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ABSTRACT

Multivariate statistical procedures for the analysis and monitoring of batch and
semi-batch processes are developed. The only information needed to exploit the
procedures is a historical database of past successful batches. Projection methods based on
principal component analysis and partial least squares are utilized to compress the
information contained in the multivariate trajectory data and final product qualities, by
projecting them onto low dimensional spaces. When additional information about the
initial conditions and set-up of the batch process is available, multi-block approaches can
be used to integrate the additional data into the proposed schemes.

The proposed methodology facilitates the analysis of operational and quality
control problems in past batches, and allows for the development of simple multivanate
statistical process control charts for on-line monitoring of the progress of new batches.
Control limits for the proposed charts are developed ' “'ng information from the historical
reference distribution of past successful batches. The . vroach is capable of detecting
subtle changes in the batch operation, and provides procedures for diagnosing assignable
causes for the occurrence of observable upsets. The method's potential in analyzing past
batches and tracking the progress of new batch runs, is illustrated through a simulation

example and data collected from industrial polymerization reactors.
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CHAPTER 1 Introduction

Batch and semi-batch processes are a significant class of processes in the chemical
industry and play an important role in the production and processing of high quality,
specialty materials and products. Examples include the production of polymers,
pharmaceuticals, and biochemicals, the separation and transformation of materials by batch
distillation and crystallization, and the processing of materials by injection molding.
Monitoring these processes is very important to ensure their safe operation and to assure
that they produce consistent high quality products. This work represents the first time
multivariate Statistical Process Control (SPC) ideas which have been applied to dynamic
batch trajectory data. It facilitates the analysis of operational and quality problems in past
batches and allows for the development of multivariate SPC charts for on-line monitoring
of the progress of new batches.

SPC is a key factor in industry for global competition. It is not only a tool, it is
actually an attitude and a motivation for all individuals in a company to strive for
continuous improvement in quality and productivity. Consistent quality production of any
product has become imperative and one has to look no further than Japan to see the
importance and success of SPC methods.

The objective of this research is to develop some new tools for monitoring and
diagnosing problems in batch processes with the following desirable characteristics:

» Generic Easy to be applied in every batch or semi-batch process.
e Informative Easy to be used and interpreted by an operator and able to indicate
clearly and quickly an abnormal operation.
e Simple Their application does not require heavy, time consuming, or
problematic computations.
» Ameliorative To provide a continuous basis for improvement in the process.
To accomplish these goals, multivariate SPC methods are developed which utilize

the information in the on-line measurements and make inferences about the operation of



the processes. It is common to hear from experienced operators: "When I see these
variables behave in this manner, ! know that something is wrong". From this expression,
it is clear that there exists a need for a statistical method which can handle many variables
and also take into account the correlation between them, with the aim to systematicaily
and scientifically recognize significant deviations from the normal operating behavior of
the process.

In batch processes, it is common to interchange the words control and monitoring
since generally one uses the control method also for monitoring purposes. Control
describes a method which will force a process to follow a desirable policy, while
monitoring refers to a method which keeps track of the process progress and detect any
faults. A fault is understood as any kind of malfunction in the process that leads to an
unacceptable performance and in general to a product out of specifications. This work

focuses only in monitoring batch processes.

1.1 Monitoring Batch Processes

Batch processes still pose an important challenge for the application of any
control or monitoring scheme. General batch issues like scheduling, operation planning,
optimization, qualitative control decisions, and developing operating policies have been
discussed by MacGregor et al. (1984), Birewar and Grossmann (1989), Cuthrell and
Biegler (1989), Crook et al. (1990}, Stephanopoulos et al. (1990), and Rippin (1992).
Nonlinear feedback control of product quality has been discussed by Kravaris et al.
(1989), Kozub and MacGregor (1992a), and Peterson et al. (1992). The major difficulties
limiting our ability to provide adequate control and monitoring include: the lack of on-
line sensors for measuring product quality variables, the finite duration of batch
processes, the presence of significant nonlinearities, the absence of steady state operation,
and the difficulties in developing accurate mechanistic models that characterize all the

chemistry, mixing and heat transfer phenomena occurring in these processes.



Batch processes generally exhibit some batch to batch variation arising from
things, such as deviations of the process variables from their specified trajectories, errors
in the charging of the recipe of materials, and disturbances originating from variations in
impurities. Abnormal conditions which develop during a batch operation can lead to the
production of at least one batch or a whole sequence of batches with poor quality product,
if the problem is not detected and remedied. In spite of this, most industrial batch
processes are run without any effective form of on-line monitoring to ensure that the
batch is progressing in a manner that will lead to a high quality product.

Usually, batch processes operate in open-loop with respect to the product
qualities, simply because few, if any, on-line sensors exist for tracking these variables.
Upon completion of a batch, several quality measurements are made on a sample of the
product in the quality laboratory. In some cases these measurements may be used to
adjust the recipe or the operation of the next batch. In spite of the fact that a large number
of process measurements on variables like reactor and jacket temperatures, pressures,
densities, pH, flowrates, etc. are available almost on a continuous basis throughout the
several hours of a batch run, there are almost no reported attempts in industry to utilize
this information for monitoring the batch progress or to use it to detect and diagnose
potential problems with the reactor operation.

Most of the existing industrial approaches, for achieving consistent and
reproducible results from batch processes, are based on the precise sequencing and
automation of all the stages in the batch operation. Monitoring is usually confined to
checking that these sequences are followed, and that certain reactor variables, such as
temperatures and reactant feedrates, are following acceptable trajectories. In some cases,
on-line energy balances are used to keep track of the instantaneous reaction rate, and the
conversion or the residual reactant concentrations in the reactor (Wu, 1985). Some effort
has been made in industry at using relational database software to try to uncover particular

attributes of the measurement trajectories, such as the timing of valve openings, or the



maximum temperature of pressure attained during an interval which appear to affect
product quality, and then to monitor these attributes.

Current research approaches to monitoring batch processes have focused on the
use of either fundamental mathematical models, or detailed knowledge based models
(Frank, 1990). The first takes advantage of a mechanistic model to describe the process,
and the monitoring procedure is based on state estimation methods. The second relies on
the knowledge of the operators and engineers about the process to formulate artificial

intelligence algorithms.

1.1.1 State Estimation Approaches

The approaches using fundamental models are usually based on state estimation
methods (Jazwinski, 1970), which combine a fundamental model of the process with on-
line measurements in order to provide on-line, recursive estimates of the underlying
theoretical states of the batch process (Iserman, 1984, Schuler and De Haas, 1986). The
fundamental model usually consists of a set of nonlinear differential equations which
describe the deterministic part of the process.

The simplest approach to monitoring is to formulate a state estimator based on the
deterministic model that should be satisfied during normal operation. Generally, observers
or Kalman filters are used to reconstruct the states and the outputs of the system, and then
tests on the output errors or innovations are used to detect faults (Willsky, 1976). If only a
finite number of faults or events can occur, then several state estimators based on models
incorporating different sets of plausible events can be seen in parallel. The most likely
status of the process at any instant can then be evaluated using generalized likelihood ratio
tests on the innovations (Basseville, 1988), or by computing the posterior probability of
each mode! being valid. A high probability, of a particular state estimator being valid,
would lead to an alarm and an indication of the probable cause. King (1986) presented an

interesting use of this approach to detect hazardous batch reactor conditions, that could



lead to a runaway, by monitoring undesirable side reactions using temperature
measurements and parallel Kalman filters.

In some industries, such as the aerospace industry, there often exist very good
state models which not only describe the system, but aiso provide detailed representations
of how model uncertainties, disturbances, and possible faults affect the system. In these
situations robust Fault Detection and Isolation (FDI) methods have been developed
(Patton et al., 1989), which transform the observer equations and decouple the system, so
as to construct residuals which are affected only by the faults of interest. A bank of
observers can then be used, where each observer is made sensitive to a different fault or
group of faults, while being insensitive to common disturbances, modeling errors, and
other faults. Tests to detect specific faults are then performed on these residuals.

An alternative approach that is well suited to chemical and biochemical batch
reactors, which are subject 1o stochastic disturbances such as impurities and parameter
variations, is to incorporate one's knowledge about these stochastic states into the state
model and estimator. This step is also a key point in making the state estimator provide
unbiased and robust estimates of the deterministic states (MacGregor et al., 19806)
Monitoring the progress of batch processes then consists of trackirg the development of
important deterministic state variables (conversion, composition, particle size, molecular
weight, etc.) with time, to check that they are following satisfactory trajectories. If
unacceptable deviations in any of these states are detected, then not only can an alarm bz
given, but an assignable cause can usually be found in the behavior of the stochastic states
(e.g. impurity concentrations have increased, or the heat transfer coefficient has dropped).
Such an approach has been used by Kozub and MacGregor (1992b) to monitor polymer
and latex property development in semi-batch emulsion polymerization. On-line energy
balances have also been effectively implemented in this manner by using Kahnan filters
(MacGregor, 1986; De Valliere and Bonvin, 1989 and 1990: Bonvin et al., 1989; Schuler
and Schmidt, 1992).



All these state estimation approaches to monitoring are “directional” in nature, in
that they build into their models the possible faults or reasons for deviations from normal
behavior. Although they are potentially very powerful approaches for monitoring batch
processes, they present a number of problems in practice. Detailed theoretical models and
on-line sensors related to product quality are necessary, if one wishes to track key quality
states. Such detailed models and robust sensors are time consuming and difficult to
develop, and the state estimation approaches are computationally intensive. The detection
and diagnostic abilities of these estimators will also be highly dependent upon one's prior
knowledge of the possible faults and disturbances that may occur, since these must be
explicitly build into the estimator as part of the stochastic state vector, or included as
plausible events in one of the parallel filters. Events or disturbances that are omitted from

the model, may lead to biased estimates and faulty diagnosis, if they occur.

1.1.2 Knowledge Based Approaches

Knowledge based approaches use expert system and artificial intelligence methods
to process the data. In rule based expert systems the process model is represented by a set
of qualitative and quantitative governing descriptions based on the knowledge about the
process available from operators and engineers. Associated with each behavioral
description there is also a set of causality assumptions. These behavioral and causal
descriptions are arranged in a hierarchical structure and diagnostic rules for each nod: in
the hierarchy are generated from these descriptions (Ramesh et al., 1989; Birky and
McAvoy, 1990).

Additional structure and quantitative analysis can be brought to these rule based
expert systems through the use of probability theory or fuzzy logic, to represent the
uncertainties associated with the models and the diagnostic hypotheses (Petti et al., 1990,
Rojas and Kramer, 1992; Terpstra et al., 1992). An advantage of these approaches is that
they do not require detailed theoretical models of the process. However, formulating the

behavioral and causal descriptions, and the diagnostic hierarchy with its probabilistic or



fuzzy rules, may be just as difficult and time consuming as using the fundamental model
approach. Recently, Fathi et al. (1993) incorporated state and parameter estimation
modules within the diagnostic reasoning of a knowledge-based system, in order to
overcome some of the deficiencies of both approaches and to increase the diagnostic
ability of the system.

Another approach to the problem is through the use of artificial neural networks
with various nonlinear functions (sigmoid, gaussian, wavelets, etc.) which have been
demonstrated to be good pattern classifiers, and thus potentially capable of diagnosing
faulty conditions (Venkatasubramanian and Chan, 1989; Himmelblau, 1992; Leonard and
Kramer, 1992; Bakshi and Stephanopoulos, 1993). Their main drawback is that in order
to develop such neural network classifiers, a training set must be available which contains
an abundance of faults, something which is rarely available in real processes.

Most rule-based expert systems and neural network classifiers have been
developed for continuous prucesses that are intended to operate at various steady states.
In order to handle unsteady state processes, such as batch operations, a variety of methods
has been developed recently for extracting information on temporal shapes or time
profiles, and classifying process behavior based on this information using rule-based
expert systems (Konstantinov and Yoshida, 1992; Holloway and Krogh, 1992; Cheung
and Stephanopoulos 1992). They try to answer the question if the on-line observations
received from the process up to the present time, are consistent with some acceptable
dynamic behavior of the system. Their main drawbacks are their lack of a statistical basis
for interpreting the data and classifying the results, and the complexity of the approaches

when dealing with more than a few variables.

1.2 SPC in Batch Processes

The application of SPC charts to batch processes has been very limited. The
established SPC charts like the Shewhart charts (Shewhart, 1931), CUSUM charts
(Woodward and Goldsmith, 1964), and EWMA charts (Roberts, 1959) are inappropriate



for multivariate problems where the variables are correlated (Woodhall and Ncube, 1985,
Jackson, 1980; Harris and Ross, 1991). Another major difficulty in applying SPC to batch
processes arises from their dynamic nature. Most SPC methods utilize only the product
quality measurements obtained at the end of each batch (e.g. Vander Wiel et al., 1992),
and therefore monitor only the batch to batch varation. Hahn and Cockrum (1987)
investigated the case where one has also a few quality measurements taken during the
batch run. Marsh and Tucker (1991) recognized that the process variable measurements
taken during a batch run, although transient in nature, do follow a certain dynamic pattern,
and they proposed a simple SPC technique for monitoring a single measurement variable.
Bonvin and Rippin (1990) have used target factor analysis to identify possible reaction
stoichiometries from measured composition or thermal data, and to detect in real-time any
changes in stoichiometry which may lead to a batch runaway (Prinz and Bonvin, 1992},
With on-line computers connected to most batch processes, massive amounts of
data are being collected routinely during the batch on a large number of easily measured
process variables such as temperatures, pressures, and flowrates. Although, it is not
unusual to measure more than twenty variables around a batch process, this does not mean
that twenty independent things are taking place. Only a few underlying events are driving a
batch at any time, and all the measurements are just different manifestations of these same
underlying events. The major difficulties are how to handle the large number of measured
process variables, their time varying and highly correlated structure, and the nonlinear
finite time nature of batch operations, Furthermore, not only is the relationship among all
the variables at any one time important, but so is the entire past history of the trajectories
of all these variables. To accommodate this kind of data, multivariate statistical projection
methods based on Principal Components Analysis (PCA) and Partial Least Squares (PLS)
are used to compress the data and to extract the information in them. The proposed
schemes represent extensions of the multivariate procedures for monitoring continuous
processes (Kresta et al., 1991, Slama, 1991, Skagerberg et al,, 1992, MacGregor et al.,

1994), to the nonlinear and finite duration batch processes. Moteki and Arai (1986) were



probably the © st who used multivariate statistical analysis on measurements from a low-
density polyethylene process to find new operating conditions.

The variation in the trajectories among a historical reference distribution of normal
batches (common cause variation) is characterized by projecting the data into a low
dimensional space that summarizes both the variables and their time histories during
successful batches. The history of the process variable trajectories during a batch provide
a "fingerprint" for each batch, and from these data an empirical model is built which
characterize the operation of successful batch runs. The approach is based on the
philosophy of Statistical Process Control (SPC), under which the behavior of the process
is characterized using data obtained when the process is operating well and is in a state of
control. The behavior of new batches is then compared against this in-control model and
its statistical properties to test the null hypothesis:

H,: The on-line measurements of the process variable trajectories up to the
current time in a new batch are consistent with normal batch operation as
defined by the historical reference distribution,

This approach leads to the development of some new multivariate SPC control charts
whose presentation and interpretation are no more difficult than conventional Shewhart
charts, and yet they are much more powerful in their ability to detect even subtle changes
in batch process operations.

The objective of the monitoring procedure is to detect and eliminate faults from
future appearance, and thereby shrink the control limits and work towards a more
consistent production of quality product. The approach is “non-directional” in that it will
detect any deviation from normal behavior, and may not be as powerful as the state
estimation and knowledge based approaches in detecting those specific faults that are built
into their models. On the other hand, it is not sensitive to the assumptions of these
“directional” approaches, and the only information needed to develop the monitoring
procedure is a historical database of past successful batches. As with most “non-

directional” SPC procedures no assignment as to the cause of the event is provided. Once
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a significant deviation from normal operating performance has been detected, it is usually
left to the engineers and operators to use their process knowledge to provide a quick
diagnosis of possible causes, and to respond in an appropriate manner. However,
multivariate statistical procedures such as PCA and PLS provide much more diagnostic
information about an abnormality (Wise and Riker, 1991; Miller et al., 1993; MacGregor
et al., 1994; Kourti and MacGregor, 1994).

As in all inferential approaches, the fundamental assumptions of “comparable” runs
and “observable” events of interest must hold for the method to work. The first
assumption states that the method is valid as long as the reference database is
representative of the process operation. If something changes in the process (e.g. new
catalyst), then one has to build a new database which embodies the change and reapply the
method. The second assumption expresses the requirement that the events which one
wishes to detect must be “observable” from the measurements that are being collected. No
monitoring procedure can detect events that do not affect the measurements.

Both simulated and real industrial data are used to illustrate the proposed methods.
Chapter 2 provides an introduction of how the on-line measurements from past batches
are organized in a three-way array (X), and how Multi-way PCA (MPCA) discriminates
between normal and abnormal batches in a post analysis of these data. In Chapter 3 the
selection of a suitable historical reference distribution of past normal batches is illustrated
and modeled via MPCA. New batches are contrasted against this reference MPCA model
and their abnormalities are revealed. The on-line monitoring procedure is outlined in
Chapter 4 along with its control charts. Chapter 5 covers how the proposed monitoring
schemes can take into account any other information available for a batch run. Multi-way
PLS (MPLS) is used to incorporate the end product quality data (Y) which are available
upon completion of the batch. Rather than focusing only in the variance in X, MPLS
focuses more on the variance of X that is more predictive for the product quality Y.
Monitoring with MPLS provides on-line predictions of the end product qualities. When

additional information about the initial conditions and set-up of the batch process is
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available, Multi-block MPCA or MPLS can be used to integrate these data (Z) into the
proposed monitoring schemes. Chapter 6 discusses the issue of comparing any two
reduced spaces, and investigates the possibility if the same projection model can be used
for similar designed batch reactors. Finally, Chapter 7 summarizes the conclusions and

areas for further work.
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CHAPTER 2 Analysis of Batch Data Using MPCA

In this chapter the application of MPCA to batch data is presented, and an
understanding of the advantages and limitations of the method is illustrated through one
simulated and one industrial example. It gives a brief description of Principal Components
Analysis, and assumes that the reader has some basic knowledge both on projection

methods and on statistics.

2.1  Principal Components Analysis

PCA is a well known multivariate statistical method (Mardia et al., 1989; Jackson,
1991), which has as its objective the explanation of the variance-covariance structure of a
multivariate dataset, through a few linear combinations of the original variables with
special properties in terms of variances. It decomposes a mean centered matrix X (IxM),

where there are M measurement variables for [ objects, into a series of R principal
R

components (X .= Zt,p: = TP'), with each characterized by a loading vector (p.} and a
=1

score vector (t,). The principal components represent the selection of a new coordination
system obtained by rotating the original variables. The objects are projected into the
reduced space defined by the principal components where the information in the data is
described adequately and in a simpler and more meaningful way. The principal
components are ordered such that the first one describes the largest amount of variation in
the data, the second one the second largest amount of variation, and so on. With highly
correlated variables, one usually finds that only a few principal components are needed o
explain most of the significant variation in the data.

The loading vectors (p,) are orthonormal (P'P=I), and provide the directions with
maximum variability. The t-scores (t;) give the coordinates for the objects in the reduced
space. They are orthogonal (T'T is a diagonal matrix) and therefore are measuring

different and uncorrelated underlying “latent structures” in the data. By plotting the t-
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scores of one principal component versus another, one can easily see which of the objects
have similarities in their measurements and form clusters, and which are isolated from the
others and therefore are unusual objects or outliers.

The power of PCA arises from the fact that it provides a simpler and more
parsimonious description of the data covariance structure than the original data by
summarizing the data in terms of only a few (R) principal components. PCA has been
applied to a broad spectrum of sciences, like biology, psychology, chemistry, quality and
process control, and economics, revealing its robustness and potential strength to analyze
large datasets. Its success in several different areas is partially related to the Nonlinear
Iterative Partial Least Squares (NIPALS) algorithm (Geladi and Kowalski, 1986; Wold et
al., 1987a) for the calculation of the principal components. It is a simple, fast and effective
algorithm to extract the principal components in & sequential manner (eigenvalues in
descending order), and is a variant of the power method for calculating eigenvectors of a
matrix (Goldberg, 1991). The loading vectors p, are the normalized eigenvectors of the
sample covariance matrix X'X(n-1)", and t't(n-1)" are their corresponding eigenvalues.
There are also other ways to compute the principal components such as the Singular
Value Decomposition (Golub and VanLoan, 1989) or the QZ algorithm {Moler and
Stewart, 1973). as well as modifications of the NIPALS for large matrices (Lindgren et
al.. 1993). In this work the NIPALS was chosen for its simplicity. This algorithm will

also make easier to understand the development of the on-line monitoring in Chapter 4.

2.2  Multi-way PCA in Batch Processes

In many cases. especially in sciences like chemistry, psychometrics and image
analysis, the data from an experimental study takes the form of three-way arrays. This is
also the case in the batch monitoring problem. To understand the nature of the data
available with which to monitor batch processes, consider a typical batch run in which
j=1,2....,J variables are measured at k=1,2,..,K time intervals throughout the batch.

Similar data will exist on a number of such batch runs i=1,2,...,I. This vast amount of data
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can be organized into a three-way array X(IxJxK) as illustrated in Figure 2.1. In this
thesis, bold underline capital symbols denote three-way arrays (see also Notation). The
different batch runs have been arranged along the vertical axis, the measurement variables
across the horizontal axis, and their time evolution occupies the third dimension. Each
horizontal slice through this array is a (JxK) matrix containing the trajectories of all the
variables from a single batch (i). Each vertical slice is a (IxJ) matrix representing the
values of all the variables for all the batches at a common time interval (k).

Several multi-dimensional statistical methods have been proposed for decomposing
such data arrays into the sum of a few products of vectors and matrices, and to summarize
the variation of the data in the reduced dimensions of these spaces. MPCA was introduced
by Wold et al. (1987b) and has been successfully applied in image analysis (Geladi et al,
1989), and to some cases in chemometrics (Smilde and Doornbos, 1991). Other multi-way
methods (Geladi, 1989; Smilde, 1992) such as the Tucker model, the PARAFAC model,
the canonical decomposition, the three mode factor analysis (Zeng and Hopke, 1990) and
the tensor rank (Sanchez and Kowalski, 1990) have been proposed for special situations.
Although each of them has interesting mathematical aspects, the interpretation is
complicated due to the mathematical principles used to develop them. MPCA because of
its simplicity and well defined properties proved to be a very effective and easy to
understand statistical method for analyzing batch data. In any case, neither MPCA nor any
of the others methods has ever been used for a problem where one of the dimensions is a
factor like time which gives in the variables a strong dynamic behavior.

MPCA is equivalent to unfolding the three dimensional array X slice by slice (three
possible ways), rearranging the slices into a large two dimensional matrix X (two possible
ways), and then performing a regular PCA. Each of these six possible rearrangements
(two are degenerate cases) of the data array X into a large data matrix X, followed by a
PCA on the matrix X, corresponds to looking at a different type of variability. For

analyzing and monitoring batch processes, the most meaningful way of unfolding the array
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X is to arrange its vertical slices, corresponding to each point of time, side by side into a
two dimensional matrix X(1xJK) with the vertical slice corresponding to the first time
interval at the left hand side as it is shown in Figure 2.2. The data are then mean centered
and scaled prior to performing a PCA. This unfolding is particularly meaningful because
by subtracting the mean of each column of this matrix X, we are in effect subtracting the
mean trajectory of each variable, thereby removing the main nonlinear and dynamic
components in the data. A PCA performed on this mean corrected data is therefore a
study of the variation in the time trajectories of all the variables in all batches about their

mean trajectories (Figure 2.1). This allows us to analyze the variability among the batches

l4 | | | p'

Time

Balehes

Variabtes ]

|

J

Figure 2.2 MPCA and its equivalent PCA form for batch data. The three-way array X(I»J«K)
unfolds into a matrix X(IxJK} where a normal PCA analysis is perforined.
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in X by summarizing the information in the data with respect both to variables and their
time variation. The only other meaningful unfolding of X is to arrange its horizontal slices,
corresponding to each batch, one below the other into a two dimensional X(IKxJ) where
the first K rows are the measurements from the first batch in the database. A PCA
performed on this unfolded matrix is a study of the dynamic behavior of the process about
the overall mean value for each variable. Although this variation might be of interest in
some situations, it is not the type of variation of interest in SPC of batch processes.

