CHAPTER 1

A REVIEW OF THE PARAFAC METHOD

As a first exploratory step in the analysis of a data matrix with scores
of n persons on m variables Principal Component Analysis (PCA) is often
used. The main purpose of PCA is to summarize the most important
information of the data. This is accomplished by representing the persons
and the wvariables simultaneously in a limited number of optimal
components. These components are optimal in the sense that they explain a
maximal amount of variance. It is well-known that PCA allows for rotating
the components without affecting the optimality of the components.
Rotations are commonly used in order to find other components which allow,
for instance, an easier interpretation.

In case one has scores from n persons on m variables measured at p
occasions a generalization of PCA, called PARAFAC (Harshman, 1970), seems
useful for the exploratory analysis of such data. PARAFAC represents the
persons, the variables and the occasions simultaneously by a limited
number of components. Unlike PCA, PARAFAC yields unique components. As a
consequence, rotations cannot be used to find other components that‘ can,
for instance, be interpreted more easily.

The history of the PARAFAC method goes back to Cattell (1944). He reviewed

seven principles for the choice of rotation in components analysis and
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advocated the principle of 7”parallel proportional profiles” as ”"the most
fundamental principle” for rotétion. Specifically, this principle means
that two data matrices with the same variables should contain the same
components and in the second matrix each component ”should be accentuated
or reduced in influence” (Cattell, 1944, p. 274). Harshman (1970) proposed
using this principle as a constraint in a new method to analyze two or
more data matrices that contain scores for the same persons on the same
variables, and christened this method PARAFAC. The uniqueness of the
PARAFAC components then obviates the difficult decision how to rotate the
components.

For certain data sets the principle of proportional profiles seems to be
inappropriate in the sense that there is hardly any differential
accentuation or reduction in influence of the PARAFAC components. For such
data, it does not make much sense to maintain the PARAFAC components, and
alternative approaches seem indicated. Even if the PARAFAC components do
have differential accentuations or reductions in influence, the PARAFAC
solution may be undesirable from an interpretative point of view, and it
may be worth considering alternative representations that fit the data
almost as well and allow an easier interpretation. To verify whether such
alternative representations can be found, it will be proposed here to
consider certain constrained versions of PARAFAC. Constrained PARAFAC
methods can be designed for various purposes. The present study will focus
on constrained PARAFAC methods for assessing the nature of uniqueness,
considering components with the same relative influences across occasions,

analyzing positive manifold data, and determining PARAFAC components that
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correspond to non-overlapping clusters of variables. For each of these
methods, algorithms will be constructed, and their usefulness will be
demonstrated by means of analyses of empirical data. However, before
treating any of these variants of PARAFAC, a review of the main features

of PARAFAC will be given.

1.1 Definition of PARAFAC

Suppose that scores are available from, for instance, n persons on m
variables measured at p occasions. Such data are called three-way data
because per occasion scores are available of the same group of persons on
the same group of variables. These three-way data can be collected in an
nxmxp three-way array X, which can be visualized as a box of scores with
frontal slices containing the nxm data matrices for each of the p
occasions. The PARAFAC model (Harshman, 1970) represents such a three-way

array by
q
Xijk= L GirDjrCrrteijx, (1.1)
r=1

where ¢ is the number of components, x;; is the element (i,j,k) of X, a;
is the element (i,r) of an nxq matrix A with coefficients of the persons
on the ¢ components, b; is the element (j,r) of an mxg matrix B with
coefficients of the variables on the ¢ components, ¢, is the element

(k,r) of a pxq matrix C with coefficients of the occasions on the ¢
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components, and e;; is the z'jlc"' residual element, i=1,...,n, j=1,...,m
and k=l,...,p. In the sequel A, B and C will be called component matrix,
pattern matrix and occasions matrix, respectively. In matrix notation the

PARAFAC model can be written as

Xy=ADB'+Ey, (1.2)

where X, is frontal slice k of X, D, is a diagonal matrix with the
elements of row k of C on its diagonal, and E;, is the mxm residual matrix
for occasion k, k=1,...,p.

From (1.1) it can be seen that the PARAFAC model treats its parameter
matrices in a symmetric way. If X is sliced into n horizontal slices or
into m lateral slices, then matrix equations equivalent to (1.2) can be
formulated. In the sequel this symmetric role of the parameter matrices
will be called the symmetry property of the PARAFAC model.

