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Introduction to the Medicinal Chemistry

of Schizophrenia

1.1  Schizophrenia

Schizophrenia is one of the most common psychiatric disorders and approximately 1 % of the

worlds population suffer from severe symptoms occupying more than half of the beds in psychiatric

clinics. Schizophrenia is distributed over the whole population independent of sex, location, social

class or color of the skin. A schizophrenic patient is frequently described as a person with a “Dr

Jekyll and Mr. Hyde” personality, but the diagnosis of schizophrenia is more complex than that.

Generally, the symptoms are divided into two classes: positive (reality distortion) and negative

symptoms (psycho-motor poverty syndrome).1 Each patient is different and could suffer from more

or less of positive or negative symptoms. The positive symptoms, e.g., delusions, hallucinations,

grandiosity, excitement, hostility and disorganization are more easily identified, as compared to the

negative symptoms. Examples of negative symptoms are apathy, attentional impairment, affective

blunting, asociality, poverty of speech and anhedonis that may be difficult to distinguish from either

depression or side effects caused by medication with typical antipsychotic drugs.2,3

Approximately half of the schizophrenia patients will experience periods with severe depression

during the course of their illness. Consequently, the detection of depressive symptoms4 is very

important, since, about 7 %–10 % of all schizophrenia patients commit suicide.5

+ Treatment of Schizophrenia

The diagnosis of schizophrenia is just as complex as the medication to suppress the symptoms.

There is no real cure against schizophrenia and most patients are bound to medication for the rest of

their lifes. The drug of choice is more often a trade-off between clinical efficacy and EPS (Extra

Pyramidal Syndrome) or other side-effects. EPS are the side-effects, e.g., major movement disorders

elicited by typical antipsychotic drugs. In general, low-potency drugs, e.g., chlorpromazine (1) or

thioridazine (2), are more sedative and hypotensive than high-potency drugs, e.g., fluphenazine (3)

and haloperidol (4) which, in turn, produce more EPS than low-potency agents.

1
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Thus, patients that are highly agitated and excited may be better off with a drug as

chlorpromazine. On the contrary, if there is no need for sedation and no history of unusual sensitivity

to EPS, high-potency drugs as haloperidol (4) or fluphenazine (3), are most likely prescribed.

Recently, risperidone (5) at fixed doses of 2, 6 and 16 mg/day, has been reported to have higher

efficacy and elicit fewer EPS than haloperidol (4).6,7 It was found that risperidone,7 at daily doses of

6 mg, was more effective than haloperidol and placebo against both negative and positive subscales

of PANSS (Positive and Negative Syndrome Scale).8 At higher doses, no advantage of risperidone

over haloperidol was demonstrated. In the same investigation,7 it was shown that risperidone can

suppress TD (Tardive Dyskinesia) but whether it was superior to other typical neuroleptics was not

clear.
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Just as risperidone (5), clozapine (6) belongs to the new generation of antipsychotics often

classified as atypical. An atypical antipsychotic drug produce, by definition, fewer EPS than typical

antipsychotics and clozapine is the compound used as reference for new antipsychotics. The

advantages of clozapine (6) over classical antipsychotics are manifold: a) it is effective in the

treatment of both positive and negative symptoms9; b) it is more effective in treatment-refractory

patients10,11 and c) it produces fewer EPS.9,12 However, clozapine is also an example of what often is

referred to as a “dirty drug” since it has affinity to a large number of different receptors (see Table

1.1). As a consequence, side-effects like hypersalivation (may be due to peripheral drug actions)13

and weight gain14 must be considered. In addition, agranulocytosis,15 a potentially fatal blood

disorder has been observed in patients medicated with clozapine.

Figure 1.1 The nigrostriatal and the mesolimbic systems. The presynaptic part of the nigrostriatal system originates
in A9 and A8 and its axons terminates, mainly, in the forebrain. The mesolimbic system, runs parallell to the
nigrostriatal system, and originates in the VTA (A10) with projections to a number of areas, e.g., accumbens, septum
and cerebral cortex (frontal, cingulate and enthorinal).

Olanzapine (7, LY170053)16,17 is a novel atypical antipsychotic with similar binding profile as

clozapine (Table 1.1). In studies of schizophrenic patients,18 olanzapine was demonstrated to be

effective in the treatment of both negative and positive symptoms with few EPS. Additionally, the

potency of olanzapine in reversing the effects of d-amphetamine was greater, as compared to

clozapine.16 (The reversal of the inhibitory effects of d-amphetamine on A10 cells [Figure 1.1] has

been hypothesized to be predictive of clinical antipsychotic efficacy).19 These findings are consistent

with the fact that olanzapine is a DA D2 antagonist in vivo,17 and is more potent at DA D2

receptors17 in vitro, as compared to clozapine (Table 1.1).
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Table 1.1 Receptor affinity for a selection of drugs used in the treatment of schizophrenia. All
values are Ki (nM).

receptor

D1 32 32 5 10 75 85 31

D2L 3 8 1 0.5 1.5 60-150 11

D2S 0.5 1.5 35 11

D3 ~4 2 2 7 300

D4 34 31 2 7 9-54 27

D5 27 35-400

5HT1A 3635 643 1714 16 875 >10000

5HT2A 7 48 52 74 0.6 8 5

5HT2C 12 60 295 5755 16 12 23

5HT6 4 7 17 >5000 425 4 2.5

5HT7 21 70 8 263 1.4 6 104

M1 25 3 1700 >3000 2 2

M2 150 14 2500 >3000 21 18

M3 67 15 >3000 >3000 13 25

M4 40 9 2700 >3000 12 13

M5 42 13 1800 >3000 3.7

H1 3630 >10000 6 7

α1 ~5 ~7 46 >10000 7 19

α2 360 2904 8 228

β1 >10000 >10000 >10000 >10000

Binding data are obtained from the following references:17,20-28

+ The Dopamine Hypothesis of Schizophrenia

Extensive research during the last decades, have given rise to many different hypotheses over the

pathophysiology of schizophrenia. In 1963 Carlsson and Lindquist29 reported that neuroleptics, e.g.,

chlorpromazine (1), increase dopamine (8) and noradrenaline (9) turnover in rat brain, and

postulated that this effect is caused by blockade of catecholamine receptors. These findings form the

basis of the DA hypothesis of schizophrenia. Accordingly, it was found that DA agonists can induce

psychosis similar to acute paranoid schizophrenia30,31 and that neuroleptics inhibit dopaminergic

activity.32-34 Based on the fact that dopamine-mimetic drugs elicit hallucinations, and that other

neuroleptics cause rigidity, Van Rossum35 suggested that schizophrenia may be caused by

overactivity in certain dopaminergic pathways.36 As further support of the DA hypothesis, the clinical

doses of neuroleptics and antipsychotics were found to correlate very well with their ability to block

DA D2 receptors.37,38 Furthermore, the correlations between the clinical efficacy of neuroleptic drugs
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and the in vitro binding affinity of the muscarinic cholinergic, histaminergic (H1), serotonergic (5-

HT2) and α1 receptors, were poor.39

There are two major dopaminergic neuronal systems that project in the forebrain: the

nigrostriatal (A9) and the mesolimbic (A10) systems (Figure 1.1). Parkinsonism is a consequence of

degeneration of neuronal pathways in the A9 system, and EPS induced by treatment with typical

antipsychotics is caused by blockade of dopamine receptors in the same system. Consequently, it was

postulated that the symptoms of schizophrenia originated from hyperactivity in the mesolimbic

dopaminergic systems (A10).34,40

In agreement with the DA hypothesis is the clinical observation that patients with Parkinson’s

disease do not develop schizophrenia.38

+ Serotonin Hypothesis of Schizophrenia

The first indications that serotonin (10, 5-HT) might be involved in the pathophysiology of

schizophrenia came with the discovery that certain ergots (e.g., lysergic acid diethylamide (11)), with

structural resemblance to 5-HT, were hallucinogenic and induced many of the symptoms of

schizophrenia.41

Today, several atypical antipsychotic drugs (e.g., clozapine (6), olanzapine (7) and risperidone

(5)) with affinity to one or several serotonin receptor subtypes (Table 1.1) are known. Clozapine for

example, the prototypical atypical antipsychotic drug, has been shown to have high affinity towards,

at least, four different serotonin receptors including 5-HT2A, 5-HT2C, 5-HT6 and 5-HT7.
20,24,26,42

Meltzer et al.,26 however, showed that most putative atypical antipsychotic drugs could be classified

by their 5-HT2A/D2 affinity ratios.

It has been found that full or partial 5-HT1A agonists reverse catalepsy in rat.43,44 Catalepsy in the

rat is predictive for extrapyramidal side-effects in man.45

+ Muscarinic Hyperactivity in Schizophrenia

Tandon et al.46 suggested that hyperactivity of muscarinic cholinergic receptors had a role in the

pathogenesis of negative symptoms of schizophrenia. Their observations showed that unmedicated

schizophrenics displayed symptoms, (e.g., reduced pain perception, hyper-salivation and increased

NH

NH2

OH

NH

N

CONEt2

OH

OH
OH

NH2

OH
OH

NH2

   8 dopamine; DA   9 noradrenaline; NA     10 serotonin; 5-HT      11 (+)-LSD



Chapter 1

6

water intake), which resemble a muscarinic receptor hyperactive state. Occasionally, anti-cholinergic

drugs have been reported effective in treating negative symptoms of schizophrenia.47,48 It was not

clear, however, whether the negative symptoms of schizophrenia or the neuroleptic induced EPS,

were reduced.

Since the atypical antipsychotic drug clozapine (6), has high affinity towards all five muscarinic

receptors (Table 1.1), one may predict that the degree of atypicality is related to its cholinergic

activity. However, Bolden et al.27 could not find any clear pattern in their investigation. Taken

together, according to the investigations of Boldens et al.27 and others,11,49,50 it is not clear whether

anticholinergic activity is essential for an atypical antipsychotic drug or not.

+ The Noradrenaline Receptor

The relationship between noradrenaline (9, NA) and schizophrenia was first studied by Stein et

al.51 in 1971. However, significant and reproducible research established a relationship between NA

levels in the limbic forebrain and the intensity of the schizophrenic symptoms first in 1990.52 Recently

Breier et al.53 demonstrated a direct correlation between the ability of clozapine (6) to elevate plasma

NA levels with its ability to improve positive symptoms of schizophrenia. As yet, no selective drugs

towards the α1, α2 or β receptors with high efficacy in man have been reported.54

1.2  Molecular Biology of Dopamine Receptors

Until now, five central dopamine receptor subtypes have been discovered, distributed with the

highest concentrations in the putamen, caudate nucleus and the nucleus accumbens. As can be seen

in Figure 1.2, the different dopamine receptor subtypes are not homogeneously distributed in the

brain. Instead each subtype is concentrated in specific small areas. Generally, three major dopamine

pathways38,55 are discussed: the nigrostriatal, the mesolimbic and the tuberoinfundibular pathways.

The first two pathways (Figure 1.1) control voluntary movement and regulate emotional behavior,

respectively. The tuberoinfundibular pathway regulates the secretion of prolactin from the pituitary,56

and is thus, not mentioned in the context of schizophrenia. The nigrostriatal pathway (A9) has

cellbodies in the substantia nigra, with long axons projecting in the corpus striatum (Figure 1.1).

The abundance of DA D1 and D2 receptors57-60 in the nigrostriatal system is high while the presence

of DA D3 receptors is very low.55,61 Instead, high concentration of mRNA for the DA D3 receptors

are found in the limbic areas55,61,62 (Figure 1.2), suggesting DA D3 receptors to be involved in

emotional and cognitive disorders (e.g., schizophrenia). The mesolimbic neuronal pathway (A10) has

cellbodies in the ventral tegmental area (VTA) of the brainstem, with cells projecting in the limbic

system (Figure 1.1).
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 D1   D5     D2        D3 D4

Figure 1.2 The distribution of dopamine receptors in the human brain as determined by the concentrations of mRNA
for the respective receptor subtypes in the different brain areas.

+ G Protein-Coupled Receptors

The dopamine receptors belong to a class of proteins normally referred to as the G protein-

coupled receptor (GPCR) superfamily. To date, no X-ray crystallographic structure of a GPCR is

resolved, but along with molecular cloning and receptor binding studies the amino acid sequence of

all five human DA receptors have been elucidated (Table 1.2). In 1993, Schertler et al.63 provided

evidence that the bovine rhodopsins, G protein-coupled receptors active as the photoreceptors in rod

cells, were arranged in seven α-helices. In 1990, Henderson et al.64 presented a high quality 3D

model of bacteriorhodopsin, also a G protein-coupled receptor, based on cryo-microscopy

experiments. Further refinements of this model have recently been published by Grigorieff et al.65,

Unger et al.66 and Kimura et al.67 The latter group collected structural data from bacteriorhodopsin

crystals at 3.0 Å resolution with 90 % completeness using electron cryo-microscopy. Although the

function of bacteriorhodopsin is different from rhodopsin both proteins bind retinal in a similar way,68

and have similar topology with seven transmembrane helices.

The receptor protein may be folded through the cellular membrane forming seven hydrophobic

trans-membrane α-helices connected, alternately, via intra- and extra-cellular loops. The amino

terminal (N-terminal) and the carboxylic terminal (C-terminal) of the receptor protein reside at the

extra- and the intracellular sides of the cell-membrane, respectively.

The intrinsic activity of a DA agonist is mediated by a signal transduction across the cellular

membrane. That is, the drug-receptor interaction most probably induces a conformational change in

the receptor protein which in turn, activates a G protein coupled to the third intracellular loop.54,69

Accordingly, the activated G protein stimulates (or inhibits) adenylyl cyclase (see Table 1.2) to
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MAO

produce cAMP (a so-called second messenger) from AMP (Figure 1.3), which influences various

processes in the cytosol.

Figure 1.3 Schematic representation of a pre and post-synaptic dopaminergic cell.

The third intracellular loop exhibit the largest sequence dissimilarities among the different DA

receptors. The DA D1 and DA D5 receptors have relative short third intracellular loops, are coupled

to Gs proteins and have long C-terminal tails. These two receptors, the D1-like receptors, stimulate

the activity of adenylyl cyclase and the pharmacological functions from known ligands are more or

less, identical.54,61 The D2-like receptors, i.e., D2, D3 and D4 receptors on the other hand, all have

long third intracellular loops with short C-terminal tails, might couple to Gi proteins (or G0 proteins)

and inhibit adenylyl cyclase. Interesting, two forms of the DA D2 receptor have been found, differing

in 29 amino acids in the third intracellular loop,70-72 and seem to have identical pharmacology but

their presence in various cerebral tissues differ.70,73 Hence, a difference in functionality is likely still to

be found. The long and the short forms of the D2 receptor (i.e., D2L and D2S) consist of 443 and 414

amino acid residues (see Table 1.2), respectively. The genes of the dopamine receptor superfamily

can be divided into two different categories: 1) intronless genes that codes for the D1-like receptors

and 2) genes with their coding sequences in discontinuous DNA segments (exons) separated by

sequences (introns) that do not form a part of the mature mRNA. The latter category of genes are

found in the D2-like family of dopamine receptors, which explains the occurrence of a long and a

short form of the DA D2 receptor. In the biosynthesis of mRNA a mechanism called alternative
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splicing, in which a given exon in the pre-mRNA is either present or absent in the final mRNA, result

in two different proteins coded by the same gene.61

Table 1.2 Specifics of the human DA receptors.

D1 D5 D2L/D2S D3 D4

# a.a. 446a 477b 443c/414 400d 467e

mRNA
location

neostriatum hypothalamus,
hippocampus

neostriatum isl. of Calleja,
n. accumbens

frontal cortex,
hippocampus

adenylyl
cyclase

stimulates stimulates inhibits ? inhibits

agonists SKF38393 (36)
SKF82958 (37)

SKF38393 (36) bromocriptine (12) PD128907(13)f

7-OH-DPAT (25)
PD1(16)g

antagonists SCH23390 (35) SCH23390 (35) haloperidol (4) AJ76(14)h

UH232(15)h
clozapine (6)
PD2(17)i

a Ref.57,59,60,74; b Ref.75-77; c Ref.72,78-86; d Ref.87-89; e Ref.90-93; f Ref. 94; g Ref.95; h Ref. 96; i Ref.97
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1.3  Computer-Assisted Molecular Design

The last decade new tools have become available for drug design including computational

chemistry, high-throughput screening98,99 and combinatorial chemistry.100-102 Still, no matter how

advanced our technology have developed or how fast new compounds can be synthesizes and tested,

a medicinal chemist simply has two major questions to answer: Do I understand the structure

activity-relationship for this series of compounds and which compound should I synthesize next? In

order to provide answers to these questions two general work procedures are followed. First, one

may try to build a 3D model, e.g., homology modeling of the target protein and, accordingly, dock

ligands into the active site of the protein. Simply, a potent ligand fits into the receptor while an

inactive ligand does not. The second approach is more basic where ligands, initially, are

superimposed on mutual tentative interaction points (e.g., lone pair of electrons and midpoints of

aromatic rings) with the receptor. Consequently, attempts to explain the potency of the ligands by

comparison of their structures and their relative 3D orientations can be done.  This approach is

generally called an “active analogue approach”103 or structure-activity relationship (SAR).

+ Homology Modeling

Until recently, we had no knowledge about the amino acid sequence and less knowledge about

the secondary structure of G protein-coupled receptors (GPCRs). Therefore, computational chemists

have utilized the structure elucidated for bacteriorhodopsin (see above), although the sequence

homology is poor, to create 3D models of GPCRs.92,104-107 Recently, the dopamine D2 receptor was

constructed68 based on the coordinates from bacteriorhodopsin108 itself.

The first problem in GPCR modeling is to determine which amino acid residues that reside in the

transmembrane domains, or stated differently, the alignment of the seven helices. Computer

programs107,109,110 that can perform this kind of alignment, are available. The dopamine receptors

presented in Table 1.3 were downloaded from EMBL in Heidelberg111 and aligned using the ‘whatif’

program.112 The alignments were by no means perfect and refinements were applied manually as

presented in Table 1.3.

Dopamine agonists are believed to interact with the third and the fifth transmembrane domain,

while antagonists additionally interact with the seventh domain as reviewed by Savarese et al.113 and

Teeter et al.68 The endogenous neurotransmitter, dopamine (8), most likely interacts with three

amino acid residues68,107 located at helices three and five. The protonated nitrogen forms a salt-
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bridge with Asp114 on helix three while, simultaneously, hydrogen bonds are formed between the m-

and p-OH and Ser194 and Ser197 on helix five, respectively.

From Table 1.3 it is also clear that these amino acid residues are preserved in all five receptor

subtypes, supporting this hypothesis. (In order not to confuse, the numbering of the amino acid

residues starts with number one from the extra-cellular end, and is valid for the DA D2L receptor if

not stated otherwise.) Trump-Kallmeyer et al.107 also suggested that the OH-group from Tyr416 on

Table 1.3 Transmembrane domain amino acid sequences from the five dopamine receptor proteins. Alignment was
originally taken from EMDL but was refined, manually, to obtain maximum sequence overlap between the receptors.

TM1
D2 A T L L T L L I A V I V F G N V L V C M A V S
D3 A L S Y C A L I L A I V F G N G L V C M A V I
D4 L V G G V L L I G A V L A G N S L V C V S V A
D1 A C F L S L L I L S T L L G N T L V C A A
D5 A C L L T L L I I W T L L G N V L V C A A

TM2 Asp80

D2 L I V S L A V A D L L V A T L V M P W V V Y L E
D3 L V V S L A V A D L L V A T L V M P W V V Y L E
D4 S V I V S L A A A D L L L A L L V L P L F V Y
D1 F F V I S L A V S D L L V A V L V M P W K A V A E
D5 V F I V S L A V S D L F V A L L V M P W K A V A E

TM3       Asp114

D2 I F V T L D V M M C T A S I L N L C A I S I
D3 V F V T L D V M M C T A S I L N L C A I S I
D4 A L M A M D V M L C T A S I F N L C A I S V
D1 N I W V A F D I M C S T A S I L N L C V I S V
D5 V W V A F D I M C S T A S I L N L C V I S V

TM4
D2 V T V M I S I V W V L S F T I S C P L L F G L
D3 V A L M I T A V W V L A F A V S C P L L F G F
D4 Q L L L I G A T W L L S A A V A A P V L C G L N
D1 A A F I L I S V A W T L S V L I S F I P V Q L S W
D5 V M V G L A W T L S I L I S F I P V Q L N W

TM5       Ser194           Ser197Phe198

D2 P A F V V Y S S I V S F Y V P F I V T L L V Y I
D3 P D F V I Y S S V V S F Y L P F G V T V L V Y A
D4 Y V V Y S S V C S F F L P C P L M L L L Y W
D1 T Y A I S S S V I S F Y I P V A I M I V T Y T
D5 T Y A I S S S L I S F Y I P V A I M I V T Y T

TM6      Phe390

D2 M L V A I V L G V F I I C W L P F F I T H I L N
D3 M V A I V L G A F I V C W L P F F L T H V L
D4 V L P V V V G A F L L C W T P F F V V H I
D1 T L S V I M G V F V C C W L P F F I L N C I L
D5 T L S V I M G V F V C C W L P F F I L N C M V

TM7 Tyr416

D2 V L Y S A F T W L G Y V N S A V N P I I Y T T F
D3 A T T W L G Y V N S A L N P V I Y T T F
D4 P R L V S A V T W L G Y V N S A L N P V I Y T
D1 F D V F V W F G W A N S S L N P I I Y A F N
D5 F D V F V W F G W A N S S L N P V I Y A

A Ala; C Cys; D Asp; E Glu; F Phe; G Gly; H His; I Ile; K Lys; L Leu; M Met; N Asn; P Pro; Q Gln; R Arg; S Ser;
T Thr; V Val; W Trp; Y Tyr;
TM3: Asp114, TM5: Ser194 Ser197 (white rectangles)68,107,116

TM6: Phe390, TM5: Phe198, TM7: Tyr416 (light grey rectangles)107

TM2: Asp80 (dark grey rectangle)61,68,73,107
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helix seven helps to stabilize the transmitter-receptor complex by interacting with the charged

dopamine nitrogen. Another interesting feature is the narrow aromatic cleft, defined by Phe390 on

helix six and Phe198 on helix five, that may interact with the flat aromatic part of catecholamine

related ligands.107 Finally, site-directed mutagenesis study have shown73,114,115 the importance of

Asp80 in the regulation of D2 affinity for drugs, coupling to adenylate cyclase and sensitivity to Na+

and pH. Sodium decreases the binding of D2 agonists (e.g., dopamine (8))114,115 and increases binding

for some substituted benzamides (e.g., epidepride (18) and sulpiride (40))114,115 but does not affect

binding of other D2 antagonists (e.g., spiperone (19)).68,115 This amino acid residue, Asp80, is

preserved in all five dopamine receptors (see Table 1.3) and Teeter et al.68 called it the ‘sodium site’.

+ Structure-Activity Relationships (SAR)

Although homology modeling is a direct consequence of recent analytical refinements (e.g.,

cloning, crystallization and X-ray techniques) and increased computer efficiency the technique is not,

as yet, able to explain the structure-activity relationship (SAR) for most ligands. Computer models of

receptors cannot, for instance, account for the obvious flexibility of the receptor protein, nor predict

the conformational change of the receptor caused when an agonist binds to the active site. There are,

simply, to many uncertain parameters that we cannot simulate. Therefore, traditional methods where

the activity and inactivity of ligands are explained by superimposition of mutual and possible

interaction points with the receptor, are as valid today as for ten years ago. This approach is,

generally, referred to as “the active analogue approach”,103 upon which many recent computational

methods rely (e.g., CoMFA117). During the last two decades several attempts to construct models

that can explain the SAR of dopamine receptor ligands have been presented. In the following, a

review of the most successful agonist and antagonist models will be given, and the SAR of

dopaminergic compounds will be discussed.

+ The McDermed Dopamine Receptor Concept

 One of the first dopamine receptor models was presented by McDermed et al.118 in 1979, and

was two dimensional (Figure 1.4). The model was based on two tentative interaction points with the

receptor: one for the basic nitrogen atom and one for the hydroxyl group meta to the ethylamine

chain. Additionally, a steric boundary defined the receptor excluded volume and explained the low

affinity for ligands possessing steric bulk (i.e., a substituent or a part of the molecule) protruding into

this region (see below). McDermed and coworkers rationalized their model on the fact that

dopamine receptor agonists like 20 ((6aR)-apomorphine) and 22 ((2R)-5,6-di-OH-

dipropylaminotetralin) have the dopamine moiety in its α-rotameric conformation, while dopamine

receptor agonists like 21 ((6aS)-isoapomorphine) and 23 ((2R)-6,7-di-OH-dipropylaminotetralin)

have the dopamine moiety in the β-rotameric conformation, and have to be flipped and rotated in

order to fit properly into the presumed active site, as illustrated in Figure 1.4. The same model could
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rationalize the inactivity of 21 since one of the aromatic rings protrudes into the steric boundary and

render binding to the tentative active site impossible (Figure 1.4).

OH
OH

N

OH
OH

N

N

OH

OH
N

OH

OH

Figure 1.4 The McDermed receptor concept defined by two tentative interaction points with the receptor and a steric
boundary preventing binding with “bulky” ligands.

The mono-hydroxy DPATs∗, 24 and 25, exhibit the same stereo-isomeri as 22 and 23, with the S-

enantiomer of the 5-OH-DPAT (the α-rotameric conformation) and the R-enantiomer of the 7-OH-

DPAT (the β-rotameric conformation) being the more potent isomers.119 Both conformers display

affinity to the DA D2L and the D3 receptors.120 However, the α-conformer (24) display less

preference for the DA D3 receptor as compared to the β-conformer (25), with a D2L/D3 ratio of 26

and 60, respectively. No preference for the α- or β-conformer was observed for the DA D4.2

receptor.120 The triflate analogues, 26 and 27, displayed similar dopamine agonist profiles as their

hydroxy counterparts, 24 and 25, both in in-vitro binding assays and in in-vivo biochemical and

behavioral assays in rat.121 The in vitro affinity towards the DA receptors were lower for the triflated

compounds, as compared to the hydroxy compounds. Interestingly, 26 was found to have mixed

                                               
∗ DPAT is short for di-(n-propyl)-aminotetralin.

OH

N NOH

OSO2CF3

N NCF3O2SO

24 (2S)-5-OH-DPAT 25 (2R)-7-OH-DPAT   26 (2S)-5-OTf-DPAT             27 (2R)-7-OTf-DPAT

20

2123

22
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DA/5-HT1A properties after oral administration not observed after subcutaneous administration. This

suggest that active metabolite(s) may be formed. (Similar findings were found for 8-OTf-DPAT, a

potent 5-HT1A receptor agonist where the dominating metabolite, the mono-propyl analogue, turned

out to be more potent in vivo than 8-OTf-DPAT itself.121)

N
OH

OH
NOH

lp

Figure 1.5 The Extended McDermed model as presented by Liljefors et al. (a) Molecules 28 and 29 superimposed
with the receptor excluded volume marked. (b) The same superimposition as in (a) but now flipped 90 degrees
forward. For clarity, only hydrogens on the propyl groups are shown.

+ The Extended McDermed Receptor Model

Liljefors122,123 and Wikström124 extended the McDermed dopamine receptor concept to a

receptor model able to explain the activity and inactivity of a larger number of structurally related

compounds. Initially, two modes of receptor interaction and two N-alkyl directions were defined, by

superimposition of the nitrogen atoms and the midpoints of the aromatic rings of compounds 28 and

29 in their calculated lowest energy conformations122 (Figure 1.5). The aromatic rings were

constrained to be coplanar.

The sizes and orientations of the N-alkyl substituents are, according to the authors,122,123 of

crucial importance in order to understand the dopaminergic activity and presynaptic selectivity. The

model in Figure 1.5(a) defines one “upward” and one “downward” direction for the N-alkyl

substituents. The “downward“ direction is a narrow cleft complementary to maximum a n-propyl

group, while the “upward” direction is sterically less restricted.122 The model was rationalized since

compounds 20 and 29, both having a N-n-propyl substituent, are potent pre- and postsynaptic

agonists and display high enantioselectivity. The N-n-butyl analogues of the same compounds were

N

OH

N

OH

N

OH

H

N

OH

H

28 (4aS,10bS) 29 (4aR,10bR) 30 (S)-3-PPP 30 (R)-3-PPP

(a) (b)
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found inactive at both pre- and post-synaptic receptors,122,124 most likely due to the fact their N-n-

butyl substituents are too large to fit into the “downward” propyl-cleft. The potency of the N-n-butyl

analogue125 of 28, could be explained since its N-n-butyl protrudes “upwards” in the less sterically

restricted direction when aligned properly into the “active site” (Figure 1.5(a)). In fact, compounds

with as large substituents as phenylethyl or thiopenethyl groups directed “upwards” may still be

active.122,126,127

Liljefors et al.122,123 also investigated the biological active conformations of the enantiomers of

3-PPP, i.e., compounds (S)-30 and (R)-30. Pharmacologically, the (R)-30 enantiomer displays

classical pre- and postsynaptic receptor agonist properties, while the (S)-30 enantiomer is a

presynaptic agonist with postsynaptic antagonistic properties (Table 1.4). In an attempt to explain

the opposed profiles of the enantiomers (R)-30 was fitted in the model with the N-n-propyl directed

in the “downward” propyl-cleft and (S)-30 with the N-n-propyl directed “upwards”. The

superimposition of (R)-30 on (4aR,10bR)-29 exerts an excellent fit explaining the pre- and

postsynaptic properties of (R)-29. The (R)-30 does not fit in its “global energy minimum

conformation” but the N-n-propyl directed in the lipophilic “propyl-cleft” helps to stabilize the

compound in the agonist conformation. Liljefors and coworkers122 found and defined two different

conformations for compound (S)-30 to take: one agonist and one antagonist conformation. The

requirement to activate the postsynaptic receptors seems to be a demand for lipophilicity around the

nitrogen. The (S)-30 has no n-propyl directed into the “propyl-cleft”. Obviously, the methylene

group alfa to the nitrogen in the piperidine ring that is directed into the “propyl-cleft” is not lipophilic

enough to maintain the (S)-30 in a postsynaptic activating conformation. Thus, (S)-30 does not

activate postsynaptic receptors. In

compound (4aR,10bS)-28, however,

the methylene group is maintained in

the “propyl-cleft”, since the

OHB[f]Q skeleton is rigid, and the

postsynaptic receptors can be

activated. The (S)-30 can, as well, assume a low energy conformation that fits into the model in

Figure 1.5 and explain its presynaptic agonist properties.

The model in Figure 1.5(a) cannot explain the inactivity of compounds 31 and 32 since the van

der Waal volume of 30 fits perfectly while the volume from 32 is too large. The orientations of the

propyl groups in Figure 1.5 which can be oriented either in an anti or a gauche conformation with

respect to the nitrogen lone pair of electrons provides an explanation. Liljefors et al.123 concluded

that if one propyl assumes an anti conformation the other one must be gauche and vice versa. If the

“downward” oriented propyl group is oriented in an anti conformation (Figure 1.5(b)) the steric

boundary in front of the nitrogen atom becomes more narrow as compared to in Figure 1.5(a) and

the propyl cleft is located above the plane (Figure 1.5(b)). In this improved model, Figure 1.5(b),

neither of the inactive compounds 31 and 32 fit while the active compounds in Table 1.4 do.

OH

N

OH

N

31 32
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Table 1.4 Intrinsic activity of the ligands discussed

presynaptic agonism

ED50,
a nmol/kg

postsynaptic agonism

motor activityb

compound limbic striatum dose µmol/kg sc acc.counts/30 ming

(R)-20c,d 190 220 2.3 361 ± 42

(S)-24d 3.7 3.7 0.31 155 ± 27

(R)-25d 9.5 11 0.31 46 ± 18

(S)-26e 830 1100 12.5 785 ± 123

(R)-27e I I 50 2153 ± 650

(4aS,10bS)-28d 14 14 1.30 62 ± 11

(4aR,10bR)-29c 4 5 1.06 155 ± 32

(S)-30c 800 1700 213 12 ± 2

(R)-30c 1000 1300 13 78 ± 14

33f - - 50 211±63

34f - - 100 290±85
a Measured indirectly as inhibition of DA synthesis rate (see ref 124); b Motor activity measured in motility

meters on raserpinized rats (see ref 124); c Data taken from ref 122; d Data taken from ref 124; e Data taken

from ref 128; f Data taken from ref 129; g Values expressed as percentage of saline controls; mean ± SEM.

It was demonstrated for the triflated aminotetralines (e.g., 8-OTf-DPAT and 24) that the triflate

group induced biochemical changes as compared to their hydroxy analogues (see above). This was

confirmed also for the OHB[f]Qs in experiments performed by Sonesson et al.121,129 They found that

compound (±)-33 was inactive as an agonist, even at high doses (50 µmol/kg), although the hydroxyl

analogue ((±)-28) is a potent agonist. Instead, presynaptic DA receptor antagonistic properties was

demonstrated for (±)-33, by the increase of DOPA levels in nonpretreated habituated rats.129

Additionally, (±)-33 also decreased significantly the locomotor activity to 56 ± 4 %. Obviously, (±)-

33 is a compound with postsynaptic agonistic and presynaptic antagonistic properties. The more

flexible analogue, compound (±)-34, did not portray the same affinity for postsynaptic receptors as

(±)-33.

The triflate group has, obviously, great impact on the phenyl ring due to its electron withdrawal

ability130 distorting the conjugated aromatic system. However, information concerning the

physicochemical properties of the (aryl-)triflate group is very sparse, and to date, no X-ray

crystallographic structure of a (aryl-)triflate group has been resolved. In Chapter 3, the triflate group

will be discussed further, also in comparison with other sulfonyl esters.

N

OSO2CF3

N

OSO2CF3

33 (±)-trans-7-OTf-OHB[f]Q 34 (±)-OTf-3-PPP
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+ Dopamine D1 Agonist and Antagonist Models

The McDermed receptor concept is an example of an early working model of the dopamine

receptor proven useful in the design of new potent ligands. Today, however, with five different

dopamine receptor subtypes known and sophisticated molecular modeling tools available we aim for

models that enable us to explain and understand the structure-activity relationships within as well as

in-between different receptor subtypes.

The SAR of the DA D1 receptor subtype has extensively been scrutinized in the literature during

the last decade.131-133 A challenge has been, and still is, to fully explain the ligand-receptor

interactions of the potent benzazepines. To date, no theory exist that explains why compound 35

(SCH23390) is a selective D1 antagonist while the structurally similar compound, 36 (SKF38393), is

a potent agonist at DA D1 receptors. Compound 35 has a selectivity for the DA D1 over DA D2

receptors with a factor 2093,131 and fully inhibits dopamine stimulated adenylyl cyclase131 (Ki = 0.47

± 0.06 nM). In contrast, compounds 36,37 and 38 are reported as potent and selective agonist for

the D1 receptors, all able to activate adenylyl cyclase to the same extent as dopamine (8).133

Pettersson et al.134,135 have through extensive conformational analysis and electrostatic potential

calculations proposed biologically active conformations for 35 and 36. Both compounds were

proposed to have their seven rings in chair conformations with the N-methyl (or N-H) and the 1-

phenyl rings in (pseudo-)equatorial positions. Additionally, the plane of the 1-phenyl rings do not

deviate more than 30 degrees from being orthogonal to the plane of the catechol aromatic ring in the

main skeleton, since the energy penalty for such rotations would be too large.134 In the case of

compound 38133 and other rigid compounds134 deviations larger than 30 degrees are possible (i.e., an

accessory phenyl ring closer to coplanar with the catechol phenyl ring), since no energy penalties are

involved. As further support of this hypothesis, probing of the electrostatic surroundings of 35 by

means of the GRID program136 with two different probes (e.g., the cationic NH3 probe and the

anionic carboxy oxygen probe), indicates that the hydroxyl group and the accessory phenyl ring may

interact with the same receptor site via electrostatic interactions.135

Mottola et al. 133 suggested the following agonist pharmacophore derived from the analogues of

benzazepine and 38: 1) the two catechol hydroxyl groups; 2) the nitrogen atom (ca. 7 Å from the m-

hydroxyl) and 3) the accessory phenyl ring (ca. 5 Å from the catechol ring). Despite the calculations

performed by Pettersson et al.134 Mottola et al.133 defined the accessory phenyl ring, in their

NH
OH

OH
HN

Cl

OH
H N

OH

OH
H

Cl

NH

OH

OH
H

H

35 (R)-SCH23390 36 (R)-SKF38393 37 (R)-SKF82958 38 (6aR,12bS)-dihydrexidine
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pharmacophore, to be close to coplanar with the catechol ring. Finally, Mottola et al. conclude that

alkylation on the nitrogen diminishes the affinity for DA D1 receptors, defining a steric receptor

boundary in that direction.