The variables in each column of X, after they are mean centered, are also scaled to
unit variance by dividing by their standard deviation so to handle differences in the
measurement units between variables and to give equal weight to each variable at each
time interval. However, if one wishes to give greater or less weight to any particular
variable, or to any particular period of time in the batch, these weights are easily changed.
Another way of scaling which gives similar results to what we use in this paper, is to scale
each variable at each time interval by its overall (throughout the batch duration) standard
deviation. The benefit from such scaling is that periods with more variability with respect
to other periods of the same measurement variable will be weighted more and will have a
greater influence in the MPCA mode!l. But if the variability in a particular period is very
large, this will result in the rest of this variable's history being ignored in the MPCA model.

The proposed form of MPCA decomposes the data (X or X) into a summation of
R products of score vectors (t,) and loading matrices (P, or p,), plus some residuals (E or

E) which are as small as possible in a least squares sense.
R R
X = Yt,®P,+E o X = D> tp,+E = TP'+E
=l r=l

where P (KxJ) is the folded matrix of the loading vector p,(KJx1), and the three-way

R
matrix operation @ is defined as X(i.j.k) = D t,(i)P,(k,}). Figure 2.2 illustrates the

ral

correspondence between the scores and loadings of MPCA performed on the array X and
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those of a PCA performed on the equivalent unfolded matrix X. The NIPALS algorithm
for sequential computing the dominant principal components is given below:

i. unfold X(IxJxK) into X(IxJK)

ii. scale X

1ii. choose a columnof X as t

' p=X't

v.  p=p/ppl

vi. t=Xp

vii, if t has converged then go to step viii, otherwise go to step iv
viii.  E=X-tp'

iX. £0 to step il with X=E to extract the next principal component

Usually, a small number of principal components can express most of the
variability in the data when the variables are highly correlated. In the case of batch data,
the measurement variables are highly cross-correlated with one another and highly auto-
correlated over time. The principal components can point out any similarities and
dissimilarities among batches. The batches can be compared with an MPCA analysis by

plotting their t-scores and their sum of squared errors.
k)
Q = ZI E(i.c)’
The t-plots represent the projection of each batch history onto the reduced plane defined
by the principal components, while the Q-plot represents the squared distance of each
batch perpendicular to this hyperrlane. Each element of the t-vector corresponds to a
single batch and depicts the overall variability of this batch with respect to the other
batches in the database throughout the whole batch duration. The p-loading vectors
provide the directions of maximum variability and give a simpler and more parsimonious

description of the covariance structure of the data. Each loading vector, as one can see in

Figure 2.2, summarizes the time variation of the measurement variables about their
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average trajectories. Its elements are the weights applied to each variable at each time
interval within a batch and when multiplied by the observed deviations of the variables
from their mean trajectories for one particular batch give the t-score for that batch. The
power of MPCA results from using the joint covariance matrix of the variable deviations
from their mean trajectories over the entire batch history. Thus, it utilizes not just the
magnitude of the deviation of each variable from its mean trajectory, but also the

contemporaneous correlation among all the variables over the time history of the process.

2.3 Examples of MPCA in Batch Data

Two examples are considered to illustrate how MPCA can be used to perform a
post-analysis on completed batch runs so to discriminate between similar and dissimilar
batches. Such an analysis can be used to improve operating policies, and to gain an
understanding of some of the major sources of batch to batch variation. The first example
is from a simulation study of a semi-batch emulsion polymerization reactor, and the
second from real industrial data. The simulation has been used as a framework, where we
have perfect knowledge and command of the process operation, to develop the ideas of
the present statistical procedure, and to test out its abilities to detect simulated operational
problems. The industrial data illustrate a real application of the method and reveals both

its strengths and its drawbacks.

2.3.1 Styrene-Butadiene Simulation Example

The simulated data are based on the semi-batch emulsion polymerization of
Styrene-Butadiene to make a latex rubber (SBR). The simulations were performed using
a detailed mechanistic model developed by Broadhead et al. (1985) and improved by
Kozub (1989). The batch is initially charged with seed SBR particles and with all its
initiator, chain transfer agent, emulsifier, water and a smat!l amount of styrene and
butadiene monomers. Styrene and butadiene monomers were then fed to the reactor, at an

approximately constant rate for the rest of the batch procedure. Impurities in the initial
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charge of the organic phase and in the butadiene feed to the reactor, were added to
introduce meaningful disturbances for the purpose of this study. The feedrates of the
monomers were simulated as first order autoregressive models. After completion of the
simulation measurement noise was added to the temperature measurement of the feeds.
The batch duration is 1000 minutes, and 9 (J) measurements are taken every 5 minutes
(vielding 200 (K) time intervals) on the flowrates of styrene (1} and butadiene (2), on the
temperature of the feeds (3), the reactor (4), the cooling water (5), and the reactor jacket
(6), and on the density of the latex in the reactor (7). Also, estimates of the total
conversion (8) and the instantaneous rate of energy release (9) were obtained from an on-
line dynamic energy balance around the reactor and jacket (MacGregor, 1986).

A base recipe was chosen and 50 (I) batches were simulated to create a reference
database of normal batches by introducing typical variations in the base case conditions
(initial charge of seed latex, amount of chain transfer agent, level of impurities, etc.).
Details about the base case simulation and the variations from it can be found in Appendix
A. The resulting latex and polymer properties (composition, particle size, branching,
crosslinking and polydispersity) of these fifly batches were consistent with the variations
on2 might see during a sequence of industrial batch runs. These quality measurements
define the acceptable quality region of the product, and a successful batch is taken to be
one which falls under three standard deviations around the mean for each quality
measurement.

Two additional batches with product just barely out of this specification region
were simulated. One batch had an organic impurity contamination in the butadiene feed,
30% above that of the base case, right from the start of the batch; and the other had the
same problem but this time the contamination, 50% above the normal level, started
halfway through its batch operation. These unsuccessful batches, having the same cause
for their abnormal operation, will help to investigate the ability of MPCA to detect a fault
occurring at different times without confounding the results because of any differences in

the cause of the abnormal operation.
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Figure 2.3 Measurciment trajectorics from the SBR example. The solid line is from a normal batch

which will be used as a 1est batch in Scection 4.4, the dashed line from the batch with the initial problem,
and the dotted line from the batch with the problemt hadfway through its operation,
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In both cases, there was not an abrupt fault which is often easily detectable by
examining the plots of the individual variables. They were more incipient faults, typical in
industry, where the abnormal operation is slowly developing and none of the individual
measurements reveal clearly the fault. The trajectories for the individual variable
measurements for the two bad batch runs and a normal one which will be used as a test
batch in Section 4.4, are shown in Figure 2.3. One can see in this figure that there is not
much observable difference among these runs. If all the trajectories from the database of
the fifty good batches were plotted on this figure, any differences between these and the
bad batches would be difficult to detect through a visual inspection of these individual
plots.

By adding these two bad batches as the last (51 and 52) objects in the reference
database, a MPCA was applied to the three-way array X with dimensions 52x9x200. The
projections of these 52 batches into the score plane of the first two principal components

(t1.tz) are shown in Figure 2.4. This plot shows that the two faulty batches fall well

outside the cluster of good batches, clearly indicating that their temporal development was
different. All batches which have a similar history shculd cluster in the same region of the
reduced space described by the principal components. The sum of squared errors (Q) in

Figure 4 shows that there is no other batch with significant differences in its behavior.
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Fipure 2.4 MPCA is able to discriminate the two abnormal batches (51 and 52) in the SBR

example.
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2.3.2 Industrial Example

Data supplied by DuPont US from an industrial batch polymerization reactor, are
used to illustrate a real application of the proposed method. The cycle in the reactor
consists of two stages and the time spent processing in both stages is approximately two
hours. Ingredients are loaded into the reactor to begin the first stage. Reactor heating
medium flows are adjusted to establish proper control of pressure and the rate of
temperature change. The solvent used to convey ingredients to the reactor is vaporized
and removed from the reactor vessel. The vaporization process is vigorous enough so that
the contents of the vessel do not require stirring. After nearly one hour spent removing
solvent, the second stage begins. During this stage the ingredients complete their reaction
to yield the final product, a polymer. Once again, vessel pressures and the rate of
temperature change are controlled during this processing stage. The batch finishes by
pumping the polymer product from the vessel at the end of the second cycle.

The results of two critical property measurements are usually received twelve
hours or more after each batch has finished, and therefore there is no time for recipe
adjustinents in the next batch. Furthermore, it is often difficult to establish when a batch is
going wrong, and to diagnose what caused the properties to deviate from their targets.
This makes the application of an SPC monitoring method attractive for this process.
Failure to attain on-aim control of the critical property leads to increased manufacturing
coslts either through necessitating blending with other batches, or through downgrading
the product to end uses that have a lower selling price.

A dataset of 55 successful and some unsuccessful batches was provided from the
above piocess. Each batch had a duration of 100 time intervals {(K), and 10 measurement
variables (J) were monitored throughout the batch. Variables 1,2, and 3 are temperature
measurements inside the reactor, whereas variables 6 and 7 are temperature measurciicnts
in the heating-cooling medium. Variables 4,8, and 9 are pressure measurements and the
rest of the variables are flowrates of materials added to the reactor during its operation.

Batches 40.41,42,50,51,53.54, and 55 had the two final quality measurements well outside
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the acceptable limit, and batches 38,45,46,49, and 52 were above or very close to these

limits.
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Figure 2.5 Results of MPCA analysis of the original 55 baiches from the industrinl example.

Baiches 50 through 35 are identificd as abnormal becausce of their position in the reduced space, and batch
49 becanse of its residitals.

First, a preliminary MPCA analysis was conducted in order to identify if there was
enough information in the process variable trajectory data to discriminate between normal
and abnormal batches. Two principal components were extracted and Figure 5 shows that
batches 50,51,52,53,54, and 55 are clearly identified from their position in the reduced
space (t-plot) as being very different from the rest of the batches. In hindsight their
diffzrent behavior can be seen by visual inspection of the measurement trajectories, if one
superimposes these over the trajectories from normal batches on the same plot. However,
due to their structural similarity {maxima, minima, points of inflection or discontinuity)
with trajectories from normal batches, operators might easily see nothing different when
they are displayed alone. Batch 49 also is identified as different due to its large residual
(Q) in Figure 2.5. The quality of this batch was barely acceptable and its main difference
compared to normal batches was during a time period (50-65 time intervals) when most of
the measurement variables do not usually exhibit much variation (flat trajectories). The
measurements of batch 49 are shown in Figure 2.6 where they are contrasted with the

mean trajectories of the normal batches. The p-loadings of the first two principal compo-
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Figure 2.6 Measurements of batch 49 (dashed lines) are contrasted with the mean trajectorics (solid

tines) of the normal batches in the industrial example.
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-nents during this time period are small and so any difference shows up in the residuals.
This example with batch 49 points out the complementary nature of the t-scores and
residuals. Any variation that is not explained by the current principal components, is
contained in the residuals and it willt be explained in one of the later components.

A second MPCA analysis was run, this time excluding these last six batches. The
results from this analysis after three principal components are given in Figure 2.7. Batches
38,40,41, and 42 can not be identified as abnormal batches. There is nothing unusual in
their trajectories to be captured by MPCA, since the cause of their unacceptable product
does not seem to have any affect on the measured trajectories. This shows that there are
cases where the measurements are typical of a successful batch and still the product may
not meet the performance standards. The problems in batches like these may have come
from poor quality materials, inadequate preprocessing, or from something that can be
observed only if one measures other on-line variables as well. Again another group of
batches clustered away from the main body of batches in the t>-ta plot. Further
investigation should be carried out to determine what went wrong with these batches since
most of them are in a sequence (43 through 49) and two of these (45.46) gave

unacceptable product. Note that the differences in the above batches could not be detected
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Figure 2.7 MPCA analysis of the first 48 batches from the industrial example. Batches 37. 39, and

43 through 48 can be identified as batches with unusual operational behavior,
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by a simple visual inspection in the measurement variables. The residuals in Figure 2.7
suggest that there are no other major di‘ferences in the operational behavior of the

batches.

2.4 Discussion

The power of the statistical approach presented here lies in the fact, that it utilizes
the unsteady state trajectory data on ail measured variables in a truly multivariate manner,
as to account not only for the magnitude and trend of the deviations in each measured
variable from its average trajectory, but also for the high degree of correlation in both time
and among the deviations in all the variables. The two examples demonstrate the ability of
MPCA to discriminate between normal and abnormal batch operation through the use of
simple to interpret plots, and to detect any systematic variability in the measurements of a
batch operation. The next chapter will present methods for identifying the time periods
and the measurement variables which contribute most to the detected abnormality.

It is important to clarify here the use of the words normal and abnormal for a
batch. MPCA characterizes a batch as normal if its behavior, as this is depicted in its
measurements. is similar to that of a typical successful batch; i.e. a batch with acceptable
product. An abnormal batch is characterized as one with measurements different from a
typical operation. If there is a relationship between the on-line measurements and the final
product quality, then MPCA should be able to discriminate between successful and
unsuccessful batches. Consequently, MPCA answers the question if the on-line
measurements contain suflicient information for classification of a batch as successful or
unsuccessful. This is the most important question that must be answered first in any SPC
scheme, and MPCA provides a simple and easy way to answer it.

There will be always cases where either one batch with normal behavior gave
unacceptable product, or a batch with abnormal operation gave acceptable product. In the
first case, the abnormality was not observable in the on-line measurements and one has to

find new measurements for the abnormality to become identifiable. In the second case, one
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has to investigate why there was no impact in the product quality which may lead to new
designs and policies. Some variables at certain time periods during the batch may have
little or no effect on product quality. However, an SPC scheme that detects all abnormal
behaviors in the process variables may give an alarm for an incipient equipment fatlure
such as an agitator or sensor deterioration. This way, one will have the opportunity to
correct such process deteriorations which otherwise could lead to permanent
malfunctions. MPCA provides a useful mean of augmenting knowledge gained from the
final quality measurements for assessing whether or not a past batch is a normal one. This
is a rather attractive means of characterization, if one considers how difficult it is to obtain
quality measurements and the uncertainty which is involved in them.

Another interesting concept is the possibility of diagnosing the cause of a fault by
utilizing the t-plots which show the position of a batch in the reduced space. Sometimes
the type of fault that occurred in an abnormal batch is ofien not known. In other
situations, such as in another industrial dataset from DuPont US, there was knowledge of
what went wrong for each unsuccessful batch. The data were from an identical process
which runs in paraliel with the one described in Section 2.3.2. An MPCA analysis showed
that unsuccessful batches with similar faults were clustered together in the t-plot of Figure
2.8. In such cases a diagnostic map may be constructed and areas identified which have a
high probability of a particular fault. Then each time a new batch is projected into the
reduced space, as will be shown in the next chapter, a plausible fault can be identified with
the aid of statistical discriminant analysis (James, 1985). Although it is an appealing way
of diagnosts, it is impossible to guarantee precise diagnosis of the fault. This comes from
the fact that the t-scores are linear combinations of the measurements, and thus there is an
infinite number of batch histories, although most of them are not physically feasible,
which can place a batch at the same location in the reduced space. The SBR example
illustrates this point where the two abnormal batches had the same cause of abnormality
(impurity contamination in one of the feeds) but occurred at different periods of the batch

process. These batches were placed apart in the reduced space (Figure 2.4), although they
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had the same source of fault. MPCA discriminates between them simply because their
measurement trajectories had different patterns arising from the different times at which
the fault occurred. One had deviations right from the beginning, where the other had
similar ones only after the completion of the first half of the batch. The same cause in
different time periods characterized differently from MPCA. It is common in batch
processes, the same cause of abnormality (such as impurities) occurring at different time
periods 10 have different effects in the product quality. Thus, one shall characterize faults

in batch processes based both on their cause and their behavioral process pattem.
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Figure 2.8 T-plot from the post analysis of an industrial datasct. Batches with similar faults

clustered together in arcas indicated by cllipses. The rectangular arca at the center contains all the normal
batches, Bateh 36 had the same fault as baichies 32 through 35 but in a smaller extent.

A difficulty with MPCA occurs when one encounters batch processes in which the
duration of each batch or the timing for key events during each batch is different. An
example of this occurs when various decisions during the batch are not automated, but left
to the discretion of an operator. The batches are usually synchronized at time zero using a

trigger variable whose change indicates the start of the batch. If the batch trajectory
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shapes are similar from batch to batch and only the elapsed time required to achieve a
given end point changes, then for post analysis one can often re-normalize the time scale
so that all batches have the same duration. However, this is not feasible for on-line
monitoring since the duration is not known a priori except in cases where one can easily
develop rules to anticipate delays between different batch stages. One way to handle
varying batch times in on-line monitoring is to replace time by another measured variable
which progresses monotonically in time and has the same starting and ending value for
each batch. Examples would be an on-line measure of conversion in a chemical reactor, or
a measure of lance position in injection molding. Numerous other possibilities exist, but
each is specific to the nature of the batch process. The industrial data was from a well
automated process, and the only thing we had to do was to discard few observations in the

original raw database prior to the start and after the end of the batch operation.
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CHAPTER 3 Building the Reference Statistical Model

Chapter 3 discusses the selection of past batches which will compose the reference
distribution of normal batches. The MPCA analysis of such a reference database provides
the statistical model which describes the normal operation of a batch. New batches are
contrasted against this MPCA model, and classified as normal or abnormal. Contribution
plots reveal the time periods and variables primarily responsible for a detected abnormal

behavior.

3.1 Reference Distribution of Normal Batches

Having established the observability of faults in the post analysis of past data, the
next step is to build an MPCA model which summarizes the information contained in a
database of good batches about the normal operation of the process, and to use this model
as the statistical reference framework to classify a new batch as normal or abnormal. This
classification will then be based on the similarity and statistical consistency of the
trajectory measurements of a new batch with the historical reference distribution of
trajectories from normal operation as summarized by this model.

The reference distribution is the history of past successful batch runs; that is those
batches which produced good quality product, and exhibited no unusual faults or
operating problems during their progress. In fact, one way of selecting the reference
distribution is to 1ake the history of previous batch runs, and omit all those batches that
one would like the monitoring scheme to have pinpointed as being different. In general,
the reference distribution should contain all those batches deemed to be subject only to
common cause variation. The central idea is to use the statistics of this reference
distribution to characterize the normal operation of the process, and to evaluate the
behavior of new batches.

In the simulated SBR example, the fifty successful batches (X(50x9x200}) that

will constitute the reference distribution of normal batches were determined by the
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simulation. On the other hand in the industrial example, the preliminary MPCA analysis on
Chapter 2 revealed that the first 36 batches (X(36x10x100) should be selected as the
reference distribution of normal batches. All the other batches should be excluded because
either they had problematic operation, or gave unacceptable product. Problematic
operation and unacceptable product usually coincide, but there are cases, as in this
industrial example, where either a batch has some peculiar operation and still gives
acceptable product, or the product is unacceptable without major deviations from a typical
operation. Both cases should be excluded from the reference distribution. In the first case,
one wants to detect any peculiar operation for investigation and eliminate it by
implementing new design or operating policy improvements. In the second case, the
reference database should not include any variation that may lead in a product out of

specifications.

3.2 Selecting the Number of Principal Components

The number of principal components (R) needed to build an MPCA model which
describes the major variation of all the variables about their mean trajectories and hence to
provide a model which depicts adequately the normal behavior of a batch operation can be
f'ound with a number of criteria. These criteria range all the way from significance tests to
graphical procedures (Jackson, 1991). One quick and dirty criterion is the broken stick
rule (Jolliffe, 1986). This is based on the fact that if a line segment of unit length is

randomly divided into z segments, the expected length of the rth longest segment is
G= 10012 1/
z =t

As long as the percentage of variance explained by each prircipal component is larger than
the corresponding G, then one can retain the corresponding principal component. The
number of segments is the maximum possible rank of X, z=min(I,KJ), and the rule should

be applied only to unit variance scaled matrices. This criterion is rather crude, but still is a
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quick method to judge if a principal component adds any structural information about the
variance in the data or explains only noise.

When the purpose of a PCA analysis is to construct a model which will be used to
predict future observations, then the suggested criterion to obtain the optimum number of
components is cross-validation (Stone, 1974, Efron, 1983 and 1986). Cross-validation
shows how the prediction power of a PCA model increases as one adds more principal
components. It is a simple, but computational lengthy, procedure similar to the jackknifing
method. Given a database of I normal batches with J variables and K time intervals, the
unfolded X matrix has dimensions IxJK. After scaling the matrix X, one batch is excluded
from the database and a PCA model is built with the remaining (1-1) batches. This is done
for all the batches in the database, and each time the sum of the squared prediction errors
after each principal component is recorded for the batch not included in the model
building. At the end these sum of the squared prediction errors corresponding to each
principal component (r) are added for all the batches to give the Press,.

One way to choose the model dimension is to select the one with minimum Press,
but this has been shown to have poor statistical properties (Osten 1988), Wold (1978) and
Krzanowski (1983, 1987) have proposed two criteria for choosing the optimal number of
principal components, Wold checks the ratio

R = Press,/ RSS,,
where RSS; is the residual sum of squares after the rth principal component based on the
PCA model which is built using the whole database. This criterion compares the prediction
power of a model based on r principal components with the squared differences between
observed and estimated data using r-1 principal components. A value of R larger than
unity suggests that the rth component did not improve the prediction power of the model
and it is better to use only r-1 components. Krzanowski suggests the ratio

W = ((Press.., - Press;) / D) / (Press, /D)
Dy = 1+JK-2r



kT )

D, =JK(I-1)- D 1+JK-2i

1=1

where Dy, and D, are numbers indicating the degrees of freedom required to fit the rth
component and the degrees of freedom remaining after fitting the rth component
respectively. This statistic is similar to the F-test for the inclusion of an additional vaniable
in a linear regression model, It gives the ratio between the improvement in predictive
power by adding the rth component and the predictive value using all r components. If ¥/
is larger than unity, then this criterion suggests that it is worthwhile including the rth
component in the model.

There is no sound statistical test for the cross validation procedure. The main
problem is not knowing how many degrees of freedom one starts with nor how many one
extracts with each component (eg. Box et al., 1973). Thus, the number of principal
components needed in a PCA model should be based on the overall picture that these

criteria give.

3.3 MPCA Reference Model

Table 3.1 summarizes the results of extracting successive principal components
from the reference database of the SBR and the industrial example. It gives the percent
sum of squares explained and the three previously discussed criteria for selecting the
required number of principal components. In both examples the broken stick rule (G} and
the R statistic indicate that the first two principal components are significant and one may
want to include the third principal component in the MPCA model as well. The W statistic
sugyests three components for both examples. Based on these results we chose to include
three (R=3) principal components in both MPCA models as to take into account most of
the predictable variation in the measurements during a normal operation. The fact that
three principal components explain only about 30% in the SBR example and 55% in the
industrial example of the total variability in the data, is not disappointing if one considers

that these data describe the normal process operation and theoretically only random



35

variation should be in them. Also, one has to consider the large number of variables (JK,
1800 for the SBR and 1000 for the industrial example) in the unfolded matrix X from
which he extracts the principal components. The rest of the variability that is not explained
by the MPCA mode! is mainly due to measurement noise and to random variation in
normal batch operation. Recall that in the SBR example three of the nine measurement

variables (the two feed rates and the feed temperature) had mainly a stochastic character.

PC %SSX %SSX / PC G R w
SBR example
] 14.89 14.89 9.00 0.89 5.61
2 24.05 0.16 7.00 0.97 3.40
3 29.95 5.90 6.00 1.06 1.23
4 35.08 3.13 3.33 1.13 0.73
Industrial example
| 38.55 38.55 11.59 0.65 17.58
2 50.22 11.68 8.82 091 5.35
3 56.75 6.53 7.43 1.04 2.24
4 61.33 4.57 6.50 117 0.76

Table 1.1

Percentage of explained sum of squares (cumulative and for each principal component)

from the MPCA analysis of both exasuples, and the results from the three criteria to determine the optimal
number of principal components.