From (1.2) it can be seen that the columns of the matrices A and B can be
scaled to arbitrary lengths, if this scaling is compensated for by D,
k=1,...,p. From this and the symmetry property it follows that, without
loss of generality, two of the matrices A, B and C can be scaled to unit
length column-wise, as is done frequently.

From (1.2) it can also be seen that the representations AD\FB',...,AD,B’' of
the frontal slices only differ through the diagonal matrices Dy,...,Dp.
That is, the PARAFAC representations of the frontal slices consist of a
common matrix A and a common matrix B. The diagonal matrices D,,...,D

P

rescale the columns of A. As a result, there are PARAllel FACtors (called
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components here) in ADy, k=l,...,p, across the occasions, hence the name
PARAFAC. In other words, these components are perfectly congruent, and
according to the model, the frontal slices are represented by linear
combinations of these components. The weights for these linear

combinations are contained in B.

1.2 Fitting the PARAFAC model

For fitting the PARAFAC model Harshman (1970) defined a loss function that
expresses the discrepancy between the data and the PARAFAC representation.
In PARAFAC, the loss function to be minimized is the sum of squares of the

elements of the residual matrices, which may be written as
P
PARAFAC(A,B,C):k):“,l||Xk~ADkB'[|2. (1.3)

There is no method available to determine the minimizing A, B and C
directly. Therefore, an Alternating Least Squares (ALS) algorithm to
minimize PARAFAC(A4,B,C) is used (Harshman, 1970; Carroll & Chang, 1970).
Carroll and Chang (1970, p. 310) called this algorithm a ”CANonical
DECOMPosition” procedure of a three-way array, or, briefly, CANDECOMP. For
the sake of simple terminology, it will be called PARAFAC algorithm in
this study. The PARAFAC algorithm is based on alternatingly minimizing
PARAFAC(A,B,C) over A for fixed B and C, over B for fixed A and C, and

over C for fixed A and B. The updates for A, B, and C are
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-1 v
A= T XkBDk[ § D,B'BD,) : (1.4)
k=1 =1
P . -1
B=k§1XkADk(1§IDIA ADI) (15)
and
¢,=(A'A*B'B) "' [Diag(A'X,B)1, (1.6)

k=1,...,p, respectively, where * denotes the element-wise (Hadamard)
product and 1 the g¢-vector with unit elements (see, e.g., Kroonenberg,
1983, p. 116). The process of updating A, B, and C is continued until the
value of PARAFAC(A,B,C) stabilizes up to an arbitrary constant, taken as
0.0001 in this study. The PARAFAC algorithm decreases the function value
monotonically. Unfortunately, it is not guaranteed that the global minimum
will be reached. In practice, this problem of local minima can be dealt
with by taking a number (5 in the present study) of different runs of the
PARAFAC algorithm from different starting configurations.

The above stopping criterion differs from the stopping criterion in the
PARAFAC program (Lundy & Harshman, 1985) which is based upon the
percentage of change in every column of a parameter matrix from one
iteration to the next. The iterative process is continued wuntil this
percentage of change is lower than 0.1 for all parameters. It should be
noted, however, that convergence of the parameter matrices cannot be
guaranteed, see section 1.6. On the other hand, it is clear that, if the

parameter matrices do converge, the above function value also converges.
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Throughout this study, the iterative process was continued until both
stopping criteria were satisfied, with a maximum of 1000 iterative cycles.
In the sequel, in case the stopping criteria were not found to be
satisfied or in case of non—convergence this will be mentioned.

As noted above, the number ¢ denotes the number of components or the
dimensionality of the PARAFAC solution. It has to be chosen by the user.
It is well-known that solutions of different dimensionalities are not
nested. That is, if a solution for PARAFAC(A,B,C) is globally optimal in ¢
dimensions, then there need not be a subset of ¢-1 columns in these A, B
and C that globally minimizes the PARAFAC loss function with
dimensionality ¢-1.

PARAFAC usually finds oblique components. In case p=1, PARAFAC minimizes
PARAFAC(A,B,DI)=||X1—ADIB'||2, which is equivalent to PCA. Hence PCA is a
special case of PARAFAC, and PARAFAC can be seen as a straightforward
generalization of PCA with oblique components. Often in PCA orthonormal
components are determined. PCA can also be generalized to PARAFAC with
orthonormal components (Harshman & Lundy, 1984a, p. 129). This requires
minimizing PARAFAC(4,B,C) subject to the constraint A'A=I,. The matrix A,
subject to the constraint A'A=I, can be updated as follows (see, e.g.,
Kiers & Krijnen, 1991). Let k)iXkBD,FPDQ' (P'P=0'0=00'=1;) be the singular
value decomposition (SVD) of kflekBDk. The solution for A is PQ' (Cliff,
1966). An ALS algorithm, that minimizes PARAFAC(A,B,C) subject to A'A=I,
is constructed by taking, after an arbitrary start, PQ' as the update for
A and taking updates for B and C according to (1.5) and (1.6). This method

will ‘be called PFORTA here, because it enables one to analyze a three-way
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array by ParaFac with a column-wise ORThonormal A. Note that, due to the
orthonormality constraint, the residual sum of squares of PFORTA will be

at least as large as the residual sum of squares of PARAFAC.

