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1. Introduction  

1.1. Longitudinal research 

Longitudinal research is performed to study a phenomenon as it is evolving over time. 
The phenomenon will generally show changes over time, but it may also show 
stability. One can distinguish short-term changes and long-term changes. Short-term 
changes occur in relatively rapid succession, whereas long-term changes are 
characterized by more or less irreversible alterations. Short-term and long-term 
changes may also be confounded. 
 The process of interest can be studied for only one, or more than one observation 
units. The units can refer to human beings, households, countries, schools, animals, 
stock exchanges, chemicals, et cetera. We will indicate the observation units by 
‘subjects’ or ‘individuals’ in the sequel. 
 One can distinguish three broad goals in studying a process (Bijleveld & Van der 
Kamp, 1998). In a research with the goal of description, one is interested in 
describing intraindividual and/or interindividual patterns of change. One may also 
want to explain patterns of change in terms of individual features. The features may 
be intrinsic to individuals (like age and socioeconomic status), but they may also be 
assigned by the researcher (like treatment). Furthermore, they can be stable over time 
or changing. Sometimes, one aims partly at description and partly at explanation in a 
single study. A third goal of longitudinal research is to forecast the future 
development of a process from previous stages. This type of forecasting is rarely 
aimed at in the social sciences. It is more often encountered in (business) economics, 
for example forecasting demand for a certain merchandise. 
 The key feature of longitudinal research designs is that a certain feature of a 
subject is observed repeatedly. Degree of depression, socioeconomic status, level of 
reading ability, quality of mother-child attachment, and speed of information 
processing are instances of features of interest in social sciences. Characteristics are 
measured by collecting scores on one or more variables, which are thought to be 
indicative for the feature. For example, the reaction time on a certain cognitive task 
could be used as an indicator for speed of information processing. Longitudinal data 
consist of scores on one or more variables from one or more individuals, measured at 
several time points. 
 

1.2. Sampling from the longitudinal axis 

The length of the observational period, the number of measurement occasions and the 
associated points in time should be chosen carefully. From a practical point of view, it 
is desirable to sample only a small number of occasions in a short observational 
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period. Every additional measurement occasion increases the research costs, simply 
because more data are collected. Moreover, the repeated measurement of the same 
subjects may lead to difficulties, because it may be hard to trace subjects or to 
motivate subjects to continue participating. From a theoretical point of view, on the 
other hand, it is desirable to measure the phenomenon under study frequently. One 
should choose the sampling points cleverly to find a balance between practical and 
theoretical interests. Three considerations are important in this respect. First, one 
should consider the aim of the research. If a researcher wants to gain a highly detailed 
insight into the process, a large number of samples is needed. In the most extreme 
case, one needs continuous sampling. In practice, researchers usually content 
themselves with a rough approximation of the process. A second point of concern is 
the (expected) pattern of change over time. This pattern will be denoted by the 
functional form in the sequel. An intricate functional form needs more sampling 
points than a simple one (e.g., a linear trend). If the functional form changes quickly 
in a certain period, one should sample more frequently in that period. Thirdly, if one 
is willing to assume a certain functional form, the expected size of (random) 
measurement error should play a role in determining the number of sampling points, 
as will be discussed later. To illustrate the first and second point, the true scores (i.e., 
without measurement error) of one subject on two fictitious variables during a certain 
period are plotted in Figures 1.1 and 1.2. 
 The solid line in Figure 1.1 might, for example, indicate the degree of depression 
during seven consecutive days. A short-term and a long-term change can be 
distinguished. Per day, the degree of depression follows a sinusoidal function, 
whereas a linear trend can be seen over days. Sampling daily at exactly the same hour 
(e.g., at the time points indicated by the circles in Figure 1.1) would reveal the 
linearly increasing trend in depression over days. If one were interested only in daily 
fluctuations of depression, it would be sufficient to collect scores within one day to 
discover the sinusoidal form.  
 

0 2 4 6 8day

true scores on a
fictitious variable

example of sampling
points: long term
change

 
Figure 1.1. Example of true scores (i.e., without measurement error) of one subject 
on a fictitious variable over time: a sinusoidal function combined with a linear trend. 
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The number of sampling points that is needed depends on the degree of detail the 
researcher is interested in, and on the assumptions that can reasonably be made about 
the functional form of the process under study. The latter assumptions serve two 
purposes, namely as a guide in making a rational choice of the sampling points, and 
as a guide in interpolating between the sampled time points. To give an extreme and 
unrealistic example: if a researcher assumes linear growth in depression over days, 
and the interest focuses on the degree of long-term increase only, it would be 
sufficient to measure only twice in the whole process at exactly the same hour to 
estimate the ‘correct’ trend coefficient. If a research is focussed on short term 
fluctuations only, and the researcher is willing to assume that daily fluctuations are 
equal across days, it is sufficient to sample within one day. If no a priori knowledge 
about the functional form of the process is available, the degree of detail the 
researcher is interested in is the only remaining criterion. However, usually in 
practice, there is reason to assume a certain functional form.  
 

0 100 200 300 400day

true scores on a
fictitious variable

example of sampling
points

 
Figure 1.2. Example of true scores (i.e., without measurement error) of one subject 
on a fictitious variable over time: a Gompertz function. 

 
Figure 1.2 could represent the true scores of a subject on reading ability, that follows 
a Gompertz curve (Richards, 1959). The plot clearly shows that taking five 
equidistant samples between day 0 and 400 would be inefficient, because then the 
steeply increasing part of the curve from day 175 to day 225 is hardly covered and the 
almost constant scores between days 0 and 175, and 225 and 400 are overrepresented. 
The number of samples needed to estimate the functional form reasonably well again 
depends on the aim of the research, and on the assumptions concerning the functional 
form a researcher can reasonably make. A researcher will usually not be satisfied with 
a simple approximation of the learning process, for example by measuring at days 1, 
200 and 400, and then estimating the best fitting linear trend. A researcher would 
probably be reasonably satisfied with the scores obtained from sampling at the time 
points indicated by circles in Figure 1.2. 
 A third consideration in deciding about the sampling points should be the 
(expected) degree of measurement error. Measurement error hampers the study of the 
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process of change. Naturally, one should try to reduce the degree of measurement 
error, and use a reliable measurement instrument. Additionally, by assuming a certain 
functional form, one could estimate the true scores, and thus try to filter out the 
measurement error. This functional form can be strongly restricted (e.g., a linear 
trend), but also weakly restricted (e.g., only a small degree of smoothness). Based on 
the functional form assumptions, a curve that (according to a certain criterion) 
optimally represents the observed scores can be estimated. 
 

1.3. Two types of multisubject longitudinal data:   
longitudinal two-way data and multiple time series 

In Section 1.2, we dealt with intraindividual change over time. Repeatedly collecting 
scores that index the same feature, from more than one subject, enables the study of 
interindividual variability in level and change. Based on the comparability of the 
measurement occasions of the different subjects, we distinguish two types of 
multisubject longitudinal data, namely longitudinal two-way data and multiple time 
series.  
 In longitudinal two-way data, the measurement occasions at which the scores are 
obtained, are comparable across subjects. The measurement occasions are comparable 
if they take place at similar points in the process that one intends to measure for all 
subjects. The scores obtained on the successive K occasions from the I subjects can be 
usefully arranged in a two-way K×I matrix, hence the name ‘longitudinal two-way 
data’. In such a K×I matrix, the scores considered columnwise pertain to the same 
subject, and the scores considered rowwise pertain to the same occasion. 
 An empirical example of longitudinal two-way data is data provided by research 
on the effect of a therapy on the degree of social phobia in socially phobic patients, 
where the measurements are made at the start of the therapy, and one, five, nine, 
thirteen and 25 weeks after the start (Scholing, 1993). If the measurements had taken 
place in the first, second, sixth, tenth, fourteenth and 26th weeks of the year 2000, 
while the patients had started therapy at different weeks, the measurement occasions 
would not have been comparable. A specific process dependent marker is required for 
the comparison of measurement occasions across subjects. In the above example, it is 
the start of the therapy. This marker usually follows naturally from the research 
design. A second example is a study of the degree of cognitive recovery after brain 
injury, measured at one, three, six and twelve months after injury (Spikman, 
Timmerman, Deelman & Van Zomeren, 1999). The occurrence of the brain injury is 
the marker, here. A third example is a study of the degree of visual attention in 
babies, which is measured at two-week intervals from six to 26 weeks after birth 
(Butcher, Kalverboer & Geuze, in press). Here, the date of birth is taken as a marker. 
In practice, a marker may not be available, or may be unsatisfactory. That is, shifted 
or transformed time axes of the univariate series would make the data more 
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comparable. Ramsay and Silverman (1997, Ch. 5) discuss a number of methods for 
dealing with this problem. 
 Generally, in analyzing longitudinal two-way data, the average level and 
development, and the interindividual variability are the matters of interest. The 
research question is usually focussed on whether predictors of the level, degree and 
form of long-term changes can be found. The development and variability of the 
separate subjects is usually of marginal importance.  
 In multiple time series, the same feature is measured repeatedly for a number of 
subjects, but measurement occasions are not comparable across subjects. The focus is 
usually on intraindividual variability rather than interindividual variability, and on 
short-term changes rather than long-term changes. An example is a study into the 
variability in aspects of mood of a group of patients suffering from Parkinson’s 
disease (Shifren, Hooker, Wood & Nesselroade, 1997; see also Chapter 6). Note that 
if such mood data are collected at, for instance, the same date and time, the 
measurements are not comparable across subjects, as no time point can be indicated 
as a marker. A large number of measurement occasions are needed to study the 
intraindividual variability in detail. Presumably because it is difficult to collect time 
series for many subjects, multiple time series are usually only gathered for a small 
number of subjects.  
 

1.4. Two types of multivariate multisubject longitudinal data  

In most longitudinal studies, multivariate data are collected. The variables themselves 
can be composite variables. One may be interested only in the longitudinal behavior 
of the distinct variables. It is then sufficient to perform several univariate analyses. 
Sometimes, one is interested in phenomena described by several variables jointly. It is 
then useful to study the structure of the multivariate data. This usually implies 
studying the mutual linear relationships between the variables, and looking for a 
smaller set of (latent) variables that summarizes the data well. 
 Traditionally, the structure of multivariate data collected at one time point is 
examined using factor analysis methods. One can distinguish two approaches, namely 
the common factor analysis approach and the component analysis approach. In 
component analysis, the components (factors) are linear combinations of the 
variables. The models give an approximation of the (usually standardized) data. In 
common factor analysis, the scores on a variable are conceived of as consisting of a 
part that is common to the variables (in terms of being correlated), and a unique part. 
The factors are linear combinations of the common parts of the variables, which, 
however, cannot be solved for explicitly within the factor analysis model. The 
common factor model gives an approximation of the covariances or correlations 
between the observed variables. 
 Longitudinal multivariate data collected at comparable time points from a number 
of subjects are a kind of three-way data, which will be denoted by ‘longitudinal three-
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way data’ in the sequel. Three-way data are data that can be classified in three ways, 
hence using three indices (Kroonenberg, 1983). Other examples of three-way data are 
multivariate data from a number of subjects collected under a number of conditions, 
or from a number of observers. Such different sets of entities are denoted as ‘modes’ 
of the data array. To apply factor analysis to three-way data, extensions of common 
factor analysis (Bloxom, 1968; Bentler & Lee, 1978, 1979; Oort, 1999, 2001), as well 
as component analysis (Tucker, 1966a; Carroll & Chang, 1970; Harshman, 1970; 
Kroonenberg, 1983) have been proposed. The application of three-way factor analysis 
techniques to longitudinal three-way data is a special topic, as this offers specific 
opportunities for modeling the data. Oort (2001) discusses a number of common 
factor analysis models specifically suitable for three-way data with a longitudinal 
mode. In the present study, component models for longitudinal three-way data will be 
provided.  
 In three-mode common factor analysis, one of the modes, usually the subject 
mode, is considered random, and the other modes are considered fixed. Usually, 
distributional assumptions are made to estimate the model parameters in the factor 
analysis model. Furthermore, it is usually necessary to specify the model so that a 
unique solution can be obtained. The process of model identification can be a difficult 
task, which is sometimes managed by imposing ad hoc constraints that are not 
necessarily realistic given the content of the study. 
 In three-way component analysis, all three modes are considered fixed. Hence, 
they are placed on the same footing in the model. No distributional assumptions are 
made in estimating the model parameters. One aims at finding a model which 
minimizes the part of the data that is not described by the model. A source of 
inaccuracy in the component model is the failure to take the unique variance of every 
variable into account. However, this is usually not problematic in practice, as 
comparable factor loadings are obtained using the two approaches, at least in the two-
way case (Harshman & Lundy, 1984a, pp. 142-144; Velicer & Jackson, 1990a & 
1990b; Jackson, 1991, p. 397). Kroonenberg and Oort (2001) offer a theoretical and 
empirical comparison of a three-way component model and a three-way factor model. 
If the sample size is small, and/or the necessary distributional assumptions appear to 
be violated, three-way component techniques are favored over three-way common 
factor analysis. On the other hand, if the subjects form a random sample and the other 
requirements are met, three-way factor analysis approaches appear preferable. 
 Factor analysis methods for analyzing multivariate time series collected from a 
single subject have been treated by several authors. Molenaar (1985) and Immink 
(1986) used a common factor approach. This approach requires relatively long time 
series, and makes some, rather strict distributional assumptions. Bijleveld (1989) and 
Van Buuren (1990) used component techniques. The simultaneous analysis of 
multivariate time series obtained from more than one subject has received some 
attention (Van Buuren, 1990; Bijleveld & Van der Kamp, 1998; Nesselroade & 
Molenaar, 1999). However, interindividual differences are covered poorly or not at all 
in those models. 
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 The present study deals with component analysis approaches for the analysis of 
multisubject multivariate longitudinal data. Extensions of existing three-way 
component models for longitudinal three-way data are proposed. These extensions 
take advantage of the fact that the data are obtained at successive time points. 
Furthermore, models are proposed for multisubject multivariate time series which 
take intraindividual and interindividual differences into account. 
 This thesis is organized as follows. Chapters 2 through 5 are devoted to 
component models for longitudinal three-way data. Chapter 2 discusses existing 
three-way component models that can be applied to longitudinal three-way data. 
Chapter 3 gives an overview of possibilities for modeling the longitudinal mode. In 
Chapters 4 and 5, the ideas presented in Chapter 3 are elaborated, and applied to 
three-way component models. Chapters 6 and 7 are devoted to component models for 
multisubject multivariate time series. In Chapter 6, a class of methods for 
simultaneously modeling multisubject multivariate time series is discussed. In 
Chapter 7, the class of methods from Chapter 6 is extended to model so-called lagged 
influences as well. Chapter 8 concludes the thesis with a discussion, and 
recommendations for future research. 





 

2. Component models for  
longitudinal three-way data 

2.1. Introduction 

In this chapter, a class of component models, that can be applied to longitudinal three-
way data is discussed. Longitudinal three-way data are defined as multisubject 
multivariate data measured at various occasions that are comparable across all 
subjects (see Section 1.3). The models aim at providing a meaningful summary of the 
data. For that purpose, the data are decomposed into a number of interpretable 
matrices, so that the data are described parsimoniously. Before the models and some 
issues in empirical applications are discussed (Sections 2.3 through 2.6), some 
terminology and notation used throughout this study will be introduced. The 
interpretation of longitudinal three-way models is treated in Section 2.7. 
 

2.2. Notational issues and some matrix algebraic properties 

Element i,j of the I×J two-way datamatrix X is denoted by xij. The jth column of X is 
denoted by xj, and the ith row by xi′. The symbol IQ denotes the Q×Q identity matrix. 
The P×Q matrix having each element equal to zero is denoted by 0P×Q. The Q×1 
vectors with each element equal to zero and one are denoted by 0Q and 1Q, 
respectively, or just 0 and 1 if the size of the vector is clear from the context. 
 Longitudinal three-way data consist of scores on J variables (j=1,...,J) collected 
from I subjects (i=1,...,I) at K measurement occasions (k=1,...,K). The data can be 
collected in a three-way data array X (I×J×K). A graphical representation of such a 
data array X is presented in Figure 2.1. 
 

Figure 2.1. Graphical representation of a three-way data array X of size I×J×K. 

 

 

Variables (J) 

Subjects 
(I) 

Occasions 
    (K) 
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This type of three-way data is also called three-mode data (Carroll & Arabie, 1980). 
The number of ways refers to the geometrical dimension of the array, whereas the 
number of modes refers to the number of different sets of entities. Hence, a set of 
covariance matrices obtained at different occasions from scores on the same variables 
would make up a two-mode three-way data array. 
 The data in Figure 2.1 can also be presented in I, J or K separate submatrices. The 
kth frontal slab of X is denoted by Xk (I×J). Analogously, Xi (J×K) is the ith horizontal 
slab, and Xj (K×I) the jth lateral slab of X. Element i,j,k of the array X (I×J×K) is 
denoted by xijk. Sometimes it is convenient to present the full three-way data set in 
‘matricized’ form (see Kiers, 2000), that is, as a supermatrix with frontal, lateral or 
horizontal slabs next to each other. The size of the supermatrix and the subscript of 
the matrix symbol indicate the positioning of the submatrices in the sequel. 
Specifically, the matrix Xa (I×JK) contains K frontal slabs Xk (I×J), k=1,...,K, 
positioned next to each other. Analogously, the matrix Xb (J×KI) denotes a 
supermatrix in which the I horizontal slabs Xi (J×K), i=1,...,I, are positioned next to 
each other, and the matrix Xc (K×IJ) is the supermatrix that contains the J lateral slabs 
Xj (K×I) positioned next to each other. Another option, though rarely used, is to 
present the data in X as a vectorized version of Xa. The vectorized version of Xa 
(I×JK) is denoted by Vec(Xa), and it is obtained by stringing out Xa column-wise to a 
column vector of length IJK. 
The Khatri-Rao product, or the column-wise Kronecker product, is denoted by υ (Rao 
& Mitra, 1971). The Khatri-Rao product of two matrices A and B, each with R 
columns, is defined as  
 
 AυB=[a1⊗ b1 a2⊗ b2 … aR⊗ bR], (2.1)
 
where ⊗  denotes the Kronecker product. 
 The elements of a matrix product of the form ABC can be expressed as a function 
of Vec(B) as 
 
 Vec(ABC)=(C′⊗ A)Vec(B), (2.2)
 
see, for instance, Magnus and Neudecker (1991). 
 

2.3. Component models for three-way data 

As the component models described below are generalizations of the well-know 
principal component model, this model for two-way data is discussed first. A 
principal component analysis (PCA) aims at describing the scores on a number of 
variables as a weighted sum of scores on a smaller number of components. 
Specifically, in PCA one decomposes a two-way data matrix X (I×J) as 
 



2.3. Component models for three-way data 11
 
 X=AB´+E, (2.3)
 
where A (I×Q) denotes the subject component matrix, B (J×Q) the matrix with so-
called variable loadings, E (I×J) the matrix with residuals and Q, q=1,...,Q, the 
number of components. The matrix with residuals is that part of the data that is not 
covered by the model. The data matrix is decomposed in a way that minimizes the 
sum of squared residuals. The part of the data that is covered by the structural part of 
the model (AB´ in the case of a PCA), hence without the residual part, is denoted by 

X̂  in the sequel.  
 Standard two-way principal component analysis leads to solutions that can be 
rotated without loss of fit. To avoid the rotational indeterminacy, Cattell (1944), and 
Cattell and Cattell (1955) proposed looking for ‘Parallel Proportional Profiles’ (PPP) 
in two PCA solutions of two two-way data matrices, where the same variables on the 
same observation units have been measured twice. Harshman (1970) generalized 
Cattell’s idea from two to K ‘parallel occasions’, and showed that PPP entail the 
‘PARAFAC’ model, which is a three-mode generalization of the principal component 
model. In the PARAFAC model, only proportional differences exist between the 
subjects, variables and occasions with respect to each component. Carroll and Chang 
(1970) independently proposed their CANDECOMP model, which is equivalent to 
the PARAFAC model. We will refer to the CANDECOMP/PARAFAC model as the 
CP model. The CP model is defined as 
 

 ∑
=

+=
R

r
ijkkrjririjk ecbax

1

 (2.4)

 
where xijk denotes element i,j,k of a three-way data array X, air, bjr, ckr denote elements 
of the component matrices A (I×R), B (J×R), C (K×R), respectively, and eijk denotes 
element i,j,k of the error array E (I×J×K), i=1,...,I, j=1,...,J, k=1,...,K, r=1,...,R.  
 The CP model can be written in matrix notation as 
 
 Xa=A(CυB)′+Ea, (2.5)
 
where Xa is the I×JK matricized data array X, υ denotes the Khatri-Rao product, the 
matrix C denotes the occasion component matrix, and, analogously to the PCA 
model, the matrix A denotes the subject component matrix and B the variable 
component matrix, and Ea (I×JK) is the matricized error array E. Note that the 
variable component matrix B has an equivalent role and interpretation as the loading 
matrix B has in the PCA model (see (2.3)). To stress the fact that the CP model is 
completely symmetric, we name the matrices A, B, and C all ‘component matrices’, 
instead of using different names for the three. 
 An alternative three-way generalization of PCA is the Tucker3 model (Tucker, 
1966a; Kroonenberg & De Leeuw, 1980; Kroonenberg, 1983). Just as in the CP 
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model, the three-way array is decomposed into three component matrices, and the 
model is symmetric. However, in the Tucker3 model, all components of A, B, and C 
are related to each other via the so-called core array. Also, the numbers of 
components of A, B, and C may differ. The Tucker3 model is defined as 
 

 ijkpqrkrjq

P

p

Q

q

R

r
ipijk egcbax +=∑ ∑ ∑

= = =1 1 1

, (2.6)

 
where xijk denotes element i,j,k of the I×J×K three-way array X, aip, bjq, and ckr denote 
the elements of the component matrices A (I×P), B (J×Q), and C (K×R), respectively; 
gpqr denotes the elements of the core array G (P×Q×R), and eijk denotes element i,j,k 
of the error array E (I×J×K), i=1,...,I, j=1,...,J, k=1,...,K; p=1,...,P, q=1,...,Q, r=1,...,R. 
The elements of the core array describe the weights of the interactions of the 
components in A, B, and C.  
 The Tucker3 model can be written in matrix notation as 
 

 Xa=AGa(C´⊗ B´)+Ea, (2.7)
 
where Xa is the I×JK matricized data array X, Ga (P×QR) denotes the supermatrix 
containing the frontal slices of the core array G (P×Q×R), ⊗  the Kronecker product, 
and Ea (I×JK) the matricized error array E.  
 The CP model can be notated equivalently to the Tucker3 model (2.7), namely as 
 
 Xa=AH(C´⊗ B´)+Ea, (2.8)
 
where Xa is I×JK, the fixed matrix H is the Q×Q2 two-way version of the 
‘superidentity’ three-way array H, that is, an array with hpqr=1 if p=q=r, and hpqr=0 
otherwise. This notation shows at once that the CP model is a constrained version of 
the Tucker3 model, a result given earlier by Carroll and Chang (1970, p. 312). 
 The Tucker2 model (Kroonenberg & De Leeuw, 1980) is less restricted than the 
Tucker3 and CP models. In the Tucker3 and CP models, each of the three modes are 
reduced into components. In the Tucker2 model, two modes are reduced and one is 
left unreduced. Consequently, the Tucker2 model is not symmetric, whereas the 
Tucker3 and CP models are. Here, we present the Tucker2 model for the situation 
where the subject mode is unreduced, but one can equally well choose to leave the 
variable or occasion mode unreduced. The Tucker2 model is given by 
 

 Xa= aG
~

(C´⊗ B´)+Ea, (2.9)
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where aG

~
 (I×QR) denotes the ‘extended core matrix’. The elements of the extended 

core matrix describe the weights of the interaction between the combinations of the Q 
variable components and the R occasion components for each of the I subjects.  
 The relationship between the Tucker2 and Tucker3 models can be seen as 
follows. If in the Tucker3 model (2.7) the number of subject components is chosen to 
be I, then the estimated component matrix A is a basis for the full subject space. In 

this case, the Tucker3 model boils down to the Tucker2 model, because then aG
~

 can 

be written as aG
~

=AGa.  
 The Tucker1 model is the most weakly constrained of the models for longitudinal 
three-way data that are discussed here. In the Tucker1 model, only one mode is 
reduced. Here, we treat the case for which the subject mode is reduced, and the 
variable and occasion modes are left unreduced. The Tucker1 model with reduced 
subject mode is given by 
 
 Xa=AF´+Ea,  (2.10)
 
where F (JK×P) denotes a component matrix containing the loadings of all 
combinations of variables and occasions on the P components. Note that the Tucker1 
model equals a PCA model of a matricized three-way array. In practical applications 
of the Tucker1 model, it is often natural to reduce the variable mode, and to leave the 
subject and occasion modes unreduced. This can be done by applying the Tucker1 
model to the matrix Xb (J×KI). With the exception of the Tucker2 model, the 
hierarchical relations between the three-way models mentioned above are also 
discussed by Kiers (1991). The hierarchical relation between the Tucker3 and 
Tucker2 models is treated by Kroonenberg and de Leeuw (1980). 
 

2.4. Fitting the component models for three-way data 

The Tucker1, Tucker2, Tucker3, and CP models are fitted to observed data by 

minimizing the sum of squared residuals 
2

aa XX ˆ− , where aX̂  denotes the part of 

Xa that is covered by the structural part of the model, and . 2 denotes the squared 

Euclidean norm. The degree to which the estimated model describes the data is 
expressed by the proportion of sum of squares explained by the model, which we call 
the ‘fit’ in the sequel. The fit is defined as 
 

 
2

2

1
a

aa

X

XX ˆ−
− . (2.11)
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The fit is often expressed as a percentage by multiplying it by 100. 
 Because the Tucker1 model equals a PCA model of a matricized three-way array, 
estimates of the parameters of the model are obtained by applying a standard PCA 
procedure. Kroonenberg and de Leeuw (1980) gave algorithms for fitting the Tucker2 
and Tucker3 models to data. Other ways of fitting the Tucker3 model to data have 
been proposed by Weesie and Van Houwelingen (1983), Kiers, Kroonenberg and Ten 
Berge (1992), Andersson and Bro (1998), and Paatero and Andersson (1999). 
Harshman (1970), Carroll and Chang (1970), Kiers (1998a) and Paatero (1999) gave 
algorithms to estimate the parameters of the CP model. Typically, the algorithms are 
Alternating Least Squares (ALS) algorithms. In ALS algorithms, the matrices over 
which the function has to be minimized are alternatingly updated until convergence. 
The algorithm is said to have converged, if from one cycle (i.e., update of all 
parameters) to another, the residual sum of squares decreases less than a prespecified 
tolerance value. The latter tolerance value is sometimes denoted by the ‘convergence 
criterion’. As the residual sum of squares decreases monotonically, and is bounded 
below by zero, convergence in terms of this criterion is guaranteed. However, it is not 
guaranteed that the global minimum of the function is reached, hence the algorithm 
may land in a local minimum. In practice, it is recommended to use several 
differently started runs in order to decrease the chance of missing the global minimum 
of the function. 
 

2.5. Transformational freedom within the component models for three-
way data 

The Tucker3, Tucker2 and Tucker1 models have transformational freedom. In the 
Tucker3 model, this means that estimates of the data array X are insensitive to 
orthogonal and oblique transformations of the component matrices A, B, and C, 
provided that such transformations are compensated in the core array G (Tucker, 
1966a). The same holds for the two component matrices in the Tucker2 model, 
provided that the transformations are compensated in the extended core matrix. The 
component matrix of the reduced mode in the Tucker1 model can also be 
transformed, provided that this transformation is compensated in the component 
matrix for the two unreduced modes. This case is identical to ordinary two-way PCA, 
whose transformational freedom is well known. 
 Standard rotational procedures aiming at a simple structure (e.g., Varimax; 
Kaiser, 1958) can be used to obtain more easily interpretable solutions for the subject 
and variable related component matrices. Those procedures are generally not useful in 
transforming the occasion component matrix, as will be illustrated later. In the 
Tucker2 and Tucker3 models, one can also transform the (extended) core array (over 
all two and three modes, respectively), provided that the transformations are 
compensated in the component matrices. Kiers (1997a) proposed a procedure that 
aims at obtaining simplicity of the core array in the Tucker3 model. Kiers (1998b) 
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discusses a method for jointly transforming the core, and the component matrices to 
simplicity in the Tucker3 model.  
 As Harshman (1972) proved, the parameter estimates of a CP model are 
‘essentially unique’, if there is at least one pair Dk,Dl (k≠l; k,l=1,...,K), so that DkDl

−1 
has no equal pair of diagonal elements. Essential uniqueness of a CP solution means 
that CP estimates are unique up to trivial permutation, reflection and/or rescaling. An 
even more relaxed sufficient condition for the uniqueness of the estimates of the CP 
model was given by Kruskal (1977). 
 

2.6. Issues in the application of the component models to three-way data 

2.6.1. Preprocessing three-way data 
In applying a PCA to a standard two-way matrix, one usually decomposes the 
centered and standardized data matrix, rather than the raw data. Centering and scaling 
serve different purposes, in two-way as well as multi-way component analysis 
(Harshman & Lundy, 1984b; Bro & Smilde, in preparation). Centering aims at 
removing constant terms in the data in order to make the data compatible with the 
model. That is, it causes interval scale data to behave as ratio scale data, which is 
required in component models. Scaling aims at eliminating artificial scale differences, 
and does not affect the model. It only influences the weights attached to certain 
elements in the least squares loss function.  
 Preprocessing in multi-way data is more complicated than it is in the two-way 
case. Harshman and Lundy (1984b) and Bro and Smilde (in preparation) extensively 
discuss centering and scaling of multi-way data. A centering is considered proper, if 
constants are eliminated from the data without introducing artificial variation. That is, 
if data (without error) consist of a structural part that is covered by the model, plus 
constant(s), then the centering should indeed remove those constants, without 
introducing new ones. Harshman and Lundy, and Bro and Smilde conclude that 
proper centering is obtained by centering across one mode. Several such centerings 
across one mode may be performed sequentially. 
 Harshman and Lundy (1984b), and Bro and Smilde (in preparation) showed that 
scaling is unproblematic only when performed within one mode (for example, per 
variable over occasions and subjects jointly). Combinations of centering and scaling 
do not conflict if scaling within one mode is combined with centering across (one of) 
the other modes. 
 

2.6.2. Choice of a specific model and the numbers of components 
In Section 2.3, four component models for three-way data were discussed. The 
models were ordered from severely constrained (CP model) to weakly constrained 
(Tucker1 model). A constrained version of a certain model implies that a restriction is 
imposed on certain parameters of that model. As a result, the fit of a constrained 
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model to the observed data set is at most equal to, but generally lower than the fit of 
its unconstrained version, all other things being equal. If one wishes to select a 
particular model and the number of components, one should take the interpretability 
and the degree of modeling error into account. 
 The interpretability of a model is important because in fitting models one aims at 
understanding underlying processes. The selection of an interpretable model is by no 
means a simple task. The interpretation of a model depends partly on the theoretical 
ideas and knowledge a researcher has. As a result, the criterion of interpretability adds 
a certain degree of subjectivity to the model selection process, and can therefore be 
subject to debate. 
 The second point of concern in model selection is the degree of modeling error. 
In fitting a model to data, one usually aims at obtaining a model that is more generally 
applicable than just to the current data. In the current context, this would imply that 
one has a three-way data set of which the individuals are thought to be drawn from a 
certain population. Then, the estimated model parameters are wished to be valid for 
the whole population, and not just for the current sample. In this context, it is useful 
to distinguish three types of error involved in fitting a particular model, namely the 
error of approximation, the error of estimation and the overall error (Linhart & 
Zucchini, 1986; Browne & Cudeck, 1992). Suppose one has chosen a particular 
model. The error of approximation is the lack of fit of the current model to the 
population data, if the parameters were optimally chosen. The error of approximation 
is not dependent on the data set at hand, on the sample size or the method of 
estimation. The error of estimation is the lack of fit of the current model fitted to the 
current data set, to the model of the population data with optimally chosen 
parameters. The error of estimation depends on the sample size, the current data set, 
and the method of estimation. Both types of error cannot be computed directly, 
because the population data, and the optimally chosen parameters of the model for the 
population data are unknown. The overall error refers to the lack of fit of the current 
model that is fitted to the current data set, to the population data. Usually, the overall 
error is the sum of the error of approximation and the error of estimation. Generally, 
as the number of parameters of a model increases, the error of approximation reduces, 
whereas the error of estimation increases.  
 In choosing a particular model, one should aim at finding an interpretable model 
with a small degree of overall error. A way to investigate the degree of overall error is 
using cross-validation, which assesses the predictive validity of the estimated model 
parameters. A cross-validation method, the ‘expectation maximization cross-
validation’ (EM-CV), is proposed by Louwerse, Smilde and Kiers (1999) for 
application in the three-way context. The degree of overall error can also be examined 
using split-half analysis. Examples of split-half analysis applied to three-way models 
are presented by Harshman and Lundy (1984a), and Kiers and Van Mechelen (2001). 
In the references, the methods are applied to either the CP or Tucker3 model, but they 
can be adapted easily for application to other component models as well. In Chapter 
6, the EM-CV method (Louwerse, Smilde & Kiers, 1999) and a variant of split-half 
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analysis (Harshman & Lundy, 1984a) are adapted, and applied to models for 
multivariate multisubject time series.  
 Besides modeling error, the interpretability of the model is important, because 
one aims at understanding processes. The requirement of interpretability may conflict 
with the desire to reduce the error of approximation, which is one part of the overall 
error. It is not useful to add parameters which are not interpretable at all to a model, 
only to reduce the error of approximation. Hence, it is more precise to say that it is 
desirable to minimize the error of approximation, provided that the fitted model is 
interpretable, and reflects underlying processes. Therefore, the decision on which 
model to take cannot be based solely on indices of the degree of overall error.  
 In certain cases, one may assume that the population three-way data consist of 
‘true scores’, that follow the model concerned, and measurement error. In the 
framework discussed above, the measurement error is the error of approximation. The 
parameters of the models discussed here are obtained by least squares fitting of the 
model to observed three-way data. The estimated three-way array obtained this way 
will usually not be exactly equal to the ‘true’ three-way array, and the fitted model is 
partially based on measurement error. This phenomenon will be indicated by ‘error 
fitting’ in the sequel. Obviously, a high degree of error fitting is undesirable, since it 
may lead to errors in interpretation. 
 A special case, which is sometimes encountered in component modeling, occurs 
if one aims at meaningfully summarizing the current three-way data set only. One can 
view this case as having available the population data. Then, the overall error is fully 
or almost fully (depending on the discrepancy measure and the estimation procedure) 
determined by the error of approximation. Therefore, the fit of the estimated model to 
the observed data is a good indicator of the degree of error of approximation. One 
should find a balance between interpretability and degree of modeling error. One 
could try to select a parsimonious model that still covers the most important or most 
salient aspects of the data, thereby ignoring aspects of little importance (e.g., because 
they pertain to a small number of subjects, variables, or occasions) by using the fit to 
compare different estimated models. It is hoped that the model that covers the most 
important aspects is also a well interpretable model. Using this approach requires to 
choose the most constrained model with the smallest numbers of components that 
explains relatively much of the sum of squares. Specifically, for choosing the 
numbers of components in the Tucker3 model, Timmerman and Kiers (2000) 
proposed a method that aims at finding an optimal balance between the fit of 
solutions for the Tucker3 model and the numbers of components. They compared the 
results obtained by this method, called DIFFIT, with results from two other methods, 
by means of a simulation study. It was found that DIFFIT performed considerably 
better than the other methods in indicating the numbers of components. 
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2.7. Interpretation of three-way component models applied to 
longitudinal three-way data 

First, the interpretation of the three parameter matrices of a CP model of longitudinal 
three-way data is discussed. The CP model (2.4) is the most constrained symmetrical 
three-way component model. The three modes are reduced into three component 
matrices that summarize the linear relationships between subjects, variables and 
occasions. As an empirical example, one could think of the scores on a number of 
variables that measure arithmetic and language skills. The scores are collected from a 
number of pupils receiving education in arithmetic and language at several time 
points. Suppose the variables are related to only two variable components, namely an 
arithmetic and a language component. The variable components can be viewed as 
referring to two ‘latent variables’, hence to variables underlying the observed 
variables. The relative size of a variable component score indicates the degree to 
which that (observed) variable measures the particular latent variable. In the CP 
model, the component matrices are usually not (columnwise) orthogonal, which 
implies that the components are linearly related to each other, to a smaller or larger 
extent. From a theoretical point of view, it is conceivable that latent variables are 
linearly related. For example, the degree of arithmetic and language skills are likely to 
be partly influenced by a general degree of intelligence. In the example, the two 
subject component scores indicate the relative position of the pupil to that of the other 
pupils on arithmetic and language. The occasion component scores at the time points 
are indicators of the overall level in arithmetic and language for the whole group at 
each particular time point. The scores at successive time points are interpreted as 
indicating the development over time. It may be helpful to plot the scores against time 
to get a notion of the development of the level over time. One interprets those scores 
as if they are evaluations of a certain latent curve. Note that the relative position of 
the subjects on each component is constant across time in the CP model. Supposing 
the time component scores to be positive, the model implies, for example, that if a 
pupil scores poorly in arithmetic at one time point, he will continue to score poorly at 
all subsequent time points. 
 A graphical representation of the CP model is given in Figure 2.2. The figure 

shows that the three-way array X̂  is a sum of R (r=1,...,R) rank one three-way arrays, 
of which each element xijk is the triple product airbjrckr. The vectors with component 
scores can be collected into three component matrices for each of the three modes. 
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Figure 2.2. Graphical representation of the CP model. 