Charifson and coworkers131,132 proposed a pharmacophore for DA D1 antagonists, very similar

to the agonist pharmacophore of Mottola et al. but with the second

hydroxyl group replaced by a chlorine atom, derived from analogues

of 35 and the tetrahydroisoquinoline 39. Also in the

tetrahydroisoquinoline series elongation of the nitrogen alkyl (i.e.,

longer than methyl) group was not favorable for DA D1 receptor

binding, although the interatomic distance between the chlorine and

the nitrogen is decreased as compared to the benzazepines.132 Additionally, the stereochemistry for

the tetrahydroisoquinolines is reversed as compared to the benzazepines; both (R)-SCH23390 (35)

and (S)-39 are potent and selective DA D1 antagonists.132

+ Dopamine D2 Antagonist Pharmacophores

Among dopamine antagonist, benzamides are generally characterized by a high selectivity for the

DA D2 receptor subtype with low affinity for the DA D1 receptor and other non-dopamine receptors.

Additionally, the pharmacological profile of benzamides in general is unique, with low propensity to

induce neurological side effects (e.g., extrapyramidal syndromes and tardive dyskinesia)137 and

effective in the treatment of negative symptoms in schizophrenia. Thus, it seems a lot to gain by

learning about the SAR of benzamides. In 1981 Olson et al.138 proposed a pharmacophore based on

N

Cl

OH
H

39

O N

N
H

O
H

O

N
H

O

SO2NH2
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42 (-)-(4aR,8aR)-piquindone

40 (-)-(S)-sulpiride

41 molindone
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43 pimozide

Figure 1.6 The rational for Olson et al. to synthesize (–)-(4aR,8aR)-piquindone (42): Assemble the tentative
pharmacophoric elements, i.e., the benzamide carbonyl group, the basic nitrogen of 40 and 41 and the benzamide
aromatic moiety, in one rigid skeleton.
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potent, but flexible, dopaminergic compound such as sulpiride (40), haloperidol (4), pimozide (43)

and molindone (41). The pharmacophore comprised four different elements as pictured in Figure 1.6

(adopted from Olson et al.138): 1) the benzamide phenyl ring (π-π interaction); 2) the amide carbonyl

oxygen atom (π-π interaction) or, alternatively, an aromatic moiety (π-π interaction); 3) the basic

nitrogen atom (+NH….COO- interaction) and 4) a lipophilic tail corresponding to the heterocyclic

moiety of pimozide (Figure 1.6, 43). Interestingly, the authors introduce the carbonyl oxygen as an

isosteromer to a phenyl ring in the ligand-receptor interaction, supported by a crystal structure where

a similar interaction has been observed.138

In order to validate their model Olsen et al.138 attempted to include the pharmacophoric

elements in one single structure, and the resulting (–)-(4aR,8aR)-piquindone (42) turned out to have

similar properties as haloperidol (4) but with significant decreased cataleptogenic liability. For a

computational chemist a rigid and potent compound (Table 1.5), like 42, is ideal to utilize as a

starting point for molecular modeling and SAR studies. Accordingly, Rognan et al.137 used (–)-

(4aR,8aR)-piquindone (42) for

elucidation of the SAR from a number

of optically active DA D2 antagonists.

From the crystallographic structure of

(–)-42 three initial pharmacophoric

elements were defined (Figure 1.7): an

aromatic ring Ar1 (pyrrole); a dipole

coplanar to Ar1 (amide carbonyl); a

basic nitrogen atom with a lone pair of

electrons directed orthogonal to the

Ar1 plane towards a dummy atom Du

representing the receptor site (e.g., an

aspartic acid). The aromatic pharmacophoric element Ar2 was defined  by superimposition of low

energy conformations of domperidone (44) with the crystallographic structure of (–)-42 on the

chlorophenyl ring (from domperidone), the pyrrole ring (from piquindone) and the Du in the

direction of the nitrogen lone pair of electrons, respectively. In one high quality fit the second phenyl

ring of 44 is protruding into and defines the Ar2 pharmacophore element (Figure 1.7).

N
LP

Du

Ar2

Ar1

Ar3

HP

Figure 1.7 The dopamine antagonist pharmacophore as defined
by Rognan et al. Ar1-3 are aromatic moieties, the Du is a dummy
atom in the direction of the lone pair of electrons and HP is a
hydrophobic pocket.
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Table 1.5 Affinities of the discussed antagonists
for the dopamine D2 receptor subtype

Compound Ki (nM)a

1 chlorpromazine 4.1

4 haloperidol 1.8

19 spiperone 0.04

6 clozapine 220

40 (S)-sulpiride 7.6

42 (4aR,8aR)-piquindone 4.1

43 pimozide 2.5

44 domperidone 0.7

45 (R)-DO749 2.4
a Data from reference 137 obtained by
inhibition of [125I]iodosulpiride to rat striatal
membranes.

Another interesting feature of this series of compounds is the stereo chemistry. In benzamides

with short substituents (e.g., ethyl, propyl and allyl) attached to the pyrrolidine nitrogen atom the

activity resides solely, in the (S)-enantiomer137,139 (see Table 1.5, (S)-sulpiride). If, however, the

substituent is replaced by a benzyl group (45) the stereo chemistry is switched; the activity now

resides in the (R)-enantiomer137,139 (see Table 1.5, (R)-D0749). In order to account for the

stereochemistry in the pharmacophoric model (Figure 1.7) a third aromatic element Ar3 was defined

for large pyrrolidine substituents and a small hydrophobic pocket HP for small pyrrolidine

substituents for benzamides with (R) and (S) configuration, respectively.

Later, in Chapters 4, 5 and 6, two different series of benzamides will be discussed as they form

the bases for a couple of publications140,141 involving 3D QSAR and multivariate statistical analysis.

Furthermore, structure-activity relationships of benzamides will be dealt with also in these chapters.

1.4  Quantitative Structure-Activity Relationships (QSAR)

So far, two different approaches to design new drugs have been discussed: homology modeling

and the active analogue approach.103 Despite sophisticated computational tools,142,143 with all known

dopamine receptors cloned and site mutagenesis techniques available, the active analogue approach

is still the most widely used approach to design new drugs. A speculative reason for this may be the

fact that in receptor modeling too many parameters need to be estimated: conformational flexibility

in the receptor protein, solvent dependency (dielectric constant), pH at the active site (protonated

ligands or not), water improved receptor binding144, induced fit145,146 and many more. Hence, most

drugs are developed with ideas based on structure-activity relationships and simple molecular

modeling studies. In 1964 Hansch and Fujita147 introduced a way to predict biological activity from

theoretically derived molecular descriptors, often referred to as Hansch-analysis. The ideas behind

the Hansch analysis are as valid today as in 1964 since theoretically (not necessarily) generated

descriptors are assumed to be independent of the ligands conformations. More important, if the
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predictive ability of the model is high enough, valuable time will not be spent synthesizing inactive

compounds.

+ Physicochemical Molecular Descriptors

The applicability of physicochemical descriptors is manifold. First, prediction of the biological

activity (e.g., receptor affinity) as introduced by Hansch et al.147 (see below). Second, they enable us

to search large molecular databases (e.g., Chemical Abstracts structural database) by simply define a

physicochemical profile for the target molecule.148-150 Third, recently developed techniques like

combinatorial chemistry100-102 and high-throughput screening,98,99 call for methods in order to design

the synthesis of the most diverse compounds and for the definition of new specific targets,

respectively.

Examples of commonly used physicochemical descriptors are listed in Table 1.6. which may be

divided into steric, electrostatic and hydrophobic (lipophilic) types of descriptors, although many of

them are a combination of all three types. Some of these descriptors are listed in the literature, while

some may be obtained through analytical experiments151,152 or through computational calculations.142

Steric descriptors like FW, L, B and VdWV (Table 1.6) are simply different attempts to quantify the

molecular structure; electrostatic descriptors like σm, HOMO or LUMO portray the electronic

features of a compound (e.g., the influence of a specific substituent on an aromatic system) and the

hydrophobic descriptors π, logP and logD accounts for a molecules ability to, for instance penetrate

the blood-brain barrier.153,154 Taken together, the array of descriptors collected for a specific

molecule compares to the fingerprint from a human being, hence, it should be unique.

+ Hansch Analysis

 

In the early 1960s, Hansch and co-workers147 investigated the possibility of expressing a

relationship between structural and physicochemical properties and biological activity, quantitatively.

Typically, properties as logP, σ, or Es representing 1-octanol/water partition coefficient, the well-

known Hammett constant and Tafts steric descriptors (Table 1.6), respectively, were used as

descriptors. In the Hansch analysis, the biological activity log(1/C) were correlated with the

descriptors using Multiple Linear Regression (MLR, see Chapter 2), also called Ordinary Least

Squares  (OLS).155,156 The so-called Hansch equation (Equation 1.1) comprise the relationship

established by Hansch et al., where a, b, c, d and e are constants obtained through regression

analysis.

( ) ( )log log log1 2

C a b c d e= − + + + +P P Esσ (1.1)

As was emphasized by Van de Waterbeemd,157 Hansch analysis is a method aiming at describing

the relationship between only a few variables and the biological activity and should not be considered

too much as a predictive model. By employing MLR for the regression analysis a couple of crucial

items need to be considered: 1) keep the ratio of compounds to variables greater than approximately
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five and 2) multicollinearity may cause spurious solutions. Today, methods to circumvent these

problems are available, where the original variables are replaced by underlying orthogonal latent

variables (i.e., PCR and PLS in Chapter 2). The predictive ability of a model may then be validated

with crossvalidation155 or by predictions of an external test set.

+ Molecular Diversity and Experimental Design

N

R2

R1
N

N
H

OR2
R3

O
R5

**
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(a) (b)

Figure 1.8 The basic skeleton of trans-OHB[f]Qs (a) and 6-methoxybenzamides (b) used by Nilsson et al. and

Norinder et al., respectively.

In Chapter 3, physicochemical descriptors are employed to guide the selection of which

compounds to synthesize.158 From a library of a 88 tentative OHB[f]Qs (Figure 1.8(a)), only the 15

most diverse compounds were selected to be synthesized by means of a factorial design in the

Principal Properties (PPs). The PPs are score-vectors obtained from a Principal Component Analysis

(PCA, see Chapter 2) of the physicochemical descriptors, and comprise the variation that

significantly discriminate between the compounds. Norinder et al.159 used physicochemical

descriptors in order to increase the understanding of the structure-activity relationships of a series of

benzamides (Figure 1.8(b)). They used a fractional factorial design in the first three PPs, for the

selection of 16 representative compounds, out of 70, for the training set. In the following regression

analysis the original descriptors (not the PPs, thus) from the training set were correlated with the

biological activity (pIC50 for the DA D2 receptor), using PLS. The remaining compounds were

utilized as a test set in order to estimate the predictability of the PLS model. The profound difference

in the approaches used in Chapter 3 and by Norinder et al., should be obvious. Nilsson et al.

generated descriptors for whole molecules, e.g., logP was used rather than the contribution from

single substituents (π). The objective with that investigation was to select the most diverse

compounds to synthesize, not necessarily to create a predictive model. In contrast, Norinder et al.

already had a large data set with compounds tested for biological activity and their aim was to

elucidate also the influence of single substituent positions on the biological activity. Therefore, the

training set was selected such that the diversity in each position R2, R3 and R5, in Figure 1.8(b), was

maximized. The conclusions drawn from this investigation will be discussed further in Chapter 6,

where this data set was analyzed with 3D QSAR (see next section) using multilinear PLS160 as

regression method.

+ Molecular Fields
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The obvious extension of the Hansch analysis is modeling where molecular flexibility is

considered. The concept of Comparative Molecular Field Analysis (CoMFA)161 as presented by

Cramer et al.117 in 1988 is such a method, commercially available as a module in the molecular

modeling package SYBYL.142

Figure 1.9 The three dimensional grid used in CoMFA to generate molecular field descriptors. For clarity, grid points
within the grid are omitted
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Table 1.6 The most commonly used molecular descriptors available in the literature or through
computational calculations.
Descriptor Abbr. typea ref. Descriptor short typea ref.

Formula Weight FW ste Ionisation constant pKb 162

Hammett constant σm ele 163 Swain-Lupton field F 163

Hammett constant σp ele 163 Swain-Lupton res. R 163

Tafts polar constant σ* ele 157 VdWaals Volume VdWV ste 142

Tafts steric parameter Es ste 157 VdWaals Area VdWA ste 142

Hansch aromatic fragment π lip 162,163 Connolly Surface Vol. CoVo ste 142

Lipophilicity logP lip 157,162 Connolly Surface Area CoAr ste 142

Lipophilicity (pH=7.4) logD lip 157,162 Electronic Energy ELEC ele 142

Connectivity index (Randic) 1χ ste 157 Core-Core interaction CoCo ste 142

Connectivity index 2χ ste 157 Heat of Formation HoFo ele 142

Molar Refractivity MR ele 164 Ionization potential HOMO ele 142

Verloop Sterimol L ste 157 Electron affinity LUMO ele 142

Verloop Sterimol B ste 157 Dipole moment Dipo ele 142

Eudismic Index EI 165 Point charges chaX ele 142

Ionization constant pKa 162

aele electronic; ste steric; lip lipophilicity

Molecular fields basically are three dimensional representations of the steric, electrostatic and

hydrophobic surroundings of a molecule. A molecular field is generated by enclosing the molecule in

a three dimensional grid (Figure 1.9) and assigning nonbonded interactions between a probe atom

and the molecule in each grid point. Obviously, the difference between two different types of fields is

the algorithm with which the nonbonded interactions are calculated. In SYBYL/CoMFA the steric

field interaction energies (Este) are Lennard-Jones potentials, also referred to as steric 6-12

potentials,166 which are sensitive to changes in the distance between the probe and the atoms (ri) as

can be seen in Equation 1.2. N is the number of atoms in the molecule; A and B are constants

characteristic for the probe atom type and the type of the ith atom in the molecule, respectively.

E
r rste = −


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


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=
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i

i

ii

N

12 6
1
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The electrostatic field interaction energies are less influenced by the distances between the probe and

the atoms but instead the charge of the probe and the point charges of the atoms are important. In

addition, Eele is very sensitive to spatial dielectric behavior of the environment167 and a distance-

dependent dielectric term has been proposed.168 The magnitude of the electrostatic potential (Eele)

between two ions with charges Q and q separated by a distance r is given by Coulomb’s law166:
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where N is the number of atoms in the molecule; Q is the charge of the probe atom; qi is the point

charge on the ith atom and K is a constant term. In this formula a homogenous protein phase and a

homogenous solution phase with dielectrics ζ and ε, respectively, are assumed to be present.167 The

depth of each protein atom (sp) in the protein phase is assessed by counting the number of



Introduction to the Medicinal Chemistry of Schizophrenia

25

neighboring protein atoms whose nuclei lie within 4 Å. For the probe atom the depth (sQ) is

calculated similarly. Consequently, Equation 1.3 leads to an effective dielectric of ζ when the

pairwise groups of atoms are so deep in the protein and so close together that the solvent effects can

be neglected. However, when one or both of the atoms approach the surface of the protein the

effective dielectric becomes (ζ + ε)/2 since the term 4sQsq is set to zero.

Prior to calculation of the electrostatic field point charges of the atoms need to be calculated. In

the original CoMFA article117 charges were calculated by the method of Gasteiger and Marsili169 as

was implemented in SYBYL. Today, however, several options are available although most often

point charges are estimated by semi-empirical AM1 single point calculations.170

There are also variations of the above described steric field. Kroemer et al.171 replaced the steric

6-12 potential interactions with atom-based indicator variables. That is, they assigned the values 30

or 0 kcal/mol to a grid point if an atom was present in the adjacent small cube or not. Similar,

Floersheim et at.172 assigned values of either 1 or 0 to a grid point, depending on whether the grid

point was within, or outside, the van der Waals radius of any atom in the target molecule.

In the GRID program136,167 a different and intuitively more appealing (authors comment)

approach is used. Each grid point is assigned with the sum of three different non-bonded

interactions, i.e., Este, Eele and Ehb, as in Equation 1.4. The two former terms are calculated as in

Equations 1.2 and 1.3, while the hydrogen bonding contribution167 is calculated as in Equation 1.5. C

and D are tabulated values for specific atoms; d is the distance between the atoms; m is usually four

but the whole Ehb term is set to zero when θ ≤ 90°. If the probe group donates the hydrogen bond it

is assumed that the probe can orient itself in order to form the most effective hydrogen bond, and the

cos θ is set to unity.

E E E Etot ste ele hb= + +∑ ∑ ∑ (1.4)

[ ]E C d D dhb
m= −6 4 cos θ (1.5)

Consequently, and in contrast to other methods (e.g., SYBYL/CoMFA), fields generated in the

GRID program portrays the specifics of certain probes. Thus, it is the users task to select a probe

that best reflects what needs to be investigated. For instance, a water molecule, a carbon atom or a

Ca+2 ion could be chosen to display hydrogen bonding, steric and electrostatic characteristics of the

ligands, respectively. Goodford173 has demonstrated how GRID probes explicitly can reflect

individual properties of specific chemical groups attached to the target molecule.

Fields generated in SYBYL or GRID are the most commonly used since they are commercially

available. However, other molecular descriptors are available, e.g., Molecular Shapes,174-176

Molecular Lipophilicity Potentials,177,178 Molecular Similarity Indices179 (i.e., CoMSIA) and

Molecular Similarity Matrices.180-182

Independent of which program used to generate molecular fields, the following parameters need

to be specified by the user: 1) the grid size; 2) the grid resolution, i.e., grid points per Å; 3) the type

of probes and 4) the probe charge.

+ Comparative Molecular Field Analysis (CoMFA)
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As stated above, the logical extension of the Hansch analysis147 is Comparative Molecular Field

Analysis (CoMFA),117 where the physicochemical parameters are replaced or combined with field

descriptors. In analogy with the Hansch analysis, in CoMFA the molecular fields are correlated with

the biological activity. CoMFA takes the three dimensional conformations of the molecules into

consideration, hence, several crucial items need to be considered.

First, in order to find low energy conformations, or rather the global minimum energy

conformation of each compound under investigation, conformational analyses183-186 are conducted.

According to the Boltzman distribution,166 a low energy conformation is more abundant than a high

energy conformation and, consequently, also more likely to be involved in the ligand-receptor

interaction.

Second, all molecules must be aligned in the same coordinate system and several options to

perform this are possible. If a pharmacophore is available, one might choose to superimpose all

molecules on mutual and likely interaction points with the receptor (see Chapter 4). The compounds

could be docked into the active site of a receptor homology model (see Chapter 6) or, alternatively,

the molecular fields could be superimposed in a least square manner.142 Independent of which

alignment approach that is employed, in CoMFA the differences between the aligned molecular fields

are correlated with the biological activity. Therefore, an alignment procedure where the global

overlap between structurally related compounds140,187 (Chapter 4) are maximized, is likely to perform

just as good as a more elaborated and rational alignment140 (Chapter 6). This is the case when the

ligands are flexible and the rationale is pure statistical: If the alignment is not performed with

maximized overlap between the molecules an increased level of insignificant variation, i.e., noise is

inevitable. Noise may, or may not, affect the predictability detrimentally.

Third, molecular fields are generated first when the molecules are properly aligned.

In Figure 1.10, a typical CoMFA data set consisting of I molecules characterized with a single

molecular field is shown. In order to perform the PLS analysis each grid, with the dimensions J, K

and L, is unfolded to form a row with JKL number of columns. Traditionally, only one response

variable is considered in CoMFA, e.g., the affinity for a central dopamine receptor and, therefore, a

bilinear PLS1 algorithm188-190 is used for the regression analysis. The theory covering the basics of

PLS analysis is discussed in Chapter 2, but specific details important for CoMFA are pointed out in

the following.
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Figure 1.10 The unfolding of the molecular fields from the N molecules into a matrix X with I rows and JKL columns.
In CoMFA, the biological activity is usually represented in one column (y). The number columns in X equals the
number of grid points in each grid.

In PLS, the original variables are replaced by latent variables, i.e., linear combinations of the

original variables and, therefore, the number of objects should be larger than the number of latent

variables included in the model (see Chapter 2). However, each additional component adds also

insignificant variation to the model and should be added only if it improves the predictability. The

predictability is usually estimated with crossvalidation as described in Chapter 2.

The results from a CoMFA model are often interpreted by studying contour plots of the PLS-

coefficients bPLS (Equation 1.6, see also Chapter 2).

∃y x x x Xb= + + + =b b bP P1 1 2 2 Λ PLS  (1.6)

In SYBYL/CoMFA a steric and an electrostatic contour plot is generated, and each bPLS

coefficient is multiplied with the standard deviation for the corresponding variable. In effect, it is an

enhancement of the bPLS  coefficients in grid points where the variation is large. This is performed in

order to simplify the interpretations. The data set in Chapter 4 is analyzed using GRID/GOLPE

which produces slightly different contour plots, since each field corresponds to a specific probe. For

example, in the contour plot from a water probe, regions are revealed where hydrogen bonding is

favorable for high affinity, considering steric, electrostatic and hydrogen bonding interactions,

simultaneously. Molecular fields generated from the water (OH2), carbon (C3) and the calcium

(CA+2) probes in the GRID-program, will be used for the description of the molecules included in

the two data sets scrutinized in this thesis.
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Introduction to

Chemometrics and Statistics

2.1  Introduction

In Quantitative Structure-Activity Relationships (QSAR), molecular descriptors (X) are

correlated with one or more response variable (y). The objective with the analysis usually is to

increase the understanding of the biological system under investigation, or to predict the response of

objects not yet tested (e.g., predict the potency of a compound not yet synthesized). The conclusions

drawn from a regression analysis are dependent on the assumption of the regression model.1 If it is

assumed that the relationship is well represented by a model that is linear in the regressor variables, a

suitable model may be

y x x e= + + +b b b0 1 1 2 2  (2.1)

In Equation 2.1 the bs are unknown constants called regression coefficients and the objective of

regression analysis is to estimate these constants. The number of available regression methods is

large and in QSAR, during the last decade, Multiple Linear Regression1,2 has more or less been

replaced by Partial Least-Squares regression2,3 and other related projection methods.

Throughout this thesis, scalars are written as italic characters; vectors as boldface lower case

characters; matrices as boldface upper case characters and multiway matrices as underlined upper

case characters. The lower case italic characters i, j, k, l and m will be used as running indices, where

i = 1,…,I; j = 1,…,J; k = 1,…,K; l =1,…,L and m = 1,…,M. It is assumed that all vectors are column

vectors.

2.2  Data Pretreatment

It is well known in regression analysis that a proper pretreatment is crucial for the outcome of

the result. QSAR data sets consist of variables that differ in range, variation and size. Consequently,

prior to regression analysis auto-scaling is usually applied (Figure 2.1), i.e., the ith column is mean-

centered (with x i ) and scaled with 1/sd(xi).
2

2
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In CoMFA the descriptors are divided in blocks, field-wise, which renders auto-scaling, as in

Figure 2.1, without meaning. Instead, the total variation in whole fields are standardized or block-

scaled. In SYBYL, block-scaling is called CoMFA_std scaling. However, if GRID descriptors

Figure 2.1 Auto-scaling as usually performed prior to QSAR analysis. First column mean-centering followed by
column-wise scaling with the inverse of the corresponding standard deviation.

are used, block-scaling must be carried out cautiously, since the type of interactions are identical in

all fields. In SYBYL/CoMFA the steric and the electrostatic fields are calculated differently and,

therefore, block-scaling makes sense.

In the GOLPE-program4 additional pretreatment options are possible: The high and low cut-off

values for the interactions may be altered; interactions with absolute values lower than a specified

value may be set to zero and grid points with standard deviation lower than a specified value may be

omitted.

2.3  Multiple Linear Regression (MLR)

In order to establish a relationship between X and y in Figure 2.2, Multiple Linear Regression

(MLR)1  has until recently been the obvious method of choice. In MLR, it is assumed that X is of full

rank and the xij are measured with negligible error. The algebraic MLR model is defined in Equation

2.1 and in matrix notation

y Xb e= + (2.2)

where X = [x0|x1|…xJ], b
T = [b0,b1,…,bJ] and e is an error vector. Note that the first column in X,

i.e., x0 consists of only constants which, after mean-centering, becomes zero and consequently x0 is

omitted.  When X is of full rank the least squares solution is:

( )∃b X X X y=
−T T1

(2.3)

where ∃b  is the estimator for the regression coefficients in b. An obvious disadvantage using MLR as

regression method in QSAR is: when I ≤ J (Figure 2.2) X is not of full rank and (XTX)-1 in Equation

2.3, is not defined and b can not be estimated. In the following section the problem with

multicollinearity,1 i.e., the case when X not is of full rank, will be discussed.

original mean-centering scaling

0 0 0 variables
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Figure 2.2 A typical QSAR data set: X is of the dimensions I × J where J > I with a single response variable y (I × 1).

2.4  Multicollinearity

In the previous section, the potential danger of multicollinearity in combination with MLR was

mentioned. Multicollinearity is present when the columns of X are approximately or exactly linearly

dependent. In the case of exact linear dependency, (XTX)-1 is not defined, and the estimation of the

regression coefficients ∃b  can not be expressed as in Equation 2.3 anymore.

If the linear dependency is approximate, assuming X is properly auto-scaled, at least one of the

diagonal elements in the inverse covariance matrix, (XTX)-1, will be large. Additionally, some of the

diagonal elements of cov( ∃b ), well-known to be σ2(XTX)-1 (where σ2 is (y–X ∃b )T(y–X ∃b )/(I–J) (I >

J)),1,3 may be large, indicating that some bs in ∃b  are estimated with low precision. Consequently,

multicollinearity may influence the interpretation of the model and affect external predictions

detrimentally. Therefore, it is important to be able to detect whether X is collinear or not, prior to

regression analysis.

The inverse covariance matrix, (XTX)-1, provides a first indication of ill-conditioning

(multicollinearity) among the variables in X. Another commonly used indication of multicollinearity

is the variance inflation factor (VIF)1,5:

( )VIF Ri i= −1 1 2 (2.4)

where R i
2  is the squared multiple correlation coefficient when xi (the ith variable in X) is regressed

on the remaining variables. When the columns of X are close to linear dependence (i.e., when the

determinant of XTX is close to zero), R i
2  will be close to unity and VIFi will be large. In the ideal

case, when XTX = I, i.e., when the variables in X are orthogonal, the VIF for the ith variable is unity.

Thus, the VIF measures the increase (inflation) of the variance, for each variable, compared to the

ideal case. A flag of warning is raised when VIF is greater than five, as suggested by Smilde.5,6

The condition index or number (φ) is defined as:

φ
λ
λ

= max
.

min
.

0 5

0 5  (2.5)

where λmax  and λmin  represent the largest and the smallest eigenvalue, respectively, of XTX (scaled

and centered X). When X is ill-conditioned, at least one eigenvalue will be close to zero and,

consequently, φ becomes large. As a rule of thumb, when φ exceeds 100, the effect of

multicollinearity may be significant.

X

 y

1

I

1               J
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The influence of multicollinearity in QSAR is well known, and disqualified MLR as regression

method years ago. In a chemical system, controlled by variables that are easily manipulated, an

experimental design7 may be a solution to avoid multicollinearity. In QSAR, however, the objects are

generally molecules which make an experimental design complicated. Instead, methods to replace the

original descriptors with underlying latent variables,2,3,8,9 e.g., PCR and PLS, have been developed.

2.5  Principal Component Regression (PCR)

In Principal Component Analysis (PCA), the original descriptors (Figure 2.3) are replaced by

Principal Components (PCs) which are linear combinations of the columns in X. The extraction of

PCs from X or the decomposition of X is algebraically expressed as

X t p t p t p E= + + + +1 1 2 2
T T TΚ A A (2.6)

Thus, the purpose of PCA simply is to decompose X = [x1|x2|…|xJ] into A component score vectors

(T = [t1|t2|…|tA]) and loading vectors (P = [p1|p2|…|pA]) where A < J. Prior to PCA, the variables in

X usually are column mean-centered and often scaled to similar variation levels, i.e., auto-scaled.

Figure 2.3 A graphical representation of the first two Principal Components. In PCR the component scores T = [t1|t2]
are the regressors and the following holds true: t1

Tt2= 0 and p1
Tp2 = 0.

Each consecutive PC is chosen orthogonal to all the previous PCs (ti
Ttj = 0) and accounts for a

decreasing percentage of the variation in X. In addition, also orthogonal loading vectors (pi
Tpj = 0)

are obtained which are scaled to be of length one (PTP = IA). It can be shown that the loading

vectors pa (a = 1,…,A) are eigenvectors of XTX with λλ = [λ1,λ2,…,λA] as eigenvalues. Algebraically,

this is recognized as XTXpa = paλa. The eigenvalues show how much of the variance the respective

components account for. Similarly, it can be shown that the scores ta (a = 1,…,A) represent the

eigenvectors of XXT, scaled to length λa
0.5.

The first few PCs may be considered as a proper representation of X since the variation not

accounted for is assumed to represent only insignificant variation or noise. The obtained loading-

vectors are important for the understanding of, e.g., which X variables are important (large

loadings), which X variables carry the same information and for the interpretation of the component

scores (see Chapter 3). The score-vectors contain information about the similarities and

dissimilarities between the objects (e.g., compounds) included in the model.

X

1

I

1               J  t1   t2

p1

p2

 y
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In order to compute the PCA, the NIPALS algorithm3,10 is often used where the component

scores and loadings are calculated one component at a time. The second component is calculated

from the residuals after the first component (X1 = X):

X X2 1 1 1= − t pT (2.7)

Since the component scores (T) are orthogonal and account for most of the variation in X they

are suitable as regressors for y using MLR. Accordingly, the following Principal Component

Regression (PCR) model may be introduced

y t= + + + +q q qA A1 1 2 2t t eΚ (2.8)

where the qs are the regression coefficients describing the relationship between the response variable

(y) and the A component scores (T). Analogous to MLR, the least squares solution for the

estimation of q is

( )∃q T y=
−

T TT T1
(2.9)

where ∃q  is the estimator for the regression coefficients in q. If ∃q , in Equation 2.9, could be

expressed in regression coefficients b, used in Equation 2.1, the interpretation of the PCR model

would be simplified. The regression coefficients b can be estimated, as was suggested by Martens

and Næs,3 from:

∃ ∃ ∃y Xb Tq= = (2.10)

By replacing T with XP (P is the loading matrix containing the A loading vectors) it is clear that one

possible solution of ∃b  is

∃ ∃b Pq= (2.11)

but, due to the near singularity of XTX Equation 2.11 does not provide an unique solution. In QSAR,

Equation 2.11 can be used for external predictions but may also be utilized for interpretation

purposes.

2.6 Partial Least Squares Regression (PLS)

The Principal Components describe the latent structure of X which, accordingly, can be used as

regressors for y in PCR. In PLS, however, y is included in the decomposition procedure and a

loading vector, i.e., the weight vector wa (a = 1,…,A), that maximizes w X ya a
T T

−1  under the constraint

that w wa a
T = 1, is searched for. (Xa-1 contains the residuals from the previous component as soon

will be clear.)
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Figure 2.4 A graphical representation of the first two PLS components. In Wolds PLS algorithm, the following holds
true:  t1

Tt2 = 0,  w1
Tw2 = 0 and p1

Tp2 ≠  0.

This is the general definition of PLS (Partial Least Squares Regression),2,3 where partial indicates

that the least squares solution applies when w is determined as defined above, and not for general

w.11 In the following only PLS1 will be considered, i.e., PLS with only one response variable,

although PLS can handle multiple response variables simultaneously, i.e., PLS2.

The original PLS algorithm, as presented by Wold et al.,8,9 starts by estimating the weight vector

wa for the ath component, as the vector that maximizes the expression w X ya a
T T

−1 :

w y ya a a= − −X X1 1
T T (2.12)

Accordingly, the score vector t is determined as:

t X w w wa a a a a= −1
T (2.13)

and since w w =a a
T 1 Equation 2.13 simplifies to ta = Xa-1wa. The loading vector pa, necessary for the

calculation of new model residuals, is obtained by regression of X on ta:

p ta a a a a= −X t t1
T T (2.14)

In order to make estimations of y from ta possible, the regression coefficient qa for the ath

component is needed, which is determined by regression of y on ta

qa a a a= y t tT Tt (2.15)

Finally, new residuals Xa are calculated by subtracting the effect of the previous component:

X X ta a a a= −−1 pT (2.16)

Analogous to PCR, the regression coefficients bPLS
3 are useful for the interpretation of the PLS

model and for predictions of external objects (Xnew) as ∃ ∃y X b= new PLS . The bPLS coefficients are

calculated after A components as

( )b W qPLS
T=

−
P W

1
(2.17)

where W is (w1|w2|…|wA), P = (p1|p2|…|pA) and qT = (q1,…,qA).

This algorithm is also called the orthogonalized PLS algorithm, since the estimated score and

weight vectors are orthogonal, i.e., ti
Ttj = 0 and wi

Twj = 0 where i ≠ j (Figure 2.4). If the number of

components A extracted equals the number of columns in X (J ≤ I; see Figure 2.4) the PLS solution

is the MLR solution.

1                J

w1

p1

X

1

I

w2

p2

 t1   t2  y

q1

q2
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The second algorithm presented by Martens et al.3 differs from Wold’s algorithm since the

components scores and weights are not orthogonal. Consequently, the internal regression

coefficients q can not be calculated component-wise, but instead all components must be calculated

simultaneously:

( )q T y= T T
-T T1

(2.18)

In Martens non-orthogonalized algorithm, the residuals are calculated by subtracting ta awT from

the previous component, as opposed to Equation 2.16 in Wold’s algorithm. However, the

predictions are identical in both algorithms, although in Martens’ algorithm Equation 2.17 simplifies

to

b WqPLS = (2.19)

2.7  PARAFAC and Tucker Decomposition

In PCA, a two-dimensional matrix X is decomposed into score (T) and loading (P) vectors

(Figure 2.3) corresponding to the objects and the descriptors, respectively. Typically in Hansch

analysis, I objects, e.g., molecules, are described by J descriptors, e.g., physicochemical parameters.

Sometimes it is more convenient to view the raw data from a series of experiments in the form of a

cube, e.g., in analytical chemistry the retention time for I molecules are investigated by RP-HPLC on

J different columns and K different mobile phase mixtures12 or in pharmacology the intrinsic efficacy

of I drugs are investigated at J different doses monitored for two hours every 15 minutes (K = 9).

Normally, in order to analyze data sets that are arranged in three modes (X; I × J × K), with PCA,

MLR or PLS, they are unfolded to form a two dimensional (X; I × JK) matrix, as in Figure 2.5.

Figure 2.5 The unfolding of a three-way matrix, X (I × J × K), into a two-way matrix X (I × JK).

Today, alternatives to the PCA decomposition in Figure 2.2 are available, where the three-way

or multiway structure of the data are maintained. In Figure 2.6 the one component PARAFAC13,14

decomposition of X (I × J × K) into three loading vectors t (I × 1), wJ (J × 1) and wK (K × 1) is

presented graphically. Note that in multiway analysis, it is not always obvious which directions in X

correspond to objects and variables. Therefore, the general term ‘mode’ will be used in the

following.

1         JK

1

I

1

I
1    J

1

KX
unfolding
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Figure 2.6 The one component PARAFAC decomposition of X (I × J × K) into three loading vectors t (I × 1), wJ (J ×
1) and wK (K × 1). E (I × J × K) represents the residuals.