1.3 Partitioning the fit in PFORTA

From (1.2) it can be seen that the matrix D; accentuates or reduces the
importance of the components for the representation of X;, as prescribed
by Cattell’s principle of proportional profiles. For this reason, Harshman
and Lundy (1984a, p. 155) propose to interpret the diagonal elements of D
as the relative importances of the ¢ components for occasion k. For
example, if the ™ diagonal element of D, equals zero, then component [
is of no importance for occasion k. If the components (columns of A) are
orthonormal, and B has unit length column-wise, then, like the squared
singular values in PCA, the squared diagonal elements of Dy express
exactly the sum of squares accounted for by the components for occasion k,
(see Harshman & Lundy, 1984, p.199). Specifically, if A'A=I, and

Diag(B'B)=1I,, then, upon convergence of the PARAFAC algorithm,
2 2 2 & 2
1Xi~ADB = | Xl D=1 X *~ L i (L)
Because ||Xk||2 is the sum of squares to be explained for occasion k, and

q q
IXkl>~trDi=| Xg|>~ ¥ ¢k is the unexplained part, it follows that ¥ cg
=1 =1

denotes the explained part, called fit for occasion k. Therefore, c:,
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denotes the sum of squares that component ! explains for occasion k.

Equation (1.7) can be proven as follows. For every stationary point of
PARAFAC(A,B,C) equation (1.6) holds. From A'A=Diag(B'B)=I, it {follows
that (A'A*B'B)=(I,*B'B)=Diag(B'B)=1,, and hence D,=Diag(A'X;B). Expanding
||X,C—AD,CB’||2 and substituting Dy for Diag(A'X,B) and I, for Diag(B'B) shows

that

| Xx—ADB'|*=tr XX, ~2tr X; AD, B +trDB'B

| Xx|I>~2trDiag(A'XB)Dy+trDiDiag(B'B)

IXi ) *~2trDi+trDg=|| X | *~trDf, (1.8)

which completes the proof.

From (1.8) it follows immediately that, upon convergence,
PARAFAC(A,B,C):kf;lnxk||’-||cu2. Analogously, it can be proven that, if
A'A=I,, Diag(C'C)=I, and PARAFAC has converged, then b?, is the sum of

squares that component [ explains for variable j, and we have

m
ParaFACAB.C)= B £ it £ 53] £ ixr-imr?, (19)

where X, denotes variable j at occasion k.
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1.4 Preprocessing the data before a PARAFAC analysis

Before one analyzes a three-way data array one will usually preprocess the
data in order to remove, for instance, unwanted constants, see Harshman
and Lundy (1984b, p.216) and Kruskal (1984). There are many methods to
preprocess a three-way array, see Ten Berge (1989) for a taxonomy. In the
present study, two preprocessing methods will be used. Both methods can be
seen as generalizations of standardizing variables prior to PCA. The first
method is to center within the occasions, that 1is, to center X,
k=1,...,p, column-wise, and to rescale the variables to unit length across

Xy

the occasions, that is, to rescale to unit length column-wise. The

Xp
second method is to center across the occasions and rescale the variables
to unit length across the occasions. These two preprocessing methods are
simple and can be applied to different types of data.