 
As the Tucker3 model (2.7) is more flexible than the CP model, the interpretation is 
usually somewhat more complicated. The three component matrices summarize the 
properties of the subjects, variables and occasions. The weights of the combinations 
of the components are reflected in the core array. The variable component matrix is 
interpreted in the same way as in the CP model, that is in terms of latent variables. 
The subject components can be interpreted as ‘idealized’ or ‘prototype’ subjects 
(Kroonenberg, 1983). Real subjects are considered weighted combinations of the 
idealized subjects. The occasion components can be viewed as ‘idealized’ or 
‘prototype’ occasions. The occasion component scores at the various time points 
reflect the level of the prototype occasion at the time points, and just as in the CP 
model, they can be interpreted as evaluations of a latent curve. Simplicity of the 
component matrices as well as the core array is needed to facilitate interpretability. A 
graphical representation of the Tucker3 model is given in Figure 2.3, which shows the 
decomposition of the three-way array into the three component matrices and the core 
array. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3. Graphical representation of the Tucker3 model. 
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 The two component matrices of the two reduced modes in the Tucker2 model 
(2.9) are interpreted in the same way as their counterparts in the Tucker3 model. The 
extended core matrix provides the weights for all component combinations (of the 
reduced modes) per entity of the unreduced mode. 
 The component matrix of the reduced mode in the Tucker1 model (2.10) is 
interpreted in the same way as its counterpart in the Tucker2 or Tucker3 model. The 
component matrix contains the loadings for the components of the reduced mode for 
all combinations of entities of the two unreduced modes. 



 

3. Occasion components as evaluations of 
latent curves: possibilities for constraints 
to the time mode 

 
In Chapter 2, four component models that are potentially useful for modeling 
longitudinal three-way data were discussed. Although the models can be used in a 
completely exploratory way, it is often advantageous to use existing knowledge of the 
processes generating the data to constrain the model. Potential advantages of model 
constraints are better estimates of the model parameters, reduction of numerical 
problems and time required for computation, reduction of transformational freedom in 
a substantively sensible way, and a reduction of the chance to end in a local 
minimum, especially in ill-defined models. Possible constraints are unimodality and 
non-negativity of components (Bro & Sidiropoulos, 1998), equality, symmetry, and 
orthogonality of components (Bro, 1998), and certain patterns of zero values in one 
(or more) of the component matrices and the core (Kiers, 1991; Kiers, Ten Berge & 
Rocci, 1997; Kiers & Smilde, 1998). In this chapter, the rationale for imposing 
constraints on component models for longitudinal data is introduced. 
 As discussed in Section 1.2, the expected functional form of the process under 
study is an important factor in selecting the sampling time points in longitudinal 
research. The successive scores obtained by repeatedly collecting the score on a 
variable from the same subject are a kind of ‘functional data’ (Ramsay & Silverman, 
1997). Functional data may appear in various ways, but they are all smooth to a larger 
or smaller extent, in the sense of being repeatedly differentiable (Ramsay & 
Silverman, 1997). The smoothness property of functional data does not imply that the 
observed data are evaluations of a smooth function, since observational error or noise 
may disturb smoothness. An approach to modeling univariate functional data is trying 
to filter out the error term by imposing smoothness restrictions. In this way, no rigid 
parametric assumptions about the dependence of scores and time are imposed. 
Several smoothing techniques are available (Wahba, 1990; Hastie & Tibshirani, 1990; 
Ramsay & Silverman, 1997), like kernel smoothing and polynomial smoothing. 
Another approach is to impose a certain functional relationship between scores and 
time, and to estimate parameters of the function from the observed data. The form of 
the functional relationship is ideally determined on the basis of the mechanism 
producing the data. If the latter is not possible, one could base the decision on the 
form of the observed data. Interpretability of the parameters of the functions should 
play a role. Smoothing techniques and imposing functional relationships are widely 
used in the univariate case.  
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 The earliest approach for identifying the structure in two-way functional data was 
principal component analysis (Tucker, 1958, 1966b; Rao, 1958). Functional principal 
component analysis (PCA), as it is called by Ramsay and Silverman (1997), aims at 
describing the dominant modes of variation of a functional data set. This exploratory 
method is similar to PCA applied to a multisubject or multivariate longitudinal data 
matrix. A functional PCA reveals a number of component scores at the different time 
points, and subject or variable weights for these components. The component scores 
at the time points can be viewed as estimated evaluations of so-called ‘basis 
functions’. Hence, an observed score at a certain time point is a weighted sum of the 
basis functions that are evaluated in that particular time point.  
 Meredith and Tisak (1990) proposed a factor analysis counterpart of the 
functional PCA model, the latent curve model. They treated the individual weights for 
the latent curves as unobserved latent variables, and made distributional assumptions 
about the error term. The latent curve model differs from a standard factor analysis 
model in that the expected value of the observed variable is the average growth curve, 
and hence is (usually) non-zero. Also, the expected values of the weights for the 
latent curves are non-zero. The latent curves can be left unconstrained, but they can 
also be partly or fully prespecified.  
 Unconstrained latent curves, as well as components representing basis functions 
resulting from a functional PCA, have transformational indeterminacy. Common 
transformational procedures aiming at simple structure (e.g., Varimax; Kaiser, 1958) 
are generally not useful in transforming latent curves or basis functions. Tucker 
(1966b) defined some criteria for transforming the solution of his basis functions, like 
non-negativity of the component scores, and non-negativity of the slopes. However, 
in practice, empirical latent curve analyses with unconstrained latent curves seem to 
use only one latent curve (Meredith & Tisak, 1990; Jones & Meredith, 1996), 
possibly to avoid transformational indeterminacy, as Browne (1993) suggested. As in 
practice more than one latent curve could be needed to model empirical data 
satisfactorily, other approaches are needed. For example, transformational 
indeterminacy can be removed by fully fixing the basis functions or latent curves. 
Meredith and Tisak (1990) mentioned the use of orthogonal polynomials as a 
possibility. An alternative is to specify the basis functions or latent curves only partly, 
which reduces or even removes the transformational indeterminacy. In analyzing 
‘growth data’, Browne and Du Toit (1991) and Browne (1993) used latent curves that 
summarize basis features of a certain (nonlinear) function that represents growth. The 
component models for longitudinal three-way data discussed in Chapter 2 can be 
viewed as three-way extensions of functional PCA. It can be useful to constrain the 
basis functions in the component models for longitudinal three-way data in similar 
ways.  
 The specification of the latent curves offers the opportunity to estimate 
evaluations of basis functions at unobserved time points. This is useful, for example, 
if the scores on variables are collected at different sets of time points. Standard 
procedures to estimate the component models for longitudinal three-way data require 
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all elements of the data array to be observed. The ‘missing elements’, which result 
from the unequal measurement occasions for the variables and/or subjects, could be 
estimated, and imputed in the three-way array. The thus obtained full three-way array 
can be analyzed using standard estimation procedures. To use this approach, it is 
necessary that the missing data can be considered to be missing completely at random 
(Little & Rubin, 1987). This implies that missingness is unrelated to the (observed or 
unobserved) scores themselves.  
 The possibilities for model constraints as discussed for two-way functional data 
can be used in the component models for longitudinal three-way data as well. The 
first one to explore further is the use of smoothness constraints on the occasion 
components. In Chapter 4, a method for imposing smoothness constraints in the 
Tucker3 and CP models is proposed. The smoothness constraints can be combined 
with monotonocity constraints. The method can also easily be applied to the Tucker2 
and Tucker1 models, but this option is not treated explicitly. 
 A second approach is to impose a certain functional form on the occasion 
components. This is particularly attractive if substantive considerations point to a 
specific functional relationship. Browne and Du Toit (1991) and Browne (1993) 
elaborated structured latent curve models for learning data, in which the columns of 
the occasion component scores matrix are parameterized parsimoniously. This 
approach is extended to modeling longitudinal three-way data, and learning data in 
particular, in Chapter 5. 





 

4. The CP and Tucker3 models   
with smoothness constraints 

4.1. Introduction 

In Chapter 3, the rationale for applying constraints to models for longitudinal data 
was introduced. In this context, imposing smoothness is a flexible type of constraint. 
In the present chapter, a method for applying smoothness constraints, possibly 
combined with monotonicity constraints, to the Tucker3 and CP models will be 
presented. The Tucker3 and CP models were introduced in Section 2.3. The 
smoothness constraints can easily be used in the Tucker2 and Tucker1 models as 
well, but this is not explicitly discussed here. 
 In the Tucker3 or CP models, smoothness constraints can be applied in two ways. 
One could smooth the raw data, that is the various univariate series per subject and 
variable. In doing so, one aims at (partly) eliminating measurement error from the 
data. Subsequently, an unconstrained Tucker3 or CP analysis can be performed on the 
smoothened data. Alternatively, one could constrain the occasion components in the 
Tucker3 or CP models to be smooth and thus fit a constrained model to the raw data. 
In this case, it is hoped that less measurement error is fitted by the model. In the case 
of growth data, it might be useful to combine smoothness constraints with 
monotonicity constraints. Fortunately, the question of which of the two approaches to 
take is trivialized in an important class of cases. As will be shown, fitting the smooth 
descriptions of the observed data by the unconstrained Tucker3 or CP models is 
equivalent to fitting the Tucker3 or CP models with smoothness constraints in a 
particular class of cases. The usefulness of smoothing in the Tucker3 and CP models 
will be examined under different conditions in a simulation study. An empirical 
example illustrates the use of smoothness constraints within the Tucker3 model.  
 

4.2. The choice of a smoother 

A smoother is used to describe a response measurement as a smooth function of one 
or more predictor measurements (Hastie & Tibshirani, 1990), usually by so-called 
local averaging. In our applications, the predictor will simply be the time point at 
which each measurement is made, to be denoted as tk=t1,...,tK. Local averaging aims at 
averaging the observed measurements associated with predictor values close to each 
other (i.e., in each other’s neighborhood). The different types of smoothers differ 
mainly in their method of averaging. The size of the neighborhood influences the 
smoothness, and the accuracy: a large neighborhood leads to an estimate with low 
variance (i.e., high smoothness) but high potential bias (i.e., low accuracy), whereas 
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the opposite holds for small neighborhoods: there is a trade-off between bias and 
variance, as discussed by Hastie and Tibshirani (1990).  
 Hastie and Tibshirani (1990) and Ramsay and Silverman (1997) offer overviews 
of different smoothers and their properties. Polynomial regression splines, which 
form a class of smoothers that is computationally convenient, will be used here. 
Polynomial regression splines are constructed from different polynomial pieces, 
which are joined at certain predictor values, the knots. B-splines are a popular type of 
polynomial splines (De Boor, 1978). B-splines can easily be used for smoothing the 
data before analysis (see Alsberg & Kvalheim (1993) for an example involving three-
way data). Monotonicity restrictions on the solutions can be useful in certain 
longitudinal applications. They can be imposed by using I-splines (Ramsay, 1988). 
 B-splines (Basis splines) are non-negative basis functions. The degree (d) of a B-
spline is the degree of the polynomial pieces on which it is based, and any degree of 
polynomial can be chosen. Each B-spline is determined fully by its degree and by its 
knot sequence. The knots are positioned in the domain t1 through tK of the predictor. 
Given the degree and the location of the knots, B-splines can be computed by a 
recursive formula (De Boor, 1978). If they are of equal degree and they are positioned 
equidistantly, the basis functions are equal in size and shape. An example of a set of 
seven third degree B-splines, evaluated on the interval 1 to 2 is presented in Figure 
4.1.  
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 1.25 1.5 1.75 2

B-spline, zero everywhere outside plotted interval

B-spline, positive or zero outside plotted interval

 
Figure 4.1. Example of seven non-zero third degree B-splines, evaluated on the 
interval 1 to 2. 

 
In Figure 4.1, the five equidistantly placed knots are indicated by tick marks outside 
the x-axis. In general, the polynomial pieces join at d inner knots, and at these joining 
points, the derivative up to order d−1 is continuous. The number of non-zero B-
splines (N) on the domain t1 through tK is equal to the total number of knots on this 
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domain plus the degree of the polynomial minus one. In the example, this boils down 
to 5+3−1=7 non-zero B-splines in Figure 4.1. A B-spline is positive on a domain 
spanned by d+2 knots; everywhere else it is zero. The B-spline that is zero 
everywhere outside the interval 1 to 2 in Figure 4.1 is indicated by the bold line.  
 Usually, a set of response measurements collected in y (K×1) is to be 
approximated by a linear combination of the B-splines that are evaluated in the values 
of the predictor t. Let Bs denote a K×N B-spline matrix, in which the nth column 
contains the values of the nth B-spline that is evaluated for all values of the predictor t 
(K×1), and where K≥N; let w (N×1) denote the vector with weights for the N B-
splines, and ŷ  the vector with estimated response measurements, which is called the 
smooth in the sequel, then 
 
 ŷ =Bsw. (4.1)
 
Since B-splines are always non-negative, the estimated response measurement ŷ  can 
be restricted to be non-negative by restricting the weights w to be non-negative.  
 I-splines (Integrated splines; Ramsay, 1988) are monotonically increasing basis 
functions. They are based on integrated M-splines, which are proportional to B-
splines. Because M-splines are non-negative everywhere, the integrated M-splines are 
a natural basis for monotone splines. Since bases for I-splines are monotonically 
increasing, a non-negativity constraint on the set of coefficients of the I-splines leads 
to monotonically non-decreasing estimated response variables.  
 The use of B-splines and I-splines requires the selection of the ‘smoothing 
parameters’, that is the degree of the splines and the number and the position of the 
knots. The degree of the spline is commonly fixed. For B-splines, a popular choice is 
a third degree B-spline (Hastie & Tibshirani, 1990, p. 22); smoothers based on higher 
degree splines tend to oscillate wildly (Van Rijckevorsel, 1988). Ramsay (1988) 
claims that low (e.g., second) degree I-splines generally suffice. The number and 
location of knots influences the smooth: more knots in a region lead to a greater 
flexibility of estimation in that region, whereas fewer knots lead to a greater rigidity 
in that region. Using too many knots leads to overfitting, and using too few knots 
leads to underfitting. As to choosing the position of the knots, a simple approach is to 
position them uniformly over the domain t1 through tK. Another approach is to place 
them at appropriate quantiles of the predictor variable. 
 The smoothing parameters can be selected by subjective comparisons of several 
estimated response variables and the observed variable. Automatic selection methods 
for the smoothing parameters are also available (see Hastie & Tibshirani, 1990, pp. 
42-52). Although the usefulness of these methods is debatable, they can be helpful in 
deciding on the number of knots. A commonly used procedure is cross-validation by 
means of the leave-one-out approach. Hastie and Tibshirani (1990, pp. 46-48) showed 
that the cross-validation sum of squares for linear smoothers can be computed by 
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2
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K S
, (4.2)

 
where λλλλ denotes the smoothing parameters (i.e., the degree, and the number and the 
positions of the knots), and S(λλλλ)kk are the diagonal elements of the projection-matrix 
S(λλλλ), which relates ŷ  to y. To select the smoothing parameters, one may search for 

those that minimize CV(λλλλ). 
 

4.3. How to smooth in the Tucker3 model and CP model? 

Smoothers are generally used to describe observed scores by a function. As discussed 
above, smoothing in the Tucker3 or CP models can be performed by smoothing the 
raw data before analysis by the unconstrained Tucker3 or CP model, or by 
constraining the component scores in the Tucker3 or CP models to be smooth and 
thus fitting a constrained model to the raw data. The latter approach is used in 
functional PCA by Ramsay and Silverman (1997, Ch. 7), by applying a roughness 
penalty to prevent the roughness of the estimated principal components from being 
too large. We prefer a different approach, which has the advantage that smoothing the 
raw data and smoothing the components lead to the same estimated model 
parameters. We propose imposing a smoothness constraint on the occasion 
component matrix C by constraining C (K×R) so that it can be written as BsU, for a 
B-spline matrix Bs (K×N) and a particular weight matrix U (N×R), and where N≥R. 
As a result, the Tucker3 and CP models with smoothness constraints on the occasion 
component matrix can be written as 
 
 Xc=BsUGc(B´⊗ A´)+Ec, (4.3)
 
where Xc denotes the K×IJ matricized data array X, Bs (K×N,K≥N) a B-spline matrix, 
U (N×R,N≥R) a weight matrix, A (I×P) and B (J×Q) component matrices, Gc (R×PQ) 
the supermatrix containing the frontal slices of the core array G (P×Q×R), and Ec 
(K×IJ) the matricized error array E; in the case of the CP model with smoothness 
constraints the core array is fixed at superidentity. The B-spline bases are computed 
using ‘time’ as predictor. Note that the same basis is used for all components. In fact, 
formula (4.1) is used repeatedly for r=1,...,R as cr=Bsur. If monotonicity restrictions 
are required, it is proposed that the B-splines basis matrix be replaced by an I-splines 
basis matrix, and that non-negativity constraints be imposed on the weights.  
 The Tucker3 and CP models with smoothness constraints, like their 
unconstrained counterparts, are fitted to data by minimizing the sum of squared 
residuals. Now, it will be shown that restricting the component matrix C to be in the 
column space of the B-spline matrix Bs in the Tucker3 or CP models is equivalent to 
analyzing the projection of the data matrix Xc on Bs by the unrestricted Tucker3 or CP 
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model, which in turn comes down to a Tucker3 or CP analysis of the B-spline 
smoothed data. To show this, we replace Bs by the QR-factorization Bs=QR, with Q 
column-wise orthonormal, and R a square upper triangular matrix. Note that since Bs 
is of full column rank, R is non-singular. Then, the function to be minimized is 
 

 f1(U,A,B,Gc)=
2

)( '' ABQRUGX cc ⊗− , (4.4)

 
with Xc (K×IJ) the matricized data array X, and Gc (R×PQ) the matricized core in the 
Tucker3 model, or the matricized superidentity array in the case of the CP model. As 
already noted by Carroll, Pruzansky and Kruskal (1980, p. 7), minimization of (4.4) is 
equivalent to minimizing 
 

 f2
2

)()( ''
~

',,,
~

ABGUXQGBAU ccc ⊗−= , (4.5)

 

with U
~

 written for RU.  
 It will now be shown that minimizing (4.5) is equivalent to analyzing the 
projection of X on the B-spline matrix Bs by the unrestricted Tucker3 or CP model. 
This in turn comes down to smoothing the data matrix Xc by means of B-splines 
before Tucker3 or CP analysis, which is achieved by minimizing 
 

 f3(W)= .
2

WBX s
c −  (4.6)

 
The optimal weights W are given by (Bs´Bs)−1Bs´Xc, hence the smooth of Xc is 

cX̂ =Bs(Bs´Bs)−1Bs´Xc, the projection of Xc on Bs. Analyzing this projection by 
Tucker3 or CP comes down to minimizing 
 

  f4(A,B,C,Gc)=
21-2

)()()( ''''''ˆ ABCGXBBBBABCGX cc
ssss

cc ⊗−=⊗− . (4.7) 

 
 Let Bs be replaced by the QR-factorization as Bs=QR. Note that R is nonsingular. 
Minimization of (4.7) comes down to minimizing 
 

 f4(A,B,C,Gc)=
2

)( ''' ABCGXQQ cc ⊗− . (4.8)

 
The optimal C will be in the column space of Q, hence C can be written as CQ

~
, and 

minimizing (4.8) is equivalent to minimizing 
 



 4. The CP and Tucker3 models with smoothness constraints

 

 

30 

 ( )GCBA ,
~

,,f5  
2

( )''
~

' ABGCQXQQ cc ⊗−=  

     
2

))((= ''
~

' ABGCXQQ cc ⊗−  

     
2

)(= ''
~
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(Kiers & Harshman, 1997). Clearly, minimizing (4.9) is equivalent to minimizing 
(4.5); the solutions for A, B, and Gc of (4.5), and of (4.9) are equivalent; the solution 

for U
~

 in (4.5) is equivalent to that for C
~

 in (4.9). Because U
~

 leads to C by 

C=BsU=QRU=Q U
~

, and C
~

 leads to C by C=Q C
~

, we see that both methods give the 
same solution for C as well. It has thus been shown that analyzing the original data by 
means of a smooth constrained Tucker3 or CP models is equivalent to analyzing 
smoothed data by the unconstrained Tucker3 or CP model, as long as smoothness is 
defined in terms of unrestricted linear combinations of B-splines.  
 The matrix Q′Xc in (4.9) is a compressed version of the smooth matrix 

( ) c
ssss XBBBB ''

1−
 (see Kiers & Harshman, 1997). Since the matrix Q′Xc is (much) 

smaller than the matrix cX̂ , minimization of (4.9) over A, B, C
~

, and Gc can be 

considerably faster than minimization of (4.7) over A, B, C, and Gc. On the other 
hand, the use of (unconstrained) splines on the data rather than on the components 
may be easier to handle, since standard software can be used to obtain the smooths, 
and subsequently analyze them by the Tucker3 or the CP model. 
 By constraining the B-spline or I-spline weights, one can impose a constraint on 
the solution in addition to the smoothness constraint. If I-spline weights are restricted 
to non-negativity, the smooth is monotonically increasing (and non-negative as well). 
The smooth can be restricted to be non-negative by requiring the B-splines weights to 
be non-negative. The problem of finding non-negative weights for the splines can be 
solved by treating the problem as a non-negative least squares problem (Lawson & 
Hanson; 1974, pp. 158-164; Bro & De Jong, 1997). Note that if spline weights are 
constrained, imposing a spline basis on a component matrix will have a different 
effect than imposing a spline basis on the data matrix. If a spline basis is imposed on 
a component matrix with constrained weights, we have to minimize (4.4) over U, A, 
B, and Gc, subject to appropriate constraints. If a spline basis is imposed on the data 
matrix with constrained weights W, (4.6) has to be minimized, subject to the 
appropriate constraints, before analyzing the restricted projection by Tucker3 or CP. 
 It is expected that applying smoothness constraints will help recover the 
underlying true curves when applying the Tucker3 or CP models to data with smooth 
underlying structure. In fitting the unconstrained CP model, local minima are often 
encountered when the underlying curves are smooth. In this case the associated 
component matrix often has a high degree of multicollinearity, which may cause the 
model to be ill-defined, and thus lead to local minimum problems. It is expected that 
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the algorithm to fit CP will land in a local minimum less frequently if smoothness 
constraints are used, especially in the case of high multicollinearity of the component 
matrices. 
 

4.4. Comparing constrained with unconstrained CP and Tucker3 models  

To test the usefulness of smoothing in the CP and Tucker3 models and compare it 
with the unrestricted CP and Tucker3 models, respectively, we performed a 
simulation study on the basis of 480 data sets for the CP model, and 960 data sets for 
the Tucker3 model. The algorithms were programmed in MATLAB5 (1998), and the 
analyses were carried out on a Pentium 333Mhz 32 Mb RAM personal computer in a 
Windows 95 environment. 
 

4.4.1. Construction of the data for the simulation study 

CP data for the simulation study 

For the CP simulation study, 480 data sets were constructed with known CP structure 
with smooth components in one mode (C), and various data sizes, numbers of 
components, degrees of multicollinearity in A, B, and C, and error levels. The data 
matrices Xc (K×IJ) were constructed according to 
 
 Xc=CoH(Bo´⊗ Ao´)+εNc, (4.10)
 
where Ao (I×Q), Bo (J×Q), and Co (K×Q) are ‘true’ component matrices for the 
respective three modes, H (Q×Q2) is the matrix version of the superdiagonal three-
way array H (Q×Q×Q), ε is a scalar, and Nc (K×IJ) denotes the matrix expression of 
the three-way error array N (I×J×K).  
 The data sizes I,J,K were 10,10,20; 10,10,50; 10,50,20 and 10,50,50. The 
numbers of components were two and four. The elements of the matrices Ao and Bo 
were drawn randomly from the uniform [0,1] distribution (mild multicollinearity 
condition), and from the uniform [0.5,1.5] distribution (severe multicollinearity 
condition). To ensure smoothness of the components of Co, every component of Co 
followed a smooth function evaluated at K equidistant points (to be denoted by 
t1,...,tK) in every condition. Half of the components of Co followed an exponential 
function, and half of the components followed a logistic function, both of which are 
often employed as growth curves (Browne, 1993). The parameters were varied so that 
in the mild multicollinearity condition of Co the condition numbers for two and four 
components of Co were two and six, respectively, whereas in the severe 
multicollinearity condition the condition numbers were six and 42. The values of Nc 
were drawn randomly from the standard normal distribution and multiplied by a 
scalar ε chosen so that the expected percentages of error in X were 2%, 26%, or 50% 
(in terms of sums of squares). The number of replications was five. The design was 
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fully crossed, leading to a total of four (data sizes) × two (numbers of components) × 
two (degrees of multicollinearity of Ao and Bo) × two (degrees of multicollinearity of 
Co) × three (error levels) × five (replications) = 480 matrices. 
 

Tucker3 data for the simulation study 

For the Tucker3 simulation study, 960 data sets were constructed with known 
Tucker3 model structure with smooth components in one mode (C), and various data 
sizes, numbers of components, degrees of multicollinearity in the core, and error 
levels. The data matrices were constructed as 
 
 Xc=CoGo(Bo´⊗ Ao´)+εNc, (4.11)
 
where Ao (I×P), Bo (J×Q), and Co (K×R) are ‘true’ component matrices for the three 
modes, Go (R×PQ) is the matricized version of the three-way core array Go (the 
subscript ‘c’ is omitted for notational simplicity), ε is a scalar, and Nc (K×IJ) denotes 
the matrix expression of the three-way error array N. 
 The sizes of the data array X I,J,K were 10,10,20; 10,20,20; 10,10,50; 10,50,20; 
10,20,50; 30,20,20; 10,50,50 and 30,20,50. The numbers of components P,Q,R for the 
three modes were 2,2,2; 2,4,2; 2,2,4 and 4,4,4. The component matrices Ao, Bo, and 
Co were chosen column-wise orthonormal. The components of the smooth Co 
followed the same functions as in the CP simulation study, but now the orthonormal 
bases of the matrices used in the CP simulation study were used. The matrices Ao and 
Bo were obtained by taking the orthonormal bases of a matrix with equal size as Ao 
and Bo with elements drawn randomly from the uniform [0,1] distribution. These 
choices do not place severe limitations on the simulation study, since the component 
matrices in the Tucker3 solution, and hence any set of ‘true’ component matrices of a 
Tucker3 model in a simulation study, can be transformed to orthonormality, provided 
that this transformation is compensated in the core. However, transformation of a 
multicollinear true component matrix to orthonormality and compensation for this in 
the core array would lead to a multicollinear core. For example, suppose we have a 
matrix C and G, where cond(C)=100, and G is row-wise orthonormal so that cond(G) 

is 1, where cond( ) means the condition number. Orthonormalization of C into C
~

, and 

compensation for the orthonormalization in G by transforming G into G
~

 results in 

cond( C
~

)=1. This can be achieved by taking the QR-decomposition of C=QR, 

defining C
~

=Q=CR−1, and G
~

=RG, and, as a result, cond(G
~

)=cond(RG)=100. 
Therefore, to represent a reasonable range of possible data matrices, the degree of 
multicollinearity of the core is varied in this study. The elements of Go were drawn 
randomly from the uniform [0,1] distribution in the low multicollinearity condition, 
and from the uniform [.5,1.5] distribution in the high multicollinearity condition. The 
error level was varied in the same way as in the CP simulation study, that is the 
expected percentages of error sum of squares of X were 2%, 26%, and 50%. The 
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number of replications in each condition was five. The design was fully crossed, 
leading to a total of eight (data sizes) × four (numbers of components) × two (degrees 
of multicollinearity of Go) × three (error levels) × five (replications) = 960 matrices. 
 

4.4.2. Analyses of simulation data 
The simulated data sets Xc were all analyzed by one unconstrained CP or Tucker3 
analysis, and by two CP or Tucker3 analyses with smoothness constraints. 
Specifically, in the analyses with smoothness constraints, the estimated component 
matrix C was restricted to be in the column space of a set of B-splines Bs of degree 
three. The knots were equidistantly placed on the time interval t1,...,tK, with a knot at 
t1 and one at tK. The CP or Tucker3 analyses with smoothness constraints were 
performed on the compressed data array (see (4.9)) instead of the full data array to 
reduce computation time. In one of the analyses with smoothness constraints, the 
numbers of knots were chosen so that the sum of the cross-validation sum of squares, 
CV(λλλλ), see (4.2), over columns of Xc was minimized. That is, for a fixed number of 
knots, the CV(λλλλ) was computed for each column of Xc, and then the sum of the 
CV(λλλλ)’s obtained in this way was computed. The sum of the CV(λλλλ)´s was computed 
successively for solutions based on 2,3,...,tK knots, and the number of knots that goes 
with the minimal sum of CV(λλλλ)´s was chosen. The CP and Tucker3 analyses with 
these restrictions are referred to as CP-Bs(CV) and Tucker3-Bs(CV), respectively. In 
the other analysis with smoothness constraints, the number of knots of the B-splines 
was fixed at three. A small number of knots was chosen, since it is known that using 
too many knots leads to overfitting. However, the number three was somewhat 
arbitrary. The CP and Tucker3 analysis with this restriction are referred to as CP-
Bs(3) and Tucker3-Bs(3), respectively. The estimates of CP were obtained by means 
of the CP algorithm of Harshman (1970), and Carroll and Chang (1970). Each 
Tucker3 analysis was performed using the efficient algorithm by Andersson and Bro 
(1998). In each analysis, the CP and Tucker3 algorithms were run from five different 
starts, one started rationally and four randomly, to reduce the chance of missing the 
global minimum. The rationally started runs were started with the parameters 
resulting from Tucker’s Method I (Tucker, 1966a). The convergence criterion was set 
at 10−6. 
 

