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Abstract 
Analytical instrumentation that produces multivariate data is now commonplace 

in chemical laboratories. Such data includes first-order tensors (e.g. a spectrum), second-

order tensors (e.g. chromatography with multichannel detection), and third- and higher 

order tensors (e.g. fluorescence excitation-emission-lifetime measurements). From a data 

analysis perspective, the “cubes” of data that form third-order tensors, or three-way data, 

offer unique advantages not observed for lower order measurements. In particular, data 

that exhibit a trilinear structure can be decomposed in such a way that unique underlying 

factors are extracted, without the rotational ambiguity that exists when bilinear data are 

used. Common data analysis tools employed to carry out this type of decomposition 

include the well-known Parallel Factor Analysis (PARAFAC) and Direct Trilinear 

Decomposition (DTLD) algorithms. The application of these tools to trilinear data has 

tremendous potential to extract fundamental information such as spectra, concentration 

profiles, rate constants, and equilibrium constants from complex mixtures with little or no 

prior information. However, this potential is mitigated by the fact that these methods do 

not optimally accommodate the complex error structures commonly found in three-way 

data. 

In this work, the development and application of Maximum Likelihood Parallel 

Factor Analysis (MLPARAFAC) is described. This approach is designed to incorporate 

prior measurement error information, including information about heteroscedascity and 

correlation of errors, into the decomposition procedure. Although MLPARAFAC is an 

extension of maximum likelihood methods for two-way data, the application to three-way 

data greatly expands the types of error interactions that can be observed, the size of 

matrices produced, and complexity of the algorithms involved. The principles behind the 

generalized MLPARAFAC algorithm, as well as several simplifications based on 

different measurement error structures and pre-compression of the data, are described. 

These algorithms are applied to simulated data and three fluorescence data sets to 

demonstrate their statistical validity, computational efficiency and estimation accuracy.  

Further implementation of MLPARAFAC in conjunction with the Direct Exponential 

Curve Resolution Algorithm (DECRA) is also examined using simulated data and 

spectral data from two widely studied reaction systems. 
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Chapter 1 
Introduction 

1.1 Overview 

The last few decades have seen a remarkable increase in the amount and 

complexity of data generated by modern instruments for chemical analysis. Different 

types of chromatographic and spectroscopic instrumentation are now commonplace in the 

analytical laboratory and coupling of such instruments is now routine. A few examples of 

the “hyphenated methods” that generate such copious amounts of data are time-decay and 

emission-excitation fluorescence, chromatography-spectroscopy combinations, tandem 

mass spectrometry (MS/MS) and two-dimensional nuclear magnetic resonance (2D-

NMR). These methods can provide data in several dimensions (e.g. wavelength and time) 

at once. The necessity to analyze several samples, either with individual techniques or 

with combinations, adds yet another order to the data obtained. Contrary to univariate 

analytical methods that require full selectivity for proper effectiveness functionality, 

multivariate analytical methods are much more flexible, requiring only fractional 

selectivity in a multivariate context. This can dramatically reduce sample preparation 

procedures, saving the analyst time and money. The efficient nature of these analytical 

procedures, in conjunction with the ability to obtain general and accurate information 

regarding chemical and physical properties of the sample will make them perfect 

candidates for a wide variety of industrial, environmental, medical, and research 

applications.  

Unfortunately, the measurements obtained from these instruments may be rather 

complex, increasing the necessity for data analytical methods that can handle these types 

of data. In 1971 a group of pioneering scientists coined the term “chemometrics” to 

describe the growing use of mathematical, statistical and computer-based methods in the 

field of chemistry [1-2]. Despite the fact that many of the so-called chemometrics 

techniques obviously existed prior to the 1970s, the philosophy behind the techniques as 



 

 2

applied to the discipline of chemistry has evolved considerably over the past decade. This 

has been a consequence not only related to the increasing necessity for more powerful 

mathematical methods to treat chemical data, but also due to the increasing availability of 

inexpensive computational resources.  Besides the partial selectivity that allows the 

analyst to quantify a compound in the presence of interferents, some additional 

advantages of employing chemometric methods in conjunction with multivariate 

measurements include multiple component estimation, noise reduction, and outlier 

detection. 

In the beginning, multivariate analytical measurements were naturally arranged 

into vectors and matrices, but analytical methods have now developed to the point where 

some techniques will yield measurements that are better arranged in multi-way arrays 

(i.e. cubes or hyper-cubes) due to the intrinsic structure of these data. The application of 

chemometric methods specially designed to handle this type of data will produce 

additional benefits and has led to terms such as “second-order advantage” and 

“mathematical chromatography”, both of which are intimately related to the ability to 

decompose this type of data into the underlying contributions from individual 

components. Nonetheless, these benefits will only be attainable if the proper model is 

estimated, and the estimation process will depend heavily on the nature of the errors 

affecting the data. The characteristics of measurement errors and their proper treatment in 

the analysis of multi-way data is the central theme of this thesis. 