There are two other preprocessing methods that can be seen as
generalizations of standardizing variables prior to PCA. In a first method
the variables are centered within the occasions and scaled to unit length
within the occasions. In a second method the variables are centered across
the occasions and scaled to wunit length within the occasions. These
preprocessing methods are considered as ”not appropriate for the PARAFAC
model”, because the number of components tends to increase for such data
(Harshman & Lundy, 1984b, p. 246). In addition, it seems highly unlikely,
for such preprocessed data, that the components can have distinct
accentuation and reduction in influence. For this reason, these

preprocessing methods are not used in the present study.
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1.5 Interpretation of the PARAFAC components

In PCA followed by an oblique rotation a structure matrix, which contains
correlations between the variables and the components, is helpful for
interpreting or naming the components (Mulaik, 1972, pp. 101-102; Harman,
1976, p. 22), because it enables one to see which variables are similar to
the components. In definitions of the PARAFAC model a structure matrix is
lacking. Therefore, a structure matrix will be defined here. A structure
matrix may be defined per frontal slab as S;=X;AD,. If X, is centered
column-wise, then the elements of S, are covariances between the variables
of occasion k and the weighted components. Consequently, the PARAFAC
components can be interpreted directly on the basis of S, k=1,...,p, as
in PCA. In case p is large, a possibly prohibitive number of structure
elements must be considered. Fortunately, however, the components
AD,,...,AD,  are perfectly  congruent across the  occasions, and,
consequently, these components may be interpreted identically. Therefore,
a pooled structure matrix is defined as SskélX,;ADk. If the columns of X,
k=1,...,p, are centered within the occasions, and scaled to unit length
over the occasions, and A and C are scaled to unit length column-wise, and

the PARAFAC algorithm has converged, then the elements of S are

X,

correlations between the variables over the occasions, collected in |i |,

AD Xp

and the perfectly congruent components, collected in i |, as can be
AD,

shown as follows. From the fact that Diag(A'A)=Diag(C'C)=I, it follows

AD,
has unit length column-wise. From

that Diag( fD,A'AD,] 1, Hence,
=1 ADP
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the fact that A satisfies (1.4) and X, k=l,..,p, is centered

AD,

column-wise, it follows that A is centered column-wise. Hence, [ ] is
AD
P

X,
centered column-wise. By writing S=|!

AD,
: it can be seen that every
X,) \AD,

element in S is the product of two vectors that are centered and have unit

length, which completes the proof.

In case of orthogonal components, the structure matrix S and the pattern
matrix B coincide. That is, if A'A=I, and Diag(C'C)=I,, then from (1.5) it
follows that

-1

B=k):;1X,;ADk[li;lD,A’AD,) " s[ )::D?) . s(Diag(C'C)) - 5. (1.10)

This shows that, with the generalization of PCA to PFORTA, the property
that structure and pattern are equal is retained.

Because the pattern matrix B has coefficients of the variables on the
components one might want to use B as a basis for the interpretation of
the components, as suggested by Harshman and DeSarbo (1984, p. 627).
However, it can be argued that, analogously to the pattern matrix in PCA
after an oblique rotation, the components can only be interpreted

indirectly on the basis of B. This is because the elements of B are

Xy
regression weights in the regression of the variables, collected in |} |,
AD, Xp
on i |. So from the rows of B it can be seen how the variables are
AD '
P

optimally  reconstructed from the components. Therefore, if the
interpretation of the components is known, and the interpretation of the

variables is unknown, then the pattern matrix B may be used as a basis for
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the interpretation of the variables (cf. Brogden 1969; Gorsuch, 1983, p.
207). It can be concluded that the pattern matrix B has no direct
relationship with the interpretation of the components. The author prefers
S instead of B for the interpretation of the PARAFAC components. Because
it is quite current to use B for the interpretation of the PARAFAC
components, this matrix will be considered too. In the sequel, substantial
differences between S and B will be reported, whenever they are

encountered.

1.6 Degenerate PARAFAC solutions and how they can be avoided

Harshman and Lundy (1984b, p. 271) and Kruskal, Harshman and Lundy (1989)
report that the PARAFAC algorithm sometimes yields a degenerate solution,
which they describe in terms of seven criteria. Instead of repeating these
criteria, a definition will be provided that essentially covers these

criteria. Let

cosABC=cos(a;,ap)cos(b;,bp)cos(c,cp), (1.11)

where cos(a;,ap) denotes the cosine between columns ! and I’ of A, and
cos(b;,bp) and cos(c,cp) denote the cosines for the two corresponding
columns in B and C, respectively. A PARAFAC solution is degenerate if, for
certain | and ', the limit of cosABC, as the number of iterative steps

tends to infinity, is -1. So in case of degeneracy we can make cosABC as
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close to -1 as we please, by increasing the number of iterative steps.
This does not imply that cosABC can reach -1, which can be proven as
follows. Suppose that cosABC=-1, and that the rank of the matrix
(Xy|...|Xp) is greater than g¢-1. It can always be arranged that
Diag(A'A)=Diag(C'C)=I,, =1, =2, cos(a,,a,)=1, cos(b;,b,)=1 and
cos(¢,;,¢;)=~1. It follows that a;=a,, b;=Ab, for some scalar A>0, and