4.4.3. Criteria of interest 
The main interest in this study was to determine how well the original component 
matrices (and core matrix in the case of the Tucker3 model) were recovered by each 
of the methods. Since the CP analysis yields unique estimates of the component 
matrices (up to permutation and scaling), while the solution of the Tucker3 analysis is 
not uniquely defined, different comparison criteria are used for the CP and the 
Tucker3 analyses. 
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CP analyses: criteria of interest 

In the analysis of the CP data, a comparison of the estimated component matrices 

CBA ˆˆˆ   and  ,  ,  and the original component matrices Ao, Bo, and Co has to take into 
account possible permutations, rescalings, and sign reversions of the estimated 
component matrices. Following Kiers (1998a), and Mitchell and Burdick (1994), we 
compared the CP solutions by computing the cosines between the tensor products 

ooo
rrr cba ⊗⊗ , r=1,...,R, for the original component matrices and rrr ˆˆˆ cba ⊗⊗ , 

r=1,...,R, for the estimated component matrices, where the subscript r denotes the rth 

column of the matrix at hand. Given a data array X that is represented by a set of R 
tensor products of components, which are collected in component matrices A, B, and 
C, other sets of component matrices that yield the same representation of X are 
composed of the same such tensor products, although possibly in a different order. 
Therefore, a useful comparison measure of the original and the estimated component 
matrices is the mean of the R cosines between the tensor products of the original 
components and the tensor products of the estimated components, with the latter 
tensor products ordered so that they lead to the highest mean of cosines. The cosines 
are known as Tucker’s coefficient of congruence (Tucker, 1951). The coefficient of 
congruence between two columns x and y, ϕxy, is defined as the normalized inner 
product between the columns x and y, namely as 
 

 
yyxx

yx
xy

''

'=ϕ . (4.12)

 
 One rationally started and four randomly started runs of the CP analysis were 
carried out. The runs which led to a sub-optimal solution (defined here as a solution 
with a function value higher than 1.001 times the fit of the optimal solution, out of the 
five runs) were counted to get an impression of the sensitivity to local minima of the 
constrained and unconstrained analyses.  
 

Tucker3 analyses: criteria of interest 

To investigate how well the original matrices of the Tucker3 model are recovered, 
two aspects are of importance, namely the recovery of the column spaces of the 
component matrices, and the recovery of the weights of the interactions of the 
components. The column spaces of the component matrices are compared as follows: 

A comparison of the component matrices CBA ˆˆˆ   and  ,  ,  as estimated by Tucker3 to 

the underlying Ao, Bo, and Co has to take into account the fact that CBA ˆˆˆ   and  ,  ,  can 
be transformed without loss of fit, provided that such transformations are 

compensated in the core. Therefore, the estimates of CBA ˆˆˆ   and  ,  ,  are transformed 

towards ooo   and  , , CBA , respectively, by postmultiplying CBA ˆˆˆ   and  ,  ,  by the 
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matrices S, T, and V, respectively. The transformation matrices S, T, and V are found 
by minimizing the Euclidean distance between the original component matrices 

ooo  and  , , CBA  and the transformed component matrices SÂ , TB̂ , and VĈ , 

respectively. The transformations are compensated in the estimated core matrix Ĝ  by 

computing the transformed core array ))()(( -1-1-1 ''ˆ~
STGVG ⊗= . The component 

matrices SÂ , TB̂ , and VĈ  are compared to the original component matrices Ao, Bo, 
and Co by computing the Proportion of Agreement (PAA, PAB, and PAC, respectively) 
as 
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To be able to compare the Proportion of Agreement of the component matrices 
simultaneously, the average of PAA, PAB, and PAC, denoted as PAABC, is used as the 
measure of agreement between the original and the estimated component matrices. 
 The recovery of the weights of the interactions of the components is examined by 

comparing the transformed core matrix G
~

 to the original core matrix Go by 
computing the Proportion of Agreement (PAG) as 
 

 PAG=1−
2

o

2

o
 

G

GG
~−

. (4.14)

 
Note that the transformed component matrices are optimally transformed towards the 
original component matrices, whereas the associated core matrix is not optimally 
transformed towards the original core matrix. Hence, it can be expected that the PAG 
is smaller than the PAABC in the case of a Tucker3 solution deviating from the original 
matrices. 
 

4.4.4. Results of the simulation studies 

Results of the CP simulation study 

The original component matrices and the estimated component matrices, as obtained 
by unconstrained CP analysis (CP) and CP with smoothness constraints (CP-Bs(CV) 
and CP-Bs(3)), are compared by inspecting the ϕ-values. The ϕ-values have a 
negatively skewed distribution over the replications within each condition. The 
median ϕ-values of the three analysis methods are plotted overall as well as per main 
condition in Figure 4.2. 
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Figure 4.2. Median ϕ-values of CP, CP-Bs(CV) and CP-Bs(3) per condition. 
‘Multic.’ denotes ‘multicollinearity’. 

 
 The following observations can be made in Figure 4.2. The median coefficient of 
congruence of the constrained CP solutions is larger than the median coefficient of 
congruence of the unconstrained CP solutions, whereas virtually no difference was 
found between the median coefficients of congruence of CP-Bs(CV) and CP-Bs(3). 
Furthermore, the difference between the unconstrained and the constrained CP 
solutions gets clearly larger with increasing condition numbers of Co, and with 
increasing error level, and varies in a more complicated manner with data size (see 
Figure 4.2). 
 A repeated measurement ANOVA was performed to test whether the observed 
effects of type of analysis and of the interactions of analysis method with the various 
manipulated factors could be distinguished from random fluctuations. To correct for 
the deviation from normality for the repeated measurement ANOVA, the ϕ-values 
were transformed into ϕ~ =log(ϕ/(1-ϕ)) before analysis, where the two observed 

negative ϕ-values were excluded from the analysis. The transformation of negatively 
skewed ϕ-values on the interval [0,1] results in approximately normally distributed 
ϕ~ -values on the interval [ ∞∞− , ]. The effects which were described in the previous 

paragraph, were all found to be significant at α=0.001 in the repeated measurement 
ANOVA of the ϕ~ -values. 
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 In addition to the coefficients of congruence of the three analysis methods in the 
different conditions, the number of cases in which the unconstrained CP leads to a 
‘good’ solution, and the constrained CP to a ‘bad’ solution is of interest. On the basis 
of inspection of a number of plots of original and estimated components and the 
accompanying coefficient of congruence, solutions with a coefficient of congruence 
smaller than 0.75 were considered to be bad. The resulting frequencies according to 
this criterion are presented in Table 4.1. 
 
Table 4.1. Frequencies of good (ϕ≥0.75) and bad (ϕ<0.75) solutions per analysis 
method (CP with CP-Bs(CV) and CP with CP-Bs(3)). 

CP-Bs(CV) CP-Bs(3)  
good bad good bad 

good 348 3 348 3 
CP 

bad 43 86 40 89 
 
In a large number of cases, both the constrained and the unconstrained CP model lead 
to a good solution. The most important finding is that if the unconstrained CP leads to 
a bad solution, the constrained CP model leads to a good solution in about 33% of the 
cases. Furthermore, it is rarely found that the unconstrained CP model leads to a good 
solution and the constrained CP model to a bad solution. The proportion of bad 
solutions, as well as the differences between the constrained and unconstrained CP 
model increases with error level, and condition number of Co. Thus, on the basis of 
these results we can conclude that, if there is a smooth underlying structure, B-spline 
constrained CP is helpful in a fair number of cases, and that there is very little risk in 
replacing unconstrained CP by CP with smoothness constraints. Moreover, the choice 
for the number of knots does not seem crucial.  
 Differences between the constrained and unconstrained CP analyses in sensitivity 
to local minima were also studied. The constrained CP analyses led to a sub-optimal 
solution a little less frequently (both 0.10 out of five starts on average) than the 
unconstrained analyses (0.16 on average). No difference in average local minima has 
been found between the rationally and the randomly started runs. The number of local 
minima increased with increasing error level, whereas no substantial interaction 
between any other of the manipulated factors and type of analysis was found. 
 

Results of the Tucker3 simulation study 

The original component matrices and the original core matrix were compared to the 
estimated component matrices and the estimated core matrix by means of the 
Proportion of Agreement of the component matrices and the core matrix, the PAABC, 
which is based on the average of the expressions in (4.13), and the PAG, (4.14), 
respectively. The average PAABC values per analysis method give a good impression 
of the condition effects, and they are plotted per condition in Figure 4.3.  
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Figure 4.3. Mean PAABC of Tucker3, Tucker3-Bs(CV) and Tucker3-Bs(3) per 
condition. ‘Multic.’ denotes ‘multicollinearity’.  

 
 As can be seen in Figure 4.3, the PAABC of Tucker3-Bs(CV) is generally higher 
than that of Tucker3 and Tucker3-Bs(3), whereas almost no difference was found 
between the PAABC of Tucker3 and Tucker3-Bs(3), over all conditions. The difference 
in PAABC between the three methods of analysis increases with increasing core size, 
error percentage, and degree of multicollinearity of the core, and varies with data size. 
The gain of the smooth Tucker3 over the unconstrained Tucker3 is largest in the case 
of a relatively large size of the smooth mode, and relatively small sizes of the non-
smooth modes, for example, data size 10,10,50. If the size of the smooth mode is 
smaller than the size of one of the non-smooth modes, the performance of Tucker3 is 
better than the smooth Tucker3’s (e.g., data sizes 30,20,20 and 10,50,20). Tucker3 
clearly outperforms Tucker3-Bs(3) in the case of low error level (2%) and low 
multicollinearity of the core, whereas Tucker3-Bs(CV) performs best of the three. In 
high error level and high multicollinearity conditions, Tucker3-Bs(3) performs better 
than Tucker3, but Tucker3-Bs(CV) gives best recovery of the component matrices. 
This finding suggests that the smoothness restricted Tucker3 is sensitive to the choice 
of number of knots, and that in ‘easy conditions’ an unconstrained Tucker3 model 
performs even better than a smoothness constrained Tucker3 model with a non-
optimal number of knots.  
 A repeated measurement ANOVA was performed to test whether the observed 
effects of type of analysis and of the interactions of analysis method with the various 
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manipulated factors could be distinguished from random fluctuations. For the 
repeated measurement ANOVA, the PA ABC-values were transformed to correct for 
the observed heterogeneity of variances for the groups by computing AP

~~
ABC 

=arcsin(PA ABC)½ (Stevens, 1992). The effects that were explicitly described in the 
previous paragraph, were found to be significant at α=0.001 in the repeated 

measurement ANOVA of the AP
~~

ABC-values. 

 The estimated component matrices CBA ˆ,ˆˆ  and  ,  are optimally transformed to the 
original component matrices Ao, Bo, and Co, whereas the transformation of the 

estimated core matrix Ĝ  is so that the transformations of the original component 
matrices are compensated. Therefore, a non-optimal recovery will be expressed in a 
low PAG value, and possibly in a low PAABC value. The PAG values appear highly 
negatively skewed, with some extremely low values, hence the median PAG values 
give a better insight into the condition effects than the mean PAG values. The median 
PAG values per condition appeared to be high (>0.985), and they hardly differ from 
each other, neither between type of analysis nor between conditions. The extremely 
low values all occurred in the ‘more difficult’ conditions, namely large core size, 
small data size, high condition number of the core Go, and high error level. The 
Tucker3 analysis showed more extremely low PAG values than the Tucker3-Bs(CV) 
and Tucker3-Bs(3) analyses, as is indicated by, for example, the percentages of the 
cases with PAG values lower than 0.5 of 4.7%, 1.1% and 1.3%, respectively.  
 A second way of comparing the achievement of the three methods of analysis is 
to inspect the number of cases that are recovered well by the different methods. On 
the basis of inspection of a number of original and estimated components, cores and 
associated PAABC and PAG solutions with a PAABC or a PAG smaller than 0.9 were 
considered to be bad. The resulting frequencies of good and bad solutions are 
presented in Table 4.2. It can be seen in this table that if Tucker3 leads to a bad 
solution, Tucker3-Bs(CV) leads to a good solution in 44% of the cases. In only 1% of 
the cases, the Tucker3-Bs(CV) is bad, while the Tucker3 solution is good. According 
to the frequencies in Table 4.2, Tucker3-Bs(3) performs almost as well as Tucker3-
Bs(CV). 
 
Table 4.2. Frequencies of good (PAABC>0.9 and PAG>0.9) and bad solution per 
analysis method (Tucker3 with Tucker3-BS(CV) and Tucker3 with Tucker3-BS(3)). 

Tucker3-Bs(CV) Tucker3-Bs(3)  
good bad good bad 

good 811 7 808 10 
Tucker3 

bad 63 79 62 80 
 
Although the number of solutions that were reasonably recovered by Tucker3-Bs(3) 
does not deviate much from the number of reasonable recoveries using Tucker3-
Bs(CV), the smoothing technique is sensitive to the choice for the number of knots, as 
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indicated by the better recovery of the underlying component structure by Tucker3-
Bs(CV) than of Tucker3-Bs(3). Thus, we can conclude on the basis of these results, 
that if there is a smooth underlying structure, a smoothness constrained Tucker3 
model is helpful in a reasonable number of cases, and that, conversely, there is very 
little risk in using smoothness constrained instead of unconstrained Tucker3. 
Tucker3-Bs(CV), the method with optimal knot selection, performed best, and is 
therefore preferable to Tucker3-Bs(3). 
 

4.5. Empirical example: Learning to read study (I) 

In this section, an empirical example is presented to illustrate the use of smoothness 
constraints in the Tucker3 model, and the use of monotonicity constraints on the data 
before analyzing the data by the Tucker3 model. The ‘Learning to read study’ (Jansen 
& Bus, 1982; Bus & Kroonenberg, 1982) investigates the learning process of reading. 
Seven pupils were tested weekly (except for holidays) on 37 occasions using five 
different tests intended to measure different aspects of reading ability. The primary 
research questions focused on whether the performance of the pupils per test and over 
tests was equal over time. This data set has been analyzed using a Tucker3 model by 
Kroonenberg (1983). However, mainly because our preprocessing procedure is 
different from the one applied by Kroonenberg, the results are not directly 
comparable. 
 The data elements xijk, where i=1,...,7 denote the subjects, j=1,...,5 the variables, 
and k=1,...,37 the occasions, were collected in the data array X. Since the tests have 
different score ranges, the data array X was rescaled so that the scores of all tests 
ranged from 0 to 1. In this way, all the differences in variation were maintained in the 
data, while the test scores were comparable. The data have a meaningful zero point, 
as a score of zero on a test indicates that the pupil has not mastered the corresponding 
ability at all. We consider the data to be approximately ratio scale. We therefore did 
not center the data. The rescaled scores were collected in the data array Y and first 
analyzed by the unconstrained Tucker3 model. 
 The scores are viewed as evaluations of growth curves, which are assumed to 
follow some smooth curves in the course of time. Therefore, in the second analysis, 
the components of the occasion mode (C) are constrained to be smooth, and this 
analysis will be referred to as ‘T3-Bs’. A smoothness constrained Tucker3 model is 
fitted to Yc by minimizing (4.9), which is equivalent to minimizing (4.4). The degree 
of the B-spline was fixed at three. The knots were placed equidistantly, and the 
number of knots was chosen so that the sum of cross-validation sum of squares 
(CV(λλλλ); see (4.2)) of the columns of Yc was minimized, by computing the sum of 
CV(λλλλ)´s related to B-splines with 2,3,...,10 knots, and choosing the number of knots 
that goes with the minimal sum of CV(λλλλ)’s. 
 Because the data pertain to learning data, it seems reasonable to assume that the 
true scores per variable per subject are non-decreasing on subsequent occasions, that 
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is that the reading ability of the child never decreases in the course of time. To model 

non-decreasing true scores, a smoothed data matrix cY
~

=BiW is obtained by 

minimizing 
2

WBY i
c −  over W, where Bi is a fixed I-spline matrix and W the 

matrix of weights for the I-splines that are restricted to non-negativity. As a result, 

cY
~

 is restricted in the sense that )1+≤ ij(kijk y~y~  for all i=1,...,I; j=1,...,J, and k=1,...,K-1. 

An unconstrained Tucker3 analysis is applied to the smoothed data. This third 
analysis of the ‘Learning to read data’ will be referred to as ‘T3-Bi’. The degree of 
the I-spline matrix was fixed at two. The number of knots was selected by subjective 
comparison of the observed variables and several estimated response variables.  
 In all three analyses, the numbers of components were chosen to be (2,1,2) for the 
subject, variable and occasion modes, respectively. As will be discussed below, the 
models with this number of components fits the data well, and is interpretable, 
parsimonious, and stable.  
 The fit of the unconstrained Tucker3 model applied to Y is 96.26%. The 
estimated core matrix Ga of the model positioned in principal axes orientation was 
diagonal. The core matrix was transformed to identity (which can always be done in 
case P=QR (Murakami, Ten Berge & Kiers, 1998, p. 256)), and this rescaling was 
compensated in the subject component matrix. The columns of the component 
matrices were rescaled so that the solution was easy to interpret: the maximum values 
of the second subject component, of the variable component, and of the first occasion 
component were rescaled to 1, and these rescalings were compensated in the first 
subject component and the second occasion component. The component matrices for 
the subjects (A) and the variables (B) of the unconstrained Tucker3 analysis of Y are 
presented in Tables 4.4 and 4.5, respectively. The occasion component scores are 
plotted in Figure 4.4. 
 
Table 4.3. Subject component scores of the unconstrained Tucker3 solution. 

A (subjects) 1st component 2nd component 
1 1.06 −0.42 
2 0.96 −0.30 
3 0.99 −0.38 
4 1.28 1.00 
5 1.16 0.19 
6 1.09 −0.01 
7 0.89 −0.42 
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Table 4.4. Variable component scores of the unconstrained Tucker3 solution. 

B (variables)  

Letter Knowledge  0.91 
Regular Orthographic Short Words  1.00 
Regular Orthographic Long Words  0.87 
Regular Orthographic Long and Short Words within Context  0.99 
Irregular Orthographic Long and Short Words  0.58 
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Figure 4.4. Occasion component scores resulting from the unconstrained Tucker3 
model; c(1) denotes the scores on the first component, c(2) the scores on the second 
component. 

 
To interpret the component scores, we start with the occasion components. In Figure 
4.4, it can be seen that the scores on the first component (c(1) in the figure) gradually 
increase from week 3 to week 20, and then levels off to an asymptote of one. The 
scores on the second component show a steady increase to week 10, a steady decrease 
from week 10 to 20, and then level off to slightly below zero. We would interpret the 
first component as indicating general performance level, and the second component 
as approximately reflecting learning rate. The latter component is not entirely 
interpretable as learning rate, because of the negative component scores, which are 
due to the estimated model parameters, and do not indicate that the performance 
decreases in the end.  
 The core matrix is identity, implying that the first component of the subject 
component matrix (A) is only related to the first component of the occasion 
component matrix (C), and the same holds for the second components of A and C. 
 Now, the subject component matrices can be interpreted. Recall that the general 
performance level of a subject (thus apart from specific variable effects) is a weighted 
sum of the two occasion components, which reflect general performance level and 
learning rate. A relatively high score on the first component means that the subject 
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concerned performs above the general performance level. A relatively high score on 
the second component implies that the subject shows a relatively fast growth in the 
learning. Hence, for example, Subject 4 performs by far best, as (s)he has a high 
performance level and a high learning rate. Subject 4 is followed at some distance by 
Subject 5, as (s)he has second position for performance level, and learning rate. 
Subjects 1 and 6 show approximately the same weighting for general performance 
level, but Subject 1 has a lower weight for the second component. Hence, their 
asymptote scores are more or less equal, but Subject 1 develops much more slowly 
than Subject 6. The performance order between Subjects 1 to 3 is somewhat difficult 
to see at once, as the performance level of a subject is a weighted sum of the two 
occasion components, and the weights are close to each other. One could plot the 
weighted sum of the occasion component scores for the three subjects (hence, rows 1, 
2 and 3 of AGaC′ in this particular case), and this would reveal that Subject 1 
performs best of the three, and Subject 2 worst. 
 As there is only one variable component, the relative sizes of the variable 
component scores denote the difficulties of the items. The variable ‘Irregular 
Orthographic Long and Short words’ is by far the most difficult variable, as indicated 
by the lowest variable component score. Hence, the scores on ‘Irregular Orthographic 
Long and Short Words’ develop slowly in the course of time, compared to the other 
variables. The variable component scores of the ‘Regular Orthographic Short Words’ 
and the ‘Regular Orthographic Long and Short Words within Context’ are the highest 
variable component scores, showing that these scores develop fastest in the course of 
time. The variable component score of the ‘Letter Knowledge’ is slightly larger, and 
thus develops slightly faster, than the ‘Regular Orthographic Long Words’.  
 The stability of the model just discussed was investigated via a split-half analysis, 
following the guidelines by Kiers and Van Mechelen (2001). That is, the data were 
split in two halves over the subject mode, resulting in one data set of three subjects, 
and one of four subjects, to be denoted as Y1 and Y2. A Tucker3 analysis was 
performed for each of the two data sets. The solutions for B and C for each of the data 
sets were optimally transformed (in the least squares sense) to the solutions for B and 
C of the full data set (as presented in  



 4. The CP and Tucker3 models with smoothness constraints

 

 

44 

Table 4.4 and Figure 4.4, respectively). The two transformed occasion component 
matrices obtained in this way were compared by computing the coefficients of 
congruence (Tucker, 1951; see also Section 4.4.3) between the columns of the 
matrices. The two variable component matrices were compared analogously. The 
subject component matrices were compared as follows: The two solutions for A for 
each of the splits were collected in one matrix A12, in which the rows pertain to the 
same subjects as in A of the full data set (as presented in Table 4.3). The matrix A12 
was regressed on A, and the resulting transformed component matrix was compared 
to A by computing the coefficients of congruence between the two columns of the 
matrices. For each of the splits, the transformations of A, B and C were compensated 
in the core array. The separate split-half core arrays and the full data set core array 
were compared by computing the mean absolute difference between the split-half 
core array and the full data set core array. 
 The split-half procedure was repeated for every possible combination of the seven 
subjects split into two groups of three and four subjects, resulting in 35 split-half 
analyses. The mean coefficients of congruence for the subject component matrices 
over the 35 analyses was 1.000 and 0.997. The mean coefficient of congruence for the 
variable components was 0.998. The mean coefficient of congruence for the occasion 
components was 0.996 and 0.713 for the first and second occasion component, 
respectively. This implies that the stability of the subject components, the variable 
component and the first occasion component is high, whereas the stability of the 
second occasion component is moderate. The mean absolute difference between the 
split-half core array and the full data set core array averaged over the 35 analyses was 
0.000. On the basis of these results, we conclude that the current Tucker3 model is 
sufficiently stable, given the small sample size at hand. We now turn to the results of 
the smoothness constrained analyses (T3-Bs and the T3-Bi), which will be discussed 
successively. 
 In the smooth Tucker3 analysis with B-splines, the T3-Bs, an unconstrained 
Tucker3 analysis was performed on the smoothed data array. The number of knots as 
indicated by the (minimal) cross-validation sum of squares was five. (The CV values 
for two through seven knots were 0.0096, 0.0089, 0.0089, 0.0087, 0.0089, 0.0097, 
respectively.) The fit of this constrained model to the data array Y was 96.18%, which 
is only 0.08% less than the fit of unconstrained Tucker3 model.  
 Just as in the unconstrained Tucker3 model, the estimated core matrix of the 
solution in principal axes orientation was diagonal, and was rescaled to identity. The 
component score matrices of the T3-Bs model were rescaled in the same way as was 
done with the unconstrained Tucker3 model. The estimated component matrices A 
and B of T3-Bs are compared to the solutions of the unconstrained Tucker3 model by 
computing the coefficient of congruence between the pairs of components concerned. 
This coefficient was large (>0.999) for all pairs, and therefore the solutions of A and 
B for T3-Bs can be interpreted in the same way as the corresponding solutions for the 
unconstrained Tucker3. The component scores for the occasions for T3-Bs are plotted 
in Figure 4.5. 
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Figure 4.5. Occasion component scores of the T3-Bs model, where c(1) denotes the 
scores on the first component, c(2) the scores on the second component. 

 
Not surprisingly, the component scores of the occasions follow more or less the same 
curve as in Figure 4.4. However, the wiggles have disappeared, and the overall trend 
in the component scores of the occasions is more clear.  
 It is interesting to investigate whether the stability of the occasion component 
matrices of the T3-Bs has been improved on the unconstrained Tucker3 model. 
Additionally, it is important to check whether the subject and variable component 
matrices, and the core array of the T3-Bs model have a high stability, just as their 
counterparts in the Tucker3 model. The stability of the T3-Bs model was investigated 
using the split-half procedure, as discussed before for the unconstrained Tucker3 
model, where the procedure was applied to the smoothed data. The mean coefficients 
of congruence of the occasion component matrices were 0.998 and 0.792, which is 
higher than the coefficients of congruence found in the unconstrained analyses of 
0.996 and 0.713, respectively. The mean coefficients of congruence for the subject 
component matrices and the variable component matrices were equal to the ones 
found for the unconstrained Tucker3 model (1.000 and 0.997 for the subject 
component matrices, and 0.998 for the variable component matrices). Also, the mean 
absolute difference between the split-half core array and the full data set core array 
averaged over the 35 analyses was 0.000. On the basis of this results, one can 
conclude that the stability of the second occasion component of the T3-Bs model has 
indeed been improved somewhat compared to the unconstrained counterpart. The 
subject and variable component matrices, the first occasion component and the core 
array of the T3-Bs model are highly stable, just as their unconstrained counterparts. 
 In the T3-Bi analysis, the subsequent scores per variable and per subject were 
restricted to be non-decreasing in the course of time before analysis. The number of 
knots for the second degree I-spline matrix was chosen to be seven, on the basis of 
subjective comparison of the observed variables and several estimated response 
variables. The I-splines were defined on the interval from week 0 to 50. The fit of the 
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resulting estimates of the Tucker3 model to the unconstrained data array Y was 
96.17%. Just as in the unconstrained Tucker3 and the Tucker3-Bs models, the core 
matrix of the solution in principal axis direction was diagonal. The estimated core and 
component matrices were rescaled in the same way as in the Tucker3 and Tucker3-Bs 
models. The estimated solutions for T3-Bi of A and B were compared to the 
associated solutions for the unconstrained T3 by the coefficient of congruence. The 
coefficients were high (>.999) for all pairs concerned, and A and B are interpreted in 
the same way as A and B of the unconstrained Tucker3. The occasion component 
scores for T3-Bi resemble the occasion component scores for T3-Bs closely, as 
indicated by the coefficients of congruence (1.000 and 0.999, respectively). 
Therefore, our interpretation of this model is identical to the interpretation of the T3-
Bs model. 



 
 

4.6. Discussion and conclusion 

The results from the CP and Tucker3 simulation study demonstrate that, if smooth 
underlying components are present, applying smoothness constraints in the CP and 
Tucker3 models is generally useful for providing a better estimate of the (underlying) 
components of the CP and Tucker3 models (and the core of the Tucker3 model). The 
gain in estimation accuracy of constrained estimation is more salient in the case of 
larger numbers of components, high condition numbers of the component matrices 
and high error levels.  
 In the simulation study, the smoothness constraints were imposed by requiring 
that the smooth component matrix lies in the column space of a B-spline matrix. The 
performance of the constrained Tucker3 model appeared considerably better if the 
number of knots of the B-splines was optimized according to the cross-validation 
criterion compared to the fixed knots choice (of three knots). On the other hand, the 
performance of CP did not appear to be influenced by the method of choosing the 
number of knots. This finding suggests that the performance of the smoothness 
constrained Tucker3 model is more sensitive to the choice of the number of knots 
than the smoothness constrained CP model. This might be due to the intrinsic axis 
property of the CP model. 
 The empirical example demonstrates the use of smoothing in Tucker3 analysis, 
and the use of monotonicity and smoothness constraints on the data before a Tucker3 
analysis. The interpretation of the component matrices of the variables and the 
subjects, and the core did not alter if a constrained Tucker3 model was used instead of 
an unconstrained Tucker3 model. The T3-Bi model, in which the analyzed data are 
constrained to be non-decreasing in the course of time, appears to be reasonable for 
the data concerned. However, adding the monotonicity constraint to the smoothness 
constraint did not alter the interpretation of the solution at all, and therefore the 
simpler T3-Bs model can be preferred here. The interpretation of the time component 
scores of the smooth constrained T3-Bs solution is clearer than the interpretation of 
the unconstrained Tucker3 solution, as it is hard to judge whether certain wiggles in 
the plot of the time component scores of the unconstrained Tucker3 model should be 
considered important. Additionally, the stability of the T3-Bs solution is higher than 
of the unconstrained Tucker3 solution. Therefore, in the case of (presumed) smooth 
components, it appears to be useful to use smoothness constraints on the Tucker3 and 
CP model. 
 The commonly used procedures to estimate the Tucker3 or CP models require all 
elements of the three-way data box to be observed. In the case of data with a smooth 
mode, the use of the proposed procedures for smoothing the data can be helpful in 
estimating missing data elements. In longitudinal data, this procedure can be 
particularly useful if all measurements take place in the same time span, but at 
different sets of time points for different variables and/or occasions, where the 
missing data can be assumed to be missing completely at random (Little & Rubin, 
1987; see also Chapter 3). Note that the B-spline matrix Bs (K×N,K≥N) is a matrix 
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with N B-splines which are evaluated in all K values of the predictor. In the present 
chapter, the K measurements of the predictor, which simply represents the time points 
in the case of longitudinal data, were assumed to be equal for all i (i=1,...,I), and j 
(j=1,...,J), thus the B-spline matrix Bs is equal for all i and all j, and (4.4) can be used. 
However, if there are different measurements of the predictor for different (i,j) 
combinations, a B-spline matrix Bs

ij must be defined for every combination of i and j. 
Now, provided that Bs

ij is of full column rank, xij can be projected on Bs
ij by 

minimizing  
 

 f6(wij)= .
2

ijijij wBx s−  (4.15)

 
The weights wij can be used to estimate ijx̂  on the same time points for all i and j, 

namely by defining ijx̂ =Bswij. If the vectors ijx̂  are collected in X̂  (K×IJ), X̂  can be 

analyzed by unrestricted Tucker3 or CP procedures. Hence, the use of smoothness 
constraints in the Tucker3 and CP models is not only useful in improving the 
estimation accuracy, but also in dealing with data measured at unequal sets of time 
points. 
 



 

5. Structured latent curve component 
models for longitudinal three-way data 

5.1. Introduction 

In Chapter 4, the use of smoothness constraints in the Tucker3 and CP models was 
discussed. A different approach to constraining the occasion component matrix is to 
impose a particular functional form. This approach is attractive if theoretical 
considerations suggest a certain functional relationship. Then, potential advantages of 
imposing such a functional form are reduction of error fitting and an increase in the 
interpretability of the estimated model. 
 Browne and Du Toit (1991) and Browne (1993) proposed structured latent curve 
models for learning data, in which the occasion component scores are parameterized 
parsimoniously in terms of a small number of parameters. In the next sections, the 
principles of this factor analysis approach are elaborated for use with the Tucker3 
model for longitudinal three-way data. One could also apply the approach with the 
usually more restricted CP model and the less restricted Tucker2 and Tucker1 models, 
as will be explained briefly in the discussion section. 
 

5.2. Structured latent curve two-way component models for growth data 

The idea of structured latent curve three-way component models for growth data will 
be introduced by discussing a structured latent curve two-way component model for 
growth data. The two-way structured latent curve component model is a 
straightforward modification of Browne and Du Toit’s (1991) model, which was 
further elaborated by Browne (1993). In the present model, it is assumed that all 
individual growth curves are a weighted sum of certain basis functions, while the 
average growth curve as estimated by the model follows a particular function. As will 
be shown, the imposed constraints can be generalized fairly easily to component 
models for longitudinal three-way data. 
 

5.2.1. The SLC two-way component model for data measured at equal time 
points 

Let X (K×I) denote the matrix of scores of I subjects (i=1,...,I) on one variable 
collected at K occasions. The kth occasion takes place at time point tk (k=1,...,K), and 
t1 is usually 0. To facilitate the explanation and notation, it is assumed here that the 
scores of the subjects are collected at the same time points. At a later stage (Section 
5.2.3) the case involving different time points for different subjects is discussed.  



 5. SLC component models for longitudinal three-way data 

 

 

50 

 The model imposed in structured latent curve (SLC) two-way component analysis 
is given by 
 
 X=CA´+E, (5.1)
 
where C (K×R) denotes the occasion component scores matrix, A (I×R) denotes the 
subject component scores matrix, and E (K×I) denotes the matrix of residuals; the R 
components in the occasion component scores matrix represent R basis functions 
evaluated at each of the K time points. The estimated series of a particular subject is 
thus a weighted sum of the R basis functions.  
 A method for specifying the basis curves in structured latent curve analysis, as 
suggested by Browne and Du Toit (1991) and Browne (1993), is followed broadly 
here in defining the SLC two-way component model. It is assumed that the average 
scores across subjects at successive occasions ( kx , k=1,...,K), as estimated by the 
model, follow a particular target function, which is evaluated in the time points 
t1,...,tK. Browne (1993) discusses the Gompertz function (Richards, 1959), the 
exponential function and the logistic function as target functions. These are 
particularly useful functions for modeling growth data. The exponential function has 
no point of inflection, whereas the logistic and Gompertz functions do have such a 
point. One should choose the target function on the basis of the characteristics of the 
data. We will use the Gompertz curve as target function. It is given by  
 

 g(tk,ττττ)=αexp








γ−






α
β

)exp(ln kt , (5.2)

 
where ττττ=(α,β,γ), α is the asymptote and represents potential performance, β is the 
function value at tk=0 and represents previously acquired skills, and γ determines the 
rate of change, which reflects the learning speed. The Gompertz curve is 

asymmetrical around its point of inflection, which occurs for tk= 







α
β

γ
ln-ln

1
, with 

function value g(tk,ττττ)=
e

α
. 