Histograms, Lilliefors tests, chi-squared tests, and test for skewness and kurtosis
(Lilliefors, 1967, D'Agostine and Stephens, 1986; Neave and Worthington, 1988;
Horswell and Looney, 1992) showed that the t-scores of all principal components can be
adequately approximared by a Multinormal distribution. This was to be expected since any
linear combination of random variables, according to the Central Limit Theorem, should
tend towards a Normal distribution. The formulation of the reference database contributes
also to the normality of the t-scores. All these t-scores represent data from batches with
similar behavior projected into the reduced space of the MPCA model. Their sample mean
is 0 since they are linear combinations of mean centered variables, and depicts the position
in the reduced space of the average normal operation. Thus, with the assumption that the

t-scores follow a Multinormal distribution with population mean 0 and estimated
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covariance matrix S (RxR) which is diagonal due to the orthogonality of the t-scores, one
has the following Hotelling statistic (Tracy et al.,1992; Wierda, 1994) for the t-scores in

the reference database:

D, = t;‘S"tR ”(l“l): - BR!I.(I-R-W:

where tg(Rx1) is the vector containing the t-scores of a given batch from the R retained
principal components, The critical values of the Beta variable at significance level a can be
found from critical values of the F distribution by utilizing the relationship:

Brirgokoyre S(RIE=R-DF i pu 7T+ RIA-R-1)Fg; p.10)
Accordingly, the 95% and 99% confidence ellipsoids in the t-plots are cei:tered around
zero and their axis lengths in the direction of the rth principal component are given by
(Johnson and Wichern, 1988):

£ (S(r.r)B oy yaa (I- 1 /1)
The Dg statistic gives a measure of the Mahalanobis distance in the reduced space between

the position of a batch (t-scores) and the origin (0) which designates the point with the
minimum variation in the batch process behavior.

Figure 3.1 shows the t-score plots with their 95% and 99% confidence ellipsoids in
the space of the first two latent variables (t;-t2) for both examples. The score plots for the
other two latent variables are similar. The scatter character of these plots indicates that ail
these batches belong to the same “normal” population, and none of them lies far away
from the cluster, and thus exhibiting any unusual behavior. The area that this population
occupies, defines the normal operational region in the reduced space; and the closer a
batch is to the origin of this reduced space, the more similar is its operation to that of a
typical batch run.

Batch 16 from the SBR example exhibits the highest variability in its measur=ments
among all the batches in its database as it is shown in the t-plot and Ds-plot of Figure 3.1.
Although its Dy statistic exceeds slightly the 99% confidence limits, it was included in the

reference database. This batch had the highest acceptable level of organic impurities in its
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Figure 3.1 T. Ds. and Q plots with their 95% and 99% confidence limits from the MPCA analyses

of the reference databases for both the SBKk =.ample (left hand side plots) and the industrial example

(right hand side plois}. Nonge of the batches exhibits any notably unusual behavior,
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butadiene feed in the reference database. The slight gap between two clusters in the t;-t;
plot of the industrial example (Figure 3.1) was not attributed to any significant difference,
but simply to not having enough batches in this reference database to fill this gap and give
a smooth variation across the first principal component.

L9)
The sum of squares of the residuals (Q, = ZE(i,c)2 ) from the MPCA models for

[

both examples are given in bottom plots of Figure 3.1 with their 95% and 99%
approximate confidence intervals. These Q; values represent the squared perpendicular
distance of the (JxK) dimensional point for the ith batch from the reduced space defined
by the three principal components of the MPCA model. From Figure 3.1 it can be seen
that all batches have been explained adequately, since none of them has a significantly
large residual. The assumption behind these approximate confidence limits for Q is that the
variables (JK) in the unfolded matrix X have a Multinormal distribution with population
mean 0. Again, this assumption is reasonable in our case since we have chosen a reference
database of normal operating batches, we have avoided any outliers, and we have
extracted the major predictable variation from the data in the retained three principal
components.

Jensen and Solomon (1972), and Jackson and Mudholkar (1979) showed that the
quadratic form Q=e'e, where e is an observation vector from a Multinormal population

N(0,Z), has approximate upper confidence limits of significance level a:

1hg

0,[1~0:h,(1-h,)/6] +2,(20,h})"* /6,]

B, =DA% . 0,=2A . 8,=2% ., h,=1-200,/36]
where A; are the eigenvalues of I, and z, is the critical value of the Normal variable at
significance level o which has the same sign as ha. In our case, we estimate the 8; from the

sample residual covariance matrix S;=E'E/(I-1). Note that the matrices Si(JKxJK) and

V=EE'/(I-1) (IxI) have the same eigenvalues.

~

B, = trace(V} . é:=trace(V2) , é,=trace(V3)
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The Q and Dg plots shown in Figure 3.1 appear to justify the normality

assumptions that we have made and corroborate our choice of these databases to describe
the normal batch operation in the two examples. These plots provide the diagnostics to
test if we have included any unusual batch in our database, and if the MPCA model
describes adequately the reference database. These "normal" statistical properties of the
MPCA model are essential for the development of the on-line monitoring scheme in the
next chapter.

It is informative to examine the percentage of the total variation in each variable
and at each time, which is explained in each reference database by the principal
components, The MPCA model attempts to explain all the predictable variation in the
normal operating batch data. The left hand side of Figure 3.2 has the percentages of
explained variance plotted on a cumulative basis against both time and variables for the

SBR example, and the right hand side for the industrial example.
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explained in each reference database, The plots in the left hand side are from the SBR example. and the
plots in the right hand side are from the industrial exanple. Each line represents the cumulative percent
of the total variance explained by the addition of each principal componemt.
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In the SBR example one can see that the dominant variables in the first principal
component are the density of the reactor’s latex (7) and the total onversion (8). The
temperatures around the reactor (5,6) and the rate of energy release (9) are explained
mostly by the second and third principal component. Variables with mainly a stochastic
character, such as the flowrate of the styrene (1), and the temperature of the feeds (3), are
largely ignored by MPCA. Only the flowrate of the butadiene (2) contributes a little to the
model, due to the fact that is carrying the incoming organic impurities which affect the
behavior of all the other variables. The amount of variance accounted for, by each
principal component versus time shows that on a relative basis, the second principal
component concentrates, more than the other two principal components, on the variability
at the last half part of the batch operation. The reason that the MPCA model does not
explain a lot at the start of the batch operation, is because of the similar initial response of
each batch in the database.

In the industrial example, the first principal component concentrates more on the
first stage of the process where the solvent vaporization takes place and the variables
associated with this period are 1, 2, 3, and 10. The second principal component captures
most of the variability in the second stage of the process, where most of the
polymerization takes place, and involves mainly variables 6, 8, and 9. When the process
has two stages, as in this industrial example, it is common to see one principal component
explain the first stage and another explain the second stage. MPCA does this because the
correlation structure of the measurement variables is different in each stage, and thus a
single principal component may not be able to explain both of them. None of the three
principal components explains much of the variation during the transition period (50
through 65) since most of the variables during this time period have flat trajectories with
few deviations from their mean values.

These plots of explained variation with respect to variables and time are very

useful. They give insight into the process operation, and provide information for



41

understanding the MPCA model so that it can be used effectively to monitor new batches

and detect faults.

3.4 Testing and Diagnosing a New Batch
The p-loading vectors from the MPCA analysis of the reference database contain
most of the structural information about how the variable measurements deviate from their

mean trajectories under normal operation. If a new batch is to be tested for any unusual
process behavior, one can use these p-loading vectors 1o obtain the predicied t-scores (1)
and residuals (Q ) for the new batch Xxgw.

R -~
unfold and scale X g (K x 1) 10 X g JK x 1)1, = Xig P, €= Xypy — 2. 1,p, . Q=¢¢

r=1

The Hotelling statistic (D) to test if a new batch comes from the same population, is now
given by (Tracy et al., 1992; Wierda, 1994):
D = S'tI(I-RY/(RUI-1) =~ Fpig

where t is the vector containing the predicted t-scores (t,) of all the retained principal
components (R) in the MPCA model. This Hotelling statistic D for a new batch is similar
to the Hotelling statistic Dy in the previous section for a batch in the reference database,
and both are measuring the Mahalanobis distance in the reduced space between the
position (t) of a batch and the origin (0). The D statistic has wider confidence limits than
the Dy statistic since it refers 10 a new batch that was not used for building the MPCA

mode).

3.4.1 Contribution Plots
If the t-scores of the new batch are close to the origin and its residuals are small
with respect to those in the reference database, then this indicates that its operation is

similar to that in the reference database of normal batches. On the other hand, if the t-
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scores or the residuals are large, one has to investigate what caused the abnormality in the
batch behavior. By interrogating the underlying MPCA model, the contribution of each
measurement vanable to the deviations observed in the t-scores and the residuals can be
plotted (Wise and Riker, 1991; Miller et al., 1993; MacGregor et al., 1994; Kourti and
MacGregor, 1994). Although these plots may not provide an unequivocal diagnosis, they
at least will clearly identify the time periods and the group of variables that are primarily
responsible for the detected deviations.

The % contribution of all variables at time interval (k) to the sum of squares of the
residuals of a batch (Q = ¢ e )1s given by:

5 S ety

the % contribution to Q of each measurement variable (j) over the entire batch history is:

100 & . ..
—_ Ze(jk)'
Q k=)
and the % contribution to Q of variable (j) at time interval (k) is:
100 . . . .
—6_ e(jk) S'Qn(x.\:law(Jk))

The sign of the % contribution of variable (j) at time interval (k) in Q is determined by the
sign that its deviation (xxsw(jk)) had from its mean trajectory at that particular time (k). In
this way one knows if this variable was above (positive) or below (negative) its mean
trajectory at time interval (k), from its contribution sign.
Similarly. the % contribution of all variables at time interval (k) to the predicted t-
scores (1, = Xl P, ) is given by:
J
T L xanOnGK

T

the % contribution to t, of each measurement variable (j) is:
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100 & ) .
"t'_'z Xz Ok) p(K)
k=1

and the % contribution to t, of variable (j) at time interval (k) is:
100 . . . .
T X (1K) P(K) sign(X gy (jK))

r

Since the t-scores have signs (in contrast with Q which is always positive) the above

contributions to 1, can be positive or negative depending on whether or aot the

contribution of the particular variable or time interval had the same sign as t . However,
the contribution of variables or time intervals of interest (e.g. those with large deviations)
almost always will have the same sign with t, , since these will contribute the most in t,
and therefore will determine its sign. In addition, the % contributions of variable (j) versus
time will indicate by their signs if this variable was above or below its mean trajectory at
particular time intervals of interest. In this manner, the t-score contribution plots of a
variable versus time are easily interpreted, independently of the t-score (t,) sign.

As an illustration of the MPCA model and the contribution plots we shall test two
batches. The first is the abnormal batch in the SBR example with the impurity problem
right from the beginning of its operation. The second is batch 49 from the industrial
example.

The predicted t-scores and residuals for the abnormal batch from the SBR example
were found to be:

1,=-83.80, 1,=-9.16, 11=-5.28, D=8.46 (Frian=4.25), Q=2181 (Quu=2278)
where Quu is the upper 99% confidence limit for Q in the reference database. From the
MPCA plots of the reference database in Figure 3.1, it is clear that the abnormality of this
batch is exhibited in 1,. The contribution plots in the left hand side of Figure 3.3 show
that the abnormality started early in the batch and continued throughout its whole
operaticn. Variables 7 (density) and 8 (total conversion) were the major contributors to

the deviation. Both were found to be always below their mean trajectories as it is shown in
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the bottom plot of Figure 3.3 for variable 8. This suggest that something was constantly
holding back the polymerization. Indeed this was the case. A high level of organic
impurity was present in the butadiene feed during the entire batch run. The measurements
for this batch are shown in Figure 2.3.

The results for batch 49 from the industrial example were:

1,=-593, t,=1L11, 1,=-5.66, D=0.53 (Fy;00=4.45), Q= 14424 (Q=802)
Clearly, the abnormality in this case is exhibited in the residuals. The contribution plots
in the right hand side of Figure 3.3 reveal that the abnormality occurred between time
intervals 57 and 65, and the major variables contributing in these deviations were mostly
variable 7 along with variables 6, 8, and 9. Variables 6 and 7 are temperatures in the
heating cooling medium, and variables 8 and 9 are pressure measurements. All these
variables were found to be below their mean trajectories during the time period 57
through 65 as it is shown in the bottom plot in Figure 3.3 for variable 7. Figure 2.6 has
the measurement trajectories for this batch, and reveals the power of MPCA to identify
abnormal behavior. Almost everyone would have failed to identify what went wrong and
this batch had borderline product quality. A visual inspection of Figure 2.6 will have
probably suggested variable 5 as the variable with the most unusual behavior in time
period 75 through 85. But, the MPCA model from the reference database had knowledge
of such common cause variation in variable 5 at that particular time period, and integrated
it as normal behavior of the batch operatien. Upon closer examination of variables 6, 7, 8,
and 9 in Figure 2.6, it can be seen that at time period 57 these four measurement variables
did deviate in a systematic manner and returned at their mean trajectories around time
period 65. The special event in this batch could be attributed to an operating problem
with the cooling system, which was also the company's suggested explanation for this

abnormal batch.

Here, we have to mention that the same contribution plots could be used when one

is conducting MPCA analyses of both normal and abnormal batches together, as we did in



Chapter 2. Usually, the abnormalities from such analyses, as in the SBR example, will be
detected in the t-scores since the MPCA model incorporates the abnormal behaviors in its
p-loading vectors. In cases where there are few abnormal batches in the database under
investigation, the contribution plots will be similar to those from the comparison of a new
batch against the MPCA model of a reference database. In general, the contribution plots
based on a reference MPCA model will give a clear picture of the abnormality since the
MPCA model describes strictly the normal behavior of a batch process and an abnormality
is revealed unconfounded from any other abnormal behavior that may be in a database of

both normal and abnormal batches.
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CHAPTER 4 On-Line Monitoring of Batch Processes

Chapter 3 discussed the selection of the reference database of normal batches. The
MPCA analysis of such a database provides the statistical model which describes the
normal operation of a batch. In this chapter we develop a method based on MPCA for
monitoring the progress of a batch run in real-time. The development of the on-line
control charts is illustrated through both the SBR and the industrial polymerization

examples. Examples of on-line monitoring are presented along with their diagnostic plots.

4.1 On-Line Monitoring via MPCA

The p-loading vectors from the MPCA analysis of the reference database contain
most of the structural information about how the variable measurements deviate from their
mean trajectories under normal operation. The reduction in dimension is tremendous since
most of the information in the reference database is captured in these few p-loading
vectors which define the reduced space. As it is shown in Section 3.4, a new batch (Xnew)
can be tested for any unusual process behavior by obtaining its predicted t-scores and

residuals.
- R -~
unfold and scale X g (K x 1) 10 X @ UK x 1) | T, = Xigw P, » €= Xyqw — 2 LD,
r=\

If the t-scores of a new batch are close to the origin and the residuals are small, then this
indicates that the operation of this new batch is similar to these in the reference database
of normal batches.

A problem arises when one wants to perform the test sequentially in time as the

new batch evolves. In this situation the matrix X, is not complete until the end of the
batch operation. At each time interval during the batch operation, the matrix X, has all
the measurements only up to that time interval. The rest of the X .., matrix from the

current time to the end of the batch is still undefined. The most valid way to overcome this
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problem is to build K different MPCA models, one up to each time interval k using only
the information available up to that time. This results in the need to store K loading
vectors of dimension (Jkx1, k=1,2,..,K) for each principal component, and to apply the
one appropriate for the current time k in order to calculate the scores and residual for that
time. Although this is the most correct approach, the computational and storage
requirements would be vety large except for short duration (small K) batch processes
having a relatively small number of on-line measurement variables (J). An alternative
monitoring scheme, without using MPCA, is to make the assumption that the measured
variables are Multinormally distributed around their mean trajectories, and at each time
interval k to perform an F-test based on a Hotelling statistic. This will test if the Jk
variables measured up to the current time (k) are too far away from the origin of the
multivariate distribution estimated from the reference good database. This scheme is
unattractive and for most practical purposes infeasible since one has to store and invert at
each time interval k a large covariance matrix (JkxJk) which will usually be singular or at
least ill-conditioned because of the highly correlated Jk variables.

Therefore, we propose several approximate methods for constructing sequential
tests. All of these involve using the full loading vectors p(JKx 1} obtained from the MPCA
on the entire histories of the batches in the reference database, and then filling in the future

observations in X, in different ways. All of these approaches will give the same

predicted t-scores and residuals at the end of the batch when the full X ., is known. To

monitor the progress of a new batch, as new observations become available, one of the
methods discussed in Section 4.2 is used to fill out the X ., matrix, and then the t-scores
and residuals are calculated for each time interval. Thus, the following general procedure

is used for monitoring a new batch:

ON-LINE MONITORING

1. take the new vector of measurements at time interval k: Xyzwik,1:J)
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ii. subtract from Xxgw(k,1:J) the mean and divide by the standard deviation, which
correspond at the kth time interval from the normal database, to get the vector
with the current deviations from the mean trajectories: xygw((k-1)J+1:kJ)

iil. fill in the rest of the data in xnew

R 9]
V. b, =XigwD, . €= Xgw—2.tuP, . SPE = ) e(c)’

r=l e=(k-1)]+1

v. return to step i for the next time interval k+1

where the symbol "c:d" denotes the segment of elements between the ¢ and d rows or
columns of a matrix. The t-scores (t,.) represent the projection of xygw at time k onto the
R-dimensional plane defined by the reference MPCA model. If a new batch is progressing
in a manner that is consistent with the reference distribution of good batches, then it
should stay close to the reduced space. Its perpendicular distance from the reduced space
should be small (small residuals), and its t-scores values should continue to fall within the
region of normal variation defined by the reference distribution.

There are two ways in which a new batch can exhibit deviations from the MPCA

model. Its score values (t; k) can move outside the acceptable range of variation defined

by a control region, or-and its residuals (e) could become large and the batch will be
placed well outside, perpendicular to the reduced space. In the first case the model is still
valid, and the new batch is still operating in the same way as the batches in the reference
database, but it has a larger than normal variation in its measurements. This will show up
clearly as large deviations of the t-scores from the origin (0) of the reduced space. In the
second case the model is no longer valid, because a new event not in the reference set has
occurred, and the new baich does not project onto the reduced space adequately. In this
case, the residuals will become larger than a control limit defined by applying the model to
the good batches in the historical database.

Thus, the residuals account for any variability which is not described sufficiently in

the database of good batches. The best way to monitor the residuals is to use the Squared
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ki
Prediction Error (SPE, = 3 e(c)’), which is the sum of squares of errors directly
ex(k=1)I+]

related with the latest on-line measurements at time interval k. The sum of the squared
residuals over all time periods (Q =¢'e) is not a good indicator since it does not
"represent the instantaneous perpendicular distance of a batch from the reduced space as
does the SPE, and it is affected by the errors associated with the filling in of future
unknown observations in xygw. We are interested to pinpoint the particular interval that
something is going wrong and its duration, and the SPE is a very good indicator to
accomplish this. A graphical representation of the meaning of each quantity that one has to
track for monitoring on-line the operation of a new batch is given in Figure 4.1.

In Appendix B some other approaches can be found for on-line monitoring of a
new batch. These approaches are based either in reformations of the batch data, or in
reformations of MPCA. In general, none of them give better results than the approaches
presented here, but they may be very effective in specific cases where one can take full
advantage of them. Also in Appendix B, some suggestions are given of how to handle

sudden changes in the measurement variables that one may have in a batch operation.

A

— = — >

Fipure 4.1 Graphical representation of a batch operation in the reduced space of MPCA. The stars
on the plane are the t-scores which are the projections of the process measurements into the reduced
space. The sum of squares of the residuals are the normal distances of the process measurements from the
reduced space. The area inside the cilipse depicts the normal operation region.
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4.2 Anticipating the Future Observations in Xygw

Three methods are considered for filling in the unknown data in Xy, between the
current time interval k and the end of the batch. Recall that the Xz, (unfolded and scaled
X.cw) contains the deviations of the measurements from their mean trajectories. The
objective of all these approaches is to fill in the future values in the Xz in such a way,
that the predicted t-scores at each time interval will be as close as possible to those that
would be predicted, if one had the full xygy. Monitoring charts for the SPE and the first
latent variable t, (similar charts are obtained for t, and t;) for the SBR and the industrial
example are shown in Figures 4.2 and 4.3 for each of these methods. Also in Figures 4.2
and 4.3 the approximate 95% and 99% control limits are shown with the outermost
observations (five for the SPE and six for the t-scores) at each time interval from the
reference normal database. The control limits for the t-scores and the SPE are developed

in the next section.

APPROACHES FOR FILLING IN THE FUTURE DATA
i. The first approach to filling in the unknown observations in Xygy is to assume that
the future observations are in perfect accordance with their mean trajectories as calculated
from the reference database. The assumption behind this approach is that the batch will
operate normally for the rest of its duration with no deviations from its mean trajectories,

and one has to fill the unknown part of Xpeyw Wwith zeros. This approach gives a nice

graphical representation of the batch operation in the t-plots. In the upper part of Figures
4.2 and 4.3 one can see the cone shape of the control limits for the t-scores due to the
assumption of future normal operation. A new batch always starts from the origin (0) of
the t-scores in the reduced space and progressively moves out. The drawback of this
approach is that the t-scores are less sensitive, especially at the start of the batch run, to
detect an abnormal operation. The t-scores assert the overall performance of a batch since
they take into consideration its whole operation: past, present, and future. Hence, they

always have conservative (small) values because of the assumption that the batch for the
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the bottom plots for the approach by projection.



srE

e

53

OUTOF 95% UIMIT » 187 OUT OF 998 LIMIT = 50 OVER 3600 QBSERVATIONS OUTOFSRLIMIT « S OUTOF#9% LIMIT » 0 OVER 3600 OBSERVATIONS
0 50
44
11 S
39
20
o
4 AR
= [}
a
=

<0
RV
R Do nse
40k g
.“0 L[] ] » 0 0 «@ 0 [ ] ” 1M
TIME
OUT OF #3% LIMIT = 177 QUT OF 9% LIMIT « 52 OVER 3600 OBSEAVATIONS OQUTOF #5% LIMIT = 2¢ QUT OF $9% LIMIT = 4 OVER 300 OBSERVATIONS
b 1P e - [y
)0[ 4
r N A

2
=0
Q
1o} =
20k
3 R o
B gy ’
=ﬂ [} n » « 3a (] 0 [ -] " 100 -‘-‘cﬂ lAO n JTU 40 30 %] k] 10 w 1 4]
TIME TIME
Figure 4.3 Control limits (95% and 99%) for the SPE and the t-scores of the industrial example,

with the outermost values at each time interval for the three approaches of handling future deviations in
Xnew- The upper plots are for the approach with zero, the middle plots for the approach with curmrent
deviations, and the bottom plots for the approach by projection.
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rest of its operation will not deviate at all from its mean trajectories. The advantage of this
approach is the quick detection of an abnormality in the SPE control chart. Any deviation
from the mean trajectories at any instant k will show up in the SPE since the unexplained
part in xagw from the conservative t-scores will be large. Examples of on-line monitoring
with this approach can be found in MacGregor and Nomikos (1992).

ii. A second approach is to assume that the future deviations from the mean
trajectories of all measurement variables will remain for the rest of the batch duration at
the current values observed at time interval k. In this case, the assumption is that the same
errors will persist for the rest of the batch run. This is similar to the assuinption made in
model predictive control algorithms, such as the Dynamic Matrix Control (DMC)
algorithms (Cutler and Ramaker, 1979), where the future values of the disturbances are
assumed to remain constant at their current values over the prediction horizon considered.
Under this assumption, the SPE chart is not as sensitive as in the first approach, but the t-
scores pick up an abnormality more quickly. In general, this approach has shown good
attributes, in several industrial examples that we have examined, for detecting a fault in a
clear and quick manner. It will be used in Section 4.4 to monitor on-line the evolution of
some batches from both the SBR and the industrial example. A compromise between the
first two approaches, which shares their advantages and disadvantages, is to assume that
the future deviations will decay linearly or exponentially from their current values to zero
at the end of the batch run.

ii. The last approach uses the ability of PCA to handle missing data. The unknown
future observations can be regarded as missing values from an object (batch) in MPCA.
Hence, one can use the principal components of the reference database to predict these
missing values by restricting them to be consistent with the already observed values up to
time interval k and with the correlation structure of the measurement variables in the
database as defined by the p-loading matrices of the MPCA model. MPCA can do this by
projecting the already known observations (xxews(1:kJ)) into the reduced space and

calculating the t-scores at each time interval as:
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t, = (P/P)" Pl xygyy
where t,(Rx1) is the vector containing the predicted t-scores at time interval k fromall R
principal components, and P,(kJxR) is a matrix having as columns all the elements of the
p-loading vectors (p,) up to time interval k from all the principal components. This is the
least squares solution to the problem where one searches for the t-scores (t,) which, along
with the p-loadings from the MPCA model, will approximate the observations available
up to time period k with the minimum efror (Xagwy = Pit, + €). The matrix (P(P,) is
usually well conditioned even for the early time intervals because of the orthogonality

property of the full (KJx1) of the loading vectors (pr), and approaches the identity matrix

as k approaches the final time interval K. This method appears to be superior to the other
methods if at least 10% of the history of a new batch is known. It has the gieat advantage
of giving t-scores very close to their actual final values, and thus their control limits have
quite constant trajectories (Figure 4.2). Caution must be used at the beginning of a new
batch where this method may give quite large and unexplainable t-scores since there is so
little information to work with. This is clear in the control limits of the t-scores in the
SBR example (Figure 4.2), where they are quite wide at the beginning of the batch. The
control limits for the t-scores in the industrial example are almost constant throughout the
batch operation because of the strong correlation among all the measurement variables in
this example. Examples of on-lin: monitoring of this approach can be found in Nomikos

and MacGregor (1995).