¢;=-¢,. Thus, for k=1,...,p, we have
0 q . . v q . [ 1 q .
ADB'= Elarckrbr=alck1bl+azck2b2+rzsarckrbr=a2ck2b2"az)‘ck2b2+ Eaarckrbr
r= = r=
=az(Ckz_’\ck2)bé+ri3arckrb1’" (1.12)

This shows that the PARAFAC representation of X; has at most rank g¢-1,
k=1,..,p. From this and the supposition that the rank of (X;|..|X,) is
greater than ¢-1 it follows that for these parameter matrices
PARAFAC(A,B,C)>0. This is because PARAFAC(A,B,C)=0 is incompatible with
having the rank of (X;|..|X,) greater than g¢-1, as will be shown now. If
PARAFAC(A,B,C)=0 then X,=ADB', k=l,..,p, and hence the rank of
(X,]...|X,) would equal the rank of (AD,B'|...|AD,B'). From (1.12) it
follows immediately that the rank of (ADB'|...|AD,B') would be less than
or equal to g¢-1, which is incompatible with having the rank of (X]|...|X,)
greater than ¢-1. Therefore, we have PARAFAC(A,B,C)>0.

From (1.12) and PARAFAC(A,B,C)>0 it follows that the PARAFAC loss function

can be further decreased by minimizing
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2

P q
v wi= £ | [e-astcu-rcwbi- 1 b -y (113)

where u, v, and w are of the same order as a;, b; and c¢;, respectively,
and f is a PARAFAC loss function with dimensionality 1. By taking, as the
first columns in A4, B and C, the minimizing u, v, and w of f
respectively, at least a lower value of the PARAFAC loss function can be
found (for the same dimensionality) than the value of the PARAFAC loss
function with cosABC=-1. Therefore, the value of the PARAFAC loss function
is not globally minimal if cosABC=-1, which proves that cosABC can never
reach 1.

The fact that cosABC cannot reach -1 implies that, in case of degeneracy,
PARAFAC(A,B,C) has no minimum, and hence the iterative process does not
converge to stable parameter matrices. The above definition of degenerate
components is in accordance with results presented by Ten Berge, Kiers and
De Leeuw (1988). They proved that PARAFAC(A,B,C) has no minimum for a
certain contrived 2x2x2 array that yields degenerate PARAFAC components.

It can easily be seen that, in case of degeneracy, it is impossible to
interpret the components consistently. That is, if cosABC tends to -1,
then it can be arranged that cos(a;ap) tends to 1, cos(b,bp) tends to
1 and cos(c,cy) tends to -1. So it may be assumed that cos(ajap) and
cos(b;,bp) are close to 1, and that cos(c,cp) is close to -1. But then
on the basis of A and B component ! and !’ should have the same
interpretations, whereas from C these components should have opposite
interpretations.

Of course, in practice the question arises, for what value of cosABC can
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it be said that the PARAFAC solution is degenerate? In the sequel it will
be said that the PARAFAC solution is degenerate, if it is found that
cosABC<-.85 and one additional step of the iterative process further
decreases cosABC. Of course, this is an arbitrary choice, but for
practical purposes it can be justified as follows. If cosABC<-.85, then
|cos(ajap)| >.85,  |cos(b,bp)|>.85 and  |cos(c,cp)| >.85,  where  |.|
denotes that the absolute value of (.) is taken. Clearly, the cosine of
the angle Dbetween two vectors equals Tucker’s (1951) congruence
coefficient for the same two vectors. Haven and Ten Berge (1977) have
found that components are judged as being ‘’virtually equal’ whenever
Tucker’s (1951) congruence coefficient for the loadings of two components
is above .85. So, if cosABC<-.85, then from two parameter matrices one
would conclude that the components concerned are virtually equal, whereas

from the third parameter matrix one would conclude the opposite.

Table 1.1 The wvalue of cosABC after wvarious numbers of iterative steps
from PARAFAC analysis of a 38x3x2 data-array.

Number of iterative steps 10 100 1000 10000
cosABC -.72 -.78 -.93 -.99
Value of PARAFAC(A,B,C) 0.690 0.676  0.666 0.666

To illustrate a PARAFAC analysis where a degenerate solution appears, the

*
results of a two-dimensional PARAFAC analysis of a three-way array  with

*The author is obliged to Fred Wolters who kindly made the data available.
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scores of 38 persons on three variables measured at two occasions are
reported, see Table 1.1. Prior to the analysis the data were centered
within the occasions and scaled to unit length over the occasions.