Given the complexity of modern instrumentation, it is evident that measurement 

errors can arise from a wide variety of sources, and have a correspondingly complex 

range of properties and characteristics. Usually, the description of instrumental noise is 

based on its dominant source, which is associated with certain distributional and 

frequency characteristics. For instance, the source of Johnson or thermal noise is the 

thermal agitation of electrons or other charge carriers in resistive elements in the 

instrument. It is typically considered as a type of fundamental noise, since it does not 

arise from instrument or component deficiencies, and is the same at every frequency and 

can never be totally neglected. It is ubiquitous in resistive elements whether they are 

carrying current or not. Another type of fundamental noise is shot noise, or quantum 
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noise, that arises from the random statistical nature of discrete events, whose rate is 

subject to statistical fluctuations well-described by the Poisson distribution. The overall 

effect of shot noise is usually much lower than that of Johnson noise, although this may 

not be the case in measurements based on a low number of events, such as molecular 

fluorescence. Pink or 1/f noise can arise from a variety of sources and is named after the 

inverse proportionality between the magnitude of the noise fluctuations and the frequency 

of the observed signal (f). This type of noise is considered non-fundamental and generally 

arises from longer-term (lower-frequency) variation of instrumental components. Some 

other terms used to refer to this type of noise are flicker noise and drift noise. In addition 

to those already mentioned, there are a variety of other noise sources including such 

things as detector noise, read-out noise, quantization noise, and noise from environmental 

sources (interference noise).  

From a more fundamental point of view, the noise can be classified using some of 

its characteristics in various ways, the most common of which include: its source, its 

distribution, and its characteristics in the frequency and time domains. Unfortunately, 

classifications based on these categories are not all mutually exclusive. Instead, a more 

concise but less precise term will be coined to classify noise. It will be defined in terms of 

whether or not it is independent and identically distributed with a normal distribution 

(iid-normal). The term “iid normal noise” summarizes a lot of information. The concept 

of independence with regard to measurement errors implies that the error observed at any 

one element in the signal vector is independent or unrelated to the error observed at any 

other (different) element in the signal vector. Independence in the measurement errors is 

equivalent to saying that measurement errors are uncorrelated. The term identically 

distributed implies a homogeneity in the error variance across all elements in the signal 

vector; i.e., the standard deviation at every elements in the signal vector is the same. The 

terms homoscedastic and heteroscedastic are also often used to indicate whether 

measurement errors are identically distributed, or not. The “normal” condition simply 

refers to the normal distribution often assumed for the noise observed at one channel in 

the signal vector over many repeat measurements. Therefore, measurement errors are 

classified to be iid-normal if all of the aforementioned conditions are fulfilled and non-

iid-normal if any of these conditions are violated. Assumptions regarding normality are 
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seldom significantly violated (recall the Central Limit Theorem), and therefore, in the 

future, references to iid-normal errors will often be shortened to simply “iid errors”. 

Mathematically, violations of the iid condition can be detected and corrected through the 

use of the error covariance matrix.  

Unfortunately, the vast majority of chemometric methods employed are typically 

extensions of existing univariate methods in terms of their assumptions about the error 

structure (i.e. the assumption that it is iid-normal). Although some consideration of 

heteroscedascity in univariate calibration has been made through weighted regression 

methods [3, 4], measurements are generally assumed to be independent. Because single 

channel measurements are used, the existence of correlation among errors at different 

channels is impossible, and correlation among samples is generally considered negligible 

based on the preparation of standards. Until recently, the migration to multichannel 

instrumentation and, therefore to multivariate data analysis has occurred, without the 

corresponding advance in handling of measurement errors. 

The initial attempts to accommodate non-iid error structures in multivariate data 

analysis addressed the problems of heteroscedasticity while assuming that measurement 

errors remained independent. One of the first approaches was to extend the principles of 

weighted univariate regression to multivariate regression [5]. This strategy can be 

successful for certain calibration problems that can be treated with multiple linear 

regression (MLR), but does not address broader methodologies of calibration and 

decomposition.  Paatero and Tapper [6] showed that heteroscedastic noise could be 

treated in bilinear decomposition through a simple scaling of the data, as long as the error 

structure could be represented as a rank one matrix. For cases that did not meet this 

criteria, Paatero developed a method called Positive Matrix Factorization (PMF2) for 

bilinear data [7].  This was later extended to three-way data (PMF3) [8].  On the other 

hand, the impact of correlated noise has attracted much less interest among analytical 

chemists [9-12], although its consequences can be quite severe [13]. Nevertheless, the 

formulation of Maximum Likelihood Principal Component Analysis (MLPCA) and other 

derived techniques, such as Maximum Likelihood Principal Component Regression 

(MLPCR) and Maximum Likelihood Latent Root Regression (MLLRR), by Wentzell and 
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collaborators [9, 14] have shed some light on the positive effects of including error 

information in the form of the error covariance matrix in multivariate data analysis to 

obtain optimal or near-optimal models from a theoretical point of view. This 

methodology is closely related to a number of other methods currently in use, including 

Total Least Squares (TLS) [10] and Maximum Likelihood via Iterative Least Squares 

Estimations (MILES) [12]. These different approaches are essentially the same in terms 

of the statistical model that they use to incorporate measurement error information, but 

differ substantially in their numerical implementations. 