 For any subject i, the scores at successive time points tk=t1,...,tK, as estimated by 
the model, follow some function that is not necessarily monotonic. The first-order 
Taylor polynomial about ττττ is used to model the score of subject i at time point tk 
(Browne & Du Toit, 1991), namely as 
 
 xki=g(tk,ττττ)+ 11ga~i ′ (tk,ττττ)+ 22 ga~i ′ (tk,ττττ)+ ai3 3g ′ (tk,ττττ)+eki, (5.3)
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where xki denotes the observed score of subject i at time point tk, and 

mg ′ (tk,ττττ)=(δ/δτm)g(tk,ττττ), with τ1=α, τ2=β, τ3=γ. The first order derivatives mg ′ (tk,ττττ) are 

given in (5.6). As the Gompertz curve (5.2) has the property 
 
 g(tk,ττττ)=α 1g ′ (tk,ττττ)+β 2g ′ (tk,ττττ), (5.4)
 
the observed score of subject i at occasion k (=time point tk) can be written as 
 
 xki=ai1 1g ′ (tk,ττττ)+ai2 2g ′ (tk,ττττ)+ai3 3g ′ (tk,ττττ)+eki, (5.5)
 
where ai1=(α+ 1ia~ ), ai2=(β+ 2ia~ ), and air denotes element (i,r) of the subject 
component scores matrix A. To ensure that the average estimated curve follows a 
Gompertz curve with parameters α, β, and γ, the average component score (across 
subjects) is required to be α and β for the first and second components respectively, 
and 0 for the third component. The elements of the matrix C (K×3) are now defined 
as  
 

 ck1= 1g ′ (tk,ττττ)={1−exp(−tkγ)}exp








γ






α
β

)exp(-ln kt  

 ck2= 2g ′ (tk,ττττ)=








γ






α
β+γ








β
α

)exp(-ln-exp kk tt , 

 ck3= 3g ′ (tk,ττττ)=−








γ






α
β+γ







α
βα )exp(-ln-expln kkk ttt , 

(5.6)

 
k=1,...,K. The first function in (5.6) is called the ‘asymptote basis function’, the 
second the ‘initial value basis function’ and the third the ‘learning rate basis 
function’. Examples of the three basis curves, and the associated target functions are 
shown in Figure 5.1. 
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Figure 5.1. Examples of the three basis curves and the associated target functions.  

 
The ‘asymptote basis function’ increases monotonically from zero at time point 0 
towards an asymptote of one. A relatively large weight for this function for a 
particular subject denotes that the subject’s estimated growth curve has a relatively 
large asymptotic value compared to the other subjects. The ‘initial value basis 
function’ starts at 1, increases up to the time point where the inflection point of the 
target function occurs (here at t=3.26), and then decreases towards an asymptote of 
zero. Unfortunately, this function not only reflects the initial value, but also the fact 
that the rate of learning first increases and then decreases. However, if the basis 
functions are evaluated only at time points after the inflection point, because of the 
particular choice of the measurement occasions, then the function decreases 
monotonically and the ‘initial value basis function’ can be interpreted well as only 
reflecting the initial value. If a particular subject has a relatively large weight for this 
function, this denotes that this subject’s estimated growth curve starts relatively high 
compared to the other subjects. The third basis function can be viewed as the ‘rate of 
learning basis function’. A relatively large weight for a particular subject for this 
function denotes that the subject concerned shows a relatively high rate of learning 
compared to the other subjects. 
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5.2.2. Fitting the SLC two-way component model to data with equal 
measurements 

So far we have followed the approach proposed by Browne and Du Toit (1991) and 
Browne (1993). In their factor model, they make certain assumptions concerning the 
error structure. To fit the model to data, maximum likelihood estimation is used under 
the assumption of multivariate normality. Here, however, we use a component 
approach, and we estimate the parameters of the model via least squares estimation. 
As a result, to fit the SLC two-way component model to data, we propose to minimize 
the sum of squared residuals by minimizing  
 

 f1(ττττ,A)=
2

'CAX − , (5.7)

 
where ττττ=(α,β,γ), the matrix C (K×3) consists of elements given by (5.6), and hence is 
a function of α, β, and γ only, and the matrix A (I×3) is restricted so that II 1′1 A=[α β 

0]. In fitting the SLC two-way component model, using algorithms programmed in 
MATLAB5 (1998), we found that estimating the parameters of a reparametrization of 
the Gompertz function given in (5.2), and the corresponding reparametrizations of the 
basis functions in (5.6), which were given by Browne and du Toit (1991), led to far 
fewer computational problems than using the function in (5.2) itself as a target 

function. Therefore, the (reparametrized) occasion component scores matrix C
~

 (K×R) 

and the subject component scores matrix A
~

 (I×R), which can be transformed to C 
and A without altering the model estimates, as already noted by Browne (1993), are 
estimated. The parametrization of the Gompertz function used by Browne and du Toit 
(1991) is 
 
 g~ (tk,θθθθ)=θ1exp{−θ2exp(−tkθ3)}. (5.8)
 
The parameters θ1, θ2, and θ3 in (5.8) can be transformed into the parameters of the 
Gompertz function in (5.2) by taking α=θ1; β=θ1exp(−θ2) and γ=θ3. The associated 

basis functions and hence the elements of the matrix C
~

 (K×3) are defined as 
 
 1kc~ = 1g~′ (tk,θθθθ)=exp{−θ2exp(−tkθ3)}, 

 2kc~ = 2g~′ (tk,θθθθ)=−θ1{exp(−tkθ3)} 1kc~ , 

 3kc~ = 3g~′ (tk,θθθθ)=−tkθ2 2kc~ . 
(5.9)

 

The elements of C and C
~

 are related to each other as follows: 
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 ck1= 1kc~ +
1

1

θ 2kc~  

 ck2=
)exp(-

1

21 θθ
−

2kc~  

 ck3= 3kc~ . 

(5.10)

 
Now, the model can be fitted to data by minimizing  
 

 1f
~

(θθθθ, A
~

)=
2

'
~~
ACX − , (5.11)

 

with A
~

 (I×3) restricted so that II 1′1 A
~

=[θ1 0 0], because then the average estimated 

curve follows the Gompertz function as given in (5.8), with parameters θθθθ. Finding an 

optimal solution for A
~  with unconstrained 1a~ , which is the first column of A

~
, is 

easier than finding an optimal solution with II 1′1
1a~ =θ1. Because the latter constraint 

can be satisfied afterwards without affecting the fit, (5.11) can be minimized subject 
to constraints on the second and third columns of A

~
 only. When (5.11) has been 

minimized subject to the constraint on the second and third columns of A
~

, 

I1′ 2a~ = I1′ 3a~ =0, the constraint on the first column of A
~

, II 1′1
1a~ =θ1, can be satisfied 

as follows: Let c
1θ , c

2a  and c
3a  be the estimates of θ1, 2a~  and 3a~ , respectively, after 

convergence. Then defining θ1= II 1′1
1a~ , rescaling 2a~  and 3a~  as 2a~ = c

c

2
1

1 a
θ
θ

 and 

3a~ = c
c

3
1

1 a
θ
θ

, and recomputing the elements of C
~

 using (5.9), the product AC ′~~
 remains 

equal, and hence the fit is unaffected.  
 After having estimated the parameters θ1, θ2, θ3, one can obtain the parameters of 
the target function in (5.2) by taking α=θ1; β=θ1exp(−θ2) and γ=θ3. The matrices C 

and A can be obtained from C
~

 and A
~

 as C= C
~

T, and A= A
~

(T−1)′, where T is given 
by  
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






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





θθ
−

θ

100

0
)exp(-

11

001

211

. (5.12)

 

 Estimates of θθθθ and A
~

 that minimize (5.11) subject to the constraint 

II 1′1
2a~ = II 1′1

3a~ =0 can be obtained via an alternating least squares (ALS) algorithm. 

The steps in the algorithm are as follows. 
 

 

Initial estimates of θθθθ and A
~

 for the ALS algorithm 

To start an ALS algorithm, initial estimates of the parameters are needed. An initial 

estimate of θθθθ, and hence of C
~

 as well, is obtained here by minimizing  
 

 f2(θθθθ)= x −θ1exp{−θ2exp(−tθ3)
2

} , (5.13)

 
where x  denotes the K×1 vector containing the average scores over subjects at time 
points t1,...,tK, and t is the vector with time points t1,...,tK. Least squares estimates of θθθθ 
are obtained using the Levenberg-Marquardt algorithm (Seber & Wild, 1989). This 
algorithm needs starting values. As was discussed in Section 5.2.1, the parameters of 
the Gompertz curve have a physical interpretation. In the reparametrized form, the 
parameter θ1 is the asymptote, θ2 governs the distance from the asymptote, and θ3 

governs the learning rate. The point of inflection occurs at time point tk=
-1

32 )(log θθ . 
Rational starting values can be obtained from a plot of the averaged scores across 
time, perhaps with a freehand smooth curve added (Seber & Wild, 1989). One should 
guess the asymptote value (denoted by maxx ), the value at time point zero (denoted by 

0x ) and the time point at which the inflection point occurs (denoted by tinfl). Then, as 

starting values, one takes maxx  for θ1, )( 0 maxx/xlog−  for θ2, and subsequently 

(logθ2/tinfl) for θ3.  
 As an initial component scores matrix A

~
, an unconstrained least squares estimate 

of A
~

, considering C
~

 fixed, is taken as A
~

= ( ) 1−′′ CCCX
~~~

. To satisfy the constraint 

II 1′1
2a~ = II 1′1

3a~ =0, the second and third columns of the estimate of A
~

 are centered.  
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Finding an update of A
~

 

To find an update of A
~

, it is proposed that the first, and the second and third columns 
of A

~
 be updated separately. To update the first column of A

~
, we minimize (5.11) 

considering C
~

, and 2a~  and 3a~  fixed. The latter is equivalent to minimizing 
 

 f3( 1a~ )=
2

1123
2

113322 )( acXacacacX ′−=′−′−′− −
~~~~~~~~ ,  (5.14)

 
where X−23≡ 3322 acacX ′−′− ~~~~ . An update of 1a~  can be obtained by taking 

( )-111123-1 cccXa ~~~~ ′′= . An update for 2a~  and 3a~  subject to the constraint 

032 =′=′ a1a1 ~~
II  can be obtained by minimizing  

 

 f4( 2a~ , 3a~ )=
2

332211 )()( acacacX ′+′−′− ~~~~~~ , (5.15)

 
subject to 032 =′=′ a1a1 ~~

II . This is equivalent to minimizing  
 

 f5( A
(

)
2

1 '' NACX
((

−= − , (5.16)

 

over arbitrary A
(

 ((I−1)×2), where X−1≡ 11acX ′− ~~ , C
(

 (K×2) denotes a matrix 

containing the second and third columns of C
~

, N (I×(I−1)) is a basis for the null 

space of I1′ , and [ ] ANaa
(

=  32
~~ . A least squares update for A

(
 can be obtained by 

taking 1
1-

-1 )()( −= CCCXNNNA
((((

'''  (Penrose, 1956). Hence, [ ] ANaa
(

=  32
~~ = 

1
1 )( −
− CCCJX

(((
'' , where J is the centering operator '' NNNN -1)( .  

 

Finding an update of θθθθ 

To update θθθθ, we minimize (5.11) considering A
~

 fixed. Least squares estimates of θ1, 
θ2, and θ3 can be obtained using the Levenberg-Marquardt algorithm (Seber & Wild, 
1989). Note that after convergence the elements of 3232  and , , , ccaa ~~~~  have to be 

rescaled to satisfy the constraint 1
1 a1 ~

II
′ =θ1 as described above. Furthermore, the 

solutions for C
~

 and A
~

 have to be transformed to C and A as described above. 
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5.2.3. The SLC two-way component model for growth data measured at unequal 
time points 

The method discussed in Section 5.2.1 aims at decomposing a two-way matrix 
consisting of the scores of I subjects on one variable measured at K time points into 
an occasion component matrix C, and a subject component matrix A. The three 
components in the occasion component matrix represent three basis functions 
evaluated at each of the occasions t1,...,tK. In practice, the measurement time points 
are not necessarily equal for the different subjects. This can be easily covered in the 
model by allowing the evaluated time points of the basis functions to differ across 
subjects. To explore this idea further, the time point of the ki

th measurement of subject 
i is indicated by 

iikt , where ki=1,...,Ki denotes the sequence number of measurements 

of subject i, i=1,...,I, and the time points at which the scores of any subject are 
collected are denoted by t1,...,tK, where K is the total number of different time points 
at which measurements are available. A two-way data matrix XF (K×I) is constructed 
with rows corresponding to all time points for which measurements are encountered. 
The scores of subject i, i=1,...,I, are positioned in the rows of XF that correspond to 
the time points at which the scores of subject i are collected (

iiKii t,...,t 1 ); the 

remaining K−Ki values are missing. A binary indicator matrix W (K×I) is constructed, 
with zeros indicating missing values in XF, k=1,...,K, i=1,...,I. The SLC two-way 
component model for growth data can be fitted to the observed data by minimizing 
 

 f6(θθθθ,A)=
2

)( '* CAXW F − , (5.17)

 
where * denotes the Hadamard (or elementwise) product, C is restricted to be a 
function of α, β and γ according to (5.6), and II 1′1 A=[α β 0]. Analogously to the 

unweighted case (see Section 5.2.2), the minimization problem in (5.17) is treated 
using a reparametrized Gompertz function (see (5.8)) as target function, and 

associated reparametrized matrices C
~

 and A
~

, with A
~

 constrained so that 

]00[ 1
1 θ=′ A1

~
II . Again, the constraint on the first column of A

~
 can be satisfied by 

proper rescaling after minimizing (5.17), and hence we will only discuss an ALS 
algorithm to minimize the weighted least squares loss function in (5.17) subject to the 
constraint 032 =′=′ a1a1 ~~

II . Weighted least squares estimates of θ1, θ2, and θ3, and 

hence of C
~

, can be obtained using the Levenberg-Marquardt algorithm (Seber & 

Wild, 1989). The first column of A
~

 can be updated by means of row-wise weighted 
least squares regression (Gabriel & Zamir, 1979). The second and third columns of 

A
~

, 2a~  and 3a~ , can be estimated using the procedure for weighted least squares 
fitting by Kiers (1997b). The latter method boils down to missing data imputation in 
XF, where the optimal least squares estimates of the missing elements are imputed at 
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each step, followed by performing the OLS step to find updates for 2a~  and 3a~ , which 
is discussed in Section 5.2.2. 
 The above approach is useful if the missing data are missing completely at 
random (Little & Rubin, 1987; see also Chapter 3). The degree of reliability of the 
estimates is influenced by the number of missing data as well as by the time points at 
which missing data occur. Generally, a large amount of missing data restricted to 
certain small time periods will decrease the reliability greatly. However, this also 
depends on the functional form of the true scores. For example, the occurrence of 
missing data at a certain time interval decreases the reliability more when the true 
scores fluctuate greatly, than when they fluctuate only slightly. 
 

5.3. The SLC Tucker3 model for longitudinal three-way data 

In this section, a three-way generalization of the SLC two-way component model, 
namely the SLC Tucker3 model, is elaborated. In the Tucker3 model, three-way data 
are decomposed into three component matrices (see Section 2.3). The components for 
the three modes are weighted via the core array. The SLC Tucker3 model, as 
elaborated here, is particularly useful if the longitudinal three-way data consist of 
scores on variables that are intended to measure a certain growth process. In the SLC 
two-way component model, it is assumed that the estimated average scores across 
subjects follow a Gompertz curve. In the SLC Tucker3 model, it is assumed that the 
estimated average scores across subjects and variables follow a Gompertz curve. 
Furthermore, in the models, the estimated score of a subject on a variable at a 
particular time point is a weighted sum of basis functions that are evaluated in that 
particular time point. Just as in the SLC two-way component model, the measurement 
time points are not necessarily identical for all subjects, and for all variables. 
However, to facilitate description and notation, the model is described here as if the 
measurements are collected at the same time points for all subjects and all variables. 
 The SLC Tucker3 model is given by 
 
 Xc=CGc(B´⊗ A´)+Ec, (5.18)
 
where Xc (K×IJ) denotes the matricized three-way array X (I×J×K), C (K×3) the 
occasion component scores matrix, A (I×P) the subject component matrix, B (J×Q) 
the variable component matrix, Gc (3×PQ) the matricized core array G (3×P×Q), and 
Ec (K×IJ) the matricized error array E; the three components in the occasion 
component matrix C represent three basis functions following (5.6), that are evaluated 
at each of the time points t1,...,tK; the matrix Gc(B´⊗ A´) is restricted so that 

IJIJ 1′1 (B⊗ A)Gc´=[α β 0]. Because of the nature of C, and the restriction on the 

weights for the basis functions, the estimated average scores across variables and 
subjects follow a Gompertz curve.  
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 The parameters α, β, and γ govern the estimated average scores across subjects 
and variables, and they are interpreted in the same way as in the two-way SLC model 
(see Section 5.2.1). The occasion component matrix consists of evaluations of three 
basis functions, which can be interpreted as the asymptote basis function, the initial 
basis function, and the rate of learning basis function. The subject and variable 
component matrices and the core array are interpreted just like their counterparts in 
the unconstrained Tucker3 model (see Section 2.7). 
 

5.3.1. Fitting the SLC Tucker3 model to data 
In this section, an algorithm to fit the SLC Tucker3 model to data will be discussed. 
The function to be minimized is the least squares loss function, for which an ALS 
algorithm is proposed.  
 The SLC Tucker3 algorithm aims at minimizing  
 

 f7(ττττ,A,B,G)= ( ) 2
'' ABCGX cc ⊗− , (5.19)

 
subject to the constraint IJIJ 1′1 (B⊗ A)Gc´=[α β 0], and where C consists of elements 

given by (5.6). Just as in the two-way case (see Section 5.2.2), a reparametrized 
version of the Gompertz function, given by (5.8), is used to arrive at an estimate of 
the parameters α, β and γ. Instead of C and Gc, the (reparametrized) occasion 

component matrix C
~

 and the core array cG
~

 which can be transformed to C and Gc 
without altering the model estimates, are estimated, analogously to the two-way case.  

 The elements of C
~

 are given by (5.9), and thus are a function of θ1, θ2 and θ3 
only. The model can be fitted to data by minimizing 
 

 f8(θθθθ,A,B, cG
~

)= ( ) 2
''

~~
ABGCX cc ⊗− , (5.20)

 

with C
~

 given by (5.9), subject to the constraint cGAB1 ′⊗′ ~
IJIJ )(1 =[θ1 0 0], to achieve 

the average estimated curve to follow (5.8), with parameters θ1, θ2 and θ3. 
Analogously to the algorithm to fit the SLC two-way component model (see Section 

5.2.2), the constraint on the first column of (B⊗ A) cG ′~
 can be satisfied by proper 

rescaling of θ1 (and hence of C
~

) after minimizing (5.20), subject to the constraints on 

the second and third columns of (B⊗ A) cG ′~
 only. In the SLC Tucker3 model, the 

rescaling should be compensated in the core matrix cG
~

. Estimates of A, B, cG
~

, and 

θθθθ can be obtained by alternating least squares, as follows. 
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Initial estimates of θθθθ and A and B for the ALS algorithm 

To start the ALS algorithm, initial estimates of the parameters are needed. 
Analogously to the two-way case, initial values of θθθθ can be chosen on the basis of a 
plot of the average scores across subjects and variables (see Section 5.2.2). Initial 
estimates of A and B can be obtained by taking the first P and Q eigenvectors of 
XaXa′ and XbXb′, respectively. Subsequently, an initial (unconstrained) estimate of 

cG
~

 is obtained by taking cG
~

= -1-1 ))(()( AABBABXCCC c ′⊗′⊗′′ ~~~
 (Penrose, 1956). 

Those initial values for θθθθ, A, B and cG
~

 suffice to start the algorithm by finding an 

estimate for the second and third columns of cG
~

. 
 

Finding an update of θθθθ 

An update of θθθθ, considering A and B fixed, can be obtained the same way as finding 
an update of θθθθ is obtained in the SLC two-way component model, as discussed in 
Section 5.2.2.  
 

Finding an update of the core array  

To find an update for cG
~

, we propose updating the rows of cG
~

 successively. An 

update of the first row of cG
~

 can be obtained by minimizing 
 

 f9( 1,
~

cg ) ( ) 2

113322 )''()''()''( ABgcABgcABgcX cccc ⊗′−⊗′−⊗′−= ,,,
~~~~~~  

   
2

1123 )''( ABgcX cc ⊗′−= − ,,
~~ , 

(5.21)

 

where m,
~

cg ′  (1×QP) denotes the mth row of cG
~

, and 

( ))()( 332223 ABgcABgcXX cccc ′⊗′′−′⊗′′−≡− ,,,
~~~~ . An update of 1,

~
cg  can be obtained 

by taking -1
,-231

1
111 ))(()( AABBABXcccg cc ′⊗′⊗′′=′ − ~~~~

,  (Penrose, 1956). 

 An update of the second row of cG
~

 can be obtained by minimizing 
 

 f10( 2,
~

cg ) ( ) 2

223311 )()()''( ABgcABgcABgcX cccc ′⊗′′−′⊗′′−⊗′−= ,,,
~~~~~~  

   
2

2213 )( ABgcX cc ′⊗′′−= − ,,
~~ , 

(5.22)

 
subject to the constraint ( ) 2,

~
cgAB1 ⊗′ =0, where ≡−13,cX  

( ))()( 3311 ABgcABgcX ccc ′⊗′′−′⊗′′− ,,
~~~~ . By requiring 2,

~
cg =N 2,cg

(
, where N 

(QP×(QP−1)) is a basis for the nullspace of ( )AB1 ⊗′IJ , and minimizing (5.22) over 
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unconstrained 2,cg
(

 ((QP−1)×1), a least squares estimate of 2,
~

cg =N 2,cg
(

, subject to the 

constraint ( ) 2,
~

cgAB1 ⊗′ =0, can be obtained. An update of the unconstrained vector 

2,cg
(

 can be obtained as -1
,-132

-1
222 ))(()()( NAABBNNABXcccg cc '''~~~', ⊗⊗′′=( ′. 

 An update of the third row of cG
~

, subject to the constraint 0)( 3 =⊗′ ,cgAB1
(

, 

can be obtained the same way as an update of the second row of cG
~

 was obtained. 
 
Finding an update of A and B 
An update of A can be obtained by minimizing 
 

 f11(A)=
2

)( ''
~~

ABGCX cc ⊗− , (5.23)

 

subject to the constraint 0GAB1 ′=′⊗′ 23)(
~

IJ , where ][ ,3,223 cc ggG ~~~ ≡′ . Upon defining 

V as  
 

 ,
3

2













′⊗′′

′⊗′′
≡

IJ

IJ
~

~

1GB1

1GB1
V   

 

where m
~
G′  (P×Q) denotes the mth horizontal slab of the core array G

~
 (3×P×Q), the 

latter constraints are equivalent to requiring VVec(A)=0, as is shown in Appendix 
5.1. Minimizing (5.23) over A is equivalent to minimizing 
 

 f12(A)=
2

)( '
~~

BCGAX aa ⊗′− . (5.24)

 
An update for A subject to the constraint VVec(A)=0 can be obtained by minimizing 
 

 f13( a
(

)=
2

))(()Vec( aNIGBCX aa
(

I
~~ ⊗′⊗− , (5.25)

 
where N is a basis for the nullspace of V, and Vec(A)=N a

(
. By defining 

NIGBCZ a ))(( I
~~ ⊗′⊗≡ , an update for Vec(A) can be obtained by taking 

Vec(A)=N(Z´Z)−1Z´Vec(Xa). Rearranging the elements of Vec(A) into an I×P matrix 
yields A. 
 Upon interchanging the role of the A and B mode, an update of B can be obtained 
the same way an update for A was obtained in the SLC Tucker3 model, as was 
discussed above.  
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Rescaling of the estimates after convergence of the ALS algorithm 

After convergence, the rescaling of θ1 so that ,1
1 )( cgAB1 ~

IJIJ ⊗′ =θ1 can be obtained as 

follows: Let c
1θ , c

,2cg  and c
,3cg  be the estimates of θ1, ,2cg~  and ,3cg~ , respectively, 

after convergence. After defining θ1= ,1
1 )( cgAB1 ~

IJIJ ⊗′ , the second and third rows of 

cG
~

 are defined as ,2cg~ = c
,

c

2
1

1
cg

θ
θ

 and ,3cg~ = c
,

c

3
1

1
cg

θ
θ

, respectively. The rescaled 

estimates of the elements of C
~

 are obtained using (5.9). 
 Subsequently, the parameters α, β, and γ can be obtained by taking α=θ1, 

)exp( 21 θ−θ=β , and γ=θ3. Then, the matrix C is computed as C= TC
~

, and the matrix 

Gc as Gc=(T)−1
cG

~
, where T is given by (5.12). 

 

5.3.2. Transformational freedom and interpretation in the SLC Tucker3 model  
The SLC Tucker3 model has transformational freedom, as the subject and variable 
component matrices can be transformed provided that such transformations are 
compensated in the core array G. The occasion component matrix C is given by (5.6), 
and may therefore not be transformed.  
 A rescaling of the occasion component matrix in the SLC Tucker3 model would 
imply that the elements of C no longer satisfy (5.6). However, in practice, the 
interpretation of the model may be facilitated by rescaling the component matrix C 
column-wise. Then the columns of the occasion component matrix follow (5.6) up to 
a multiplication by a constant. The rescaling should be compensated in the subject 
and/or variable component matrices, or in the core array, to preserve the fit. Note that 
after rescaling the first column of C, the constraint on the first column of 

cGAB1 ′⊗′ )(  in the SLC Tucker3 model is no longer satisfied. However, this does 
not pose a problem as the estimated average curve across subjects and variables, as 
given by IJ

1 CGc(B⊗ A)′1IJ in the SLC Tucker3 model, is still a Gompertz curve with 

parameters α, β, and γ. Such a rescaling of the occasion component matrix is 
illustrated in the empirical example (Section 5.4). 
 

5.4. Empirical example: Learning to read study (II) 

In this section, the results of an SLC Tucker3 analysis of the data of the Learning to 
Read study (Jansen & Bus, 1982; Bus & Kroonenberg, 1982) are discussed. The 
learning to read study was discussed in Section 4.5. The data contain the scores of 
seven subjects on five reading tests, collected at 37 time points during process of 
learning to read. This data set was analyzed by the unrestricted Tucker3 model, and 
two smoothness constrained Tucker3 models. The results are discussed in Section 4.5. 
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In this section, we present the results of an SLC Tucker3 analysis and compare them 
to the results of the previous analyses. 
 The raw scores were rescaled in the same way as in Section 4.5, that is, so that the 
scores on all variables ranged from 0 to 1. The SLC Tucker3 model (see (5.18)) was 
fitted to the rescaled data. Analogously to the unconstrained Tucker3 analysis (see 
Section 4.5), we chose two components for the subject mode, and one component for 
the variable mode.  
 The parameters α, β, and γ were estimated as 0.92, 0.06, and 0.13, respectively. 
Hence, the asymptote of the mean curve (over all subjects and variables) is 0.92, and 
the estimated mean score at time point (=week) 0 is 0.06. The inflection point is 

estimated to occur at week 7.7 
















α
β

γ
= ln-ln

1
. The observed mean scores across 

variables and subjects, and the mean curve as estimated by the SLC Tucker3 model 
are plotted in Figure 5.2.  
 

0

0.25

0.5

0.75

1

0 10 20 30 40
week

estimated mean
scores
observed mean
scores

 
Figure 5.2. The observed mean scores across variables and subjects, and the mean 
curve as estimated by the SLC Tucker3 analysis of the data of the Learning to Read 
study. 

 
The fit of the SLC Tucker3 model is 96.13%, which is 0.13% lower than the 
unconstrained Tucker3 model. Note that, although the unconstrained Tucker3 model 
has two occasion components, whereas the SLC Tucker3 model has three, the latter 
model uses fewer parameters: the Tucker3 model requires 
 (I×P+J×Q+K×R+P×Q×R−P2−Q2−R2)−(I×P+J×Q+2+P×Q×3−P2−Q2−2)=68 
parameters more (see also Weesie & Van Houwelingen, 1983) than the SLC Tucker3 
model in the current example. 
 The estimated subject and variable component matrices of the SLC Tucker3 
model were regressed onto their counterparts found in the unconstrained Tucker3 
analysis. This transformation was compensated in the core array. The transformed 
component matrices were compared to the solutions of the unconstrained Tucker3 
model by computing the coefficient of congruence between the pairs of components 



 5. SLC component models for longitudinal three-way data 

 

 

64 

concerned. The large coefficients (minimally 0.9997) indicate that those pairs 
resembled each other strongly. The subject component matrix and the variable 
component matrix are presented in Tables 5.1 and 5.2, respectively. 
 
Table 5.1. Subject component scores of the SLC Tucker3 solution of the Learning to 
Read study. 

A (subjects) 1st component 2nd component 
1 1.06 −0.41 
2 0.96 −0.30 
3 0.99 −0.37 
4 1.28 1.01 
5 1.16 0.17 
6 1.09 −0.01 
7 0.89 −0.43 

 
Table 5.2. Variable component scores of the SLC Tucker3 solution of the Learning to 
Read study. 

B (variables)  

Letter Knowledge  0.91 
Regular Orthographic Short Words  1.00 
Regular Orthographic Long Words  0.87 
Regular Orthographic Long and Short Words within Context  0.99 
Irregular Orthographic Long and Short Words  0.58 

 
 To facilitate the interpretation, the slabs of the core array pertaining to the three 
basis functions were rescaled so that the maximal weight for each of the three basis 
functions equals one, and this rescaling was compensated in the basis functions. As 
explained earlier, the estimated mean curve still is a Gompertz function with 
parameters α, β, and γ. The core array is presented in Table 5.3. The estimated and 
rescaled occasion basis functions are plotted in Figure 5.3.  
 
Table 5.3. Core of the SLC Tucker3 model of the Learning to Read data. 

G (core) b1 c1 b1 c2 b1 c3 

a1 1.00 0.33 0.05 
a2 −0.18 1.00 1.00 
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Figure 5.3. Estimated and rescaled basis functions of the SLC Tucker3 model of the 
Learning to Read data. 

 
The sizes of the core elements indicate that the combinations of the first subject 
component and the first basis function, and the second subject component and the 
second and third basis functions weigh heavily in the final solution. However, the 
learning rate basis function (the third basis function) hardly influences the estimated 
solution, as the scores are almost zero, as can be seen in Figure 5.3. The initial value 
basis function reflects not only the initial value, but also the fact that the acceleration 
first increases and then decreases. In fact, one could interpret the initial value basis 
function as a second learning rate basis function, with its maximum occurring at the 
inflection point of the Gompertz curve.  
 The ordering in the size of the variable component scores indicates the relative 
difficulty of the variable, with a large score indicating that the skill measured by the 
variable concerned is mastered relatively quickly. As only one component is used for 
the variables, the ordering in difficulty among variables is equal across time for the 
subjects. 
 The subject component scores can be interpreted as follows: The subject 
component scores on the first component indicate the weight of the asymptote basis 
function, whereas the score on the second subject component indicates the weight of 
the initial value basis function and the learning rate basis function. 
 As the learning rate and initial basis functions approach zero at the last 
measurement occasion, the weight of the first subject component scores indicates the 
relative size of the maximal score of the subject. Thus, Subject 4 ends highest, 
successively followed by Subjects 5, 6, 1, 3, 2, 7.  
 The evaluated values of the learning rate basis function are close to zero, and 
therefore hardly play a role in the model. On the contrary, the initial value basis 
function influences the solution greatly. It reflects the initial score as well as the 
growth rate. Thus, on the basis of the ordering of the second subject component 
scores, the subjects can be ordered from fast growth rate combined with relatively 
high initial values, to slow learning rate combined with low initial values. Note that a 
subject can also start and end high, and show relatively slow learning rate due to 
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ceiling effects. This phenomenon is reflected in the subject component scores by a 
relatively high score on the first component and a relatively low score on the second 
component. This can be seen in Subject 6.  
 In order to compare subjects, it can be useful to estimate the growth curve(s) per 
subject. This can be done by computing Gb(A′⊗ C′): the rows of this matrix refer to 
the weights for the Q variable components; columns 1 through K are the evaluations 
of the estimated growth curve at the k=1,...,K measurement occasions for the first 
subject, K+1 through 2K for the second subject, and so forth. Here, we have only one 
variable component, and thus each subject has only one estimated curve, which could 
be called the ‘general growth curve’. Per variable, the estimated curve per subject is 
just proportional to the general growth curve of the subject concerned. For 
illustration, the curves for Subjects 1, 4 and 6 are plotted in Figure 5.4. It can be seen 
in this figure that Subject 4 starts high, and approaches the asymptote quickly. Subject 
6 starts somewhat higher than Subject 1, who shows a somewhat higher growth rate 
than Subject 6. Subjects 1, 4 and 6 end up at about the same asymptote level. 
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Figure 5.4. Estimated ‘general growth curves’ of Subjects 1, 4 and 6, of the SLC 
Tucker3 model of the learning to read data. 