Which approach to use depends on the specific characteristics of the process
under consideration. All approaches give similar results as the batch proceeds towards its
end, and their main differences are exhibited during the first half of the batch operation. If
the trajectories of the process measurements do not exhibit frequent discontinuities or
early deviations, one may use the third approach since in this case the correlation among,
the measurement variables will be fairly constant. If t'.ere is knowledge that the

disturbances in a given process are quite persistent, then it is better to use the second
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approach which generally has worked well in most cases we have investigated. If a batch
process does not exhibit persistent disturbances, or has variables with discontinuities in
their trajectories, then it may be better to use the first approach. In general, one can use a
combinaiion of the above approaches, like starting with one approach and switching after
some time to another one, and to build in this way some engincering knowledge in his
monitoring scheme. Another way which is more time consuming, is to use time series

models (Hamilton, 1994) to predict the future deviations from the mean trajectories.

4.3 Control Limits for the SPC Charts

Independently of which way one may choose to handle th: future observations in
a new batch run, the on-line monitoring will be based on control charts in which the
control limits will be established that are appropriate for that approach. These charts will
monitor the t-scores and the SPE of a new batch as it progresses. The control limits for
these charts are calculated by passing each of the batches in the reference database
through the monitoring procedure, as if they were new batches, and collecting their t-
scores and SPE at each time interval k. These observations (50 for the SBR and 36 for the
industrial example) for the t-scores and SPE at cach time interval provide the external
reference distribution {(Box et al.. 1978) upon which the control limits can be directly
calculated. The assumption is that this external reference distribution is sufficient to
capture the common cause variation in normal batch operations and that whatever
mechanism gave rise to the observations in our reference database, is still operating in the
same manner for the future batches.

The best way to obtain the control limits would be to use a sccond database of
normal batches, not used in the model building step, and pass them through the
monitoring procedure using the p-loadings obtained from the reference database. But
usually, one has only 50 to 60 normal batches available, and thus has to use them all to

build the MPCA model and capture most of the variation in the measurements.
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4.3.1 Control Limits on T-Scores

The t-scores at each time interval k are linear combinations of the measurement
variables and by the Central Limit Theorem should be approximately Normally distributed.
Similar analysis of the t-scores, as in Section 3.3, revealed that they were again well
approximated by a Multinormal distribution, except in the SBR example for the first few
time intervals early in the beginning of a batch. Their distribution resembles more a
Rectangular distribution than a Normal one. These early deviations from Normality result
from the non-normal distribution of the initial conditions, which are distributed more like
as in a factorial design, used in the SBR simulation (Appendix A).

Under the assumption of Normality the control limits at significance level a, for a
new independent t-score, 5i any given time interval are given by (Chew, 1968, Hahn and
Meeker, 1991):

ol

1| s S (L1 MY
where n and s,.r are the number of observations and the estimated standard deviation of the
t-score sample at a given time interval k (the sample mean is always zero since we subtract

the mean trajectories from the raw data X), and f.] o2 is the critical value of the

Studentized variable with n-1 degrees of freedom at significance level /2. As in Section
3.4, the Hotelling statistic for the t-vector of a new batch is:

D = t/8't, I-RY/RI*-1) ~ Fpox
where ti(Rx1) is the vector containing the predicted t-scores from all (R) the principal

components at time interval k. The D statistic provides a measure at each time interval of
the directed distance of the position of a new batch in the reduced space from the origin of
normal operation. The axis lengths in the t-space of the confidence ellipsoids with
significance level o in the direction of the rth principal component are given by (Johnson
and Wichern, 1988)

+ (S(r,r)F

20-2a

2 -1)/1(1-2))"
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The area inside these ellipsoids define the normal operating region for a new batch in the
reduced space.

As can be seen from the individual t-plots {Figures 4.2 and 4.3), the control limits
change throughout the duration of the batch reflecting a greater degree of variation at
certain times. Rather than trying to show how the joint elliptical contours change with
time on the joint latent variable space plots (eg. t,-t;), we constantly display the control
contours appropriate for the end of the batch (Figures 4.6 through 4.9). That is why we
use, in defining the control ellipsoids, the estimated covariance matrix S of the t-scores
from the analysis of the reference database in Chapter 3. The hypothesis tested by these
contro] ellipsoids at each time interval is the classification of a batch as normal or
abnormal, based on the measurements available until that time interval and the assumed
future behavior of the batch. Similarly, the control limits for the D statistic are also based

on that appropriate for the final time and have the same interpretation.

4.3.2 Control Limits on SPE

The SPE is a quadratic form of the errors associated with the latest observations at

k)

time interval k (SPE, = Ze(c): ). These errors {e(c)) were found to be well
w-(k-1)el

approximated by a Multinormal distribution N(0,Z) based on Normality tests as in Section
3.3. Box (1954), Jensen and Solomon (1972), and Jackson and Mudholkar (1979) have
derived approximate distributions for such quadratic forms. Box showed that it is well
approximated by a weighted Chi-squared distribution (gy,; ) where the weight (g) and the
degrees of freedom (h) are both functions of the eigenvalues of £ (Appendix C). Jensen
and Solomon, and Jackson and Mudholkar's approximate distribution (see Section 3.3) is
very close to that given by Box (Appendix C) in cases where one has extracted the
dominant principal components, as it is in our case,

We use the gy, approximation of Box for the distribution of the SPE to estimate

the control fimits at any point in time. Although the g and h can be estimated from the
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eigenvalues of the estimated I, a simpler approach is used here based on matching
moments between a gy; distribution and the reference distribution of SPE at any time
interval k. The mean and variance of the g%; distribution (p=gh, o°=2g*h) are equated to
the sample mean (b} and variance (v) of the SPE sample at each time k. Thus, g and h are
estimated by:
g=v/2b ., h=2b/v

We chose to do this because we have to estimate a control limit at each time interval, and
this way is faster than using the traces of powers of the residual covariance matrix (JxJ) at
each time interval. It is a quick way 1o estimate g and h reasonably well, provided that the
number of SPE observations is sufficiently large and there are no outliers in the sample.
Thus the upper control limit on the SPE at significance level o for time interval k are given
by:

(v/2b) %},

[}
where xih,w , is the critical value of the Chi-squared variable with 2b2/v degrees of

freedom at significance level .

Estimates of g and h are shown in Figure 4.4 for the monitoring scheme used in the
middle plots of Figures 4.2 and 4.3 (i.e. filling in with the current deviations). These plots
are similar to those obtained using the other two approaches to handling the future
observations in Xxpw, with differences occurring mainly in the first ten to fifteen time
intervals where each approach has its own distinct character. These plots of estimated g
and h provide information about the changing nature of the distribution of the residuals
throughout the duration of the batch. Low values of the degrees of freedom (h) indicate
that the distribution is dominated by large varability of only a few of the measurement
variables about their mean trajectories. High = lues of h occur during more stable periods
where deviations from most of the variables ai contributing evenly to the SPE. The g is
simply a scaling factor to enable one to match the moments.

In the SBR example (left hand side of Figure 4.4), one can see clearly in the n-plot
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Figure 4.4 Plots of estinuited g and h viilues from the gxi distribution of the SPE. The left hand

side plots arc for the SBR example, and the right hand side plots are for the industrial exmmple.

that the equivalent of 4 to 5 measurement variables contribute constantly in the residuals
throughout the hatch operation. This indicates that there are no major chang:s in the
operation of the process. Since h is fairly constant throughout the batch operation, the g-
plot indicates that in the last part of the SBR operation (100-200 time intervals) there is
little variation in the measurements variables which is not explained by the MPCA model.
In the industrial example (right hand side of Figure 4.4), the batch period (10-40)
represents a fairly smooth behavior during the well controlled vaporization stage where
there are 7 to 10 degrees of freedom in the SPE. Period (45-50) represents the transition
from the vapoarization to polymerization stage where a few variables dominate the SPE,
and the batch period (65-70) is the operation during polymerization where the degrees of

freedom change constantly. In both these periods a few variables are changed rapidly.
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Sudden changes made to the process at the start and at the end of the batch run,

contribute to low degrees of freedom there.

This is a general methodology to get approximate control limits for the t-scores
and the SPE. The assumptions behind these control limits are reasonable and have shown
to hold well in several industrial examples that we have investigated. If one finds that the
proposed distributions do not represent accurately the sample observations, then one has
to use some other approximation. One way is to choose a general distribution like the
Gamma distribution and estimate its parameters at each time interval. This is time
consuming and has the extra work of finding control limits with the same significant level
for all the time intervals by integrating the Gamma density function (Johnson and Kotz,
1970). Another way to estimate the control limits, especially when you have a large
number (I) of batches in your reference database, is by using again the idea of external
reference distribution. The sample observations at each time interval have to be arranged
in ascending order, and the 0.8*] and 0.9*I observations to be taken as the 80% and 90%
limits of the population. Then based on these two limits to estimate the 95% and 99%
control [imits by extrapolation, making the additional assumption that the upper tail of the
distribution has the same shape of a Normal for the t-scores, or a Chi-squared distribution
for the SPE. By using the ordered 0.8*I and 0.9*I observations as the 80% and 90%
limits, one avoids being affected by spurious observations that may exist in the sample's

upper tail.

4.3.3 Smoothing Window

Because the number of observations in the reference distribution at each time
interval may not be very large (1=50 in the SBR, and I=36 in the industrial example), the
control limits on the t-scores and SPE can be quite variable. Since most batch processes
progress in a reasonably smooth manner and each time interval is closely related to its

neighbours on either side, one might expect the control limits to change smoothly.
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Therefore, we have used the idea of windowing taken from spectral analysis (Jenkins and
Watts, 1968) for the results in all the figures in this chapter. The reference distribution at
time interval k was composed of the observations at time intervals k-w through k+w. In
the SBR example w was set to 3 and in the industrial example w was equal to 2. In effect,
we have used a moving rectangular window that is 2w+1 time intervals wide to combine
data for the estimation of the control limits on the t-scores and SPE at the center of the
window. In our examples this provides n=(2w+1)I observations for the calculation of the
limits at each time interval. In general, the width of the smoothing window will depend
upon the number of batches in the reference distribution, and on the nature of the process
itself. In the case where there are many batches in the reference dataset, very little
smoothing will be necessary. If the sampling rate of data acquisition is fast with respect to
the process dynamics, then a wider smoothing window can be possibly used. The use of a
window helps small sample sizes, but relies upon the additional assumption that the
variance of the statistics vary in a smooth manner with respect to time. In practice (as in
spectral estimation), several window widths can be tried and one chosen which gives
reasonably smooth control limits (low variance) but does not affect their main shapes (low
bias). Figure 4.5 shows how the 99% SPE control limits for both examples change by

using different window widths.

b b
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Figure 4.5 Y9% SPE control limits for the SBR (left hand side plot) and the industrial (right hand

side plot) example. The dotted lines show the limits estimated without windowing (w=0). The solid lines
show the limits estimated with a window width of 7 (w=3) and § {w=2) for the SBR and the industrial
example respectively. The dashed lines show the Timits estinuted with a window width of 11 (w=5)and Y
(w=4) for the SBR and 1he industrial example respectively,
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4.3.4 Overall Type I Error

The proceeding control limits for the t-scores and SPE were based on the
approximate distributions of these statistics at any one point in time. Considering only that
period of time, the « value in these tests would be the Type I error. Although this is a
common procedure for setting control limits (Bauer and Hackl, 1980; John, 1990;
Montgomery, 1991; MacGregor and Harris, 1993), it is not correct when one considers
the sequential application of the procedure over the entire batch run. In general, the Type I
error associated with monitoring the entire K time intervals will be different from the a
value for the instantaneous test. If the statistics were independent over time then the
overall Type I error would be given by 1-(1-c) which is 0.86 for the SBR and 0.63 for
the industrial example, for instani.m2ous «=0.01. If this was the case, it would create
many false alarms. However, the t-scores and SPE values at successive times are not
independent, and the overall Type [ error could only be determined knowing the joint
distribution of these statistics over all periods. To establish the approximate Type I error
for the control limits each set of Latch data in the reference database is passed through the
monitoring procedure, and the number of values of each test statistic (t-scores and SPE)
falling outside the control limits can be enumerated. Thus, an overall Type | error can be
estimated for the control chart as the number of values of the test statistic outside the
control limits in the reference database divided by the total number of observations (IK).
These overall Type [ errors for both examples are presented in Table 4.1 for the two
values of instantaneous Type 1 errors (a=0.05 and o=0.01). The estimated overall Type I
errors for the SPE test are quite close to the instantaneous o values. We have found tuis
to be generally true in every dataset we have so far investigated. The overall Type I errors
for the t-scores are generally close to the nominal a value for instantaneous «=0.05, but

the approximation is poorer for instantaneous oe=0.01.



Approach | Zeros I Current deviations | Projection
SBR example

tl 0.102 0.001 0.099 0.005 0.104 0.002

t2 0.079 0.004 0.090 0.016 0.070 0.012

t3 0.102 0.001 0.095 0.009 0.091 0.013

SPE 0.052 0.011 0.053 0.011 0.049 0.012

Industrial example

tl 0.002 0.000 0.006 0.001 0.006 0.000

t2 0.052 0.011 0.041 0.003 0.086 0.009

t3 0.030 0.000 0.051 0.002 0.056 0.000

SPE 0.052 0.014 0.049 0.015 0.049 0.012
Instantaneous oo | 0.050 0.010 0.050 0.010 0.050 0.010

Table 4.1 Overall Type 1 crror for the control limits of the t-scowcs and SPE for the three

approaches to handling the future observations in Xagw.

4.4 Examples of On-Line Monitoring

Four examples are given in Figures 4.0 through 4.9 for on-line monitoring: three
from the SBR simulation and one from the industrial polymerization process. None of
these test batches was included in the reference database of normal batches used to
develop either of the MPCA models. The batch in Figure 4.6 is a new SBR batch which
gave acceptable final polymer quality. Figures 4.7 and 4.8 show the monitoring charts for
the two abnormal batches in the SBR example. The batch in Figure 4.9 is batch 49 from
the industrial example. This later batch yielded a product of marginal quality, in that the
quality measurement was right at the acceptable limit. The measurements of these batches
can be seen in Figures 2.3 and 2.6.

Figures 4.6 through 4.9 show plots for the SPE and one of the t-scores along with
their 95% and 99% control limits. Also shown are plots of the reduced space (eg. t,-t)
and the D statistic. As discussed in Section 4.3.1, the 95% and 99% control limits on these
latter two charts are only approximate since they are based on the covariance matrix S of
the t-scores from the post analysis of the reference database which has available the
measurement variables for the whole batch duration. These two charts evaluate at each

time the expected performance of the whole batch duration assuming that the future
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Figurc 4.6 Manitoring charts with their 953% and Y9% control limits for a new normal SBR batch.

behavior of the batch is well described by the approach which is used to fill in the
unknown observations in Xx:w. To provide more precise control limits for the joint t-
space and the D-statistic charts would require evaluating and storing the estimated joint
covariance matrix (RxR) of the t-scores for each point in time. Note that the t-scores are
truly orthogonal only at the final time corresponding at the end of the batch.

The interpretation of the monitoring charts is straightforward. The new normal
batch in the SBR example (Figure 4.6) has all its latent vector plots and its SPE well
within the control limits, implying that at no point during the batch operaticii there is any
evidence that everything is not proceeding well. The batch with the impurity
contamination in the butadiene feed starting right from time zero (Figure 4.7), is clearly

flagged asa batch with problems within the first 15 time intervals. Several of its SPE
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Figurc 4.7 Monitoring charts with their 95% and 99% control limits for the SBR balch with an

initial problem.

values exceed the 99% limit, but the clearest detection is provided by the charts associated
with its t-scores. The reason that the problem shows up most clearly in the individual t-
chart comes from the fact, that the major variables contributing to the first principal
component (Figure 3.2) are the total conversion and the measured latex density, both of
which show abnormally low values at the start of a batch when impurities are present. In
the other abnormal batch with the impurity contamination in the butadiene feed at the mid-
point of the batch operation (Figure 4.8), the problem is most clearly alarmed in the SPE
plot. This indicates that a type of variation or fault has been encountered that was not
present in the reference database, which is indeed the case here. None of the batches in the
normal database had a sudden change in the level of the organic impurities in the feeds

half-way through its operation. Most of them had small perturbations in the level of the
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Figurc 4.8 Monitoring chans with their 95% and 99% control limits for the SBR batch with an

impurity problem halfway through its opertion,

organic impurities right from the beginning of the batch. 1t is also interesting to see that in
addition to the SPE, it is now the second principal component (tz) that also clearly detects
the problem. This is reasonab!z because as one can see from Figure 3.2, the second
principal component is dominated by information over the last part of the batch operation,
where the fault occurred. The SPE chart for batch 49 from the industrial example clearly
signals that something is unusual between time intervals 57 and 65 (Figure 4.9). During
this period the p-loadings are small which makes the t-scores slow to respond to the
change. ARer the 65th time interval the measurements return to their normal trajectories,
as do the t-scores because now the unusual previous behavior plays a less significant role
on them since we are filling in the unknown part of xxgw with the current deviations we

have at the last time interval. Unlike the SPC charts for the abnormal batches investigated
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Figurc 4.9 Mouitoring charts with their ¥3% and %9% control limits for the industrinl abnormal

batch. Bars above observations denote trancated values for betier graphical representation, The SPE values
at time intenvals 37 through 62 are tew limes greaer than whit the grapl shows.

in the SBR example, where once a problem was detected, the t and SPE values remained
outside of the control limits for the remainder of the baich, in this industrial batch (49) the
problem disappears shortly afier time 65. In spite of its return inside the acceptable control
region, this batch is characterized as abnormal because of the violation of the control
charts during the period 57-65. Indeed, this deviation in the batch did result in a product
with a borderline quality. Although its SPE returned below the control limits after time
interval 63, its overall sum of squared residuals (Q) at the end of the batch is very large as
already shown in Section 3.4. An example of on-line monitoring for a normal industrial

batch can be found in Nomikos and MacGregor (1995).
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4.5 On-Line Contribution Plots

Once a fault or special event has been detected, it is important to diagnose the
event to find an assignable cause. For this aspect of SPC, the multivariate methods are
much more useful than univariate methods. By interrogating the underlying MPCA model,
the contribution of each measurement variable to the deviations observed in the SPE and
in the t-scores can be displayed as discussed in Section 3.4.1. These contribution plots can
be immediately displayed on-line by the operator as soon as the special event is detected.
They will clearly indicate how much each of the measurement variables contributed to the
t-score or SPE under investigation, and help one to hypothesize for an assignable cause
for the fault detected.

The % contribution at time interval k of measurement variable j to

k)
SPE, = D e(c)” isgiven by:

c.{k-1)1-1

e() k): sign(x g (JK))

SPE,
The t-scores {t.x = X'x:wpr) at each time interval take into account all the measurements,
both those that we aiready know and those that we fill in for the future observations.
Therefore, the % contribution of variable j is evaluated throughout its whole history (past,
present, and future) and its sign is solely determined by the sign of its present deviation at
time interval k.
K
199 (X g (KD 2 % (0P, GK)
.k k-1
In this way, as discussed in Section 3.4.1, one can easily check by the sign of the %
contribution to either the SPE or the t-score, if the variable was above (positive) or below
(negative) its mean trajectory at the time interval under consideration.
The SBR batch wih the initial impurity contamination, is clearly detected as
abnormal in the t,-chart at time interval 14 (Figure 4.7). The contribution plot for this t-

score in Figure 4.10, reveals that variables 7 (density) and 8 (total conversion) were
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primarily responsible. Both of them are below their mean trajectories which suggests that
something is holding back the reaction. Since there is no indication that something is
wrong with the cooling system, a possible explanation will be an impurity contamination
which was in fact the case in this example. If this monitoring scheme had been in effect
during the batch, then one might have stopped the batch to investigate the origin of the
impurities. The contribution plot in Figure 4.10 is very similar to the contribution plot we
got when we compared its whole operation against that of the reference database (Figure
3.3).The similarity in these plots is because we used the current deviations to fill in the
future observations in xxgw. and in this case the impurity contamination continues to affect

the batch in the same manner throughout its whole operation.
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Figure 4.10 Contribution plots for the abnonmal batches. The upper left plot is for the SBR batch
with initial problem. The upper right plot is for the industrial abnormal batch. The botiom plots are for
the SBR batch with probicm halfway through its operation. The signs of the % contributions indicate if
the variables were above (positive) or below (negative) their mean trajectorics.
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In the other SBR batch, with the impurity contamination halfway through its
operation, the SPE detect the problem at time interval 105 and the tz-score at time interval
107 (Figure 4.8). The contribution plots for both the SPE and t, are given in Figure 4.10,
Both show that the reactor temperature (variable 4) is much lower than usual, and the
cooling water temperature (variable 5) along with the cooling jacket temperature (variable
6) are higher than normal. This implies that the cooling system is working satisfactorily
and tries to compensate a .cmperature drop in the reactor. Since the temperature of the
monomer feeds (variable 3} is at normal level, and the t; contribution plot suggest that the
instantaneous rate of energy release (variable 9) is below its mean trajectory, a possible
explanation for this behavior can be attributed to something like impurities which are
slowing down the rate of polymerization in the reactor. With these indications in hand, the
batch might have been stopped to investigate the source of the problem, or a new
monomer feed tank used. ad-or the final batch product segregated until its final quality
was determined. Note here that variable 4 (reactor temperature) appears solely in the SPE
contribution plot since the MPCA model does not account much for this variable (Figure
3.2). Variables 7 (density) and 8 (total conversion) do not appear to contribute in this
batch as in the previous batch with the problem right from its beginning. In this case, we
are in the middie of the batch operation and these two variables do not change very fast.
Eventually as the batch progresses and the impurities continue to enter with the butadiene
feed, both will drop below their mean trajectories.

The abnormality in the industrial batch 49 is clearly detected in the SPE chart at
time interval 57 (Figure 4.9). The contribution plot for the SPE is given in Figure 4.10.
The major variables contributing are 6, 7 (temperatures in the heating cooling medium}, 8,
and 9 (pressures). All of them simultaneously deviate below their mean trajectories. As in
Section 3.4.1 the cause of the abnormality in this batch could be attributed to a failure in
the cooling system of the process. The SPE contribution plot is similar to what we had in
Section 3.4.1 (Figure 3.3) since the abnormality continuously affects the process during

the time period 57 through 63.
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4.6 Discussion

The on-line monitoring examples demonstrate that the proposed charts preserve
the SPC ideas of using easily displayed and interpreted charts that can detect quickly an
abnormality. One has to monitor closely the SPE and D control charts, which provide
complementary information about the process operation, and if something is going wrong,
1o use the t-score charts and the contribution plots to get a better understanding of the
fault. In some cases, as discussed in Section 2.4, it may be possible to identify areas in the
reduced space corresponding to a particular fault, and thus to construct an expert system
for diagnosis. It should also be noted that a violation of the control charts does not mean
that the product will be unacceptable. It only means that the operational behavior of the
batch is unusual and this unusual behavior may lead to low quality product. MPCA has
only information about the on-line measurements of a process. The objective of the
monitoring procedure is to detect and eliminate faults from future appearance, and thereby
shrink the control limits and work towards a more consistent ;ioduction of quality
product. In Chapter 5, it will be discussed how one can directly use the final product
quality measurements to develop the monitoring scheme by using Multi-way Partial Least
Squares (MPLS).

