation of f;(x). The heuristics are, that if a distribution corresponding
to the limiting distribution of fi(x) is chosen, the approximation becomes exact in
the limit. For some classes of densities this choice is the Gamma distribution.

If X is a positive random variable, f;(z) can be approximated by the Gamma
distribution, I'(e, ), with the ‘correct’” mean and variance, i.e. a and /3 is chosen
according to

!

K (t,) = af and £" (1,) = af>

This is the approach of Jensen (1991), although in that paper applied for tail proba-
bilities. We will return to this below.
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More general if X is not known to be positive, the approximating distribution can
be chosen as a shifted (minus) Gamma distribution, i.e. among the class of densities

{9(z;p1,0,8) | B# 0,0 € R, > 0}, where

PN R S €y R YR ey

In Jensen (1988) the shifted Gamma density matching the first three cumulants of
fi.(x) is chosen, that is, g, o and /3 are chosen according to the relations

(t2),

11

M+aﬂ =, aﬂz = /fll(tl,) s QOzﬂB =K
which leads to the following estimates,

1" . " 3
K///(tx) 9 & =4 K///(tx>
K" (1) K (1)

Thus the approximation can be written as

[v]

=2 , 3

[}

&a—l

T(&)|B]et

This is exactly the approximation given in equation (3.7) in Jensen (1988), although

f(2) ~ eotatnlta), (7.5)

there derived in a slightly different way.

7.5 Approximation of tail probabilities

Often the entity of interest is a tail probability rather than just the density of X, for
instance a test-probability. We thus search for an approximation of

Pujmﬂzémﬂww,

which may be found as

O A

P(X > z) %/ f(x)dx,
where f () is a saddlepoint approximation of the density. This direct integral ap-
proach may not be the easiest way to derive approximations for the tail probability, see
Daniels (1987). We will very briefly discuss different methods and interpret them as
integral versions (if possible) of density approximations. Lugannani and Rice (1980)
derived at an integral version of the Normal-based saddlepoint approximation (7.3),
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of which probably the latter is more widespread. The Lugannani-Rice formula is the
following,

P(X>a2)=1—®(w )+¢(>{1—i}7 (7.6)

where ® and ¢ now denote the standard Normal distribution and density functions,

W = /2t — k(t,))sign(t,)
i =t /K" (1),

and t, is the saddlepoint as before. Wood et al. (1993) deduces a generalized
Lugannani-Rice formula, that in its appearance has ® and ¢ substituted by the
distribution and density functions for a general base distribution, which may be
the Gamma. In Jensen (1988) a Gamma-approximation corresponding to (7.5) was
worked out and has the form, here taken from Jensen (1995), where for simplicity

t =1, and o, = /£(1)? is used,

eﬁ(t)—tl’

P(X > 1)~ P Ao (tat, At sgn [/4; (t)D , (7.7)
where
11 3
A — 4 /{////(t> M
(t)?
eu\/_A/\/Z . _
e T(AVAw+VY))  ifs=1
Ao (u, Ay 6) = (7.8)
uMe A (A VA — V) if 6= —
1 A1 1_(11(;\)7/\_2) z <0
AL (N 2) = / e dv = (7.9)
o T'(}) o &5 tdy 2> 0
and
_ o T
T(\ z) = / . 1
(A 2) j F(/\)e v (7.10)

The strength of the Jensen-approximations is that they fall in the last category of
Table 7.1 above, as the final Theorem 5 of Jensen (1988) states (among other things):
If [f(z)?dx < oo for some p > 1 and f(x) belongs to one of the classes T or III
in Daniels (1954) then the approximations (7.5) and (7.7) are uniformly valid and
become exact in the tail (for n > p).
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7.6 Linear combinations of chi-squares

In this section we will study the case where the variable of interest, X, is a linear
combination of independent chi-squared distributed random variables,

K '
=1
The Laplace transform of X is a product of Gamma Laplace transforms,
K
o(t) = [I(1 — 2a;t) 772,
=1

which is finite for

1 . 1
b= raril%i{'Zai} <i< E?;%{Zaz} =t

where the usual conventions that min{{} = co and max{{}} = —oc are used.