The PARAFAC model in Figure 2.6 is expressed formally in Equation 2.20 where tia, wja and wka

are typical elements in the loading matrices T (I × A), WJ (J × A) and WK (K × A), respectively. A is

the number of components extracted. Analogous to PCA, the loading matrices are chosen in such a

way that the sum of squared residuals (E) is minimized. The PARAFAC solution is unique in the

sense that every rotation of the loading matrices destroys the minimum sum of squares of the optimal

solution.

x t w w eijk ia
a

A

ja ka ijk= +
=

∑
1

(2.20)

The PARAFAC model actually is a special case of the Tucker15,16 model differing only in the

core-matrix Z in Figure 2.7. In a Tucker model, interactions between loading vectors from latent

variables of the different modes are allowed. This is not the case for PARAFAC models. Hence,

PARAFAC can be seen as a restricted version of a Tucker model. Consequently, a PARAFAC model

is a Tucker model where only the superdiagonal of the Z matrix is non-zero.

Figure 2.7 The Tucker3 decomposition of X (I × J × K) into three loading matrices and one core matrix Z (L × M ×
N) containing the interactions between the components in different modes. The E (I × J × K) matrix represents the
residuals.
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The model in Figure 2.7 is called a Tucker3 model, since X is compressed in all three modes.

Extensions to a higher number of modes are possible, as will be discussed in Chapter 8. Formally, the

Tucker3 model is written as:

x t w w z eijk il
n

N

m

M

l

L

jm kn lmn ijk= +
===

∑∑∑
111

(2.21)

where til, wjm and wkn are typical elements in the loading matrices T (I × L), WJ (J × M) and WK (K ×

N), respectively. The zlmn is a typical element in the core matrix Z (L × M × N) and eijk is a typical

element in the residual matrix E. The matrices T, WJ, WK and Z are chosen in such a way that the

sum of squared residuals are minimized. In contrast to the PARAFAC solution the Tucker solution is

not unique. Hence, rotations of the loading matrices and rotations of the core matrix can give

another solution, with the same sum of squared residuals, as the one found.

As mentioned earlier, interactions between components from different modes are accounted for

by the elements of the core matrix. The number of components may be chosen differently in each

mode, i.e., L, M and N are not necessarily equal.

Pretreatment of multiway data is not that straightforward, as in two-way data. However, it is

common to keep one mode intact and then mean-center the unfolded multiway matrix column-wise.

Scaling is more delicate and may be performed block-wise17,18 by equalizing the sum of squares of

whole blocks or by scaling of sub-regions in a (hyper-)cube19 rather than column-wise scaling (e.g.,

auto-scaling).

2.8  Multilinear PLS Regression (N-PLS)

The multilinear PLS19 algorithm (N-PLS) is an extension of Martens’ two-way PLS3 (Section

2.6) in combination with the PARAFAC decomposition13,14 (Section 2.7) to data of higher orders. In

traditional QSAR, a PLS model between a two-way descriptor block (X) and a dependent (y)

variable, is build. During the analysis the X matrix is decomposed into scores (t) and weights (w) as

can be seen in Figure 2.4.  In Chapter 5, N-PLS will be used for the analysis of a 3D QSAR data set

where the descriptor matrix X is multiway. In analogy with the PLS method for the case when X is

of order three, N-PLS decomposes the matrix into a score vector (t) and two weight vectors (wJ and

wK) as pictured in Figure 2.8 for the first component.
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Figure 2.8 The one component decomposition of a multiway matrix,  X (I × J × K), into a score vector (t) and two
loading vectors (wJ and wK). E (I × J × K) represents the residuals not considered in the model.

In more detail, if X is a three-way matrix (I × J × K; Figure 2.8) and y is univariate (I × 1) with

typical elements xijk and yi, respectively, X is decomposed into one score vector t (I × 1) and two

weight vectors wJ (J × 1) and wK (K × 1), i.e., one vector per mode. It is assumed that X and y are

column mean-centered in all cases. The model of X is given by:

x t w w eijk i j
J

k
K

ijk= + (2.22)

The general idea is to find t such that the covariance between t and y is maximized under the

constraint that t is the best least squares solution to Equation 2.22 ( w wJ K= =1). Since

t x w wi ijk j
J

k
K

k

K

j

J

=
==

∑∑  
11

(2.23)

is the least squares solution to Equation 2.22, given the w’s, the problem can be rewritten as:

( )( )max cov ,
w wJ K

t y (2.24)

The covariance between t and y can be written as a summation over i, cov(t,y) = t yi i
i

I

=
∑

1

. Note that

no correction for the degrees of freedom (I–1) is necessary, without loss of generality, since this

number is constant for a given component. Now, the problem to solve is:

max
w wJ K

t yi i
i

I

=
∑









1

(2.25)

and by including ti from Equation 2.23 the final problem can be rewritten as:

max  
w wJ K

y x w wi ijk j
J

k
K

k

K

j

J

i

I

===
∑∑∑











111

(2.26)

Note that the least squares property is valid for wJ and wK that satisfy Equation 2.23, but not for

general wJ and wK, hence Equation 2.22 is a partial least squares model.11 The summation over i, in

Equation 2.26, can be performed directly since X and y already are known. This summation will

yield a matrix Z of size (J × K) with typical element z y xjk i ijk
i=

I

= ∑
1

. When Z is defined, Equation

2.26 simplifies to:

 t

X
+ E

wJ

wK
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max
w wJ K

z w wjk j
J

k
K

k

K

j

J

==
∑∑











11

(2.27)

and written in matrix notation it is clear that wJ and wK can be determined as the first singular vectors

from a singular value decomposition (SVD) of Z:

( )[ ] ( ) ( )max ,
w w

T

J K
w Zw w w ZJ K J K⇒ = SVD (2.28)

The parameters from the next component are calculated from the residuals after the first

component, i.e., X X t w2 1 1 1= − T  (compare Martens non-orthogonalized PLS algorithm)3 where w1 is

(w w1 1
K J⊗ ) and X1 is the unfolded X1. Accordingly, X2 replaces X1 in Equation 2.22 and the

component scores and weights from the second component can be determined.

Since the scores from different components are not orthogonal the regression coefficients bA, in

Equation 2.29, have to be calculated taking all the component score vectors into account:

( )b T T T yA
T 1 T=

−
(2.29)

The score-matrix T has the dimension I × A where the ath column represents the ath score-vector.

In the case of 3D QSAR data, five different modes can often be defined: the object mode, the

grid x direction, the grid y direction, the grid z direction and finally the probe mode (see Figure 2.9).

Thus, a 3D QSAR data set in five modes, with one dependent variable requires a penta-linear PLS1

algorithm.

Figure 2.9 The complete data set defining five modes, i.e., the object mode, x, y, z and the probe mode comprising 30,
31,15, 18, and 3 dimensions, respectively.

Analogous to the three-way problem, the five-way solution is obtained by finding the weight

vectors wJ, wK, wL and wM. Since X is of higher order than three, the solution can not be

accomplished by a SVD, but similarly the weight vectors are now obtained by a one-component

PARAFAC12-14,16 (see previous section) decomposition of Z with typical element z y xjklm i ijklm
i

I

=
=
∑

1

:

•
•
•
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max
w w w wJ K L M

z w w w wjklm j
J

k
K

l
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The multilinear PLS algorithm discussed above has been thoroughly scrutinized by Bro19 and

Smilde.11

2.9  Multiway Principal Covariate Regression (PCovR)

 

The theory of Principal Covariate Regression (PCovR)11,20 is the last regression method

discussed and will be applied to real 3D QSAR data in Chapter 7. PCovR can be regarded as a

combination of a PCA on X and a simultaneous regression on y. In PCR, the components (T) are

extracted component-wise with the objective to reconstruct X optimally and subsequently regress y

on T using MLR (see Equation 2.9). In PLS,8,9 a weight vector w and a score vector t are searched

for such that the covariance between t and y is maximized under the constraint that t is the best least

squares solution to the model ∃xij = tiwj. The PCovR method also provides a least squares solution,

but in contrast to the previous methods, PCovR determines all components simultaneously. In

PCovR, the data are fitted to the following model:

T XW= (2.31)

X TP E= +T
X (2.32)

y Tb e= + y (2.33)

( )min α αX XWP y XWb− + − −





T
2 2

1  (2.34)

where T (I × A) contains the A score vectors (principal covariates ti), W (J × A) contains the

component weights, P (J × A) and b (A × 1) are the regression parameters relating X (I × J) and y (I

× 1), respectively, with the scores in T (see Figure 2.10) and EX and ey comprise the part of X and y,

respectively, not accounted for by the model. The PCovR algorithm can be directed to reconstruct

X, or fit y, by assigning α a value between one and zero, respectively. Obviously, when α = 1, X is

reconstructed without fitting y, corresponding to a PCA of X. In the case of α = 0, the model

resembles very much a MLR model since the emphasis totally is focused on fitting y. In the case

where the number of components A is equal to the rank of X, the solution is equivalent to the full

rank MLR solution (Section 2.2), independent of the value assigned to α.

In the applications used later in this thesis y is univariate, but the extension to several

independent variables is possible and is described in the original PCovR article, by De Jong and

Kiers.20

In PCovR, the data is fitted to the model in an iterative process using:

( )α αR RX y
2 21+ − (2.35)

as the expression to maximize, where R X
2  represents the variance in X accounted for by T, and R y

2

represents the variance in y explained by T. It is convenient, however, to rewrite Equation 2.35 as
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the least squares loss function in Equation 2.34 and, subsequently, minimize the function with respect

to W, P and b in the PCovR algorithm with constraint put on P (see below). The algorithm is

converged when the relative change of Equation 2.34 from a subsequent iteration is less than a

defined threshold value, the criterion of convergence, typically chosen very small (10-5).

Figure 2.10 A graphical representation of PCovR, a simultaneous two-block regression method. Here, X (I × J) is a
two-way matrix and y (I × 1) is univariate.

Smilde11 generalized the PCovR algorithm (Equations 2.31–2.34) to be valid also for multiway

data, where X (I × JK) is the rearranged three-way matrix X (I × J × K). Smilde postulated a number

of different models by imposing different structures (constraints) on P. The simultaneous two-block

Tucker3 model (PCovR/Tucker3) is obtained when

( )P G W WT T T= ⊗K J (2.36)

where WJ (J × M) and WK (K × N) are as defined in Figure 2.7, G (L × MN) is the concatenated

three-way core-matrix G (L × M × N) where L, M and N are the number of dimensions used in the

three modes. Similarly, the simultaneous two-block PARAFAC model (PCovR/PARAFAC) is

obtained when

( )P W WT T T= ⊗K J (2.37)

where WJ (J × A) and WK (K × A) are as defined in Figure 2.6, and A is the number of components

used in all three modes.

In the PARAFAC model, the core matrix G actually is a matrix where all off-superdiagonal

elements are zero, since interactions between components from different modes are not allowed. In

the Tucker model, however, this type of interactions are accounted for by the elements in G. Hence,

the PARAFAC model is a special case of the Tucker model (e.g., more constrained). Additionally,

each rotation of the core matrix or of the loading matrices, from a Tucker model, may give solutions

with the same sum of squared residuals as the model found. Hence, the Tucker model does not have

a unique solution. The general PCovR model is presented graphically in Figure 2.10.

Since the PCovR algorithm is solved by an alternating least squares (ALS) algorithm, the initial

starting parameters have to be selected a priori. Accordingly, the parameters, e.g., loadings, scores,

P and b, are updated alternately until convergence. It is a well known fact that in non-linear

modeling an algorithm may occasionally converge into a local minimum, since the result depend on

the starting parameters used. Unfortunately, there is no easy way to determine whether the minimum
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value found is a local or the global minimum function value. However, the chance of finding the

global minimum value is increased if several calculations, with different starting parameters, are

attempted.

In Chapter 7, the simultaneous two-block Tucker521 and five-way PARAFAC22 methods have

been utilized for the analysis of a 3D QSAR data set.

Predictions of new observations Xnew are accomplished by first defining the regression model in

terms of the original X variables:

y Xb e= +pred y (2.38)

and, accordingly, define bpred as

bpred = Wb (2.39)

where b are the regression coefficients (compare Equation 2.19) and ( )W W W= ⊗K J . Then,

Equation 2.40 can be utilized to predict the responses ∃y new  of the objects in Xnew.

∃y X Wbnew = new (2.40)

Still to be solved, is a framework for the proper assignment of α. De Jong20 and Smilde11

suggested to use leave-one-out crossvalidation and find an α that maximizes the predictability. In

Chapter 7, a different approach was used since crossvalidation was considered a too time consuming

procedure.

 

2.10  Model Validation

The quality of a QSAR model is mostly determined by its ability to perform predictions of

objects not included in the training set. However, it is often difficult to assemble enough compounds

for sufficient large training and test sets. Therefore, the predictability is usually estimated with

crossvalidation, i.e., internal validation, where a subset of the training set is omitted during

calibration and, subsequently, predicted with the obtained model. Obviously, the smaller the number

of subsets used the harder the validation criterion becomes. This procedure is repeated until all

compounds have been omitted once. Accordingly, the predictability is quantified as the

crossvalidated Q2 in Equation 2.41. PRESS (Equation 2.42) is the prediction error sum of squares

and SSY (Equation 2.43) is the sum of squares of the response variable where ( )∃y i  is the prediction

of yi using a model with the ith object omitted. A model with high predictability has a crossvalidated

Q2 close to unity, while a model with low or no predictability has a Q2 close to or below zero.

Q PRESS SSY2 1= − (2.41)

( )( )PRESS = −
=
∑ y yi i
i

I

∃
1

2

(2.42)

( )SSY = −
=
∑ y yi
i

I

1

2

(2.43)

Thus, by definition, a model possesses predictability, only when the variation of the prediction errors

is less than the variation of the response variable. The optimal number of components to include in
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the final model is generally18 chosen equal to the number of components (lv) maximizing the function

Q2 = f(lv), or minimizing the function PRESS = f(lv). Actually, the crossvalidated Q2 is an estimation

of the predicted Q2, i.e., a models ability to predict the responses of an external test set.

The predicted Q2 is expressed as in Equation 2.41 but now the SSY corresponds to the sum of

squares of the responses from the test set and ( )∃y i  is the prediction of the ith test compound.

Clementi23 advises not to use an external test set but rather include all available compounds in the

training set. Statistically, real predictability can only be validated with an external test set, which is

not included in the calibration process of the model. However, it is often hard to find enough

compounds for both a training and a test set. Therefore, a compromise between an external test set

and leave-one-out crossvalidation may be crossvalidation where more compounds are left out each

time, and repeated several times,24 like in bootstrapping.25,26 However, if enough compounds are

available, an external test set still is the best validation method and is, thus, recommended.

In PLS1 (PLS with one dependent variable), components scores T are extracted from the

independent descriptor block (X) such that the covariance between T and the response variable (y) is

maximized. By definition, the fraction of explained variance in X and y increases as the number of

components in a model increases. The MLR method fits the data perfectly and due to the large

number of parameters that are estimated the model becomes rigid and the predictability is often low.

In PCR and PLS modeling the fit increases with each component and, if J ≤ I, the solution converges

towards the MLR solution, when all components are extracted. However, with crossvalidation the

number of components necessary to account for the variation in X that significantly describe y can be

estimated. Consequently, an overfitted model with too many components possesses a high degree of

fit with low predictability (compare MLR). In contrast, an underfitted model with too few

components does not account for sufficient variation in X. The degree of fit is expressed with the R2

as defined in Equation 2.44, i.e., the fraction of variation in y accounted for by X. SSY is the same

as in Equation 2.43 and ∃y i  is the model estimation of yi.

( )R SSY2 2

1

1= − −
=
∑ y yi i
i

I

∃ (2.44)

Variations to both Q2 and R2 are suggested in the literature24,27 but throughout this thesis

crossvalidated Q2, predicted Q2 and R2 are used for the presentation of crossvalidations, external

predictions and model calibrations, respectively.

2.11  Variable Selection

A typical data set in 3D QSAR comprises thousands of columns, where a lot of them consist of

insignificant variation, in particular grid points at large distances from the ligands. It has been

shown27 that, if irrelevant variables are maintained in the data set they give rise to worse predictions,

since they express only random variation. Additionally, Clark et al.28 reported that PLS might

overlook ‘true’ correlations when too much redundant variables are present. Accordingly, one might

suggest detecting this kind of variables and omit them from the analysis. However, there is a risk
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when a subset of variables is selected from a larger number; they might correlate with y purely by

chance, which has been discussed in the literature by Topliss et al.29 and Clark et al.28 The latter

authors found that the risk of chance correlation in CoMFA applications when the crossvalidated Q2

> 0.25 to be, more or less, negligible. A frequently used method for the detection of chance

correlation is permuting the elements in the y-vector, i.e., a model calculated with the y-vector

permuted must possess no predictive ability.17 If a model is obtained not pure by chance then the

average predictive Q2, from several different models calculated with permuted y, must be

significantly lower than the Q2 from the model obtained with the original y-vector.

Several methods have been suggested for variable selection in 3D QSAR including GOLPE

(Generating Optimal Linear PLS Estimations),17 Cho region selection,30 Norinder region selection,31

and IVS-PLS (Interactive Variable Selection for PLS).32,33

In a previous version of GOLPE, redundant variables were preselected by means of a D-optimal

selection in the PLS weights. The influence of the remaining variables on the predictability were

estimated in a series of crossvalidation experiments where variables were included and excluded,

alternately, following a Fractorial Factorial Design (FFD).7 Only variables with significant positive

influence on the predictability were selected. In the latest version of GOLPE, the D-optimal

preselection procedure has been replaced by a smart region definition (SRD)34 procedure. SRD aims

at extracting groups of variables (regions) in 3D space carrying the same information. For a more

elaborate description of GOLPE variable selection, see Chapter 4.

The region selection methods presented by Cho et al.30 and Norinder31 are very much related to

GOLPE in the sense that they define and estimate the influence of regions in the grid on the

predictability, as GOLPE does with single variables. In the Cho region selection method, the

influence of whole regions on the predictability are estimated by performing crossvalidation

experiments, with each region apart. Only variables within regions having a crossvalidated Q2 above

a defined limit are selected.

It is important to note, Norinder and Cho et al. define rectangular regions only on geometrical

grounds while the regions defined with GOLPE/SRD are different in size and shape depending on

the spatial location and the statistical significance of grid points in the close vicinity.

Norinder does the same with regions as GOLPE does with variables, hence, performing

crossvalidation experiment where regions are left out, alternately, following a FFD protocol. As in

GOLPE, variables within regions with significant positive influence on the predictability are selected.

Interestingly, crossvalidation experiments with both region selection methods were excellent

with high crossvalidated Q2s, but predictions of external test sets were not good. It indicate problems

with overfitting. The approach presented by Cho et al.30 has one disadvantage, it leaves the

fundamental idea behind multivariate analysis and divides the grid into a number of separate sub-

models. With Norinder’s method the analysis is performed following a FFD protocol which,

statistically, is more correct.

The last variable selection method IVS-PLS32,33 does not really reject variables but instead

reweights single elements in the PLS weight (w) vector, dimension-wise. After each PLS component,
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a lower cut-off level for the weights is searched for by performing crossvalidation experiments and,

subsequently, increase the cut-off level. Weights below the cut-off level is set to zero prior to each

experiment, and the cut-off level that minimizes the CV-value (PRESS/SSY) is adapted. An upper

cut-off level is also determined in a similar manner, but now the crossvalidation experiments are

started with a high cut-off level which, subsequently, is decreased. Weights exceeding the upper cut-

off level are set to zero and, again, the upper cut-off level is determined as the level minimizing the

CV value. One may object against setting high variable weights to zero, but Lindgren et al.32 showed

that large elements in w sometimes suppress smaller values which may affect the predictability

negatively.
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Design, Syntheses and QSAR of a Series trans-

1,2,3,4,4a,5,6,10b-Octahydrobenzo[f]quinolines

with Dopaminergic Affinity

This chapter is based on the article: Nilsson, J.; Selditz, U; Pugsley, T.; Sundell, S.; Lundmark, M.; Smilde, A. K.;
Wikström, H. Design, Syntheses and QSAR of a Series trans-1,2,3,4,4a,5,6,10b-Octahydrobenzo[f]quinolines with
Dopaminergic Affinity. submitted

Summary

In order to investigate the influence of different substituents at the 4-N and 7-O positions of

trans-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolines (trans-OHB[f]Qs) on the affinity for the

dopamine D2L, D3 and D4.2 receptors, a large number of compounds were generated theoretically,

and characterized with physicochemical descriptors. Accordingly, a subset of compounds was

selected by means of a factorial design in the descriptor space, subsequently synthesized and

screened for dopamine D2L, D3 and D4.2 receptor affinities.

In general, compounds with a hydroxy group at the seven position displayed significant high

affinities for all three dopamine receptors while the compounds with a sulfon ester group were less

potent. In addition, the sulfon ester group suppresses the affinity for the D4 receptor. The nitrogen

substituent may be as large as a phenylethyl group without detrimentally affecting the affinity for

the dopamine receptors. Finally, a compound with a 7-OH group and an N-propargyl group lacks

affinity for the dopamine D4 receptor. The somewhat rigid N-propargyl group and the low pKa

value (6.1) may be contributing factors to the low D4 affinity.

In analogy with the 2-aminotetralins, where the affinity for the dopamine receptors resides in

the (2S)-enantiomers, the potency of the trans-OHB[f]Qs resides in the corresponding trans-

(4aS,10bS) enantiomer.

3.1  Introduction

The OHB[f]Qs1-7 (trans-17 and trans-1) as rigid analogues of 2-aminotetralins8 (24) and 3-

PPP5,6,9 (22) have, during the last two decades, achieved a lot of attention in the literature (see also

Chapter 1). Attempts have been made to explain the structure-activity relationships2,10 between this

class of compounds11,12 and other dopaminergic compounds like aporphines and ergolines.8 For the

OHB[f]Q system it was found that the potency resided in the trans-(4aS,10bS) enantiomer.8 As was

pointed out,2,5 the trans isomer is rigid, assuming a flat molecular conformation, whereas the cis

isomer is more flexible, with the piperidine-ring moiety protruding out of the plane, which may cause

steric hindrance in the ligand-receptor interaction, and explain the higher affinity of the trans isomer.

3
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     24 R1 = OH 22 R1 = OH trans-17 R1 = OH

      23 R1 = OSO2CF3 trans-1   R1 = OSO2CF3

Compound trans-17 stimulated central presynaptic DA receptors at a low dose with no

significant behavioral stimulation, reported by Wikström et al.5 However, when administrated at

higher doses, trans-17 elicited typical and postsynaptical DA receptor stimulatory effects, i.e.,

stereotypies, and increased locomotor activity.

Sonesson et al.6 found trans-1 to be inactive as an agonist even at high doses (50 µmol/kg).

Instead, the striatal DOPAC levels in nonpretreated habituated rats were increased by 235 %,

suggesting presynaptic DA receptor antagonistic properties. In the same assay, trans-1 decreased

significantly the locomotor activity to 56 %.

As previously reported by Wikström et al.,3 when the N-n-propyl group was replaced by an N-n-

butyl group or longer chains, these analogues of compounds 22 and trans-17 became more active in

the biochemical and the behavior models used by the authors.

In the present chapter a large number of OHB[f]Qs were generated, using compound 1 as the

template, and subsequently characterized with physicochemical parameters. A few of the most

diverse compounds were then selected and synthesized. After testing the compounds for in vitro

affinity at the dopamine D2L, D3 and D4.2 receptor subtypes, these data plus the physicochemical

descriptors will provide information to the structure-activity relationships.

3.2  Computational Chemistry

+ Tentative Compounds

A large number of 4-N and 7-O substituted trans-OHB[f]Qs were designed by permuting all the

combinations of the substituents listed in Table 3.1, at the R1 and R2 positions. On position R1 and

R2, eight (ID R1 = a, b, c, d, e, f, g, h) and eleven (ID R2 = 1 to 11) different substituents were

considered, respectively. Each compound can be identified by combining the IDs in Table 3.1. For

example, compound h03 is a trans-OHB[f]Q with a triflate group on the 7 position (ID R1 is h) and

an ethyl group on the 4-N position (ID R2 is 03).

+ Physicochemical descriptors

Physicochemical descriptors were generated for all compounds listed in Table 3.1. The descriptors

were obtained from different sources: Mopac AM1 single point calculations13,14; pKa and logP values

were calculated using the Pallas 1.2 program15 and, finally, descriptors were obtained from the
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literature.16 The 19 descriptors in Table 3.2 were generated for all 88 compounds, and collected in

the descriptor matrix X (88 × 19).

Table 3.1 The substituents permuted in order to generate the initial 88
compounds.

N

O

R2

R1

ID R1 R1 ID R2 R2

a -H 01 -CH2CH2CH2CH3

b -CH3 02 -CH2CH2CH3

c -CH2CH3 03 -CH2CH3

d -SO2-CH3 04 -CH3

e -SO2-C6H5 05 -H

f -SO2-C6H4-CH3 06 -CH2CH2C6H5

g -SO2-2-thiophene 07 -CH2CH2-2-thiophene

h -SO2-CF3 08 -CH2CCH

09 -CH2CHCH2

10 -CH(CH3)2

11 -CH2C6H5

 

+ Principal Properties

In Quantitative Structure-Activity Relationships (QSAR), Principal Properties (PPs) are

frequently used for the description of series of compounds (see Chapter 1).17-19 A PP is a score

vector (t) obtained from a Principal Component Analysis20,21 of X (I × J), containing the J

physicochemical parameters (columns) characterizing the I compounds (rows). The PPs are linear

combinations of the descriptors in X and all PPs are chosen orthogonal, i.e., each PP does not

correlate with any of the other PPs. Optimally, each PP represents clearly interpretable features in the

molecules, like steric (e.g., size) or electrostatic (e.g., charge) properties. In PCA, each subsequently

extracted PP accounts for less variation in X and, consequently, the variation accounted for by the

first PP is more significant for the description of X, as compared with the following PPs.

Prior to PCA, in this investigation, each column was mean-centered and scaled to have unit

standard deviation, often referred to as auto-scaling20 (see Chapter 2).
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Table 3.2 The physicochemical descriptors used for the characterization of
the compounds in Table 3.1.

descriptor short source

1 heat of formation hofo a

2 electronic energy elec a

3 Core-Core repulsion coco a

4 dipole-moment dipo a

5 ionization-potential iopo a

6 homo homo a

7 lumo lumo a

8 π R2 piNs b

9 π R1 piOs b

10 electrostatic potential (-1) pom1 c

11 electrostatic potential (0) pot0 c

12 electrostatic potential (1) pop1 c

13 point charge on N chaN a

14 point charge on O chaO a

15 charge on phenyl C in C-O chCO a

16 molecular weight mowe a

17 van der Waals volume vdWv c

18 pKa1 pKa1 d

19 logP logP d
a from Mopac AM1 single point calculations13,14; b tabulated in

literature16; c calculated in SYBYL 6.114;  d calculated in Pallas 1.215

+ Experimental Design

It is assumed that the descriptors in Table 3.2, i.e., combinations of several descriptors, contain

the specific information necessary to distinguish between the ligand-receptor interactions for the

different dopamine receptor subtypes. An experimental design in the descriptor space will make it

possible to select a few of the most diverse compounds. If the choice stands to select between two

compounds, the compound more easily synthesized is selected. Eventually, a compound that portrays

selectivity for a receptor subtype, will provide information about which descriptors that are

responsible for the selectivity. In order to simplify the interpretation, the selection is performed

following a factorial design22 protocol.

An initial PCA of X (88 × 19), with two components accounting for 66 % of the variation,

clearly divided the 88 compounds in two clusters (Figure 3.1(a)). One cluster contains all compounds

with R1 being a H atom, an OMe group and an OEt group corresponding to the compounds in Table

3.1 with ID R1 being a, b and c, respectively. The remaining compounds, i.e., ‘the sulfon esters’,

form the second cluster. From Figure 3.1(a) it is also clear, the compounds with a triflate group at

the 7 position (ID R1 = h) form a subcluster within the sulfon ester group. Accordingly, compounds

were selected from each cluster separately.
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First, since compound 1 (N-n-propyl-7-OTf-OHB[f]Q; h02 in Table 3.1) displays affinity (i.e.,

D2 = 200 and D3 = 21 nM) for dopamine receptors only one additional triflate compound was

synthesized. Hence, compound h01 (16) was selected arbitrarily.
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Figure 3.1 Score (a) and Loading (b) plots from the PCA of all the computer generated compounds (88 × 19). The
selected compounds are high-lighted in (a) with bold face characters.
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Second, from the sulfon ester cluster, including compounds with ID R1 being d, e, f and g (thus,

triflates not included), nine compounds were selected. The selection was performed by means of a

factorial design22 in the three first PPs, accounting for 77 % of the variation in the descriptor matrix

(44 × 19).

Third, from the cluster without sulfon esters, including compounds with ID R1 being a, b and c,

five compounds were selected. Again, the selection was performed by means of a factorial design in

the first two PPs, accounting for 64 % of the variation in the descriptor matrix (33 × 19).

All the selected compounds are high-lighted with bold face characters in Figure 3.1(a) and listed

in Table 3.3. The decision to synthesize compound 20 (Table 3.3) was taken at a later stage in the

investigation (see below).

Table 3.3 The in vitro receptor binding results from the synthesized compounds. All binding results are
reported as Ki (nM) values.

N

O

R2

R1

Compd R1 R2 D2 D3 D4.2

1 -SO2CF3 -CH2CH2CH3 200 21 ND

1-(–) -SO2CF3 -CH2CH2CH3 56 19 >3300

1-(+) -SO2CF3 -CH2CH2CH3 240 120 >1000

2 -H -CH2CHCH2 61 6.0 26

3a -H -CH2CH2C6H5 10 3.0 30

4 -CH3 -CH3 >5900 800 540

5 -CH3 -CH2C6H5 >5900 820 2000

6b -H -CH2CH2CH2CH3 29 4.0 50

7 -SO2CH3 -CH2CCH 5100 1800 >3300

8 -SO2C6H5 -CH2C6H5 1600 720 3300

9 -SO2CH3 -CH2CH3 800 70 330

10 -SO2C6H5 -CH2CH2-2-thiophene 350 140 >3300

11 -SO2CH3 -H 5700 380 >3300

12 -SO2C6H4CH3 -CH2CH2C6H5 >5900 >3000 >3300

13c -SO2-2-thiophene -H ND ND ND

14 -SO2C6H4CH3 -CH2CH2CH3 220 37 >3300

15 -SO2-2-thiophene -CH2CHCH2 190 47 3300

16 -SO2CF3 -CH2CH2CH2CH3 180 29 >3300

20 -H -CH2CCH 15 13 730
a Reference 23; b Reference 5; c Not synthesized
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3.3  Chemistry

The syntheses of cis- and trans-OHB[f]Q have been discussed in a number of

publications2,4,5,8,12,24 during the last two decades. However, some initial synthetic points need to be

mentioned also here.

NH

O

O

NH

O

25                  trans-26

The OHB[f]Q skeleton may be obtained via the intermediate compound 25 by reduction of the

enamide in two steps to obtain 26. Alternatively, 25 is alkylated at the 4-N position before the two

reduction steps are carried out. Wikström et al.5 chose for the latter route, hence, they benzylated 25

followed by reduction of the enamide with Pd/C under H2 yielding a 1:1 mixture of cis and trans

lactam. After reduction of the lactam with LiAlH4 the resulting cis and trans isomers were separated

by means of chromatography on a silica column. Cannon et al.24 preferred the former route, since

they managed to selectively reduce 25 with triethylsilane in trifluoroacetic acid, and obtain pure trans

isomer as the product. The trans-26 was obtained by a subsequent reduction with LiAlH4.

The majority of the compounds in Table 3.3 were synthesized in three consecutive reaction steps

(Scheme 3.1), starting from trans-26: a) alkylation of the 4-nitrogen, b) demethylation of the 7-OMe

followed by c) sulfon ester formation at the 7-O position.

a, b
N

O

R2

R1

NH

O

N

OH

R2
c

      trans-26

Scheme 1 (a) alkylation; (b) demethylation; (c) sulfon ester formation of compound trans-26

The alkylation was performed with the alkylating reagent, in refluxing acetonitrile, using Cs2CO3

as the base. Since the intermediates were stable in acids, the demethylation was performed by

refluxing the alkylated trans-26 in 48 % HBr solution. Occasionally, the demethylation was

performed using 1 M BBr3 solution in dichloromethane cooled at -60 ºC. The sulfon esters were

synthesized using either of two methods: in a two phase system with dichloromethane and 8 %

NaOH with a proper catalyst or in dry dichloromethane, using triethylamine as the base.
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For the preparation of trans-5 used for the separation of the enantiomers (see below), the route

described by Wikström et al.5 was used.

3.4  In Vitro Pharmacology

All the compounds synthesized were tested in three different in vitro receptor binding assays

(Table 3.3), i.e., dopamine D2L, D3 and D4.2, using [3H]-spiperone as the radioligand, performed as

described in the Experimental Section.

3.5  Results and Discussion

+ Quantitative Structure-Activity Relationships (QSAR)

From a PCA of the matrix containing both the descriptors and the response variables, the first

two PCs account for 66 % of the variation (Figure 3.2). The resemblance between the loading plots

in Figure 3.1(b) and Figure 3.2(b), confirm that the selection of molecules were carried out properly.

The response variables are highly correlated and cluster close to the center of the loading plot

(Figure 3.2(b)), indicating a relative low association with the other descriptors. The response

variable, pD4, is placed a bit further to the left from the center of the plot, as compared with pD2 and

pD3, indicating that pD4 is more inversely correlated with the size related descriptors, i.e., vdWv,

pop1, coco and mowe. Consequently, the cluster of compounds in the upper left quadrant in Figure

3.2(a), do have affinity for the dopamine D4 receptor, while the larger compounds to the right in the

same plot, totally lack affinity for the dopamine D4 receptor. The compounds with affinities for the

dopamine D4 receptor do not have a sulfon ester group at the 7 position.
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Figure 3.2 Score (a) and Loading (b) plots from a PCA of the descriptors from the synthesized and tested
compounds in Table 3.3. In (b), pD2, pD3 and pD4 represent the –log(Ki(nM)) values of the receptor affinities from
the respective receptors.
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Receptor Affinities
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Figure 3.3 The affinities for the three dopamine receptors from the selected compounds (Table 3.3). Numbers 1–12
correspond to the compound numbers in Table 3.3; numbers 13–15 correspond to compounds 14–16 and number 16
corresponds to compound 20.

The affinities for the three receptors are highly correlated and selectivity for any of the three

receptors is not observed for any of the compounds (Figure 3.3). However, the compounds with

significant high affinity for the dopamine receptors, e.g., compounds 2, 3 and 6, all have a hydroxy

group at the 7 position. Therefore, one additional hydroxy compound was synthesized in order to

investigate the influence of different 4-N substituents on the receptor affinity. Accordingly,

compound 20 (a08 in Table 3.1) was synthesized, and compared with all the other hydroxy

compounds in Table 3.4. The pKa and logP were found to possess some association with the

receptor affinity in less significant PCs than displayed in Figure 3.2, and were for reason of

comparison appended to Table 3.4.

Table 3.4 Five OHB[f]Qs with a hydroxy group at the seven position and different
substituents at the 4-N position. Binding affinities are Ki values as reported in Table 3.3.

Compd N-substituent D2(nM) D3(nM) D4 (nM) pKaa logPa

6 -CH2CH2CH2CH3 29 4.0 49 9.8 4.1

3 -CH2CH2C6H6 10 3.0 30 8.4 4.7

2 -CH2CHCH2 61 6.0 26 9.7 3.2

20 -CH2CCH 15 13 730 6.1 2.7
a calculated with Pallas 1.215

+ Structure-Activity Relationships

From Table 3.4 it can be concluded that the N substituent may be as large as a phenylethyl group

(e.g., compound 3) without detrimentally affecting the receptor affinities, confirming the conclusions

drawn by Wikström et al.,3 from in vivo biochemical experiments. This is also in agreement with the

extended McDermed25 model (see Chapter 1) as presented by Liljefors et al.11,26

The N-propargyl compound (20) has low affinity for the dopamine D4 receptor (Ki = 730

nM), which is difficult to comprehend since the N-allyl compound (2) is much more potent (Ki = 26

nM). The most likely interaction point for the protonated nitrogen atom with the target receptor, is

an aspartic acid residue on helix three (i.e., Asp114; Table 1.3),27,28 which is preserved in all the D2-
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like dopamine receptors. Interaction with the aspartic acid residue requires a protonated nitrogen

atom since the aspartic acid residue (pKa = 4.4) is readily ionized at physiological pH. The pKa for 20

and 2 were calculated to be 6.1 and 9.7, respectively, suggesting that 20 is less protonated than 2 at

pH 7.4, i.e., the pH used for the in vitro receptor binding experiments.