Given the ease with which these multivariate monitoring char s were able to detect
the simulated faults, one might expect that the faults would also be apparent in the
trajectories of the individual variables. But as discussed in Section 2.3 and illustrated in
Figures 2.3 and 2.6, the faults, resulting in products that barely violate the specification
regions, are not readily apparent in the individual trajectories. The problem with the one at
a time inspection of each variable trajectory, is that one is only looking at the magnitude
and possibly the trends of the deviations in that one variable. However, the true process is
multivariable, and all the variables are highly correlated with one another. The power of
the proposed monitoring scheme results from the fact, that MPCA uses the joint
covariance matrix of the variable trajectory deviations. By doing this, it utilizes not just the

magnitude and trends of the deviation of each variable from its mean trajectory, but also
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the correlation among all of the deviations over the history of the batch. It is this
correlation structure among the variables that appears to be most important in detecting
faults. When a fault occurs, the relationship among the trajectory deviations often changes
substantially, even though their individual magnitudes may not be large.

The only requirement of the proposed method is the availability of a good database
on past batches, and the ability to access the same data in real time for new batches.
Sometimes data collection systems and data historians on industrial batch processes are
inadequate. Historical data on all the va:iable trajectories are often not saved, but rather
summarized by only a few raw statistics. The sensors for measuring the on-line variables
must also be well maintained on a regular basis.

The sampling rate must be adequate for capturing the important trajectory
information in the process. If there exists prior knowledge that a particular period during
the batch is very important for product quality, then the sampling rate should be increased
over that period. By increasing the sample rate it will be possible to track faster any
deviations from the average trajectories over that period, and it will also weight that
period more heavily in the MPCA model since there will be more p-loadings
corresponding to it. Another way to weight a particular period or variable more heavily is
with proper scaling when the MPCA model is being built. The method can also handle
different numbers of measurement variables during different stages of the batch operation.
One can either substitute zeros for the deviations at the time intervals that these variables
are not measured, or augment column-wise the unfolded matrix X at the appropriate time
intervals where these variables are measured.

In common with all on-line monitoring methods, these multivariate SPC methods
can only detect “observable” events, that is events which influence at least one or more of
the measured variables. No monitoring procedure can detect events that do not affect the
measurements. This is analogous to the requirement of "observability" in state estimation
of mechanistic models (Kuo, 1987). Some events which lead to quality problems may pass

undetected if they have no impact on the measurement variables. The only way of
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improving this situation is to add new measurements which are responsive to these events.
Indeed, in another industrial batch process which we investigated, an important quality
problem related to the surface properties of the product was not able to be detected by
these MPCA charts. However, this had not been unexpected since none of the on-line
measurements available was related to surface chemistry.

The batch runs must be comparable for MPCA to be effective. By comparable
runs, we mean batches which operate in reactors of similar design, with the same catalysts,
the same operational program, etc. If the operating procedure of the process changes, a
new MPCA model must be built to accommodate this change. This is a general
requirement of any method based on an empirical reference model. In our industrial
example, the reactor unit is removed from service every several hundred batches for
routine maintenance and cleaning. This cleaning changes the heat transfer characteristics
of the reactor for the first few batches after the reactor is placed in service again, and
special precautions and control in the operation of these early batches is required. Our
industrial batch database was from a seasoned unit which makes the resulting MPCA
model unsuitable for monitoring these first batches after the cleaning.

Throughout this thesis, the 95% and 99% control limits at each time interval are
used in all the control cl..rts. One is free to set any significance level in these limits with
v wal trade-ofY of Type ! and Type II error. In general, the instantaneous 99% control
linui. .or the t-scores are reasonable and will not create many false alarms as it is indicated
from the overall Type I error in Table 4.1. This is because the t-scores capture specific
directions of variability in the measurement variables defined by the p-loadings. Any other
variation is accumulated in the residuals, which makes them more susceptible to large
values. Thus, in accordance with the suggested significance levels in the Shewhart charts,
we propose the use of 99% and 99.9% control limits in the SPE-chart.

As a final comment on the presented approach, we point out that the post analysis
of a database of batches and the estimation of control limits for the monitoring charts have

substantial computational requirements, although the calculations are very simple. In a
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486-machine, it takes no more than an hour to get the control limits for the SBR example.
By relying upon large databases, one simply has to process a large amount of data. On the
other hand, once this off-line analysis has been completed, the computational requirements
for the on-line monitoring algorithm are extremely light and simple. It seems feasible for
one to be able to track easily a batch process with a sampling rate of 5 to 10 seconds for a

new set of observations.
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CHAPTER S MPLS and Multi-Block Approaches in Batch

Processes

This chapter covers how the proposed monitoring schemes can take into account
any other information available for a batch run. Multi-way Partial Least Squares (MPLS)
is used in the SBR example to incorporate the end product quality data (Y) which are
available upon completion of the batch. A brief description of PLS is given at the
beginning of this chapter, and approximate confidence intervals for the PLS predictions
are developed. Multi-block MPLS is used on an industrial example to integrate additional

data (Z) about the initial conditions and set-up of the batch process.

5.1 Partial Least Squares

PLS is a projection method, for the linear modeling of the relationship between a
set of response variables (Y) and a set of predictor variables (X). Dr. H. Wold in 1982
derived the PLS algorithm, which now has become a rather popular method in a broad
spectrum of sciences, such as chemistry, biology, psychology, industrial process control,
and quality control (Geladi and Kowalski, 1986; Kvalheim, 1988; Kresta et al., 1991;
Skagerberg et al., 1992; Dayal et al. 1994; Kettanch-Wold et al. 1994). In all of these
areas, PLS has demonstrated its efficiency and robustness to analyze large datasets, where
collinearity (the matrix X'X is ill-conditioned or singular) is evident.

The birth of PLS originated in geometric intuition, rather than in traditional
statistical arguments. Its geometric interpretation is closcly related to the geometry of
PCA. PLS can be interpreted as performing PCA on the covariance of X and Y (Y'X), and
thus the decomposition is not affected only by the variance of the X and Y matrices but
also by the correlation between them. PLS tries to accomplish two tasks simultaneously.
It searches to find the directions of maximum variability in the x and y-space, and at the

same time it tilts these directions so the direction in the x-space has maximum correlation
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with the direction in the y-space. The t and u latent variables, which are linear
combinations of the x and y variables respectively, are the projections of the data onto
these directions. The mixed relation among the latent variables (t, u) in the x and y-space
provide the ability of the PLS model to give adequate predictions. The essential criteria for
the predictability of a regression model, is the number of variables included in the model.
PLS uses the t and u latent variables to address the regression problem, and in this sense
gives the minimum number of variables that is necessary.

Several algorithms have been proposed to extract the PLS components (Lingren et
al.., 1993; Kaspar and Ray, 1993) but in this thesis the NIPALS algorithm will be used for
its simplicity and for being consistent with the PCA algorithm used in Section 2.2.

1. scale X (IxJ) and Y (IxM) (usually by subtracting the mean of each column

and divide by its standard deviation)

ii. choose a columnof Y as u
il w=X"u

v, w=w/|w|

v, t=Xw

vii  q=Y't(t't)
vii,  u=Yq/(q'q)

viii.  if u has converged then go to step ix, otherwise go to step iii
1X. p=X't/(t't) E=X-tp' F=Y-tq'
X. w0 to step ii with X=E and Y=F to extract the next PLS component

It is important to note that the PLS algorithm selects only one pair of latent
variables (t. u) at a time, and then uses the residual matrices (E, F) for the calculation of
the second pair. The PLS components are selected in such a way, that give maximal
reduction in the covariance (F'E) of the data (E and F for the first PLS component are
equal to X and Y). This is accomplished in a step-wise procedure, which maximizes the

correlation between the latent variables (t, u) at each step.
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A brief outline of the mathematical properties of PLS will be given in this
paragraph. The proofs of these properties can be found in Lorber et al. 1987, Manne
1987, Huskuldson 1988, Helland 1988, and Phatak et al. 1992, PLS decomposes the X (I
xJ) and Y (IxM) matrices into a summation of R score vectors (t (Ix1)) and loading

vectors (p (Jx1), q (Mx1), plus some residual matrices (E (1x]), F (IxM)):

R R
X=>tp,+E , Y=2tq;+F
r=1

=1
or if we combine the t, p, and q vectors into T (IxR), P (JxR), and Q {MxR) matrices
X=TP'+E Y=TQ+F

where T, P, and Q are given by: T=XW{P'W)', P=X'T(T'T)" . Q=Y'T(T'T)"
and the regression coefficients (B, Y=XB) are given by: B=W(P'W)'Q'
The w-vectors are orthonormal, the t-vectors are orthogonal, and the matrix (P'W) is
upper triangular with ones as diagonal elements. The w is eigenvector of E'FFE the q is
eigenvector of FEE'F, t is eigenvector of EE'FF, and u is eigenvector of FFEE'" All
these eigenvectors correspond to the maximum eigenvalue of these matrices which is
equal to (w't)(g'q)(t't). Keep in mind, that E and F are the residual matrices of the
previous PLS component upon which the w, t, and u were calculated.

The number of PLS components (R) is usually determined by cross-validation as in
PCA (Wold, 1978; Stahle and Wold, 1987). There is a balance between bias and variance
in the estimators. If you get too few components, you have a large bias and small variance,
if you get too many you are in the opposite situation. The R statistic given in Section 3.2
will be used to determine the number of PLS components that one has to keep in his
model. In PLS the Press, and RSS, statistics in & are based on the y-residuals since the
purpose of the PLS model is to predict adequately the response variables (y).

Predictions for a new set of observations xxpw (Jx 1) are given by:
t= X WE'W)! | §=1Q" | € =xjy, — 1P’
A great advantage of PLS over other regression methods is that the x-residuals (e) can be

used to measure the regression mode! validity. If the x-residuals are large (compared to
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the x-residuals in the mode] database), then the correlation structure of the x-variables has
been changed and the y-predictions are not trustworthy for this set of observations (Xxew).
Many studies have been contacted to test PLS against other regression methods (Kvalheim
and Karstang, 1989; Stone and Brooks, 1990; Kowalski, 1990; Phatak et al., 1992; Frank
and Friedman, 1993), and in most cases PLS performs well with respect to the other

methods.

5.1.1 Approximate Confidence Intervals for the PLS Predictions

A major problem in the statistical analysis of PLS is the nonlinear extraction of the
PLS components. PLS does not only look at the conditional distribution of the y-variables
given the x-observations, but treats both x and y as random variables connected through
the latent variables t and u. In the following we shall treat only the case with univariate y.
For the multivariate case (Y), one has to treat each of the y-variables separately. The X
and Y matrices are assumed to be mean centered. The statistical properties which we shali
derive in this section, are based on the work of Searle (1982) for regression based on
generalized inverses. At the beginning of this section, we look at some properties of
generalized inverses in linear regression and how they are related to PLS, and then we
derive approximate confidence limits for the PLS predicted responses.

The regression problem y=Xp can always get a solution in the following form:

b=Gy

where G is a generalized inverse of X.

PLS gives a right ~ak generalized inverse G of the PLS approximaticn of the X
matrix N=TP" (5( GX =‘A\ GXG=G, X G=(ﬁ G)') which is given by:

G=w(P'wW)- l(TT)IT

Rao and Mitra (1971), and Eoullion and Odell (1971) show that a right weak generalized
inverse of X, which has the same rank as X, gives the least squares solution for the

problem y=)A( B. in which:



20

IXbylslXgyl Ve

Although this minimum is defined uniquely, there is an infinite number ol right weak
generalized inverses of X, and thus regression coefficients, which give the same minimum,
PLS give a particular solution (b, G) to the problem. The property of invariance of
generalized inverses, guarantees that the predicted ¥ has a unique value (Xb) no matter
what right weak generalized inverse of X one chooses to use. Although, PLS does not
provide the minimum norm solution (min|b| which is unique), its solution is close to this,
since the matrix W(P'W)-1P' is generally close to being symmetric. In the latter case, G
would also be a left weak generalized inverse of X (XGX=X, GXG=G, Gﬁ=(Gﬁ)‘).
PLS provides the Moore-Penrose generalized inverse of the original X for the full rank
decomposition of X, and in the case where X has full column rank, PLS provides the
ordinary least squares solution b=(X'X)"IXy.

To proceed with Searle's analysis, one needs a generalized inverse of X'X. PLS
gives the following reflexive generalized inverse L for X'X ()2'5( L)T(')Z=i'ﬁ,
LX'XL=L):

L=W(PW)- [(T'Ty- [ (WP)-Iw

Define the indempotent matrix H=GX'X =W(P'W)~ 1 P' (H2Z=11), which has rank equal to
the number of PLS components we have extracted (rank(H)=R). Under the assumption
that the y-variable is distributed Normally as N(X, 62), and that L is independent of the
y-variable, we get the following statistical analysis:

b=LX 'y+(H-I)g for arbitrary g (from now on, assuine ,=0)

E(b)=Hp b is a biased estimator of f§

var(b)=[.c52
The statistical test which we can derive from the above results, in the usual regression

notation, is summarized in Table 5.1.



SSR=y'y df=R MSR=SSR/R
SSE=(y-y)'(y-¥) df = [-R-1 MSE=SSE/(I-R-1)
Table 5.1 Sum of Squarcs duc to Regression (SSR) and Sum of Squared Errors (SSE) along with

their degrees of freedom for the PLS modcl.
The statistic MSR/MSE has an F distribution with R and I-R-1 degrees of
freedom, and the expected value of MSE is o2 (Searle, 1982). The problem is that this

statistic does not check for significant regression (f=0). It tests for the null hypothesis (X
B)=0. The only conclusion we can derive, if this test is significant, is that the PLS model
accounts for a significant portion of the variation in the y-variable. The B is not an
estimable function, since b is not invariant to the generalized inverse of X'X that is used
for G (b has an infinite number of descriptions). The only estimable function is any
quantity ¢'B, in which ¢'H=c". This ¢'§ has ¢'b as its Best Linear Unbiased Estimator which
is distributed Normally as :
¢'b ~ N(c'B, c'Lc's?)

This shows that we are not able in general to test for the significance of each
coefficient separately, but only certain linear combinations of them. In spite of this, PLS
provides a way to derive confidence intervals for the predicted y-variable since a new set
of abservations xy:w (Nx1) can be decomposed as x'vw=t P', and X 'vewP is an estimable
function (X 'iwll=% 'siw). Thus, the % 'uwb is Normaly distributed with mean X 'xgwp and
variance %'wiwLX wwo2 which is equal to t (T'T)"i 'c2, The confidence interval at
significance level o for an individual y-response (X'wwb+€, where ¢ is the error that is
Normally distributed N(O, a2)). is given by :

Tl w1 (MSEY P14+ ((T'T) ' t)'?
where T and MSE is the t-score matrix and the Mean Squared Error of the PLS analysis

of the data upon the PLS model was built, and ¢ is the critical vaiue of the

I-R-1.42
Studentized variable with I-R-1 degrees of freedom at significance level o/2.
The motivation behind the above analysis was to develop a simple expression for

approximate confidence intervals for the PLS predictions. The confidence intervals for the
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y-predictions derived above, are general for any PLS study. If the (1) in the
1+ 1(T'T)'t') term is dropped, one gets the equation for the confidence interval of the
expected value of a y-response (X'wgwb). OFf course, the assumption that L is not a
function of the y-variable is incorrect, and the above confidence interval is only an
approximate one. Phatak et al. (1993) recognized this, and for the case of univariate y did

a first order linear approximation of b around a set of observations (Xg, yo) to get
improved confidence intervals for y. Although his approach is more accurate than the

zero order approximation used here, it is computationally much more time consuming,.

5.1.2 MPLS Analysis of Batch Data and On-Line Monitoring

Most batch and semi-batch processes operate in open loop with respect to product
quality variables, simply because few, if any, on-line sensors exist for tracking these
variables. Upon completion of the batch a range of quality measurements are usually made
on a sample of the product in the quality control laboratory. The MPCA in the proposed
SPC schemes only makes use of the process variable trajectory measurements (X) taken
throughout the duration of the batch. Measurements on product quality variables (Y)
taken at the end of each batch were used only to help classify a batch as successful or
unsuccessful. However, such product quality data can be used in a much more direct
fashion. Multi-way Partial Least Squares (MPLS) can be performed using both the process
data (X) and the product quality data (Y). Rather than focusing only on the variance of X,
MPLS focuses more on the variance of X that is more predictive for the product quality
Y.

As in MPCA, one has to unfold X (IxJ«K) into X (I1xJK) and then perform a
normal PLS between X and Y. The columns of X and Y are scaled by subtracting their
mean and dividing by their standard deviation. In this fashion MPLS summarizes and
compresses the data with respect to both x and y variables and time into low dimensional

spaces that describe the operation of the process (measurement variation around their
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mean trajectories) which is most relevant to final product quality. MPLS decomposes X
(IxJK) and Y (IxM) as X=TP+E, and Y=TQ'*F. Each row of the T (IxR) matrix
corresponds to a single batch and depicts the overall variability of this batch with respect
to the other batches in the database. The W (JKxR) matrix summarizes the time variation
of the measurement variables about their average trajectories, and its elements give the
weights applied to each variable at each time interval within a batch to give the t-scores
for that batch. The Q (MxR) matrix relates the variability of the process measurements to
the final product qualities. When there are product quality measurements available during
the batch, a three-way array Y (IxMxKy) can be formed. The number of quality
measurements (Ky) during a batch run may not be the same as the number of process
measurements (K). Usually, Ky is much smaller than K because of the difliculties in
measuring on-line quality variables. In such cases, the simplest way to apply MPLS is to
unfold Y (IxMxKy) into Y (IxMKy) in the same way of unfolding X (1xIxK) into X
WxJK).

As in MPCA, batches with unusual operation will appear in MPLS either as

(9]
batches with large t-scores, or with large residuals in the x-space (Qy = Z E(i.c)’), or
(|

with both. Additionally in MPLS, if the residuals for a batch in the y-space
by )
Q= ZF(i,c):) are large, it means that its final product qualities are not well predicted

c=1

by its process measurements through the MPLS model.
The SBR example described in Section 2.3.1 will be used to illustrate the MPLS
method. The resulting latex and polymer properties of the product in this examp'e werc

summarized at the end of the batch in five quality variables (Y (50x5)): (1) composition

(% styrene), (2) particle size (/‘;\), (3) branching (branches / reacted monomer units), (4)
crosslinking (crosslinks / reacted monomer units), and (5) polydispersity.
The ability of MPLS 10 discriminate between batches with acceptable product and

unsuccessful batches was tested through a post analysis of the 50 normal batches plus the
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two batches with product quality barely outside the acceptable region. MPLS was able to
detect clearly these abnormal batches by placing them in the reduced space (t-plots) away
from the main central cluster formed by the 50 normal batches, as MPCA did in Figure
2.4. Having established the observability of faults, an MPLS mode! was built from the 50
"good" batches, which summarizes the information contained in them about the normal
operation of the process. This model will be used as the statistical reference to classify
new batches as normal or abnormal.

Two PLS components were needed based on cross-validation (Section 5.1), to
capture the variation of the process variables about their average trajectories which is
most predictive of the final product qualities. The cross-validation R statistic for the first
three PLS components found to be 0.47, 1.08, and 1.21. The cumulative percentage sum
of squares explained (%SS) by the two principal components of the X and Y matrices and
of cach quality variable separately, is given in Table 5.2. One should always use cross-
validation to determine the number of components in the PLS model and to assert its
predictability. To rely only on the percentage of explained Y is misleading because of the
large number of predictor x-variables (9x200=1800 in the SBR example). Any regression
model could have accounted for a large portion of the variability in the Y. For the
industrial example in Section 2.3.2, cross-validation revealed that only the first PLS
component may be significant for predictions. The & statistic in this industrial example

for the first three PLS components was found to be 1.03, 1.84, and 3.28.

X Y Y1 Y2 Y3 Y4 Y5
-Eomponent 1 14.82 57.i10 52.87 7.93 91.21 91.23 4224
Component2 | 23.05 65.08 54.30 20.79 01.28 91.29 67.74
MSR/MSE (F, 47 05 = 3.20} 27.92 6.17 24597 | 246.21 | 49.93

Table 5.2

first two PLS components for the SBR reference database.

Percent sum of squaces explained in X and Y and in each of the quality variables by the

The last row in Table 5.2 is the regression statistic Mean Sum of squares due to

Regression (MSR) over the Mean Squared Error (MSE) (Section 5.1.1) with its 95%

critical value, which shows how well the x-data account for the variation in each y-




variablz. These F-tests provide anather way from a regressicn point of view to check how
well each of the y-variabies is explained by the MPLS model. As it can be seen from Table
1, quality variables 3 and 4 are explained very well from the MPLS model and only quality
variable 2 (particle size) is poorly explained by the process measurements. This arises
because the particle size is determined largely by the variation in the number of seeded
particles charged initially in the reactor, and it is not influenced much by resulting process
conditions.

The t; vs. t; and the residuals plots indicated, as in MPCA, that there are no
unusual batches in the reference database. Plots of the latent vectors t vs. u are shown in
Figure 5.1. When the latent variables (t, u) of the x and y-space are highly linearly
correlated, then all the observations in the t vs. u plots fall close to the diagonal of the
graph. The plots in Figure 5.1 show that the variation explained by the first two PLS
components in the x-space is very well correlated with the corresponding variation in the
y-space. The linear nature of these plots suggests that nonlinear PLS (Wold, 1992) would
probably not be needed. Indeed. performing such a nonlinear PLS gave essentially
identical results to the linear analysis. The particular unfolding of X that is being used and

the subtraction of the average trajectories from the process measurements have apparently
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Figure 5.1 T vs. U plots for the two MPLS components. Each point represents one of the 50 batches

in the reference SBR databise. The t and u-observations, for botlt MPLS components, fall close to the
diagona! line of the graph. This indicalcs that the MPLS tatent variables in the x and y-space (1. u) are

well correlated.
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eliminated most nonlinear effects in the data. Plots of the percent explained in X with
respect to time and variables in MPLS were similar to those obtained from MPCA in
Figure 3.2.

The predicted t-scores ( t (1xR)), the predicted quality variables (¥ (1xM)), and
the residuals (e (1xKJ), f (1xM)) for a new batch X, ., (KxJ) are given by:

unfold and scale X ... (KxJ) to x... (KJx1)

NEW
t=xl WP'W)' | §=1Q" |, e’ =xjg -t , T=y-§

The problem which arises again in the on-line application of the above equations is
that the X, . matrix is not complete until the end of the batch operation. The approaches
suggested in Section 4.2 can be applied also in MPLS. The approach shown here uses the
ability of PLS to handle missing data (Kresta et al., 1994; Nelson et al., 1995). PLS does

this by projecting the already known observations up to time interval k (x,,, (kJx1)) into

the reduced space defined by the W and P matrices in a sequential manner as following:
at each time interval k
CEXNEWE
forr=1toR
t(1.r) = e W(L:k),r) / (W(LkJLr)W(1:k),r})
¢ =¢ - t(,r)P(1:kl.r)
end
L)
SPE, = Y e'(c)
ik Bl
where the symbol (1:kJ.r) indicates the elements of the rth column from the first row up
and to the kJth row. PLS, essentially, predicts these missing values by restricting them to
be consistent with the already known values, and with the correlation structure of the
process variables as ¢ fined by the W and P matrices. This approach gives t-scores very

close to their final values as the Xpew becomes complete, but during the first few time

intervals may give poor estimates of the t-scores since there is so little information to
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work with., However, in our experience with MPCA and MPLS on this and other
examples (Nomikos and MacGregor, 1995; Kourti et al., 1995), this method works well
by the time one has about 10% of the batch history. The reasons for this is that one is not
building a PLS model based on large amounts of missing data, but using an already well
established PLS model to predict the future behavior of a new batch. Furthermore, the
early data are complete for all the measurement variables up to the current time interval,
and are very good for predicting the future trajectory deviations which arise from
variations in the initial batch charge conditions (ie. impurities, particle concentrations,
etc.).