In Wood et al. (1993) this situation is taken as a numerical example with a com-
ment that ‘using arguments similar to those of Jensen (1988, 1991), it can be shown,
that in this example, the relative error of the Normal-based LLugannani-Rice approx-
imation stays bounded as x varies over |0, oo[’.

The situation of the present section is also covered by the results of Jensen (1992),
which can be seen from the expression for the Laplace transform of X — E X,

by py(l) = e Tiimhig)

K e—taifi

g (1 — 2a:4)2

With o; = f;/2 and ¢; = 1/(2a;) this becomes

K —taifc;

oy _Ex(l) = gm7

which is the class defining expression of Jensen (1992). In that paper uniformity

(7.12)

results for an Esscher approximation are shown and explicit expressions for the non-
asymptotic tail-behaviour are derived. Our study is also based on a direct approxi-
mation of the distribution of X. If asymptotic statements were to be made, two kinds
could be relevant in our setup: f; — oo, 2=1,..., K or K — .

Based on the results in Jensen (1992) we will (partly) show that the approximation
(7.7) in this case provide limiting relative exactness in the tails. Table 7.2 shows
the tail situations that can occur depending on the signs of the entering coefficients
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Table 7.2: Tail situations for X

a; >0,V a; <0,V El-i7j:ai<0,aj>0
supp(Z) = Ry supp(Z) = R supp(Z) = R
Right tail 0 <ty < oo 1y =00 0<ty < o0
t— 14 Yy — 00 y— 0 Yy — o0
Left tail l_=—00 —o0 <1_<0 —oo <t_<0
t—1_ y— 0 Yy — —00 Yy — —o0
ai,...,ag. Viewing any left tail case as a right tail case for — X, we are essentially

left with two right tail cases: (i): 0 < 14 < oo, corresponding to the presence of at
least one positive coefficient and (ii): ¢, = oo, corresponding to the case where all
coefficients are negative. The result is expressed in the following proposition:

Proposition 6 Let X be given as in (7.11), let p(x) be the tail probability approxi-
mation (7.7) and assume that YR, f; > 2. Then the relative error of approximation
tends to zero as x tends to infinity, that is

p(z)

llm ——— = 1. 1

Proof in case (i): In the following the notation ‘~’ is used to express asymptotic
equivalence in the sense that

f@) ~ gla) & lim 12

=1

or equivalently as * — co st =1, 11,

The first three cumulants of X are given by
K

r=k(l) = Z % (7.14)

"

ol =k (t) = ZZ 1—2at) (7.15)

11

K1) = 82 1_2“). (7.16)
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From this it may be seen that «"(t) — oo as ¢ T 1, i.e. for  large enough we have

that P
t —tl’t to¢ AtA t/: -~
p(x) = ¢(t>e SR <At, <tat + At> \/AT> . (7.17)
7t (tUt + \//\_t)

From Jensen (1992) we get, since %, f; > 2, that

Q{al_l/z
limd, = — o 7.18
t%lglf-l ! F(Oq) ¢ ’ ( )

where a; = f1/2 with the numbering of the coefficients chosen such that ¢ = 1/(2a4)
and where d; is the inversion integral stemming from

o(t)e™

tO't

P(X>uz)=

d;. (7.19)

From (7.17), (7.18) and (7.19) it follows that to complete the proof we must verify

that .
_ a2 (o VN)

T A,(t A) A>~O‘1 —on 7.20

< ty | Lo+ /At \/7 T(an) e tUtetUt\/A_t/\tAt/z ( )

The Incomplete Gamma function T'(a,z) = [ 2° 'e™"dx can be asymptotically

expanded based on repeated integrations by parts to give

D(a,z) = e 72! ; (@ —1)(a —;) - (a—p)