 

5.5. Discussion and conclusion 

In this chapter, the Structured Latent Curve (SLC) two-way component and the SLC 
Tucker3 models were discussed. The empirical example showed the use of the SLC 
Tucker3 model in practice. In the SLC Tucker3 model of the ‘Learning to read’ data, 
it can be observed that the asymptote basis function and the initial value basis 
function (see Figure 5.3) resemble the two respective occasion component scores of 
the T3-Bs model (see Figure 4.5) closely. However, the initial value basis function 
can be interpreted somewhat better than the second occasion component of the T3-Bs 
analysis. In the latter analysis, the scores are negative after week 22, which may 
suggest decreasing scores on the variables after week 22. This is not the case, for 
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either the observed scores or the model, but this is difficult to see at once. (In 
problematic cases, plots of the estimated scores per subject per variable can be 
helpful.) The interpretation of the SLC Tucker3 model is therefore somewhat easier 
than the interpretation of the T3-Bs model.  
 In general, the SLC Tucker3 model is more parsimonious than its smoothness 
constrained counterpart. On the other hand, smoothing the component matrix is to be 
preferred over imposing a functional form if knowledge about the functional form is 
lacking. Moreover, if the functional form of the mean curve is intricate, the 
smoothness constrained model offers a simple approach to restricted modeling of the 
data.  
 The principles of the SLC Tucker3 model could also be applied to the CP model, 
which is more restricted, and to the Tucker2 and Tucker1 models that are less 
restricted than the Tucker3 model. That is, SLC CP, SLC Tucker 2 and SLC Tucker1 
models can be defined completely analogously to the SLC Tucker3 model. An SLC 
CP model is usually heavily constrained, because the latent curves, as well as the CP 
model itself, are restricted. Note that, in a CP model, the number of components is 
equal for all three modes. As a result, when, for example, a Gompertz function is used 
as the target function, the number of basis functions is three, and hence the number of 
subject components and the number of variable components must always be three. In 
general, a CP model implies that the scores of the entities of one mode are 
proportional to each other, and hence no interactions across the modes are allowed 
for. To put it differently in the current context, the weights for the variables for each 
basis function are equal for all subjects, and per variable the subjects’ curves over 
time are proportional to each other. Hence, the SLC CP model requires the data to 
have a rather special structure. Moreover, it is difficult to fit the model to data. For 
these two reasons, we did not elaborate the SLC CP model further. 
 The SLC Tucker2 model and SLC Tucker1 model are less restricted than the SLC 
Tucker3 model. The SLC Tucker2 model can be fitted to data using the SLC Tucker3 
fitting procedure by taking the number of observed entities of the unreduced mode as 
the number of components for the unreduced mode in the SLC Tucker3 fitting 
procedure. Then, the extended core array is computed by multiplying the component 
matrix of the unreduced mode by the (appropriately reordered) estimated core array. 
The SLC Tucker1 model can be fitted to data by applying the fitting procedure for the 
SLC two-way component model to the matricized data array Xc (K×IJ). 
 The SLC Tucker3 model was discussed for the case where the mean curve (across 
subjects and variables) could be described well by a Gompertz curve. The approach 
can also be used if the mean curve follows another target function. For an example, in 
the three-way SLC factor analysis context, we refer to Oort (2001), who applied a 
linear target function in an empirical example. Of course, one may think of more 
intricate target functions as well. 
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Appendix 5.1. 
The constraint 0GAB1 ′=′⊗′ 23)(

~
IJ  is equivalent to the constraint VVec(A)=0, where 

A (I×P) and B (J×Q) are component matrices, ][ ,3,223 cc ggG ~~~ ≡′ , with m,
~

cg ′  (1×QP) 

denoting the mth row of cG
~

, where cG
~

 (3×PQ) denotes the matricized core array G
~

 

(3×P×Q), Vec(A) (IP×1) denotes the vectorized version of matrix A, and V is defined 
as  
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This can be seen as follows. The constraint ( ) 0GAB1 ′=′⊗′ 23
~

IJ  is equivalent to the 

constraints ( ) ( ) 032 =⊗′=⊗′ ,IJ,IJ
~~

cc gAB1gAB1 . The constraint on the scalar 

( ) 2,IJ
~

cgAB1 ⊗′  can be written as =⊗′ ,2)( cgAB1 ~
IJ ( )( ) ,2cgAB11 ~

IJ ′⊗′⊗′ = 

( ) ( )( ) ,2cgA1B1 ~
IJ ′′⊗′ = ( )JI

~
1BGA1 ′′ 2Vec = ( )( ) ( )A1GB1 Vec2 IJ

~ ′⊗′′ =0, where 2G
~

 

(P×Q) denotes the 2nd horizontal slab of the core array G
~

 (3×P×Q). Analogously, the 

constraint on the scalar 3,IJ
~)( cgAB1 ⊗′  can be written as ( )( ) ( ) 0Vec3 =′⊗′′ A1GB1 IJ

~
. 

When V is defined as above, the constraints 

( )( ) ( ) ( )( ) ( ) 0VecVec 32 =′⊗′′=′⊗′′ A1GB1A1GB1 IJIJ
~~

 can be rewritten as VVec(A)=0. 



 

6. Simultaneous Component Models of 
Multisubject Multivariate Time Series 

6.1. Introduction 

This chapter and the next chapter both deal with a class of models for the analysis of 
multivariate time series from more than one subject, for the case in which the 
measurement occasions are not comparable across the subjects. The multisubject 
multivariate time series are analyzed simultaneously. The models capture 
intraindividual as well as interindividual variability. 
 For the modeling of multivariate time series collected from a single observation 
unit, various models, in which the relationships between the observed variables are 
modeled using latent variables, have been proposed. In those models, it is assumed 
that the multivariate time series are generated by a latent uni- or multivariate time 
series, where the latent time series are of a lower order than the observed multivariate 
time series. One such model is the model underlying the ‘P-technique’, proposed by 
Cattell (1952, 1963), where a conventional cross-sectional factor analysis is applied to 
the multivariate time series of one subject. Anderson (1963) objected to this method 
since only simultaneous relations between variables are taken into account: possible 
relations between factor series at different times are not modeled in a P-technique 
analysis. Anderson (1963) proposed an alternative procedure, which has been 
elaborated by several authors. The elaboration is known under the name ‘dynamic 
factor analysis’ (Engle & Watson, 1981; Immink, 1986; Molenaar, 1985). The various 
dynamic factor models differ in the way the latent time series are related to observed 
time series, the model of the latent time series and the estimation procedure of the 
parameters of the model.  
 A different approach is to use component models, which are directed at fitting the 
data themselves, rather than their covariances. Bijleveld (1989) and Van Buuren 
(1990) offered dynamic component models. The linear dynamic system model 
(Bijleveld, 1989) is a model in which the autoregressive structure of successive 
component scores is explicitly modeled. Van Buuren (1990) offered a very general 
dynamic component model, which is denoted as the canonical class model. 
 The models mentioned above aim at modeling multivariate time series of a single 
subject, thus allowing intraindividual variability to be studied. Researchers are often 
interested in studying interindividual differences and similarities in intraindividual 
variability. One of the methods used so far is to compare the various fitted time series 
models obtained for each of the subjects. This approach is used quite often in P-
technique factor analysis, as indicated in Jones and Nesselroade’s review (1990) of 
studies in which multivariate time series were analyzed using P-technique, and also in 
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dynamic factor models (e.g., see Shifren, Hooker, Wood & Nesselroade, 1997). 
Another approach is to model the multisubject multivariate time series 
simultaneously. However, the multisubject extensions of the models for multivariate 
time series of a single subject so far proposed leave little or no room for 
interindividual differences. The dynamic factor model for time series collected from 
more than one subject (Nesselroade & Molenaar, 1999) assumes that there are no 
interindividual differences in intraindividual variability in the data. The extension of 
the linear dynamic system model (Bijleveld & Bijleveld, 1997) offers only limited 
possibilities for modeling interindividual differences. The extension of the canonical 
class model (Van Buuren, 1990) appears particularly useful for modeling data from a 
number of observers on the same subject, rather than modeling data of a number of 
subjects, and hence is not appropriate for modeling interindividual differences. 
 In this and the next chapter, we propose models for the exploratory analysis of 
multisubject multivariate time series which explicitly model interindividual 
differences. Specifically, in the present chapter, we propose a class of four 
simultaneous component analysis (SCA) models, two of which are new. In each of 
the four models, the multivariate time series of each subject is decomposed into a few 
series of component scores and a loading matrix. The loading matrix is common for 
all subjects. The four SCA models differ with respect to the constraints imposed on 
the cross-products (covariances) of the component scores. Apart from the cross-
product constraints, the component scores themselves are estimated freely, and the 
approach deviates therefore from the usual time series analysis. The models can be 
ordered hierarchically from weakly to strongly constrained, thus allowing for large to 
small interindividual differences in the model. Which model is most appropriate 
depends on the degree of variability between subjects. After the models themselves 
have been described, the SCA models and alternating least squares algorithms to fit 
the models to data will be treated. Finally, the methods will be illustrated by means of 
two empirical examples. In the next chapter, the SCA models will be elaborated to 
include lagged effects. 
 

6.2. Four models for simultaneous component analysis 

In the next sections, steps in the preprocessing of the raw data before performing a 
simultaneous component analysis (SCA; Section 6.2.1), and the four SCA models 
will be discussed (Sections 6.2.2 through 6.2.6). The transformational freedom of 
each of the four models is treated in Section 6.2.7, and model selection issues are 
elaborated in Section 6.2.8.  
 

6.2.1. Preprocessing of raw data before fitting the SCA model to data 

A convenient way to organize the raw data is to let Xi (Ki×J) denote the matrix 
containing the scores of the ith subject (i=1,...,I) on J variables measured on Ki 
occasions (ki=1,...,Ki). Before fitting one of the four SCA models, one has to decide 
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whether the raw data or some preprocessed version thereof should be analyzed. In 
most cases in practice, the data can be considered to have interval level. It is then 
advisable to center the raw scores across occasions per variable and per subject, hence 
to center Xi column-wise across the Ki occasions, i=1,...,I. This approach eliminates 
constants from the data without introducing artificial variation (Harshman & Lundy, 
1984b; Bro & Smilde, in preparation). In addition, the average estimated component 
score (over occasions) per component and per subject can be shown to be zero (see 
Appendix 6.1). This is useful because it allows the different restrictions on the 
component score matrices in each of the four models to be interpreted directly in 
terms of different restrictions on the covariances between components. This will 
become clear later.  
 Scaling aims at eliminating artificial scale differences. In the case of SCA, scaling 
to equalize the importance of the variables in the final solution appears to be most 
reasonable. We advise normalizing the (centered) scores ‘within variables’ (i.e., per 
variable over occasions and subjects jointly), so that the sum of squares per variable 
over occasions and subjects is equal to the sum of the number of measurements of all 

subjects (∑
=

I

i
iK

1
, where Ki denotes the number of occasions of subject i, i=1,...,I). As a 

consequence, differences in intraindividual variability are preserved. Furthermore, 
this type of scaling does not affect the form of the structural model (cf., Harshman & 
Lundy, 1984b; Bro & Smilde, in preparation). 
 

6.2.2. SCA with invariant Pattern (SCA-P) 
The model for SCA with invariant Pattern (SCA-P; Kiers & Ten Berge, 1994) was 
originally proposed for modeling multivariate data of a number of subjects drawn 
from more than one population. SCA-P can be used for modeling multivariate time 
series of a number of subjects as follows: Let Xi (Ki×J) denote the matrix of (usually 
preprocessed) scores of the ith subject (i=1,...,I) on J variables measured at Ki 
occasions (ki=1,...,Ki). The SCA-P model is given by  
 
 Xi=FiB´+Ei, (6.1)
 
where Fi (Ki×Q) denotes the Q component scores of subject i at time points 1,...,Ki, B 
(J×Q) denotes the loading matrix, and Ei (Ki×J) denotes the matrix of residuals. The 
component scores matrix Fi, i=1,...,I, is unconstrained. It is assumed that the true 
variable scores (i.e., without error) at occasion ki are a linear combination of the 
component scores at occasion ki. The fact that the component scores matrices are 
unconstrained implies that the inner products between the components may vary 
across subjects. If the variables are centered across occasions for each subject, then 
the component scores are also centered (see Appendix 6.1), and the inner products of 
the component scores of subject i divided by Ki are covariances between the 
components of the subject concerned. If the analyzed data matrices were normalized 
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‘within variables’ (see Section 6.2.1), the differences in intraindividual variability are 
preserved. In the sequel, it will be assumed that the raw scores are preprocessed as 
discussed in Section 6.2.1. 
 The multivariate time series of each subject are decomposed into a number of 
time series of component scores and a loading matrix, which is common for all 
subjects and for all occasions. As a result, the loading matrix is assumed to be subject 
and time invariant. The component score on a certain occasion can be interpreted as 
the degree of the particular property measured by the particular component, present in 
that subject, on that occasion. The interpretation of the components is, as usual, based 
on the loadings. To investigate each individual’s behavior on the various components, 
the series of component scores for each component, and for each subject, can be 
plotted against the time axis. Possible trends and deviating scores on certain occasions 
can be seen immediately. 
 The variance of the component scores (over time) for each component and for 
each subject can be computed. Per component, differences in variances between 
subjects can be interpreted as differences in intraindividual variability with respect to 
that particular component. Differences between subjects in covariances between 
components (within subjects) are easiest to interpret in terms of differences in 
correlations. Hence, it is possible that certain components correlate highly for one 
subject, and almost zero for another. 
 

6.2.3. Constrained versions of SCA-P 
In the SCA-P model, the component scores matrices are unconstrained, implying that 
the variances of component scores and the covariances between component scores 
within subjects may vary across subjects. If no interindividual differences in 
covariation and/or variability are present in the data, a more parsimonious model than 
SCA-P should be used. By imposing proper constraints on the variances and 
covariances of the individual component scores, three models that are restricted 
variants of SCA-P are defined. The restrictions on the component scores of the four 
models are summarized in Table 6.1. The three restricted variants of SCA-P are 
described in Sections 6.2.4 to 6.2.6. 
 
Table 6.1. The restrictions of the four SCA models on the covariances between and 
the variances of the component scores. 

 
Variances of components 

Covariances between 
components 

SCA-P free free 
SCA-PF2 free equal across subjects 
SCA-IND free equal to 0 
SCA-ECP equal across subjects equal across subjects 
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Depending on the extent of the interindividual differences, a weakly or strongly 
restricted SCA model can be chosen. The strength of the approach is that one can 
explicitly choose the most parsimonious model possible for the particular data set, 
without ignoring important aspects of the data. The choice for the most parsimonious 
model is not only important in terms of the interpretation of the model. Fitting a less 
parsimonious model than the one that is underlying the data usually leads to a 
considerable amount of ‘error fitting’, that is, a part of the error term is mistakenly 
fitted in the model. This usually leads to unstable parameter estimates.  
 

6.2.4. SCA with PARAFAC2 constraints (SCA-PF2) 
The model for SCA with PARAFAC2 constraints (SCA-PF2; Kiers, Ten Berge & 
Bro, 1999) is a constrained version of the SCA-P model. Kiers, Ten Berge & Bro 
(1999) named this model ‘direct fitting PARAFAC2’, but we choose to denote it as 
SCA-PF2 to be consistent with the other SCA models. The SCA-PF2 model is given 
by (6.1) with Fi′Fi constrained to 

iK
1 Fi′Fi=DiΦΦΦΦDi, with Di a diagonal Q×Q matrix and 

ΦΦΦΦ a positive definite Q×Q matrix, and without loss of generality, we further require ΦΦΦΦ 
to have unit diagonal elements. Thus, in SCA-PF2, the congruence coefficients 
(Tucker, 1951; see also Section 4.4.3) between columns of Fi are invariant over all 
subjects i=1,...,I.  
 Here, the component scores matrices Fi, i=1,...,I, contain centered scores, because 
the variables are centered across occasions for each subject (see Appendix 6.1). As a 
result, the restriction on Fi, i=1,...,I, implies that the components have the same 
mutual correlations for all subjects, and that the variances of the components may 

vary across subjects. These variances are given by the diagonal elements of 2
iD , 

i=1,...,I. Thus, the SCA-PF2 model is suitable if the variables indicate concepts that 
are equally correlated for different subjects, and if the degree of intraindividual 
variability with respect to these concepts varies between subjects.  
 

6.2.5. SCA with INDSCAL constraints (SCA-IND) 
The model for SCA with INDSCAL constraints (SCA-IND) is a constrained version 
of both SCA-P and SCA-PF2. That is, the SCA-IND model is given by (6.1) with 

Fi′Fi constrained to 
iK

1 Fi′Fi=
2
iD , with Di a diagonal matrix. Thus, the inner products 

between the components are zero and the sums of squares of the components may 
differ across subjects. To the best of our knowledge, the SCA-IND model is new. If 
the component scores matrices contain centered scores, which is the case here, the 
restriction on Fi, i=1,...,I, implies that the components are constrained to be 
uncorrelated, but the variances of the several components may vary across subjects. 
Again, the elements of Di

2 contain the variances of the components of subject i. 
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The name ‘SCA-IND’ is obtained from a counterpart model for cross-product 
matrices. That is, taking the cross-products of the (error free parts of) the left and 

right hand side of (6.1), and imposing 
iK

1 Fi′Fi=
2
iD , i=1,...,I, we get  

 

 
iK

1 Xi´Xi=B 2
iD B´ (6.2)

 
which equals the scalar products version of the INDSCAL (INdividual Differences 
SCALing) model (Carroll & Chang, 1970) applied to the matrices 

iK
1 Xi´Xi, i=1,...,I. 

 The SCA-IND model should be used if there are interindividual differences in 
intraindividual variability (over time) for the separate components, but the separate 
components within subjects are uncorrelated for all subjects. The model should be 
used if the variables indicate several uncorrelated concepts, and if the subjects show 
differences in variability across time in the concepts indicated by the components. 
 

6.2.6. SCA with Equal average Cross-Products constraints (SCA-ECP) 
The model for SCA with Equal average Cross-Products constraints (SCA-ECP) is a 
constrained version of the SCA-P, SCA-PF2, and SCA-IND models. The name of this 
new method expresses the constraints on the component scores. That is, the SCA-
ECP model is given by (6.1) with Fi′Fi constrained so that 

iK
1 Fi′Fi=ΦΦΦΦ, i=1,...,I, where 

ΦΦΦΦ is a positive definite Q×Q matrix. The restriction on the component scores implies 
that the inner products of the components are equal for all subjects. If the component 
scores matrix contains centered scores, the restriction implies that the correlations 
between, and the variances of the components are equal for all subjects. The estimates 
of the data matrices Xi, i=1,...,I, are insensitive to an orthogonal or oblique 
transformation of the component score matrices Fi, provided that such a 
transformation is compensated in the loading matrix B. Therefore, the sum of squares 
explained by the model does not alter by requiring 

iK
1 Fi′Fi=I (instead of 

iK
1 Fi′Fi=ΦΦΦΦ), 

and thus it is clear that SCA-ECP is a constrained version of SCA-IND, and hence of 
the other models as well.  
 In the SCA-ECP model, the variances of components and covariances between 
components within subjects are equal for all subjects. This implies that the variable 
covariance matrix (computed over time) is equal for all subjects. This model is 
particularly useful if all subjects show equal variability over time on the separate 
components, and the correlations between the components are equal for all subjects.  
 

6.2.7. Transformational freedom in the SCA-P, SCA-PF2, SCA-IND and   
SCA-ECP models 

As will be discussed further in Section 6.3, the SCA models described above can all 
be fitted to a particular data set by least squares minimization of the residuals. In the 
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sequel it is assumed that parameter estimates of Fi for at least one of the subjects, and 
the parameter estimates of B have full rank. The estimates of the data matrices Xi, 
i=1,...,I, by the parameter matrices of the SCA-P, and SCA-ECP models are 
insensitive to orthogonal and oblique transformations of the loading matrix B, 
provided that such a transformation is compensated in the component scores matrices 
Fi, i=1,...,I. Standard rotational procedures (e.g., Varimax; Kaiser, 1958) can be used 
to obtain solutions which are easier to interpret.  
 Kiers, Ten Berge and Bro (1999) have shown that, under some assumptions, 
SCA-PF2 solutions are ‘essentially unique’, which means that SCA-PF2 estimates are 
unique up to trivial permutation, reflection and/or rescaling. In the proof, it is 
required, among other things, that the number of subjects relative to the number of 
components is rather large (I≥Q(Q+1)(Q+2)(Q+3)/24, where I denotes the number of 
subjects and Q the number of components). However, they report on the basis of 
simulations, that the uniqueness properties of PARAFAC2 appear to hold generally 
for I≥4. 
 Assuming that there is at least one pair Dh, Di (h≠i; h,i=1,...,I), so that DhDi

−1 has 
no equal pair of diagonal elements, it can be proven that estimates of SCA-IND are 
essentially unique. The proof is largely based on the uniqueness proof for PARAFAC, 
as given by Harshman (1972). 
 

6.2.8. Model selection 
In modeling data via an SCA-model, one aims at optimally separating observed data 
into a systematic part that is described by an interpretable model, and a residual part. 
As one does not know which part of the data is systematic, the choice of a particular 
SCA-model and number of components is a fairly complicated matter. The issues to 
take into consideration are the same as those discussed in Section 2.6.2.That is, the 
model should be interpretable and, have a small degree of overall error. The degree of 
overall error can be investigated using resampling techniques. We elaborated two 
such methods for use in the SCA-models. They will be discussed now. In practice, we 
apply the two methods to all SCA-models for a reasonable range of numbers of 
components.  
 Wold (1978) suggested the use of cross-validation for determining the number of 
components in PCA by assessing the predictive power of a model. Taking Wold’s 
method as starting point, Louwerse, Smilde, and Kiers (1999) proposed the 
expectation maximization cross-validation (EM-CV) method to determine the 
numbers of components in multi-way component models. A variant of the EM-CV 
method can easily be applied to SCA-models. The expectation maximization cross-
validation procedure for SCA (EM-SCA) can be summarized as follows. One element 
of the observed data is left out of the data, and the remaining part is preprocessed in 
the usual way (see Section 6.2.1). A sensible starting value is imputed for the missing 
value in the preprocessed data array, and this data array is then analyzed by the 
present SCA-model. The SCA estimation procedure is iterative, as will be discussed 
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in Section 6.3, and after each cycle the ‘missing element’ is estimated on the basis of 
the current model parameters, and it is imputed. The cycles are repeated until 
convergence, and the estimated value of the missing element is retained. The 
procedure is repeated by leaving out each element once until all elements have been 
eliminated once, and, as a result, each ‘missing element’ has been estimated once. 
Finally, the predictive residual error sum of squares (PRESS) is calculated as the sum 
of squared differences between estimated values and observed (preprocessed) values. 
A high PRESS value is indicative of a model with low predictive value, either 
because the model underfits or overfits the data. Underfitting may be caused by 
estimating too few components and/or using a too strongly restricted model, whereas 
the reverse leads to an overfitted model. Hence, only models with small PRESS 
values have a high predictive value. The size of the PRESS value depends partly on 
the degree of noise in the data. It is therefore not possible to give a generally valid 
bench-mark value for PRESS. We advise considering only those models that, or the 
data set at hand, have relatively low PRESS values compared to the PRESS values of 
the other models considered. A disadvantage of the EM-SCA cross-validation 
approach is that a huge number of analyses is needed, which may take much 
computing time. The process can be speeded up by leaving out several elements 
simultaneously to be handled as missing values. Still, the method can be impractical 
in the case of large data sets. 
 The second resampling based technique is split-half analysis. Split-half analysis 
can be performed in various ways. It is applied, for instance, in the PARAFAC model 
(Harshman & Lundy, 1984a) and the Tucker3 model (Kiers & Van Mechelen, 2001; 
see also Section 4.5), and it is used here for the SCA models. The observed data are 
randomly split into two parts over the mode that can be viewed as replications, thus 
the subject or the occasion mode. Then, the SCA model at issue is fitted to each of the 
(preprocessed) data halves. We propose comparing the two estimated loading 
matrices, after rotation to simple structure in the case of SCA-P and SCA-ECP (e.g., 
Varimax rotation; Kaiser, 1958). The rotation to simple structure hopefully leads to 
two similar interpretable solutions that are to be compared.  If the solution is stable, 
the respective columns of the two loading matrices should be (approximately) equal 
up to permutation and/or reflection. Hence, permutation and reflection should be 
taken into account in a stability measure. As a stability measure, we propose using the 
average of the mean absolute difference of the columns bq,1 and bq,2, q=1,...,Q, where 
bq,1 and bq,2 denote the qth column of the loading matrices B1 and B2, and where the 
columns of B1 are ordered and reflected so as to yield the lowest average mean of the 
(minimal) absolute differences. This stability measure will be denoted as the ‘split-
half stability coefficient’. We advocate replicating the procedure a number of times 
(e.g., 50 times) and using the average split-half stability coefficients obtained this 
way, in order to increase the reliability of the stability study. A relatively low stability 
coefficient (e.g., <0.10) is indicative of a stable model. 
 Ideally, the above criteria point in the same direction as to the choice of a model. 
It is possible, however, that a few competing models each with its own 
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(dis)advantages, will remain. It might also happen that all criteria indicate different 
models, which might indicate that the SCA models are unsuitable for describing the 
data concerned. 
 

6.3. Fitting the four SCA models to the data 

To fit each of the four models for SCA to observed data, we propose minimizing the 
sum of squared residuals. Hence, we minimize  
 

 F(Fi,B)=∑
=

−
I

i
ii '

1

2
BFX , (6.3)

 
subject to the constraint imposed in the particular SCA. Hence, the total sum of 
squares that is explained by the model is maximized. To identify the solution partly, 

we require for the four SCA models that ∑∑
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denotes the number of measurements of subject i, i=1,...,I, and diag(X) the diagonal 
of matrix X. This identification constraint can always be obtained after estimates of Fi 
and B have been obtained, namely by a simple column-wise scaling transformation of 

B and the Fi’s. That is, the qth column of the rescaled matrix r
iF  is obtained by 
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compensates the rescaling in the qth column of the loading matrix B, where r
qb  is the 

qth column of the rescaled loading matrix. If the component scores matrices Fi, 
i=1,...,I, are centered, this identification constraint implies that the variance per 
component over all subjects is one. In the sequel, we assume that this transformation 
is performed after the estimates of Fi and B have been obtained, and we will not 
explicitly discuss this transformation. 
 The degree to which the estimated model describes the data is expressed by the 
proportion of sum of squares explained by the model, which we call the ‘fit’ in the 
sequel. The fit is defined as 
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The fit is often multiplied by 100 and expressed as a percentage. 
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 The SCA-P algorithm aims at minimizing (6.3) over arbitrary Fi, i=1,...,I, and B. 
Kiers and Ten Berge (1994) give an explicit solution to this problem.  
 For SCA-PF2, SCA-IND and SCA-ECP we use alternating least squares (ALS) 
algorithms. The fitting of the SCA-PF2, SCA-IND, and SCA-ECP models to data will 
be treated successively. 
 

6.3.1. Fitting the SCA-PF2 model  

The SCA-PF2 algorithm aims at minimizing (6.3), subject to 
iK

1 Fi′Fi=DiΦΦΦΦDi, i=1,...,I, 

where Di is a Q×Q diagonal matrix and ΦΦΦΦ a positive definite Q×Q matrix with unit 
diagonal elements. Kiers, Ten Berge and Bro (1999) proposed an ALS algorithm for 

the equivalent problem of minimizing (6.3) subject to Fi′Fi= ii
~~~
DD ΦΦΦΦ  with i

~
D  a 

diagonal Q×Q matrix and ΦΦΦΦ~  an arbitrary positive definite Q×Q matrix. Their 
algorithm is essentially based on the fact that every matrix Fi that meets the constraint 

Fi′Fi= ii
~~~
DD ΦΦΦΦ  can be written as Fi= ii

~~
DFP  provided that Pi′Pi=IQ, F

~
 is an arbitrary 

Q×Q matrix, and i
~
D  a diagonal Q×Q matrix, i=1,...,I. The SCA-PF2 algorithm as 

proposed by Kiers, Ten Berge and Bro (1999) boils down to minimizing 
 

 f1(Pi, i
~

,
~

DF ,B)=∑
=

−
I

i
iii '

~~

1

2
BDFPX . (6.5)

 

subject to Pi′Pi=IQ, and i
~
D  a diagonal matrix, i=1,...,I. The function in (6.5) is 

minimized by updating B, Pi, F
~

, and i
~
D  alternatingly. We propose using this 

algorithm to find solutions for B, Fi, ΦΦΦΦ
~

, and i
~
D . Solutions for Di and ΦΦΦΦ so that 

iK
1 Fi′Fi=DiΦΦΦΦDi can then be obtained by taking 2

1
2
1

diag(diag(
−−

= )
~~

)
~ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ , and 

Di=
iK

1 2
1

)diag(ΦΦΦΦ~~
iD . 

 

6.3.2. Fitting the SCA-IND model to data  

The SCA-IND algorithm aims at minimizing (6.3) subject to 
iK

1 Fi′Fi=
2
iD , i=1,...,I, 

with iD  a diagonal Q×Q matrix. The ALS algorithm to find estimates of the 
parameters of the SCA-PF2 model (Kiers, Ten Berge & Bro, 1999) can be used to 

find estimates of Fi, i=1,...,I, subject to Fi′Fi=
2
i

~
D  by keeping I=ΦΦΦΦ~ . In the SCA-PF2 

algorithm this is obtained by keeping F
~

 fixed as F
~

=I, and only updating B, Pi, and 
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i
~
D . With this algorithm we find solutions for B, Fi and i

~
D . Solutions for Di so that 

iK
1 Fi′Fi=

2
iD  can be obtained by taking Di=

iK
1

i
~
D . 

 

6.3.3. Fitting the SCA-ECP model to data 

The SCA-ECP algorithm aims at minimizing (6.3) subject to 
iK

1 Fi′Fi=ΜΜΜΜ, i=1,...,I, 

which is equivalent to (i.e., without affecting the model fit) requiring that 
iK

1 Fi′Fi=IQ. 

Updating B, and Fi, i=1,...,I, alternatingly can solve this problem. The problem of 
finding an update for B is analogous to finding an update for B in the SCA-PF2 
algorithm (Kiers, Ten Berge & Bro, 1999). The next problem is to find, for every 
value of i, an update for Fi, subject to 

iK
1 Fi′Fi=IQ. This can be done by minimizing  

 

 f2(Fi)=
2

'ii BFX − . (6.6)

 

subject to 
iK

1 Fi′Fi=IQ. By defining i
iKi

~
FF 1= , this is equivalent to maximizing 

tr( BXF ii '
~

), subject to IFF =ii
~

'
~

. Consider the singular value decomposition 

XiB=Ui∆∆∆∆iQi´, with Ui′Ui=Qi′Qi=QiQi′=IQ, and ∆∆∆∆i a diagonal matrix with nonnegative 

diagonal elements in weakly descending order. Then the maximum of tr( BXF ii'
~

) is 

given by i
~
F =UiQi′ (Cliff, 1966), hence an update of Fi is given by Fi= iK UiQi′. 

 

6.3.4. Starting values of the parameters 
Each of the iterative algorithms (i.e., SCA-PF2, SCA-IND and SCA-ECP) has to be 
initialized with certain starting values. The starting matrices can be drawn randomly 
from, for example, a normal distribution. In practice, it is recommended that several 
differently started runs are used in order to decrease the chance of missing the global 
minimum of the function. As a so-called rational start, the (explicit) SCA-P solution 
for the matrix B can be used in all algorithms. In the case of SCA-IND and SCA-PF2, 
the starting matrices for the diagonal matrices Di, i=1,...,I, are set at Q×Q identity 
matrices. In the case of SCA-PF2, the identity matrix (Q×Q) is also used as a starting 
matrix for ΦΦΦΦ. These starting values suffice to start the iterative process (by updating 
Pi or Fi). 
 

6.4. Empirical examples of simultaneous component analyses 

In this section two empirical examples will be provided to illustrate the application of 
the SCA models to multisubject multivariate time series. 
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6.4.1. Empirical example 1: Mood in individuals with Parkinson’s disease 
In a study by Shifren, Hooker, Wood and Nesselroade (1997), mood structure among 
twelve individuals diagnosed with Parkinson’s disease was examined. Positive and 
negative affect was measured with the Positive and Negative Affect Schedule 
(PANAS; Watson, Clark & Tellegen, 1988). This measure contains ten positive and 
ten negative affect items. Subjects were asked to rate the 20 adjectives on a five point 
scale (ranging from one (not at all) to five (all the time)) to indicate to what degree 
they experienced the particular affect on that day. Subjects scored the PANAS daily 
on successive days, for periods ranging from 53 to 71 days. For the twelve subjects 
together, scores on 817 days were obtained. The study investigated the intraindividual 
structure of mood, as well as the interindividual differences. Watson (1988) showed 
that interindividual differences in mood (of healthy subjects) can be described well by 
two relatively independent dimensions, namely positive and negative affect. Central 
questions were whether this structure can also be used in describing intraindividual 
differences in mood of subjects suffering from Parkinson’s disease, and whether the 
degree of intraindividual variability differed across subjects. 
 The scores on the items on successive days were analyzed by Shifren et al. (1997) 
using a dynamic factor analysis. A dynamic factor model was estimated for each 
subject separately, where, based on issues regarding content, the maximal number of 
factors was two, and the maximal ‘lag’ was one. Items showing responses that were 
too stable over time (over 90% of the responses in the same category) were 
eliminated from the analyses. Also, any linear trend over time per variable per subject 
was removed from the data. Further information concerning the research, method of 
analyses and results can be found in Shifren et al. (1997). 
 Here, the data were analyzed by simultaneous component analyses. Prior to the 
analyses, the data of each subject per variable were centered over the time points, and 
normalized within variables (i.e., over occasions and subjects jointly), so that the sum 
of squares per variable over occasions and subjects was equal to the sum of the 

number of occasions for all subjects (∑
=

I

i
iK

1
, i=1,...,I) (see Section 6.2.1). In contrast 

to Shifren et al. (1997), to keep as much of the information in the data as possible, we 
did not remove trends from the data, nor did we exclude variables from the analyses.  
 We first assessed the sensitivity to sampling fluctuations and the fit of each of the 
four models (see Section 6.2.8) with one through five components, thus of 20 models 
in total. In each SCA analysis to assess the model fit, the SCA algorithm was run five 
times, using the rational start (see Section 6.3.4), and four random starts. In each SCA 
analysis performed to assess the stability, the SCA algorithm was run only one time, 
using the rational start, to reduce computing time. In each analysis the convergence 
criterion was set at 10−6. 
 For each of the 20 models, the PRESS value was computed following the 
procedure for EM-SCA cross-validation, as discussed in Section 6.2.8. The procedure 
was applied 150 times: 149 times a different set of 109 randomly chosen observations 
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was left out, and one time the remaining 99 observations were left out, so that each 
element was left out of the data set in one of the 150 analyses. As starting value, a 
zero was imputed for each removed observation. This is the average score per subject 
per variable (as a result of the preprocessing procedure). In this way PRESS values 
were obtained for each of the 20 models.  
 The split-half procedure was applied following the guidelines as discussed in 
Section 6.2.8. We repeated the split-half procedure 50 times, resulting in an average 
split-half stability coefficient over 50 replications. The average split-half stability 
coefficients (SHS), the PRESS values and the fit percentages of the SCA-P, SCA-
PF2, SCA-IND, and SCA-ECP models with one through five components are 
reported in Table 6.2. 
 
Table 6.2. PRESS values, split-half stability coefficients (SHS) and Fit (%) of the four 
SCA-models with one through five components for the ‘Mood data’.  

Model Measure Q=1 Q=2 Q=3 Q=4 Q=5 
PRESS 
(×104) 1.39 1.49 1.76 2.02 2.72 
SHS 0.06 0.08 0.09 0.12 0.13 

SCA-ECP 

Fit 24.0 31.8 37.1 41.0 44.0 
PRESS 
(×104) 1.24 1.16 1.18 1.27 1.51 
SHS 0.07 0.09 0.13 0.14 0.14 

SCA-IND 

Fit 30.8 42.8 49.5 55.3 60.1 
PRESS 
(×104) 1.24 1.16 1.18 1.20 2.05 
SHS 0.07 0.58 1.03 2.12 2.00 

SCA-PF2 

Fit 30.8 43.1 50.0 56.6 61.2 
PRESS 
(×104) 1.24 1.14 1.12 1.13 1.25 
SHS 0.07 0.09 0.20 0.10 0.12 

SCA-P 

Fit 30.8 43.5 51.2 58.4 63.2 
 *Note that for Q=1, the models SCA-IND, SCA-PF2 and SCA-P are equivalent. 
 