The transition from two-way data to three-way and multi-way data is 

accompanied by a concomitant increase in the complexity of the model and the noise 

structure. The objective of the present study is to extend maximum likelihood principles 

developed for MLPCA to multi-way analysis by formulating optimal algorithms to 

estimate the Parallel Factor Analysis (PARAFAC) model. Following a concise 

introductory chapter explaining the relationship between different physical, structural and 

statistical multi-way models, Chapter 2 introduces the general formulation of the 

MLPARAFAC algorithm to estimate the PARAFAC model in cases where 

heteroscedasticity and/or correlation occur, as well as two mathematically exact 

simplifications and some statistical testing of the methods. In Chapter 3, a more extensive 

exploration of the possible simplifications is carried out and a number of different 

simplifications for a variety of error structures are formulated. Chapter 4 introduces some 

tools to characterize the error covariance matrix for three-way arrays and describes the 

application and comparison of the different formulations of MLPARAFAC to three 

experimental data sets. Chapter 5 explores the application of MLPARAFAC to a 

particular problem in the analysis of kinetic data, through the use of the recently 

introduced Direct Exponential Curve Resolution Algorithm (DECRA). The thesis closes 

with a summary of the results for this research and possible avenues for future 

investigation. 

Note that the main body of this thesis is composed of a published paper (Chapter 

2) or manuscripts that have been submitted for publication (Chapters 3-5). 
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1.2 Instrumentation and physical models 

The mathematical tools used to analyze a set of experimental measurements are 

closely related to the order of the data tensor obtained from the analytical device. In 

general, instruments can be classified by the order of data they produce; for instance, 

zero-order, first-order, second-order and so on. The relationship between the form of the 

data and the order of the instrumentation is presented in Figure 1.1. As a general rule, the 

use of an n-order instrument analyzing a single sample produces an n-order tensor. The 

use of the same instrument analyzing a data set formed by multiple samples yields an 

(n+1)–order tensor.  

Zero-order instruments are analytical instruments that produce a single 

measurement per sample analyzed, for instance, pH, viscosity or absorbance at a single 

wavelength. However, most of the time the measurement obtained is not ultimately the 

property sought, but it is theoretically or empirically related to a more attainable property 

such as acidity, temperature or concentration, requiring a process called calibration. A 

well-known example is the application of spectroscopy in chemistry. The specimen of 

interest is a homogeneous solution of chromophores contained in a cuvette of known path 

length, L (usually 1 cm). Integration of the ratio dI/I leads to Beer’s Law, shown in 

equation 1.1: 

 cLIIA o )()/(log10 λε=−=  (1.1)

where A is the absorbance, I/Io is the transmittance of a beam of light of wavelength λ, 

and c is the concentration of chromophore. The fundamental property of the chromophore 

is ε(λ), the molar absorptivity. Unfortunately, this quantity which characterizes a 

particular analyte can also change with other parameters such as temperature, pH, and 

solvent. Therefore, calibration needs to be used to estimate this parameter, which in turn 

defines the structural model relating absorbance obtained and the concentration sought. 

The calibration of this type of device can be carried out using univariate calibration. This 

type of calibration is well understood and easy to adopt, since it works in a very simple 

statistical  framework  and  the  equipment  used  is  inexpensive.  While the simplicity of  
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Figure 1.1.  Relationship between the order of data and the instrumental characteristics. 
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univariate calibration is an attractive attribute, there are several fundamentally limiting 

properties of the approach. Univariate calibration methods naturally require full 

selectivity for the analyte of interest. Interferences can therefore only be handled in the 

rather ideal case in which the amount of the interference is constant in all calibration and 

prediction samples. This severe limitation mathematically precludes doing calibration in 

the presence of interferences, and simultaneous multicomponent analysis. In addition to 

the disadvantage of full selectivity, zero-order instruments cause difficulties in detecting 

outliers present in the analytical data. These intrinsic deficiencies can be overcome by 

migrating from zero order instruments to first order instrumentation.  

With multiple P chromophores that need to be quantified, the experiment can 

involve additional independent variables. Therefore, first-order instruments are analytical 

devices that yield a vector of first-order data per sample as shown in Figure 1.1. The 

spectrometer is a common example of a first-order instrument, where the primary 

independent variable is the energy or wavelength of the photons absorbed or emitted. 

Innovations such as diode array detectors (DAD) for UV-visible absorption instruments, 

charge-coupled devices for fluorescence instruments, and Fourier transform techniques 

for nuclear magnetic resonance and infrared spectroscopy have made first-order data 

more readily available. The combination of two first-order techniques can produce 

second-order data, but the most common way to obtain second-order data is when the 

first-order instrument is used to analyze multiple samples. An example of the 

mathematical representation of the physical model behind second-order data is given in 

equation 1.2, which is an expression of Beer’s Law for measurements at multiple 

wavelengths for a single component. 

 LcA kiik ε=  (1.2)

Here ci is the concentration of the chromophore in sample i, εk is the molar absorptivity of 

the chromophore at wavelength k, and L is the path length of the cuvette. Theoretically, 

the physical model can be seen as an explicit causal (or hard) model that relates the 

instrumental measurements to the level of the analyte of interest, and often to the level of 

interfering components via an extension of Beer’s law when multiple components are 
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involved. For multiple samples, the concentration of chromophore i can be represented by 

a vector c, which is an I x 1 vector containing the concentration of the chromophore for 

each sample. If P different spectroscopically active components are present in the 

mixtures, then equation 1.2 can be represented by: 
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where ε is a K x 1 vector of molar absorptivities for each of K wavelength channels, C (I 

x P) and S (K x P) are the concentration and spectral profiles (molar absorptivities 

multiplied by the path length), respectively, and A is an I x K (samples x wavelengths) 

matrix of absorbances, with each row corresponding to the spectrum of a different 

sample. The matrix of spectra arises from the simple outer product of the concentration 

vector, and the pure-component spectrum for the component. It should be noted that, 

although this example uses spectroscopy, equation 1.3 applies equally well in its general 

form to other first-order instruments. A visual representation of this structure is shown in 

Figure 1.2, where the concentration vectors are defined by HPLC elution profiles for a 

two-component mixture. 
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Figure 1.2. Physical model representation for second order data using a HPLC-DAD 
example. 