+ R, (a, ) (7.21)

where uniformly for a in a compact interval, say [y — &, ay + €],
R,(a,z) =0 (e_l’xal_e_”_l) , as T — 00, n>a;+e—1, (7.22)

see Olver (1974), page 66-67. This implies that for z; = (to; + VM)V A and 7; =
(toy 4+ \/a1)y /a1 we get the equivalence

F(/\hxt) ~ e_ftital_l (723)

since for t large enough A; is an e-interval around o4, and for n chosen such that
n>aoa +e—1,

(A, 2y) N T'(As, 24) _Z”: (a—1)a=2)---(a—p) + Ra(1),

emgi Tl emmiglul xP

p=0
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where the finite sum will tend to 1 as ¢ T ¢, and the remainder is

O (e—l’xal—e—n—l )

R.(a,z) = pE————
= 0 (;L't_e_”)
— 0.

To complete the proof we must check that (7.20) and (7.23) ‘match’, i.e. that

(tUt + \//\_t) .

toetriva afl/z

e—\/a_1(tat+\/a)(\/a(tat_|_\/a—l>>a1—l Na?l—l/Qe—al

Using that to; — oo as t T ¢4 this can be checked by direct inspection.
Proof in case (ii): As above write the actual tail probability as
1 —tx
P(X >z)= o,

- tO't

with d; the inversion integral

1 e du
d; = %/_Oo ¢t(u)m7

187

where ¢;(u) is the characteristic function of the renormalized tilted random variable,

that is, see for instance Jensen (1988),

ST |

From (7.14) and (7.15) it follows that lim;_ ., /0y = —\/a and o} ~ /a//t from which

it is straightforward to show, that the limiting characteristic function ¥ (u) as t — oo

corresponds to minus a renormalized gamma distribution

dlu) = Jim o) = (1 +iu/Va) " eV,

(7.24)

where o = Y| £i/2. Let us for now assume that we can interchange the lim,_ ., and

integration, then since lim;_ ., to; = \/a,

1 geo du
imd, = — / T
g 1 21 J—oo Plu) 1+ du/\/a)

= i - 1+ 2u/+/o ot eV gy,
2r /_oo ( /\/_)

— @ . (1— v)_a_le_cwdv.

271 —100
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This can be recognized as the inversion integral for a I'(av + 1, 1)-density evaluated at

) \/a _ aa—l/? _

lim dy = ———a%e™® = @ 9!
e T Tatr ) © T(a) (7.25)

As &"'(t) — —oco for t — oo it follows from (7.7)-(7.9) that to finish the argument we

must show the equivalence

a, thus

a—1/2

aF(a) e ¥ ~ tat/\?te_w“/A_tAl </\t, \//\T(tat - \//\7)> (7.26)

From (7.15) and (7.16) it follows easily that lim;—., A; = o and thus

t1i>r<l;lo = \/A»t(to-t — /\t) = 0.

Leipniz’ rule now gives that the function Ay is continuous in ¢ and the limit can be
taken directly, using o > 1

b (R VB - [ o s e

and (7.26) follows directly.

The allowance for the crucial interchanging of integration and going to the limit
will be left unproven. One way to go would be to show that the convergence of ¢:(u)
is uniform for v € R. Another approach would be to ‘copy’ the argument of Jensen
(1992) used for the case (i), where suitable bounds for certain decompositions of the
integral are obtained and dominated convergence is applied.

The proof apply directly to the more general class of distributions treated in Jensen
(1992), namely those with Laplace transform given by (7.12), where also K = oo is
allowed.

7.7 Ratios of linear chi-squared combinations

In this section we consider ratio’s of the form

X Yier, aiXi 2 .