In Table 6.2, we see that using the SCA-IND model instead of the more constrained 
SCA-ECP model increases the fit considerably, for all models with one through five 
components. Almost no improvement in fit is gained by using the even less 
constrained SCA-PF2 or SCA-P model instead of the SCA-IND model. Thus, the fit 
percentages indicate that SCA-IND is preferable, but they do not clearly indicate the 
preferred number of components.  
 Low PRESS values and low split-half stability coefficients (SHS) indicate 
insensitivity to sampling fluctuations. On the basis of a comparison of the present 
PRESS and SHS values, we deem models sufficiently insensitive if their SHS values 
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do not exceed 0.10 and their PRESS values do not exceed 1.20×104. Thus, SCA-IND 
and SCA-P with two components, and SCA-P with four components will be 
considered. We start the discussion of the models with the most restricted model of 
the three, SCA-IND with two components. Note that using either SHS or PRESS to 
investigate the insensitivity would lead to the selection of different models. 
 The loading matrix B of the SCA-IND solution is presented on the left hand side 
of Table 6.3. The components can be interpreted as ‘Introversion’, and ‘Emotional 
Instability’. 
 
Table 6.3. Loading matrix of the SCA-IND model with two components (Columns 2 
and 3), and Varimax rotated loading matrix of the SCA-P model with four 
components (Columns 4 through 7) for the ‘Mood data’. Loadings ≤−0.40 or ≥0.40 
are printed in bold face. 

 SCA-IND SCA-P 

 
Introver-

sion 
Emotional 
Instability Arousal 

Nervous-
ness 

Emotional 
 Instability Comp. IV 

jittery 0.59 0.43 0.45 0.50 0.37 −0.15 
distressed −0.02 0.65 0.02 0.17 0.66 0.27 
upset −0.01 0.74 0.09 0.11 0.75 0.15 
afraid 0.61 0.02 0.19 0.75 −0.00 0.11 
scared 0.63 −0.04 0.18 0.78 −0.06 0.08 
hostile 0.44 0.52 0.41 0.35 0.46 −0.13 
irritable −0.07 0.76 0.09 −0.01 0.78 0.09 
guilty −0.10 0.66 0.12 −0.18 0.75 −0.22 
ashamed 0.45 0.22 0.26 0.40 0.29 −−−−0.40 
nervous 0.55 0.40 0.37 0.53 0.37 −0.12 
inspired −−−−0.71 0.03 −−−−0.59 −−−−0.41 0.21 −0.12 
excited 0.01 −0.24 −0.14 0.02 −0.07 −−−−0.69 
determined −0.25 −−−−0.45 −−−−0.58 0.25 −0.29 −0.01 
interested −−−−0.75 −0.24 −−−−0.78 −0.27 −0.04 0.05 
enthusiastic −−−−0.68 −0.29 −−−−0.72 −0.28 −0.06 −0.08 
attentive −−−−0.69 −0.25 −−−−0.77 −0.19 −0.04 −0.07 
proud 0.06 −0.23 0.04 −0.14 −0.12 −−−−0.68 
strong −0.04 −−−−0.59 −−−−0.45 0.30 −0.37 −0.33 
active −−−−0.58 −−−−0.46 −−−−0.73 −0.10 −0.29 0.08 
alert −−−−0.69 −0.32 −−−−0.75 −0.25 −0.11 −0.03 

 
 The size of the occasion component scores can be compared between subjects: 
extremely high (and low) component scores indicate a large degree of variability in 
scores over time compared to the other subjects. The degree of variability across 
persons can easily be compared on the basis of the variances of the component scores, 
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that equal the diagonal elements of 2
iD  here (see Section 6.2.5), and these values are 

presented in the left hand panel of Table 6.4. As can be seen in this table, for 
example, Subject 5 shows most, and Subject 10 shows least variability on the 
Introversion component. 
 

Table 6.4. Variances ( 2
iD ) of and covariances and correlations between the 

component scores per subject of the mood data. ‘In’ denotes Introversion, ‘EI’ 
denotes Emotional Instability.  

SCA-IND SCA-P 
SCA-IND 

compared to 
SCA-P 

variances ( 2
iD ) variance 

cova-
riance 

corre-
lation correlation 

 
Su

bj
ec

t 

In EI In EI In/EI In/EI In/In EI/EI 
1 0.73 1.07 0.61 0.87 0.39 0.54 0.95 0.96 
2 0.18 5.30 0.21 5.71 −0.43 −0.39 0.92 1.00 
3 0.38 0.53 0.38 0.55 −0.06 −0.13 0.99 1.00 
4 2.04 1.20 2.69 1.64 −1.01 −0.48 0.99 0.93 
5 6.42 0.97 5.99 0.89 0.42 0.18 1.00 0.99 
6 0.31 1.27 0.31 0.97 0.31 0.56 0.90 0.99 
7 0.63 0.30 0.53 0.23 0.11 0.31 0.99 0.96 
8 0.16 0.38 0.16 0.33 0.04 0.19 0.99 1.00 
9 0.65 1.50 0.61 1.45 0.12 0.13 0.99 1.00 

10 0.08 0.17 0.10 0.19 −0.05 −0.35 0.98 0.99 
11 0.20 0.06 0.19 0.05 0.02 0.24 0.99 0.97 
12 0.17 0.28 0.17 0.26 0.01 0.06 1.00 1.00 

 
 A comparison of the size of the component scores within subjects reveals the 
subject’s degree of ‘Introversion’ or ‘Emotional Instability’ compared to the degree at 
the other days of the subject concerned. To give some insight into variation of the 
component scores over time, the Introversion scores of Subjects 5 and 10, and the 
Emotional Instability scores of Subjects 2 and 4, resulting from SCA-IND and SCA-
P, are plotted in Figure 6.1. 
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Figure 6.1. Introversion component scores of Subjects 5 and 10, and Emotional 
Instability component scores of Subjects 2 and 4.  

 
Figure 6.1 not only illustrates differences between subjects in intraindividual 
variability, but also offers the possibility of identifying trends in component scores. 
For example, Subject 5 shows a remarkable shift towards extraversion on Day 15 
(but, as has been verified, a similar change was not found in the Emotional Instability 
component scores of this subject). Unfortunately, additional information about the 
subjects to explain these changes in component scores is lacking. 
 The SCA-P model with two components explains 43.5% of the variance, which is 
only 0.7% more than the SCA-IND model with two components. To be able to 
compare the loading matrices of SCA-IND and SCA-P, we rotated the loading matrix 
of SCA-P orthonormally to the loading matrix of SCA-IND, and this rotation is 
compensated in the component score matrices of all subjects. The loading matrix 
obtained in this way (which is not presented here) strongly resembles the loading 
matrix of the SCA-IND solution, as is indicated by a maximal absolute difference in 
the loadings of 0.08, and an average absolute difference of 0.02. (Incidentally, the 
normalized Varimax rotated loading matrix of SCA-P is also rather similar to the 
SCA-IND loading matrix, with maximal and mean absolute differences in loadings 
0.11, and 0.05, respectively.) Therefore, the components for the transformed SCA-P 
solution are interpreted as for the SCA-IND solution, namely as ‘Introversion’, and 
‘Emotional Instability’.  
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 The component scores of the transformed SCA-P solution with two components 
can be compared to the scores of the SCA-IND solution in different ways. For each 
subject we computed the average absolute difference between the component scores 
(both Introversion and Emotional Instability) of the SCA-P solution and the SCA-
IND solution. On average, the SCA-P component scores deviate more than 0.10 from 
the scores of the SCA-IND solution for Subjects 1, 2, 4, 6, and 7. Not surprisingly, 
these are subjects with relatively high covariances between the two components in the 
transformed SCA-P solution, as reflected in correlations larger than 0.30 (see Table 
6.4). The SCA-IND and SCA-P component scores can also be compared by 
investigating whether the score profiles (over time) of the two solutions are 
approximately equal. The correlation coefficients between the component scores of 
SCA-P and SCA-IND per component per subject are reported in Table 6.4. An 
impression of the differences in component scores between the two methods can be 
obtained from the plots in Figure 6.1. In Table 6.4, it can be seen that the correlation 
coefficients are rather high, thus the score profiles of Introversion and Emotional 
Instability as estimated by SCA-IND and SCA-P are approximately equal for all 
subjects. Even the estimated Emotional Instability scores of Subject 4, who shows the 
lowest correlation among all subjects (0.93), do not differ so much that the 
interpretation of the development over time would be different. Thus, in comparing 
the SCA-P to the SCA-IND solution, the presence of clearly non-zero correlations 
between the SCA-P components for a number of subjects is most striking.  
 The SCA-P model with four components explains 58.4% of the variance, which is 
as much as 14.9% more than the SCA-P model with two components. The Varimax 
rotated loading matrix is presented on the right hand side of Table 6.3. In comparison 
to the loading matrices of SCA-IND and SCA-P with two components, the Varimax 
rotated SCA-P loading matrix roughly shows a split of the Introversion component. 
That is, most of the positive affect items (‘inspired’ through ‘alert’) load high 
(<−0.40) on a different component than the negative items (‘jittery’ through 
‘nervous’) do. These two components can be labeled as ‘Arousal’ and ‘Nervousness’. 
Furthermore, the items ‘excited’ and ‘proud’, that were not assigned to a component 
in the SCA-IND solution, form, together with ‘ashamed’, one component (comp. IV 
in Table 6.3). It is interesting to note that one subject shows a large positive 
correlation between ‘Arousal’ and ‘Nervousness’. This is strange from the point of 
view of the interpretation, but it fully reflects the trend that is also perceptible in the 
raw data of this subject. The covariances between the components for the different 
subjects vary from large to small, but they are difficult to interpret.  
 The broad interpretations of the three models just discussed have much in 
common, but the models differ in the details. The less restricted the model is, the 
more details of the data (whether of the variables or the subjects) are captured in the 
model. The preference for a particular model then depends on the degree of interest 
for those details. The SCA-IND model with two components is fairly simple to 
interpret, and covers the main features of the data, as is indicated by a relatively high 
fit, at least compared to SCA-P with two components. In both SCA-P models (two 
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and four components) the components covary in a complicated manner for the 
different subjects. The SCA-P model with four components offers detailed insight 
into the structure of the variables, and fits the data much better than SCA-IND with 
two components. This model is preferred if a detailed description is desired. 
 On the basis of the estimated SCA-P models and SCA-IND model, one can 
conclude that the positive/negative dimensions, which were found when the PANAS 
scale was used to describe interindividual differences in healthy subjects, are not 
found in subjects suffering from Parkinson’s disease. Instead, the intraindividual 
differences in mood in Parkinson patients mainly follow the ‘Emotional Instability’ 
and ‘Introversion’ dimensions. Furthermore, the three models show that the degree of 
intraindividual variability differed greatly across subjects, indicating that the state of 
mind stability varies across Parkinson patients. 
 

6.4.2. Empirical example 2: The Big Five as states 
The paper by Borkenau and Ostendorf (1998) deals with the question whether a 
similarity exists between the factor structures of longitudinal variations in states and 
the factor structures of individual differences in traits. Individual differences in traits 
have been successfully described along five dimensions, which are denoted by the 
Big Five (see e.g., Tupes & Cristal, 1961; Goldberg, 1990). Generally, the research 
into the Big Five makes use of (self or peer) ratings on a number of adjectives, which 
are thought to be indicative of the five dimensions. Borkenau and Ostendorf 
investigated whether the same dimensions also underlie variations of states within 
persons. 
 Over a period of 90 days, 22 subjects rated 30 self-report items describing their 
behavior on that particular day. The 30 adjective items (see Table 6.6) were marker 
items for Neuroticism, Extraversion, Agreeableness, Conscientiousness, and Intellect, 
and every construct was supposed to be measured by six items. A comparison of the 
current research with earlier Big Five trait research was made on the basis of a so-
called reference loading matrix. This matrix (reported by Borkenau & Ostendorf, 
1998) was obtained from a study into individual differences in traits, which used the 
same variables as the current study. 
 To analyze the multivariate time series of the 22 subjects, Borkenau and 
Ostendorf (1998) computed a correlation matrix for each subject, that contained the 
correlations between variables over occasions. They performed a principal component 
analysis on the average variable correlation matrix, computed over subjects, a method 
proposed by Levin (1966). The loading matrix obtained this way was orthogonally 
Procrustes rotated to the reference loading matrix and compared to the reference 
loading matrix using coefficients of congruence (Tucker, 1951). The factor structure 
of the averaged correlations matched the factor structure of individual differences in 
traits quite well (congruence coefficients 0.94, 0.96, 0.88, 0.93 and 0.88). If in 
Levin’s method the correlation matrices are based on the same sample size (which is 
the case here), this method gives equivalent estimates of the loading matrix obtained 
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from an SCA-P analysis (Kiers & Ten Berge, 1994) applied to separately 
standardized data matrices for each subject. 
 We performed a series of SCA analyses on these data to investigate whether 
interindividual differences in intraindividual variability exist in the data, to what 
extent the covariances between components differ across subjects, and whether trends 
could be discovered over time. Before analysis, we centered the data of each subject 
per variable over the time points, and normalized within variables (i.e., over 
occasions and subjects jointly), as described in Section 6.2.1. The normalization 
procedure applied this way implies that differences in intraindividual variability are 
kept in the data, which is not the case in Borkenau and Ostendorf’s approach (1998). 
Because Borkenau and Ostendorf hypothesized that the structure of the data is 
covered by five dimensions we focus on SCA models with five components. 
However, we also considered models with numbers of components close to five to be 
able to compare the relative stability and fit.  
 We first assessed the stability and fit of the four SCA models with three through 
six components. The stability was investigated by applying the split-half procedure 
(see Section 6.2.8). The procedure was repeated 25 times, resulting in an average 
split-half stability coefficient over 25 replications. The SCA algorithm was run five 
times, using the rational start (see Section 6.3.4), and four random starts, in each SCA 
analysis to assess the model fit. In the split-half procedure, the SCA algorithm was 
run only once, using the rational start, to reduce computing time. In each analysis the 
convergence criterion was set at 10−6. The EM-SCA cross-validation procedure was 
not applied, as this would have lead to a prohibitively long computing time. The 
average split-half stability coefficients (SHS) and the fit percentages of the SCA-P, 
SCA-PF2, SCA-IND, and SCA-ECP models with three through six components are 
reported in Table 6.5. 
 
Table 6.5. PRESS values, split-half stability coefficients (SHS) and fit (%) of the four 
SCA-models with three through six components for the ‘Big Five data’. 

Model SCA-ECP SCA-IND SCA-PF2 SCA-P 
Measure SHS Fit  SHS Fit SHS Fit SHS Fit 
Q=3 0.05 37.4 0.09 45.8 0.58 46.0 0.07 46.6 
Q=4 0.05 41.2 0.15 49.9 1.28 50.4 0.05 51.2 
Q=5 0.09 44.4 0.14 53.6 1.79 54.2 0.07 55.2 
Q=6 0.05 47.4 0.14 56.8 2.26 57.5 0.05 58.6 
 
Low SHS values indicate a stable model. On the basis of a comparison of the current 
SHS values, we deem models with an SHS value not exceeding 0.10 stable. 
According to this criterion, the SCA-ECP and SCA-P models with three through six 
components, and the SCA-IND model with three components are stable. A 
comparison of fit values of the stable models reveals that the SCA-P models 
investigated fit the data considerably better than the SCA-ECP models, thus an SCA-
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P model is favored on the basis of fit. For the three component solutions, SCA-IND 
fits only slightly worse than SCA-P, but SCA-IND with three components appeared 
hard to interpret. The number of components cannot clearly be inferred from a 
comparison of the fit values. Because five dimensions were hypothesized, we treat the 
SCA-P solution with five components here. 
 The loading matrix of the SCA-P solution with five components was orthogonally 
Procrustes rotated to the reference loading matrix used by Borkenau and Ostendorf 
(1998). The loadings obtained this way are presented in Table 6.6. The Procrustes 
rotated loading matrix resembles the reference loading matrix reasonably well, as 
indicated by congruence coefficients of 0.95, 0.96, 0.91, 0.91 and 0.95 between the 
corresponding columns of the two loading matrices. The item ‘changeable’, that is 
assigned to ‘Intellect’ in trait research, is assigned here to ‘Neuroticism’ (loading 
>0.50). ‘Reckless’ and ‘bad tempered’ are not assigned here to any component 
(loadings between –0.50 and 0.50). 
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Table 6.6. Loading matrix of the SCA-P solution after orthogonal Procrustes rotation 
to the Reference loading matrix of the ‘Big Five data’. Loadings ≤−0.50 and ≥0.50 
are indicated in bold face. 

Trait adjective 
Neuroticism 

(N) 
Extra- 

version (E) 
Agreeable-

ness (A) 
Conscien-

tiousness (C) Intellect (I) 

irritable 0.71 −0.14 −0.04 −0.11 −0.09 
bad-tempered 0.35 −0.04 −0.46 −0.14 −0.17 
vulnerable 0.72 −0.13 −0.01 −0.15 −0.05 
emotionally 
stable −−−−0.69 0.04 0.08 0.29 0.11 
calm −−−−0.63 −0.04 0.09 0.10 0.02 
resistant −−−−0.69 0.08 −0.06 0.11 0.03 
dynamic −0.07 0.50 0.08 0.26 0.08 
sociable −0.09 0.66 0.16 0.00 0.02 
lively 0.02 0.67 −0.09 −0.10 0.10 
shy 0.14 −−−−0.55 0.02 0.10 −0.20 
silent 0.06 −−−−0.64 −0.05 0.10 −0.12 
reserved 0.06 −−−−0.61 0.04 0.08 −0.13 
good-natured −0.13 0.20 0.54 0.21 −0.11 
helpful 0.08 0.26 0.53 0.38 −0.11 
considerate −0.03 0.08 0.64 0.25 −0.10 
selfish 0.11 0.06 −−−−0.61 −0.16 −0.03 
domineering 0.05 0.23 −−−−0.61 0.06 −0.06 
obstinate 0.08 0.22 −−−−0.59 0.04 −0.05 
industrious −0.02 0.05 0.12 0.68 0.15 
persistent −0.27 0.09 −0.08 0.53 0.01 
responsible −0.05 0.04 0.25 0.62 0.09 
lazy −0.05 −0.06 −0.21 −−−−0.65 −0.11 
reckless −0.00 0.47 −0.29 −0.28 −0.13 
changeable 0.58 0.01 −0.11 −0.35 −0.15 
witty −0.10 0.16 −0.06 0.09 0.60 
knowledgeable −0.11 −0.07 −0.17 0.26 0.73 
prudent −0.09 −0.01 −0.06 0.24 0.70 
fanciness −0.08 −0.40 −0.08 0.15 −−−−0.50 
uninformed 0.15 0.06 0.07 −0.16 −−−−0.71 
unimaginative −0.04 −0.33 −0.04 0.00 −−−−0.56 

 
The variance/covariance matrices of the components per subject give insight into the 
variability over time, and the correlations between the components of the subjects. 
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The variance/covariance matrix for Subjects 1 and 2 is presented in Table 6.7 to give 
an impression of two of those matrices. 
 
Table 6.7. Variance/covariance matrices of the components of Subjects 1 and 2 of the 
‘Big Five data’. 

Subject 1 Subject 2  
N E A C I N E A C I 

N 0.90     0.37     
E -0.27 0.75    0.14 0.80    
A -0.25 -0.20 0.87   -0.24 0.01 0.87   
C 0.25 -0.09 0.19 0.69  0.14 0.09 -0.31 1.00  
I -0.24 0.27 0.13 -0.08 0.83 -0.01 0.23 0.16 0.04 0.51 

 
The degree of variability over time across persons can be compared on the basis of 
the variances of the component scores. The variability within subjects differs across 
components, as is indicated by variances of the component score variances of 0.75, 
3.15, 0.32, 1.03 and 1.12 for components one through five, respectively. The 
component score variances also differ across subjects, but those variances are to a 
large extent linearly related, as reflected by generally high correlation coefficients 
(>0.50) between the variances for the five components. Thus, in general, subjects 
with high (or low) component scores variance on one component tend to show high 
(or low) variances on the others as well. We next inspected correlations between 
component scores for the five components within subjects. This revealed that 
Neuroticism and Agreeableness are negatively correlated for almost all subjects with 
six out of 22 subjects showing a correlation even smaller than –0.50. Finally, plots of 
the component scores per component and per subject against the time axis were made. 
These did not reveal any trend in the data.  
 The SCA-ECP model with five components is also considered a stable model, but 
the fit is much lower than of the SCA-P model. The orthogonally Procrustes rotated 
loading matrix of this SCA-ECP model resembles the reference loading matrix to a 
lesser degree than that of the SCA-P model (congruence coefficients of 0.95, 0.95, 
0.92, 0.89 and 0.89 for components one through five, respectively). The 
interindividual differences in variability are not captured in the model. Therefore, we 
prefer the SCA-P model, as discussed in the previous paragraph. 
 On the basis of the comparison of the loading matrix of the SCA-P model with 
five components and the reference loading matrix of the ‘trait research’, we come to 
the same conclusion as Borkenau and Ostendorf (1998): Not only individual 
differences in traits, but also intraindividual differences in states can be described 
along five dimensions. Additionally, the estimates of the SCA-P model show 
interindividual differences in variability across components as well as across subjects. 
The high negative correlation between two components (‘Neuroticism’ and 
‘Agreeableness’) in the SCA-P model for a part of the sample suggests that four 
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instead of five dimensions would suffice to describe differences in states for some of 
the subjects. 
 

6.5. Discussion and conclusion 

Four variants of models for Simultaneous Component Analysis and the properties of 
the models were discussed in this chapter. The models for SCA are particularly useful 
for the exploratory analysis of multisubject multivariate time series. The four models 
can be ordered hierarchically. The most restricted model, the SCA-ECP model, does 
not allow for variation between subjects in terms of average cross-products of 
component scores (or covariances, if the component scores are centered), whereas the 
least restricted model, the SCA-P model, allows for most variation between subjects. 
A prerequisite for any chosen model is that it is interpretable and has a low degree of 
modeling error, implying that the overall error should be small . This can be assessed 
using resampling methods, like the EM-SCA cross-validation or split-half analysis. 
The methods evaluate different aspects of insensitivity, and therefore we advise using 
both methods simultaneously. However, because EM-SCA cross-validation may take 
very much computing time in the case of large data sets, this method is not always 
feasible. The final decision on which model to use should be based on the 
interpretability of the model. The empirical examples illustrated the use of the SCA 
models in practice. The examples offered nicely interpretable solutions, in which the 
intraindividual as well as the interindividual structure is covered.  
 The four models are not only suitable for modeling multivariate time series of 
two or more subjects simultaneously. SCA-P has been used to analyze scores of two 
or more groups of individuals on the same variables (e.g., Kiers & Ten Berge, 1994; 
Niesing, 1997). An application of SCA-PF2 to chemical data that does not involve 
time series is given in Bro, Andersson and Kiers (1999). Those types of data can be 
modeled by the other three methods as well. Depending on the extent of the 
differences between groups, samples, or individuals, SCA-P, SCA-PF2, or the new 
SCA-IND and SCA-ECP models can be chosen.  
 In the SCA models, the components are defined on the basis of the degree to 
which the variable scores are correlated over time, at least over all subjects 
simultaneously. Low correlations between the component scores over time certainly 
do not imply that the distinct series of component scores are unrelated: They could be 
associated non linearly. One could possibly extend the present models to models that 
incorporate non-linear relationships between component scores. Alternatively, a 
simple approach to reveal possible non-linear relationships between component 
scores is to inspect visually the various component scores time series simultaneously 
per subject. Furthermore, it is possible that components in SCA models have 
instantaneous as well as lagged influences on the variables. Such situations are 
discussed in the next chapter. 
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Appendix 6.1. 
Let Xi (Ki×J) denote the matrix of scores of the ith subject (i=1,...,I) on J variables 
measured on Ki occasions (ki=1,...,Ki). To fit the SCA models to observed data, the 
following function is minimized 
 

 F(Fi,B)=∑
=

−
I

i
ii '

1

2
BFX , (6.7)

 
where Fi (Ki×Q) contains the Q component scores of subject i at time points 1,...,Ki, B 
(J×Q) denotes the loading matrix, and Ei (Ki×J) denotes the matrix of residuals, and 
where Fi is subject to the constraint in the SCA at issue.  
 
Assumption 1. rank(Xsup)≥Q, where Xsup contains the matrices X1,..., XI stacked 
below each other, Xi (Ki×J) is the matrix with scores of the ith subject (i=1,...,I), and Q 
is the number of components as estimated in the SCA-P model. 
 
Theorem 1. If Xi (Ki×J), the matrix with scores of the ith subject (i=1,...,I), is centered 
column-wise, i.e., JiiK 0X1 ′=′ , i=1,...,I, then, under Assumption 1, the component 

scores matrix Fi, i=1,...,I, in the SCA-P model is centered column-wise as well, i.e., 

QiiK 0F1 ′=′ , i=1,...,I. 

 
Proof. To fit the SCA-P model to observed data, the sum of squared residuals is 
minimized. The algorithm to find SCA-P estimates is essentially based on a singular 
value decomposition of the supermatrix Xsup=Ur∆∆∆∆rQr´, where Xsup contains the 
observed score matrices X1,...,XI positioned below each other, and 
Ur′Ur=Qr′Qr=QrQr′=Ir, ∆∆∆∆r a diagonal matrix with positive diagonal elements in 
weakly descending order, and r the rank of Xsup. The data matrix Xi of subject i, 
i=1,...,I, can be written as Xi=Uir∆∆∆∆rQr´, where Uir is obtained by selecting the rows of 
Ur that correspond to the rows with the observed scores for subject i of Xsup. From 
Xi=Uir∆∆∆∆rQr′ it follows that Uir=XiQr∆∆∆∆r

−1, which, given that 1´Xi=0´, implies that 
1´Uir=0´, i=1,...,I, as well. The matrices Fi, i=1,...,I, are obtained as the first Q 
columns of Uir, where Q≤r, as follows from Assumption 1, and hence QiiK 0F1 ′=′ . ∼  

 
Theorem 2. If Xi (Ki×J), the matrix with scores of the ith subject (i=1,...,I), is centered 
column-wise, i.e., JiiK 0X1 ′=′ , i=1,...,I, then, under a mild assumption specified in 

the proof, the component score matrix Fi, i=1,...,I, in the SCA-PF2, SCA-IND, and 
SCA-ECP models is centered column-wise as well, i.e., QiiK 0F1 ′=′ , i=1,...,I. 

 
Proof. To fit the SCA-PF2, SCA-IND, or SCA-ECP models to observed data, the sum 
of squared residuals is minimized via an alternating least squares algorithm. The 
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algorithm to fit the SCA-PF2 model, requiring that 
iK

1 Fi′Fi= ii DD ΦΦΦΦ , with Di a 

diagonal Q×Q matrix and ΦΦΦΦ a positive definite Q×Q matrix with unit diagonal 
elements, uses an ALS algorithm for the equivalent problem of minimizing (6.3), 

subject to the constraint Fi′Fi= ii
~~~
DD ΦΦΦΦ  with ΦΦΦΦ~  an arbitrary positive definite Q×Q 

matrix and i
~
D  a diagonal Q×Q matrix. The algorithm is essentially based on the fact 

that every matrix Fi that meets the constraint Fi′Fi= ii
~~~
DD ΦΦΦΦ  can be written as 

Fi= ii
~~
DFP  provided that Pi′Pi=IQ, i=1,...,I, and ΦΦΦΦ~ = FF

~
'

~
. The matrices Pi, F

~
, i

~
D , and 

B are alternatingly updated in the SCA-PF2 algorithm. The algorithm to fit the SCA-
IND model uses the SCA-PF2 algorithm as follows: to find estimates of Fi, i=1,...,I, 
in the SCA-IND algorithm, the SCA-PF2 algorithm is used, keeping F

~
 fixed at 

identity. An update of Pi in the SCA-PF2 algorithm, subject to Pi′Pi=IQ, can be found 

by first computing the singular value decomposition of XiB '
~~

iFD =UiQ∆∆∆∆iQQiQ´, 

UiQ′UiQ=QiQ′QiQ=QiQQiQ′=IQ, ∆∆∆∆iQ a diagonal matrix with nonnegative diagonal 
elements in weakly descending order, and then taking Pi=UiQQiQ´, where Q is the 

number of components. Now assuming that rank(XiB '
~~

iFD )=Q, which can be 

expected to be satisfied in practice, the equality XiB '
~~

iFD =UiQ∆∆∆∆iQQiQ′ implies that 

UiQ=XiB '
~~

iFD QiQ 
1−

iQ∆∆∆∆ , which, given that 1´Xi=0´, implies that 1´UiQ=0´, i=1,...,I, as 

well. After convergence, for SCA-PF2, Fi=Pi i
~~
DF , whereas for SCA-IND Fi=Pi i

~~
DF  

with F
~

 fixed at identity. Given that Fi=Pi i
~~
DF  and that every update of Pi is taken as 

Pi=UiQQiQ´, it follows that if 1´Xi=0´, then 1´Fi=1´UiQQiQ´ i
~~
DF =0´QiQ i

~~
DF =0´. 

 An update of Fi in the SCA-ECP algorithm, subject to iiiK FF′1 =IQ, can be found 

by first computing the singular value decomposition of XiB=UiQ∆∆∆∆iQQiQ´, 
UiQ′UiQ=QiQ′QiQ=QiQQiQ′=IQ, ∆∆∆∆iQ a diagonal matrix with nonnegative diagonal 

elements in weakly descending order, and then taking Fi= iK UiQQiQ´, where Q is 

the number of components. Assuming that rank(XiB)=Q, which can be expected to be 

satisfied in practice, the equality XiB=UiQ∆∆∆∆iQQiQ′ implies that UiQ=XiBQiQ 
1−

iQ∆∆∆∆ , 

which, given that 1´Xi=0´, implies that 1´UiQ=0´, i=1,...,I, as well. Given that Fi is 

taken as Fi= iK UiQQiQ´, it follows that if 1´Xi=0´, then 

1´Fi=1´UiQQiQ´ iK =0´QiQ´ iK =0´. ∼  

 





 

7. Lagged Simultaneous Component Models 
of Multisubject Multivariate Time Series 

7.1. Introduction 

In the previous chapter, four models for the simultaneous component analysis (SCA) 
of multisubject multivariate time series were discussed. The models that were 
discussed covered intraindividual and interindividual variability, but possible time 
dependencies were not explicitly modeled. Therefore, in the current chapter, the four 
SCA models will be elaborated so that dependencies between successive 
measurement occasions are modeled. As will be explained later, the models are useful 
for data with a special time dependent structure. If data have such a structure, the 
elaborated SCA models offer a sparse model, that clearly reveals the time 
dependencies between component scores and observed scores. 
 The elaborated models to be proposed here are component analytic counterparts 
of one of the dynamic factor model variants (Engle & Watson, 1981; Geweke & 
Singleton, 1981; Molenaar, 1985; Immink, 1986). In dynamic factor models, 
observed multivariate time series are modeled by latent time series, which are of 
lower dimension than the observed ones. Time-dependencies are covered in the 
models. Several variants of dynamic factor models have been proposed. They differ 
in the way the latent time series are related to observed time series, the model of the 
latent time series and the procedure for estimating the parameters of the model. It 
should be noted that, in contrast to our SCA models, dynamic factor modeling is 
usually applied to the multivariate time series obtained from a single subject. Because 
our extension of the SCA models is based on Molenaar’s dynamic factor model 
(Molenaar, 1985), this model is described first. 
 

7.2. The dynamic factor model 

In the dynamic factor model as proposed by Molenaar (1985), observed scores are 
related to factor scores at the same time point and at previous time points. Hence, 
simultaneous as well as lagged effects are modeled. The factors at time point k are 
denoted as the factors of lag zero, whereas the factors at k−u are denoted as the 
factors of lag u. The model is given by 
 

 xk=∑
=

− ε+η
U

u
kuku

0

ΛΛΛΛ , (7.1)
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where xk denotes the vector that contains the scores on J variables at time point k 
(k=1,...,K) of a single subject, ΛΛΛΛu denotes the loading matrix for lag u (u=0,...,U), ηηηηk−u 
the Q factors at time point k−u, εεεεk the residual at time point k, and U∃ 0 the maximal 
lag. Thus, the observed series at time point k are represented by a weighted sum of 
factors at time points k,k−1,...,k−U. It is assumed that the time series xk, k=1,...,K are 
weakly stationary, which implies that the first and second order moments are 
independent of the time. Hence, the time series contains no trend, and the lagged 
covariances are invariant under a translation along the time axis. Because the model 
relates the scores to time points separated from the present time point at most by a lag 
U, it is called a lag U dynamic factor model.  
 For illustration, we represent a lag one dynamic factor model graphically in 
Figure 7.1. Let xk−2,...,xk+1 be the observed scores on all variables at time points 
k−2,...,k+1, hence these are the transposed rows k−2,...,k+1 of matrix X, for a single 
subject; ηηηηk−2,...,ηηηηk+1 denote the vectors of factor scores, ΛΛΛΛ0 and ΛΛΛΛ1 the lag zero and lag 
one loading matrices, respectively, and εεεεk−2,...,εεεεk+1 the residuals at time points 
k−2,...,k+1. Then, the model is given by 
 
 xk=ΛΛΛΛ0ηηηηk+ΛΛΛΛ1ηηηηk−1+εεεεk, (7.2)
 
which can be depicted as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 7.1. A graphical representation of a lag one dynamic factor model. 
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For example, it can be seen in Figure 7.1 that the estimated scores at time point k are 
given by the factor scores at time point k weighted by the lag zero loading matrix 
(ΛΛΛΛ0), and by the lag one factor scores (at k−1) weighted by the lag one loading matrix 
(ΛΛΛΛ1). The dynamic factor model is suitable to model multivariate time series with a 
rather special structure, because, as shown above, a factor score at time point k 
influences the observed score not only at time point k, but also at time points k+1, …, 
k+U.  
 To obtain parameter estimates, Molenaar (1985) proposed fitting the model to 
(lagged) covariance matrices. This can be done by using pseudo-maximum likelihood 
or asymptotically distribution free estimation (Molenaar & Nesselroade, 1998). To 
obtain a structurally identified model, the (lagged) covariance matrix ΞΞΞΞ(u) of the Q 
factors in ηk at lag u, u=0,1,..., is usually constrained so that ΞΞΞΞ(u)=δ(u)IQ, with δ(u)=1 
if u=0, and δ(u)=0, otherwise. Hence, in estimating the parameters of the model, the 
factor scores are assumed to be generated by a white noise process. All time 
dependencies in the data are modeled via the (lagged) loading matrices. Molenaar 
(1985) showed that the model specified this way can be transformed into a model 
with correlated factor scores, as long as an infinite number of lags is taken. Under the 
assumption of stationarity, the number of lags may be truncated in fitting the model, 
without altering the model estimates.  
 As an example of a dynamic factor model, one could think of a study of the level 
of anxiety over time in a single subject. Anxiety is measured by a series of 
psychological measures (e.g., a questionnaire) and a series of physiological measures 
(e.g., heart rate), both of which are indicative of anxiety. Suppose that the scores on 
the physiological measures at the same time point are highly correlated with each 
other, the scores on the psychological measures at the same time point are also highly 
correlated with each other, but that the psychological and the physiological measures 
at the same time point correlate zero. Suppose also that the physiological scores at 
any time point k are only highly correlated to the psychological scores at k+1. A lag 
zero dynamic factor model would reveal two factors, namely a physiological and a 
psychological anxiety factor. A lag one dynamic factor model would reveal just one 
factor, that can be labeled as anxiety, and the relationship between the ‘physiological 
anxiety’ variables at k and the ‘psychological anxiety’ variables at k+1 is made clear 
via their direct and lag one relations, respectively, to this single factor. In this 
example, the model shows that the feeling of anxiety at time point k follows a high 
level of ‘physiological anxiety’ at k−1.  
 