Instruments that generate second order arrays of data or higher order tensors per 

sample are now more commonplace in the analytical laboratory. Time-decay and 

emission-excitation fluorescence, and other combinations of chromatographic and 
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spectroscopic techniques are a few examples of the many hyphenated methods that 

generate such data. In addition, the use of multiple samples with these techniques makes 

the data one order higher. A simple example to introduce the physical model is data from 

steady-state fluorescence. In this technique, the absorption of a photon puts a 

chromophore into a higher energy excited state, which can then rapidly decay, emitting a 

photon as fluorescence. In fluorescence spectroscopy, the sample is illuminated with light 

of wavelength λex, and the consequent emission of light is measured at wavelength λem. 

For one fluorophore, the process is mathematically expressed as: 

 kjiijk cπαµ =  (1.4)

where iα is the coefficient of absorption of the fluorophore (incorporating molar 

absorptivity, quantum yield and source intensity) at excitation wavelength ex
i
 λ , jπ  is the 

relative emission (incorporating the emission profile and the detector response profile) at 

detection wavelength em
j λ  and ck is the concentration of fluorophore in question in 

sample k. Equation 1.4 represents the mathematical relationship describing a single 

element of the three-way array, U, which is an I x J x K cube of data for I excitation 

wavelength channels, J emission wavelength channels, and K samples. This array can be 

viewed as K matrices representing excitation-emission spectra that are “slices” in the 

cube of data. Equation 1.5 represents the physical model for such a system with P 

components: 

 
T

222111

BAD

παπαπαU TTT

k

p
k
pp

kkk ccc

=

+++= L
 (1.5)

In this specific case, A and B are matrices which contain the excitation spectra ([α1 α2 
… 

 αP]) and the emission spectra ([π1 π2 
… 

 πP]), respectively, of the pure components along 

the columns. Dk represents a diagonal matrix formed by the concentration of all P 

components for the kth  sample placed on the main diagonal of D. This type of data is 

diagrammatically depicted in Figure 1.3. Simple application of this physical model 

requires that sample absorbance be small and that excitation energy not be transferred 

between chromophores. The violation of these conditions will prevent the use of this 

simple physical model, since more complex models will be necessary. 
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Figure 1.3. Physical model representation for third order data using an EEM example. 
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1.3 Structural models 

Structural models can be divided into two categories: models that can often be 

regarded as a good approximate model of the true underlying phenomena, and models 

where there is little or no theory to describe how the data are related to the underlying 

phenomena.  The latter group can be exemplified with process or sensory data while the 

former corresponds to spectral data of the type described in the preceding sections. In this 

thesis, all of the models treated belong to the first group.  

1.3.1 Second-order data 

Second-order data can be represented by bilinear models. A major difficulty with 

general bilinear models is that the underlying physical factors are usually impossible to 

separate by using only the data at hand, since the factors are subject to rotational and 

scaling ambiguities. This means that many sets of paired C- and S–type matrices can 

equivalently reproduce the original data set X. Equation 1.6 shows how the product of 

RR-1
, which is equal to the identity matrix, can be placed between profiles C and S, 

leaving X unchanged and modifying the concentration and spectral profiles to CR and 

R-1ST, respectively. 

 
X = CST  

                         = CRR-1ST = TVT  (1.6)

This situation reflects the ambiguity, since R can be any non-singular square matrix; 

therefore, an infinite number of equivalent solutions exists. 

The existence of this intrinsic ambiguity opens two different avenues for the data 

analysis. Two different strategies can be employed, depending on whether the final aim 

of the analysis process is the prediction of future samples or the estimation of the first-

order profiles.  The prediction of future samples is carried out using any of the many 

possible variations of inverse calibration, such as principal component regression (PCR), 

partial least squares regression (PLS), ridge regression (RR), or continuum regression 

(CR), providing that a representative set of the future samples exists and the property 

sought has been determined by a reference method. The estimation of the individual 

profiles composing this type of data is carried out using a wide variety of methods 
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described as multivariate curve resolution (MCR) algorithms [15]. To obtain these 

profiles, MCR methods employ different types of constraints, ranging from empirical 

ones, such as non-negativity and unimodality [16] to theoretically justified ones, such as 

kinetic hard models [17]. It is worth noting that the method referred to as classical least 

squares calibration, also known as direct calibration, is the best-case scenario for MCR, 

in which all of  the information about one of the orders is known in advance.  

Geometrically speaking, inverse calibration tries to estimate the subspace which 

contains the property sought and the magnitude of the property in this space, while MCR 

methods estimate the subspace and try to estimate the best rotational matrix R, to align 

the vectors defining the subspace with the vectors representing the profiles in each mode. 

From here we can see that both avenues have a common core, which is the estimation of 

the subspace which contains the data. Many different methods have been created to do 

this, but a vast majority of these techniques have as a common core a method called 

principal component analysis (PCA) [18], which is able to estimate the subspace spanned 

by the underlying factors forming the data. Therefore, a short introduction to PCA will be 

given in the next section. This also provides a good starting point for the introduction to 

the different trilinear methods that are the focus of this work.  