== X;~ Dye=1,..., K, {l,..., K} = K{| ) Ky,

VT S, X, U (o ) = B U R
and X;,: = 1,..., K independent. We will discuss the approximation of the tail
probability P(X/Y > z), and subsequently in the following section how this can
be utilized for generalized F-testing. Daniels (1954) derived at an expansion for the
density of a ratio of two independent random variables. Instead we will base the
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approximation on the results of the previous sections. Also note that Ky () K, may
be non-empty, in which case the numerator and denominator are not independent.

If the denominator Y is a positive random variable the tail probability can be
expressed directly in the form treated in the previous sections,

P(X]Y >z) = P(X—zV>0)

= P (Z X, > 0) R (728)
€K
with ¢; = a;,1 € Ky \ Ky, b; = —zb;,1 € Ky \ Ky and ¢; = a; — 2b;,1 € Ky Ks.
If instead the numerator is a positive random variable, the expression for the tail
probability depends on the sign of z,

P(X—-z2Y>0)—1+PY >0), 2>0
1 -P(X—=2Y>0)+PY>0), 2<0 "’
where both entering tail probabilities can be approximated. These expressions follow

from simple set considerations: For z > 0 the we have the identities apart from null
sets

P(X]Y > z) = { (7.29)

(X >V} = {X>:¥,V >0}U{Y <0} .
(X/V >z} = {X>:V,V >0}, (7.30)

and for z < 0
{X <zY} = {X <YV >0}
{X/)Y >z} = {X <zYV)Y <0}U{Y > 0}.
The probability P(Y < 0) will often be very small, and this can be used in the
general case to get bounds for the probability of interest. For if both X and Y can
take negative as well as positive values it is not possible to get an explicit expression
for the tail probability as above. Assume for now that z > 0. The (X,Y)-plane is
partitioned into six disjoint sets, see Figure 7.1. The event of interest can be written
as

(7.31)

{X/Y >z} = BUE.
Using the notation P, = P(AUBUC) it is possible to saddlepoint approximate

the following probabilities

Py = P(X >0)

Pabf = P(Y > 0)

Pyg = P(X—ZY> 0)
and thus also the complementary probabilities Py, P.q. and P, y. Since Py — Py =
P(B) — P(FE) we can write up bounds for the tail probability:

[Pabf - Paefapabf - Paef —I'zmin{PdefaPcdeaPaef}]a if Pabf > Paef

P(X/Y - Z) < { [Paef - Pabfapaef - Pabf —I'zmin{PabcaPabfancd}]a if Pabf < Paef ’
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r=2zy

A
B

Y

Figure 7.1: The partitioning of (X, Y)-space for z > 0

All the entering probabilities can now be saddlepoint approximated. If just one of the
three half-planes has negligible probability mass this will give narrow bounds, and in
any case this procedure will provide the information about the size of the bounds.

7.8 Non-standard F-tests

By non-standard F-tests we understand ratios of the form

_ ik, @iXi _ Yick, @iXi
Sier, biXi ek, b:iX;

(7.32)

where )N(“ 1 € K7 U K, are independent and

ai/\i T\

XZN/\zxz(fz)/fz7 a; = 71.6[(17 bzz

K3 K3

i€ K.

Tests of this form may occur in mixed model analyses of variance with non-balanced
data or when the collection of random effects are not closed under formation of infima,
see Section 5.13.5 for a design discussion. As also exemplified in Section 5.13.4 the
latter is relevant in the typical 3-way sensory experiment with judge- and replication
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IxS — [J]
[F] &— [J x R] S — 0
S x R] “— [R]

Figure 7.2: Factor structure diagram, see Chapter 5, for the model used for exempli-
fying non-standard F-testing

effects random. For simplicity we will throughout this section assume such a setup:
I judges (J) have assessed P samples (S) in K replicates (R), and as model for
a univariate sensory response we use the mentioned mixed model as illustrated by
Figure 7.2

The issue of interest is to test for sample effect. A classical approach is to con-
struct a test statistic based on the expected mean squares with approximately an
F-distribution. Assuming no missing data the relevant expected mean squares in the
present setup are, using the same notation as in Chapter 5:

= o3

Ap = E(MSg)
/\st— (MSst) = U%—I—[(U?]XS
Asxr = E(MSsxr) = o+ Poip
)

/\5— (MSS == U%+I(U;]X5‘|‘PU§XR‘|‘QS
In Lea et al. (1991) an approach leading to the test-statistic

MSg
F = 7.33
' MSyys + MSsyr — MSg (7.33)

is suggested. This approach will break down whenever the denominator comes up
negative , and an alternative is, see for instance Cochran and Cox (1957), to use Fj
given by

MSs + MSg

Fy = . 7.34
27 MSyxs 4+ MSsyr (7:34)
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In both cases the numerator and denominator are independent and have identical
expected values under the null hypothesis. Their approximate F-distributions can
be understood in the light of the following observation due to Satterthwaite (1946):
A linear combination of independent mean squares, or more general, say, a random
variable as the numerator in (7.32), has a distribution that can be well approximated
by a y?-distribution with the ‘correct’ variance, which for the numerator in (7.32)
amounts to a x*(f)-distribution with

_ D ik, ai\]?

[N 2
Zie]&"l £

f (7.35)

As the parameters in practice will be unknown, an estimated version of this will have
to be used,

~ 12
L ek, @iX;
f= M (7.36)
diXi>
2iek, T,

I

or the smallest integer larger than f .

It is clear that the distribution under the null hypothesis of F; and F, can be
expressed as in (7.28) and (7.29) respectively, and thus saddlepoint approximated
by (7.7). Tt is also clear that the saddlepoint approximation will depend on the pa-
rameters A = (A, ..., \s) = (Ag, As, Asxr, Ayxs). As for the Satterthwaite approach
estimated parameters will have to be used. The tempting straightforward choice for
A as the observations (MSg, MSs, MSs«r, MSjxs) is not meaningful, as we search for
the distribution under the null hypothesis (As = Asxr+ Asxs — Ag) and the observed
value of A will fall outside the null hypothesis with probability 1, and possibly far
away from it. The effect of doing this would be to move the distribution close to
the observed value and then asking whether this observed value is extreme, which of
course it would not be.

Instead we suggest to take the maximum likelihood estimates of A under the null
hypothesis. The Gamma log-likelihood for A is proportional to a simple function,

4 . .
I(A) x — Z & log A\; + L;L'2 , (7.37)
=1 2 .2/\2

where (21,...,24) = (MSg,MSs, MSsxr, MSjxs), and the ML-estimates are easily
found by numerical maximization of (7.37) under the constraint that A\ = Asyr +
Axs — AR

The performance of this approximation was investigated in two situations by sim-
ulation and compared to the Satterthwaite methods. The two situations represent
an extreme situation (A), corresponding to an unrealistic small experiment with 2
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judges, 2 products and 2 replicates and (B) a typical experiment with 8 judges 4
products and 2 replicates:

(A)

_ I " 2 2 2 _
I'=P=K=2 op=05p=05s=1,

and hence

A=(1,5,3,3), f=(f1,-.., f4)=(1,1,1,1)

(B)

I=8,P=4,K=2,0p=1,04,p=2,05,5 =4,

and hence

A= (1,25,17,9), f =(21,3,3,21)

For the use of (7.7) in practice some care must be taken due to numerical insta-
bility, that occurs when the third cumulant /im(t) gets ‘close’ to zero. What close
is depends on the size of the second cumulant. In these cases the Lugannani-Rice
formula (7.6) was used. The Lugannani-Rice formula also ‘breaks down’ numerically,
when the observation is very close to the mean of the distribution in question. An
alternative formula exists, see Daniels (1987), but for simplicity we set the probability
to 0.5 in these cases. Rather arbitrary choices were made to ensure the numerical
stability, and if we let p(x) denote a calculated approximation, it was chosen as, again
with ¢ = 1,

A < 108" (1) > 0.1,
k(t) —tx + sgn(/fm(t))tat\//\_t < 200 (7.38)

p(x), otherwise,

sy =) D

where p(x) is the ‘continued’ Lugannani-Rice formula

B(a) = (7.6), if [toy] > 1077, 1/2(tz — &(t)) > 1077
1/2 otherwise.