Dijkstra et al.29 rationalized the low dopamine D2 receptor affinity (competition with [3H]-

N0437) of compound PD128907 with the low measured pKa value (6.1), indicating that only two

percent of the compound is protonated at the nitrogen atom at pH 7.4. Today, PD128907 is one of

the most selective D3 agonist known. Thus, the significance of the pKa value for the explanation of

the difference between compounds 2 and 20 is not clear, since both compounds have affinity for the

D2 and D3 receptors.

An alternative explanation to the lower D4 affinity of 20 may be the N-propargyl group, which is

less flexible as compared to the N-allyl, N-phenylethyl and N-butyl groups of compounds 2, 3 and 6

(Table 3.4), respectively.

It is known from literature30,31 that a triflate group increases the lipophilicity and has significant

electrostatic influence. One effect induced by the triflate group is increased oral bioavailability,31,32 as

compared with hydroxy or methoxy substituents. An explanation for this, as suggested by Sonesson

et al.,31 may be that the electron-withdrawing effect of the triflate group results in a decrease of the

aromatic hydroxylation in, e.g., the liver ( cytochrome P450). The three phenyl hydrogens were in

general shifted downfield, for compounds with a sulfon ester group attached to the phenyl ring, as

compared to compounds without a sulfon ester group (e.g., OMe and OH groups). The three

‘aromatic’ hydrogens were always found in a range clearly above 7 ppm for the sulfon esters, while

for the compounds without a sulfon ester group the range was ≤ 7 ppm. In that respect, no apparent

difference between the triflate group and the structurally related mesylate group was observed

The descriptors included in this investigation did not provide any clues as to why the 7-triflates,

i.e., compounds 1 and 16, have affinity for the D3 receptor while the structurally related substituent,

the mesylate group, was not present in any potent compounds. Actually, the affinity for the

dopamine D3 receptor of the N-propargyl-7-hydroxy compound, 20 (Ki = 13 nM), was reduced

significantly to 1800 nM, after mesylation (compound 7). To date, no explanation to why the triflate

and the mesylate groups affect the in vitro and in vivo experiments differently, has been reported.

+ Chemistry

The trans geometry of 5 could be determined with NMR-spectrometry, since the difference in

chemical shift between the N-benzyl methylene protons3,4 was large (J = 215 Hz) and centered

around δ 3.75, whereas the corresponding difference from the cis-5 isomer could not be observed

(singlet, δ 3.71). Additionally, the trans isomer was confirmed with single crystal X-ray analysis of

trans-19 (Figure 3.4), which crystallized in the triclinic P-1 space group with two molecules per unit

cell (a = 8.233 Å; b = 9.423 Å; c = 11.480 Å; α = 103.55°; β = 98.62°; γ = 108.73°).
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Figure 3.4 Stereo representation of the X-ray crystallographic structure from the hydrochloride salt of trans-19, which
crystallized in the triclinic P-1 space group with two molecules per unit cell (a = 8.233 Å; b = 9.423 Å; c = 11.480 Å;
α = 103.55°; β = 98.62°; γ = 108.73°).

Several attempts to separate the (+)- and the (–)-enantiomer of trans-26 with fractional

crystallization using (–)-dibenzoyl-L-tartaric acid were performed without success. In the following

attempt, OMe-mandeloyl chloride, (S)-camphanic chloride and (+)-chlocyphos chloride were

subsequently coupled to the nitrogen atom, but the separations of the diastereomers using thin layer

chromatography were not sufficient. Eventually, the enantiomers of trans-5 were successfully

separated using semi-preparative HPLC.

3.6  Conclusions

Experimental design as a tool for rational drug design is effective provided that the descriptors

used reflects the variations in the response variable. In the present investigation, the selected

compounds were considered proper representatives of the large population of compounds from

which they were selected. However, the response variables, i.e., the affinities for the dopamine D2L,

D3 and D4.2 receptor subtypes, were found to correlate poorly with the descriptors, which

complicated further QSAR analysis.

The compounds with high affinity for the three receptor subtypes, all had a hydroxy group

attached at the seven position. A sulfon ester group at the seven position, however, suppressed the

affinity for the D4.2 receptor. It was also concluded that the N substituent may be as large as a

phenylethyl group without detrimentally affect the ligand-receptor interaction. More difficult to

rationalize is the low affinity for the D4.2 receptor of compound 20 (N-propargyl-7-hydroxy-

OHB[f]Q). One speculative explanation is that the somewhat rigid N-propargyl group may interfere

in the ligand-D4.2-receptor interaction. In addition, the significance of the low pKa value (calculated

to be 6.1) of compound 20 is hard to estimate, but may be a contributing factor to the low D4.2

affinity.
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3.7  Experimental Section

+ Computational Chemistry

All the compounds in Table 3.1 were built in SYBYL14 by adding the proper substituents to a

low energy conformation of trans-(4aS,10bS)-OHB[f]Q (i.e., the enantiomer found active by

Wikström et.al.8) Each molecule was energy minimized in SYBYL, using the Tripos molecular

mechanics force field.14,33 The 4-N was not protonated in any of the calculations. All settings were

used default and all minimization iterations converged properly.

In order to generate some of the physicochemical descriptors in Table 3.2, Mopac AM1 single

point calculations13,14 with the keywords MULLIK, AM1, T=3600 and 1SCF activated, were

performed.

+ Chemistry

General Remarks. NMR spectra were recorded at 200 or 300 MHz using a Varian Gemini 200

spectrometer. 1H NMR chemical shifts are given in δ units (ppm) relative to the solvents and

converted to the TMS scale using δ (CDCl3) = 7.26 and δ (CD3OD) = 3.30. 13C NMR chemical

shifts are given in δ units (ppm) relative to the solvents and converted to the TMS scale using δ

(CDCl3) = 76.91 and δ (CD3OD) = 49.50. The splitting patterns are designated as follows: s

(singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), m (multiplet). Multiplets are given

as the range from the first to the last peak, respectively. FT-IR spectra were obtained on a ATI-

Mattson spectrometer. Elemental analyses were performed at Parke-Davis (Ann Arbor, MI) and

were within 0.4 % of calculated percentages, if not stated otherwise. High resolution mass

spectrometric analyses were performed at the Department of Chemistry at the University of

Groningen. GC/MS mass spectra were recorded on a Unicam Automass 150 GC/MS system 1.

Melting points were determined on an Electrothermal digital melting point apparatus and are

uncorrected. Specific optical rotations were measured in methanol at RT on a Perkin Elmer 241

polariometer. For flash chromatography, silica gel 60 (0.040–0.063 mm, E. Merck, No. 9385) was

used. All reagents used were commercially available and used without further purification.

Alkylation at the 4-N position. To a mixture of trans-26 (1 eq.), dry acetonitrile and Cs2CO3

(approx. 3 eq.) an alkylating reagent (1.2 eq.) was added. The mixture was refluxed a couple of

hours until the reaction was completed as indicated by GC or TLC. The reaction was quenched by

adding water and EtOAc. The organic layer was separated and the water layer was extracted three

times with EtOAc. The combined organic layers was washed once with brine, dried over Na2SO4,

filtered and evaporated leaving an oil. The HCl salt was prepared and recrystallized.

Demethylation of the 7-methoxy group. The N-alkyl-7-methoxy-OHB[f]Q was refluxed under

N2 in 48 % HBr solution for two hours. The HBr was evaporated and the remaining N-alkyl-7-

hydroxy-OHB[f]Q×HBr was recrystallized from an appropriate solvent.
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 trans-N-(n-Propyl)-7-[[(trifluoromethyl)sulfonyl]oxy]-OHB[f]Q (1). Procedure as for (–)-1

(below). mp 242–245 °C; 1H NMR (CDCL3) δ 7.33 (d, J=7.79, 1H), 7.23 (t, J=7.79, 1H), 7.10 (d,

J=8.12, 1H), 3.09–2.98 (m, 2H), 2.89–2.10 (m, 8H), 1.89–1.76 (m, 2H), 1.70–1.43 (m, 3H), 1.37–

1.16 (m, 1H), 0.91 (t, J=7.36, 3H); IR (KBr) 1144 (-SO2O-), 1208 (C-F) cm-1;  Anal.

(C17H22NO3SF3×HCl) C, N, H

(–)-trans-(4aS,10bS)-N-(n-Propyl)-7-[[(trifluoromethyl)sulfonyl]oxy]-OHB[f]Q ((–)-1). (–)-

trans-(4aS,10bS)-N-Propyl-7-hydroxy-OHB[f]Q×HBr (64 mg, 0.20 mmol), 99 % N-phenyl-

trifluoro-methane sulfonimide (111 mg, 0.29 mmol) and tetra-butyl-ammonium-hydrogen sulfate (a

small spoonful) were suspended in CH2Cl2 (5 mL) and layered with 8 % NaOH (4 mL). The mixture

was stirred vigorously for 19 hours and then quenched with water. The organic layer was separated

and the water layer was extracted three times with CH2Cl2. The combined organic layers was washed

once with 10 % NaHCO3, dried over MgSO4 and evaporated yielding a brownish oil (116 mg) that

crystallized at RT. The product was purified with flash chromatography (gradient from pure CH2Cl2

to CH2Cl2/MeOH 30:1) and the HCl-salt was prepared. Recrystallization from aceton/ether yielded

white crystals (46 mg, 57 %). mp 232–233 °C; base[α]19 = -46.5° (MeOH c = 0.91); 1H NMR

(CDCL3) δ 7.33 (d, J=6.93, 1H), 7.26 (t, J=7.77, 1H), 7.12 (d, J=8.97, 1H), 3.25–3.17 (m, 1H),

3.11–3.01 (m, 1H), 2.91–2.63 (m, 4H), 2.58–2.33 (m, 4H), 2.00–1.88 (m, 2H), 1.79–155 (m, 3H),

1.44–1.26 (m, 1H), 0.95 (t, J=7.34); 13C NMR (CDCl3) δ 148, 142, 129, 127.3, 125.7, 118.8, 115.5,

63.1, 54.8, 52.9, 41.5, 29.0, 25.0, 24.4, 23.2, 17.6, 11.7; FTIR (KBr) 1142 (-SO2O-) cm-1

(+)-trans-(4aR,10bR)-N-(n-Propyl)-[[(trifluoromethyl)sulfonyl]oxy]-OHB[f]Q ((+)-1).

Procedure as for (–)-1. Yield (62 mg, 57 %). mp 231–232 °C; base[α]20= +43.1° (MeOH c = 1.24);
1H NMR (CDCl3) δ 7.31–7.23 (m, 2H), 0.98 (t, J=7.31, 3H), 7.14 (d, J=7.12, 1H), 3.34 (d, J=9.84,

1H), 3.22–3.15 (m, 1H), 3.08–2.34 (m, 8H), 2.11–1.94 (m, 2H), 1.72–1.54 (m, 3H), 1.47–1.35 (m,

1H); 13C NMR (CDCl3) δ 147.8, 141.1, 128.7, 127.5, 125.7, 121.9, 119.1, 63.3, 54.4, 52.8, 40.7,

28.6, 24.4, 23.6, 23.1, 17.3, 11.5; FTIR (KBr) 1204 (C-F), 1142 (-SO2O-) cm-1

trans-N-Allyl-7-hydroxy-OHB[f]Q (2). Trans-18 (170 mg,  0.67 mmol) was dissolved in

CH2Cl2 (4 mL) and added to a cooled (-60°C) 1M solution of BBr3 (3.1 mL, 3.1 mmol) and dry

CH2Cl2 (5 mL). The mixture was stirred at RT over day and boiled in MeOH (5 mL) for 15 minutes.

The solvents were evaporated leaving a white solid which was triturated from ethanol. The white

solid was filtered, washed with diethylether and dried (120 mg, 75 %). mp 257–260 °C; 1H NMR

(CD3OD) δ 6.92–6.87 (m, 1H), 6.73 (d, J=7.82, 1H), 6.55 (t, J=7.45, 1H), 5.97–5.89 (m, 1H), 5.28–

5.20 (m, 2H), 4.93 (s, 2H), 3.53 (d, J=13.44, 1H), 3.22–2.86 (m, 3H), 2.56–2.32 (m, 3H), 2.24–2.06

(m, 2H), 1.82–1.77 (m, 2H), 1.69–1.42 (m, 1H), 1.20–1.14 (m, 1H); FTIR (KBr) 3205 (-OH) cm-1;

MS (EIPI) 243; Anal: C16H21NO×HBr×½H2O) C, H, N

trans-N-Phenylethyl-7-hydroxy-OHB[f]Q (3). This compound has previously been

characterized by Froimowitz.23 mp 261–265 °C (lit.23 284–285); 1H NMR (CD3OD) δ 7.4–6.8 (m,

8H), 3.2–2.2 (m, 6H), 2.1–1.5 (m, 5H), 1.4–0.8 (m, 5H); FTIR (KBr) 3220 (-OH) cm-1

trans-N-Methyl-7-methoxy-OHB[f]Q (4). This compound was prepared from trans-26 (160

mg, 0.74 mmol) following the general alkylation procedure above with methyl-iodide (70 µL, 1.1
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mmol) leaving a colorless oil (230 mg, 135 %). mp 179–185 °C; 1H NMR (CDCl3) δ 7.23 (t, J=7.0,

1H), 6.91 (d, J=8.0, 1H), 6.74 (d, J=8.0, 1H), 4.00 (d, J=12.0, 1H), 3.74 (s, 3H), 3.63 (d, J=11, 1H),

3.51 (s, 2H), 3.17 (s, 3H), 3.11–2.99 (m, 1H), 2.78–2.65 (m, 1H), 2.63–2.36 (m, 2H), 2.22–1.92

(m, 2H), 1.79–1.46 (m, 2H); 13C NMR (CDCl3) δ 182.0, 161.8, 152.6, 148.5, 143.3, 133.2, 98.7,

90.1, 79.7, 68.9, 62.1, 53.0, 48.2, 47.6, 45.7; FTIR (KBr) 2936, 2835, 2589, 1585, 1464(s) cm-1;

MS (EIPI) 231; Anal: (C15H21NO×HCl) C, N, H (0.65%)

 trans-N-Benzyl-7-methoxy-OHB[f]Q (5). N-Benzyl-7-methoxy-OHB[f]Q-3-on (23.78 g, 74.0

mmol) and LiAlH4 (6.6 g,  0.95 mol) were mixed in THF (300 mL). The reaction was followed on

GC which indicated an instant reaction. The reaction was quenched by consecutively adding H2O (6

ml), NaOH (2 M, 6 mL) and H2O (18 mL). The mixture was filtered, dried over MgSO4, again

filtered and the solvents were evaporated leaving a crude oil of cis and trans (22.40 g, 98 %). The

cis and trans isomers were separated with gradient flash chromatography on a silica column starting

with ether/petroleumether (ratio 5:1 with 0.1 % TEA) ending with pure ether yielding cis (3.36 g, 15

%),  trans (4.87 g, 21 %) and a mixture of cis and trans (8.07 g, 36 %).

trans-5. mp 232–235 °C; 1H NMR (CDCl3) δ 7.33–7.17 (m, 5H), 7.11 (t, J=7.69, 1H), 6.89 (d,

J=8.06, 1H), 6.66 (d, J=8.06, 1H), 4.11 (d, J=13.18, 1 benzyl-H), 3.78 (s, 3H), 3.39 (d, J=13.19, 1

benzyl-H), 2.98–2.89 (m, 2H), 2.70–2.55 (m, 2H), 2.51–2.39 (m, 2H), 2.17–1.99 (m, 2H), 1.75–

1.64 (m, 2H), 1.62–1.47 (m, 1H), 1.25–1.09 (m, 1H); 13C NMR (CDCl3) δ 156.7, 140.82, 138.9,

129.0, 128.0, 126.6, 126.1, 124.8, 117.6, 107.0, 63.6, 56.9, 55.1, 53.0, 42.3, 29.6, 26.8, 25.1, 23.0;

FTIR (KBr) 3008, 2952, 1583, 1463 cm-1; Anal (C21H25NO×HCl×½H2O) C, H, N

cis-5. mp 216–221 °C; 1H NMR (CDCl3) δ 7.34 (d, J=7.33, 2H), 7.25 (t, J=7.33, 2H), 7.18 (d,

J=8.06, 1H), 7.05 (t, J=7.69), 6.69 (d, J=8.06), 6.59 (d, J=8.05), 3.74 (s, 3H), 3.71 (s, 2H, -CH2-

Ph), 3.06–2.96 (m, 1H), 2.95–2.91 (m, 1H), 2.50–2.47 (m, 1H), 2.43–2.29 (m, 1H), 2.00–1.84 (m,

3H), 1.79–1.47 (m, 4H), 1.28–1.09 (m, 1H); 13C NMR (CDCl3) δ 156.9, 143.0, 139.5, 128.6, 128.0,

126.6, 126.0, 124.6, 120.9, 106.7, 58.7, 57.0, 55.0, 46.1, 39.9, 29.9, 25.3, 22.8, 14.9; HR-MS Calcd

(Obsd) for C21H25NO 307.194 (307.192)

Enantiomeric separation of trans-N-Benzyl-7-methoxy-OHB[f]Q (5). The separation of the

enantiomers was performed by means of semi-preparative HPLC on a Chiralcel OD (250 x 10 mm)

column. A stock solution of the HCl salt of the racemic 5 and ethanol (100 mg/mL) was prepared.

Each time 100 µL was injected on the column. The mobile phase used was ethanol mixed with

diethylamine (0.1 %), in order to minimize the peak-tailing, at a flow rate of 1.5 mL per minute. The

eluent was monitored with a UV-detector (270 nm). RS: 2.02; α: 1.24. (Separation on a analytical

Chiralcel OD column, flow rate: 0.5 mL/min; mobile phase: EtOH (gradient grade); RS = 1.65; α =

1.62)

(–)-trans-(4aR,10bR)-N-Benzyl-7-methoxy-OHB[f]Q ((–)-5). The (–)-enantiomer was the

least retained one. 106 mg of the pure enantiomer was obtained.

(+)-trans-(4aS,10bS)-N-Benzyl-7-methoxy-OHB[f]Q ((+)-5). The (+)-enantiomer was the

most retained one. 128 mg of the pure enantiomer was obtained.
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trans-N-(n-Butyl)-7-hydroxy-OHB[f]Q (6). Previously characterized by Wikström et al.5 mp

270–275 °C (lit: 277–279 °C); HR-MS Calcd (Obsd) for C17H25NO 259.194 (259.195)

trans-N-(1-Prop-2-ynyl)-7-[[(methane)sulfonyl]oxy]-OHB[f]Q (7). Trans-20 (60 mg, 0.25

mmol) was dissolved in dry CH2Cl2 (5 mL), a small amount of TEA (4 drops) was added followed

by CH3SO2Cl (30 µL, 0.37 mmol). The mixture was stirred under N2 at RT over night. The reaction

was quenched by adding 10 % NaHCO3 (3 mL). The organic layer was separated and the water layer

was extracted three times with CH2Cl2. The combined organic layers was washed once with brine,

dried over Na2SO4, filtered and evaporated leaving a crude oil (80 mg, 0.25 mmol). The oil was

converted into the HCl salt. mp 225–227 °C; 1H NMR (CDCl3) δ 7.30–7.20 (m, 3H), 4.31 (d, J=17,

1H), 3.83 (d, J=17, 1H), 3.44 (m, 2H), 3.21–3.06 (m, 5H), 2.9–2.8 (m, 1H), 2.71–2.23 (m, 4H),

2.20–2.00 (m, 2H), 1.46–1.28 (m, 2H); 13C NMR (CDCl3) δ 146.7, 138.5, 128.4, 127.4, 124.6,

120.2, 79.7, 70.4, 63.0, 53.1, 42.4, 39.0, 38.2, 27.4, 22.5, 22.2; FTIR (KBr) 1173 (s, -SO2O-) cm-1;

HR-MS Calcd (Obsd) for C17H21NO3S 319.124 (319.125)

trans-N-Benzyl-7-[[(phenyl)sulfonyl]oxy]-OHB[f]Q (8). The HBr salt of trans-N-Benzyl-7-

hydroxy-OHB[f]Q (70 mg, 0.19 mmol) was suspended in CH2Cl2 (4 mL) and layered with 10 %

NaOH (4 mL). A catalytic amount of Bu4NH4HSO4 was added. Subsequently, benzenesulfonyl

chloride solved in CH2Cl2 (1.5 mL) was added dropwise. The mixture was stirred at RT for 30

hours, water was added and the organic layer was separated. The water layer was extracted with

CH2Cl2, the combined organic layers was dried over Na2SO4, filtered and evaporated yielding a

brownish oil. The oil was purified by flash chromatography on a silica column leaving a colorless oil

(120 mg, 0.28 mmol). The HCl salt was prepared. mp 257–258 °C; 1H NMR (CDCl3) δ 7.90 (d,

J=7.32, 2H), 7.69 (t, J=7.69, 1H), 7.55 (t, J=7.69, 2H), 7.31 (s, 3H), 7.27–7.19 (m, 3H), 7.09 (t,

J=8.06, 1H), 6.83 (d, J=8.06, 1H), 4.10 (d, J=13.92, 1H), 3.32 (d, J=13.55, 1H), 2.85 (m, 2H),

2.63–2.60 (m, 2H), 2.30 (m, 2H), 2.08–2.01 (m, 2H), 1.73–1.71 (m, 2H), 1.26–1.21 (m, 2H); 13C

NMR (CDCl3) δ 147.4, 142.5, 139.0, 136.2, 134.2, 130.0, 129.0, 128.1, 127.7, 126.8, 126.3, 126.1,

124.3, 119.2, 63.4, 57.2, 53.1, 42.2, 29.4, 26.5, 25.0, 23.2; FTIR (KBr) (s, -SO2O-) cm-1; MS (EIPI)

433; Anal: (C26H27NO3S×HCl×½ H2O) C, H, N

trans-N-Ethyl-7-[[(methane)sulfonyl]oxy]-OHB[f]Q (9). Triethylamine and methanesulfonyl

chloride (0.013 mL, 0.17 mmol) were added to a suspension of  trans-21 (60 mg, 0.19 mmol) in

CH2Cl2 and dioxan. The mixture was stirred at RT over night and quenched with 10 % NaOH. The

organic layer was separated, the basic water layer was extracted once with CH2Cl2 and the organic

layers were combined. Small solids in the organic layer were formed but GC and TLC indicated no

product and were consequently filtered off. The mother liquor was dried over Na2SO4, filtered and

evaporated leaving a solid (50 mg) which still contained starting-material. The reaction was repeated

(mesyl chloride 0.015 mL) followed by the same work up procedure. The obtained product was

purified on a silica column. mp 221–225 °C; 1H NMR δ 7.23–7.11 (m, 3H), 3.19 (s, 3H), 3.18–2.93

(m, 2H), 2.91–2.58 (m, 3H), 2.48–2.43 (m, 2H), 2.36–2.23 (m, 2H), 2.18–2.10 (m, 2H), 1.86–1.80

(m, 2H), 1.58–1.52 (m, 1H), 1.03 (t, J=7.14, 3H); 13C NMR (CDCl3) δ 147, 142.5, 130, 126.7,

124.6, 119.0, 62.1, 51.9, 46.6, 42.4, 38.3, 29.6, 25.8, 25.7, 23.6, 9.5; FTIR (KBr) 2928 (s), 2451
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(s), 1342, 1166 (s,-SO2O-) cm-1; MS (EIPI) 309; HR-MS Calcd (Obsd) for C16H23NO3S 309.140

(309.141)

trans-N-[2-(2-Thienyl)-ethyl]-7-[[(phenyl)sulfonyl]oxy]-OHB[f]Q (10). Trans-N-[2-(2-

Thienyl)-ethyl]-7-hydroxy-OHB[f]Q (24 mg, 0.07 mmol), TEA and dry CH2Cl2 were mixed before

benzenesulfonyl chloride (30 µL, 0.24 mmol) was added. The mixture was stirred at RT for 5 hours.

The reaction was quenched with 10 % Na2CO3 and the organic layer was separated. The water layer

was extracted two times with CH2Cl2 and the combined organic layers was washed with brine, dried

over Na2SO4, filtered and evaporated leaving a crude oil (63 mg, 0.14 mmol). mp 190–199 °C; 1H

NMR (CDCl3) δ 8.0–7.5 (m, 5H), 7.3–7.0 (m, 3H), 6.9–6.7 (m, 3H), 3.8–3.3 (m, 5H), 3.1–2.5 (m,

5H), 2.4–2.0 (m, 2H), 1.5–1.3 (m, 4H); MS (EIPI) m/z (rel. intensity, 170 eV) 454 (M+, 100), 356

(13), 313 (37), 216 (18), 185 (4); MS (CI+) m/z (rel. intensity) 454 (M+, 100), 344 (6), 314 (26),

160 (8) for C25H27NO3S2

trans-7-[[(Methyl)sulfonyl]oxy]-OHB[f]Q (11). Trans-26 (147 mg, 0.7 mmol) was suspended

in dioxan (8 mL) followed by addition of NaHCO3 (4 mL half saturated in H2O) and FMOC-chloride

(300 mg, 1.2 mmol) solved in dioxan (5 mL). The suspension was left stirring over night at RT,

quenched with water (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers

was dried over Na2SO4, filtered and evaporated yielding an yellow oil which was purified by flash

chromatography leaving a white solid (310 mg, 100 %).

The obtained trans-N-FMOC-7-methoxy-OHB[f]Q (310 mg, 0.7 mmol) was added to

ethylmercaptane (5 mL) together with AlCl3 (330 mg, 2.5 mmol). The mixture was stirred at RT for

3.5 hours and quenched with ice water. The reaction mixture was extracted with chloroform (3 × 15

mL) and ethylacetat (2 × 10 mL), the combined organic layers was dried over Na2SO4, filtered and

evaporated leaving a white solid (211 mg, 71 %).

The intermediate, trans-N-FMOC-7-hydroxy-OHB[f]Q (103 mg, 0.24 mmol) was, without

further purification, mixed with triethylamine (a few drops) and dry dichlorometane (9 mL) before

methanesulfonyl chloride (32 µL, 0.4 mmol) was added. The mixture was stirred at RT for 2.5 hours

and quenched with 10 % Na2CO3. The basic water layer was extracted with dichloromethane (3 × 10

mL). The combined organic layers was washed once with brine, dried over Na2SO4, filtered and

evaporated leaving a white solid (110 mg, 91 %).

The final product, trans-11, was obtained from trans-N-FMOC-7-[[(methyl)sulfonyl]oxy]-

OHB[f]Q (110 mg, 0.22 mmol) which was stirred in a 25 % piperidine/CH2Cl2 solution for 15

minutes. The solvents were evaporated and the remaining solids were purified by flash

chromatography. mp 270–271 °C; 1H NMR (CD3OD) δ 7.31 (m, 3H), 3.48 (d, J=12.7), 3.3 (s, 3H),

3.25–3.09 (m, 2H), 3.04–2.86 (m, 2H), 2.68 (d, J=12.1), 2.28–2.09 (m, 2H), 2.01–1.84 (m, 2H),

1.56–1.48 (m, 1H); 13C NMR (CDCl3) δ 141.9, 129.7, 126.6, 124.2, 119.0, 63.1, 58.2, 46.4, 43.1,

38.1, 29.4, 26.5, 23.2, (147); FTIR (KBr) 2934 (s), 2532, 2362 (m), 1334, 1170 (s, -SO2O-) cm-1;

MS (EIPI) 281; Anal: (C14H19NO3S×HCl×½ H20)  C, H, N

trans-N-Phenylethyl-7-[[(4-toluoyl)sulfonyl]oxy]-OHB[f]Q (12). Trans-3 (31 mg, 0.08

mmol), TEA and dry CH2Cl2 were mixed before p-toluensulfonyl chloride (32 mg, 0.17 mmol) was
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added. The mixture was stirred at RT for 5 hours. The reaction was quenched with 10 % Na2CO3

and the organic layer was separated. The water layer was extracted two times with CH2Cl2 and the

combined organic layers was washed with brine, dried over Na2SO4, filtered and evaporated leaving

a crude oil which was converted to the HCl salt. Recrystallization from ethanol yielded brown

crystals. mp 290 °C dec.; MS (EIPI) m/z (rel. intensity, 170 eV) 462 (M+, 11), 239 (100), 102 (76)

for C28H31NO3S

trans-N-(n-Propyl)-7-[[(4-toluoyl)sulfonyl]oxy]-OHB[f]Q (14). To a solution of dioxan (8

mL), trans-17 (60 mg, 0.18 mmol) and a few TEA drops, p-toluensulfonyl chloride (90 mg, 0.47

mmol) was added. The reaction was complete after one nights stirring as indicated by GC/MS.

Dichloromethane and 10 % NaHCO3 was added. The water layer was extracted three times with

dichloromethane, and the combined organic layers was dried over Na2SO4, filtered and evaporated

yielding a brownish oil. After purification by flash chromatography on a silica-column (MeOH/CH2-

Cl2 1:15) the HCl salt was prepared yielding an oil (80 mg, 100 %) which crystallized while standing.

The solid was recrystallized from ethanol. mp 217–219 °C; 1H NMR (CDCl3) δ 7.74 (d, J=8.30,

2H), 7.32 (d, J=8.06, 2H), 7.15 (t, J=8.30, 1H), 7.07 (d, 7.81, 1H), 6.80 (d, J=7.81, 1H), 3.07 (d,

J=11.47, 1H), 2.83–2.51 (m, 4H), 2.45 (s, 3H), 2.40–2.21 (m, 2H), 2.19–2.07 (m, 2H), 1.87–1.78

(m, 2H), 1.60–1.41 (m, 3H), 1.27–1.19 (m, 2H), 0.88 (t, J=7.33, 3H); 13C NMR (CDCl3) δ 147.4,

145.2, 141.8, 133.1, 129.9, 129.6 (2C), 128.2 (2C), 126.3, 124.1, 119.3, 62.6, 54.7, 52.6, 41.5,

29.1, 25.2, 24.7, 23.0, 21.5, 17.4, 11.7; FTIR (KBr) 1187 (-SO2O-) cm-1; MS (EIPI) 399; Anal:

(C23H29NO3S×HCl×1¼ H2O) C, H (0.5%), N

trans-N-Allyl-7-[[(2-thienyl)sulfonyl]oxy]-OHB[f]Q (15). Trans-2 (80 mg, 0.33 mmol), TEA

and dry CH2Cl2 were mixed before 2-thienyl-sulfonyl chloride (100 mg, 0.55 mmol) was added. The

mixture was stirred at RT for 5 hours. The reaction was quenched with 10 % Na2CO3 and the

organic layer was separated. The water layer was extracted three times with CH2Cl2 and the

combined organic layers was washed with brine, dried over Na2SO4, filtered and evaporated leaving

a crude oil. After purification by flash chromatography a brown/red oil was left. The HCl salt was

prepared and recrystallized from ethanol leaving a white solid (49 mg, 36 %). mp 157–166 °C; 1H

NMR (CDCl3) δ 7.76–7.73 (m, 1H), 7.62–7.60 (m, 1H), 7.23–7.22 (m, 1H), 6.90–6.83 (m, 1H),

6.03–5.84 (m, 1H),  5.46 (s, 1H), 5.39 (d, J=4.64, 1H), 3.78–3.53 (m, 2H), 3.37 (d, J=9.83, 1H),

3.26–3.08 (m, 1H), 2.91–2.43 (m, 5H), 2.35–2.10 (m, 2H), 2.01–1.80 (m, 2H), 1.41 (dd, (d,

J=11.79), (d, J=13.76)); 13C NMR (CDCl3) δ 147.3, 139.6, 135.1, 134.8, 129.1, 127.7, 127.0, 126.4,

124.5, 124.1, 119.8, 63.4, 54.7, 52.1, 39.7, 27.8, 23.5,  22.4; FTIR (KBr) 3070, 2928, 2508, 1354,

1182 (-SO2O-) cm-1; Anal: (C19H23NO3S2×HCl) C, H, N

trans-N-(n-Butyl)-7-[[trifluoromethane)sulfonyl]oxy]-OHB[f]Q (16). Trans-6 (90 mg, 0.35

mmol) was mixed with CH2Cl2 (4 mL), 99 % N-phenyl-trifluoro-methane sulfonimide (210 mg, 0.59

mmol), Bu4NH4HSO4 (catalytic amount) and layered with 8 % NaOH (4 mL). The mixture was

stirred vigorously under N2 over night and quenched with 10 % HCl. An attempt to perform an

acid/base extraction failed because the product was too lipophilic and remained in the organic layer

even after extraction with acid. Therefore, the water layer was extracted with CH2Cl2. The combined
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organic layers was dried over Na2SO4, filtered and evaporated. The product was purified with flash

chromatography. mp 217 °C; 1H NMR (CDCl3) δ 7.31–7.24 (m, 2H), 7.17–7.13 (m, 1H), 3.74 (t,

J=10.01, 1H), 3.58–3.46 (m, 1H), 3.24–3.09 (m, 3H), 2.88–2.75 (m, 3H), 2.63 (d, J=11.72, 2H),

2.40–2.38 (m, 2H), 2.07–2.03 (m, 1H), 1.83–1.24 (m, 5H), 0.99 (t, J=7.20, 3H); FTIR (KBr) 2966,

2416, 1411, 1209(C-F), 1140(-SO2O-) cm-1; HR-MS Calcd (Obsd) for C18H24NO3SF3 391.143

(391.142).

trans-N-Allyl-7-methoxy-OHB[f]Q (18). This compound was prepared from trans-26 (180

mg, 0.83 mmol) following the general alkylation reaction (above) with allyl-bromide (86 µL, 1

mmol) leaving a yellowish oil (220 mg, 0.86 mmol). mp 200–209 °C; 1H NMR (CDCl3) δ 7.15 (t,

J=7.94, 1H), 6.93 (d, J=7.81, 1H), 6.69 (d, J=7.81, 1H), 5.93–5.89 (m, 1H), 5.24–5.15 (m, 2H),

3.80 (s, 3H), 3.54 (d, J=14.16, 1H), 3.21–2.89 (m, 3H), 2.67 (m, 3H), 2.28–2.08 (m, 2H), 1.84–1.77

(m, 2H), 1.57–1.51 (m, 2H), 1.3–1.1 (m, 1H); 13C NMR (CDCl3) δ 156.7, 140.6, 134.4, 126.1,

124.7, 117.63, 117.59, 106.9, 62.9, 56.1, 55.0, 52.9, 42.4, 29.5, 25.8, 25.3, 22.8; MS (EIPI) 257 ;

HR-MS Calcd (Obsd) for C17H23NO  257.178 (257.180)

trans-N-(1-Prop-2-ynyl)-7-methoxy-OHB[f]Q (19). This compound was prepared from trans-

26 (190 mg, 0.88 mmol) following the general alkylation procedure above with propargyl chloride

(100 µL, 1.38 mmol) leaving a yellow oil (230 mg, 0.9 mmol). mp 213–222 °C; 1H NMR (CDCl3) δ

7.17 (t, J=7.94, 1H), 6.95 (d, J=8.05, 1H), 6.71 (d, J=8.05, 1H), 3.90 (d, J=17.71, 1H), 3.42 (d,

J=1758, 1H), 3.05–2.84 (m, 2H), 2.74–2.27 (m, 6H), 2.21 (t, J=2.44, 1H), 1.92–1.79 (m, 2H), 1.59–

1.41 (m, 1H), 1.38–1.15 (m, 1H); 13C NMR (CDCl3) δ 156.8, 140.3, 126.1, 124.7, 117.7, 107.0,

73.1, 61.1, 55.0, 42.7, 42.3, 29.4, 25.6, 25.4, 22.7; FTIR (KBr) 3156 (s), 2962 (m), 2365, 2307 (w),

1584 (s), 1468 (s) cm-1; MS (EIPI) 255; Anal: (C17H21NO×HCl) C, H, N

trans-N-(1-Prop-2-ynyl)-7-hydroxy-OHB[f]Q (20). A mixture of 1M BBr3 (1.9 mL) and dry

CH2Cl2 (3 mL) were cooled to -60°C before a solution of trans-19 (100 mg, 0.39 mmol) and CH2Cl2

(3.6 mL) was added dropwise. After addition, the temperature was allowed to reach RT and was left

stirring over night. The reaction was cooled to 0°C before MeOH (4 mL) was added, followed by 15

minutes refluxing. The solvents were evaporated the HCl salt was prepared. mp 251–252 °C; 1H

NMR (CDCl3) δ 6.94 (t, J=7.82, 1H), 6.84 (d, J=7.81, 1H), 6.58 (d, J=7.81, 1H), 3.81 (d, J=17.58,

1H), 3.40 (d, J=17.58, 1H), 3.34 (s, 1H), 2.95–2.87 (m, 2H), 2.64–2.29 (m, 6H), 1.88–1.81 (m,

2H), 1.45–1.10 (m,2H); 13C NMR (CDCl3) δ  154.1, 139.5, 125.8, 122.2, 116.3, 111.3, 61.7, 52.7,

41.8, 41.7, 29.2, 24.9, 24.8, 22.2; FTIR (KBr) 3194 (s, -OH), 2930 (s), 2556 (s), 1585 (s), 1466 (s),

1272 (s) cm-1; MS (EIPI) 241; HR-MS Calcd (Obsd) for C16H19NO 241.147 (241.147)

trans-N-Ethyl-7-hydroxy-OHB[f]Q (21). The intermediate trans-N-Ethyl-7-methoxy-

OHB[f]Q was prepared from trans-25 (310 mg, 1.4 mmol) following the general alkylation

procedure (above) with iodoethane (190 µL,  2.4 mmol) leaving a white solid (310 mg, 89 %). 1H

NMR (CDCl3) δ 7.13 (t, J=8.06, 1H), 6.90 (d, J=8.05, 1H), 6.68 (d, J=8.06, 1H), 3.79 (s, 3H),

3.08–2.92 (m, 3H), 2.81–2.32 (m, 6H), 1.87–1.83 (m, 2H), 1.48–1.41 (m, 3H), 1.07 (t, J=7.14, 3H);
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13C NMR (CDCl3) δ 156.8, 140.7, 126.2, 124.8, 117.8, 107.1, 62.4, 55.2, 52.1, 46.6, 42.5, 29.8,

25.9, 25.5, 23.1, 9.3; MS (EIPI) 245

Trans-N-Ethyl-7-methoxy-OHB[f]Q (220 mg, 0.9 mmol) was used without further purification

to prepare trans-21, following the general demethylation procedure (above) yielding a

white/brownish solid (270 mg, 96 %). The solid was recrystallized from MeOH. mp 300–302 °C; 1H

NMR (CD3OD) δ 7.03 (t, J=7.33, 1H), 6.85 (d, 1H), 6.65 (d, J=7.8, 1H), 3.47–3.57 (m, 2H), 3.16–

3.30 (m, 6H), 3.03 (m, 2H), 2.60–2.66 (m, 2H), 2.10 (m, 2H), 1.80 (m, 1H), 1.33–1.37 (m, 3H);

FTIR (KBr) 3192, 2924, 2743, 2679, 1585, 1468, 1273 cm-1; HR-MS Calcd (Obsd) for C15H21NO

231.162 (231.162)

+ In vitro Pharmacology

Cell Culture. CHO K1 cells stably transfected with the genes of wild type D2L, D3, and D4.2

receptors were grown and harvested as previously described.34-36

Radioligand Binding. CHO K1 cells expressing the human DA D2L, D3, and D4.2 receptors

were removed by replacement of growth medium with PBS-EDTA (0.02 % EDTA in phosphate

buffered saline). After swelling for 5-10 min, the cells were scraped from the flasks, and centrifuged

at about 1000 x g for 5 min. The cells were then resuspended in 50 mM Tris-HCl binding buffer pH

7.4 at room temperature (50 mM Tris-HCl, 1 mM EDTA, 1.5 mM CaCl2, 5 mM KCl, 120 mM

NaCl and 5 mM MgCl2). The membranes were pelleted by centrifugation at 20,000 × g at 4°C for 20

min.  The supernatant fluid was removed and the pellets were resuspended and homogenized with a

Brinkman Polytron (setting 5 for 15 sec) in the binding buffer and 1 mL aliquots stored at -80°C

until used in the binding assay.