1.3.1.1 Principal components analysis 
Principal components analysis (PCA) is the most widely used variable reduction 

method in chemistry. In addition to forming the basis for PCR, PCA is widely used in 

other applications, such as pattern recognition and curve resolution, and it is related to 

other regression methods such as PLS, RR and CR. The first known chemical application 

of PCA appeared in 1878 [19], and even at that time it was used in a regression problem. 

The extensive use of this method was paralleled by the evolution of computing 

technology which made computation times more reasonable, so that even large arrays are 

now easily handled. From a vectorial point of view, PCA transforms the data from a 

redundant coordinate system into a more natural coordinate system uniquely reflecting 

the sources of variability in the data. 

The bilinear structural model will be introduced using the same scheme of the 

bilinear data represented by equation 1.3. Instead of using the matrices C and S, 
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representing the physical underlying profiles, a more general representation based on 

rotated matrices T and V, as used in equation 1.6, will be employed.  

 X = TVT  (1.7)
Uniqueness is an important issue for structural models. It can be said that a 

structural model is unique when no additional constraints are necessary to identify the 

model. For a unique structural model, the parameters cannot be changed without 

changing the fit of the model. Therefore, in order to eliminate the ambiguities 

characterizing the bilinear model, PCA introduces orthogonality constraints in its scores 

and loadings (i.e. the dot product of different columns within T or VT should be zero). 

Principal components analysis goes a step further by constraining the first principal 

component to be the vector describing the most observed variance. From a mathematical 

point of view the first loading is defined as the normalized vector that maximizes the 

variance of (X v1,) or in other words maximizes: 

 1
T
11

TT
1 ttXvXv =  (1.8)

The next loading, v2, is defined as the vector maximizing the same quantity, i.e. 

2
T
22

TT
2 ttXvXv = under the constraint that t1 and t2 are orthogonal, i.e. 0T =21 tt . The 

procedure continues this way until all dimensions have been accounted for, always under 

the constraint that new scores are orthogonal to previous ones. It is important to note that 

the combination of the structure of this model and the imposed constraint makes the PCA 

model the best subspace and low rank approximation solution for bilinear data. 

1.3.1.2 Numerical Implementation 
Computationally, PCA can be carried out by a variety of numerical methods, such 

as the power method used for matrix diagonalization. However, singular value 

decomposition (SVD) is now the most commonly used method to perform PCA in 

chemometrics, since it is efficient, reliable and can accommodate rectangular matrices of 

the sort that appear frequently in chemical applications. Using SVD, the data matrix X (I 

x J) is decomposed into the product of three different matrices as is shown in equation 

1.9. 

 X = USVT (1.9)
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Here, the columns of U (I x I) represent the eigenvectors of the covariance matrix (XXT). 

These eigenvectors are orthonormal (orthogonal to each other and of unit length). The 

main diagonal of S (I x J) contains the singular values, which are the square roots of the 

eigenvalues of the covariance matrices (XXT) and (XTX). The elements of the main 

diagonal of S are ordered in a decreasing fashion ( jiss jjii <≥ , ), representing the square 

root of the variance accounted for by each PC. Off diagonal elements are zero (sij = 0, i 

≠ j). VT is a (J x J) matrix formed by the eigenvectors of the covariance matrix (XTX). 

The row vectors of VT are orthonormal and identical to the loadings described for PCA. 

The score matrix Τ is the product of matrices U and S (T = US). Truncation is easily 

achieved by discarding the uninformative rows and columns of the matrices. 

 T~~~~ VSUX =  (1.10)

To summarize, PCA is a method to perform a regression of X onto a lower 

dimensional estimate of itself, thereby reducing the high dimension of the original space 

to a relatively simple P-dimensional subspace. It also provides a bilinear decomposition 

avoiding the rotational and scaling ambiguities by imposing two important constraints. 

These two constraints work by extracting loadings, which describe most of the variance 

and are mutually orthogonal among each other. In this way the PCA model can 

accomplish the estimation of a model that at the same time is the best low rank and best 

subspace approximation of bilinear data. 

1.3.2 Third order data 

1.3.2.1 Parallel Factor Analysis 

The physical model shown in equation 1.5 is equivalent to a structural model 

called Parallel Factor Analysis (PARAFAC), independently introduced by Harshman [20] 

and by Carroll and Chang [21] in 1970. Contrary to second-order data, that can always be 

represented by a bilinear model providing the best subspace and low rank approximation 

solution, for third order data these two seemingly similar decompositions are obtained by 

two structurally different three-way models called Tucker [22] and PARAFAC models, 

providing the best subspace and low rank approximation solution, respectively [23]. Both 
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models can be generically represented by the same equation, but some restrictions are 

applied to distinguish one from the other.  

Before explaining the different structural representations, it is important to note 

that this model is symmetric in the sense that if the array is reordered so that, for 

example, the first and third modes are exchanged, then the models of the two data sets 

will be identical, except that the first and third mode loadings have been interchanged. 

The structural model can be represented in different but equivalent ways depending on 

the way the three-way data are arranged. In the following chapters, some cases will be 

presented in which different representations are needed in order to estimate the 

parameters defining the structural model.  