Another important point when applying (7.7) is that the formulas are only right-
tail formulas, as opposed to the Lugannani-Rice formula. This means that the point of
interest, z, should always be seen in the light of the mean of the original distribution,
and the choice of approximation of X or —X taken accordingly. In fact computations
have indicated that (7.7) becomes not only inaccurate but directly useless when the
tail-probability gets close to 1.

The numerical investigation fell naturally into two parts: a basic distributional
study based on true parameter values and a testing problem study. In the latter the
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actual F-testing performance was studied for ‘real’ simulated data. In the former the
accuracy of the of the true saddlepoint approximation to the distributions of F; and
Fy were investigated. For Fy the distribution/testing distinction is important due to
the positive negativity probability and this problem is given special attention.

Throughout the section the simulations were done by simulating Gamma-distributed
random variables with the Gamma-generator ‘pgamma’ in Splus. For the first part of
the study a sample in each situation of 100000 were taken to estimate the true distri-
bution of Fy and F;. Thus for the comparisons in the following the uncertainty due to
this approach should be kept in mind. Figure 7.3 shows the results for the situation
(A). The calculated degrees of freedom based on (7.35) were (1,1.32) and (1.38,2),
which means that for the Satterthwaite approximations were used the F(1,2) and
F(2,2)-distributions respectively. The observed relative frequency of negative Fi’s
were 0.13279 and the saddlepoint approximated Py = P(MSjyxs+MSjxr—MSg < 0)
were Py = 0.115896. From Figure 7.3(a) we see that for the 5% quantile the saddle-
point approximation of F is a little better than the Satterthwaite method but further
out in the tail both approximations become poor. The Fh-approximations seem both
to work reasonable well.

For situation (B) we see in Figure 7.4 that the saddlepoint approximation is vastly
superior in the tails. This is probably an effect of the quite different degrees of free-
dom for the entering y?-components. The approximating F-distribution is an ‘aver-
age’ F-distribution, whereas the tail behaviour really gets dominated by one of the
components. The calculated degrees of freedom based on (7.35) were (3,6.24) and
(3.24,6.75), which means that for the Satterthwaite approximations were used the
F(3,7) and F(4,7)-distributions respectively. The reason for the better behaviour
of the saddlepoint approximation of Fj in situation (B) as opposed to situation (A)
should be sought in the negativity probability. In situation (B) there were observed
no negative Fj-values out of 100000 samples, and the saddlepoint approximated prob-
ability was poy = 4.75 - 107°.

The accuracy in the estimation of Fy sets a limit for the accuracy of the tail
probability approximation. Related to this is a consideration of what kind of limit is
actually taken when we go to the tails of Fy and F; respectively. It is clear that we
have that

P, for + — o
P(MSs — 2MSsxr — *MSjxs + tMSg) — { 10_ P forz — —o0 (7.39)
and
0 f
P(MSs + MSg — MSsyn — tMSyys) — { Lo (7.40)

But going to the limit in the approximations needs some additional considerations,
and cannot be described directly as a tail of a distribution as the true distribution in
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0 100 200 300 400 500 600

Figure 7.3: The logarithm of the tail probability in situation (A) for Fy (a) and Fy (b).
The solid curve is the empirical log-tail-frequencies based on a random
sample of 100000, the dotted curve is the ‘true’ Satterthwaite approxi-
mation and the marked points are the ‘true’ saddlepoint approximation.
The three horizontal lines indicate the 5%, 1% and 0.1% quantiles.
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Figure 7.4: The logarithm of the tail probability in situation (B) for Fy (a) and Fy (b).
The solid curve is the empirical log-tail-frequencies based on a random
sample of 100000, the dotted curve is the ‘true’ Satterthwaite approxi-

mation and the marked points are the ‘true’ saddlepoint approximation.
The three horizontal lines indicates the 5%, 1% and 0.1% quantiles.
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question changes with = not only in position but also in shape. This is reflected in
the set with finite Laplace transform, which for the Fj-case is