From Table 1.1 it can be seen that cosABC decreases, as the number of
iterative steps increases. This suggests that cosABC tends to -1 as the
number of iterative steps tends to infinity and hence that this PARAFAC
solution is degenerate.

To avoid a degenerate solution, Harshman and Lundy (1984b, p. 274) suggest
constraining one parameter matrix, for example A4, to be column-wise
orthonormal. Clearly, PFORTA cannot yield a degenerate solution because
having A'A=I; implies that the value of cosABC is fixed to zero for all
pairs of columns of the parameter matrices. It is clear that a degenerate
solution can also be avoided by subjecting B or C to the column-wise
orthonormality constraint. In the next chapters, it will be demonstrated
that imposing other constraints than orthonormality constraints also has

the effect of avoiding degenerate components.

1.7 Uniqueness of the PARAFAC components

The most salient property of the PARAFAC model is its uniqueness. Jennrich
(see Harshman, 1970, pp. 61-62) has first established certain sufficient
conditions for uniqueness. Harshman (1972) has relaxed these conditions.
He proved that, under certain conditions, the PARAFAC representations of

the frontal slices are unique up to an arbitrary simultaneous permutation
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of the columns in the parameter matrices and an arbitrary scaling of the
columns in two of the parameter matrices. In particular, let the matrices

A, B and C, all of the same order as before, be given such that

X,=AD,B', (1.14)

k=1,...,p, where A and B have full column rank, D; is non-singular, and
for some matrix D; all diagonal elements of D,'D;1 are distinct. This
condition will be called Harshman’s condition. Let /*1, B and C also satisfy
(1.14), where Z; 1*3 and (*J are of the same order as A4, B and C. If
Harshman’s condition is satisfied, then A=AMlA, B=BIIA, and C=CIIA, for
certain diagonal matrices A,, A, and A; such that A A4A.=I,, and a certain
permutation matrix /I. This equivalence result pinpoints uniqueness in
PARAFAC. In case ¢=1 it can readily be verified that Harshman’s
(sufficient) condition for uniqueness is satisfied for all non-zero A, B
and C, hence there is uniqueness in this case. For the other cases, with
¢>1, Kruskal (1977), see also Kruskal (1989), has proven more relaxed
conditions for uniqueness based on the concept of k-rank. Specifically, an
nxq matrix A is said to have a k-rank k, if all sets of k, columns in A
are linearly independent and there is at least one set of k,+1 columns in
A that is linearly dependent. Let k;, and k. denote the k-rank of B and C,
respectively. Theorem 4a of Kruskal (1977) states that the condition
kotkytk.>2g+2 is sufficient for uniqueness.

By noting that, for k,=k,=¢ and k.1, satisfaction of Harshman’s condition

implies satisfaction of Kruskal’s condition, it is clear that Kruskal’s
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condition contains Harshman’s condition as a special case if kx>1. To
clarify the above sufficient conditions for uniqueness, it is instructive
to consider a few cases. From Harshman’s condition it already follows that
it is not necessary for uniqueness that all the parameter matrices have

full column rank. For example, consider the case ¢=3, with A and B

112 L 100
of rank 3, and C=|1 2 3| of rank 2. Now, D;D; =[{0 3 0| has distinct
13 4 002

diagonal elements. Hence, these parameter matrices satisfy Harshman’s
sufficient condition for uniqueness.

From Kruskal’s condition it can be seen that there can be uniqueness even
if none of the parameters matrices has full rank. For exarﬁple, in case ¢=5
with all parameter matrices having k-rank = 4 = ¢-1, it follows that
ko +kytk.=3(g-1)=2¢+2 and hence Kruskal’'s condition is satisfied. This
exemplifies uniqueness in a case where none of the three parameter
matrices has full rank. Clearly, in this case Harshman’s condition is not
satisfied whereas Kruskal’s condition is satisfied. This illustrates that
Kruskal’s condition is more relaxed than Harshman’s condition if ¢>1. For
practical purposes it is convenient to realize that, in case the para.meterw
matrices have full rank, there is uniqueness because k,=k,=k.,=¢, and hence
kotkytk.=39>2¢+2 if ¢>1.