The matricial/unfolded representation is the most common form used to represent 

the PARAFAC model, since it can be easily expressed using standard linear-algebra 

identities and also provides an excellent starting point for describing certain estimation 

methods. The I × J × K cube of data can be unfolded, yielding a matricial representation 

of the data. Only the equation representing the data array when it is unfolded by retaining 

the first dimension will be shown, since, due to the symmetry of the model, the other 

unfolded representations are equivalent after permutation: 

    T21 )(],...,,[ BCAGXXXX ⊗== a
K

a  (1.11)

Equivalently, the elements forming the data can be arranged as a sequence of elements 

providing the vectorial representation: 

 )()()( GBCAX vecvec ⊗⊗=  (1.12)

where A, B and C are the matrices whose columns represent the loadings for the three 

modes. It is common three-way practice not to distinguish between scores and loadings as 

these are treated equally from a numerical perspective. The dimensions of these loading 

matrices mark the first difference between the Tucker and the PARAFAC models. In the 

former, the second dimension of the loadings can be different, while in the latter the 

second dimension is the same for all the loadings. For instance, if a three-way array of 

data X is given as an I × J × K block of data, a Tucker3 model decomposition with a rank 
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D in the first mode, E in the second mode, and F in the third mode can be formulated. On 

the other hand, a PARAFAC model will be defined as a rank P model since all the 

loadings have the same number of columns. The second difference is related to the 

structure of G. The matrix Ga is the unfolded representation of the core array G arranged 

as a matrix. This matrix is similar to the S matrix found in the PCA case, since the 

elements of the core define how individual loading vectors in the different modes interact 

and these elements also carry the magnitude of these interactions. Mathematically, in 

PARAFAC, G will be composed of zeros everywhere but in the superdiagonal (g111, g222, 

…, gPPP). For the Tucker model, non-zero values are allowed for the elements besides the 

superdiagonal elements in G. 

The structure of G for both models will have a profound impact on the uniqueness 

of these models. The Tucker3 model has rotational freedom, and is hence not structurally 

unique. This can be seen by replacing the model in equation 1.11 with a model where the 

first mode loadings have been rotated by a non-singular square matrix, S. Then, by 

counter-rotating Ga with the inverse of this matrix, the model is obtained. 

 T1 )( BCGASSX ⊗= −
aa  (1.13)

As we can see, this model is completely equivalent to the original model, hence rotation 

is possible. Even with the orthogonality constraints imposed, the model does not provide 

an identifiable solution, since rotations by any orthogonal matrix of any of the loading 

matrices will provide new orthogonal loading matrices. In fact, it has been shown that the 

structural model is so redundant that several parameters, often more than half of the 

elements, in the core, G, can be forced to zero without changing the fit of the model [24]. 

This clearly shows that the Tucker models are unnecessarily complex and explains why 

they give “ambiguous” results. As in two-way analysis the rotational freedom has 

prompted the need for rotations of solutions in order to increase interpretability [25, 26].  

Before analyzing the uniqueness of the PARAFAC model, it is convenient to 

introduce an alternative representation, since this will make the proof simpler and will 

clarify how the PARAFAC model is related to the principle of parallel proportional 

profiles. It is important to say that Tucker3 model cannot be represented by this 

expression since some important interactions cannot be explicitly included. The 
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PARAFAC model can be written in terms of frontal slices. Let Xk be the I x J matrix 

obtained from X by fixing the third mode at the value k. Therefore, the model is 

expressed in terms of its frontal slices as: 

 Xk = ADkBT  (1.14)

Here matrices A and B represent the loadings for mode A and B, respectively and Dk is 

the diagonal matrix, which contains the kth row of matrix C on its diagonal. 

Equation 1.14 has an equivalent representation to the one shown above when a 

similar transformation is carried out and the model is reformulated as: 

 Xk = APP-1DkSS-1BT (1.15)

After the transformation, if the trilinear model holds, AP, B(S-1)T and P-1DkS can be 

considered the loadings instead of considering A, B and C. However, in order for the 

trilinear model to still hold, the product matrix P-1DkS must remain diagonal to represent 

the third mode. This fact constrains the matrices P and S (and hence P-1 and S-1) to be a 

very special type of matrix called permutation and/or scaling matrices. Therefore, 

solutions must be unique up to trivial differences in factor order and relative scaling 

across modes. Hence, contrary to the bilinear case, where a rotational ambiguity exists, in 

trilinear and multilinear data in general, this ambiguity does not exist, which allows for 

the unique estimation of the profiles. This intrinsic property of this type of data makes 

this technique very suitable for chemistry, since the estimated solutions can be obtained 

directly without any major assumption and compared to other profiles included in 

databases, allowing the identification of the compounds present in the samples. Another 

advantageous consequence of the unique estimation is the so-called “second order 

advantage”, which allows the quantitation of an analyte in the presence of interferences 

with only one calibration sample, since only a scaling indeterminacy has to be solved. 

Many studies have been carried out to understand the uniqueness of the 

PARAFAC model estimates. Harshman [27] and Leurgans et al. [28] showed that unique 

solutions can be expected if the loading vectors are linearly independent in two of the 

modes and there are no more than two linearly dependent loading vectors in the third 

mode. Kruskal [29 ,30] found less restricted conditions for uniqueness by using the k-
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rank of the loading matrices, which is a term introduced by Harshman and Lundy [31]. 

The proof says that if any combination of kA columns of A have full column-rank, and 

this does not hold for kA+1, then the k-rank of A is kA. The k-rank is thus related, but not 

equal, to the rank of the matrix, as the k-rank can never exceed the rank. Kruskal 

formulated the following equation as a proof:   

  kA + kB + kC = 2P+2 (1.16)

If under this set of conditions this proof holds, then the PARAFAC solution is unique. 