Now, one can calculate at each time interval the predicted t-scores, the predicted
final quality variables, and the residuals. Note that there are no residuals (f) in the y-space
during the on-line monitoring since the actual values of the quality variables will be known
only at the end of the batch, Thus as in MPCA, one has to monitor the t-scores and the
SPE for a new batch by using SPC charts which can be constructed as discussed in
Chapter 4. If an abnormal situation is detected by either of these charts, one can diagnose
the fault by interrogating the underiving MPLS model to find which process variables were
primarily responsible for the detected deviations. This diagnostic information can be found
by checking the contribution of each process variable to the deviations observed in the t-
scores and residuals as described in Section 4.5.

The same multivariate SPC monitoring ideas that were developed using MPCA
can be extended directly in MPLS. The SPC charts for the t-scores and SPE can be
constructed exactly as described in Chapter 4. The additional information that one can get
from MPLS is on-line inferences of the final quality of the product. MPLS gives, at each
time interval, predictions of the final quality variables of the product. These predictions do
not have anything to do with the actual values of the quality variables at a given time
interval. They only refer to the values which the product quality variables will have upon
completion of the batch. The assumption that the y-variables are distributed Normally as

N(XB.5?) can be checked by plotting the y-residuais at each time interval for ali the
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batches in the reference database (Drapper and Smitt, 1981). These plots for the SBR
example showed no significant deviations from Normality.

Figure 5.2 shows the on-line moaitoring charts, with their 95% and 99% control
limits, for two batches. One batch is the normal batch used in Chapter 4, and it shows no
abnormality in any of the monitoring charts. The other tatch i the abnormal batch with
the problem ha.-way through its operation, and is clearly flagged as abnormal in the SPE
chart around time interval 105. After this time interval the observations from this batch
move away from the reduced x-space. The MPLS model is not any longer valid, and one

should treat the predicted t-scores with caution.
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Figure 5.2 Manitoring charts for the SPE and ty-scores wilh their 95% and 99% control limits

(dashed and solid lines) for the normal SBR batch (kelt hand side plots) and for the abnormal SBR batch
with problem halfway through its operation (right hand side plots). The abnormality in the bad batch is
clearly fagged in the SPE chan after time interval 105,
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Figure 5.3 shows the on-line predictions with their 95% and 99% confidence
intervals, for three of the five quality variables for the two batches. The predictions for the
normal batch match well the actual final quality values of the product. For the abnormal
batch, the quality predictions after time interval 100 indicate its problem thai the product
qualities have started to change. Quality variable two, which was poorly expiained in the
MPLS model, has the poorest predictions for the abnormal batch. On the other hand,
quality variable three, which was very well explained in the MPLS model, has very good
predictions and its final prediction is very close to the final measured value for the
abnormal batch. Since the MPLS model is no longer valid tor the abnormal batch after
time interval 105 (the SPE exceeds its control limits in Figure 5.2), the predictions afler
this time interval are not trustworthy. The confidence limits for the final product qualities
are no longer valid, and they have not been plotted beyond this time interval in Figure 5.3.
PLS models both x and y-spaces to give good predictions, and also provides a measure
through its residuals in the x-space of how well the PLS model can be trusted. Although
the predictions for the abnormal batch may not be accurate after time interval 105, the
directions that the quality variables follow can be trusted in general, and this can help

considerably in diagnosing the source of the abnormality.

5.1.3 MPCA or MPLS

The question that arises in monitoring batch processes is whether to use MPCA or
MPLS. MPCA uses only the information about the process operational behavior (X) and
its model describes how the on-line process measurements deviate from their average
trajectories when the process operates in an "in-control” state. As a consequence, it will
flag any abnorimality in the process measurements even though it may be irrelevant to the
quality of the product. As an example, a batch-run may have a slightly different agitator
power profile because of a deterioration in its agitator mechanism. This event will cause an
alarm in the MPCA monitoring. If the agitator power is not correlated with the final

product qualities, the MPLS monitoring may not detect this deterioration in the agitator.
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Figure 5.3 On-line predictions. with their 95% and 99% confidence intervals (dashed and solid

lines), for three of the five final product quality variables for the normal SBR batch (left hand side plots)
and for the abnorma! SBR batch with the problem halfway through its operation (right hand side plots).
The actual final product qualities are indicated by dinmond marks. The PLS model for the abnormal batch
is not valid after time intenval 105 (absence of confidence intervals), and its predictions are not generally
trustworhy,
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Therefore, which approach one uses will depend upon whether or not one is primarily
interested in events that will probably offset product quality or in any type of abnormal
behavior. In general, it may be beneficial to try to detect all process deteriorations and
correct them before they lead to permanent malfunctions.

A difficulty with using MPLS to analyze and monitor batch processes is having a
sufficient number of quality variables which describe adequately the product quality. There
are many types of batch quality variables. Typically, these are measurements of physical
properties of the product, or variables which indicate if the product will have acceptable
operation in the next stage, and sometinies variables from customer feedback. For an
effective PLS, the Y matrix should have as columns, quality variables which are closely
connected with the batch process, as to be well correlated with the process measurements.
Also, these quality measurements should span a wide range of product properties because
it is hard to believe that the whole batch operation can be reflected to a single quality
measurement, or that one quality measurement can capture all the quality aspects of the
final product. Another difficulty with the batch quality measurements is that they are
usually susceptible to a significant amount of measurement error. In such cases, the
uncertainty in the quality measurements can make the use of MPLS inappropriate.

A potential combination of MPCA and MPLS in monitoring batch processes is to
build an MPCA model based on a reference database of normal batches, and an MPLS
model based on a database of both successful (product within specifications) and
unsuccessful batches. The MPCA model will be used for on-line monitoring as it has been
described in Chapter 4. When an abnormality will be detected by the MPCA model, the
MPLS model will be used to give on-line predictions of the final product quality as
described in this chapter. In this case, the MPLS model will be valid over a wider range of
product qualities, and its predictions will be in general more accurate than those based on
an MPLS model built on only successful batches. Every time an unsuccessful batch will be
detected, the MPLS model will be updated by augmenting its database with the new data

from the unsuccessful batch.
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5.2 Multi-Block MPLS
The batch monitoring schemes based on MPCA and MPLS proposed until now,

can be extended to situations where the process can be naturally blocked into subsections.

It is typical in batch processes to have a pre-processing stage (either in the same or in a

different vessel) before the actual reaction stage. Also, extra information relevant to the

batch process, usually is available in the form of a Z matrix. This Z matrix may contain

information about feed-stock qualities, initial batch conditions of temperature and

pressure, compositions of the initial charge, hold times in the reactor or in preprocessing

vessels, and discrete conditions such as operator shifts or raw material suppliers. All these

different blocks of information along with the end product qualities (Y) can be brought

under a single SPC scheme (Figure 5.4) with the use of Multi-block projection methods

Figure 5.4
methods.
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(Wold, 1987b; Wangen and Kowalski, 1988). These methods allow one to establish
monitoring charts for each block as well as for the entire process. Examples of Multi-
block approaches in Chemical Engineering can be found in Stama (1991), MacGregor et
al. (1994), and Kourti et al. (1995).

Although here the simple Multi-Block MPLS (MB-MPLS) algorithm will be
presented and applied in an industrial example, the Muiti-block MPCA algorithm is similar
and can be found in Wangen and Kowalski (1988). Actually, the Wangen and Kowalski
algorithm treats the more general problem where one has complex interblock relationships.
Blocks that both predict and are predicted can be modeled through their algorithmic
formulation.

Multi-block data amnalysis has its origins in the fields of sociology and
econometrics. Multivariate projection methods based on the NIPALS algorithm, analyzing
such block data are largely due to Herman Wold (1982) and Svante Wold (1987b). The
MB-MPLS algorithm presented below is based on the work of Wangen and Kowalski
(1988). Lets assume that one has A (a=1,2,.,A) X, (IxM,) predictor blocks and one
explanatory Y (IxM) block.

MULTI-BLOCK MPLS ALGORITHM
i unfold and scale X, and Y
i, choose a column of Y as u
1il. fora=lto A
w,=X,'u
w,=w,l| W, |
t,=X,w,
end
iv, T=[t; o ... ta]
V. w=T"u

vi. weewd | we
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vii. t=Tw,
vili,  g=Y't/(t't;)
ix.  v=Yq/(q'q)
X. if u has converged then go to step xi, otherwise go to step iii
Xi. fora=1to A
Pa=Xa't/(1,'t,)
E,=X,-t;p.’
end
F=Y-tq'

Xil. go to step ii with X,=E, and Y=F to extract the next component

By extracting R components the X, and Y matrices are decomposed as:

R R
x: = Zl.‘nrp:.l + El A Y = Ztl.rq: + F

r1 t=z]

The y-predictions ¥ (1xM) for a new sct of observations xxiw. (1xMa) are given by:

scale Xypw.a
€.=XnEwa 920
forr=1to R
fora=l10 A
t,=e,w,
end
t=[t) t; ... ty]
t.=tw,
e,'=e,-tp,
y=y+tq

end

The algorithm can be thought as an expansion of PLS where single measured

variables in the x-space are replaced by blocks of measured variables. The order that the x-
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blocks will be placed does not play any role in the algorithm. At each iteration, the
algorithm tries to find the directions (w,) of maximum vaiiability in the x-blocks. Then, it
collects the t-scores (t,) from each block into a composite matrix T upon which a PLS
iteration is performed to give a consensus t-score (t.) which is highly correlated with the
y-block. Because of the deflation procedure in step xi, the t-scores for each block (t,) are
orthogonal, but the consensus t-scores (t.} lack the orthogonality property.

How one will define the blocks is usually based on engineering judgment and on
the objective of the study. General rules are given in Slama (1991) and MacGregor et al.
(1994). Each block should define a process unit or data from highly correlated variables.
The interaction between blocks should be minimal. Only variables which connect two
blocks (such as feed streams) shall be present in more than one block. When the blocking
has been done in a meaningful fashion where there is not much of interaction between
blocks, the consensus t-scores (t.,) are close to being orth.ogonal. A diagnostic test to
check if the blocking was successful, is to compare the percent explained in the Y from the
MB-MPLS model and that of MPLS models between each X, and the Y. These should be
comparable for the same number of components (R).

The advantage of putting different sections of a process or other set-up conditions
into separate blocks (X,) is that one can establish monitoring charts and diagnostic plots
for each block separately as described in Chapter 4. Additionally, the consensus t-scores
(t.) can be used to overall monitor the process. By simply combining all the x-blocks into a
single matrix X=[X, X; .. X,]. one loses interpretation and the monitoring and diagnostic

schemes can become cumbersome to manage and comprehend.

5.2.1 Scaling and Contribution of Each X, Block

The scaling of each x-block is of great importance in MB-MPLS. By simply
subtracting the mean of each column of X, and Y and dividing by its standard deviation,
one may give an undue importance to those x-blocks with the largest number of variables

in them. An x-block with twice as many variables of another block, carries two times more



96

variance. Clearly, the x-block with the most variables will dominate the MB-MPLS model
since the y-predictions will be heavily based only on the information that this x-block
carries.

The scaling that will be used here is based on the assumption that each x-block is
equally important to predict the Y matrix. Initially, all matrices (X, Y) are scaled by
subtracting the mean from each column and dividing by its standard deviation. Now, each

X, (IxM,) block has variance equal to M, variance with it since the variance of each of its

A
columns is 1. The total variance of all x-blocks is ZMa . The scaling factor (sf;) for each

X, block which will give equal variance to all blocks, is given by:

By multiplying each x-block with this scaling factor, all x-blocks will have the same

A
variance equal to ZM“ / A If one has knowledge of how important each x-block is for
asl

the y-predictions, one may multiply, on top of the proposed scaling, each x-block with a
number that reflects its importance.

To find how much each x-block contributes to the y-predictions, one has to

expand the equation for Y.
R K
Y = Zlc_,q: S taq) Floqe o g = Tovaq) + Taweaqz' + 0+ Tewer@y’
[

Each of these terms. which are the contributions of each component to the y-predictions,
can be further expanded using the t-scores of each x-block (t.,) as:

Twaq' = tuwe(i)ql + tawe{2)q' * ... + tuw.(A)q/
Thus, a measure of the contribution of each X, block (cf..) to the y-predictions for a given
component (r) is given by:

chir = (tc'tas) wedla) (97'G0)
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The first term in the contribution factor depicts the amount of variance explained in each
block. This amount of variance (t,.'t.,) is multiplied by its block weight (w..(a)) to give
the actual amount of variance that contributed to the y-predictions. The last term (q,'qy),
which is common for all x-blocks for a given component (r), reflects the importance of
each component to the predictions. This way by adding all the cf., factors for all
components for a given x-block, one gets an overall measure of each x-block contribution

to the y-predictions.

5.2.2 Multi-block MPLS in Industrial Data

Data supplied by DuPont Canada from an industrial polymerization process,
similar to the one described in Section 2.3 .2, will be used to illustrate the proposed MB-
MPLS method. There are two distinct stages in the process. During the first stage, the
solution of ingredien:s are loaded into an evaporator, where part of the solvent is
vaporized and removed from the vessel under proper control of temperature and pressure.
This stage takes approximately one hour. Upon finishing of this stage, the rematning
reaction solution is transferred to the reactor where the polymerization takes place.
Feedrate, temperature and pressure profiles are implemented with servo-controllers, and
precise sequencing operations are produced with tools such as programmable logic
controllers. After approximately 190 minutes, the finished product is expelled under
pressure from the reactor vessel. Two critical property measurements refated to the extent
of the polymerization and to the product molecular weight distribution, are usually
received 10 to 16 hours after the completion of the batch. These results cannot be used in
a timely fashion to compensate for poor product quality. Furthermore, it is often difficult
to establish what caused the quality variables to deviate from aim in the manufacture of an
unsuccessful batch.

A dataset of 92 batches was provided from the above process. Unfortunately, all
batches in this dataset were successful ones, and the company ccald not provide any

unsuccessful batches. The purpose of the analysis will be to investigate if a Multi-block
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SPC scheme is conceivable, and to identify major components of process variation. Four
blocks of information were available for each batch. Two x-blocks consisted of the on-line
measurements from the evaporator (X; (92x10x86)) and from the polymerization reactor
(X; (92x21x231)). During the evaporator stage (86 time intervals), 10 on-line
measurement variables are available around the evaporator and its heating system. Four of
them are temperatures, four pressures, and two are flowrates. The polymerization stage
has a duration of 231 time intervals, and 21 measurement variables are monitored. Eight
variables are pressures, eleven temperatures, one flowrate, and one measurement from an
energy balance.

For each batch there was also available information about the primary solution
qualities and other pre-processing conditions. The first block of such information Z,
(92x9) consists of 9 quality variables of the primary solution of ingredients charged in the
evaporator. These measurements are related to color, pH, temperature, and other physical
properties of the solution. The primary solution is kept in tanks, and each tank supplies
three to four batches. Thus, the same set of quality measurements is common for every
three to four batches. The second block Z; (92x8) contains any set-up and pre-processing
information. Four operator shifts run ail the batches and one indicator variable (1 or 0) has
been assigned to each of them. The fifth variable in Z is the idle time before the start of
the polymerization stage. It measures the waiting period for the reaction solution in the
evaporator to be charged in the reactor vessel. The last three variables in Z, are cycle
times which measures the time for certain variables to achieve important temperatures or
pressures during the polymerization stage.

First a preliminary MB-MPLS analysis on the whole database was conducted in
order to identify any unusual batches. The process blocks (X;, X;) were unfolded to X
(92x860) and X; (92x4851) matrices. All matrices were mean centered and scaled to
column unit variance, and the scaling factors (Section 6.2.1) used to give equal variance to

each block are given in Table 5.3.
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Z, Zz, X X,
sf 12614 | 13.379 1.290 0.543
Table 5.3 Scaling factors for the x-blocks,

An MB-MPLS analysis of this database without using these scaling factors resulted
in modeling only the variation of the huge X; matrix, ignoring any information from the
other predictor blocks. This was evident in the t-score plots from this analysis where the t-
score plot of X, was exactly the same as the plot of the consensus t-scores which
measures the overall variability of each batch.

The t-plots from this preliminary MB-MPLS analysis are shown in Figure 5.5. The
t-scores of three to four consecutive batches, as shown in the t-plot of Z,, are the same
since these batches had the same primary solution qualities. The second component, where
its axis span (-60, 60) is double than that of the first component (-30, 30), indicates
batches 54 through 57 to be different. Variable 6 was unusually high for these batches.
This variable is a measure of water conductivity which has little effect on product quality,
although such high values as these in batches 54 through 57 are alarming for the process
operation. The t-plot of Z, discriminates batches | and 30 from the rest. The idle time for
these batches had high values. Batch 30 stayed almost twice the average time in the
evaporator, and its contents became quite hot. This had a major effect in the
polymerization stage where this batch achieved temperature and pressure set points faster
than any other batch in the database. This is why this batch is also flagged in the t-plot of
the X, block. Its behavior had an impact in the product quality variables which had
borderline values. Batch | stayed in the evaporator a considerably longer time than batch
30 (about ten tiines longer). Its contents were heated for the first pant of its idle time, but
then gradually it cooled oft. It is suspected that some polymerization took place during the
last part of its idle time, resuiting in a peculiar behavior at the beginning of the
polymerization stage. Most of its variables were below their mean trajectories, something
which resulted in this batch being placed away from the central cluster in the t-plot of X;.

One of its quality variables had a somewhat high value. The fact that the product qualities
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Figure 5.5

block. Fhe consensus t-score plot is given at the bottom of the figure.

Multi-block MPLS analysis of the industrial example. T-score plots for each z and ~-
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of batch 30 were more affected than those of batch 1 is reflected on the position of these
batches in the t-plots of the Z,, X, and in the consensus t-plot. In all these plots, batch 30
has been placed further away from the central cluster of normal batches than batch 1. The
t-plot of X, identifies batch 58 as very unusual. All of its trajectories were totally different
from the mean trajectories in the evaporator stage. No explanation was given for its
strange behavior, or why this behavior did not have any impact in the product qualities.
Batches 1 and 30 are identified as different in the consensus t-plot. Only these batches had
an unusual behavior {Z,, X;) which also affected their product qualities,

A second MB-MPLS analysis was run, this time excluding batches 1, 30, and 54
through 58. The scaling was the same as in the preliminary analysis. Two components
were found to be significant based on cross-validation. The R statistic for the first three
components was found to 0.89, 0.59, and [.11. The t-plots for all the blocks and the
consensus t-plot showed no other abnormal batches, The contribution of each block to the

predicted Y is given in Table 5.4, and the percent explained from each block is given in
Table 5.5.

YA Z, X, X:
Component | 2.08 13.24 3.37 12 89
Component 2 7.61 15.35 2.05 00.92
Overall 9.69 28.59 542 13.81
Table 5.4 Contribution factors of cach block to the y-predictions, for cach componeant and overall,

Block Z, is the most important block for the product quality because of its idle
time and its cycle times which play a very significant role in the polymerization stage. The
indicator variables for the crew shifts have a minimal effect in the predictions because of
the very low values in their w-loadings. The next significant block is X, where the
polymerization operation is highly related with the idle and cycle times of block Z;. The
teast important block is the evaporator X, which seems to have little effect on quality.
Note that the percentage explained in the x-blocks (Table 5.5) are not good indicators of

the importance of each x-block to predict Y. It is clear from the above analysis that by
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controlling closely the idle and cycle times of Z,, the reactor operation (X2) becomes more

reproducible and should result in the production of consistently high quality product.

Z, Z, X, X Y
Component | 19.17 12,75 35.05 22.44 11.81
Component 2 44.14 27.30 39.58 37.69 31.14

Table 5.5 Percentage of explained sum of squares (cumulative) from the MB-MPLS analysis of the
industrial example

The block contributions to the product qualities coincide with what the company's
engineers think about the importance of each block. The weighting factors of importance
that they gave us were: | for Z,, O for the crew shifts and 3 for the rest Z,, 2 for X, and 4
for X3, An MB-MPLS analysis of the normal database, using the company's scaling factors
as described in Section 5.2.1, gave comparable percentage explained in the x-blocks and Y
with those in Table 5.5 and the t-plots were very similar to those in Figure 5.5.

Although the percentage explained in Y by extracting two components is only
about 30%, one has to consider the measurement error in the quality variables. The
variance of the measurement error in the two quality variables is estimated to be 0.323e-4
and 0.087e-4 respectively. The variance of the two quality variables in the normal database
was found to be 0.818e-4 and 0.667e-4 respectively. Therefore, only about 70% of the
total variability in Y can be theoretically explained. From this perspective, the MB-MPLS
model accounts for more than 50% of'the explainable variability in the Y.

As discussed in Section 5.2, one way to check if the blocking was sensible and
effective in predicting Y, is to compare the percent explained Y in the MB-MPLS model
with that based on MPLS analyses between each x-block and Y. The results from such
analyses can be found in Table 5.6. In these analyses, each matrix was mean centered and

column umit variance scaled.

Z, Y Z; Y Xy Y X Y
Component 1 | 21.05 | 327 | 19.07 | 21.88 | 12.77 | 1545 } 3508 | 9.74
Component 2 | 31,55 | 9.23 § 43.04 | 23.96 | 2681 | 30.57 } 39.15 | 27.7]

Table 5.6 Percentage of explained sum of squares (cumulative) from MPLS analyses between cach
x-block and Y.
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The above percents explained sum of squaresare comparable with those in Table 5.5. The
MB-MPLS model outperforms ary individual MPLS model. Note, that the percentages of
Y explained in Table 5.6 are not characteristic of how well each x-block predicts Y.
Cross-validation could have answered this question. The MB-MPLS model by
hierarchically combining information from each x-block extracts variability directions in
each x-block which are interrelated and most predictive for Y.

Based on the above MB-MPLS analysis, it should be reasonable to build a
monitoring scheme according to the principles given in Chapter 4. The main advantage
will be to identify potential unsuccessful batches early from the beginning of an operation.
In other examples examined (Kourti et al., 1995) an MB-MPLS model clearly alarmed
batches with problems indicated in feed qualities or in pre-processing conditions which

resulted in product out of specifications.
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CHAPTER 6 Comparing Covariance Matrices and
Subspaces Developed by Projection Methods

Projection methods such as PCA and PLS are used in a broad spectrum of sciences
including psychology, biology, chemistry, chemical engineering, and quality control. In
many cases, one wishes to check if the projection model developed for one process or
physical system is valid to be used on another with a similar configuration, and in the case
thai it is not valid, to identify the differences between the two systems. As an example
from chemical engineering, consider two parallel units (eg. reactors or distillation
columns) which have the same design and operating policy, and one wants to apply the
PCA or PLS model developed based on data from one of the units to the other unit. The
same question comes up also when one wishes to switch froma PCAtoa PLS model, and
vice versa. It is of interest to know how different are the two models in modeling the x-
space and what are their main differences. Also, in cases where the two models have
different number of components, it is of interest to check if the low dimensional space is
contained in the space defined by the higher order model. Another important situation is to
know when the correlation struciure in the measurement variables has changed
significantly, and thus, the projection model used to monitor or control the process has to
be updated. This is a common situation in chemical engineering since most of the
processes are improved or redesigned periodically.

Comparing subspaces based on projection methods is equivalent to a comparison
of covariance matrices. This is an interesting problem in statistics, and in the first part of
this chapter we shall explore traditional statistical methods indicating their weaknesses. A
new statistical approach will be presented which has a nice geometrical interpretation. Its
basic development will be given, along with suggestions for improving its distributional
features. Two examples will be given for this approach. The first example is based on the

industrial polymerization process of Section 2.3.2, where we shall test if the same MPCA
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model can be used in two parallel batch reactors. In the second example, we shall examine
if the MPCA (Section 3.3) and MPLS (Section 5.1.2) models of the SBR example define
the same subspace in the x-space. The chapter will close with a discussion of the

difficulties of tests based on residuals from projection models.