Having clarified the above sufficient conditions for uniqueness the
question arises: What are necessary conditions for uniqueness? In section
2.1 it will be shown that having k-rank>1 for all parameter matrices is

necessary for uniqueness if ¢>1.
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1.8 Problems with PARAFAC: The meaning of uniqueness

A first problem with PARAFAC to be discussed in the present study is
related to uniqueness, as follows. Let 4, B and C minimize PARAFAC(A,B,C)
and let )?k=ADkB' denote the representation of frontal slice k of X,
k=1,...,p. All available sufficient conditions for uniqueness critically
depend on the assumption of fixed representations )A(k, k=1,...,p, of the
frontal slices. This means that uniqueness only pertains to uniqueness
given the representations. So the uniqueness considered above does not
exclude the existence of parameter matrices that minimize PARAFAC(A,B,C)
but yield different representations. This will be illustrated by a first

example.

300
Suppose that X;=PA,Q" and X,=PA,Q' (P'P=Q'Q0=00Q'=I,), with A= [0 2 0]

200 002
and A= [0 1 0|. Note that X,;=PA,Q" and X,=PA,Q' are the SVD’s of X; and
001

X,, respectively, and that the second and third singular values are equal,
both for X; and X,. Now it can be demonstrated that there are at least two
different solutions that minimize PARAFAC(A4,B,C) in two dimensions. Let p,
and q, denote column r of P and Q, respectively, r=1,2,3. We have a first

solution A=(p,,p2), B=(q;,q9;) and C= [g ?], and a second solution

A=(p,,P3), B=(q;,q5) and C=(g ?) Both solutions approximate X; and X, as
close as two separate PCA analyses, and hence optimally approximate the
frontal slabs in two dimensions (Eckart & Young, 1936). Therefore, in both
cases the PARAFAC loss function is globally minimal. In both solutions the

parameter matrices have full column rank, so both solutions are unique.

Furthermore, they cannot be transformed into each other by scalings and
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permutations. This demonstrates that uniqueness given the representations
does not exclude the existence of alternative parameter matrices that
minimize PARAFAC(A4,B,C) but yield different representations. This case of
non-uniqueness is very unlikely to occur in practice. What is more likely
to happen in practice is that the uniqueness occurs up to some small
constant. This will be illustrated by a second example.

Suppose that a PARAFAC analysis yields an A and a B with full column rank

1 1

and C=(1 lee

), with e close to zero. Then Harshman’s conditions are
satisfied, so there is uniqueness. In such a case it can be seen that
there are PARAFAC parameter matrices that almost minimize PARAFAC(A,B,C),
as follows. Clearly, D;=I, and D, is almost equal to I,. Therefore, by
taking AB' to represent both X, and X,, the data are represented almost as
well as when X, and X, are represented by AD,B' and AD,B’', respectively.
For the representations AB' we have AB’=AT(T)_lB', which  implies
rotational freedom. In this case the uniqueness may be considered to be
weak, as there are infinitely many representations that fit the data
almost as well as PARAFAC does. On the other hand, the uniqueness may be
called strong in case there are no alternative components that fit the
data almost as well as PARAFAC does. Here a first problem that arises is,
how it can be determined, to what extent, for any particular data set, the
PARAFAC components are unique.

In the above, the concept of uniqueness is interpreted as a gradual
concept in the sense that uniqueness exists to a certain extent. Clearly,
this practical interpretation differs from the mathematical interpretation

of uniqueness which is a matter of all or nothing: A certain PARAFAC
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representation is either unique or it is not.

In case of weak uniqueness a second problem arises. To see this, PCA will
be reconsidered. In past decades, various rotations have been developed.
For instance, rotation according to the VARIMAX criterion (Kaiser, 1958)
is commonly used after a PCA, to find components that have structure
elements (also called loadings) that have simple structure in the sense
that the loadings are either close to zero or close to -1 or 1. In this
way components are found which allow for an easier interpretation and at
the same time provide a more parsimonious representation of the data.
However, PARAFAC uniqueness implies that, up to arbitrary scalings and
permutations, there are no rotations (or transformations) such that the
residual matrices remain the same. In case uniqueness is weak, this
absence of rotational freedom may detract from the usefulness of PARAFAC
for the purpose of exploratory or confirmatory analysis of three-way data.
Specifically, in such a case the question arises: Can other components be
found that allow an easier interpretation and represent the data almost as
well as the PARAFAC components? This question will be answered by using
certain constrained versions of PARAFAC. In fact, the present study will

be largely devoted to these constrained versions of PARAFAC.