Binding assays were carried out in duplicate in 1.4 mL microtubes (Marsh Biomedical Products,

Inc.). Each tube received 50 µL of competing drug or binding buffer, 50 µL of [ 3H]spiperone (final

concentration was 0.2 nM for D2L and D4.2 and 0.5 nM for D3) and 0.4 mL membranes (15–30 µg

protein) to give a final volume of 0.5 mL. After 60 min incubation at 25°C, the incubations were

terminated by rapid filtration over GF/B filters presoaked in 0.5 % polyethylenimine and washed

rapidly with 3 × 1 mL ice-cold buffer. Filters were put in scintillation vials, 4 mL of Beckman Ready

Gel Scintillation fluid was added and the radioactive content determined by liquid scintillation

spectrophotometry. Non-specific binding was defined in presence of 1 µM haloperidol. Data for IC50

values were analyzed using the iterative nonlinear least square curve-fitting program LIGAND. The

dissociation constant, Ki, was derived from the concentration, C, for 50 % inhibition of binding,

using Ki = C/(1 + C*/Kd) where C* was the concentration of [3H]spiperone and the Kd was 0.116

nM, 0.152 nM and 0.093 nM for DA D2L, D3 and D4.2 receptors, respectively.37 Experimental

compounds were made up as stock solutions in dimethyl sulfoxide (DMSO). The final concentration

of 0.1 % DMSO in the incubation mixture had no effect on specific binding.
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A GRID/GOLPE 3D QSAR Study on a Set of

Benzamides and Naphthamides

This chapter is based on the article: Nilsson, J.; Wikström, H.; Smilde, A. K..; Glase, S.; Pugsley, T.; Cruciani, G.;
Pastor, M.; Clementi, S. A GRID/GOLPE 3D QSAR Study on a Set of Benzamides and Naphthamides, with Affinity
for the Dopamine D3 Receptor Subtype. J. Med. Chem. 1997, 40, 833-840

Summary

In the pursuit of drugs effective in the treatment of schizophrenia without extrapyramidal side-

effects, compounds that selectively block the dopamine D3 receptor are thought to be of interest. In

order to create a model with which the D3 affinity, of compounds not yet synthesised, can be

predicted, a Comparative Molecular Field Analysis (CoMFA) was performed. The data set

consisted of 30 compounds which were described quantitatively with three different probes in the

GRID program. The multivariate statistical analyses were performed using the GOLPE program.

The predictive ability of the model was found to increase significantly when the number of variables

was reduced from 25110 to 784. A crossvalidated Q2 of 0.65 was obtained with the final model,

confirming the predictability of the model.

It was concluded that naphthamides in general were more potent than benzamides, and a

compound with an unsubstituted arylpiperazine phenyl ring was less potent than a substituted one,

in this series of compounds.

4.1  Introduction

The dopamine D3 receptor is characterised by its selective expression in mesolimbic

dopaminergic projection areas (see Figure 1.2) of the rat and human brains and its high affinity for

antipsychotic drugs, suggesting a role of this receptor in the control of locomotion and motivation,

as well as in the pathogenesis of disorders such as drug abuse and schizophrenia.1 Existing drugs

against schizophrenia cause major movement disorders called extrapyramidal syndrome (EPS),

proposed to be caused by blockade of D2 receptors in striatum. The 30 ligands2 included in this study

(Tables 4.1–4.3) were synthesised with the aim to achieve ligands that selectively could antagonise

the D3 receptor, and thereby also avoid the EPS. The ligands belong to two structural different

classes, benzamides and naphthamides, both having an arylpiperazine tail connected to the amide

nitrogen. The objective with this study was to create a 3D QSAR model able to predict the activities

of compounds not yet synthesised and which could serve as an aid in the design of new compounds.

Traditionally, 3D QSAR models are created using CoMFA as implemented in the SYBYL

4
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program.3,4 Today other methods are available and it was decided to use the GRID program5 for the

generation of molecular descriptors and the GOLPE program6 for the multivariate statistical analysis.

Table 4.1 The benzamide ligands and their experimental and fitted affinities for the
dopamine D3 receptor subtype.

N
H

O
N

NR4
R3

R1
R2

R5
R6

Compd R1 R2 R3 R4 R5 R6 exp.a,b fitted

1 -OMe -Br 2.5 2.6

2 -OMe -Br -OH 2.6 2.8

3 -OMe -Et -Cl -OH 3.2 3.1

4 -OMe -Cl -Cl -OH 3.0 2.9

5 -OMe -Cl -Cl -OH -Cl -Cl 2.7 2.7
a

 [
3H]Spiperone, human DA D3 receptors expressed in CHO K1 cells; Ki values

were obtained from four to six concentrations, run in triplicate, by a non
linear regression analysis.; b log10 of Ki(nM) values

4.2  Molecular Descriptors Generated in the GRID program

In both SYBYL/CoMFA3,4 and GRID,5 as was mentioned in Chapter 1, a 3D QSAR model

utilises a grid, large enough to enclose all the aligned ligands. In each grid point interactions between

a probe atom and the target molecules are calculated. The programs SYBYL/CoMFA3,4 and GRID5

use different force fields, different types of probe atoms and the interactions are calculated

differently. Interactions accounted for in the GRID force field are steric, electrostatic and hydrogen

bonding interactions represented by the Lennard-Jones energy (Este),  the Coloumbic energy (Eele)

and a hydrogen bonding (Ehb) term, respectively. In contrast to SYBYL/CoMFA where the

interaction energies, i.e. Este and Eele, are considered separately, the sum of all the different

interaction energies (Equation 4.1) is calculated in each grid point with GRID. An attractive

interaction between the probe atom and the ligand produces a negative field (Etot) while a repulsive

interaction is positive.

E E E Etot ele ste hb= + + (4.1)

Different probes reflect different types of interactions and may selectively be included to mimic

specific interactions between the ligand and the receptor.7 Often more than one probe is necessary

for a complete description of the different interaction types.
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Table 4.2 The naphthamide ligands and their experimental and fitted affinities for
the dopamine D3 receptor subtype.

N
H

O
N

NR3

R1

R4
R5

R2

R6

Compd R1 R2 R3 R4 R5 R6 exp.a,b fitted

6 -OMe -Br 1.4 1.9

7 -OMe -Cl 1.7 1.9

8 -OEt -Br 2.4 2.0

9 -OMe -Br -OMe 1.9 1.7

10 -OEt -Br -OMe 1.9 1.8

11 -Br -OMe 2.5 2.3

12 -OMe -Br -CF3 2.4 2.2

13 -OEt -Br -CF3 2.1 2.3

14 -OMe -Br -CN 1.7 1.5

15 -OMe -Br -Me 1.8 1.6

16 -OMe -Br -Me 2.5 2.2

17 -OMe -Br -Me 2.4 2.3

18 -OMe -Br -Me -Me 1.7 1.7

19 -OMe -Br -Cl 1.6 1.5

20 -OMe -Br -Cl 1.6 2.0

21 -OMe -Br -Cl -Cl 2.3 2.4

22 -OMe -Br -Cl -Cl 2.0 2.0

23 -OMe -Cl -Cl -Cl 1.6 1.7

24 -OMe -Br -F -F 2.3 2.0

25 -OMe -Br -Me -Cl 1.7 1.7
a [3H]Spiperone, human DA D3 receptors expressed in CHO K1 cells; Ki values
were obtained from four to six concentrations, run in triplicate, by a non
linear regression analysis.; b log10 of Ki(nM) values
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Table 4.3 Naphthamide ligands with and their experimental and fitted affinities
for the dopamine D3 receptor subtype.

N
H

O

R1

R2 R3

Compd R1 R2 R3 exp.a,b fitted

26 -OMe -Br
N N

N

1.9 1.9

27 -OEt -Br
N N

N

1.9 2.0

28 -OMe -Br
N N

N

2.4 2.5

29 -OMe -Br
N

1.9 1.8

30 -OMe -Br
N

1.3 1.7

a [3H]Spiperone, human DA D3 receptors expressed in CHO K1 cells; Ki values
were obtained from four to six concentrations, run in triplicate, by a non
linear regression analysis.; b log10 of Ki(nM) values

4.3  Data Pretreatment

An important and sometimes crucial step in Comparative Molecular Field Analysis (CoMFA)4,8

is the pretreatment of the descriptor matrices. In Chapter 2 it was suggested that auto-scaling is

appropriate if the data set comprise several different types of descriptors, e.g. physicochemical

descriptors. In a 3D QSAR data set with descriptors from GRID,5 all variables are measured

similarly and auto-scaling is not suitable anymore. However, the GOLPE6 program offers several

effective pretreatment options:

1) A probe very close to the target molecule may produce unrealistically high positive

(repulsive) interactions, caused mainly by the Lennard-Jones (Este) contribution to Etot (Equation

4.1), that may influence the PLS solution detrimentally. Therefore, it is wise to introduce a positive

maximum cut-off value. The negative interaction values (attractions) decline smoothly as the distance

between the probe and the target molecule increases and a cut-off value for negative values is not

necessary.

2) Interaction values in grid points located in the periphery of the grid tend to be low with

variation more similar to noise than true reflections of the variations in the field. The zeroing option

corrects for this by replacing absolute values, lower than a specified cut-off value, with zero.
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3) Grid points with a too low standard deviation may be assumed insignificant and consequently

be omitted from the analysis. This option is identical to the "MINIMUM_SIGMA" option in

SYBYL/CoMFA.3

4) In some grid points it is possible that all ligands but one, have identical interaction values (e.g.

maximum cut-off) and, as a consequence, PLS9 adjust its solution for this single variable.6 These

types of variables called 2-level variables may produce spurious PLS solutions and can optionally be

omitted with hopefully a more stable PLS model as a result. Similarly, also 3- and 4-level variables

can be omitted.

5) In addition to traditional auto-scaling, block-scaling is also possible. In auto-scaling, the sum

of squares within each variable (column) is normalised whereas in block-scaling, the sum of squares

of whole grids are normalised. This is identical to the "CoMFA_std" scaling option in

SYBYL/CoMFA.

4.4  Statistical Tools

A typical 3D QSAR data set comprise a two-way matrix with a lot more columns than rows,

which disqualifies MLR9 (see Chapter 2) as the regression method. It is also reasonable to assume

that the variables are collinear. Therefore, PLS9,10 normally is utilised for the analysis of this type of

data.

The part of X, not accounted for by the PLS model, is assumed to consists only of insignificant

variation. Consequently, a PLS model generally has better predictability but explains less of the

variance in y as compared with for example a MLR model, where 100 % of y is explained. As a

measure of the explained variation in y the fit, i.e. the R2 is used:

( )R SSY2

1

2

1= − −
=
∑ y yi i
i

I

∃ (4.2)

The R2 gives the fraction of the total variation in y accounted for by the model, where yi is the

biological activity of the ith compound measured, ∃yi  the model estimation of yi and SSY the sum of

squares of y.

In 3D QSAR, models with high predictability are desired. Crossvalidation9-11 is used as an

internal measurement of the predictability. With crossvalidation, a model is calculated with a group

of objects omitted which subsequently are predicted with the reduced model. This is repeated until

all objects have been omitted once. The predictability is quantified with the crossvalidated Q2:

( )Q SSY2

1

2

1= − −
=
∑ y yi (i)
i

I

∃ (4.3)

The predicted y in Equation 4.3 is denoted ∃y(i) , i.e., a prediction of yi using a model with the ith

object omitted and SSY is the sum of squares of y. Models with high predictability have a

crossvalidated Q2 close to one, while models with low or negative Q2 will predict no better than

random. Other methods of quantifying the predictability, e.g. SDEP12,13 have been suggested.

4.5  D-Optimal Preselection of Variables
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D-optimal14,15 preselection of variables and variable selection guided by a fractional factorial

design (FFD),16 form the basis of the GOLPE (Generating of Optimal Linear PLS Estimations)17

variable selection procedure.

The data generated in GRID, and 3D QSAR in general, contains a large number of variables

where only a fraction of them contain information correlated with the biological activity. In GOLPE,

only the most informative variables are selected by a D-optimal preselection in the weight space W

[(w1|w2|…|wA); A is the number of PLS components] from an initial PLS model. The dimensionality

(A) of the PLS model is determined by an initial leave-one-out crossvalidation9 experiment of the

complete data set. The selection procedure is iterative and not more than 50 % of the variables

should be omitted each time.17 Each iteration begins by establishing a new PLS model including only

the previously selected variables and is repeated until the R2 starts to decrease. (During the

preparation of this work, the D-optimal preselection procedure was used to reduce the number of

variables from roughly tens of thousands to thousands of variables before the R2 started to decrease.)

4.6  Variable Selection Following a Fractional Factorial Design (FFD) Procedure

At this point, most of the redundant variables have been eliminated and the predictability of the

model can be optimised. The influence of each variable on the predictability is estimated by a number

of crossvalidation experiments where variables are included and excluded, alternately. A design

matrix,17 with the number of columns equal to the number of variables left after the D-optimal

preselection and with two times as many rows, is created. Each row represents an experiment were

"plus" and "minus" signs mean include and exclude a variable in the experiment, respectively.

Obviously, models with different combinations of variables have different predictability and, by

means of Yates’ algorithm,16 the influence of each individual variable on the predictability can be

estimated. In order to separate a variable that significantly improves predictability from one that does

not, a number of dummy variables are introduced in the design matrix. A dummy variable must, by

definition, have no influence on the predictability of the model. Therefore, the estimated average

effect of the dummy variables may serve as a limit, on the basis of a Student t-tailoring at the 95 %

confidence level, for the estimated effects of the true variables. A true variable with significantly

higher estimated effect than the limit will be excluded. A true variable with significantly lower

estimated effect than the limit will be kept fixed and a true variable with an estimated effect within

the limit interval may optionally be fixed or excluded.
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4.7  Results and Discussion

 

+ Molecular Modelling

Initially, 30 molecules (Tables 4.1–4.3) were built and minimised using the MM2* force field, as

implemented in the molecular modelling package Macromodel 4.5.18 In order to simplify the

following calculations, two general assumptions concerning the conformations were made. First, the

benzamide part of the ligands was fixed in a planar conformation (τ(5-6-7-8) in Figure 4.1), as

supported from several X-ray structures

present in the Cambridge Crystallographic

Structural Database (CCSD). Additionally,

the oxygen from the ortho-methoxy (Figure

4.1, atom 5) stabilises the conjugated

benzamide part by forming an internal

hydrogen bond with the amide N-H.

The second assumption concerns the

arylpiperazine tail, which conformation also

was fixed with support from X-ray structures. The piperazine ring in a chair conformation was

present in all arylpiperazines found in CCSD, suggesting that this conformation is energetically

preferable, as compared to the boat conformation. A conformational search experiment in SYBYL

(Tripos force field19) confirmed this, by finding the chair conformation in all low energy

conformations (not presented). The torsional angle between the piperazine ring and the phenyl ring

(τ(1-2-3-4)) was more flexible. An unsubstituted phenyl ring, can according to the X-ray structures,

be found in almost any angle, while an ortho substituted phenyl ring is more or less always somewhat

twisted. Due to these findings the torsional angle between the piperazine ring and the phenyl ring,

e.g. τ(1-2-3-4),  was fixed at 84°. As a consequence, the overlap of the phenyl rings from compound

30 (Table 4.3) and the rest of the ligands was improved.

The conformational space of all ligands was investigated by conformational searches using the

Monte-Carlo procedure, as implemented in Macromodel 4.5, while keeping the above discussed

torsional angles fixed. New conformations were randomly generated, and their energy were

minimised and subsequently compared with the previously saved conformations. If a new

conformation was lower in energy than the present “global minimum energy conformation” the new

conformation replaced the old one. If a new conformation was identical with the “global minimum

energy conformation” a variable was increased by one, and when this conformation was found a

sufficient number of times the conformational search was considered converged. All conformations

within 20 kJ/mol from the “global minimum energy conformation” were saved and considered as

even likely to be the conformation interacting with the receptor.

The most crucial step when preparing a CoMFA study is the alignment of the ligands. Since the

homology between the ligands in the model is very high the main goal with the alignment procedure

N
H

O
N

N

O

1
2 3

4

56
7 8

Figure 4.1 Benzamide-phenylpiperazine skeleton. The
highlighted torsional angles τ(1-2-3-4) and τ(5-6-7-8) were
fixed at 84° and 0°, respectively, with support form X-ray
structures.
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was to achieve maximum overlap between the ligands. The pharmacophore below, was chosen with

this in mind. The midpoint of the aromatic benzamide ring, the amide O, amide N-H and a dummy

atom in the direction of the lone-pair of electrons from the basic nitrogen of the arylpiperazine part

were identified as possible interaction points with the receptor. Dummy vectors and midpoints were

added to each conformation from all ligands using vecadd, a sub-program in the pharmacophore

program Apollo.20 Due to lack of a rigid template the “global minimum energy conformation” from

ligand 1 (Table 4.1) was used as a template. Subsequently, all the other ligands were fitted on this

template, using the pharmacophore points identified above. Each fitting procedure (performed in

Apollo) considered all conformations (from each ligand) within 20 kJ/mol from the global minimum

as determined by the conformational search procedure. The output was a number of fits ranked in

decreasing order of  RMS (Root Mean Square). Optionally, the energy of a fitted conformation can

be selected to affect the ranking and consequently, the lower the energy of a fitting conformation the

higher the rank of the fit becomes. The highest ranked conformation, from each ligand, was included

in the final model.

Finally, the 30 conformations selected were converted into the Tripos mol2 format using the file

converting program Babel.21

+ Receptor Binding

The in vitro affinity of ligands for the human dopamine D3 receptor subtype was the

dependent variable considered in this study. In the antagonist binding study, the affinity of the

compounds was determined by their ability to displace [3H]-spiperone from the dopamine D3

receptor.22 Receptor binding affinities are mostly expressed as Ki values calculated from IC50 values,

as described by Cheng and Prusoff.23 In order to get a more homogenous distribution of the

dependent variable the log10 of the Ki (nM) was used in this analysis. Consequently a compound with

high affinity has lower log10(Ki) than a compound with low affinity.

+ Probe selection

The grid was designed in the GRID program and was large enough to enclose the aligned

ligands with 4 Å in all directions with a resolution of 1 Å. Each grid consisted of 8370 grid points

and interactions between the eight probes in Table 4.4 and all 30 ligands were calculated in each grid

point, forming a matrix with 240 rows and 8370 columns.
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Table  4.4 Description of the eight different probes from Grid. The three
selected probes are marked with bold face characters.

probe description probe description

H hydrogen atom OH OH with acidic H

C3 sp3 C atom OH2 water

O:: sp2 O in C=O NA+ sodium cation

O1 sp3 O in O-H CA+2 calcium cation

-100 -50 0 50 100 150
-30

-20

-10

0

10

20

30

40

50

   C3

   OH2

   CA+2
   O1
   OH

    H

   O::     NA+

Score-plot PC 1 versus PC 2

PC 1

PC 2

Figure 4.2 Plot of the first two Principal Components explaining 64 % of the variation. Six clusters of probes are
clearly identified.

Subsequently, a principal component analysis (PCA, see Chapter 2)6,9,24 was performed, where the

first two components described 64 % of the variation. In Figure 4.2, six clusters were identified from

the eight different probes and it can be concluded that the CA+2, the C3 and the OH2 probes

contained the most diverse information. Interestingly, the O1, the OH and the OH2 probes were not

possible to separate in the score-plot, indicating that no extra information would be added to the

model if more than one of them were included. Therefore, only the OH2 probe together with the C3

and the CA+2 probes were selected for the final analysis.

Hydrogen bonding is one of the more important interactions in the ligand-receptor interaction.5,7

Figure 4.3(a) represents the OH2 interaction energies contoured at the -2.6 kcal/mol level for the

template molecule (1). It is clear that 1 can interact as a hydrogen bond acceptor with the receptor at
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both basic nitrogens from the piperazine moiety. The CA+2 probe mimics the electrostatic

interactions and in Figure 4.3(b) it is clear that significant negative electrostatic fields are generated

around the benzamide part of the template molecule (1) on the -3 kcal/mol level. Finally, the field

generated by the C3 probe (Figure 4.3(c)) on the 0.02 kcal/mol level indicates the smallest distance a

non charged molecule may approach the template without causing repulsive interactions. The energy

cut-offs used above, are of no importance since they were chosen in order to optimally describe the

specific differences between the three molecular fields.

(a)

(b)

(c)

Figure  4.3 The actual fields from (a) the OH2 probe, (b) the CA+2 probe and (c) the C3 probe surroundings of the
template molecule (1) at the -2.6 kcal/mol, -3.0 kcal/mol and 0.02 kcal/mol levels, respectively.

In the final data set (Figure 4.4) each ligand is represented by its interactions with the three

selected probes unfolded to form a row, leaving a matrix X (30 × 25110).



A GRID/GOLPE 3D QSAR Study

85

Figure 4.4 The final data set (X) consisting of 30 compounds and 25110 variables (30 × 25110) with one dependent
variable y (30 × 1).

Important for the following analysis is the fact that the standard deviation in grid points close to

substituent groups present in all ligands, are very low (Figure 4.5(a)–(c)). For instance, the strong

hydrogen bonding field present around the amide group of 1 in Figure 4.3(a), is present in all ligands

and consequently, the standard deviation in grid points located in this region become low (Figure

4.5(a)). Since PLS focuses on variables (grid points) with high standard deviation it may therefore

turn out that these regions, most certainly involved in the ligand-receptor interaction, have low

weights in the final PLS solution.

+ Variable Pretreatment

Our data set consists of 25110 variables, 8370 from each of the three probes OH2, C3 and

CA+2. The positive maximum cut-off was set to 5 kcal/mol already during the generation of the

descriptors in the GRID program. In order to correct for round off errors,6 GOLPE automatically

rejects columns (variables) having a total sum of square (SS) lower than 10-7. Absolute values lower

than 0.01 kcal/mol were set to zero and as a consequence another 2000 variables were omitted from

further modelling due to a too low variation (SS < 10-7). By introducing a lower standard deviation

limit for the columns the number of variables may be reduced significantly and render the absolute

value cut-off almost useless.17 This action was considered as a variable selection method in itself and

was not utilised here. Further, all 2, 3 and 4-level variables were removed followed by a block-

scaling procedure, as described above.

The pretreatment procedure reduced the number of active variables from 25110 to 19180.

1               25110

1

30

X

 y
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(a)

(b)

(c)

Figure 4.5 Contour maps of the standard deviations, all 30 compounds considered, from (a) the OH2 probe, (b) the
CA+2 probe and the C3 probe. For clarity, only standard deviations larger than unity are depicted.

+ D-optimal Variable Preselection

The most informative variables span the weight space from an initial PLS model assuming that a

sufficient number of components are considered. If too few components are considered, information

may be lost due to the fact that significant variables may not have been selected. If too many

components are considered, variables not correlated with the biological activity may be selected and

introduce random variation in the model. At this early stage of modelling, the only interest is to make

sure that a sufficient number of components is considered, not the predictability. A leave-one-out

crossvalidation experiment gave the highest crossvalidated Q2 (0.45) after two components (Table

4.5). Consequently, it was decided to perform the D-optimal preselection procedure using three

components, assuming three would be enough to capture all the significant information in the data.

In the iterative process, 50 % of the variables were selected each time. Each iteration started by

calculation of a new PLS model, including only the previously selected variables. The selection

procedure was repeated four times before the R2 started to decrease, reducing the number of

variables from 19180, 9543, 4771, 2385 to 1192.
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Table 4.5 The impact of pretreatment, D-optimal variable preselection and FFD
variable selection on the fitted R2 and the crossvalidated Q2.

# of variables # lva R2 Q2

after pretreatment 19180 2 0.76 0.45

after D-opt. selection 1192 3 0.85 0.49

after FFDb selection 784 2 0.80 0.65
a The number of components determined with leave-one-out crossvalidation.
b After the Fractional Factorial Design selection.

+ Variable selection

The matrix, containing only the 1192 variables left after the D-optimal preselection procedure

was used as input for the final step in GOLPE. A design matrix with 4096 number of experiments

(rows) and 299 number of dummy variables was created and each experiment was validated with

crossvalidation (five random groups repeated 20 times). The Fractional Factorial Design procedure

resulted in 313 and 408 variables with significant positive and significant negative effect on the

predictability, respectively. Accordingly, 408 variables were omitted and 313 were maintained

together with 471 variables with non-significant effect on the predictability, leaving 784 variables for

the final model. Variables from a 3D QSAR study differ from classic variables in the sense that each

variable represents a definite spatial coordinate in the grid. It can be shown25 that the variables

selected are located in regions where the standard deviations were high in Figure 4.5.

Since an external test set (see Chapter 5) not was utilised, the final model was validated with

crossvalidation in three different ways (Table 4.6): First, with the leave-one-out procedure, followed

by leave-two-out and finally, groups of five were left out and repeated 20 times.24 The last validation

experiment is a mixture between crossvalidation9 and bootstrapping26,27 in the sense that each

crossvalidation experiment was repeated a number of times, as in bootstrapping, and the objects

where included only once, as in crossvalidation.

Table 4.6 Different crossvalidation experiments performed
with the final model. A more elaborated description over
the different experiments is provided in the text.

experiment # lv a Q2

leave-one-out   2 0.65

leave-two-out   2 0.65

5-random groupsb   2 0.63
a The number of components with maximum Q2

b Average from 20 experiments

Two components were sufficient to explain most of the variation in y (R2 = 0.80), and the

experimental log10(Ki) and the fitted log10(Ki) is plotted in Figure 4.6(a).
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The GOLPE variable selection procedure has indeed improved the predictability of the model by

increasing the crossvalidated Q2 from 0.45 to 0.65 (Table 4.5). A crossvalidated Q2  of 0.65 may in

3D QSAR be considered sufficient and in Figure 4.6(b) the experimental log10(Ki) is plotted against

the predicted log10(Ki).

In order to be able interpret the PLS model, the PLS coefficients (bPLS; Chapter 2) after the

second PLS component were plotted as contour plots connecting grid points with similar values

(Figures 4.7(a)–(c)). The negative and positive coefficients are represented by dark and light grey

iso-contours, respectively. In order to simplify the interpretation of Figure 4.7 Equation 4.4 may be

of good help, where br is the bPLS coefficient in the rth grid point, xr is the actual field in the rth grid

point, ∃y  the estimation of y and R the number of grid points. The bPLS (= b1,…,bR) coefficients are

plotted in Figures 4.7(a)–(c) for the OH2 probe, the CA+2 probe and the C3 probe, respectively.

∃y b x b x b xR R= + + +1 1 2 2 Κ (4.4)

Basically, the bPLS coefficients in Equation 4.4 are needed for predictions of the biological

activity ∃yof new molecules, but since the sizes and signs of the coefficients reveal the relative

influence of each grid point on y, they are also suitable for the interpretation. That is, a new

compound with a substituent protruding into a region with positive br will produce a positive

(repulsive) field xr in this region and consequently br × xr is also positive, indicating a negative

influence on ∃y . (A high log10(Ki) corresponds to low affinity.) The opposite is valid if the region has

negative brs.

In the position para to the amide group of the benzamide moiety there is space for substituents

(Figure 4.7(c), arrow I) unable to form hydrogen bonds (Figure 4.7(a), arrow II) and that produce

repulsive interactions with the CA+2 probe (Figure 4.7(b), arrow III). This is the case with the

second phenyl ring present in the naphthamide moiety. This series generally has lower Ki than the

benzamide ligands.

In one of the ortho positions (Figure 4.7(c), arrow IV), a methoxy group is necessary in order to

make an internal hydrogen bond interaction possible and fix the benzamide and the naphthamide

moieties in planar conformations. Accordingly, it can also be concluded from the model that there is

no room for substituents (Figure 4.7(c), arrow V) in the second ortho position.
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Figure 4.6 (a) The experimental log10(Ki) plotted against the fitted log10(Ki) after PLS(2) with the final
model. (b) The experimental log10(Ki) plotted against the predicted log10(Ki) after crossvalidation (LOO)
with PLS(2) with the final optimal PLS model.
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(a)

(b)

(c)

Figure 4.7 Contour plots of the PLS coefficients (bPLS) after the second PLS component: (a) from the OH2 probe, (b)
from the CA+2 probe and (c) from the C3 probe. Only coefficients larger than |0.0005| are shown for clarity. Negative
and positive iso-contours are represented by dark and light grey tones, respectively.

The phenyl ring in the phenylpiperazine tail may not be substituted in the para position (Figure

4.7(c), arrow VI) due to steric reasons, however, an attractive interaction with the CA+2 probe

(Figure 4.7(b), arrow VII) promotes binding. Therefore, a small substituent with a negative

electrostatic potential and with the ability to form hydrogen bonds28 (Figure 4.7(a), arrow VIII) like

a fluorine atom, may be appropriate. The ortho position on the phenylpiperazine phenyl (Figure

4.7(c), arrow IX) may very well be substituted, but substituents able to form hydrogen bonds will not

improve binding (Figure 4.7(a), arrow X). Additionally, a ligand with an unsubstituted

phenylpiperazine moiety is less potent than a substituted one. A speculative explanation for this

could be that an unsubstituted ligand in solution more often has a planar phenylpiperazine tail than

what could be expected from X-ray structures. This, in turn, could sterically hinder the ligand to

II VIII

X

III

VII

I IV

VI

 V IX
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interact with the receptor where a more twisted conformation may be preferable, which always is the

most likely conformation for an ortho substituted ligand.

Finally, as explained above, the hydrogen bonding properties of the amide part and the basic

nitrogen of the arylpiperazine tail are important and should definitely be taken into account if one, for

instance, want to create a mini-receptor model29 with this study as a reference. Several arguments

against this are possible, but it is especially stressed that a CoMFA model measures the differences

between the ligands in the training set. Therefore, the alignment used in the model does not

necessary need to fit into an active site of a receptor model. Hence, a successful alignment is

achieved when the differences between the molecular fields of the ligands are reflected optimally in

the model.

4.8  Conclusions

The present 3D QSAR data set consisting of 30 compounds was analysed using the GRID and

the GOLPE programs for the description of the ligands and the regression analysis, respectively. The

original 25110 descriptors were reduced to 784 by GOLPE variable selection, with increased

predictability as the result.  As the number of variables was reduced the predictability, i.e. the

crossvalidated Q2 of the model increased, indicating the importance of a thorough variable selection

procedure. This confirms what previously have been found by others.13,30 The final model had a

crossvalidated Q2 of 0.65 which can be considered sufficient for a 3D QSAR model. The importance

of focusing not only on the crossvalidated Q2 when validating a 3D QSAR model, but also to study

the grid plots of the PLS coefficients in combination with the actual field plots, is stressed.

This model has been validated internally with different crossvalidation experiments but real

validation can only be performed by prediction of an external test set; a test set with compounds that

have had no influence on the calibration process. In the following chapter a test set with 21

compounds has been added for validation purposes.
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Multilinear PLS Analysis

Application to a 3D QSAR Data Set

This chapter is based on the article: Nilsson, J.; De Jong, S.; Smilde, A. K. Multiway Calibration in 3D QSAR. J. of
Chemometrics 1997,11, 511-524.

Summary

The multilinear PLS method has been employed for the analysis of a set of benzamides with

affinity for the dopamine D3 receptor subtype, synthesised as potential drugs against schizophrenia.

The key issue in 3D QSAR modelling is to obtain a predictive model that is easy to interpret. Each

component in the multilinear PLS model accounts for clearly defined spatial regions, e.g.,

substituent positions, while the bilinear PLS solution is general and more difficult to interpret. The

best models were obtained after four components with multilinear PLS (Q2 = 51 %) and after only

one component with bilinear PLS (Q2 = 50 %). The external test set was better predicted with

multilinear PLS (Q2 = 31 %) as compared  with bilinear PLS (Q2 = 25 %). Additionally, with

multilinear PLS one loses in fit, but gains in stability and simplicity due to the smaller number of

parameters that need to be estimated, as compared with bilinear PLS. Finally, multilinear PLS is

also less influenced by insignificant variation in the descriptor block, which stabilises the 3D QSAR

model.

5.1 Introduction

Since Cramer et al.1 presented the Comparative Molecular Field Analysis (CoMFA)1,2 procedure

in 1988, it has frequently been utilised by medicinal3-5 and environmental chemists,6 as implemented

in the SYBYL molecular modelling package.7 Today, other similar approaches are available, e.g., the

GRID8 program in combination with GOLPE variable selection9 (see also Chapter 4). Rational drug

design with 3D QSAR comprises several subsequent steps: conformational analyses, alignment of the

molecules, generation of molecular descriptors and regression analysis. Optionally, one or more

biological response(s) can be used as the independent variable(s).