7.3. Lagged SCA models 

In this section, we propose an extension of the SCA models, which will be called 
‘lagged SCA models’. They are component analytic counterparts of Molenaar’s 
dynamic factor model (1985) for multisubject multivariate time series. The models 
cover interindividual and intraindividual differences, as well as lagged effects.  
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 Component analytic counterparts of dynamic factor models that cover lagged 
effects have already been proposed by Brillinger (1975) and Van Buuren (1990). 
Brillinger (1975) defined a principal component model for multivariate time series, in 
which simultaneous as well as lagged effects are modeled, although he did not use the 
term ‘lag’. Van Buuren (1990) proposed the ‘canonical class model’, initially for 
multivariate time series. In modeling multisubject multivariate time series, Van 
Buuren assumes a common series of component scores for all subjects, whereas the 
loading matrices are allowed to differ across subjects. This model appears particularly 
useful for modeling time series data from a number of observers on a single subject, 
rather than for modeling multivariate time series of a number of subjects, as is 
considered in the SCA models. Unfortunately, a number of aspects of the modeling 
procedure remain unclear in the canonical class model, including the transformational 
freedom of the model parameters, the desirability to fix certain matrices, and the 
applicability of the model. 
 The lagged SCA (LSCA) models to be proposed here differ from the SCA models 
defined in Chapter 6 in that not only simultaneous, but also lagged effects of 
component scores on the observed scores are modeled in the same way as in the 
dynamic factor model (7.1). That is, in LSCA, a component score at time point tk 
influences the observed score at tk via the loading matrix, and the observed scores at 
tk+1,tk+2,... via lagged loading matrices. 
 In the LSCA models, it is assumed that the lagged loading matrices are subject 
and time invariant. This implies that the observed time series are related to the latent 
time series similarly across subjects and across time. This assumption is unlikely to 
be met if the intervals between measurement occasions differ within time series, or 
across subjects. Note that the interval between measurement occasions does not 
matter in the SCA models because only simultaneous effects are modeled in the SCA 
models. 
 The LSCA models will be introduced in the next sections. Alternating least 
squares algorithms to fit the models to data, and transformational freedom in each of 
the models are discussed. The results of a small simulation study performed to 
examine some estimation properties of the fitting procedures are presented. We 
briefly discuss the attempts to fit LSCA models to empirical data. The fitted models 
appeared to be difficult to interpret. Possible causes of interpretation difficulties and 
some ideas for possible solutions will be discussed in the discussion section.  
 

7.3.1. LSCA-P 
Before performing an LSCA, it is often needed to preprocess the observed scores. The 
considerations and the steps to be taken are the same as in SCA modeling, and 
therefore we refer to Section 6.2.1. In the sequel, we assume the observed scores to be 
preprocessed properly.  
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 Let Xi (Ki×J) denote the matrix of (preprocessed) scores of the ith subject 
(i=1,...,I) on J variables measured at Ki equidistant occasions (ki=1,...,Ki). The LSCA-
P model is given by  
 

 Xi= iui

U

u

i
u ' EBFS +∑

=0

, (7.3)

 

where i
uS  (Ki×(Ki+U)) denotes the so-called shift matrix (see below) of subject i, 

i=1,...,I, for lag u (u=0,...,U), Fi ((Ki+U)×Q) denotes the Q component scores of 

subject i at time points iKU ,...,1+− , i
uS Fi contains the Q component scores of 

subject i at time points 1−u,...,Ki−u (i.e., at lag u), Bu (J×Q) denotes the loading 
matrix for lag u, and Ei (Ki×J) denotes the matrix of residuals. To keep the notation as 
simple as possible, the Ki+U rows of matrix Fi are indexed as rows 1−U,...,Ki, rather 
than rows 1,...,Ki

 +U, because, when indexed this way, row ki of Fi contains the 
component scores at time point ki. The component scores matrix Fi is unconstrained, 
implying that cross-products within and between the components may vary across 
subjects.  

 The shift matrix i
uS  is defined as [ )( uUiK −×0 |

iKI | uiK ×0 ], where  UiK ×0  denotes a 

Ki×U zero matrix, and 
iKI  denotes the Ki×Ki identity matrix. Premultiplying Fi by the 

shift matrix i
uS  gives the component scores of subject i at lag u (i.e., at time points 

1−u,...,Ki−u). Hence, for example, the shift matrix i
0S  is defined as [ UiK ×0 |

iKI ], and 
i
0S Fi is a matrix composed of the component scores of subject i at time points 1,...,Ki, 

and, as a result, i
0S Fi contains rows 1,...,Ki of Fi.  

 A lag U LSCA-P has U+1 lagged loading matrices, namely B0,...,BU. An 
observed score at a certain time point is influenced by the component scores at that 
particular time point (via B0), but also by component scores at U previous time points 
(via B1,...,BU). Thus, simultaneous as well as lagged effects are modeled. The SCA-P 
model is a special case of the LSCA-P model, namely the case for which the number 
of lags is zero. 
 

7.3.2. LSCA-PF2, LSCA-IND and LSCA-ECP  
Analogously to the constrained version of the SCA-P model, we can define 
constrained versions of the LSCA-P model, namely the LSCA-PF2, LSCA-IND and 
LSCA-ECP models. They are defined analogously to the three constrained versions of 
the SCA-P model, that is by imposing particular constraints on the component scores.   
 The LSCA-PF2 model is given by (7.3), with Fi constrained to 

iK
1 Fi′Fi=DiΦΦΦΦDi, 

i=1,...,I, with Di a diagonal Q×Q matrix and ΦΦΦΦ a positive definite Q×Q matrix with 
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unit diagonal elements. This implies that the congruence coefficients (Tucker, 1951) 
between columns of Fi are invariant over i. 

 The LSCA-IND model is given by (7.3) with Fi constrained to 
iK

1 Fi′Fi=
2
iD , 

i=1,...,I, with Di a diagonal Q×Q matrix. Thus, the inner products of the components 
are zero and the sum of squares of the components may differ across subjects in the 
LSCA-IND model.  
 The LSCA-ECP model is given by (7.3) with Fi constrained so that 

iK
1 Fi′Fi=ΦΦΦΦ, 

i=1,...,I, implying that the sums of squares of the components and the inner products 
between the components are equal for all subjects. 
 Just as in the SCA model, the four LSCA models require that 

∑∑
=

−

=
=






 I

i
Qii

I

i
i )'K

1

1

1
diag( IFF , to identify the solution partly.  

 The constraints on the component scores in the four lagged models can be 
interpreted as in the SCA models. It is advised, that the scores per variable and per 
subject are centered, as one of the preprocessing steps (see Section 6.2.1). As a result, 
in the SCA models, the average component scores over occasions per subject are 
zero. This is a nice property, because then the different restrictions on the component 
score matrices in each of the four models can be interpreted directly in terms of 
different restrictions on the covariances between components. This property is lost if 
lagged SCA models (with U>0) are estimated. However, if the number of lags is 
small compared to the number of observations, the average component scores per 
subject per component will be close to zero in practice. 
 

7.3.3. Fitting the LSCA models to data 
As with fitting the SCA models, we fit the LSCA models to observed data by 
minimizing the sum of squared residuals. Hence, we minimize  
 

 F(Fi,B0,...,BU)=
2

1 0
∑ ∑
= =

−
I

i

U

u
ui

i
ui 'BFSX , (7.4)

 
subject to the constraints imposed in the particular LSCA. An Alternating Least 
Squares (ALS) algorithm is used to minimize this function.  
 

7.3.3.1.  Fitting the LSCA-P model to data 

The LSCA-P model can be fitted to data by minimizing (7.4) alternatingly over Fi, 

i=1,...,I, and Bu, u=0,...,U. Let SFi  denote a supermatrix containing the component 

scores of lag zero to lag U of subject i (i=1,...,I), SFi =[ i
0S Fi|…| i

US Fi], and let BS 
denote a supermatrix containing the loading matrices of lag zero to lag U positioned 
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next to each other, BS=[B0|…|BU]. Let XS denote a supermatrix containing the 
matrices X1,...,XI with the observed scores of subjects 1,...,I, stacked below each 

other, and let FS denote a supermatrix containing the matrices SS FF I,...,1 , positioned 
below each other.  
 To update B0,...,BU, we minimize (7.4) considering Fi, i=1,...,I, fixed. This comes 
down to minimizing 
 

 f1(B
S)=

2
'SSS BFX − . (7.5)

 
This is a multiple regression problem, which is solved by taking BS=(FS´FS)−1FS´XS. 
The matrix BS=[B0,...,BU], so that updates for B0,...,BU can now easily be obtained.  
 An update for Fi, i=1,...,I, can be obtained by minimizing  
 

 f2(Fi)=
2

0
∑
=

−
U

u
ui

i
ui 'BFSX

2

0

))Vec(()Vec( ∑
=

⊗−=
U

u
i

i
uui FSBX , (7.6)

 
where Vec(X) denotes the vector containing all the elements of the matrix X strung 
out column-wise into a column vector. Minimizing (7.6) over Vec(Fi) is an ordinary 
regression problem, solved by taking 

Vec(Fi)= ( ) ( ) ( ) ( )∑∑∑
=

−
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⊗
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
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00

Vec XSBSBSB . By arranging the 

elements of Vec(Fi) back into a matrix, the update for Fi is obtained.  
 

7.3.3.2.  Fitting the LSCA-PF2 model to data 

The LSCA-PF2 model can be fitted to data by minimizing (7.4) alternatingly over Bu, 
u=0,...,U, and Fi, subject to 

iK
1 Fi′Fi=DiΦΦΦΦDi, i=1,...,I, where Di, i=1,...,I, is a diagonal 

Q×Q matrix and ΦΦΦΦ a positive definite Q×Q matrix with unit diagonal elements. We 

solve the equivalent minimization problem with Fi subject to Fi′Fi= ii
~~~
DD ΦΦΦΦ , with i

~
D  

a diagonal Q×Q matrix and ΦΦΦΦ~  an arbitrary positive definite Q×Q matrix first, then 
discuss how to obtain Fi, subject to 

iK
1 Fi′Fi=DiΦΦΦΦDi from the obtained solutions for 

i
~
D  and ΦΦΦΦ~ . As showed by Kiers, Ten Berge and Bro (1999), every matrix Fi that 

meets the constraint Fi′Fi= ii
~~~
DD ΦΦΦΦ  can be written as Fi=Pi i

~~
DF , provided that 

Pi′Pi=IQ, F
~

 is an arbitrary Q×Q matrix, and i

~
D  a diagonal Q×Q matrix, i=1,...,I. The 

problem to be solved boils down to minimizing 
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 f3(Pi, i
~~
DF, ,B0,...,BU)=

2

1 0
∑ ∑
= =

−
I

i

U

u
uii

i
ui '

~~
BDFPSX , (7.7)

 

i=1,...,I, subject to Pi′Pi=IQ, and i
~
D  a diagonal matrix. The function in (7.7) can be 

minimized by updating B0,...,BU, Pi, F
~

, and i
~
D  alternatingly. The problem of 

minimizing (7.7) over B0,...,BU is the same as minimizing (7.4) over B0,...,BU. The 
solution to this problem has been treated in Section 7.3.3.1. . 
 The next problem is to find, for every value of i, an update of Pi, where Pi is 
constrained to Pi′Pi=IQ. An update for Pi can be obtained by minimizing (7.7) over Pi, 
subject to Pi′Pi=IQ, which can be reformulated as minimizing the function 
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An update of Pi can be obtained by majorization (Kiers, 1990). Consider the singular 
value decomposition  
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(7.9)

 
with Qiiiiii IQQQQUU =′=′=′ , and ∆∆∆∆i a diagonal matrix with nonnegative diagonal 

elements in weakly descending order; αuv has to be chosen as a scalar greater than or 

equal to the largest eigenvalue of the symmetric part of ( )FDBBDFSS ′′⊗ ~~~~
' ivui

i
v

i
u . 

Now, the update of Pi can be obtained as iiQU ′ . 

 An update of i
~
D , for every i, is obtained by minimizing (7.7) over i

~
D , which 

comes down to minimizing 
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where di denotes the vector containing the diagonal elements of i
~
D , and υ denotes 

the Khatri-Rao product (Rao & Mitra, 1971; see also Section 2.2). Minimizing (7.10) 
over di is an ordinary regression problem. The minimum is obtained by taking  
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)′Vec(Xi). (7.11)

 
By positioning the elements of the optimal di on the diagonal of a diagonal Q×Q 

matrix, an update for i
~
D  is obtained. 

 The update of F
~

 is obtained by minimizing (7.7) over F
~

 (Q×Q), which comes 
down to minimizing 
 

 f6( F
~

)=∑ ∑
= =

⊗−
I

i

U

u
i

i
uiui

~~

1

2

0

))Vec(()Vec( FPSDBX . (7.12)

 
Let xS denote a supervector containing the vectors Vec(X1),...,Vec(XI) with the 
observed scores of subjects 1,...,I, positioned below each other, and let VS denote a 

supermatrix containing the matrices 

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positioned below each other. Now, minimizing (7.12) boils down to a regression 
problem that can be solved by taking Vec( F

~
)=(VS´VS)−1VS´xS. By arranging the 

elements of Vec( F
~

) back into a matrix, the update for F
~

 is obtained, and Fi=Pi i
~~
DF  

now gives the solution for Fi, i=1,...,I.  
 After convergence, solutions for Di and ΦΦΦΦ so that 

iK
1 Fi′Fi=DiΦΦΦΦDi, with ΦΦΦΦ unit 

diagonal elements, can be obtained by taking 2
1

2
1

diag(diag(
−−

= )
~~

)
~ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ , and 

Di=
iK

1 2
1

diag( )
~~

i ΦΦΦΦD , where FF
~

'
~~ =ΦΦΦΦ . 

 

7.3.3.3.  Fitting the LSCA-IND model to data 

The LSCA-IND model can be fitted to data by minimizing (7.4) alternatingly over Bu, 

u=0,...,U, and Fi, subject to 
iK

1 Fi′Fi=
2
iD  with Di, i=1,...,I, a diagonal Q×Q matrix. 

The ALS algorithm to find estimates of the parameters of the LSCA-PF2 model can 

be used to find estimates of Fi, i=1,...,I subject to Fi′Fi=
2
iD , by keeping I=ΦΦΦΦ~ . In the 

LSCA-PF2 algorithm this is obtained by keeping F
~

 fixed as F
~

=I, and only updating 

Bu, Pi, and i
~
D . With this algorithm we find solutions for Bu, Pi and i

~
D , and hence 
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Fi=Pi i
~~
DF =Pi i

~
DF . Solutions for Di so that 

iK
1 Fi′Fi=

2
iD  can be obtained by taking 

Di=
iK

1
i

~
D . 

 

7.3.3.4.  Fitting the LSCA-ECP model to data 

The LSCA-ECP model can be fitted to data by minimizing (7.4) alternatingly over Bu, 
u=0,...,U, and Fi, subject to 

iK
1 Fi′Fi=ΜΜΜΜ, i=1,...,I, which is equivalent to (i.e., without 

affecting the model fit) imposing the constraint that 
iK

1 Fi′Fi=IQ. Updating B0,...,BU, 

and Fi alternatingly can solve this problem. The problem of finding an update for 
B0,...,BU is analogous to finding an update of B0,...,BU in the LSCA-PF2 algorithm. 
The next problem is to find an update for Fi subject to 

iK
1 Fi′Fi=IQ. Upon substitution 

of i
iKi

~
FF 1= , this is equivalent to finding an update for i

~
F  subject IFF =ii

~
'

~
. An 

update of i
~
F  can be obtained by majorization (Kiers, 1990). Consider the singular 

value decomposition  
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(7.13)

 
with Qiiiiii IQQQQUU =′=′=′ , and ∆∆∆∆i a diagonal matrix with nonnegative diagonal 

elements in weakly descending order; αuv has to be chosen as a scalar greater than or 

equal to the largest eigenvalue of the symmetric part of ( )vu
i
v

i
u ' BBSS ′⊗ . Now, the 

update of i
~
F  can be obtained as iiQU ′ , hence an update of Fi is given by 

Fi= iiiK QU ′ . 
 

7.3.3.5.  Starting values of the parameters 

Alternating least squares algorithms have to be initialized with certain starting values, 
chosen randomly or rationally. For rational starting values of B0, and, if applicable, of 
Di and F, we advise taking the rational starting values for B, Di and F, respectively, as 
discussed in Section 6.3.4. The starting matrices of the loading matrices B1 through 
BU are set to zero. These starting values suffice to start the iterative process (by 
updating Pi or Fi). 
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7.3.4. Transformational freedom in the LSCA models 
In this section, some results will be presented concerning the transformational 
freedom in each of the four LSCA models. The transformational freedom of the 
solutions of LSCA-P and LSCA-ECP models will be shown to be fairly constrained 
provided that certain, usually mild, assumptions hold. Under some assumptions, the 
LSCA-PF2 and LSCA-IND solutions are even unique up to permutation, rescaling 
and sign permutation of the parameter matrices. 
 First, the transformational freedom in the LSCA-P model will be examined. The 
transformational freedom in this model will be shown to be fairly constrained under 
the conditions specified below. Specifically, postmultiplication of Fi by any non-
singular matrix T0, and compensation for this by applying the inverse of T0 to 
B0,...,BU is the only possible transformation without changing the estimates of Xi, 
i=1,...,I, in the LSCA-P. 
 The estimates for the LSCA-P can be written as 
 

 'ˆ
ii

SSBFX = , (7.14)
 

where iX̂  denotes the matrix of estimated scores of the ith (i=1,...,I) subject on J 

variables (j=1,...,J) measured at Ki occasions (ki=1,...,Ki); 
SFi =[ i

0S Fi… i
US Fi] is a 

supermatrix containing the component scores of lag zero to lag U of subject i 
positioned next to each other, and BS=[B0…BU] is a supermatrix containing the 
loading matrices of lag zero to lag U positioned next to each other. Remember that 
the matrix Fi has Ki+U rows, denoted as row 1−U to row Ki, and that row ki of Fi 
therefore contains the component scores of subject i at time point ki. Hence, the 

supermatrix SFi  can also be written as SFi =[
),...,1( iKiF …

),...,1( UiKUi −−F ], where 

),...,1( iKiF  denotes the submatrix containing rows 1,...,Ki of Fi, and where the other 

submatrices are defined analogously.  

 

Throughout Section 7.3.4, the following assumptions are made: 
Assumption 1. There is at least one particular subject s for whom the columns of the 

matrices 
)1()2(1

,...,
iK,...,UsUiKU,...,s +−−

FF  are linearly independent. 

Assumption 2. The supermatrix BS is of full column rank, namely of rank Q(U+1). 
 
Assumption 1, linear independence of the (2U+1)Q columns of the matrices 

)1()2(1
,...,

iK,...,UsUiKU,...,s +−−
FF  implies that (2U+1)Q≤Ki−U, because each such 

column has Ki−U elements. Thus, the number of occasions must be sufficiently large 
in comparison to the number of components and the maximal lag. 
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Theorem 1. Suppose that '
~~

'ˆ
iii

SSSS BFBFX == , with ='i
SSBF [ i

0S Fi… i
US Fi] and 

BS=[B0…BU], and that SFi
~

 and SB
~

 are defined analogously. Then, provided that 

Assumptions 1 and 2 are satisfied, i
~
F =FiT0, i=1,...,I, and u

~
B =Bu(T0

−1)′, u=0,...,U, 
for any non-singular matrix T0. 
 

Proof. It follows from Assumption 1, that the supermatrix SFs  is of full column rank, 
namely of rank Q(U+1). From  
 

 '
~~

'ˆ
sss

SSSS BFBFX ==  (7.15)
 

and the full column rank of SFs  and BS, it follows that the rank of '
~~

s
SSBF  is Q(U+1), 

and hence the column rank of SFs
~

 as well as SB
~

 is full (Q(U+1)). From (7.15), and 

from the full column rank of BS, it follows that -1)( SSSSSS BBBBFF ''
~~

ss = . From the 

full column rank of SFs , it follows that -1)( SSSS BBBB ''
~

 is non-singular. Upon 

denoting ≡-1)( SSSS BBBB ''
~

T−1, we have SFs
~

= SFs T, where T is called a 

transformation matrix. Equation (7.15) boils down to '
~~

' ss
SSSS BFBF = = '

~
s

SS BTF . 

Because SFs  has full column rank, SS FF ss '  is non-singular. Premultiplication of both 

sides of '
~

' ss
SSSS BTFBF =  by ( SS FF ss ' )−1 's

SF  gives )( -1 ′= TBB SS~
. The 

transformation matrix T that transforms SB  into SB
~

 by SB
~

=BS(T−1)′ must be equal 

for all subjects i, i=1,...,I. Thus, SFi  is transformed into SFi
~

 by SFi
~

= SFi T, where T is 
the transformation matrix, that is equal for all subjects i, i=1,…,I.  
 From now on, the subscript i will be omitted for convenience, as the presented 
transformation results hold for all subjects i=1,...,I. The transformation matrix T can 
be partitioned into (U+1)2 equally sized submatrices (Q×Q), which will be denoted as 
T00,...,TUU. Now, TFF SS =~

 can be expanded as 
 
 SF

~
=FST= 

 [(S0FT00+…+SUFTU0)(S0FT01+…+SUFTU1)…(S0FT0U+…+SUFTUU)] 
(7.16) 

 

By noting that FSFS ~~
0[=  FS

~
1 … FS

~
U ], it follows that  

 

 =FS
~

0 (S0FT00+…+SUFTU0) 

 =FS
~

1 (S0FT01+…+SUFTU1) 
   ,..., 

(7.17)
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 =FS
~

U (S0FT0U+…+SUFTUU). 
 

The supermatrix FSFS ~~
0[=  FS

~
1 … FS

~
U ] is composed of rows of F

~
. Row k of 

F
~

, which corresponds to the component scores at time point k, is denoted by '
~

kf  in 

the sequel; note that row k is not the kth row in F
~

, since the numbering of rows of F 
starts from 1−U. The supermatrix SF

~
 is composed as  

 

 SF
~

=
















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




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−

−

−

−

'
~

...

'
~

'
~

'
~

'
~

..

..

'
~

.

.'
~

..

..

'
~

.

'
~

'
~

UK

U

KK

UK

UK

f

f

f

ff

f

f

f

ff

1

1

1

1

01

.  

 

The matrices FS
~

0 , FS
~

1 ,..., FS
~

U  all cover the component scores at time points 1 to 

K−U, albeit in different positions. The submatrix with rows 1,...,K−U of F
~

 will be 
denoted as F

~
(1,...,K−U) in the sequel, where the subscripts indicate the rows concerned. 

Using (7.17), the rows of FS
~

0 , FS
~

1 ,..., FS
~

U  that cover measurements at common 

time points, collected in F
~

(1,...,K−U), can be written in terms of submatrices of F as 
 
 

 =− ),...,1( UK
~
F F(1,...,K−U)T00+F(0,...,K−U−1)T10+…+F(1−U,...,K−2U)TU0 

 =− ),...,1( UK
~
F  

   F(2,...,K−U+1)T01+F(1,...,K−U)T11+F(0,...,K−U−1)T21+…+F(2−U,...,K−2U+1)TU1 
     ,…, 

 =− ),...,1( UK

~
F F(U+1,...,K)T0U+…+F(2,...,K−U+1)T(U−1)U+F(1,...,K−U)TUU, 

(7.18)

 
respectively. From the equality of the first and the last rows of (7.18), it follows that 
 
 F(1−U,...,K−2U)TU0+…+F(0,...,K−U−1)T10+F(1,...,K−U)(T00−TUU)− 
 F(2,...,K−U+1)T(U−1)U−…−F(U+1,...,K)T0U=0(K−U)×Q, 

(7.19)
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with 0(K−U)×Q a (K−U)×Q matrix having each element equal to 0. Using Assumption 1, 
it follows that T00−TUU=0Q×Q, and T0U=…=T(U−1)U=0Q×Q, and T10=…=TU0=0Q×Q. The 
equality of the right hand terms in the first and second terms in (7.18) leads to 
 
 F(1−U,...,K−2U)TU0+F(2−U,...,K−2U+1)(T(U−1)0−TU1)+… 
  +F(0,...,K−U−1)(T10−T21)+F(1,...,K−U)(T00−T11)−F(2,...,K−U+1)T01=0(K−U)×Q 

(7.20)

 
Equation (7.20), Assumption 1, and the result that T10=…=TU0=0Q×Q, lead to the 
conclusion that T01=T21=…=TU1=0Q×Q, and that T00−T11=0Q×Q. Analogously, the 
intermediate combinations can be written down, resulting in Tuu=Tvv≡T0 for 
u,v=0,...,U, and Tuv=0Q×Q for u≠v. This implies that  
 

 =FS
~

u SuFT0, 

 =u
~
B Bu(T0

−1)′, 
(7.21)

 
for u=0,...,U. Thus, postmultiplication of SuF, for any u=0,...,U, by a non-singular 
matrix T0, and compensating for this by applying (T0

−1)´ to Bu is the only possible 
transformation of SuF without changing the estimates of X. For all u, u=0,...,U, the 
transformation of SuF is the same, and hence it is the same for all rows of F, as can 

readily be seen by =FS
~

0 S0FT0= )1( K,...,

~
F =

)1( K,...,
F T0 and =FSU SUFT0= 

)1( UK,...,U

~
−−F =

)1( UK,...,U −−F T0. The latter, combined with the notion that the presented 

transformation results hold for all subjects i, implies that 
 

 =i
~
F 0TFi , (7.22)

 
for i=1,...,I. Thus, postmultiplication of Fi, i=1,...,I, by any non-singular matrix T0, 
and compensating this by applying (T0

−1)´ to Bu, u=0,...,U, is the only possible 
transformation of the matrices Fi, i=1,...,I, without changing the estimates of Xi in the 
LSCA-P.    ∼  
 
Corollary 1. Let Fi, i=1,...,I, and Bu, u=0,...,U, be a given LSCA-P solution. Suppose 

that alternative solutions exist, namely i
~
F  for Fi, and u

~
B  for Bu, that lead to the same 

estimate iX̂  for Xi as do Fi and Bu, that is '
~~

'ˆ
iii

SSSS BFBFX == . Then, provided that 
Assumptions 1 and 2 are satisfied,  
 

 i
~
F u

~
B ′=FiBu′, (7.23)

 
for i=1,...,I and u=0,...,U.  
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Proof. Provided that Assumptions 1 and 2 are satisfied, it follows from Theorem 1 

that i
~
F = 0TFi , i=1,...,I, and u

~
B =Bu(T0

−1)′, u=0,...,U. Hence, i
~
F u

~
B ′= ui BTTF ′−1

00 = 

FiBu′, for i=1,...,I, and u=0,...,U. ∼  
 
Corollary 1 allows us to examine the transformational freedom of constrained 
versions of the LSCA-P starting from (7.23) rather than starting from the more 
complex (7.14). Additionally, (7.23) equals the SCA model, with the constraint on Fi 
for the model under consideration. Therefore, the results concerning transformational 
freedom in each of the four SCA models (see Section 6.2.7) hold for each of the 
corresponding LSCA models as well.  
 

7.3.5. Testing the LSCA-P and LSCA-IND algorithms 
To investigate some of the estimation properties of the LSCA-P algorithm, a small 
simulation study was performed. To limit the size of the study, we chose to examine 
only one of the four methods for LSCA, LSCA-P. It is noteworthy, however, that the 
LSCA-IND algorithm was included also in our preliminary analyses, and the results 
of those analyses were essentially the same as those of the LSCA-P algorithm.  
 To test the LSCA-P algorithm, we constructed 375 datasets according to the 
model 
 

 Xi= 1100 BFSBFS ′+′ i
i

i
i +εEi, (7.24)

 

based on fixed shift matrices i
0S  and i

1S , and fixed loading matrices B0 and B1 (see 
below); the unconstrained component score matrices Fi were generated as described 
below, Ei is a random matrix with elements sampled from the standard normal 
distribution, and ε is a scalar. 
 In the present simulation study, three variables were varied: the expected degree 
of first order autocorrelation of the components of Fi, the degree of multicollinearity 
of B0 and B1, and the error level. It was expected that higher autocorrelation of the 
components, higher degree of multicollinearity and higher error level would lead to 
poorer performance of the LSCA-P algorithm. The simulated data were analyzed by a 
lag one LSCA-P, where the ‘correct’ number of components was estimated. 
 The component scores matrix Fi was constructed by first generating an AR(1) 
time series with an expected mean of zero by 
 
 fik=afi(k−1)+eik,   (7.25)
 
where a is a constant for manipulating the first order autocorrelation, eik and fi0 are 
both Q×1 vectors with elements drawn from a N(0,1) distribution, and the vectors 
fi1,...,fi(K+1) were computed using (7.25). The matrix Fi was obtained by collecting the 
vectors ikf ′ , k=1,...,K+1, in its rows. The values of a were chosen as 0, 0.2, 0.4, 0.6 
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and 0.8, leading to expected first order autocorrelations for Fi of 0, 0.2, 0.4, 0.6 and 
0.8, respectively (see e.g. Jones, 1993). The loading matrices B0 and B1 were chosen 
as 
 















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




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−

c

c
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



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
















=

c

c

0

10

10

0

01

01

1B ,  

 
where the scalar c was varied so as to control the degree of multicollinearity of BS, 
the supermatrix containing the loading matrices B0 and B1 positioned next to each 
other. The values of c, and the corresponding condition numbers of BS in parentheses 
are 0 (1.4), 0.33 (2.3), 0.67 (5.2) and 1 (infinite). Note that the condition c=1 in fact 
leads to data matrices with underlying data matrices (i.e., simulated data matrices 
without error) with zero lag structure. The expected error level was varied so that the 
expected percentage of error sums of squares in the data matrices was 0%, 20%, 50% 
and 69%. The number of subjects (I) was five, the number of variables (J) was six, 
the number of occasions (K) was 30, and the number of components (Q) was two. The 
design was fully crossed, except for the 0% error level condition combined with the 
condition with an infinite condition number of BS, that was excluded from the 
analyses: The latter condition leads to data matrices Xi, i=1,...,I, of exactly rank two, 
and hence to estimation problems if the data matrices are analyzed by the LSCA-P 
algorithm with Q=2 and U=1. It is supposed that the data matrices constructed in this 
way cover a reasonable range of empirical data sets, where some data sets are likely 
to be quite extreme (like the one constructed with an infinite condition number of BS). 
The number of replications in each condition was five. 
 The 375 LSCA-P data sets were analyzed by the LSCA-P algorithm 
(programmed in MATLAB5 (1998)). One rational, and four random starts were used. 
The convergence criterion was set at 10−6. 
 

7.3.5.1.  Retrieval of the loading matrices 

The first issue studied pertained to the quality of retrieval of underlying loading 

matrices. For each simulated data matrix, the estimated loading matrices 0B̂  and 1B̂  
were compared to the underlying loading matrices B0 and B1. 
 The estimated loading matrices of an LSCA-P solution may be transformed 
without loss of fit, provided that the transformation is equal for all loading matrices 
and that the transformation is compensated in the component scores matrices of all 

subjects. Therefore, the matrix 0
1B̂ , in which 0B̂  and 1B̂  of an LSCA-P are positioned 
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below each other, was projected on the matrix 0
1B , in which B0 and B1 are positioned 

below each other, using ordinary regression. Hence, an optimal, in the least squares 

sense, nonsingular transformation matrix T to transform 0
1B̂  towards 0

1B , was found. 

Then, the two columns of 0
1B̂ T were compared to 0

1B  by computing the Proportion of 
Agreement as 
 

 PA=1−
20

1

20
1

0
1

 
B

TBB ˆ−
. (7.26)

 
The average Proportion of Agreement (PA) is displayed per error level by condition 
number of the loading matrices and by expected first order autocorrelation (AC1), in 
Figure 7.2. 
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Figure 7.2. Average Proportion of Agreement (PA) of the LSCA-P simulation study 
per error level by condition number of the loading matrices (left) and by expected 
first order autocorrelation (AC1) (right); ‘inf’ denotes infinity. 