Here kA is the k-rank of A, kB is the k-rank of B, kC is the k-rank of C and P is the number 

of PARAFAC components sought. None of the above conditions are strong enough to 

cover all situations where uniqueness can be expected, but they do give sufficient 

conditions for uniqueness. Note that, regardless of the above rule, a one-component 

solution is always unique. This even holds for a two-way decomposition. 

1.3.2.2 Numerical Implementation 
There are many published algorithms for fitting the PARAFAC model. Some of 

the most important methods will be briefly explained in this section. The first algorithms 

used to estimate the PARAFAC model were least squares iterative algorithms [20, 21] 

based on the principle of alternating least squares (ALS) [32] and it has been the most 

frequently used algorithm to date. Numerically, the principle behind ALS is to divide the 

highly nonlinear optimization problem into a sequence of conditional linear sub-problems 

and solve these in a least squares sense via simple established numerical methods. 

Equation 1.11 is an excellent starting point to understand the way ALS is implemented. 

The PARAFAC model can also be expressed as in equations 1.18 and 1.19 for the three-

way data matricized in the second and third modes. Let Xa be the I x JK matricized array 

and define Xb (J x IK) and Xc (K x IJ) similarly as the arrays matricized in the second and 

third modes, respectively.  

 T)( BCAIX ⊗= aa  (1.17)

 T)( ACBIX ⊗= bb  (1.18)
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 T)( ABCIX ⊗= cc  (1.19)

Using expression 1.17, A can be estimated by assuming B and C by a simple least 

squares step as shown in equation T3 in Table 1.1. The full ALS algorithm is shown in 

Table 1.1. As can be seen from the table, the ALS algorithm consists of three least 

squares estimates, each providing a better estimate of one set of loadings, and the overall 

algorithm will therefore improve the least squares fit of the model to the data. It is worth 

noting that, even though a number of algorithms exist to estimate the PARAFAC model, 

only the ALS algorithm is extendable to higher order data. Despite the excellent 

convergence properties and well-defined optimization problem characterizing the ALS 

procedure, the iterative nature of the method is a major inconvenience. 

This inconvenience can be overcome by using the direct trilinear decomposition 

method (DTLD) [33] which solves an eigenvalue problem. Historically, the evolution of 

DTLD is linked to a method called Rank Annihilation Factor Analysis (RAFA)[34]. 

RAFA tries to estimate the concentration of an analyte in an unknown matrix solely using 

the unknown sample and a pure standard. Mathematically, the idea behind RAFA was 

based on reducing the rank of the calibration sample by subtracting the contribution from 

the analyte of interest. That is, if the signal from the analyte of interest is subtracted from 

the sample data, then the rank of this matrix will decrease by one, as the contribution of 

the analyte of interest to the rank is one in the case of ordinary bilinear rank-one data like 

chromatographic or fluorescence data.  Later, Lorber [35, 36] found that the algorithm 

could be automated by expressing the process as a generalized eigenvalue problem. In 

1986, Sanchez and Kowalski generalized the method into the Generalized Rank 

Annihilation Method (GRAM) [37].  In GRAM several components could be present or 

absent in both calibration and standard samples. The method starts by finding two sets of 

orthogonal bases that represent the subspace in each mode using two slices of the three-

way array. Subsequently, transformation matrices are found that transform these bases 

into estimated pure components. In DTLD, the GRAM method is extended to data with 

more than two slices by generating two pseudo-slices as differently weighted averages of 

all the slices. The loadings in two modes are estimated by using the synthetic data set and 
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Table 1.1. PARAFAC algorithm. 

1. Given an IxJxK cube of data X, the algorithm is initialized using random values of 

the correct dimensions or using estimates obtained by TLD.  

 ),(]ˆ,ˆ,ˆ[ Ptld XCBA =  

Using the estimates of Â , B̂  and Ĉ  the initial value for the objective function can be 

calculated using equation T1. 

 ( )T2
1 )ˆ)(ˆ( aaaatraceS XXXX −−=  (T1) 

2. Unfold X retaining the first order and estimate Â  conditional on B̂  and Ĉ .  

 
T)(ˆ BCIZ ⊗= aa  (T2) 

 
1T )ˆˆ(ˆˆ −= aaaa ZZZXA T
 (T3) 

3. Unfold X retaining the second order and estimate of B̂  conditional on Ĉ  and Â . 

 
T)(ˆ ACIZ ⊗= bb  (T4) 

 
1T )ˆˆ(ˆˆ −= bbbb ZZZXB T
 (T5) 

4. Unfold X retaining the third order and estimate Ĉ  conditional on Â  and B̂ . 

 
T)(ˆ ABIZ ⊗= cc  (T6) 

 
1T )ˆˆ(ˆˆ −= cccc ZZZXC T
 (T7) 

Using Ĉ  and the estimates of Â  and B̂  the objective function can be calculated 

using equation T8. 

 ( )T2
2 )ˆ)(ˆ( cccctraceS XXXX −−=  (T8) 

5. Calculate the convergence parameter λ .  

 
2
2

2
2

2
1 /)( SSS −=λ  (T9) 

If λ  is less than the convergence limit (typically 10-8 in this work), terminate. 