First, low energy conformations of the molecules are aligned by superimposition of mutual and

possible interaction points with the target receptor protein (Chapters 4 and 6). This is by far the most

crucial step in order to achieve reliable 3D QSAR models.

A molecular field is a three dimensional grid, large enough to enclose all the aligned molecules,

where in each grid point interactions between a probe atom and each molecule are calculated (see

Chapter 1). The interaction values in the grid points are thus utilised as variables in the subsequently

following regression analysis.

5
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Since multicollinearity among the descriptor variables may affect the regression analysis

detrimentally, PLS10 is frequently used as the regression method in 3D QSAR. Recently, Bro11

presented the multilinear PLS algorithm (N-PLS, Chapter 2) and demonstrated some additional

advantages; multilinear PLS was less influenced by noise, more stable, increased the predictability12

and improved the interpretation of the result as compared to other methods applied to his data set.

Accordingly, the multilinear PLS algorithm was implemented for the analysis of a 3D QSAR data set

comprising a set of benzamides and naphthamides13,14 (Figure 5.1, Tables 4.1–4.3) characterised in

the GRID program. The same data set was also analysed in the previous chapter, utilising the

GRID/GOLPE approach. In this chapter, the performances of the N-PLS11 and the bilinear PLS10,15

methods have been scrutinised and compared.

Figure 5.1 The 30 aligned molecules included in the training set viewed in the x and the z mode. The squares
indicates the regions where the first four N-PLS components are focused.

It is well known that redundant variables may affect the regression analysis detrimentally and,

consequently, several methods to reduce the number of variables9,16,17 have been proposed.

Multilinear PLS has been employed for the variable reduction of the present data set and the

performance of the reduced model was compared with that of the complete model.
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5.2  Theory

 

The multilinear PLS algorithm11,18 and the bilinear PLS algorithm10,15 have both been,

thoroughly, described in Chapter 2. Accordingly, the theory described below are tools, i.e., partial

PLS coefficients and leverages, used for the interpretation of the multilinear PLS models. In addition

to the data set analysed in the previous chapter, a test set consisting of 21 compounds has been

added, to the present investigation, for validation purposes.

 

+ Partial PLS Coefficients

For the purpose of interpretation, the results from CoMFA studies are often presented with

contour plots of the partial regression coefficients bPLS.
7 Basically, the coefficients bPLS are needed

for predictions of new samples, but since the sizes and the signs of the coefficients reveal the relative

importance of the variables, they are also suitable for the interpretation.

A direct relationship between X(0) and ∃y is searched for:
( )∃y Tb X b= =A
0

PLS (5.1)

where X(0) (I × R) is the unfolded original X, ∃y  (I × 1) is the fitted y, bA (A × 1) are the regression

coefficients as defined in Equation 5.2 and T (I × A) is the score matrix. The derivation of the full

and closed predictions with multilinear PLS has been presented by Smilde,18 but since the PLS

coefficients are frequently utilised in 3D QSAR, it is essential to repeat the derivation also in this

context.

Since the scores from different components are not orthogonal the regression coefficients bA, in

Equation 5.1, have to be calculated taking all the score vectors into account:

( )b T T T yA
T 1 T=

−
(5.2)

Additionally, the weights obtained with multilinear PLS are also not orthogonal and need to be

taken into account when the bPLS coefficients are derived (below).

For clarity, X is updated after the ath component with ( ) ( )X X t wa a
a a= −−1 T , as in Martens’ non-

orthogonalized PLS algorithm.15 If X is three-way, w w wa k
K

j
J= ⊗ , where ⊗ represents the

Kronecker product then

t X w1
(0)= 1 (5.3)

( ) ( ) ( )t X w X w w X X w w w X w w w2
(1)

2
(0)

1 2
(0) (0)

1 2
(0)

1t I= = − = − = −1
T

1
T

1
T

2    (5.4)

. . .

( ) ( )t X I w w I w w wA A A A= − − −
(0)

1 1
T

1 -1
T... (5.5)

With T=(t1|t2|...|tA) the following holds:

( ) ( )( ) ( )T X w I w w w I w w I w w I w w w= − − −



−

(0)
1 1 1

T
2 1 1

T
2 2

T
1 -1

T... ...- A A A (5.6)

Insertion of Equation 5.6 in Equation 5.1 followed by rearrangement gives:
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( ) ( )( ) ( )b w I w w w I w w I w w I w w w bPLS 1 1 1
T

2 1 1
T

2 2
T

1 -1
T... ...= − − − −



−A A A A (5.7)

When the number of variables is large, as in 3D QSAR, computing the outer product of the weights

can be a problem. However, computational shortcuts are possible (see below).

If w wi j
T = 0   (i ≠ j) then Equation 5.7 reduces to:

bPLS = [w1|w2|…|wA]bA = WbA (5.8)

which resembles the solution obtained with Martens’ non-orthogonalized PLS algorithm.15

+ Leverages

In order to determine which variables that have influenced the model most, the variables were

ranked by their leverages15 (h). The leverages are determined by first calculating an overall weight

matrix, W = (w1|w2|...|wA), in which wa (R × 1; R = JKLM) combines the weights from the different

modes as

w w w w wa a
M

a
L

a
K

a
J= ⊗ ⊗ ⊗ (a = 1,…,A) (5.9)

The ⊗ sign represents the Kronecker product and a denotes the component number. The leverage

vector15 h (R × 1) after A components is then expressed as

( )h = diag TWW (5.10)

A variable with a leverage hr close to zero has not affected the model very much while a variable

with a hr close to one is very important for the model. The average hr is A/R and variables with

leverage exceeding hcut × A/R (hcut being an integer, normally 2 or 3) may, according to Martens and

Næs,15 be considered significant.

+ Model Validation

In the present investigation crossvalidation and external predictions have been utilised for the

validation of the obtained models. The results from the validation experiments are quantified with the

crossvalidated Q2 and the predicted Q2 as calculated in Equation 5.11. The quality of the calibrations

are given by the multiple regression coefficient R2 in Equation 5.12:

( )( ) ( )Q 12
2

1

2

1

= − − −


















 ×

= =
∑ ∑y y y yi i
i

I

i
i

I

∃ 100 (5.11)

( ) ( )R 12 2

1

2

1

= − − −


















×

= =
∑ ∑y y y yi i
i

I

i
i

I

∃ 100 (5.12)

The predicted y in Equation 5.11 is denoted ( )∃y i , i.e., in the case of crossvalidation an estimation

of yi using a model with the ith object excluded. In the case of external predictions, yi is the response

of the ith test object estimated with the complete calibration model. The fitted y from the calibration

in Equation 5.12 is denoted ∃yi .
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+ The Test Set

The molecules analysed in this investigation were synthesised by Glase et al.13 In addition to the

30 compounds from the previous chapter a test set, consisting of 21 compounds, was introduced for

validation purposes (Tables 5.1–5.3).

Table 5.1 The benzamides included in the test set used for the validation of the models
obtained in this chapter

N
H

O
N

N

R1
R2

R4
R3 R5

R6

R7

Compd R1 R2 R3 R4 R5 R6 R7 log10(Ki)
a

t1 2.5
t2 -OMe -Cl -Cl -OH -OMe 2.9
t3 -OMe -Cl -Cl -OH -Cl -F 3.1
t4 -OMe -Cl -Cl -OH -CF3 3.3

a log10 was performed on the Ki(nM)

Table 5.2 Naphthamides included in the test set used for the validation of the
models obtained in this chapter.

N
H

O
N

N

R1

Br R2
R3

R4
R5

R6

Compd R1 R2 R3 R4 R5 R6 log10(Ki)
a

t5 -OMe -Cl -Cl 0.9
t6 -OH -Cl -Cl 1.7
t7 -OMe -Cl -Cl 2.4
t8 -OMe -Cl 2.1
t9 -OMe -Cl -F 2.9
t10 -OMe -F -F 1.7
t11 -OMe -F -F 1.5
t12 -OMe -F 2.1
t13 -OMe -F -F 2.6
t14 -OMe -Br 2.3
t15 -OMe -Br 1.6
t16 -OMe -Br 3.1
t17 -OMe -CN 0.9
t18 -OMe -CN 3.2
t19 -OMe -Me -Me 2.7

a log10 was performed on the Ki(nM)
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Table 5.3 Naphthamides included in the test
set used for the validation of the models
obtained in this chapter.

N
H

O
N

N
R1

Br

O

Compd R1 log10(Ki)
a

t20

N
Br

2.4

t21 N

N

3.0

a log10 was performed on the Ki(nM)

Low energy conformations of all the molecules were initially aligned as described in Chapter 4

and subsequently surrounded by a three dimensional grid large enough to enclose all the aligned

molecules with four Å in all directions (Figure 5.1). The directions x, y and z in the grid were divided

into 31, 15 and 18 steps of 1 Å, respectively, yielding a total of 8370 grid points. The surroundings

of each molecule were mapped by calculating the interactions between probe atoms and each

molecule at each grid point. The resulting grid, filled with interaction values, is called a molecular

field. Three different probes8 were used, a carbon atom (the C3 probe), a water molecule (the OH2

probe) and a plus two charged calcium ion (the CA+2 probe), reflecting the steric field, the hydrogen

bonding field and the electrostatic field, respectively. In CoMFA, the differences in these fields are

correlated with, e.g., the affinities for a certain receptor subtype. The complete model is described

graphically in Figure 5.2.

Figure 5.2 The data set comprises five different modes. The molecular, x, y, z and the probe modes consist of 30, 31,
15, 18 and 3 dimensions, respectively.

•
•
•

x

y
z

probe mode

molecular
mode

C3 OH2 CA+2
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Prior to bilinear PLS analysis, the data set is unfolded to form a two-way matrix which is

decomposed into scores t (I × 1) and loadings p (JKLM × 1) as described in Figure 2.4. With

multilinear PLS, however, the unfolding step is omitted and the one-component decomposition

consists of a score vector t (I × 1) and four weight vectors wJ (J × 1), wK (K × 1), wL (L × 1) and wM

(M × 1), as

Figure 5.3 The multiway decomposition of X (I × J × K × L × M) into a score vector t (I × 1) and four weight vectors
wJ (J × 1), wK (K × 1), wL (L × 1) and wM (M × 1). E is the part of X not accounted for by the model.

in Figure 5.3. The vectors t, wJ, wK, wL and wM correspond directly to the molecular, x, y, z and the

probe mode, respectively, as described in Figure 5.2.

5.3  Results

 

+ Model I

The only data pre-processing applied was mean-centering in the molecular mode. In bilinear

PLS, scaling is often performed column-wise, e.g., auto-scaling10 whereas in multilinear PLS scaling

is not that straightforward.19

The objective of this investigation is to introduce the multilinear PLS method in 3D QSAR

modelling and compare its solution with the bilinear PLS solution. Accordingly, the complete model

(Model I) was calibrated and validated with both regression methods, presented in Tables 5.4 and

5.5, respectively. With multilinear PLS (Table 5.4) maximum crossvalidated Q2 was obtained after

four components (Q2 = 51 %), where 17 % of the variation in X explained 73 % of the variation in y.

With bilinear PLS, however, maximum crossvalidated Q2 was found after only one component (Q2 =

48 %), where 22 % of the variation in X explained 62 % of the variation in y. The weights from the

different modes obtained with multilinear PLS are useful for the interpretation of the result. The

weights from the first four components are plotted in Figure 5.4. For comparison, the weight vector

from the first component with the reduced bilinear PLS model is plotted in Figure 5.5.

 t

=

  wJ

wK

wL

wM
X +      E
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Table 5.4 Calibration and validation of Model I (30 × 25110) with
multilinear PLS.a

#LV R2 (X) R2 (y) Q2 (LOO) Q2 (Pred)b

1 7 48 39 19

2 12 58 43 18

3 15 64 45 29

4 17 73 51 31

5 18 76 34 34
a all values in percentage; b predictions of the external test set (21 ×
25110)

Table 5.5  Calibration and validation of Model I (30 × 25110) with
bilinear PLS.a

#LV R2 (X) R2 (y) Q2 (LOO) Q2 (Pred)b

1 22 62 48 26

2 34 76 47 21

3 43 86 46 32

4 53 89 42 31

5 59 93 37 32
a all values in percentage; b predictions of the external test set (21 ×
25110)
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Table 5.6 Crossvalidations and external predictions of Model II (30 × 6624).

N-PLSa PLSa

# LV  LOOb  L3Ob  L5Ob,c Pred.d  LOOb L3Ob L5Ob,c Pred.d

1 39 43 42 19 50 50 50 25

2 43 44 41 18 48 46 47 23

3 45 43 41 29 48 46 48 33

4 51 53 49 31 44 41 42 30

5 43 42 38 34 39 37 40 31
a all values in percentage;  b LOO is short for leave-one-out, L3O for leave-three-out and

L5O for leave-five-out; c average from 20 Q2s; d predictions of the external test-set (21 ×
6624)

Table 5.7 Calibration of Model II with bilinear
PLS and multilinear PLS for the first five
components.a

N-PLS PLS

# LV R2 (X) R2 (y) R2 (X) R2 (y)

1 8 48 22 64

2 13 58 32 79

3 16 64 41 86

4 19 73 51 90

5 20 76 58 93
a all values in percentage

Figure 5.6 The bPLS coefficients from the final multilinear PLS model and C3 probe after four components.

5.4  Discussion

The key issue in 3D QSAR modelling is to find a predictive model which can be used as a tool in

the design of new compounds. The solution should also be simple and straightforward, since also the

non-expert must be able to interpret the model.

The initial complete model (Table 5.4) indicated four significant components with leave-one-out

crossvalidation. With help from Figure 5.4 it can be determined, with good precision, which regions

are accounted for by the components. The full lines in Figure 5.4 represent the weights from the first

component, the broken curves the second component, the chain curves the third and the dotted

curves the fourth component. For clarity, the weights WJ and WL correspond to the x and z modes

(+)

(–)

(–)
(–)

(+)(+)
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in Figure 5.1, respectively. The first component has high weights wJ in position 5 and high weights

wL between positions 5 and 10 (Figure 5.4), which correspond to the region where the naphthalene

moiety protrudes (Figure 5.1). Thus the first component accounts for the differences between

naphthamides and benzamides. Similarly, it can be concluded that the second component mainly

deals with the ortho and meta positions on the arylpiperazine phenyl ring, the third component the

para position and, finally, the fourth component with substituents on the benzamide phenyl ring.

In contrast with the weights from multilinear PLS (Figures 5.4), the weights from bilinear PLS

(Figure 5.5) are difficult to interpret.

Striking is the significantly lower percentage variance explained with multilinear PLS method

(Table 5.4) as compared with the bilinear PLS (Table 5.5) method. A speculative explanation for this

is the fewer parameters that need to be estimated with multilinear PLS.11,22 Additionally, each

component in multilinear PLS focuses on small specific items, e.g., regions in the grid, while bilinear

PLS searches for more general directions for its components and is more flexible.

It is well known that many of the variables in a 3D QSAR model are more or less redundant and

may affect the predictability detrimentally. From Figure 5.4 it is clear that positions corresponding to

grid points in the periphery of the grid have low weights and also limited influence on the model. By

omitting these variables, as described above, a reduced model with 6624 variables was obtained

which was validated with crossvalidation and external predictions. Variable selection must be

performed very carefully, otherwise problems with overfitting may occur. Norinder17 and Cho16

reported that the crossvalidated Q2 increased in their models, while the ability to predict external test

sets decreased when the number of variables was reduced. In the present investigation the number of

variables were reduced from 25110 to 6624, which speeded up further calculations, but with no

improvement in the predictability (nor decrease) as the result.

From Model II (Table 5.6) it can be concluded that the model is homogenous and stable, since

the crossvalidated Q2 was not affected very much when larger groups of molecules were left out

each time. Each crossvalidation experiment was repeated 20 times20 and, accordingly, reported as the

average Q2.
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Figure 5.7 Experimental log10(Ki) versus fitted log10(Ki) after (a) four component with multilinear PLS and (b) one
component with bilinear PLS. The small rings represents the predictions of the external test set (21 × 6624).

In Figure 5.7(a) and 5.7(b) the experimental log10(Ki) are plotted against the fitted log10(Ki)

from model II for the training set with multilinear PLS and bilinear PLS, respectively. The 21 test

compounds have been predicted and plotted on the same figures as small circles. The four-

component model with multilinear PLS (R2 = 73 %) explains more of the variation in y as compared

to the one-component bilinear PLS model (R2 = 64 %). The test compounds were also better

predicted with multilinear PLS (Q2 = 31 %) than with bilinear PLS (Q2 = 25 %). In fact, the bilinear
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PLS model (Figure 5.7(b)) more or less distinguishes between two groups of compounds, i.e.,

between benzamides and naphthamides, while the multilinear PLS model is much better fitted (Figure

5.7(a)).

The iso-contour plot of the bPLS coefficients after the fourth component, in Figure 5.6, is

probably the most comprehensible tool for the interpretation of the model:

y = x1b1 + …+xibi+… + xRbR + e (5.13)

If a novel molecule is designed with a substituent protruding in a negative bPLS region then xi in

Equation 5.13 will be positive and consequently xibi will be negative. This substituent will thus have

a negative effect on y. If low values of y is desirable, new substituents must be added in regions

where the bPLS for the C3-probe (steric-field) is negative, and vice versa. For a more elaborated

explanation of how to interpret the iso-contour plots the SYBYL-manual7 or Chapter 4 in this thesis

are recommended.

In Figure 5.8 the 6624 variables are ranked by their leverages. Even after variable reduction a lot

of variables with low influence on the model are present.

0 1000 2000 3000 4000 5000 6000 7000
0

0.01

0.02

0.03

sorted variables

 Leverage from Model II after multilinear PLS(4)

Figure 5.8 Leverage from Model II after four multilinear PLS components ordered in increasing order of size.

5.5  Conclusions

The multilinear PLS method has successfully been introduced as regression method in 3D

QSAR. The main improvement lies in the interpretation of the result and the slightly better predictive

ability as compared with bilinear PLS. The multilinear PLS model is also superior to bilinear PLS

with regard to simplicity and stability, since fewer parameters need to be estimated.

The number of variables were effectively reduced with help from the multilinear PLS weights.

The variable selection did not improve the predictability but speeded up the calculations significantly.

The number of high leverage variables was quite low even after variable reduction.

5.6  Matlab Code for Regression Coefficients in Multilinear PLS

Smilde18 gives the following explicit expression for the regression coefficients in multilinear

PLS1 calibration based on A components:
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bPLS  =  W* bA (5.14)

where

( ) ( )( ) ( )[ ]W w I w w w I w w I w w I w w w* T T T T= − − − − − −1 1 1 2 1 1 2 2 1 1R R R R A A AΚ Κ (5.15)

In Equation 5.15 wa is the vectorized (unfolded) form of the rank-1 N-way tensor product obtained

from the mode-specific weight vectors wJ, wK, etc. that define the ath PLS component.

Equation 5.15 is not suitable for implementation in predictive CoMFA computations using N-

PLS regression since it involves very large matrices I w wR a a− T  (R × R). For example, in the current

application (R = JKLM = 31 × 15 × 18 × 3 ≈ 25000) one such matrix occupies 5 Gb. Merely

multiplying two such matrices takes 31 Tflops!

Let us consider the second column of W*. The expression (IR-w1w1
T )w2 represents the

projection of w2 onto w1
⊥ , the orthogonal complement of w1. It is more efficient, with respect to both

space and time, to compute this as ( )w w w w2 1 2 1− T . The same approach can be used recursively in

each of the subsequent columns, starting from the back. MATLAB23 code implementing this

procedure is given below as Algorithm I. It requires little additional storage and involves 2A2R flops.

The speed may be increased even further by starting at the last column of W*, i.e., computing

bAwA, projecting this onto w A−
⊥

1 , adding the result to bA-1 wA-1 , projecting this onto w A−
⊥

2, adding the

result to bA-2 wA-2, and so forth. In this way an alternative Algorithm II is obtained. It requires (4A-

3)R flops; hence Algorithm II is about A/2 times faster than Algorithm I.

Other approaches to compute N-PLS regression coefficients for prediction purposes are

discussed elsewhere.24

ALGORITHM I

function bPLS = getbpls1(W, b)

% function bPLS = getbpls1(W, b)
% gives explicit b_PLS in trilinear
% PLS
%   (i.e. y^hat = X * b_PLS )
%    from W(JKxA) and b(Ax1)

A = size(W,2);
bPLS = 0;
for a=1:A
  v = W(:,a);
  for j=a-1:-1:1
    v = v-(v'*W(:,j))*W(:,j);
  end
  bPLS = bPLS + b(a)*v;
end

ALGORITHM II

function bPLS = getbpls1(W, b)

% function bPLS = getbpls1(W, b)
% gives explicit b_PLS in trilinear
% PLS
% ( i.e. y^hat = X * b_PLS )
% from W(JKxA) and b(Ax1)

A = length(b);
bPLS = b(A)*W(:,A);
for a=A-1:-1:1
  bPLS=bPLS+(b(a)-PLS'*W(:,a))*W(:,a);
end
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A Multiway 3D QSAR Analysis of a Series of (S)-

N-[(1-Ethyl-2-pyrrolidinyl)methyl]-6-

methoxybenzamides
This chapter is based on the article: Nilsson, J.; Homan, E. J.; Smilde, A. K.; Grol, C. J.; Wikström, H. A Multiway
3D QSAR Analysis of a Series of (S)-N-[(1-Ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides. J. of Comp.-Aided
Mol. Design, 1997, in press

Summary

In the previous chapter the multilinear PLS algorithm (N-PLS) was implemented as a

regression method in 3D QSAR. Here the method has been validated on a well-known set of (S)-N-

[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides, with affinity for the dopamine D2 receptor

subtype. After exhaustive conformational analyses on the ligands, the active analogue approach

was employed to align them in their presumed pharmacologically active conformations, using (–)-

piquindone as a template. Descriptors were then generated in the GRID program, and 40

calibration compounds and 18 test compounds were selected by means of a Principal Component

Analysis (PCA) in the descriptor space. The final model was validated with different types of

crossvalidation experiments, e.g., leave-one-out, leave-three-out and leave-five-out. The

crossvalidated Q2 was 62 % for all experiments, confirming the stability of the model. The

prediction of the test set, with a predicted Q2 of 62 %, confirmed the predictive ability. In

conclusion, the conformation analysis and the alignment of the ligands in combination with

multilinear PLS played an important role for the success of our model. Hence, it was shown that

multilinear PLS certainly is suitable as regression method for the analysis of this type of data.

6.1  Introduction

Ever since Cramer III et al.1 introduced the CoMFA methodology it has been available as

implemented in the SYBYL molecular modelling package.2 During the last years, new methods for

the alignment of the ligands3,4 have evolved, and other methods to generate 3D descriptors5 have

become available. Additionally, several attempts have been made to reduce the number of variables6,7

but less efforts have been undertaken to improve the multivariate analyses. In Chapter 5,8 multilinear

PLS9 (N-PLS) was introduced as a regression method in 3D QSAR and several advantages were

demonstrated, as compared to bilinear PLS. It was shown that multilinear PLS is more stable,

increases the predictive ability, and improves the interpretation of the results. However, still it is

necessary to evaluate whether multilinear PLS really is suitable for 3D QSAR data, or if it just

happened to be successful, for the series of compounds used in Chapters 4 and 5.8,10 Therefore, a

6
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well-known series of substituted N-[(1-ethyl-2-pyrrolidinyl)methyl]-derived benzamides11,12 (Table

6.1) was chosen for a re-evaluation of this method.

Compounds of this chemical class have been shown to possess high affinity and selectivity

towards dopamine D2 receptors, and as a consequence, several compounds of this series have

become valuable tools for in vivo and in vitro receptor binding studies [e.g., 3H-raclopride (1) and
125I-NCQ298 (9)],13 as well as for in vivo visualisation techniques like PET [e.g., 11C-raclopride (1)

and 11C-eticlopride (36)] and SPECT [e.g., 123I-NCQ298 (9)].13

Table 6.1 Aromatic substitution patterns and dopamine D2 receptor binding properties of compounds 1–58.

N
H

O

N

R2
R3

O
R5

Activitya

Compound R2 R3 R5 Expb Fittedc Predd

1 OH Cl Cl 7.49 7.75 –

2 OH OMe Cl 7.15 7.44 –

3 H Br Br 8.10 7.94 –

4 H Et Br 7.96 8.25 –

5 H I OMe 9.17 9.14 –

6 OH n-Pr Me 8.30 8.27 –

7 OH Cl n-Pr 6.96 7.16 –

8 OH H Et 6.91 6.82 –

9 OH I OMe 9.54 9.43 –

10 H SMe OMe 8.96 9.09 –

11 OH Et OMe 8.89 9.61 –

12 H n-Bu OMe 8.57 8.57 –

13 H n-Pr H 7.17 7.45 –

14 H Cl H 6.59 6.98 –

15 H Cl Cl 7.70 7.72 –

16 H Cl Br 8.25 7.53 –

17 H Br H 7.34 7.38 –

18 H Br OMe 8.92 8.64 –

19 H Et Cl 8.38 8.41 –

20 OH H Cl 7.19 6.96 –

21 OH H OMe 8.06 7.83 –

22 OH F H 6.44 6.70 –

23 OH Cl H 7.41 7.26 –

24 OH Cl Br 7.24 7.45 –

25 OH Cl Et 7.92 7.63 –

26 OH Br H 8.08 7.70 –
a Activity values are expressed in pIC50 molar units.; b Experimental values obtained from ref.11; c Fitted

values (training set).; d Predicted values (test set).
Table 6.1 Continued
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Activitya

Compound R2 R3 R5 Expb Fittedc Predd

27 OH Br Cl 7.77 8.11 –

28 OH Br Br 7.59 7.80 –

29 OH Br OMe 8.85 8.90 –

30 OH Br NO2 6.73 6.70 –

31 OH I H 8.52 8.12 –

32 OH Me Cl 7.59 7.96 –

33 OH Me Me 8.11 7.98 –

34 OH Et H 8.54 8.32 –

35 OH Et F 8.82 8.88 –

36 OH Et Cl 9.04 8.62 –

37 OH Et Br 8.64 8.32 –

38 OH n-Pr H 8.30 7.91 –

39 OH OMe H 6.69 7.09 –

40 OH OMe Br 7.17 7.12 –

41 H Br OH 8.00 – 8.22

42 OH n-Pr Cl 8.49 – 8.20

43 OH Me Br 8.26 – 7.65

44 H Me OMe 8.28 – 8.34

45 OH Br Et 7.77 – 8.01

46 OH Et Et 8.75 – 8.58

47 H Et OMe 8.89 – 9.12

48 H H OMe 7.28 – 7.68

49 H Et H 7.40 – 7.82

50 OH H H 6.50 – 6.52

51 OH H Br 7.25 – 6.67

52 OH Cl Me 7.96 – 7.76

53 OH Cl OMe 8.77 – 8.45

54 OH Br F 8.15 – 8.33

55 OH Br Me 7.96 – 8.09

56 OH Me H 7.72 – 7.52

57 OH Me n-Pr 6.85 – 7.41

58 OH NO2 H 5.52 – 7.30
a Activity values are expressed in pIC50 molar units.; b Experimental values obtained from ref.11; c Fitted

values (training set).; d Predicted values (test set).

6.2  Theory and Methods

Prior to the multilinear PLS analysis, the conformational space accessible to the ligands was

sampled by performing an exhaustive conformational analysis (see below) on the basic skeleton (59)

common to all ligands. The active analogue approach14 was then employed to derive the presumed

pharmacologically active conformation, using the rigid pyrrolo-isoquinoline (–)-piquindone (60) as a

template (see below). The best matching conformation of 59 then served as a starting point for the
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construction of compounds 1–58, which were subsequently optimised with respect to the

orientations of the aromatic substituents. Finally, all ligands were superimposed in their presumed

pharmacologically active conformations (see below).

+ Conformational Analyses

Conformational analyses and pharmacophore identification (see below) were performed

essentially as described by Jansen et al.15 Thus, conformational analyses were performed within

MacroModel version 4.5,16 using the MM2* force field and the Monte Carlo (MC) search protocol.

(S)-N-[(1-Ethyl-2-pyrrolidinyl)-methyl]benzamide (59) was built from standard fragments and

subsequently energy-minimised with default options. During all minimisation’s, the benzamide

torsional angle was kept fixed at 0°. For (–)-piquindone (60), its X-ray crystal structure (BANKIK)17

served as the starting conformation. The conformational space accessible to both compounds was

sampled by submitting the input structures to 1000 MC steps. Starting geometry’s were generated

systematically (SUMM option) and the number of torsional angles to be adjusted in each MC step

was randomly varied between 2 and n–1, n being the total number of variable torsional angles. Ring

closure bonds were defined in 5- and 6-membered non-aromatic rings in order to allow torsional

angles in these rings to be varied during the MC search procedure. Ring closure distances were

limited between 0.5 and 2.0 Å. Default values were used for testing high-energy nonbonded

contacts. Duplicate minimum energy conformations (all pairs of equivalent atoms separated by less

than 0.25 Å) were determined by least squares superposition of all non-hydrogen atoms and rejected.

Chiral centres were checked for conservation of the original stereochemistry before saving

conformations. An energy cut-off of 21 kJ/mol was applied. Minimisation’s were performed using

the Truncated Newton Conjugate Gradient (TNCG) minimiser, allowing for 250 iterations per

structure. A gradient of 0.01 kJ Å-1 mol-1 was set as the initial convergence criterion. The local

minimum energy conformations thus obtained were submitted to a final minimisation, using the Full

Matrix Newton Raphson (FMNR) minimiser, allowing for line searching and 1000 iterations per

structure. A gradient of 0.002 kJ Å-1 mol-1 was set as the final convergence criterion.

N
H N

O
H

N

N
H

O
H

H

59 60 Piquindone
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+ Pharmacophore Identification

The pharmacophore-identifying program APOLLO3 was used to align 59 and 60 in their

presumed pharmacologically active conformations. The output files of the MC searches, containing

multiple minimum energy conformations of each compound, served as input for the VECADD

module of APOLLO. In each conformation of 59 and 60, extension vectors from the carbonyl O

atom and the basic nitrogen atom pointing towards putative receptor points, as well as a centroid and

a normal through the aromatic ring were defined. In all cases, minimum densities of vectors were

specified, representing ideal hydrogen bonding positions. The RMSFIT module was used to

determine the conformation of each ligand which gave the best overall fit with respect to the

specified fitting points. When receptor points emanating from the carbonyl oxygens were fitted, the

two possible points were defined as choices. When fitting aromatic rings, both extremes of the

normal and the centroid were defined as choices. All points were weighed equally. Conformational

energies were taken into account for determining the root mean square (RMS) deviations. The RMS

cut-off was set to 0.5 Å. The MMDFIT module was used to extract the conformations which gave

the best matches.

+ Substituent Geometries and Ligand Alignment

The best fitting conformation of 59 identified by APOLLO was used as a starting point for

building the compounds 1–58 in Table 6.1. The appropriate substituents were attached to the

aromatic ring and the conformational space of substituents with conformational freedom was probed

using the MC procedure in MacroModel as described above. For each newly introduced torsional

angle 100 MC steps were performed. All other torsional angles were fixed during these MC searches

in order to maintain the overall geometry of the pharmacophore pattern for all compounds. The

lowest energy conformations resulting from these MC searches were used for the final alignment,

which was performed within SYBYL 6.3.2 The basic nitrogen atoms were protonated and centroids

were defined in the aromatic rings. Then all compounds were superimposed with respect to the

centroids, the carbonyl O atoms, the amide H atoms, and the protons on the protonated tertiary

nitrogen atoms, using the Fit Atoms procedure as implemented in SYBYL.

+ The Data Set

The descriptors used in this paper were generated in the GRID program18 from three different

probe atoms, the C3 probe, the CA+2 probe and the OH2 probe, reflecting the steric field, the

electrostatic field and the hydrogen-bonding field, respectively. The selection of probes was based on

the PCA performed in Chapter 4.10

Etot = Este + Eele + Ehb (6.1)
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In contrast to SYBYL/CoMFA,2 the same interactions (Equation 6.1) are calculated in each grid

point independent of the type of probe atom. Thus, there are no separate steric or electrostatic fields

generated but instead the type of probe will reflect different type of fields due to the fact that the

relative size of the terms in Equation 6.1 differs from one probe to another. For example, a charged

probe, e.g., CA+2, reflects predominantly the electrostatics since the Eele will be the dominating

term, but still, the other two terms are not excluded. In section 1.5, molecular descriptors are

discussed more thoroughly.

+ Multilinear PLS Analysis

In the previous chapter the multilinear PLS (N-PLS) algorithm9 was scrutinised and

implemented as regression method for 3D QSAR data.8 Consequently, the derivation of the N-PLS

algorithm is not repeated here, however, the same notations will be used also in this chapter.

Figure 6.1 The complete data set (X) defining five directions. The molecular direction comprises 40 steps, the x
direction 20 steps, the y direction 22 steps, the z direction 20 steps and the probe direction 3 steps.

The definition of this data set (X) is identical to the data set in Chapter 5, hence, the 58

compounds included are characterised with three different probes as described in Figure 6.1. Also

here five different directions or modes can be defined: the molecular mode, the grid x mode, the grid

y mode, the grid z mode and the probe mode. Consequently, in the decomposition of the multiway

matrix (X) performed during the N-PLS analysis (see Figure 6.2(b) in the previous chapter) one

score vector (t) and four loading vectors (wJ, wK, wL and wM) are formed.

•
•
•

x

y

z

probe mode

molecular
mode

C3 OH2 CA+2
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+ Model Validation

The crossvalidation experiments and the external predictions were quantified with crossvalidated

Q2 and predicted Q2, and the quality of the calibrations with R2, respectively. The Q2 and R2 are

already defined in Chapter 2.

In addition to the traditional ‘leave-one-out’ (LOO) crossvalidation also ‘leave-three-out’ (L3O)

and ‘leave-five-out’ (L5O) crossvalidation were performed, where in each experiment the objects

were left out randomly, but only once. The results were reported as the average Q2 of 20

crossvalidation experiments.19,20

+ Partial PLS Coefficients

The results from 3D QSAR studies are often presented as comprehensive iso-contour plots of

the partial regression coefficients bPLS (b1,…, bR; R = JKLM)2,21 in Equation 6.2, where xr is the rth

grid point, i.e., variable and br is the corresponding coefficient.

∃y = b1x1 +…+ brxr +…+ bRxR (6.2)

Basically, the coefficients bPLS are needed for the predictions of the biological activity ∃y  of new

molecules, but since the sizes and the signs of the coefficients reveal the relative influence of each

grid point on y, they are also suitable for the interpretation. That is, an external compound, not

included in the training set, with a substituent protruding into a region with positive brs will produce

a positive (repulsive) field xr in this region and, consequently, have positive influence on ∃y . If the

region has negative brs, however, the opposite is valid.

6.3 Results

+ Conformational Analyses

The MC procedure identified 32 and 3 minimum energy conformations for 59 and 60,

respectively. The two lowest energy conformations of 60 were equal in energy, conformation 1 being

identical to the minimised X-ray crystal structure, while in conformation 2 the ethyl side chain points

in the opposite direction.

+ Pharmacophore Identification

APOLLO identified conformation 6 of 59 (∆E = 5.80 kJ/mol) and conformation 2 (∆E = 0.00

kJ/mol) of 60 as best matches with respect to the indicated fitting points, with an RMS deviation of

0.26 Å (Figure 6.2). In conformation 6 of 59, the (1-ethyl-2-pyrrolidinyl)methyl side chain adopts a

half-folded conformation.
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Figure 6.2 Stereo representation of the superposition of the best matching conformations of 59 (conformation 6) and
60 (conformation 2), as identified by APOLLO. For clarity purposes, alkyl hydrogens have been omitted. The water
molecules mimic amino acid residues of the receptor, capable of forming hydrogen bonds with the ligands.