 
As can be seen in Figure 7.2, an error level of 0% led to perfect recovery of the 
underlying loading matrices in all cases in the simulation study. Generally, a higher 
condition number of the underlying loading matrices, a higher error level, and a 
higher first order autocorrelation (AC1) level of the underlying component scores led 
to worse recovery of the underlying loading matrices, as is indicated by lower PA. 
The difference in recovery for the different error levels gets larger with decreasing 
condition numbers. 
 An ANOVA was performed to test whether the observed effects of the various 
manipulated factors could be distinguished from random fluctuations. The condition 
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with 0% error level was excluded from the analysis, because the PA-values were 1 for 
all observations in this condition. For the ANOVA, the PA-values were transformed 
to correct for the observed heterogeneity of variances for the groups by computing 

AP
~~

=arcsin(PA)½ (Stevens, 1992). The effects explicitly described in the previous 
paragraph were found to be significant at α=0.05 in the ANOVA.  
 In addition to the recovery measure, we inspected the fitting percentages of the 
LSCA-P model to the simulated data. The average fitting percentages were 100.0%, 
87.8%, 70.1%, and 59.8% for the expected error levels of 0%, 20%, 50%, and 69%, 
respectively. This finding indicates a considerable amount of overfitting, implying 
that parts of the non-structural part of the data are fitted as well. Not surprisingly, the 
overfitting appears to be larger in the case of higher error levels. 
 

7.3.5.2.  Sensitivity to hitting suboptimal solutions 

A disadvantage of using an alternating least squares algorithm is the possibility of 
ending up with sub-optimal solutions. A standard approach to this problem is to use 
multiple starts, and to choose the solution that produces the best fit of the model to the 
data. The second issue studied was the sensitivity of the LSCA-P algorithm to hitting 
suboptimal solutions. The LSCA-P algorithm was run five times, once started 
rationally and four times randomly. A solution with a fit value lower than 0.999 times 
the fit of the optimal solution (out of five) was considered to be a sub-optimal 
solution. The total number of sub-optimal solutions over the five runs appeared to be 
related to the error level and condition number of the loading matrices, and was only 
slightly related to autocorrelation of the component scores. On average, in the case of 
an error level of 0% (fit percentage 100%), 0.12 of the five starts ended up in a sub-
optimal maximum, whereas in the case of higher error levels (20%, 50% or 69%) the 
number of sub-optimal solutions increased gradually (on average 1.52, 2.54 and 2.61, 
respectively). With increasing condition number of the loading matrices, the number 
of sub-optimal solutions also increased (on average 1.41, 1.44, 1.84 and 2.76 for 
condition numbers 1.4, 2.3, 5.2 and infinity, respectively). On average, rationally 
started runs ended up in sub-optimal solutions almost as often as randomly started 
runs. In ‘easier’ conditions (low autocorrelation between component scores (AC1=0), 
low error level (0% and 20%) and low condition number (1.4, and 2.3)), the rationally 
started run ended less frequently in a sub-optimal solution. In ‘more difficult’ 
conditions, the average number of sub-optimal solutions of randomly started runs was 
smaller than for the rationally started run.  
 

7.3.5.3.  Discussion and conclusion of the simulation study 

The results of this small simulation study revealed that recovery of the underlying 
loading matrices in LSCA-P is worse in the case of higher error level, higher 
condition number of BS=[B0B1], and higher first order autocorrelation of the 
component scores. The recovery of the loading matrices still appears reasonable 
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(PA>0.80) in the case of error levels lower than 20% combined with condition 
number and first order autocorrelations smaller than or equal to 5.2 and 0.6, 
respectively; the recovery also appears reasonable in the case of 50% error level 
combined with zero autocorrelation between component scores, or with condition 
number lower than 1.4.  
 A high first order autocorrelation of the component scores Fi implies that S0Fi is 
approximately proportional to S1Fi (see (7.24)). As a result, the model in (7.24) 
almost reduces to  
 
 Yi=S0Fi(B0+B1)´+εEi, (7.27)
 
and this implies that the estimates of B0 and B1 becomes unstable if the error level is 
larger than zero. 
 A higher condition number of BS=[B0B1] led to poorer recovery of the loading 
matrices as well. We did not expect this finding because S0Fi and S1Fi are constrained 
to be lagged versions of each other and, as a result, a higher condition number of BS 
should not necessarily lead to unstable estimates.  
 When the error part was considerably larger than 20%, it appeared hard to 
disentangle the structural and the error parts. Besides the structural part, some part of 
the error is also fitted. The latter is illustrated in the simulation study by the 
phenomenon of overfitting: higher fit percentages were observed than could be 
expected on the basis of the construction of the data.  
 The number of sub-optimal solutions increased with increasing error level, 
condition number of BS and autocorrelation between the component scores. It appears 
wise to use multiple runs with different initial starting values to increase the chance of 
ending up in the global minimum. 
 The results of the simulation study suggest the following expectations for 
empirical LSCA-P. If empirical data have a lag one LSCA-P structure, and the data 
are not too noisy (say, error level lower than 20%), the correct loading matrices can 
be estimated to a reasonable level by performing an LSCA-P. If the autocorrelation 
between the component scores is zero, and/or the loading matrices lie in clearly 
different column spaces, reasonable recovery of the loading matrices can still be 
obtained in quite noisy data (error level 50%). Threshold values of the several factors 
that have been found to influence recovery, either for ‘good’ or for ‘bad’ recovery, 
cannot be given on the basis of the results of this small simulation study. Incidentally, 
those values are of limited value in practice, because one cannot infer the degree of 
either error level or autocorrelation in the components from empirical data. In social 
sciences, however, one generally expects a high error level, and a high autocorrelation 
in the component scores is also likely to appear. As a result, one may doubt whether 
good recovery of the loading matrices in LSCA-P can be obtained in social sciences. 
For example, a questionnaire with several questions concerning ‘depression’ and 
‘fear’ filled out daily by several subjects, could be analyzed by one of the LSCA’s. If 
two components, that could usefully be labeled ‘depression’ and ‘fear’, are extracted, 
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it is likely that the two series of component scores of the several subjects will show a 
high autocorrelation: a person depressed on one day is likely to be depressed on the 
next day, too. For the reasons mentioned above, it may be difficult to obtain an 
interpretable LSCA. Therefore, we expect the LSCA models to be of limited value in 
social sciences. On the contrary, the SCA models, which are special cases of the 
LSCA models, are promising, as shown by successful application to empirical data in 
Chapter 6.  

 

7.4. Empirical example: Mood in individuals with Parkinson’s disease 

In Section 6.4.1, three SCA models of the data gathered in the study of mood in 
individuals with Parkinson’s disease (Shifren, Hooker, Wood & Nesselroade, 1997) 
were discussed. In the previous chapter, the SCA-IND model with two components 
and the SCA-P models with two and four components appeared stable and easy to 
interpret. Note that the SCA models are special cases of the LSCA model: They are 
lag zero LSCA models. As we questioned whether lagged effects could also be 
discovered, we subjected the data to a series of LSCA. The algorithms were run five 
times, using one rational and four random starts. The convergence criterion was set at 
10−6. We focus first on the fit and interpretability of the models. The fit percentages of 
the fitted models are presented in Table 7.1. 
 
Table 7.1. Fit percentages of the four LSCAs with one and two components and with 
zero and one lags for the mood-data. The models selected in Section 6.4.1 are 
indicated bold. The lag zero LSCA models (indicated with ‘*’) are equivalent to the 
associated SCA models; the LSCA-IND, LSCA-PF2 and LSCA-P models with Q=1 
(indicated with ‘^’) are equivalent.  

Model Q=l; U=0 Q=l; U=1 Q=2; U=0 Q=2; U=1 
LSCA-ECP 24.0* 30.8 31.8* 43.52 
LSCA-IND 30.8*^ 34.0^ 42.8* 45.11 

LSCA-PF2 30.8*^ 34.0^ 43.1* 45.12 

LSCA-P 30.8*^ 34.0^ 43.5* 47.83 

 
The increase in fit gained from using a lag one model instead of a lag zero model is 
rather small, except for the LSCA-ECP case. On the basis of fit, the lag one LSCA-
ECP appears interesting to inspect. However, the lag one LSCA-ECP models with 
one and two components were less easy to interpret than the zero lag LSCA-IND with 
two components (discussed in Chapter 6). 
 The one component lag one LSCA-ECP revealed a special structure: the first lag 
loading matrix revealed the same contrasts as the zero lag loading matrix, whereas the 
lag one loadings in absolute sense were somewhat lower than the lag zero loadings. 
Both the lag zero and the lag one loadings can be interpreted as denoting a 
positive/negative affect dimension. The component scores of eleven out of twelve 



7.4. Empirical example: Mood in individuals with Parkinson’s disease 115
 

 

subjects showed high negative first order autocorrelations, ranging from –0.59 to –
0.97. (The deviant subject was Subject 5, who showed a first order autocorrelation of 
0.08. The pattern of the component scores over time of the two SCA-IND 
components for this subject were discussed briefly in Chapter 6.) Thus, the 
component scores showed large contrasts on successive occasions, making the 
solutions very difficult to interpret. A similar pattern was also found in the two 
components from the lag one LSCA-ECP with two components.  
 The behavior of the algorithm in fitting the lag one LSCA-ECP model, and the 
pattern of the model estimates is reminiscent of the occurrence of degenerate 
solutions in the PARAFAC model (see for example, Kruskal, Harshman, & Lundy, 
1989). That is, the fitted data remain finite but some (or all) of the component scores 
approach plus and minus infinity. The fitted models are often unstable and unreliable. 
Typically, with degenerate solutions, the iteration process does not seem to converge: 
the function value decreases less and less from one iteration to the next, whereas the 
(absolute) component scores continuously increase. The LSCA-ECP algorithm also 
appeared to end in a degeneracy. Degeneracy problems in PARAFAC can be 
circumvented by extracting fewer components, or using restrictions in the model, for 
example orthogonality constraints (Harshman & Lundy, 1984b).  
 

7.5. Discussion and conclusion 

Four variants of lagged simultaneous component models, and their properties were 
discussed in the preceding sections. The results of the simulation study revealed that 
fitting an LSCA model with lag one to simulated data led to reasonably recovered 
loading matrices in the ‘easy’ conditions, for example low error level, and low 
autocorrelation between component scores. In more difficult conditions, the recovery 
of the loading matrices appeared quite poor. In the empirical example, the lag one 
LSCA-P appeared difficult to interpret due to large contrasts in the estimated 
component scores at successive time points, combined with loading matrices that 
showed equal patterns. This, and the behavior of the algorithm is reminiscent of 
degeneracy problems sometimes encountered in fitting the PARAFAC model to data. 
Further research is needed to examine the problems in fitting the LSCA models to 
empirical data. It would be interesting to investigate other possible analogies between 
the degeneracy problem in PARAFAC fitting and the problems in LSCA’s. If the 
problems will appear to resemble each other, solutions may be found in the same 
direction. 
 Generally, the usefulness of LSCAs with lag larger than zero seems limited to 
data with a special data structure, for example, combinations of physiological and 
psychological variables, where the levels of the physiological variables influence the 
levels of the psychological variables at later time points. In Section 7.2, an example of 
a dynamic factor model was discussed. The observed variables pertained to measures 
for anxiety, namely ‘physiological’ and ‘psychological’ anxiety, where the 
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physiological anxiety at time point k was highly correlated with psychological anxiety 
at time point k+1. This kind of data could be analyzed well by LSCA.  

When comparing an LSCA model with an SCA model for the (hypothetical) 
‘anxiety data’ it is important to remember that a lag one LSCA with one component 
would, apart from error fitting and boundary effects, be equal to a lag zero LSCA 
model with two components. The component scores of the latter model would show a 
special structure, namely one series of component scores would be a first lag version 
of the other series of component scores. It is unlikely that one would recognize this 
special structure of the component scores in an SCA model, whereas in the LSCA 
model this structure is clearly revealed. When SCA models are fitted to data with an 
LSCA structure with two (or more) components, an additional problem arises in 
recognizing the lagged structure. Then, the components of the SCA models are 
unlikely to be oriented so that the lagged structure can be recognized. 
 One could also question whether empirical examples of fitted dynamic factor 
models with lagged loadings (see, for example, Molenaar, 1985; Hershberger, 
Corneal & Molenaar, 1994; Shifren, Hooker, Wood & Nesselroade, 1997), are useful 
representations of the structure underlying the observed data. A problem with the 
dynamic factor models is that, in the model, the latent factor series are specified as 
white noise (i.e., they are independent within and across time). Any possible time 
dependent mechanisms are covered via the lagged loading matrices only. This makes 
interpretation of the models extremely difficult, as one should take into account that 
the factor scores are white noise. It is not natural to think of a latent psychological 
time series as being a white noise series, and it may even conflict with the intuitive 
notion of psychological time series. Recently, Molenaar and Nesselroade (2001) 
proposed a method for rotating each univariate factor series (that is represented as 
white noise) to a univariate moving average. The latter is likely to be easier to 
interpret. However, if the univariate factor series are well described by moving 
averages, it may be easier to fit a dynamic factor model in which the factor scores are 
constrained to follow a moving average process. Such models have already been 
proposed by Engle and Watson (1981) and Immink (1986). 



 

8. Conclusion 

8.1. Summary 

This thesis dealt with component models for multisubject multivariate longitudinal 
data. A distinction was between two types of multisubject multivariate longitudinal 
data on the basis of the comparability of measurement occasions across subjects. 
Component models were discussed for both types. 

The CANDECOMP/PARAFAC (CP), Tucker3, Tucker2 and Tucker1 models 
were treated as possible models for longitudinal three-way data. It is often useful to 
use constrained variants of those models, mainly in order to reduce the degree of error 
fitting. We discussed two types of constraints that can be used in the case of 
longitudinal data, namely smoothness and latent curve constraints. Usually, requiring 
smoothness is a weaker and a more flexible type of constraint than imposing latent 
curves on the solution. Imposing latent curve constraints typically requires extensive 
knowledge about the data which is being modeled, but latent curve constraints can be 
very attractive, especially if the parameters of the function have a physical 
interpretation.  

We discussed four variants of Simultaneous Component Analysis (SCA) and their 
four lagged counterpart models for modeling multisubject multivariate time series. 
The four SCA models differ in the degree of interindividual variability that is covered 
in the model. Hence, one can explicitly choose the most parsimonious model possible 
for a particular data set, without ignoring important aspects of the data. In this way, 
the interpretation of the model is facilitated, and the chance of mistakenly fitting a 
part of the error term in the model is reduced.  
 The lagged counterpart models of the four SCA models allow not only for 
simultaneous, but also for lagged relationships between component scores and 
observed scores. In the simulation experiment, the lagged SCA models appeared to be 
estimated reasonably. The attempts at fitting a lagged SCA model to empirical data 
were disappointing, as the estimated models were difficult to interpret. The algorithm 
seemed to end in a degeneracy, a problem sometimes encountered in fitting the CP 
model. The problems might occur for a particular type of multivariate time series, but 
it is also quite possible, that the LSCA models are too weakly constrained to be useful 
in practice. Further investigation is required to test this.  
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8.2. Discussion and future work 

The SCA models are useful for modeling multivariate multisubject time series. This 
was illustrated by the two empirical examples in Chapter 6. Constrained versions of 
the SCA models could be developed, for example by applying smoothness constraints 
to the component scores. To achieve smoothness in an SCA model, one could apply a 
procedure analogous to the procedure used in the CP and Tucker3 models. However, 
one should be cautious when doing this. Frequently, time series are collected to 
investigate the degree of intraindividual variability of processes that are subject to 
fluctuations. The application of smoothness constraints implies a reduction of the 
intraindividual variability in the model, compared to the unconstrained counterpart 
model. It is important to realize that this reduction does not have necessarily an equal 
effect for all subjects. Suppose there are two subjects with equal intraindividual 
variability in the unconstrained model, then, in the smoothness constrained model, the 
subject with a high level of short-term fluctuation will show less intraindividual 
variability than the subject with a high level of long-term fluctuation. 

In estimating the parameters of a smoothness or latent curve constrained model, 
the whole series of observed scores is taken into account. This implies that, in the 
models, the estimated score at a certain time point is influenced by past as well as 
future scores. If one is interested in the predictive value of scores, one should apply 
models that use only past information to model scores at a certain time point, for 
example, autoregressive moving average models (ARMA). The linear dynamic 
system model (Bijleveld, 1989) for multivariate time series is interesting in this 
respect, as the component scores at the successive time points are constrained to 
follow a Markov model (which is a special case of an ARMA model). The extension 
of the linear dynamic system model to model multisubject multivariate time series 
(Bijleveld & Bijleveld, 1997) can be written as a version of an SCA-P model, with the 
component scores constrained to follow a Markov model. It might be interesting to 
formulate other SCA models with component scores constrained to follow an ARMA 
model as well. 
 In some cases, additional information on the subjects is available but is ignored in 
the models for longitudinal three-way data or the multisubject multivariate time 
series. The additional information, which is denoted by the term independent 
variables in the sequel, can refer to measured variables, but it can also follow from the 
design, for example ‘treatment group versus control group’. There are various 
possibilities for actually relating the independent variables to the model at hand. 
These will be discussed later. First, we focus on the distinction between time-varying 
independent variables and variables that are constant across time, and the 
consequences for approaches of taking this information into account in both the 
models for longitudinal three-way data and multisubject multivariate time series.  

In the longitudinal three-way models, independent variables that are constant 
across time could be related to the subject component scores. Obviously, the type of 
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preprocessing that has been performed on the raw data should be taken into account. 
For example, centering the scores across measurement occasions per subject and per 
variable eliminates the interindividual differences in general level from the data. As a 
result, after this type of preprocessing, these differences cannot be related to the 
independent variables. Time-varying independent variables could be related to the 
weights for the variable component scores at each of the measurement occasions (for 
example, in the case of the Tucker3 model, the columns of the matrix ( ) bGCA ′⊗ ). 
 In the SCA models for multivariate time series, the time-varying independent 
variables for each subject can easily be related to the component scores on the 
successive occasions for each subject. Independent variables that are constant across 
time are somewhat more difficult to relate to the SCA models: since the interpretation 
of the model parameters is easiest when the raw scores are centered across time per 
variable and per subject (see Section 6.2.1), the set of I×J univariate series is analyzed 
in deviation from its own mean. Hence, differences in level between subjects are 
eliminated before analysis. As a result, if the goal is to relate the independent 
variable(s) to the general level, one must carry out separate analyses. However, if the 
goal is to model the effect of certain independent variable(s) on the degree of 
intraindividual variability, it is possible to relate those variables to the SCA-IND, 
SCA-PF2, and SCA-P models. For example, in the analysis of the ‘mood data’ 
(Section 6.4.1), one might be interested in relating the variability in ‘Emotional 
stability’ to a specific independent variable, like degree of social support.  
 In the sequel, we will refer to the component scores or parameters of the model 
that are to be related to the independent variables as the ‘dependent model 
parameters’. As mentioned before, various possibilities for relating the independent 
variables to the dependent model parameters exist. A first approach is to estimate a 
model for longitudinal three-way data or multisubject multivariate time series, and 
subsequently to relate quantitative independent variables to the dependent model 
parameters by computing correlations between the independent variable scores and 
the dependent model parameters; categorical independent variables can be related by 
computing category averages of the dependent model parameters (Kiers & Van 
Mechelen, 2001). A second approach is to incorporate the independent variables in 
the model. After the dependent model parameters have been estimated, the dependent 
model parameters could be regressed on the independent variable scores. This 
approach will be called the ‘subsequent regression approach’. Another method is to 
constrain the dependent model parameters so that they are a linear combination of the 
independent variables. This approach has been proposed in the CANDELINC context 
by Carroll, Pruzansky and Kruskal (1980), and can be extended to the present models 
as well. In the linear dynamic system model, Bijleveld (1989) used an approach to 
modeling independent variables which can be easily extended for use in the current 
context. Bijleveld’s method can be viewed as covering the two approaches for 
actually modeling independent variables. In the linear dynamic system model 
(Bijleveld, 1989; Bijleveld & Bijleveld, 1997), the dependent model parameters are 
required to be a linear combination of the independent variables to a given extent. The 
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extent is manipulated using a weight for the part of the least squares loss function that 
deals with the linear combination of the independent variables. The weight times the 
loss function is usually denoted by the term ‘penalty’ (see, for an example in a 
different context, Eilers & Marx, 1996). The respective two extremes of the 
continuum are reached by setting the penalty to infinity or zero, that is, to the Carroll, 
Pruzansky and Kruskal (1980) approach, and to the subsequent regression approach, 
respectively. This approach using a penalty has been elaborated for applying to the 
case for which both the independent and the dependent data are three-way arrays 
(Smilde & Kiers, 1999).   
 Each of the models that has been discussed in this thesis is fitted to data by 
ordinary least squares, hence by minimizing the unweighted least squares loss 
function. Under the single assumption that the errors have mean zero, ordinary least 
squares parameter estimates (OLS) are unbiased (Rice, 1995). The presence of 
autocorrelated errors with mean zero still provides unbiased OLS estimates, but the 
estimates may be inefficient (see e.g., Seber & Wild, 1989). Serial correlation in the 
errors may occur in models for longitudinal data. This can be understood as follows: 
An observed univariate sequence of scores collected at successive measurement 
occasions can be viewed as consisting of a true series of measurements plus random 
measurement error. In the case of longitudinal data, the true series can usually be 
viewed as evaluations of a certain, more or less intricate function. In modeling the 
observed series as evaluations of a smooth function that is different from the true 
function, autocorrelated residuals are induced. The more the fitted function deviates 
from the true function, the stronger the serial correlations between the errors. Having 
more sampling points in the same interval also leads to stronger serially correlated 
errors. To deal with this problem, one could try to approximate the true function as 
closely as possible, which usually boils down to fitting a rather complex function. 
This is not always desirable; for example, one may be interested in a simple 
description of the trend in the data. Alternatively, one could take the autocorrelated 
error structure into account in the model and the fitting procedure, for example by 
using a generalized least squares (GLS) instead of an OLS fitting procedure. 
However, specifying the error structure correctly may be a difficult task in practice, 
and the gain may be small. 
 In our applications, it is to be expected that a certain degree of autocorrelation in 
the errors is present. As a result, the fitting procedures that have been used throughout 
this thesis are probably not as efficient as could be. We chose to use OLS instead of 
GLS, because OLS fitting procedures are easier to handle than GLS, and because we 
expected the loss of efficiency to be within the acceptable range. Obviously, however, 
one can use different estimation procedures that do take the autocorrelation in the 
error structure into account. 
 The models for multivariate longitudinal data collected from more than one 
subject which have been discussed here, aim at providing an optimal summary of the 
data. In practice, these models can rarely be fitted to the data in a straightforward 
way. In rather complex types of data, such as the type discussed here, it is wise first to 
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model the data piece by piece before eventually turning it into a complex model that 
encompasses the full complexity of the data. After the usual checks of the data set, 
modeling the data is a process that consists of choosing particular models on the basis 
of the features a model should cover, fitting the model to data, interpreting the 
estimated model, and checking the stability of the model, where the different stages 
are usually passed through several times. 
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Summary in Dutch (Samenvatting) 
 
Hèt kenmerk van longitudinaal onderzoek is dat gegevens verzameld worden op 
verschillende tijdstippen bij hetzelfde individu of object. Met het verzamelen van 
longitudinale gegevens beoogt men inzicht te krijgen in het verloop van een bepaald 
proces, dat in het algemeen aan verandering onderhevig zal zijn. Om inzicht te krijgen 
in het verloop van een proces is het nodig om dit proces te meten. In de sociale 
wetenschappen is het vrijwel nooit doenlijk om een proces continu te meten, en zal 
een beperkt aantal meetmomenten gekozen worden. Belangrijke overwegingen bij de 
keuze van die meetmomenten zijn de mate van precisie waarmee een proces gevolgd 
moet worden om de onderzoeksvragen te kunnen beantwoorden, de kennis die bij 
voorbaat aanwezig is over de vorm van het te volgen proces, en de grootte van de 
meetfout. 
 Volgt men de processen van meerdere individuen, dan kan men niet alleen de 
individuele ontwikkeling van de afzonderlijke individuen onderzoeken, maar ook de 
interindividuele verschillen in ontwikkeling. Hierbij is het zinvol om twee typen 
onderzoeksdesigns te onderscheiden. Ten eerste, het design waarbij de 
meetmomenten van het gevolgde proces voor de individuen zinvol te vergelijken zijn. 
Hiervoor is het noodzakelijk dat een ijkpunt aan te wijzen is in het gevolgde proces. 
Een voorbeeld is onderzoek naar het effect van een therapie, waarbij de start van de 
therapie als ijkpunt geldt. Ten tweede, het design waarbij de meetmomenten niet 
vergelijkbaar zijn tussen de individuen, en geen zinvol ijkpunt aangewezen kan 
worden in het proces dat gevolgd wordt. Een voorbeeld is onderzoek naar 
stemmingswisselingen in de loop der tijd bij een aantal individuen. In dit type design 
is het niet zinvol om naar gemeenschappelijke ontwikkelingsprocessen voor de 
verschillende individuen op zoek te gaan. 
 In sociaal wetenschappelijk onderzoek worden vaak multivariate data verzameld, 
waarbij de variabelen indicatoren zijn voor één of meerdere constructen. Een veel 
gebruikte analysemethode om de scores van meerdere individuen op meerdere 
variabelen efficiënt samen te vatten is principale componentenanalyse. De 
samenvatters van de variabelen zijn hopelijk, gewoonlijk na rotatie, interpreteerbaar 
in termen van de constructen die onderzocht worden.  
 Worden multivariate gegevens van verscheidene individuen longitudinaal 
verzameld, dan kunnen twee typen data onderscheiden worden, op basis van de eerder 
genoemde vergelijkbaarheid van meetmomenten. Bij ‘longitudinale drie-weg data’ 
zijn de meetmomenten zinvol vergelijkbaar tussen proefpersonen, terwijl bij 
‘multisubject multivariate tijdreeksen’ dit niet het geval is. Dit proefschrift behandelt 
een aantal technieken voor componentenanalyse van zowel longitudinale drie-weg 
data als van multisubject multivariate tijdreeksen. 
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 Longitudinale drie-weg data kunnen geanalyseerd worden met standaard 
componentenanalyse-modellen voor drie-weg gegevens, zoals 
CANDECOMP/PARAFAC (CP), Tucker3, Tucker2 en Tucker1, welke hiërarchisch 
geordend kunnen worden naar mate van strengheid. Afhankelijk van de data-structuur 
en de mate waarin samenvatting van de gegevens gewenst is, kan gekozen worden 
voor een meer of minder streng model. Een analyse met één van de twee strengste 
modellen, het CP- of Tucker3-model, van longitudinale drie-weg data levert drie 
componentenmatrices op, namelijk één voor de subjecten, één voor de variabelen, en 
één voor de tijdstippen. In de tijdscomponentenmatrix zijn de componentscores 
verzameld op de gemeten tijdstippen. Deze scores vatten het scoreverloop in de tijd 
voor de proefpersonen en de variabelen samen. Per component kunnen de scores op 
de verschillende tijdstippen beschouwd worden als evaluaties van een onderliggende 
functie, waarvan de exacte vorm meestal niet bekend is. In veel gevallen is het 
gerechtvaardigd om aan te nemen dat de functie een gladde vorm heeft. Soms kan 
echter aangenomen worden dat de scores een meer specifiek gedetermineerde functie 
volgen. Deze aannames kunnen gebruikt worden bij de analyse, door 
gladheidsrestricties, of een bepaalde functionele vorm, op te leggen aan de 
componentscores. Het voornaamste voordeel van het juiste gebruik van restricties is 
een reductie van de mate waarin het niet-structurele deel in de modelschattingen 
wordt opgenomen.  
 In Hoofdstuk 4 wordt voorgesteld om gladheidsrestricties op te leggen in de CP 
en Tucker3-modellen met behulp van ‘B-splines’. B-splines kunnen op twee manieren 
aangewend worden om gladheid te bewerkstelligen in de CP- en Tucker3-modellen. 
Ten eerste kunnen de univariate reeksen met scores op opeenvolgende tijstippen van 
de subjecten en de variabelen glad gemaakt worden, om daarna geanalyseerd te 
worden met een CP- of Tucker3-analyse. Ten tweede kunnen gladheidsrestricties 
opgelegd worden aan de opeenvolgende componentscores in de 
tijdscomponentenmatrix van het CP- of Tucker3-model. In een groot aantal gevallen 
hoeft de vraag welke van de twee benaderingen gebruikt dient te worden, niet gesteld 
te worden. Zoals in Hoofdstuk 4 bewezen wordt, leiden, onder bepaalde voorwaarden, 
deze twee methoden tot dezelfde modelschattingen. Additioneel aan 
gladheidsrestricties kunnen niet-negativiteits- en monotoniciteitsrestricties opgelegd 
worden met behulp van respectievelijk B-splines en de aan B-splines gerelateerde I-
splines. In een simulatieonderzoek is de effectiviteit van het gebruik van 
gladheidrestricties in de CP- en Tucker3-modellen onderzocht. Bij gesimuleerde drie-
weg data met een gladde structuur bleek in het algemeen dat de parameters van de 
CP- en de Tucker3-modellen beter geschat worden als gladheidsrestricties worden 
opgelegd, dan wanneer een ongerestricteerd model gebruikt wordt. Een empirisch 
voorbeeld illustreert het gebruik van gladheidsrestricties in het Tucker3-model. Het 
Tucker3-model met gladheidsrestricties bleek eenvoudiger te interpreteren dan het 
ongerestricteerde Tucker3-model. 
 In Hoofdstuk 5 worden bepaalde functies aan de tijdscomponentscores in het 
Tucker3-model opgelegd. Het aldus verkregen model wordt het ‘Structured Latent 
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Curve (SLC) Tucker3-model’ genoemd. Het SLC Tucker3-model is geïnspireerd op 
de ‘Structured latent curve’ factormodellen voor de analyse van univariate 
longitudinale gegevens van meerdere proefpersonen, zoals voorgesteld door Browne 
en Du Toit (1991) en Browne (1993). In het SLC Tucker3-model is iedere 
tijdscomponent een, vooraf gespecificeerde, functie van een beperkt aantal 
parameters. Analoog aan de methode van Browne en Du Toit wordt een eerste orde 
Taylor-polynoom gebruikt van een bepaalde doelfunctie om de functies van de 
‘latente curves’ te beschrijven met behulp van een beperkt aantal basiscurven. Als 
doelfunctie is gekozen voor de Gompertzfunctie, welke vooral nuttig is om 
groeigegevens te modelleren. De parameters van de Gompertzfunctie en de 
basisfuncties zijn goed interpreteerbaar. De eigenschappen van het SLC Tucker3-
model, en een algoritme om het model aan data te fitten zijn besproken. Voor de 
empirische gegevens waarvan in Hoofdstuk 4 een Tucker3-model met 
gladheidsrestricties is besproken, is een SLC Tucker3-model geschat. De interpretatie 
van de parameters vertoonde grote overeenkomsten. Echter, het SLC Tucker3-model 
is spaarzamer, en verdient daarom hier de voorkeur. 
 De analyse van multisubject multivariate tijdreeksen vereist een andere aanpak 
dan de analyse van longitudinale drie-weg data. Omdat de meetmomenten niet 
vergelijkbaar zijn voor de verschillende individuen is het niet zinvol om de 
tijdreeksen voor verschillende individuen samen te vatten, zoals in de besproken 
modellen voor longitudinale drie-weg data wordt gedaan. In Hoofdstuk 6 en 7 worden 
modellen voor de analyse van multisubject multivariate tijdreeksen behandeld, waarin 
zowel intra-individuele variabiliteit als interindividuele variabiliteit wordt 
gemodelleerd. In Hoofdstuk 6 worden vier varianten van Simultane 
ComponentenAnalyse (SCA) besproken. In elk van de vier modellen worden de 
multivariate tijdreeksen ontbonden in een beperkt aantal tijdreeksen van 
componentscores, en een variabelen componentenmatrix, waarop de interpretatie van 
de componenten is gebaseerd. De vier modellen kunnen hiërarchisch geordend 
worden van zwak naar streng gerestricteerd. In het zwakste model wordt de meest 
variatie tussen individuen toegestaan, en in het strengste model de minste. Aandacht 
wordt besteed aan het schatten van de modelparameters, aan de keuze van het type 
model en het aantal componenten, en aan de rotatievrijheid van de vier modellen. Het 
gebruik van de SCA-modellen wordt geïllustreerd aan de hand van twee empirische 
voorbeelden. 
 In Hoofdstuk 7 worden de vier SCA-modellen uitgebreid, zodanig dat niet alleen 
gelijktijdige effecten, maar ook vertraagde effecten gemodelleerd kunnen worden. 
Deze vier ‘Lagged SCA (LSCA)-modellen’ zijn geïnspireerd op een variant van de 
klasse van dynamische factor-modellen voorgesteld door Molenaar (1986). 
Molenaar’s dynamische factor-model wordt gewoonlijk gebruikt om multivariate 
tijdreeksen van één individu te modelleren, terwijl hier de multivariate tijdreeksen 
van meerdere individuen worden gemodelleerd. Algoritmen om de LSCA-modellen 
te fitten worden besproken, evenals de rotatievrijheid binnen de vier LSCA-modellen. 
Deze rotatievrijheid bleek, onder bepaalde assumpties, beperkt. In een klein 
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simulatieonderzoek zijn de schattingseigenschappen onderzocht van het algoritme 
voor het fitten van het minst gerestricteerde LSCA-model. De parameters van de 
gesimuleerde data bleken in het algemeen redelijk teruggeschat te worden, met 
uitzondering van de ‘moeilijke’ condities, bijvoorbeeld een hoog ruisniveau in de 
gesimuleerde gegevens. De analyse van een empirische data set leverde 
teleurstellende resultaten op, omdat de geschatte modelparameters nauwelijks 
interpreteerbaar bleken. 
 Hoofdstuk 8 sluit het proefschrift af met een samenvatting, een discussie van de 
gevonden resultaten, en mogelijke uitbreidingen van de gepresenteerde modellen. 
Ook wordt een mogelijke tekortkoming in de schattingsprocedures aangestipt.  
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