Ii(z) = {t € R | ¢;(l) < oo}

and for the Fy-case
Ty(e) = {1 € R | ualt) < o0}

where ¢, is the Laplace transform of MSg — aMSsyr — *MSjvs + *MSg and ¢4 is
the Laplace transform of MSs + MSg — aMSsyr — tMSjys. The upper endpoint of
Ts(2) does not depend on x, and the lower goes to 0 from the left, so for the Fy-case
the right tail behaviour can in fact in the limit be described as a right tail behaviour
of a single distribution, and the limiting exactness result applies.

1.0

0.8

0.6

0.4

0.2

0.0

-20 -10 0 10 20

Figure 7.5: Values of the saddlepoint approximation of P(MSs—aMSsxr —IMSAJXS +
zMS 5 > 0) for different values of x. The horizontal lines indicate P, and
1 — FPy. The ‘discontinuity’ in x = 5 is a numerical artifact due to the fact

that "' (5) = 0, ¢f. (7.38)

For the Fi-case it is not so obvious, since the set Ti(x) collapses in 0 as @ — oo.
Figure 7.5 indicates the asymptotic behaviour of the saddlepoint approximation of
P(MSs — 2MSsxr — tMSyys + MSg > 0). We note that Figure 7.5 indicates that
the saddlepoint approximation ]5(:1;) of P(MSs — *MSsyxr — tMSyys + tMSg > 0)
has the property

P(z) —

- { P, for z — > (7.41)

1—]50 forr —» —o0 ’
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which was confirmed by computations for numerical very large xs.

We now turn to the actual testing problem. Whenever F; comes up negative it
is not possible to define in a reasonable way the event of an outcome being more
extreme. Conditioning on a positive outcome will lead to the test probability

P(Fl > | MSsyr + MSjxs — MSg >0)
P(MSS — xMSsxr — MSjxs + zMSg > 0) — P
1—-F

: (7.42)

that can be saddlepoint approximated. Below we have made a comparison in 1500
random samples of the 'real’ versions of Satterthwaite and saddlepoint approxima-
tions, that is, the observed mean squares are inserted in the Satterthwaite approxima-
tion and the ML-estimates under the null hypothesis are inserted in the saddlepoint
approximation. For reference we also included the versions based on the true param-
eters. The Figures 7.6-7.9 show that these two methods are roughly working equally
well in both situations. Based on 1500 samples, though, we do not have sufficient
information about the far out tail behaviour, where as earlier indicated at least the
‘true’ saddlepoint method were superior to the ‘true’ Satterthwaite method. We will
leave this point open for future investigation.

Figure 7.6: Quantiles for Satterthwaite and saddlepoint approximations of Fi-test in

situation (A)
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Figure 7.7: Quantiles for Satterthwaite and saddlepoint approximations of Fj-test in

situation (A)
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Figure 7.8: Quantiles for Satterthwaite and saddlepoint approximations of Fi-test in

situation (B)
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Figure 7.9: Quantiles for Satterthwaite and saddlepoint approximations of Fj-test in
situation (B)

7.9 Remarks

We have shown that the use of Gamma saddlepoint approximation techniques is a
potentially very accurate tool in non-standard F-testing. It should be noted, however,
that we do not have limiting exactness results for the actual applied approximations,
as we insert parameter estimates that themselves have error. We have also illustrated
that the saddlepoint approach does not overcome the problem of negativity, as this
is a more conceptual problem. The distributional problem of linear combinations of
y2-distributed random variables and ratios of such is closely related to efforts on con-
structing confidence bands for the population versions of the same objects, see Burdick
and Graybill (1992) and references therein. Many of the results on this subject are
restricted to certain situations, for example positive coefficients aq,...,ax. The sad-
dlepoint approximations might offer a general applicable method for construction of
such confidence bands, but whether this is possible is an open point.