+ Substituent Geometry’s and Ligand Alignment

The orientation of the 6-OMe group in the lowest energy conformations depended on the 5-

substituent. When R5 was H, OMe, OH or F, the 6-OMe group was oriented coplanar with respect

to the aromatic ring. In all other cases, i.e., R5 being alkyl, Cl, Br or NO2, the 6-OMe group adopted

a conformation perpendicular to the plane of the aromatic ring. In both orientations an intramolecular

hydrogen bond between the 6-OMe O atom and the amide H atom was formed. All alkyl substituents

longer than methyl at the 3- and 5-positions adopted all-trans conformations perpendicular to the

plane of the aromatic ring, while OMe and OH groups at these positions had a coplanar orientation.

All OH substituents at the 2-position adopted coplanar conformations, forming an intramolecular

hydrogen bond between the 2-OH H atom and the carbonyl O atom. The final alignment of

compounds 1–58 is shown in Figure 6.3.

Figure 6.3 Stereo representation of the final alignment of compounds 1–58. For clarity purposes, alkyl hydrogens have
been omitted.

+ The Data Set

The grid was created large enough to enclose all the aligned molecules with at least 4 Å in all

directions, where the x, the y and the z direction were divided into 20 (J = 20), 22 (K = 22) and 20

(L = 20) parts with a step size of 1 Å, respectively. Three different probes (M = 3) were considered:

the C3 probe, the OH2 probe and the CA+2 probe. The total data set consisted of 58 molecules and

26400 number of variables. As described above and in Figure 6.1, five different modes have been
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defined: the molecular direction, the grid x mode, the grid y mode, the grid z mode and finally the

probe mode.

The 58 molecules were divided into a training set and a test set, selected with help from a

Principal Component Analysis (PCA) of X (58 × 26400). Six main clusters were identified in the

three first Principal Components describing 60 % of the variation in X. The number of compounds

selected from each cluster depended on the size of the cluster. This resulted in 18 compounds which

were selected for the test set (Table 6.1, compounds 41–58) and the remaining 40 compounds

comprised the training set (Table 6.1, compounds 1–40).

+ Multilinear PLS Analysis

Different data pre-processing methods have been discussed in the literature,5 but the only data

pre-processing applied on our data set was column mean-centering in the molecular direction.8 Thus,

the multiway matrix X was unfolded, column mean-centred and, subsequently, ‘back-folded’ before

the regression analysis was performed.

Table 6.2 Calibrationa of the complete model Model I (40 × 26400).
#LV R2 (X) R2 (y) Q2 (LOO)

1 5 47 29

2 11 59 44

3 14 69 52

4 17 75 56

5 20 79 56

6 21 81 57

7 22 85 56

8 24 87 62
a All values are expressed as percentages.

The number of significant N-PLS components was estimated by leave-one-out crossvalidation of

the complete model, Model 1, and we found six N-PLS components (Table 6.2; Q2 = 57 %) to be

optimal. Important, in order not to lose information during the variable reduction step, we performed

the variable reduction starting from a model one component more complex than optimal.

Accordingly, the absolute sum of the weights from the first seven N-PLS components was

calculated, each mode apart. A position in a direction was considered significant and selected only if

it exceeded a lower cut-off value. An arbitrary cut-off value of 0.1, generated a reduced data set with

2940 number of variables, called Model 2. Stated differently, only variables with high weights from

Model 1 were selected and included in Model 2. The probe mode was left intact, hence, variables

from all three probes were included in the reduced data set. (One may argue why the variable

selection not was performed from a model with eight N-PLS components having a Q2 of 62 %. The

rationale for this decision was that the absolute sum of the weights barely changed when going from

seven to ten N-PLS components.)
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Table 6.3 Calibrationa and validationb of Model II (40 × 2940).
#LV R2 (X) R2 (y) Q2 (LOO) Q2 (L3O)c Q2 (L5O)c Q2 (Pred)d

1 5 44 23 20 19 36

2 8 64 41 39 38 45

3 13 73 48 47 46 64

4 15 79 57 54 53 56

5 18 81 59 59 58 62

6 21 87 63 62 62 62

7 25 88 64 63 63 57

8 26 90 64 64 63 63

9 30 91 66 64 64 62

10 30 92 68 63 63 59
a All values are expressed as percentages.; b LOO stands for leave-one-out, L3O for leave-3-out and L5O for

leave-5-out.; c Average from 20 crossvalidation experiments.; d Predictions of the external test set (18 ×
2940).

Table 6.3 summarises the calibration and validation results, from the first ten N-PLS

components of Model 2. The six first N-PLS components used 21 % of the variation in X to explain

87 % of the variation in y and the Q2s from the three crossvalidation experiments LOO, L3O and

L5O were calculated to be 63 %, 62 % and 62 %, respectively. The calculated pIC50 values and the

predicted pIC50 values after the sixth N-PLS component are tabulated in Table 6.1, and plotted

against the experimental pIC50 values in Figures 6.4(a) and 6.4(b) for the training set and the test set,

respectively.
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Experimental pIC50 versus Fitted pIC50
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Figure 6.4 The performance of Model 2, showing in (a) Experimental pIC50 values versus Fitted pIC50 values and in
(b) Experimental pIC50 values versus Predicted pIC50 values, after six N-PLS components.
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Figure 6.5 The weights from the first six N-PLS components of the complete model from (a) the x-mode, (b) the y-
mode, (c) the z-mode and (d) the probe mode. N-PLS(1) is represented by a thin full line, N-PLS(2) a thick full line,
N-PLS(3) a dotted line, N-PLS(4) a thick broken/dotted line, N-PLS(5) a + full line and N-PLS(6) a * full line.

Each subsequent component focuses on different variables, i.e., different regions in the grid,

which can be determined with help from Figure 6.5. The weights in Figures 6.5(a) and 6.5(b)

correspond to positions in the x and y mode in Figure 6.6. For the first N-PLS component the
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weights in Figures 6.5(a) and 6.5(b) are high in positions 7–13 and 5–9, respectively, corresponding

to the substituents on the benzamide 3-position (Figure 6.6, area 1). Analogously, N-PLS component

two focuses on substituents on the benzamide 5-position (area 2), N-PLS component three on large

substituents on the benzamide 3-position (area 3), N-PLS component four on the out-of-plane 6-

OMe (area 4), N-PLS component five on the amid part and substituents on the benzamide 2-position

(area 5), and N-PLS component six on large substituents on the benzamide 5-position (area 6). All

components account for variation from all three probes except for the fifth, which accounts for

variation only from the CA+2 probe (Figure 6.5(d)). In multilinear PLS consecutive components are

not orthogonal which implies that some overlap of information may exist between different

components. However, it has been shown8 in multilinear PLS that each N-PLS component accounts

for smaller easy to interpret regions while in bilinear PLS each PLS component accounts for more

variation but not that well defined regions.

The partial PLS coefficients bPLS (Equation 6.2) are presented as stereo iso-contour plots in

Figures 6.7(a)–6.7(c) for the three probes after six N-PLS components.

Figure 6.6 The 40 aligned training molecules, enclosed in the grid, viewed in the x and y mode.
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(a)

(b)

(c)

Figure 6.7 The bPLS-coefficients from Model 2 after six N-PLS components, showing in (a) the C3 probe, in (b) the
OH2 probe and in (c) the CA+2 probe on the |0.001| level. Regions with negative and positive bPLS coefficients are
pictured with dark and light grey contours, respectively.

6.4  Discussion

The key issue in 3D QSAR modelling is to find a simple and straightforward model with high

predictive ability. Traditionally, bilinear PLS is utilised as regression method but recently it has been

shown that multilinear PLS8-10 is more stable, simpler and offers improved predictability.

III

I

II
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An important step in 3D QSAR analyses is the alignment of the ligands under investigation, i.e.,

the relative positioning of the ligands in the fixed lattice, prior to the generation of the 3D

descriptors. Even when the ligands possess a large degree of conformational flexibility, a single

conformation has to be selected for each ligand. In order to be able to extrapolate the results of a 3D

QSAR analysis in terms of receptor residues surrounding the ligands, we considered it essential to

align the ligands in their pharmacologically relevant, i.e., receptor binding conformations. Therefore,

we employed the active analogue approach to determine the presumed pharmacologically active

conformations of the ligands.22 This approach is based on the assumption that ligands binding to the

same binding site share the same pharmacophore pattern, i.e., the three-dimensional arrangement of

structural features essential for recognition by the receptor. The pharmacophore pattern of a flexible

ligand can be determined by comparing it with that of a rigid analogue (template), in which the

activity is retained. We chose (–)-piquindone as the template molecule. Although belonging to

different chemical classes, (–)-piquindone and N-[(1-ethyl-2-pyrrolidinyl)methyl]-derived benzamides

share several structural and pharmacological characteristics, a prerequisite when employing the

active analogue approach. Thus, both classes of compounds contain an aromatic ring capable of π-π

stacking with receptor residues, a carbonyl functionality, and a basic nitrogen atom at a certain

distance from the aromatic ring, capable of forming hydrogen bonds with receptor residues. In

addition, the binding to dopamine D2 receptors is highly stereoselective and sodium-dependent for

both classes, suggesting that they may share the same binding site and binding mode. This makes (–)-

piquindone a suitable template for N-[(1-ethyl-2-pyrrolidinyl)methyl]-derived benzamides, as has

been shown in the past.13,23,24

A thorough conformational analysis was performed on N-[(1-ethyl-2-

pyrrolidinyl)methyl]benzamide (59), which constitutes the basic skeleton of the series. Although all

compounds contain a 6-OMe substituent, this functionality was omitted from the basic skeleton,

since its orientation was dependent on the adjacent substituent and thus not identical for all

compounds. Conformation 6 (∆E = 5.80 kJ/mol) of 59 was identified by APOLLO as fitting best on

conformation 2 of (–)-piquindone with respect to the defined fitting points (Figure 6.2). In this

conformation of 59 the N-[(1-ethyl-2-pyrrolidinyl)methyl side-chain adopts a half-folded

conformation. This finding is consistent with previous reports,13,23 although the conformation we

identified is not exactly identical to previously reported conformations of the side-chain. This is

probably the result of differences in the fitting procedures.

It is clear from Figures 6.5(a)–6.5(d), that positions corresponding to grid points, predominantly

in the periphery of the grid, have low weights, and by omitting these variables, a reduced model

(Model 2), with 2940 variables was obtained. Model 2 described slightly more of the variance in y

(R2 = 87 %) as compared to Model 1 (R2 = 81 %), and the crossvalidated Q2 (LOO) was slightly

increased from 57 % to 63 % after six N-PLS components in Model 1 and 2, respectively. The

stability of Model 2 was confirmed since the crossvalidated Q2 (62 %) did not change, i.e., it did not

decrease when larger groups of compounds were left out each time (Table 6.3). Important,

additional components did not significantly increase (nor decrease) the crossvalidated Q2. Therefore,
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in order to keep the number of components at a minimum and avoid insignificant variation, we used

six N-PLS components for Model 2.

The role of the crossvalidated Q2 is to act as a descriptor for the predicted Q2, which it often

does too optimistically.8 In this model, however, the crossvalidated Q2 (62 %) is in good agreement

with the predicted Q2 (62 %). Knowing that the model is stable and possesses high predictability, we

may interpret the iso-contour plots in Figures 6.7(a)–6.7(c).

From this model we can conclude that the conformation of the 6-OMe group has a great

influence on the pIC50 value. In a planar conformation, the 6-OMe group protrudes in a region (I)

with negative (dark grey) C3 PLS coefficients (Figure 6.7(a)) and, consequently, grid points within

this region will have repulsive (positive) interactions with the 6-OMe group. Thus, 6-OMe group in a

planar conformation affects the pIC50 value negatively. For compounds with the 6-OMe group in a

perpendicular conformation the 6-OMe group protrudes in a positive (light grey) C3 PLS coefficient

region (II), which favours a high pIC50 value (i.e., high affinity). At the same time, hydrogen bonding

(Figure 6.7(b)) with the 6-OMe oxygen becomes favourable in region III, which promotes a high

pIC50 value. From the CA+2 fields (Figure 6.7(c)) it is also clear that the substituents in positions 5

and 6 must possess negative electrostatic potential in order to promote a high pIC50 value. These are

the most obvious conclusions that can be drawn from Figures 6.7(a)–6.7(c).

The substituents at the 2- and 3-position have less influence on the pIC50 value as compared to

substituents at the 5- and 6-position.25,26 However, a substituent with positive electrostatic potential

in the 3-position is favourable. The size of the substituent is of minor importance. Also, important

hydrogen bonding sites are, obviously, not present in the vicinity of positions 2 and 3. This is

consistent with results reported by Norinder et al.12

The importance of the basic nitrogen on the pyrrolidinyl moiety has already been established

elsewhere,24 but is not recognised in our model since the variance in the GRID-descriptors in this

region is very low.

6.5  Conclusions

We conclude that 3D QSAR modelling with multilinear PLS works very well and definitely is an

alternative to the traditional bilinear PLS method.

We have demonstrated the importance of a proper strategy for the conformational analyses and

the alignment procedure in order to succeed in 3D QSAR modelling. We found that the

conformations of the ligands, to a great extent, explained the difference in pIC50 values of  these

ligands. Further, interpretations of our model are in line with what others have reported and confirm

the reliability of our model.11,12

We used multilinear PLS to reduce the number of variables by omitting variables with low

weights, i.e., only variables with variation correlated with the pIC50 values were considered in the

final model (Model 2). The crossvalidated Q2 for Model 2 was 62 %, independent of how many

groups were left out each time. This result confirms that our data set is homogenous and that our
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model is stable. Normally,10 leave-one-out crossvalidation produces higher Q2, as compared to when

larger groups of compounds are left out each time. The crossvalidated Q2 (62 %) from this model is

a perfect estimation of the predicted Q2, which also was found to be 62 %. This is most certainly an

effect originating from the multilinear PLS9 method, which has been discussed by Nilsson et al.8 and

Smilde.21
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Multiway Simultaneous Two-Block Analysis with

Applications to 3D QSAR

This chapter is based mainly on the article: Nilsson, J; Kiers, H.A.L.; Smilde, A. K. Multiway Simultaneous Two-
Block Analysis with Applications to 3D QSAR. In preparation.

Summary

In this chapter, the algorithms and the procedures for the analyses with the multiway

simultaneous two-block methods, PCovR/Tucker5 and PCovR/PARAFAC, have been scrutinized

and applied to the 3D QSAR data set analyzed in Chapters 4 and 5.

Since the methods are based on alternating least squares algorithms the stability of the

obtained best models were estimated by means of repeated calculations using different starting

parameters. The predictability of the models were estimated with predictions of external test sets.

The most predictive PCovR/Tucker5 model (Q2 = 31 %) was obtained using sr = 100, α = 0.4

with (6, 7, 4, 3 and 2) number of components in the different modes. This model was found stable

with high reproducibility which is in sharp contrast to the best PCovR/PARAFAC model which was

unstable with poor reproducibility, obtained with sr = 1000, α = 0.7 and seven components.

The α value and the number of components have direct effects on the predictability of the

models while the size of sr only controls at which α value the most predictive model will occur.

The 3D QSAR data set from Chapters 4 and 5 has been analyzed with several different methods

and the best predictabilities were obtained using the PCovR/Tucker5 and the N-PLS methods (Q2 =

31 %).

7.1  Introduction

In QSAR, the typical problem is to create models from theoretically generated molecular

descriptors in order to make predictions of biological responses possible. In the previous chapters,

QSAR and 3D QSAR data sets have been dealt with and they all comprise two blocks of descriptors,

i.e., one independent and one dependent descriptor block. This situation is pertinent to most

problems in regression analysis. Until recently, it was assumed that the variable blocks were

organized in two-way matrices, simply due to that no algorithms existed that could handle data sets

of higher orders than two. Thus, in order to analyze a data set of higher order, the multiway matrix

must first be unfolded1 into a two-way matrix, normally leaving the object mode intact. MLR,2 PCR3

and PLS3 are examples of regression methods designed for the analysis of two-way data sets.

Wold et al.4 analyzed multiway data sets by combining the Lohmöller-Wold decomposition4

with the non-linear partial least squares (NIPALS)5,6 algorithm. This method was called multiway

7
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PLS, which solution is the two-way PLS solution of the unfolded matrix. Later, Ståhle7 developed an

algorithm for linear three-way decomposition (LTD) of three-way data sets, composed of one

independent and one dependent variable block. Ståhle’s algorithm is a multiway generalization of the

two-block PLS algorithm (see Chapter 2).

Recently, Bro developed the multilinear PLS algorithm8 (N-PLS) which combines PLS and the

PARAFAC9,10 decomposition method (see Section 2.8). The N-PLS algorithm generates partial least

squares solutions, with score vectors that have maximum covariance with y.

All the models obtained with the above mentioned algorithms are calculated in a component-

wise fashion, i.e., parameters from one component are calculated from the residuals of the previous

component. Consequently, the variation accounted for by an early component is more significant for

the description of y, as compared with subsequently extracted components. However, alternative

approaches have been developed, i.e., algorithms that are not nested and where all components are

calculated simultaneously.11,12 In a paper by De Jong and Kiers,12 principal covariate regression

(PCovR) was presented as a method that simultaneously minimizes the X and Y residuals by means

of an alternating least squares (ALS) algorithm. The original PCovR algorithm was defined for the

case when X and Y were two-way matrices. Recently, Smilde13 postulated frameworks for the

possibility of extending the algorithm also for multiway X and Y, e.g., PCovR/PARAFAC and

PCovR/Tucker. In the present chapter the multiway simultaneous two-block regression algorithms

will be discussed and applied to 3D QSAR data. This investigation is mainly focused on the

calibration procedure, e.g., the data pretreatment, the optimization and the validation of the most

successful models. Finally, the performance of the different regression methods investigated in this

thesis, i.e., PLS (Chapter 5), N-PLS (Chapter 5), PCovR/PARAFAC and PCovR/Tucker5 (this

chapter), will be compared and discussed.

7.2  Theory and Methods

 

+ The PCovR Algorithms

The theory of principal covariate regression has already been discussed in Section 2.9 and,

therefore, only the most important features of the five-way methods are repeated here. In PCovR,

the data are fitted to the following model:

T XW= (7.1)

X TP E= +T
X (7.2)

y Tb e= + y (7.3)

( )[ ]min α αX XWP y XWb− + − −T 2 2
1 (7.4)

where T (I × A) contains the A score vectors (principal covariates ti) and W (JKLM × A) the

weights. P (JKLM × A) and b (A × 1) are the regression parameters relating X (I × JKLM) and y (I ×

1), respectively, with the scores in T (see Figure 7.1). The algorithm is balanced between
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reconstructing X (α→1) and fitting y to the data (α→0). Obviously, an important step in PCovR

modeling is to find the α that maximizes, e.g., the predictability.

Smilde13 defined a number of different models by simply imposing different structures on P, i.e.,

constraints. The five-way simultaneous two-block PARAFAC model (PCovR/PARAFAC) is

obtained when

( )P W W W WT
K
T

J
T= ⊗ ⊗ ⊗M

T
L
T (7.5)

where WJ (J × A), WK (K × A), WL (L × A) and WM (M × A) are the loading matrices. The same

number of components (A) are used in all five modes. (The five modes are defined graphically in

Figure 5.3.)

In analogy, the simultaneous two-block Tucker5 model (PCovR/Tucker5) is obtained when

( )P G W W W WT
K
T

J
T= ⊗ ⊗ ⊗M

T
L
T (7.6)

where G (N × PQRS) is the properly concatenated core matrix and WJ (J × P), WK (K × Q), WL (L ×

R) and WM (M × S) are the loading matrices from each mode. In contrast to the PARAFAC

model,9,10,14 the corresponding Tucker model15 may have different number of components in each

mode. The number of components in the molecular, x, y, z, and probe modes for the Tucker5 model

are given as N, P, Q, R and S, respectively. The PARAFAC model uses A components in each mode.

In the PARAFAC model, the core matrix G is a matrix where all off-superdiagonal elements are

zero, since no interactions between modes from different components are allowed. In a Tucker

model, however, this type of interactions are accounted for by the off-superdiagonal elements in G.

Hence, the PARAFAC model is a special case of the Tucker model (e.g., more constrained).

Additionally, each rotation of the core matrix or of the loading matrices, from a Tucker model, may

give solutions with the same sum of squared residuals as the model found. Hence, the Tucker model

does not have a unique solution. The general PCovR model is presented graphically in Figure 7.1.

Figure 7.1  A graphical representation of PCovR, where X (I × J × K × L × M) is a five-way matrix and y (I × 1) is

univariate.

Since the PCovR algorithm is solved by an alternating least squares (ALS) algorithm, the initial

starting parameters have to be selected a priori. Accordingly, the parameters, e.g., loadings, scores,

P and b are updated alternately until convergence. It is a well known fact that in non-linear modeling

an algorithm may occasionally converge into a local minimum, since the result depend on the starting

parameters used. Unfortunately, there is no easy way to determine whether the minimum value found
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is a local or the global minimum function value. However, the chance of finding the global minimum

value is increased if several calculations, with different starting parameters, are attempted.

Predictions of the external test sets (see below) were carried out as described in Section 2.9.

+ Definition of the Data Set

 

In order to enable comparison of the present analysis methods with, e.g., PLS and N-PLS, the

data set from Chapter 5 was analyzed also in the present chapter. The data set comprises 30 training

and 21 test molecules with affinity for the dopamine D3 receptor subtype. The molecules were all

modeled, aligned and characterized as described in Chapters 4 and 5.

Figure 7.2 The unfolded data set used in the present application comprises a training set X (30 × 25110), a test set
Xtest (10 × 25110) and a validation set Xval (11 × 25110).

Traditionally, crossvalidation16 is used to estimate the predictability of a model. In the present

application, however, the test set from Chapter 5 was divided into a test set (Xtest) and a validation

set (Xval) as described in Figure 7.2. In order to make sure that both the test set and the validation set

spanned the same descriptor space as the training set (X), a PCA of the 30 training compounds

merged with the 21 test compounds (51 × 25110) was performed. From the first two score vectors,

accounting for 38 % of the variation, ten compounds (t1, t4, t6, t8, t12–t16 and t21 in Tables 5.1–

5.3) were, arbitrarily, selected for the test set denoted  Xtest (10 × 25110). The remaining eleven

compounds (t2, t3, t5, t7, t9–t11, t17–t20 in Tables 5.1–5.3) comprised the validation set denoted

Xval (11 × 25110). Accordingly, the ability of a model to predict Xtest was used during the calibration

procedure for the selection of the best model, while the prediction of Xval was used to estimate the

predictability of the final model. This procedure was preferred, since crossvalidation would be a far

too time consuming procedure considering the large number of models that need to be validated.

+ Data Pretreatment

Previously, in Chapter 5 where the present data set was analyzed with PLS and N-PLS, the only

pretreatment applied was column mean-centering in the direction of the molecular mode. As soon
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will become evident, the α value with which the best predictability is obtained can be adjusted with

the ratio of the sum of squares of X and y (sr):

sr = SSQ(X)/SSQ(y) (7.8)

For reasons of convenience, the sr was adjusted such that the best predictability was obtained

using an α value as close as possible to 0.5.

+ Determination of the Number of Components

In contrast to the PARAFAC model, where the same number of components are used in all

modes, a Tucker model may have different number of components in all modes. With

PCovR/PARAFAC modeling, the number of components can be estimated with crossvalidation16 or

by predictions of an external test set (this chapter). With PCovR/Tucker modeling, the estimation of

the optimal number of components is not that straightforward. There is one approach available,

however, based on singular value decompositions (SVD) of the unfolded five-way matrix X,17 that

can be unfolded in five different ways18 each time leaving one mode intact. (Note that X was mean-

centered, as described in the previous section, prior to the unfolding procedure.) Accordingly, the

number of singular values from each unfolded matrix that accounts for, e.g., 30–70 % of the

variation, determines the number of components to be considered in the different modes. The number

of singular values obtained are presented in Table 7.1. In the fifth mode, 50 % of the variation was

explained already by the first singular value.

Table 7.1 The number of singular values, obtained from SVDs of X unfolded in five
different directions explaining 30–70 % of the variation in X.

mode 30 % 40 % 50 % 60 % 70 %
molecular 3 4 6 8 11

x 4 5 7 10 13
y 2 3 3 4 5
z 2 3 4 5 7

probe 1 1 2

In the following procedure where the optimal Tucker5 model is searched for, the columns in

Table 7.1 will represent the combination of components to be used in the different calculations. Just

as the number of components in PARAFAC models may be chosen between, e.g., three to eight, the

number of components with the Tucker5 models will be chosen between 30 % and 70 % according

to Table 7.1, in the optimization procedures below.

7.3  PCovR/Tucker5 Analysis

The analysis with the PCovR/Tucker5 method comprised the following sequence: First, the sum

of squares of the descriptor blocks, i.e., the sr, that produce the best predictability with an α value

near 0.5, was searched for. Second, using this sr the combination of α and number of components
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that produced the highest predictive Q2 (predictions of Xtest) was determined. Finally, the stability of

the optimized model was investigated with repeated calculations using different starting parameters

and the predictability was estimated by prediction of the validation set (Xval).

Figure 7.3 (a) The effect of different ratios (sr) of the sum of squares of X and y on the predictability. In (b) and (c) the
R2

y and R2
X, respectively, from the corresponding models are presented. The number of components corresponds to the

50 % column in Table 7.1, using two components in the probe mode. (thin full line: sr = 1; thick full line: sr = 10;
dotted line: sr = 100; broken line: sr = 1,000; thick broken/dotted line: sr = 10,000)
 

+ Determination of the Scaling Ratio (sr)

It became evident during the preparation of this work that the sum of squares of X and y have a

significant impact on the size of α that produces the best predictability. Accordingly, in a number of

calculations an optimal sr was searched for by evaluating all combinations of α (0.1–1.0) and sr (1; 10

;100; 1,000 and 10,000). In each calculation, the number of components corresponded to the 50 %

column in Table 7.1, using two components in the probe mode. Since the number of components will

be optimized first in the next step, the number of components used corresponds to the 50 % column

in Table 7.1. The performance of the obtained models are summarized in Figure 7.3. Clearly, when
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the sr was increased (SSQ(X) > SSQ(y)) the optimal predictability was obtained at a decreasing size

of α. The best predicted Q2s (predictions of Xtest) obtained with sr adjusted to 1, 10 ,100 were found

at the α values 0.99, 0.8 and 0.4, respectively. (The calculations with α = 0.99 are not presented

here.) The question is whether the best models obtained with different sr really are different models

since the predicted Q2 were identical in all models? Nevertheless, it was decided to proceed and

optimize α and the number of components using sr = 100.

Figure 7.4 Determination of the optimal α using sr = 100. For each of the α values 0.3, 0.4 and 0.5 models were
calculated using the number of components corresponding to the 30, 40, 50, 60 and 70 % columns in Table 7.1 with
two components in the probe mode. (thin full line: α = 0.3; thick full line: α = 0.4; dotted line: α = 0.5)
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+ Optimization of αα

The combination of α and number of components was optimized using sr = 100 (Equation 7.5),

as was decided in the previous section. Since the best predictability, in Figure 7.3(a), was found

when α = 0.4 it seemed reasonable to assume that the optimal model must be close to this α value.

Accordingly, in a number of calculations all the combinations of the α values, 0.3, 0.4 and 0.5, and

the number of components corresponding to the 30, 40, 50, 60 and 70 % columns in Table 7.1 were

evaluated. The results are summarized in Figure 7.4 revealing that a model calculated with α = 0.4

and the number of components corresponding to the 50 % column in Table 7.1 produced the highest

Q2 (0.32; Figure 7.4(a)). Although the predictabilities, obtained with the different α values in Figure

7.4(a), probably are not significantly different, the model with α = 0.4 was selected as the final

model.

+ Reproducibility and Predictability

It is always a risk that iterative methods, like the PCovR methods, converge into local minima

with sometimes spurious solutions as the result. If several models with different starting parameters

are calculated, however, the chance of finding the global minimum value increases. Accordingly, in

order to investigate the reproducibility of the final PCovR/Tucker5 model, it was recalculated 100

times with different starting parameters. In Figure 7.5, the R y
2 , R X

2 , Q2 and the total loss (f; see

Equation 7.4) values from the 100 models are compared. The f values are scaled with 0.01 in order

to fit into the scale used in Figure 7.5.
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Figure 7.5 The final model (α = 0.4; sr = 100; # lv = 50 % with two components in the probe mode) calculated 100
times with different starting parameters. In order to plot the total function loss values (f) in the same plot it was
necessary to scale f with 0.01.

The predictability of the final model was estimated by means of prediction of the validation set

(Xval). Five models, calculated with different starting parameters, all predicted Xval identically with

Q2s = 0.31. The test set Xtest was predicted with Q2s = 0.32. Obviously, the chance that the

PCovR/Tucker5 model converges into a local minimum is low, although probably not negligible. In
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conclusion, the PCovR/Tucker5 model is stable, reproducible and possesses a relative high

predictability.

7.4  PCovR/PARAFAC Analysis

Since the analysis with the PCovR/Tucker method worked well a similar protocol was followed

also for the analysis with the PCovR/PARAFAC method (see beginning of Section 7.3).

Figure 7.6 (a) The effect of different sr on the predictability. In (b) and (c) the R2
y and R2

X, respectively, from the
corresponding models are presented. Five components were used in all calculations. (thin full line: sr = 1; thick full
line: sr = 10; dotted line: sr = 100; broken line: sr = 1,000; thick broken/dotted line: sr = 10,000)
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+ Determination of the Scaling Ratio (sr)

In a series of calculations the optimal sr was searched for by evaluating all combinations of sr (1;

10; 100; 1,000 and 10,000) and α (0.1–1.0). In all calculations five components were considered.

The objective with these calculations was to find a sr such that the optimal predictability was found

with an α value near 0.5. As was pointed out, this will probably not produce models with higher

predictability but may help to improve the stability of the models. In Figure 7.6(a), each curve

represents different sr and in contrast to the corresponding plot from the Pcovr/Tucker5 method

(Figure 7.3(a)), a clear optimum in predictability is hard to find. It is clear from Figure 7.6, however,

that when sr is small (e.g., 1, 10 and 100) the predictability remains low as long as the R y
2  is 100 %.

However, when α approaches unity the R y
2  starts to decrease with increased predictability as the

result.

For models with larger sr (e.g., 1,000 and 10,000) no trend in the predictability (Q2 simply

fluctuates between 0.1 and 0.25) is observed and the R y
2  remains stable at approximately 0.6 for

models with α > 0.2. Interestingly, when α is < 0.2 and approaches zero the R y
2  increases but no

change in the predictability is observed. Preliminary results with unscaled data (corresponding to a sr

≈ 26,000) showed that optimal predictability was obtained when α was ≈ 0.06 (six components).

Taken together, high predictability is not observed when R y
2  is close to unity; predictive models

with large sr (> 10,000) are observed at low α while predictive models with small sr (< 100) are

obtained when α is large. Consequently, it was decided to proceed and optimize α and the number of

components with sr = 1,000 with the intention of finding the most predictive model with an α value

somewhere in the range between 0.4 and 0.8.

The predictability of the models with sr = 1,000 and 10,000 in Figure 7.6(a) displayed large

variation which may be an indication of instability caused by the different starting parameters used.

This issue will be dealt with later in this chapter.
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Figure 7.7 Simultaneous  optimization of α and number of components using sr = 1,000. For each of the αs 0.4, 0.5,
0.6, 0.7 and 0.8 models were calculated using 4, 5, 6 and 7 components. (thin full line: α = 0.4; thick full line: α =
0.5; dotted line: α = 0.6; broken line: α = 0.7; thick broken/dotted line: α = 0.8)

+ Optimization of αα

The most predictive model was searched for by evaluating all the combinations of α values (i.e.,

0.4, 0.5, 0.6, 0.7 and 0.8) and number of components (i.e., 4, 5, 6 and 7) using sr = 1,000. The

results from the calculations are summarized in Figure 7.7, where each curve represents different α

values. The selection of one best model from Figure 7.7(a) is difficult. However, the model obtained

with α = 0.7 and seven components produced the highest predicted Q2 and was, consequently,

selected and considered the best PCovR/PARAFAC model.
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+ Reproducibility and Predictability

The reproducibility of the PCovR/PARAFAC method was elucidated by repeating the

calculation 70 times, using α = 0.7, sr = 1,000 and six components, each time with different starting

parameters. Since the computational time necessary for each calculation increases significantly with

each additional component, only six components were considered here. In order make extrapolation

of these result to the model with seven components possible, it was assumed that the variation in the

predicted Q2 was independent of the number of components considered. In Figure 7.8, the R y
2 , R X

2 ,

Q2 and the total loss values (f; see Equation 7.4) from the 70 models are plotted. It was necessary to

scale the f values with 0.001 in order to fit into the scale used in Figure 7.8.
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Figure 7.8 The model with α = 0.7, sr = 1,000 and six components was recalculated 70 times in order to investigate
the reproducibility of the PCovR/PARAFAC method. (Note f is scaled by 0.001 in order to fit into the scale used)

From Figure 7.8 it is clear that the PCovR/PARAFAC method displays large variation in the

predicted Q2 and it can be concluded that the method is unstable with low reproducibility.

The predictability of the selected best model was estimated by means of prediction of the

validation set (Xval). The calculation was repeated five times with different starting parameters and

the obtained results are presented in Table 7.2.

Table 7.2 The predictability of the best PCovR/PARAFAC model (α = 0.7; sr = 1,000
and # lv = 7). The model was recalculated five times with different starting parameters
and Q2 was obtained from predictions of the validation set (Xval).

# run R X
2 R y

2 fa Q2

1 0.33 0.67 472 0.17

2 0.31 0.73 485 0.27

3 0.32 0.67 480 0.30

4 0.31 0.58 481 0.12

5 0.34 0.58 464 0.16
a the total loss function value (Equation 7.4)
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These five calculations confirm the instability of the method since all models converged to different

minima. It may be argued that some of the models in Table 7.2 were not allowed to converge

properly, but calculations with a more narrow criteria for convergence just increased the

computational time while no improvements in the models were observed. Another disturbing

observation is that the model with the best predictability (Q2 = 0.30; run number three in Table 7.2)

was not the global minimum model which may influence the stability negatively and decrease the

reliability of the model.

7.5  Discussion

+ The PCovR/Tucker5 and the PCovR/PARAFAC Methods

The simultaneous multiway regression methods discussed in the present chapter, comprise three

parameters, i.e., sr, α and the number of components, that need to be optimized in order to obtain

models with high predictability. Initially, X and y were normalized, i.e., SSQ(X) = SSQ(y) = 1,

resulting in that most predictive models were obtained using α values close to unity. In addition, the

calculations with PCovR/PARAFAC often converged into local minima with spurious solutions as

the result. Simply, the obtained models were unstable and unreliable. The PCovR/Tucker5 models,

on the contrary, were found stable and the most predictive model was found at a slightly lower α

(0.99) than with the PCovR/PARAFAC method (0.999).

In calculations when α is chosen close to unity, the emphasis lies more on reconstructing X

rather than explaining y and since one objective in QSAR modeling is to explain y, lower α values

are desired. One way of obtaining high Q2s at lower α values is by balancing the sum of squares of X

and y, as was performed in Figures 7.3 and 7.6. The consequence of increasing sr was clear, at least

with the PCovR/Tucker5 method: the optimal predictability was found at lower α values. However,

this was probably due to an algebraic effect rather than that different models were obtained. For

instance, the model obtained with α = 0.8 and sr = 10, in Figure 7.3(a), most certainly corresponds to

the model obtained when α = 0.3 and sr = 100. Consequently, sr was not considered as a parameter

that needed to be optimized simultaneously with the α and the number of components.

Apparently, the problem with unstable PCovR/PARAFAC models could not be solved by

increasing the sr, as can be concluded from the calculations in Figure 7.8. The 75 models calculated

with different starting parameters display high variation in the predicted Q2. However, it may be that

the superior stability of the PCovR/Tucker5 method is due to this particular data set, and not an

artifact of the PCovR/PARAFAC method. It has been suggested,17 that a multiway data set that

displays different numbers of singular values in the different modes when treated as described in

Table 7.1, has a Tucker structure. According to this definition, the present data set has a Tucker

structure and may explain the superior performance of the PCovR/Tucker5 method over the

PCovR/PARAFAC method.
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Although it is unclear whether the size of sr improves the stability of the PCovR models, it is

convenient to adjust the size in order to make the analysis more lucid. For clarity, it appears not to

be necessary nor essential to optimize the size of sr in order to achieve maximal predictability, at least

as far as this investigation shows.