6.1 Maximum Likelihood Ratio Test

Let X (naxm) and Xi (npxm) be mean centered matrices of observations from
Multinormal distributions N(ua.Za) and N(jts.Zn) respectively. The maximium likelihood
ratio test statistic for equivalence of covariance matrices (Ha: Za=Zg, Hi: Za2Zp) is given

by (Seber, 1984; Mardia et al., 1989):
{ = nanIn{det(Sax)) - na In(det({na-1 )Sa/na)) - ni In(det((ny-1)Sw/np)) ~ Xr:n(m»:;f:

where: na=natng . San=((na-1)SaH(m-1)Su)nas , Sa=Xa'Xa/(na-1) L Si=Xp'Xo/(np-1) |
and In(’) and det(") symbolize the natural logarithm and the determinant respectively. Itis a
one-tailed test, and its critical level () is given by the probability of / exceeding its
observed value under the null hypothesis Ho. The test becomes less accurate as the ratio
na/ny differs significantly from unity. Several approximations have been suggested (Box,
1949; Gnanadesikan and Lee, 1970), and their properties (power of the test, exact
distribution, sensitivity to normality) have been studied for certain values of na, ny, and m
(Ito, 1969; Layard, 1974; Lee et al., 1977, Nagarsenker, 1978).

The maximum likelihod ratio test and all of its approximations are based on
determinants of sample covariance matrices. This is the real weakness of the test because
it checks mainly for equality of the overall variance (det(S;)) that each sample carries, and
ignores differences in directionality making out this variance. This will be illustrated
through an example shown in Figure 6.1. Part of the problem in the maximum likelihood
ratio test is that it tries to reduce all the information from the sample covariance matrices
into a single statistic (/) for characterizing the overall covariance similarity between two
samples, and it does this by evaluating the likelihood function only at one point: its

maximum,
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The sample covariance matrix (S) of a mean centered observation matrix X (nxm)
can be decomposed based on principal component analysis (Section 2.1) as:
S = X'X/(n-1) = (TPY(TP')/(n-1) = P(TT)P/(n-1} = PAP/(n-1)
The orthonormal loading matrix P has as column vectors the directions of maximum
variability, and the diagonal matrix (A/(n-1)) has as elements the variance that each
principal direction carries. The determinant of S is equal to the product of the elements of

(AM(n-1)).

A A=

Y7 s
X

x1 x1
e i—
le C
sample A sumele
arple B uple A
Figurc 6.1 Ellipscs of two samples which have equal sample covariance weterminants. The axis

lengths of these ellipses are equal to one standard deviation. In the iefl hand side plot, the principal axes
of sample B have been tilted by approximately 25 In the right hand side. both samples have the same
principal axes, but the variance in each dircction is different,

Figure 6.1 has two examples which will be discussed in this and in the following
section. The left hand side plot in Figure 6.1 shows the distribution of two samples (Xa
and Xpu). The number of variables (m) is 2, and for convenience the number of
observations {n,, ny) is assumed to be equal to 31 for both samples. The two sample

covariance matrix can be written as:

'

[l 07120 0][1 0}
4 01 (o 1] o 300 1
S, = = L =4
A {0 1] 31-1 - detSa)
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[2/\/5 1/5][120 0][2/@ 1/J§]

34 12] |1/45 -2/450 0 3001/45 —2/45
S"=[12 16]_ i = 3-1 2 2 + deUSy)=4

Both sample covariance matrices have equal determinants, which results in ellipses of

equal area in Figure 6.1. The difference in these two covariance matrices is that the
principal axes of S, have been tilted by approximately 25°. The maximum likelihood ratio
test gives /=6.609 which has a critical level (x; ) of p=0.087. This test is influenced largely
by the determinants of the sample covariance matrices and ignores differences in the
principal directions of variability.

The real problem with this test comes apparent as the number of variables
increases and the variables become more correlated. In most examples encountered in
practice, the sample covariance matrices are ill-conditioned or singular. As a result, their
determinants are close or equal to zero, which makes this test and any of its proposed

approximations totally inappropriate.

6.2 A Geometric Test

Krzanowski (1979) gave a test for comparison of covariance matrices based on the
underlying geometry of multivariate observations. This test examines the angles formed
between principal components from different samples. Let Sx=PAAsPA/(na-1) and
Su=PuAnPu/(ny-1) be the two sample covariance matrices as described in Section 5.1,
The angle cosine between the ith principal component of sample A and the jth principal
component of sample B, is given by the (i.j} element of P,'Ps. By looking at the diagonal
elements of the PPy, matrix, one can judge if the principal components from different
samples coincide or not. The cosine of the minimum angle between an arbitrary vector in
the space defined by the principal components of sample A and the one most nearly

parallel to it in the space of sample B, is given by Jh_ where A, is the largest eigenvalue

of P,'PaPy'P,. A small minimum angle indicates that the two spaces nearly coincide. Also,
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the trace of Py 'PgPy'P, is between 0 and R, where R is the number of principal
components retained in the sample covariance matrices. A value close to 0 indicates that
the two spaces are orthogonal, and a value close to R indicates that the two spaces
coincide. The trace of Py'PyPy'P, and the minimum angle provides a measure of the
overall compatibility of the two covariance matrices. This approach is attractive because
of its geometric interpretation, it can handle ill-conditioned or singular sample covariance
matrices, and one needs only the p-loadings from a principal component analysis to apply
it.

We now investigate how this approach performs on the example of Section 6.1
(left hand side plot of Figure 6.1). The angles between the principal components of the
two samples are indicated in parenthesis.

2175 (2657 1/4/5(634") [, O]
PP, = . P'P P'P\ -
o ['15(63.4") —2/\/3(26.5")] ATRTREN T g

it clearly shows that the principal components of the second sample have been tilted by
approximately 25" from those of the first sample. The minimum angle is zero, and the trace
of PA'PuP,/'P, is 2 equal to the number of principal components in the covariance matrices.
Of course in this example by using two principal components in the sample covariance
matrices, we have filled the two dimensional space, and thus the conclusions from
PA'PyPy'P. are meaningless. Although in this case it was trivial to interpret why the
P.'P,,P/P, indicated that the two spaces coincide, in larger problems this becomes a
drawback of the method. The same space can be spanned by two different sets of principal
components, and this will become apparent only from the angle cosines in the PPy
matrix. But, even the angles cosines do not give any information about any differences in
the amount of variability that each principal direction carries. In addition, the
interpretation of the angle cosines is not straightforward since there is not a measure
(statistic with known distribution) of what angle magnitudes are considered significant for

two covariance matrices to be different.
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In the case where the principal directions are similar but the variability in these
directions are different, the above approach will fail to detect any difference. This situation

is illustrated in the right hand side plot of Figure 6.1. The two sample covariance matrices
in this case are;

!

[l OTIZO 0][1 0]
4 0] lo 110 30fo0 1
= = = S.3)=4
Sa [o 1] 311  dellS,)
[l 0}[225 oII 0]’
75 0 o 1]l o 16lo 1
S¢ = = , deuS,)=4
0 0533 31-1 :

Both have the same principal directions, but each direction carries a different amount of
variability. The P,'P.- and P,'P-P-'P, matrices are both equal to the identity matrix, which
shows a perfect covariance similarity between the two samples. The maximum likelihood
ratio test for this example gave /=6.026 which has a critical level (%3 ) of p=0.111. Again

its p-value is quite high because the determinants of the two sample covariance matrices

are equal.

6.3 A New Approach: Directional Variance Test

In this section we shall develop a new approach for comparing covariance
matrices. The approach is based on both the geometric ideas discussed in Section 6.2 and
on the Union Intersection Test (UIT) principles. A UIT is not available for comparing two
sample covariance matrices (Seber, 1984; Mardia et al., 1989). Such a test would have
been able to test for overall equality of variance in every direction in the x-spaces defined
by the principal components of the two sample covariance matrices. Schuurmann et al.
(1973) have investigated approximate UIT for selected values of ns, nu, and m. The
proposed statistical test assesses whether the variance in any single direction of a sample

space A equals the variance that this direction has in a sample space B. In addition, it finds
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the worst direction with variance dissimilarity in the two spaces, and uses this as an overall
test.
Let Xa (naxm) and Xy (npxm) be mean centered matrices of na and ng

observations of m varitables from Multinormal distributions N{0,Z,) and N(0,Zg)
respectively. Let also )2,\ =T,P, and f(a =T,P; be their principal component

aporoximations (Section 2.1) with T (nixRy), P; (mxRy), and m2R; (i=A.B). The X, and

-

X, matrices may have a different number (R;) of principal components. In such cases, one
wants to check if the low dimensional space is contained into the higher one. From
Multinormal distribution theory (Mardia et. al. 1989), we know that:

X'X, ~ W (.-, XX, ~ W, (Z,.0,-1)
where W.(Z..ni-1) denotes the Wishart distribution with scaling matrix Z; and n;-1 degrees
of freedom. For a fixed m-vector a such that a'Z,a=0 and a'Zpa=0, we have that (Mardia

et al., 1989):

o s
A XiX,a . ¥ XiXa o s
-1 + Ang-1
a'Z, a e A Z,a "

The statistic which tests for variance equality between two spaces in the direction of a
fixed vector a (Ha: a'Z a=a'Zua, Hy: a'Z aza'Zua), is given by:

o' "" -' 1
A X (X,a

o' W ¢ h' ¥ o' . —_ 2 —_ —_
VD _ a A A H] '1:' a z’\ H] - I'l’\ l xnﬁ-l / (n,\ l) - n A l
- <t AP - e 2 na=lag=l
A Xi X, a' XX n, =1 X, /(=1 n,-1 ™

aEa
The test statistic VD checks for variance equality along the projections of a in the spaces
defined by the principal directions of the two sample covariance matrices. The restriction
that the projection of a in either space is different from zero (a'Z;a=0), works as a safety
to prevent the VD statistic to become either zero or infinity. For the univariate case (m=1,
a scalar, x; (nix 1) vector), the VD statistic gives the classical test for variance equality (Ho:

2 > 4 hd
6, =0;. Hiioy 20y}



111

L}
VD = 2XiXaa _

na-bog-i

w
w....l;. [F]

ax;x,a

where s;2 is the sample variance of sample i.

The proposed test is a two-tailed test and its critical level (p) is given by twice the

probability of VD exceeding its observed value (or becoming smaller than its observed

value in the case that is smaller than 1) under the null hypothesis Ho. An acceptable region
for VD at significance level ct is given by:

) = FnA-l.n“-l.l—u-'! < VD < F

(Fnl,—l.nA-l.u : np-lng-lail

Lets assume that a belongs to the eigenspace of Iy of non-zero eigenvalues

(a'Zpa=0), and thus it can be written as a linear combination of the principal components

of space B:
a= P,AL ¢
where ¢#0 is an arbitrary (Rix 1) vector. By restricting a to belong in the eigenspace of

non-zero eigenvalues of the sample covariance matrix (Su) in the denominator, we can find

the minimum and maximum value of VD.

vp - AXiXa o CACRXIXPACe ¢ ARIXL X PLAL e
A XX CAPIPAPIPA ce

This is a Rayleigh quotient {Goldberg, 1991) and its maximum and minimum values are

given by:

where A, and A, are the maximum and minimum cigenvalues of

"
V, = AP PIXIX P, A, Y (RuxRy) respectively. The direction (a.) in space B which has
the greatest difference in variance in the two spaces (worst direction) is given by:
aw = PHAZ:Ilzcw

where ¢, is the eigenvector of V), for which the VD statistic (eigenvalue of V) has the

smallest critical level (). It is very important here to point out that by restricting a to
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belong in the eigenspace of Sp, the VD statistic, which is a ratio, wil! give in g2neral a
different worst direction (a.) than if we invert VD and restrict a to belong in the
eigenspace of non-zero eigenvalues of Sa.

If we knew the distribution of the maximum and minimum eigenvalues of Vp, then
we would be able to construct a Union Intersection Test. Their distribution apparently
depends on the number of observations in the two samples, on the number of
measurement variables, and on the degree of correlation between the measurement
variables. It is complicated to derive the exact distribution of these eigenvalues since they
come from the data themeselves, and probably only Monte Carlo simulations can give

some insights for their distribution. The F, _, ., distribution will be used to compare the

magnitude of these eigenvalues, although the critical levels from such comparisons will be
underestimated. When the VD statistic for the worst direction (a4) has a large critical
level, this is indicative of significant covariance similarity. In the case with a small critical
level, one can conclude that there is a departure from covariance equivalence for at least
certain directions.

Based on the above analysis, the methodology that we propose for testing

_covariance matrices or subspaces developed by projection methods, has two steps:

i. Check for variance equality, based on the VD statistic, in the direction of all
principal companents on both spaces. This will show if the principal directions on both
spaces carry the same amount of variance. When two covariance matrices have significant
differences in their principal directions with respect to variance, then this is a very good
indication of their dissimilarity. Although in this case, as in the case of the eigenvalues of
the V|, matrix, the directions under investigation come from the data themselves, the VD

statistic is reasonably approximated by an F, _ ., distnbution since these directions are

at least independent from the data forming the numerator (for the principal components of
sample B) or the denominator (for the principal components of sample A) of the VD

statistic.
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ii. As an overall test, one can use the maximum and minimum eigenvalues of Vp to

check for overall similarity, and identify the direction (a.) yielding the highest difference in

variance.

This approach avoids the use of a single statistic to characterize the covariance similarity
of two samples, as does the maximum likelihood ratio test. It has a nice geometric
interpretation based on principal components, and identifies the worst direction (aw) of
covariance dissimilarity between two samples. It is based on UIT principles since it uses
the eigenvalues of Vj, as an overall criterion, and as the other two methods examined
earlier {Sections 6.1 and 6.2) it is invariant to rotation of the data. An important note is

about the computational requirements in calculating the VD statistic and the Vp matrix.
Even though the }‘(A and )A{“ matrices may be very large, especially when the number of

measurement variables (m) is large, the calculations of VD and Vy, are easily done if one
computes them as shown below:
VD = (a'PA)AMPAD) / (a'Pr)Au(Py'a)
Vi = Ap 2(PyPA)AAPAPU)AY
We now investigate how the proposed approach performs in the two examples

discussed in Sections 6.1 and 6.2. For the example in Section 6.1, the VD statistic values
between S, and Sy, for all their principal directions, along with their critical levels (Fao ),
are found to be:

VD4 = 1,176 (9=0.660) . VDa; = 0.625 (p=0.204)

VDu, = 0.850 (p=0.660) , VDy2 = 1.600 (»=0.204)
These results show that there are no significant differences between the principal
directions in the two spaces. The directions of the second principal components show the
least agreement, The V), along with its eigenvalues and eigenvectors are given below:

[0.85 —0.6] A, =1932(p=0.074) ¢!, =[-0485 0.874]
o=

wl
06 16| A, =0517(p=0074) ¢, =[0874 0.485]
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The overall test is more sensitive (»=0.074) to the dissimilarity of the two sample
covariance matrices than the maximum likelihood ratio test (p=0.087). The directions
(since both eigenvalues have the same critical levels) which have the greatest difference in
variance between the two sample covariance matrices are a,,'=.0.111 -0.123] and
2.2'=[0.032 0.115]. For the example in Section 6.2, the same analysis for the sample
covariarce matrices S, and Sc gave the following results:

VDa, =0.533 (»p=0.090) , VDa =1.875 (p=0.090)

VD¢ = 0.533 (p=0.090) , VDc, = 1.875 (p=0.090)

_{0.533 0 ] A, =1875(p=0090) ¢, =[0 1]

b1 0 1875] A, =0533(p=0090) c,=[1 0]

All the results indicate the same level of covariance dissimilarity (»=0.090), and the worst

directions are the directions of their principal components (a.,'=[0 0.250], a.2'=[0.066 0]).

6.3.1 Comparison of Two Industrial Parallel Batches

The first example is from the DuPont US batch process (clave A) described in
Section 2.3.2. Thirty six batches were selected (Section 3.1) as the reference distribution
of normal batches upon which the MPCA model was built. From a parallel reactor (clave
B) with identical configuration, 31 batches were characterized as normal batches from an
MPCA analysis of this clave. The MPCA t-plots for both claves are shown in the upper
plots of Figure 6.2. An MPCA analysis was conducted on both claves together (X
(67x10x100)) where the first 36 batches were from clave A, in order to examine the
possibility of using a common MPCA model for both claves. The batches form two
distinct ellipses in the bottom left t-plot of Figure 6.2, depending on the clave in which
they were produced. Clearly, this t-plot indicates a shift in the means between the two
claves since the centers of these ellipses are different. The parallel orientation of the
ellipses suggests that the variance in both claves has similar principal directions, and
similar variance in each of these directions since both ellipses have similar axis lengths.

Upon closer examination of the mean variable trajectories between the two claves it
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Figurc 6.2 T-plots from MPCA analyses of the reference batch databases of the two industrial

claves. The upper t-plots arc from MPCA analyses of cich clave separately (lef plot from clave A). The
bottom left hand side t-plot is from an MPCA analysis of both claves mean centered and scaled together.
The boltom right hand side t-plot is from an MPCA analysis of both claves mean centered and scaled
separtely. The first 36 batches in the bottom 1-plots are (rom clave A.

became apparent that there was a vertical shift in the trajectories of the second clave. This
was attributed to slightly different sensor calibration, which explains why the claves were
separated in two distinct ellipsc in their t-plot. Based on these observations, a new MPCA
analysis was carried out. This time the X. and Xu matrices were first column mean
centered and unit variance scaled separately, and then they were put together to form the
X matrix. Again the first 36 batches were from clave A. The t-plot from this analysis is
shown in the bottom right plot of Figure 6.2. By comparing the t-plots of the individual

claves and the t-plot of both claves scaled separately, one can see that the batches occupy
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similar spots in these plots. This supports the hypothesis that the batches from the two
claves have similar covariance structure with the only difference being a shift in their mean
trajectories.

The VD values from comparing the two clave subspaces, one built upon the 36

batches of clave A (X, = T,P.) and the other built upon the 31 batches of clave B

(ia = T,P;) where X, and Xy were scaled separately and 3 principal components were
extracted from both, are given below along with their critical levels (Fss0).
VDA =2.117 (p=0.039) , VD, =1.456 (p=0.297) , VD3 =5.088 (»=0.000)
VDy = 0.841 (p=0.618) , VDy;=0.756 (p=0.424) , VDp;=0.303 (p=0.000)
0841 0320 0339] A, =1386 (p=0.365) c,, =[0.637 0629 0.445]
V, =|0320 0756 0432| A,=0494(p=0046) c.. =[0.748 - 0.642 - 0.164]
0339 0432 0303 A, =0.020(p=0.000) c,,=[-0182-043803880]
The VD statistics indicate that the third principal component (VDaa, VDgs, A3) is different
in the two claves. The same conclusion is apparent from the worst direction (cua) which is
mainly focused on the direction of the third principal component of clave B. The first two
principal components of the two claves seem compatible, and thus a new analysis was
done based on only the first two principal components. The results are shown below:
VD, = 2.154 (p=0.035) . VDn = !.534 (p=0.235)
VDyy, = 0.833 (»=0.599) ., VDu; = 0.755 (p=0.422)

__|i0.833 0.324:1 A, = 1120 (p=0756) c,, =[0.748 0.663]
n =

wl
0324 0.755| X, =0.467(p=0031) c;,=[-0663 0.748]

Only the first component of clave A (VD,,) seems a little different. The B space is well
projected in the A space since all the VDy values and the eigenvalues of Vp have
reasonable critical levels. Here we have to point out that the largest and smallest
eigenvalues of V) are the maximum and minimum values of the VD statistic for any vector
(a) that belongs to space B. It is clear from the analyses of this example that the VD
statistic can take larger or smaller values as we test the principal components of space A

which do not belong necessarily in space B. From the above results, it is reasonable to
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conclude that the first two principal components from the two claves define similar
subspaces. A common MPCA model is reasonable to be used for monitoring both claves,
but the batches have to be scaled differently based on which clave they were produced.
The geometric test proposed by Krzanowski (Section 6.2) gave the following
angles (shown in parenthesis) between the 3 principal components of the two claves.
-0.770 (39.5") -0.273(74.1°) -0.199(785°)
PP, ={—0300(725") 0.678(473°) 0.228(76.7°)
0.187(79.1") -0.054(86.9%) -0.176(79.8°)
The increasing angles beiween the principal components of the two samples (39.5° 47.3°
79 8°) show another deficiency of this test. If the angle between the first principal
components of the two samples is large, then the angle between each of the subsequent
components will be even larger. This is because principal components are orthogonal to
each other due to their sequential nature. Therefore in this example, the angles between
the second (47.3") and the third (79.8") principal components lack of interpretation. The
other problem with the angles between principal components is that they ignore any
information about the variance that each component carries, and thus, they do not check
how well each subspace projects to the other. The minimum angle in this example was
found to be 31.5" and the trace of P,'PyP'P, to be equal 1o 1.379 which is well below the
number of principal components (3) in this case. By using only the first two principal
components in each clave, the minimum angle was found to be 34.2° and the trace of
P PiPy'P, was 1.218. The mintimum angle in this case increased by removing one
principal component from each subspace, because the remaining subspaces coincide less.
The absence of a measure of significance in this test, makes the results in this example

inconclusive.

6.3.2 Comparison of an MPCA and an MPLS Model

The second case which we will investigate is from the SBR example described in

Section 2.3.1. An MPCA model for the SBR reactor was built in Section 3.3, and in
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Section 5.1.2 an MPLS model was built based on the same data. The t-plots from these
analyses are shown in Figure 6.3, and they are similar especially with respect to the t;-axis.
An interesting feature of this example is that the MPCA model has three components,
whereas the MPLS model has two. A comparison of these two models will be done in
order to check whether the low dimensional space of MPLS is contained in the higher
dimensional space of MPCA. In this example, the test based on the VD statistic is
approximate since both X A and ).([, matrices are coming from the same data, and thus
they are not independent. In applying the proposed procedure in comparing the two x-
subspaces, the MPCA model has to go in the denominator of the VD statistic, since we
know its principal directions and it has higher (3) dimensionality than the MPLS model
(2). Remember that the MPLS p-loading matrix (P.) does not have the principal directions
of Xa. If we used the MPLS model in the denominator of the VD statistic, the overall test
would not give the worst case since one has to know the principal directions of the
covariance matrix in the denominator to formulate the Vp matrix. The directions in the
MPLS p-loading matrix (P,) are major directions of variability and will be used to
evaluate the VD, statistics to show us if these directions carry similar variability in both
spaces. One could have found the principal directions of the MPLS model, but they are

not needed as long asone has the principal directions for one of the two models.
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Figure 6.3 T-plots of the reference SBR ditabase. The lef hand side t-plot is from the MPCA

analysis, and the right hand side t-plot is from the MPLS analysis.
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The VD values from this comparison along with their critical levels (Fious) are given
below:
VDa: = 1.004 (»=0.989) . VDa = 1.189 (p=0.547)
VDg; = 0.968 (#=0.910) , VDyuy=0.454 (p=0.006) , VDg; =0.091] (p=0.000)
0968 0.086 0.093]| A, =1000(p=1000) c., =[-0.968 - 0.206 -0.145]
V, =(0.086 0453 0200; A,=0513(p=0021) ¢, =[-0246 0896 0.370]
0.093 0200 0.091| A,=0.000(p=0000) c,=[-0.053-0394 0.917]
The VD, values indicate clearly that the MPLS space is contained in the space defined by
the MPCA model. The VD, values along with the VDy, and VDy; values show a good
similarity between the two first components of the two models. As it was expected, the
third MPCA component, which has the largest weight in ¢ya, define a direction in the x-
space which is almost perpendicular (p=0) to the space that the MPLS model! define. In
this example one of the eigenvalues of vy, (A) is approximately equal to I. This means
that the direction that the corresponding eigenvector (c.;) defines, belongs to the
intersection of the two sample subspaces.
An analysis was done based on only the first two components of the MPCA model.
The results are shown below:
VD, = 1.006 (p=0.983) . VDx; = 1278 (p=0.393)
VDy, = 0.968 (»=0.909) , VDy, = 0.454 (p=0.006)
_[0.968 0.086] A, =0982(p=0949) ¢, =(0987 0.161]
b 710086 0.454] A, =0440(p=10005) c.,=[-0161 0.987]
The MPLS space is contained in the MPCA space (VDa), VDa2), and the first MPLS
component is very similai 10 the first MPCA component {VDa, and VD, close to one).
The worst direction of similarity is mainly concentrated on the direction of the second
principal component of the MPCA model (c.). This was expected, if one considers how
MPLS constructs its space. The first principal component from an MPCA model when it
carries a large amount of variability with respect to the other principal components, as in

this case (Table 3.1). is very close to the first MPLS component. The second MPLS
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component has been tilted with respect to the second MPCA component as to be well
correlated with the y-variables.