1.9 The purpose and the organization of the present study

The present study has two main purposes. For many data sets it seems

rather difficult or even impossible to know in advance whether or not the
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PARAFAC model will be appropriate in the sense that the importance of the
components will indeed be accentuated or reduced from occasion to
occasion. In other words, it seems difficult for many data sets to know in
advance whether or not the PARAFAC components will be strongly unique. The
first purpose is to show how, for any particular data set, it can be
determined to what extent the PARAFAC components are unique. The second
purpose is to show how, in case of weak uniqueness, the PARAFAC method can
be modified to the effect that a simpler representation of the three-way
data can be found in the sense that its components allow an easier
interpretation. Both purposes will be attained by subjecting the PARAFAC
parameter matrices to certain constraints.

In general, it seems desirable that (constrained) PARAFAC components are
stable, for instance, in the splithalf sense. Specifically, in case of
weak uniqueness it can be expected that the PARAFAC components are not
very stable. Likewise, the stability of constrained components is of
interest. In all exemplary analyses, the splithalf stability of the
PARAFAC components will be compared with that of the constrained PARAFAC
components.

In case of weak uniqueness, it seems indicated to rotate the components
(columns of A) to determine components that are easier to interpret. In
the present study, rotation of the PARAFAC components will not be
considered, for the following reason. Rotating the columns of A means
that, in the search for components with simpler interpretations, we limit
ourselves to the column space of the representations of the frontal

slices. Fortunately, we can obviate the limitation by subjecting the
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PARAFAC parameter matrices to certain constraints. Specifically, by using
constraints it is possible to seek for easier interpretable components,
not only within the column space of A4, but over all possible solutions
that satisfy the constraints under consideration.

The organization of the present study is as follows. The second chapter
deals with the question how to determine, for any particular data set, to
what extent the PARAFAC components are unique. It is proposed to answer
this question by studying the discrepancy between the residual sum of
squares of PARAFAC and the residual sum of squares of a constrained
PARAFAC method that has two proportional columns in one of the parameter
matrices. In case this discrepancy is small, it is concluded that the
uniqueness is weak. This way of examining the uniqueness of the PARAFAC
components will be illustrated by the analysis of several empirical data
sets and it will be compared with splithalf analysis which can be seen as
a different way of examining the uniqueness.

The third chapter deals with a question that is suggested by some of the
results of Chapter 2: Can the data be represented satisfactorily by
components with the same relative importances from occasion to occasion?
In order to answer this question, a constrained PARAFAC method will be
introduced, called Weighted PCA, that has proportional columns in the
occasions matrix C. An efficient algorithm for Weighted PCA will be
developed. This algorithm will be employed to illustrate that certain data
sets can indeed be represented satisfactorily by components with the same
relative importances from occasion to occasion. It will be shown that

Weighted PCA has a number of properties, like, for instance, rotational
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freedom. It will be illustrated how this rotational freedom can be used in
order to find components that allow for an easier interpretation than the
PARAFAC components.

The fourth chapter starts with a demonstration of the role of rotational
freedom when so-called positive manifold data (the term positive manifold
was coined by Thurstone, 1947, p. 216) are analyzed by PCA. It is
illustrated that VARIMAX rotation tends to yield components that have no
elements in the structure matrix that contrast in sign. It is explained
that such components without contrast allow for an easier interpretation
than components with contrast. For three-way positive manifold data it is
illustrated that PARAFAC may yield components that do have contrasting
structure and/or pattern elements, and hence these components are more
difficult to interpret than components without contrast. This raises the
question whether or not there are constrained PARAFAC components without
contrast that represent the data (almost) as well as the unconstrained
PARAFAC components? To answer this question a constrained PARAFAC method
is proposed that finds optimal PARAFAC components without contrast.

The fifth chapter deals with questions concerning components that
correspond to non-overlapping clusters of variables. It is illustrated
that PARAFAC components need not correspond to such clusters of variables.
In practice, confirmatory and exploratory research questions arise about
components that correspond to non-overlapping clusters of variables. That
is, if a researcher has a hypothesis about a partitioning of the variables
into non-overlapping clusters, then the question arises whether or not

this hypothesis is sustained by the results of a PARAFAC analysis
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(confirmatory research question). On the other hand, an exploratory
question arises if a researcher merely wants to see whether or not the
variables can be clustered at all. Because PARAFAC components need not
correspond to non-overlapping clusters of variables, PARAFAC is not an
appropriate method for answering either of these questions. In order to
answer these questions, two constrained PARAFAC methods are proposed, one
for each of the research questions.

In the last chapter an overview is presented of a number of constrained

PARAFAC methods and some general conclusions are drawn.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