Due to the low stability of the PCovR/PARAFAC models, selection of one optimal model was

difficult. Nevertheless, the model with sr = 1000, α = 0.7 and seven components (Figure 7.7(a)) was

selected and recalculated five times with different starting parameters. None of the five calculations

(Table 7.2) converged to the same function value (f). This is in sharp contrast to the best

PCovR/Tucker5 model obtained when sr = 100, α = 0.4 and the number of components

corresponding to the 50 % column in Table 7.1 (i.e., 6, 7, 3, 4 and 2 components in the respective

modes), which is very stable and portrays high predictability (Q2 = 0.31 from predictions of Xval).

The calculations performed in this chapter reveal the overall superior performance of the

PCovR/Tucker5 method as compared with the PCovR/PARAFAC method. At this point it is

important to stress that this conclusion applies to the present investigation and with another data set

the performance of the PCovR/PARAFAC method may be better.

+ Multiway Analysis in 3D QSAR

The PCovR methods scrutinized in this chapter are the last methods introduced and enable

comparison of four different regression analysis methods, i.e., PLS (Chapter 5), N-PLS (Chapter 5),

PCovR/PARAFAC (Chapter 7) and PCovR/Tucker5 (Chapter 7). These methods originate in two

different classes of methods, i.e., component-wise and simultaneous regression methods, where PLS

and N-PLS represent the former class, PCovR/PARAFAC and PCovR/Tucker5 the latter class.

Additionally, PLS is a two-way regression method while the remaining three methods are designed

for the analysis of multiway data sets. It is difficult to determine, without any a priori knowledge of

a data set, which analysis method is the better choice. In Table 7.3, the best models obtained with the

different methods are compared.

The predictability of models obtained using multiway methods, e.g., N-PLS and PCovR/Tucker5

(Q2 = 0.31), are better than the two-way method, e.g., PLS (Q2 = 0.26). As was speculated in

Chapter 5, an explanation for the better predictability of the N-PLS model, as compared to the PLS

model, is the lower number of parameters that need to be estimated (see Table 7.3). This would also

explain the lower fit (R X
2  = 0.17) of the N-PLS model after four components as compared with a one

component PLS model (R X
2  = 0.22). For comparison, after four components PLS accounts for 53 %

of the variation in X (Table 5.5). The same reasoning applies also to the simultaneous methods

although they portray better fits than both the N-PLS and the PLS models. The PCovR/Tucker5

model is better fitted than the PCovR/PARAFAC model which could be due to the larger number of

parameters estimated. If the better fits of the PCovR models are due to the larger number of

components used or if they are effects of the methods, is not clear. According to De Jong and
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Kiers,12 it is to be expected that, occasionally, both R X
2  and R y

2  will be higher when using PCovR

since these are the parameters that the algorithm actually optimizes.

Table 7.3 Comparison of the best models obtained with PLS (Chapter 5), N-PLS (Chapter 5), PCovR/Tucker5 and
PCovR/PARAFAC (this chapter).

method sr
a # lvb α R X

2  c R y
2  d Q2 e # par.f

PLS – 1 – 0.22 0.62 0.26 25140
N-PLS – 4 – 0.17 0.73 0.31 388
PCovR/PARAFAC 1000 7 0.7 0.32 0.67 0.30 679
PCovR/Tucker5 100 (6,7,3,4,2)g 0.4 0.37 0.76 0.31 1528
a sr = SSQ(X)/SSQ(y);  b Number of latent variables; c Percentage variation accounted for in X; d Explained

percentage of y; e Predictions of external validation sets: for PLS and N-PLS 21 compounds, for PCovR/PARAFAC

and PCovR/Tucker5 eleven compounds; f the total number of parameters estimated after lv components; g see 50 %
column in Table 7.1.

Interestingly, the performance of the PARAFAC related methods, i.e., N-PLS and

PCovR/PARAFAC, is very different. The PCovR/PARAFAC models are unstable with low

reproducibility while the N-PLS models appears to be very stable, have high predictability and are

easy to interpret. It was speculated above that the performance of the PCovR/PARAFAC method

was poor since the present data set possible has a Tucker structure. To date, no further explanation

is available.

 

7.6  Conclusions

The procedure for the analysis with the PCovR methods are more complex than the analysis

with PLS and N-PLS. More parameters, i.e., sr, α and the number of components, need to be

optimized in order to obtain optimal predictability. By balancing the sum of squares of the descriptor

blocks (sr) the size of α that produces the most predictive models can be tuned. Although the size of

sr has no clear influence on the predictability it is convenient not to use sr close to unity or zero.

The size of α and the number of components directly affects the predictability and the quality of

the obtained models. Therefore, these parameters were optimized simultaneously using an

appropriate size of sr. The best PCovR/Tucker5 model was obtained using sr = 100, α = 0.4 and (6,

7, 4, 3 and 2) components in the five modes. It predicted the validation set with a Q2 of 0.31. The

corresponding PCovR/PARAFAC model was obtained with sr = 1000 and α = 0.7 using seven

components, but this model was unstable with poor reproducibility.

The structure of the data appears to influence the performance of different regression methods.

The present data set possibly has a Tucker structure, which may contributed to the poor performance

of the PCovR/PARAFAC method. The PCovR/Tucker5 method performed excellently with stable,

reproducible and predictive models as the result. These conclusions can not explain the apparent

excellent performance of the N-PLS method which also is a PARAFAC method.
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The predictability of the best PCovR/Tucker5 model is comparable with the best N-PLS model

in Chapter 5. The interpretation of the N-PLS models are straightforward while the interpretation of

the PCovR models needs to be scrutinized further.
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Future Perspectives

Multiway Analysis in Medicinal Chemistry

8.1  Introduction

It is difficult, or maybe not even possible, to a priori predict which regression method is best

suited for the analysis of a specific data set. A researcher simply has to rely on experience and

proceed by means of a trial and error protocol. Multiway analysis methods have been used for quite

some time in the field of analytical chemistry1 and psychology. Not since 1988, when Cramer et al.

introduced the CoMFA2 method in 3D QSAR, no alternative for PLS has been reported. In this

thesis, however, PLS3,4 has  successfully been replaced by multilinear PLS,5 for the analysis of two

3D QSAR data sets6,7 (see Chapters 5 and 6).

In the field of pharmacology and medicinal chemistry, data from in vivo (e.g., microdialysis) and

in vitro (e.g., receptor binding) experiments are generated. The utilization of multivariate methods,

e.g., PLS and PCA for the analyses of the data has been very sparse8 and are, as yet, not really

accepted. A further extension of the statistical boundaries in medicinal chemistry, is the introduction

of multiway analysis.9,10 In the following, two real examples (Sections 8.2 and 8.4) taken from

neuropharmacology and one hypothetical example (Section 8.3) from combinatorial chemistry will be

presented. The results are presented as they originally were reported, together with suggestions of

how two-way and/or multiway methods could be used as an alternative.

The objective of this chapter is to demonstrate the abundance of data, in medicinal chemistry,

that can be arranged in multiway matrices. Consequently, no calculations are carried out here.

8.2 Example One: Neuropharmacology with Microdialysis

In the following example, two series of experiments were performed in rats,11 with the objective

to find out whether the citalopram (a selective serotonin reuptake inhibitor) induced increase in 5-HT

levels, had an effect on the release of acetylcholine in the ventral Hippocampus area. A number of

drugs administrated at different dosages were injected sub cutaneously, and for the duration of

several hours, starting 60 minutes before the injection, samples were collected each 15 minutes, by

means of microdialysis.12 In the first and second series of experiments, the levels of serotonin (5-HT)

and acetylcholine (Ach) were monitored, respectively. It was concluded from these experiments that

no significant change in acetylcholine levels were observed, as the result of the increased serotonin

levels in the ventral Hippocampus area.

8
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Data of this type, usually are presented in two dimensional plots where the concentration levels

of each drug are plotted as a function of time (Figure 8.1). For clarity, in Figure 8.1 the 15

acetylcholine samples are appended after the 15 serotonin samples, the drug concentrations

(percentage of basal levels) are plotted as logarithmic values and the zero level corresponds to the

basal concentration level.
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Figure 8.1 The levels of serotonin (5-HT; 1–15) and acetylcholine (Ach; 16–30) measured in the ventral Hippocampus
area. The values were originally reported as percentage of basal levels, but here the logarithm of the same levels are
presented. After centering of the data, the zero level corresponds to the basal level. The ID-numbers of the drugs with
the most significant increase in 5-HT concentration are reported.

Figure 8.1, is a graphical representation of the two-way matrix in Figure 8.2(b), which may be

decomposed by means of a Principal Component decomposition, as in Figure 8.3(b), into a score

vector, t (I × 1), and a loading vector, p (JK × 1).

As an alternative, this data set could also be assembled in a three-way array, X (I × J × K), like

in Figure 8.2(a) and accordingly decomposed by means of a three-way PARAFAC decomposition

(Figure 8.3(a)) into a score vector, t (I × 1), and two loading vectors, wJ (J × 1) and wK (K × 1),

corresponding to the drug, the time and the response modes, respectively.

Independent of the decomposition method used, it is to be expected that most of the

insignificant variation, especially in the acetylcholine mode, will be filtered off in the first few

components and, consequently, not detrimentally affect the interpretation of the models.

Furthermore, when the number of drugs is large, and with several responses, it is likely that  PCA or

PARAFAC models become more advantageous than traditional methods, e.g., Figure 8.1,  since,

among other things, all experiments can be analyzed simultaneously.
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Figure 8.2 (a) Graphical representation of the three-way data set, X (I × J × K), where nine different drugs or doses (I
= 9) where injected and monitored for 5-HT and Ach, in the ventral Hippocampus area, for the duration of 210
minutes, with samples taken every 15 minutes (J = 15). (b) The unfolded three-way matrix, i.e., the K slices (I × J) of
X concatenated to form X (I × JK).

Figure 8.3 In (a), the one component PARAFAC decomposition of X (I × J × K) is presented, where wJ (J × 1) and wK

(K × 1) are the loading vectors, corresponding to the time and the response modes in Figure 8.2(a), respectively. In
(b), the one component Principal Component decomposition of X is presented, where w (JK × 1) is the loading vector.
The score vector t (I × 1), corresponds in both (a) and (b) to the mode representing the drugs.

9.3  Example two: Combinatorial Chemistry

In the field of combinatorial chemistry the following situation may occur. Imagine a number of

compounds are to be synthesized by permuting all the possible combinations of three different types

of building blocks (A, B and C). Typically, A could be I different aromatic skeletons, B J different

substituents on position R1 and C K different substituents on position R2. Since A, B and C consist of

I, J and K different building blocks, respectively, IJK number of compounds must be synthesized.

The complete design can be comprised in the form of a cube, as in Figure 8.4. The compounds are

synthesized with the help from robots and, subsequently, subjected to screening in a number of

different receptor binding assays,13,14 e.g., the dopamine D2, D3 and D4 receptors. In order to

evaluate the results, the receptor affinities from the synthesized compounds are collected in a two-

way matrix with IJK rows and L columns (assuming L different receptors were considered).
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Accordingly, the data may be analyzed by means of a PCA or with any other method able to handle

two-way matrices. Alternatively, the cube structure of the designed compounds, in Figure 8.4, can be

maintained. That is, for each receptor binding assay that the compounds are tested in, a new cube

with binding results is

Figure 8.4 A possible combinatorial design X (I × J × K) in three different modes, i.e., A, B and C.

obtained. In Figure 8.5, the data is collected in a four-way matrix X (I × J × K × L), which can be

decomposed by means of a four-way PARAFAC15,16 or Tucker410,17,18 model. It is likely that

compounds from the same region in the cube, are structurally associated, having affinity for about

the same receptors. If the number of screened receptors is large, multivariate analysis methods (e.g.,

PCA) is recommended, and whether multiway methods, e.g., PARAFAC or Tucker, will improve the

interpretation of the data is still to be found out.

Figure 8.5 The matrix X (I × J × K × L), where the modes A, B, and C consist of I, J and K different building blocks
and the response mode represents the L different receptor types.

8.4  Example Three: Neuropharmacology

In 1983, White and Wang19 reported on the effect of prolonged treatment with classical and

atypical antipsychotic drugs on the number of spontaneously active dopamine neurons, in both the

substantia nigra (A9) and the ventral tegmental area (A10). It was found that atypical antipsychotic

drugs selectively decreased the number of A10 cells, while drugs with typical antipsychotic efficacy,

failed to decrease the dopaminergic activity. The results from the investigation were comprised in

two figures (Figures 8.6(a) and 8.6(b)). For each drug, the effect of one single injection (white bars)

was compared with the effect from repeated treatments (black bars). After each experiment with

repeated treatments, the effect of a single injection of apomorphine (0.063 mg/kg) was investigated

(gray bars).
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Figure 8.6 The effects of short and long-term treatment with various typical and atypical antipsychotics, on the
number of spontaneously active A9 and A10 DA cells. Abbrevations: HAL (haloperidol), CPZ (chlorpromazine), CLZ
(clozapine), TRZ (thioridazine), MOL (molindone), SUL (sulpiride) and MET (metoclapramide).

Also in this example a multiway approach can be employed by assembling the data in Figure 8.6,

in a three-way array, like in Figure 8.7(a). The decomposition of X is performed as in Figure 8.3(a)

but here the score vector (t) corresponds to the drugs and the weight vectors wJ and wK correspond

to the type of injection and brain area, respectively. Since two modes in X are very small (J = 3 and

K = 2), a PCA of the unfolded three-way array, in Figure 8.7(b), is also likely to be successful.
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Figure 8.7 (a) The data in Figure 8.6 assembled in a cube X (I × J × K), i.e., J different types of treatments were
performed with I different drugs and DA neuron firing were measured in K different brain areas. (b) The cube in (a),
X, is unfolded to form a two-way  matrix, X (I × JK).

8.5  Conclusions

In this chapter, three different examples where selected on rather arbitrary grounds, in order to

demonstrate the abundance of data sets that can be arranged in multiway arrays. The objective was

not to favor multiway methods before any of the present analysis methods, but to introduce the

multiway methods as potential and effective analysis methods. Furthermore, there exist no clear

solutions or suggestions of how to handle, for example, multiway data obtained from microdialysis

where each experiment has been repeated several times. What kind of data scaling method is most

effective? Is block scaling, as was used in Chapter 4 for 3D QSAR data, a suitable option for the

example in Section 8.2? Clearly, before multivariate and multiway analysis methods, e.g., PCA, PLS,

PARAFAC and Tucker, can be introduced and fully accepted in pharmacology several important

questions need to be answered.
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Summary

There are many opinions about how medicinal chemistry should be practiced. The procedure

described in this thesis for the design of new drugs comprises several steps including the selection of

a lead compound, experimental design, syntheses of new compounds, pharmacological in vitro

testing, molecular modeling and multivariate statistical evaluation. Each step has achieved more or

less attention but the main emphasis has been put on the multivariate statistical evaluation.

In the pursuit of potent and selective dopamine D3 antagonists the trans-N-(n-propyl)-7-

[[(trifluoromethyl)sulfonyl]oxy]-OHB[f]Q (1 in Table 3.3) was initially considered as a lead

compound for this investigation. The compound displayed presynaptic DA receptor antagonistic

properties in rats (see Table 1.4), although the 7-hydroxy analogue was a potent agonist. The

racemic 1 showed a 10-fold selectivity for the DA D3 over the D2 receptor. The influence of the 7-

triflate group on these effects was of special interest.

Several OHB[f]Qs were designed and described with theoretical physicochemical descriptors

using compound 1 as the template. Only a fraction of the most different compounds was selected by

means of an experimental design in the descriptor space (see Chapter 3). Accordingly, the 16

compounds were synthesized and tested for in vitro affinities for the DA D2, D3 and D4 receptor

subtypes. None of the compounds were real selective for any of the receptors and, in general,

compounds with a hydroxy group at the seven position displayed significant high affinities for all

three dopamine receptors, while the compounds with a sulfon ester group were less potent. In

addition, the sulfon ester group suppressed the affinity for the DA D4 receptor. The nitrogen

substituent may be as large as a phenylethyl group without detrimentally affecting the affinity for the

DA receptors. Finally, a compound with a 7-OH group and an N-propargyl group lacks affinity for

the DA D4 receptor. The somewhat rigid N-propargyl group and the low pKa value (6.1) may be

contributing factors to the low D4 affinity.

At this point, a 3D QSAR model may provide information about how to proceed further. Which

compound should be synthesized next? However, due to lack of time further investigation of this

data set was not pursued. Instead, a data set was retrieved from Dr. Shelly Glase at Parke-Davis in

the USA with which the multivariate statistical analyses were investigated. This theoretical part of

the thesis is focused mainly on the optimization of multivariate and multiway regression analysis

methods in 3D QSAR.

In Chapter 4, conformational analyses and alignments of mutual and potential interaction points

with the DA D3 receptor of Dr. Glase’s flexible compounds were carried out. The absolute

configuration of the compound (1 in Table 4.1) used as the template to fit the remaining 29

compounds on, was determined with help from X-ray crystallographic structures. It is important to

stress that the emphasis and aim of a 3D QSAR study is to measure the differences (e.g. steric and

electrostatic fields) between the compounds under investigation and, consequently, the aligned

compounds (Figure 5.1) do not necessarily fit into the active site of the receptor. This is in particular



Summary

152

the case when the 3D structure of the target receptor is not known, which is the case for all

dopamine receptors.

The Grid program was used to generate molecular fields from ten different probe atoms for all

the aligned compounds. Accordingly, the three probes that generated the most different molecular

fields were selected by means of a Principal Component Analysis (see Figure 4.2). The OH2, C3 and

CA+2 probes were selected and reflect the hydrogen bonding, steric and electrostatic interactions,

respectively, between the target receptor protein and the ligands. Each molecular field, in form of a

3D grid (see Figure 1.9), is unfolded to form a row vector with as many elements as there are grid

points in the grid. The complete data set, X in Figure 4.4, comprises 30 molecules described by

25110 molecular descriptors and one dependent variable, y, i.e. the affinity for the DA D3 receptor

subtype. The very essence of 3D QSAR modeling is to establish a regression model between X and

y.

In Chapter 4, the GOLPE program was used for the variable selection, data pretreatment, and

subsequently the PLS regression analysis. The necessity of eliminating grid points with more or less

insignificant variation, e.g. grid points at large distances from the ligands placed in the periphery of

the grid, was investigated. It turned out that the crossvalidated Q2 increased from 0.45 to 0.65 when

the number of variables was reduced from 19180 (after pretreatment) to 784. The variable reduction

was carried out in two steps: first by means of D-optimal preselection in the loading space from an

initial PLS model followed by a fractional factorial design selection procedure. The GOLPE analysis

is based on the two-way PLS method and, as a consequence, the descriptor grids must be unfolded

into a two-way matrix prior to the analysis. Actually, the raw data set looks like in Figure 5.2 where

five different directions or modes are defined; one mode represents the 30 molecules, the x, y, and z

modes correspond to the axes of the three dimensional grids and the fifth mode represents the three

probes. For the analysis of a five-way data set the Multilinear PLS method (N-PLS) intuitively is a

better choice than the two-way PLS method, since the unfolding procedure is unnecessary. Instead,

the data set is directly decomposed into a score vector and four loading vectors (see Figure 5.3)

corresponding to the five modes as defined above.

In Chapter 5, it was shown that the N-PLS models are easier to interpret due to the loading

vectors obtained in each mode, and that they possess higher predictability than the PLS models.

However, the fit was worse with N-PLS, as compared with PLS, possible due to the smaller number

of parameters that needed to be estimated. PLS probably overfits and therefore N-PLS reflects better

the relationship between X and y. At this point it was important to verify the excellent performance

of the N-PLS method by analyzing yet another data set. In Chapter 6, a very well known data set,

consisting of 58 benzamides (raclopride analogues) with affinity for the DA D2 receptor subtype, was

re-analyzed using GRID descriptors and N-PLS as the regression method. The result was convincing

and the final model had a predicted Q2 of 0.62. It was concluded that the N-PLS method certainly is

an alternative to PLS for the analysis of 3D QSAR data sets.

Both PLS and N-PLS are so component wise regression methods since each component is

calculated from the residuals of X, after removing the variation accounted for by the previous
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component. In Chapter 7, two methods that calculate all components simultaneously in an

alternating least squares algorithm have been evaluated. The two methods, PCovR/PARAFAC and

PCovR/Tucker, are combinations of the Principal Covariate Regression (PCovR) method with

PARAFAC and Tucker decompositions, respectively. These algorithms balance between

reconstructing X and explaining y by adjusting the α value (see Equation 7.4). Therefore, in order to

find the models with optimal predictability the α value and the number of components were

optimized simultaneously. When the sum of squares of X and y were normalized, the most predictive

models had α values close to unity. Interestingly, the size of α that produced the most predictive

models could be tuned with the ratio of the sum of squares of X and y (sr). The best PCovR/Tucker5

model had a predictive Q2 = 0.31 and was found when α = 0.4, sr = 100 using (6,7,3,4,2) number of

components in the five modes. This model was considered stable, reproducible and it had a high

predictability. The corresponding best PCovR/PARAFAC model was unstable, possibly since the

data set has a Tucker structure. It was shown that the convergence of this latter algorithm strongly

depended on the starting parameters used and frequently converged into local minima. This

observation reduced significantly the reliability of the method, at least for the analysis of the present

3D QSAR data set. The question is how reliable is the N-PLS method since it too, is a PARAFAC

derived method? It is clear, however, that the predictability of the N-PLS and the PCovR/Tucker5

models are comparable but N-PLS models are easier to interpret and provides simpler solutions.

Finally, two of the three multiway regression methods, evaluated in this thesis, definitely are

alternatives to consider along with the traditional PLS method when 3D QSAR data sets need to be

analyzed in the future.

In Chapter 8, three additional fields of research, where possible multiway data are generated,

are proposed. Suggestions for the analysis of these types of data and a future prospective for

multiway methods in medicinal chemistry are given.



Summary

154



Samenvatting

155

Samenvatting

Er bestaan verschillende meningen over de manier waarop farmacochemie in de praktijk

uitgevoerd zou moeten worden. De in dit proefschrift beschreven procedure voor het ontwerpen van

nieuwe geneesmiddelen bestaat uit verschillende fases, t.w. de selectie van een template verbinding,

de experimentele proefopzet, de synthese van nieuwe verbindingen, de in vitro farmacologische

evaluatie, het molecular modelen en de multivariate statistische evaluatie. Op elk van deze fases is

reeds in meerdere of mindere mate de aandacht gevestigd geweest, maar in dit proefschrift wordt de

meeste nadruk gelegd op de multivariate statistische evaluatie.

In de zoektocht naar potente en selectieve D3 antagonisten werd in eerste instantie de trans-N-

(n-Propyl)-7-[[trifluoromethyl)sulfonyl]oxy]-OHB[f]Q (zie 1 in Tabel 3.3) verondersteld een

template verbinding te zijn voor dit onderzoek. De verbinding vertoonde presynaptisch DA receptor

antagonistische eigenschappen in ratten (zie Tabel 1.4), ondanks het feit dat de 7-hydroxy-analoog

een potente agonist is. Het racemaat 1 vertoonde een tienvoudige selectiviteit voor de DA D3

receptor boven de D2 receptor. De invloed van de 7-triflaatgroep op deze effecten was van speciaal

belang.

Verschillende OHB[f]Qs werden ontworpen en beschreven met theoretische fysisch-chemische

variabelen, terwijl verbinding 1 werd gebruikt als template. Slechts een fractie van de meest

verschillende verbindingen werd geselecteerd door middel van een experimentele proefopzet in the

descriptor space  (zie Hoofdstuk 3). Derhalve werden de 16 verbindingen gesynthetiseerd en getest

op in vitro affiniteit voor de DA D2, D3 en D4 receptor subtypes. Geen van de verbindingen was echt

selectief voor één van deze receptoren; in het algemeen vertoonden verbindingen met een hydroxy-

groep op de 7-positie een significante hoge affiniteit voor alle drie dopamine receptoren, terwijl de

verbindingen met de sulfon ester groep minder potent waren. Bovendien onderdrukte de sulfon ester

groep de affiniteit voor de DA D4 receptor. De stikstof substituent mag zo groot zijn als een

fenylethyl groep zonder dat de affiniteit voor de DA receptors nadelig wordt beïnvloed. Uiteindelijk

ontbreekt bij een verbinding met een 7-OH groep en een N-propargyl groep de affiniteit voor de DA

D4 receptor. De enigszins starre N-propargyl groep en de lage pKa-waarde (6.1) zouden bijdragende

factoren kunnen zijn voor de lage D4 affiniteit.

Op dit punt zou een 3D QSAR model informatie kunnen verschaffen over de verder te volgen

procedure; welke volgende verbinding dient te worden gesynthetiseerd? Echter, door gebrek aan tijd

werd verder onderzoek naar deze data set niet voortgezet. In plaats daarvan werd een data set ter

beschikking gesteld door Dr. Shelly Glase (Parke-Davis, VS) waarmee de multivariate statistische

analyses werden onderzocht. Dit theoretische deel van het proefschrift is hoofdzakelijk gericht op de

optimalisering van multivariate en multiweg regressie-analyse methoden in 3D QSAR.

Hoofdstuk 4 beschrijft hoe de conformatie-analyses en de alignments van wederzijdse en

mogelijke interactie-punten met de DA D3 receptor van de flexibele verbindingen van Dr. Glase

werden uitgevoerd. De absolute configuratie van de verbinding (1 in Tabel 4.1), die werd gebruikt

als template voor de resterende 29 verbindingen, werd bepaald met behulp van röntgen
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kristallografische structuren. Het is van belang te benadrukken dat het doel van een 3D QSAR studie

is om de verschillen (b.v. sterische en electrostatische velden) te meten  tussen de verbindingen die

worden onderzocht. Hierdoor hoeven de uitgelijnde verbindingen (Figuur 5.1) niet

noodzakelijkerwijs te passen in de active site van de receptor. Dit is in het bijzonder het geval

wanneer de 3D structuur van de beoogde receptor onbekend is, hetgeen het geval is voor alle

dopamine receptoren.

Het programma Grid werd gebruikt om moleculaire velden van tien verschillende probe atomen

te genereren voor alle uitgelijnde verbindingen. Vervolgens werden de drie probes, die de meest

verschillende moleculaire velden genereerden, geselecteerd met behulp van een Principal Component

Analyse (zie Figuur 4.2). De OH2, C3 en CA+2 probes werden geselecteerd en reflecteren

achtereenvolgens de hydrogene binding en de sterische en electrostatische interacties tussen de

liganden en het bedoelde receptoreiwit. Elk moleculair veld, in de vorm van een 3D rooster (zie

Figuur 1.9) wordt uitgevouwen om een rij-vector te vormen met evenveel elementen als het aantal

roosterpunten in het rooster. De complete data set, X in Figuur 4.4, bestaat uit 30 moleculen

beschreven door 25110 moleculaire variabelen en één afhankelijke variabele y, te weten de affiniteit

voor het DA D3 receptorsubtype. Het grote belang van 3D QSAR modeling is om een

regressiemodel vast te stellen tussen X en y.

In Hoofdstuk 4 werd het programma GOLPE gebruikt voor de variabele selectie, voor de

voorbehandeling van de data én voor de daarop volgende PLS regressie analyse. De noodzaak van

het elimineren van roosterpunten met min of meer onbeduidende variatie, bijvoorbeeld roosterpunten

geplaatst op grote afstand van de liganden in de periferie van het rooster, werd onderzocht.

Gebleken is dat de gekruis-validerede Q2 toenam van 0.45 naar 0.65 als het aantal variabelen werd

beperkt van 19180 (na voorbehandeling) tot 784. De variabele reductie werd in twee stappen

uitgevoerd: eerst door middel van een D-optimale voorselectie in de ladingen ruimte van een initieel

PLS model, gevolgd door een selectieprocedure voor Fractional Factorial Design. De GOLPE

analyse is gebaseerd op de tweeweg PLS methode, en als gevolg daarvan moeten de descriptor

roosters, voorafgaand aan de analyse, worden uitgevouwen in een tweeweg matrix.

Feitelijk lijkt de ruwe data set op Figuur 5.2, waar vijf verschillende richtingen of modes zijn

gedefinieerd; een mode vertegenwoordigt de 30 moleculen, the x, y en z modes komen overeen met

de assen van de driedimensionale roosters en de vijfde mode stelt de 3 probes voor. Voor de analyse

van een vijf-weg data set is de multi-lineaire PLS methode (N-PLS) intuïtief gezien een betere keuze

dan de twee-weg PLS-methode, aangezien de uitvouwingsprocedure niet nodig is. In plaats daarvan

wordt de data set direct ontleed in een score-vector en vier lading-vectoren (zie Figuur 5.3), die

overeenkomen met de hiervoor beschreven 5 modes.

In Hoofdstuk 5 werd aangetoond dat de N-PLS modellen gemakkelijker te interpreteren zijn

dankzij de lading-vectoren die in elke mode verkregen zijn, en dat ze een hogere

voorspelbaarheidswaarde bezitten dan de PLS modellen. Echter, de fit met de N-PLS was,

vergeleken met de PLS, slechter, hetgeen waarschijnlijk te wijten is aan een kleiner aantal parameters

dat geschat moest worden. De PLS modellen waren waarschijnlijk overfitted en zou de betere
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voorspelbaarheid van de N-PLS modellen kunnen verklaren, die werd geschat met een externe test

set van 21 verbindingen. Op dit punt was het van belang het excellente optreden van de N-PLS

methode te verifiëren door nog een andere data set te analyseren. In Hoofdstuk 6 werd een zeer

bekende data set, bestaande uit 58 benzamides (raclopride analoga) met affiniteit voor het DA D2

receptorsubtype, opnieuw geanalyseerd door gebruik te maken van GRID descriptors, met  N-PLS

als de regressie-methode. Het resultaat was overtuigend en het uiteindelijke model had een

voorspelde Q2 van 0.62. De conclusie is dat de N-PLS methode wel degelijk een alternatief is voor

de PLS voor de analyse van 3D QSAR data sets.

Zowel PLS en N-PLS zijn componentgewijze regressie methodes omdat elke component wordt

berekend vanuit het residu van X, nadat de voor de vorige component verantwoordelijke variatie is

verwijderd. In Hoofdstuk 7 zijn twee methoden die alle componenten gelijktijdig berekenen in een

alternerende kleinste kwadraten algorithmen geëvalueerd. De twee mehoden, PCovR/PARAFAC en

PcovR/Tucker zijn combinaties van de Principal Covariate Regression (PcovR) methode met

achtereenvolgens PARAFAC en Tucker decomposities. Deze algorithmen balanceren tussen het

reconstrueren van X en het verklaren van y door de α-waarde toe te voegen (zie vergelijking 7.4).

Om de modellen te vinden met een optimale voorspelbaarheidswaarde werden de α-waarde en het

aantal componenten gelijktijdig geoptimaliseerd. Als de som van de kwadraten van X en y werden

genormaliseerd, hadden de best voorspellende modellen α-waarden dichtbij één. Interessant was dat

de grootte van de α-waarde, die de best voorspellende modellen produceerde, kon worden

afgestemd met de verhouding van de som van de kwadraten van X en y (sr). Het beste

PcovR/Tucker5 model had een Q2 = 0.31 en werd gevonden bij een α = 0.4, sr = 100, gebruik

makend van een aantal (6,7,3,4,2) componenten in de 5 modes. Dit model was stabiel,

reproduceerbaar en beschikken over een hoge mate van voorspellende vermogen. Het

overeenkomstige beste PcovR/PARAFAC model was instabiel, waarschijnlijk omdat de data set een

Tucker-structuur heeft. Aangetoond was dat de convergentie van dit laatste algorithme erg

afhankelijk was van de gebruikte startparameters en dat ze vaak convergeren in locale minima. Deze

waarneming verminderde de betrouwbaarheid van de methode, in ieder geval met betrekking tot de

analyse van de huidige 3D QSAR data set. De vraag is hoe betrouwbaar de N-PLS methode is

aangezien het ook een van PARAFAC afgeleide methode is. Het is echter duidelijk dat de

voorspelbaarheid van  de N-PLS en de PcovR/Tucker5 modellen vergelijkbaar zijn maar dat N-PLS

modellen gemakkelijker te interpreteren zijn.

Uiteindelijk zijn twee van de drie in dit proefschrift geëvalueerde multiweg regressie methoden

beslist alternatieven die het overwegen waard zijn tezamen met de traditionele PLS methode als 3D

QSAR data sets geanalyseerd zouden moeten worden in de toekomst.

In Hoofdstuk 8 zijn drie additionele onderzoeksgebieden voorgesteld, waar mogelijk multiweg data

worden gegenereerd. Verder worden suggesties voor de analyse van dit soort data en de

toekomstperspectieven voor multiweg methoden in de farmacochemie gegeven.
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STELLINGEN

1. When your about to make the last move, to reach the top of a mountain, everything else is
redundant.

 (Akkavare, Sarek, May 5th 1996)
 
2.  To worry about tomorrow, is like paying interest on a loan you have not got yet.

 (an American proverb)
 

3. The very foundation of a successful climbing team, or any team, is indefinite trust.
 (Toulpagorni, Kebnekaise, June 1993)

 
4. “The dopamine hypothesis of schizophrenia” is too vague a hypothesis and must be considered

as the pharmacological equivalence to the chemometric term “OVAT” (One Variable At Time).
 

5. The quality of a lecturer’s slides/sheets is inversely proportional to his/hers professional
experience (i.e., age).

 
6. Providing ‘mooie plaatjes’ by means of sophisticated molecular modeling programs is easier said

than done.
 
7. When you feel at home, away from home, it is not just the local people you have accepted, it is

also their traditions.
 
8. Genuine “Kroppkakor” are prepared from raw pork and unboiled potatoes!
 
9. Neurophysiologist Louis Monti-Bloch has found a connection between the limbic system in the

brain and the vomeronasala organ (VNO), located in the nose and thought to be sensitive for
pheromones. If he is right, it is possible that doctors of the future will prescribe social
intercourse with certain individuals as the treatment for, e.g., schizophrenia and depression.

 
10. The “Elfstedentocht” is a diligent Dutch employer’s worst nightmare.
 
11. QSAR is an iterative process that functions as rational drug design only when it is incorporated

in a project at the same level as molecular modeling, synthesis and pharmacology.

Jonas Nilsson Groningen, Netherlands, March 27th 1998



TESER
 

1. När du tar det sista steget, för att nå toppen av ett berg, då saknar allt annat betydelse.
 (Akkavare, Sarek, May 5th 1996)

 
2. Att oro sig inför morgondagen, det är som att betala räntan på det lån man inte fått.

 (Amerikanskt ordspråk)
 
3. En absolut förutsättningen för ett framgångsrikt klätter team, eller vilket team som helst, är

ömsesidigt förtroende.
 (Toulpagorni, Kebnekaise, June 1993)

 
4. “The dopamine hypothesis of schizophrenia” är en alltför vag teori och kan anses som den

farmakologiska motsvarigheten till den kemometriska termen EVIT (En Variable i Taget).
 

5. Kvaliten på en föreläsares dia-bilder/sheets är omvänt proportionell mot hans/hennes
professionella erfarenhet (läs: ålder).

 
6. Att framställa snygga figurer med hjälp av sofistikerade molekyl modelering program är lättare

sagt än gjort.
 
7. Där du känner dig hemma, fast du är borta, är det inte människorna där du har lärt dig

acceptera, det är deras vanor.
 
8. Äkta Kroppkakor tillagas med rått fläsk och okokt potatis!
 
9. Neurofysiologen Louis Monti-Bloch har hittat en koppling mellan det limbiska systemet i

hjärnan och det vomeronasala organet (VNO), som finns i näsan och anses vara känsligt för
signalsubstanser eller feromoner. Om han har rätt är det möjligt att framtidens läkare kommer
att föreskriva socialt umgänge, med vissa individer, som behandling mot t.ex. schizofreni och
depression.

 
10.  “Elfstedentocht” är en nitisk Holländsk arbetsgivares värsta mardröm.
 
11. QSAR är en iterativ process vilken fungerar som ‘rational drug design’ bara om den integreras i

ett projekt på samma nivå som molekyl modulering, syntes och farmakologi.

Jonas Nilsson Groningen, Nederländerna, 27 Mars 1998
 