In this example, if one wants to apply the geometric test proposed by Krzanowski
(Section 6.2), one has first to find the principal components of the x-space defined by the
MPLS model. The maximum likelihood ratio test is inapplicable in this example, as was in
the two clave example (Section 6.3.1), because the sample covariance matrices are

singular.

6.4 Comparison of Projection Models Based on a Residuals Analysis

Projection methods such as PCA and PLS decompose an observation matrix (X)
into two parts (X=TP+E): one deterministic (TP'), and one random (E). A new
observation based on a projection model can also be decomposed in a deterministic part
and an error. Here we explore how these errors can be used to compare two projection
models. Since the projection models will be used for new observations, our statistics will
be based on the prediction error.

Assume that we have two projection models A and B, built upon some
observations (A and B). One can find for each model the Press statistic (Press,, Pressg)
described in Section 3.2, and the sum of squared errors from predicting the observations
from model A by using model B {SSE\n) and vice versa (SSEu). The ratio of these
statistics will be approximately distributed as an F distribution under the hypothesis that
the true underlying mode! spaces are identical, and can be used as a test of the similarity of
the two models.

(SSE.\w/dt)) / (Pressi/dfz) ~ Fanan
(SSEu v/df3) / (Pressa/dfy) ~ Fapon
And as an overall test, one can use the combination of both:
((SSEAu+SSEn)/dfs) / ({Pressy+Pressa)/dfs) ~ Fasam
These tests were suggested by Dr. Svante Wold (personal communication). The

problem with the above statistics is that the degrees of freedom (df) are unknown, One
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neither knows how many degrees of freedom to begin with, nor how many to deduct with
each component. Estimating the initial degrees of freedom is the greatest problem. Box et
al. (1973) exposed the problem and suggested ways to overcome it.

By assuming that the degrees of freedom in the above statistics are equal for the
MPCA models based on clave A and B of the industrial example, the results given below
were found for the three component models. The batches in clave A were scaled
separately from the batches in clave B.

SSE,p/Pressg=1.272 , SSEg,, / Press, = 1.111
(SSE,g+SSEg,) / (Pressg+Press,) = 1,190
Since the statistics have values close to 1, a good similarity between the two claves is
suggested. This test does not give any indication of what might be their differences and
which components are more similar than others. The same statistics for the two
component models were found to be:
SSE, g/ Pressg =1.173 , SSEg,, / Press, = 1.067
(SSE 3 +SSEg,s) / (Pressg+Press,) = 1.121
A better similarity between the two components model is suggested since the statistics
now have values closerto 1.

No comparison can be done based on residuals, between the SBR MPCA and
MPLS model. The MPCA model by simply having one more component will have much
smaller residuals than the MPLS model. Thus, the SSE and Press statistics can not be
compared in this case without knowing their degrees of freedom. Even if one restricts the
MPCA model to the first two components, still the residuals are not comparable if onc
does not know their degrees of freedom. An MPCA model always gives smaller residuals
than an MPLS model for the same observations and number of components, because the
MPCA model gives the global minimum in the sum of squared residuals among all linear
decompositions. Still, if the degrees of freedom were known in this example, the
proposed test would be approximate since both models have been built based on the same

data.
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CHAPTER 7 Summary and Conclusions

Recent trends in North American and in most industrialized countries have been
towards the manufacture of higher value added specialty chemicals, that are produced
mainly in batch reactors. Examples include specialty polymers, pharmaceuticals, and
biochemicals. There are also many other batch type operations, such as crystallization and
injection molding, which are very important to the chemical and manufacturing
industries. A new multivariate statistical approach to monitoring the progress of batch
and semi-batch processes has been developed. Rather than utilizing detailed engineering
knowledge about the process, as in model-based and knowledge-based approaches, this
approach utilizes only the information contained in the historical database of past batches.
Such information is readily available for any computer monitored industrial batch
process. Projection methods such as Multi-way Principal Component Analysis (MPCA)
and Multi-way Partial Least Squares (MPLS) are used to extract the information in batch
data, and to construct simple monitoring charts, consistent with the philosophy of
Statistical Process Control (SPC), which are capable of tracking the progress of new
batch runs and detecting the occurrence of observable upsets. A simulation of a styrene-
butadiene batch reactor along with a couple of industrial examples have been used to
develop the ideas and to test the abilities of the proposed approach.

MPCA is used to extract the information directly from the trajectories of all the
measured process variables (X), and to project it onto a low dimensional space defined by
the principal components. The data reduction is tremendous, since all the information
from a database of batches is captured in a few matrices which define the reduced space.
A post analysis of past batches enables one to classify normal and abnormal batches by
examining their position onto this reduced space. New batches can be monitored in real-
time, using a sound statistical framework, by tracking their progress in this reduced space.

The approach is based on the basic concepts of SPC, whereby the future behavior

of a process is monitored by comparing it against that observed in the past when the
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process was performing well, that is in a state of statistical control. Control limits for the
monitoring charts are derived from the statistical properties of this historical reference
distribution of past normal batches. The proposed monitoring charts are in accordance
with the SPC requirements for charts that can be easily displayed, interpreted, and can
quickly detect a fault. The power of the proposed statistical approach lies in the fact, that
it utilizes the unsteady state trajectory data on all measured variables in a truly
multivariate manner, as to account not only for the magnitude and trend of the deviations
in each measured variable from its average trajectory, but also for the high degree of
ccrrelation in both time and among the deviations in all the variables. Once an
abnormality has been detected, contribution plots can be immediately displayed and the
measurement variables responsible for the alarm to be identified. This will help one to
hypothesize assignable causes for the fault detected.

As in all inferential approaches, the fundamental assumptions of “‘comparable”
runs and “observable” events of interest must hold for the method to work. The first
assumption states that the method is valid as long as the reference database is
representative of the process operation. If something changes in the process (eg. new
catalyst), then one has to build a new database which embodies the change and rcapply
the methcd. The second assumption expresses the requirement that the events which onc
wishes to detect must be “observable” from the measurements that are being collected.

MPCA only makes use of the process variable trajectory measurements (X) taken
throughout the duration of the batch. Measurements on product quality variables (Y)
taken at the end of each batch can be utilized in a direct fashion in the proposed
monitoring procedure with the aid of MPLS. MPLS models both the X and Y space and
focuses more on the variance of X that is most predictive of the product quality Y. The
multivariate SPC monitoring schemes developed for MPCA are extended directly to
MPLS. The additional information that one gets from MPLS is on-line predictions of the
final product quality. Approximate confidence intervals, which can be applied to any PLS

study, were developed for the MPLS predictions.
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When additional information about the initial conditions and set-up of the batch
process is available, Multi-block methods based on MPCA and MPLS can incorporate
this information into the proposed monitoring schemes. Such prior information can be
organized in a new mahix (Z) which may have variables like feed quality measurements,
initial amounts of initiator or emulsifier, preprocessing conditions such as preheat
duration, position of the: batch in the cleaning cycle, operator on duty, etc. Changes in
these variables may often be as important to the product quality as variations in the
process trajectories. In addition, Multi-block methods allow one to develop overall
monitoring schemes for processes consisting of several units or processing stages, as in
the industrial example investigated in this thesis (Section 5.2.2). Each unit or processing
stage can be organized in a single block, and then monitoring charts can be established
for each block as well as for the entire process.

The proposed monitoring schemes are generic as to be applied in any batch or
semi-batch process, and they do not require any problematic computations. The
monitoring charts along with their contribution plots are as easy to use and interprete as
conventional Shewhart charts. Through simulated and industrial examples, it has beeen
shown that the proposed methods can clearly and quickly detect an abnormal operation.
The objective of the monitoring procedure, as any SPC method, is to detect faults,
diagnose them, and eliminate their cause and thereby shrink the control limits and work
towards a more consistent quality product.

There are two major benefits from the proposed methodology. First, it can be used
as a tool for investigating huge databases of batch data, which otherwise remain stored
and unexploited. Analysis of such databases can provide valuable knowledge about the
batch process as we have seen in industrial cases. Out of specification products can be
traced back to their process operation and in most cases identify their cause. Many times
the same fault is responsible for most of the batches with product out of specifications.
By identifying such a problem, one can redesign the reactor or change its control policy

as to eliminate the cause from future appearances. The second major benefit from the
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proposed methodology comes from the on-line monitoring of a batch process. Usually,
except in extreme cases, there is no indication that something was wrong in a batch run
vith an incipient fault. Only after several hours or days a product is characterized as out
of specifications when the quality results become available from the laboratory analysis.
In most cases by that time, the product has been stored and mixed with other product, or
further processed in subsequent units, or even shipped to the customer. In such cases, the
cost for the company can be enormous. An on-line monitoring scheme based on the
proposed methods will immediately detect batches with operational problems and
questionable product quality. The product from all such batches will not be further
processed or mixed with other product, until their quality measurements become available
from the laboratory analysis. Such a strategy should significantly improve productivity
and product quality.

The step-wise procedure of MPLS and Multi-block MPLS to explain the
variability in the quality space Y using the variability of the X space, forces these
methods to model both spaces. This characteristic is rather beneficial since these
projection models will try to describe the functional relationship of the process operation
to the desired production properties. If one includes in the reference database batches of
several product grades, then MPLS and Multi-block MPLS may be able to provide a good
initial guess for the batch recipe and the operational trajectories that will yield a new
grade with pre-specified quality measurements. This is a rather desired knowledge since
customers sometimes know what property changes will make the product more suitable
for their needs. Moteki and Arai (1986) were probably the first who introduced ideas like
this, but their approach was not well documented and too specialized for their given
process.

Many articles have been recently written on the topic of combining SPC and
Automatic Process Control (APC) (Box and Kramer, 1992; Vander Wiel et al., 1992,
Tucker et al., 1993). It is important to note that the multivariate SPC charts proposed in

this thesis are meant to be applied to data collected while the underlying batch process is
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being controlled by the feedforward and feedback APC schemes. If a significant
disturbance occurs, the controllers may be able to compensate for it. Although its final
product may be acceptable, the proposed methods will detect this batch as abnormal
because of the unusual behavior caused by the excessive control actions.

When discussing these multivariate SPC monitoring schemes a very appealing
feedback control idea has sometimes been proposed; namely, that whenever a fault is
detected, the MPCA or MPLS mode! be inverted to solve for values of the adjustable
variables that could be reset to bring the batch back into the in-control region of the
reduced space. However, this suggestion is not reasonable because the MPCA and MPLS
models are not cause and effect models, but rather enly models of the cormelation
structure of the process variables under routine operating conditions. They cannot be used
to predict the effects that independent changes in some of the measurement variables will
have on the quality of the final product. By taking a corrective action based on the
monitoring scheme, we are altering the very nature of the new batch data with respect to
those in the reference database where no such control actions were present, thereby
invalidating the model. Furthermore, once the on-line control charts have indicated the
occurrence of a special event, by simply forcing the observations back into the control
region will not imply that an acceptable product will result as illustrated in the industrial
example with batch 49 in Section 4.4.

Of course, this does not mean that nothing should be done when a fault is
detected. The nature of any corrective action will depend upon the underlying cause, and
upon the time during the batch at which the fault occurred. Therefore, the best form of
control action in the proposed SPC schemes is probably to use the on-line diagnostic
tools to interrogate the underlying projection model for possible reasons for the fault, and
respond accordingly using one's process knowledge, a cause and effect model, or an
expert system. Even if the current batch cannot be saved, SPC philosophy dictates that an

assignable cause be found and corrected so as not to affect any future batches.



127

APPENDICES

Appendix A Styrene-Butadiene Simulation

The program by Kozub (1989) simulates the semi-batch emulsion production of
hot SBR latex. The initiator is potassium persulfate, the chain transfer agent is n-dodecyl
mercaptan, the emulsifier is sodium lauryl sulphate, the organic impurity is 4-ter-butyl
catechol, and the water impurity is dissolved oxygen.

The program simulates a reactor with volume 10 It. The volume of the cooling
jacket is 2.52 It, the heat transfer area is 0.172 m?, and the heat transfer coefficient is 30
Watt/m’K. The batch duration is 1000 min and the sequence of the copolymerization used
in this study as the base case is the following. The reactor is initially charged with seed
SBR particles (2.0e+17 number of particles/it of 0.04 mol styrene and 0.226 mol
butadiene), a small amount of monomers (0.1 mol styrene and 0.1 mol butadiene), and all
the initiator (0.03 mol), chain transfer agent (0.0275 mol), emulsifier (0.01 mol), and
water (4.8 1t). The initial water and organic impurities in the reactor are 0 mol and 1.0e-5
mol respectively. Styrene and butadiene monomers are then fed to the reactor at a
constant rate (0.00871 mol/min each) for the rest of the batch operation. Both feedrates
have been simulated as first order autoregressive models ($=0.8, 0,=0.81e-8 mol/min)
and their temperature is 50°C. Measurement noise (5,°=0.1e-3°C) is added in the feedrate
temperature after completion of the simulation. The temperature of the reactor is
maintained at 50°C through out the operation with a PI controller (K=5, 1=20 min) which
manipulates the temperature of the cooling water which has a flowrate of 0.3 It/min.
Water (0 mo¥/min) and organic impurities (3.0e-7 mol/min) are coming into the reactor
along the styrene and butadiene feedrates respectively and are proportional to them.

With this recipe as base case, fifty batches were simulated to create ihe database of
normal batches. For each batch, some conditions from the base case were perturbed. A list

of these perturbations are given in the following table.
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Conditions Base Case Range of Perturbations
Initial Styrene (mol) 0.1 5%
Initial Butadiene (mol) 0.1 +5%
Initial Reacted Styrene (mol) 0.04 +10%
Initial Reacted Butadiene (mol) 0.226 +10%
Number of particles/It 2.0e+17 2%
Chain Transfer Agent (mol) 0.0275 +10%
Initial Water Impurities (mol) 0 0.2e-5-1.1e-5
Initial Organic Impurities (mol) 1.0e-5 +10%
Incoming Water Impurities {mol/min) 0 0.5e-7 - 1.5e-7
Incoming Organic Impurities (mol/min) 3.0e-7 *+10%
Heat Transfer CoefTicient (Watt/m’K) 30 +3%
Table Al Range of perturbations from the base case for the creation of the reference normal

database.

Appendix B Other MPCA Approaches for Monitoring Batch Processes

A brief description of thre: other MPCA approaches for monitoring batch
processes are given here along with their advantages and disadvantages. The major
motivation in these approaches is to avoid in the monitoring scheme to have filling in the
unknown part of a new batch {Xx;:w) at each time interval. None of them overcome the
timing problem (see Chapter 2.4) of regular MPCA. In all three approaches, one has to
subtract the mean and divide by the standard deviation which corresponds at each time
interval, and apply the p-loadings at the correct time intervals.

At the end of this appendix, some suggestions are given of how to handle in

MPCA or MPLS sudden changes in the measurement variables during the batch operation.

FIRST APPROACII

The first approach unfolds and scales X(IxJxK) to X(IxJK) as in regular MPCA.
Then it rearranges X into X;{IKxJ) where its first [ rows are the first J columns of X, the
iI+1 through 21 rows of Xy are the J+| through 2] columns of X, etc. A normal PCA is
performed in X¢ which models now the overall variation of the measurements around their

mean trajectories throughout the batch operation. The advantage of this approach is that
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each principal component has a p-loading vector common to all time intervals. The major
disadvantage is that there is no data reduction. The matrix Xr, in the way that it was
formed, has J independent columns and one needs J principal components to describe it
adequately. It leads to almost the same result as plotting Shewhart charts for each
measurement variable available. The columns of X are uncorrelated because the
correlation structure of the measurement variables changes throughout the batch
operation. Even a single change in the correlation structure of one measurement variable is

possible to make the columns of X¢ to be uncorrelated.

SECOND APPROACH
As it is shown in Figure B, it is not unlike for one measurement variable to
maintain the same correlation with the other variables for certain periods of time. In such
time periods, the p-loadings will remain almost constant. The approach presented here
explores this observation and tries to stabilize the p-loadings during such periods gaining a
data reduction in the p-loading vectors. One has to unfold and scale the X into X as in
regular MPCA (Figure B1), and use the following algorithm proposed by Dr. Svante Wold
(personal communication).
i. Let X=X, (the first J columns of X)
il Do a PCA on Xy, and get two (for example) principal components (py, p2)
iii.  Augment Xaui=[Xi X}, pi=[p' p1]. p2=[p2’ p?1
iv.  ppd o] pepo/ | el
v. Check if p; and p; describe adequately Xa...
If they do, augment X and the p-loading vectors as in step iii (by repeating the
p-loadings corresponding to the last time interval) and continue for the next time
interval. In this case the correlation structure has not change and one can use the
same p-loadings for the next time interval.
If the p-loading vectors do not describe adequately X1, get extra principal

components based on the residuals of X, until X is described adequately.
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Augment Xarr and all the p-loading vectors as in step iii and continue for the

next time interval.
The main problem in this algorithm is how to choose when you have explained adequately
Xacr. A quick way is to use the broken stick rule discussed in Section 3.2. Although this
method seems appealing because of its data reduction in the p-loadings, there are a couple
of problems with it. First of all, the t-scores are not orthogonal any more, and thus

different latent variables may describe similar things in the data. The other major problem
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10 wiiere the p-loadings might have been set equal to zero.

comes when the correlation structure among the measurement variables changes
frequently along the batch operation, or when there are sudden changes in the
measurement variables. In such cases, the method will end up with too many principal

components where probably some of them will try to cancel the effect of some others.
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Several ideas to overcome this problem were considered (such as to identify from the
beginning the time periods of constant correlation structure based on a regular MPCA,
and build this knowledge in the algorithm through a multi-block approach), but none can

resolve the loss of orthogonality in the t-scores.

THIRD APPROACH
Again, in this approach we try to explore the fact that the p-loadings of a
measurement variable remain constant for certain periods of time as shown in Figure Bl.
The algorithm given below was developed in cooperation with Dr. Svante Wold, and it is
an evolving formulation of PCA which progressively augment its p-loadings at each time
interval.
i unfold and scale X into X as in regular MPCA (Figure B1)
ii. Pre-specify how many principal components you want in your model.
Do a PCA on X, (first J columns of X} and extract the principal components (eg.
P P2).
iti. Set Xown and payp to the X and p that you have already investigated.
X=Xz, Xaur=[Xon Xx] . pv=p1 (px is set equal to the p-loadings corresponding
to the last time interval)
iv, P=[pow’ pr'l
v. t=XaLLp
vii =t/
vil. pPx=Xx't
vii.  w=Xup't
ix. =} w /] pown|
X, p'=[{fpon' pxl
Xi. Check convergence on p. If it has not converged go to step v.
If it has converged: p=p/| pl L =Xanp . Xaw=Xan-tp', return to step iv for the

next principal component.
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It is an adaptive algorithm which augments the p-loading vectors to incorporate
new variables in a PCA model, which works well in batch data when the correlation
structure of the measurement variables does not change frequently. The t-scores are not
orthogonal again in this algorithm. Several deflations were tried in step xi, but none was
able to fix the orthogonality problem. Another problem with this algorithin is that one has

to pre-specify the number of principal components that one wants to extract.

SUDDEN CHANGES IN THE MEASUREMENT VARIABLES

This is a suggestion of how to handle sudden changes that one may have in one or
more measurement variables, like in variable 10 of the industrial example (Figure 2.6).
When there is a small number of batches in the reference database, there is a lot of
uncertainty of what is the time period that such sudden changes normally occur. In cases
where there are many bﬁtches in the reference database, MPCA will resolve the problem
by giving small p-loadings at the appropriate time intervals. Thus in monitoring a new
batch, if a change occurs during the time period with the small p-loadings, this will have
a small impact in the t-scores, indicating a normal operation. When there is a small
number of batches in the reference database, one may not have covered the full time
period that such changes may occur. In this case, it will be better to proceed as we
suggest below to avoid false alarms in the monitoring scheme.

Do a regular MPCA in your data, and discuss with the engineers what is the
acceptable time range that such changes may occur. Set the p-loadings which correspond
to these time periods equal to zero, and use these modified p-loadings in setting up the
control charts and for monitoring new batches. In this way, any changes in these variables
during these particular periods will be ignored as normal variation. As an example, the p-
loadings of variable 10 in the industrial example that could have been set equal to zero,

are those inside the rectangular frames in Figure B1.
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Appendix C Control Limits for Quadratic Forms
Let x be an observation vector from a Muitinormal population N(0,Z), and A; the

eigenvalues of Z, then approximate upper control limits for the quadratic form Q=x'x with

significance level o are given by:

(Box, 1954) EXha

17hg

(Jackson and Mudholkar, 1979) 8,[1 - 6,h,(1-1,)/ 67 +2,(20,h3)" /e,]
where ;. is the critical value of the Chi-squared variable with h degrees of freedom at

significance leve!l a, and z, is the critical value of the Normal variable at significance level

o which has the same sign as h,,. The rest of the parameters are given below:

B, =2 A, . 6= A . 8, =2 Al
g=0,/8, , h=6;/68, , h,=1-260,/36;
The relationship between them becomes clear when one uses the Wilson-Hilferty
approximation for the Chi-squared variable (Evans et al., 1993) and rewrites Box's
equation as follows:

gh[l = 2/9h +2,(2/90)"

Every term in this equation approximates well the corresponding term in Jackson and
Mudholkar's equation when one has extracted most of the significant principal components

(A; with large values) and thus 85 ~6,8,.
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Notation

= scalars

= column vectors

= matrices

= three-way arrays

= transpose

= matrix dimensions

= matrix element

= matrix segment of elements
= predicted or estimated value
= vector norm

= determin.nt

= expected value

= natural logarithm

= minimum value

= variance

= number of blocks

= fixed vector

= worst direction of covariance similarity
= sample SPE mean

= Beta variable

= estimated regression coeficients

= index variable

= random vector

= contribution factor

= degrees of freedom
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D = Hotelling statistic for the t-scores of a new batch
Ds = Hotelling statistic for the t-scores in a database
D, = cross-validation degrees of freedom
D, = ¢cross-validation degrees of freedom
e E = x-residuals
F = F distribution
f,F = y-residuals
g = weight for the SPE distribution
g = random vector
G = statistic for broken stick rule
G = generalized inverse of X
h = degrees of freedom for the SPE distribution
he = distribution parameter of quadratic form
H = statistical hypothesis
H = indempolent matrix
i, I = number of batches
). ] = number of measurement variables
k. K = number of time intervals
l = maximum likelihood ratio test
L = generalized inverse of X'X
m, M = number of vanables
MSE = mean squared error
MSR = mean squares due to regression
n = number of observations
= Normal distribution
p = critical level
p. P = p-loadings

P = folded p-loading matrix



Press

q.Q
r,R

RSS
Seef
sf
SPE
SSE
SSR

t. T
u

VD

Xnew
XNEW

Y. Y
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= cross-validation prediction sum of squares
= sum of squared residuals

= g-loadings

= number of principal components

= cross-validation statistic

= cross-validation residual sum of squares
= estimated t-score standard deviation

= scaling factor

= on-line sum of squared prediction errors
= sum of squared errors

= sum of squares due to regression

= sample covariance matrix

= Studentized variable

= t-scores

= u-scores

= statistic for covariance equivalence

= sample SPE variance

= matrix related to S

= matrix related to VD

= parameter defining the smoothing window width
= Wishart distribution

= cross validation statistic

= w-loadings

= database of batch process measurements
= unfolded and scaled X

= process measurements of a new batch

= unfolded and scaled Xyew

= quality measurements
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Z = initial setup conditions

z = number of segments of a unit length line

= significance level

= regression coeficients

= distribution parameter of quadratic form
= distribution parameter of quadratic form
= diagonal matrix equal to T'T

= population mean

= population standard deviation

= population covariance matrix

L)

%= M a ® > » © w R

= Chi-squared distribution
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