Chapter 8

Concluding remarks

In this conclusion an exhaustive review of the thesis will not be given. The reader is
referred to the Summary for a brief listing of contributions of the work. The scope of
the various methods and results are discussed throughout the thesis. It may, however,
be useful to consider the initiatives of the work in relation to the following grouping
of potential beneficiary fields:

1. Promotion of known statistical methods rarely used in sensometrics.
2. Sensometric developments

(a) Methodological
(b) Theoretical

3. Statistical developments

(a) Methodological
(b) Theoretical

Although non-exhaustive, overlapping and to some extent subjective, the following
grouping of contributions, on the next page, into these five categories gives an impres-
sion of the overall contribution of this thesis. Apart from this it has been a general
objective to gain and communicate insight in basic sensometric and statistical issues
relevant in general and in particular for sensory analysis experiments.

Conclusively, an important contribution of the thesis is its role as starting point
for future research. Considering the five categories above, effort is needed in future to
put any method from 2(a) and 3(a) into category 1. Of particular future importance,
I believe, is the generalized linear models, as well in their classical formulation as in
the still developing mixed model versions. The latter is certainly also an area still
open for innovations qualifying for categorization into any of the five groups.
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Contribution list:

W e

Continuum regression
Generalized linear models
Two-dimensional covariance components models

Three-way factor methods

Panel size prediction ability interpretation
Assessor model — fixed and mixed

Threshold determination via mixed GLIM’s

. Relation between range estimates in assessor model and Procrustes-like

stretching and shrinking values

Relation between three-way factor methods and various other multivariate
techniques

Two-step cross validation principle

The general assessor model (with arbitrary linear treatment structure) —
fixed and random

. A marginal algorithm for mixed GLIM’s in a dose-response setup with

repeated measurements

Application of saddlepoint approximations for non-standard F-testing.

A convergence result for alternating algorithmic optimization of likelihood
functions with non-unique maximum.

Likelihood ratio test for overall independence across strata between sets of
variates in a multivariate mixed analysis of variance model with a Gamma
based saddlepoint approximation.

Relative limiting exactness for a Gamma based saddlepoint approximation
of the tail probability for Gamma convolutions.
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To comply with the continual objection to the consideration of sensory descriptive
data as interval scale data, the GLIM approach seems feasible. The study of exper-
imental designs based on these models could be relevant in order to adopt to the
GLIM frame, for instance, linear model designs taking order and carry-over effects
into account. The problem of existence of maximum likelihood estimates in a binary
regression model with non-zero baseline probabilities was pointed out in Brockhoff
and Miiller (1994).

The statistical and sensometric methodological scopes of the assessor model ap-
proach likewise need further research, especially the extension with a general linear
model expressed for the products involved. This may be seen as a general extension
of the linear normal models. And the random version of this is only given a very
brief treatment in this Thesis and obviously needs additional work as well theoret-
ical as methodological. Small sample improvements of approximating test statistic
distributions, maybe based on saddlepoint methods, are also of future relevance.

For the saddlepoint approximation methods a number of theoretical problems
was raised and left unsolved, some of which are: The limiting exactness in the tails
of the applied Gamma approximation for n = 1 for the Box class of test statistics, an
asymptotic result as the degrees of freedom tend to infinity for the applied Gamma
approximation of Gamma convolution tail probabilities, the use of saddlepoint meth-
ods for construction of confidence bands in general and in particular for the Gamma
convolutions.

All in all, the Thesis has raised at least as many questions as was answered. It
reflects quite well the learning process I have been going through working my way
from an unexperienced statistician to a little more experienced sensometrician. And
it may still serve, I believe, as a general introduction for the statistically interested
reader to the field of sensometrics, with a lot of unsolved problems and non-optimal
solutions to work with throughout.
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