Otherwise make 2
2

2
1 SS =  and return to step 2. 
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GRAM. The loading in the last mode can be calculated using equations 1.17, 1.18 or 

1.19, depending on which modes were used to obtain the pseudo-slices. 

It is important to note that several other algorithms have been proposed in the 

literature. Many of them claim to be insensitive to over-factorization and faster than the 

standard methods [38-43]. However, it has been demonstrated that they are suboptimal 

from a statistical and structural point of view, since they lack an objective function and 

also need more stringent conditions to achieve uniqueness [44]. On the other hand, 

Positive Matrix Factorization applied to three-way data (PMF3) [8] is statistically correct, 

but its Gauss-Newton optimization is computationally involved, since the memory 

requirement of the algorithm increases quickly with the size of the problem, preventing 

the algorithm from being applicable to large data sets in practice. 

1.4 Statistical models 
Thus far, the focus of this discussion has been the analytical measurements 

obtained in multivariate/multi-way analysis and the structural model that best represents 

those measurements. However, the analytical measurements are always disturbed by 

uncontrollable variation, which obscures the measurement of the signal of interest (e.g. 

the true signal described by the structural model). In general, this noise may be caused by 

everything from the sampling process to the instrumental acquisition. The analytical 

signal will consist of two inseparable parts: a pure or undistorted true signal and a 

corrupting part called noise. This signal is measured as a function of some other ordinal 

variable such as wavelength, or time. For instance, it is helpful if we imagine a discretely 

sampled signal vector, x (e.g., a spectrum or chromatogram), from which we could break 

the signal in two parts: the pure signal component, ox  and the noise, e, as shown below in 

equation 1.20, and depicted in Figure 1.4. 

 exx += o
 (1.20)

The estimation of the parameter defining the previously introduced structural 

model for the pure data, generically symbolized by ox , can be carried out by applying a 

variety of numerical algorithms to the experimental data obtained from instrumental 
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sources. However, the optimality of these methods will be guaranteed only if the 

measurement  errors fulfill  certain  conditions.  The term, e, in equation 1.20 is a random  

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

0 50 100 150 200 250 300 350 400 450 500
-0.1

0

0.1

signal

true signal

noise

 

Figure 1.4. An observed signal, which can be envisioned as the contribution of two parts: 
the true signal and the noise. 

variable and by definition cannot be predicted, only characterized. There are different 

methodologies and figures of merit used to characterize the error. Nonetheless, the focus 

of this work will be the error covariance matrix, since it is not only the most simple and 

complete way to describe this term, but it is also the one usually utilized to carry this 

information into the estimation process. 

1.4.1 Error covariance matrix 

The error covariance matrices are composed of two closely related statistical 

quantities, the variance and covariance terms. For the first element in the noise vector, e1 

( [ ]neee L21=e ), the measurement error variance is defined by: 

 )( 2
1

2
1 eE=σ  (1.21)
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where E( ) indicates the expectation value of the quantity in brackets. In practice this, 

theoretical value cannot be obtained and the variance is estimated in the usual way: 

 
( )

1
1

2
,1

2
1 −

=
∑

=

R

e
s

R

r
r

 (1.22)

where R is the number of replicate measurements used in the estimate. This number is a 

quantitative estimate of the magnitude of the error variance at element one, but it says 

nothing about the relation of the errors at element one to errors at another element. This 

relationship can be quantified by calculating the error covariance, given for elements 1 

and 2: 

 )( 2112 eeE=σ  (1.23)

As for the variance, the covariance between elements 1 and 2 is estimated using: 
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 (1.24)

where the summation product now includes the errors at different channels (1 and 2).  

The expectation of the error covariance term is positive when the errors at channels i and 

j are correlated, negative when the errors are anticorrelated, and zero when the errors are 

independent of one another. The calculation of variances, and error covariances for every 

channel in a signal vector, then, allows one to map the structure of the variations in the 

measurement errors, and how they are correlated between channels. This structure is 

conveniently summarized in an error covariance matrix, Ψ, a mapping of the variance 

and covariance of the measurement errors, which has the general form for an n x n matrix 

as depicted in equation 1.25. 
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Since sij = sji, error covariance matrices are necessarily symmetric. 

For iid noise, the error covariance terms should approach zero in the expectation, 

and if the noise is identically distributed, then all of the diagonal terms (variances) should 

be approximately the same. This can be equivalently expressed using all of the elements 

of the n-element vector of errors, e, 

 ( ) n
2T IeeΨ ⋅== σE  (1.26)

This structure arises because, in the iid case, the expectations of the individual variances, 

and covariances are 

 ( ) ( ) 22 σ== iii eeEeE  (1.27)

 ( ) 0=σ= ijjieeE  (1.28)

Therefore, under iid noise conditions, the error covariance matrix should be 

diagonal. Deviations from the iid condition have easily recognizable influences on the 

error covariance matrix. The loss of the independence condition corresponds to error 

covariance terms being significantly different from zero, and Ψ deviates from the 

diagonal form of equation 1.26. Heteroscedasticity (unequal variance for different 

elements) is characterized by unequal diagonal elements in Ψ. Figure 1.5 shows some 

examples of error covariance matrices estimated from 100 replicates. Figures 1.5a and b 

correspond to error covariance matrices of measurements affected by iid, and non-iid 

noise respectively. 

Thus far, the structure of the error covariance matrix for two extreme scenarios 

has been introduced. The simplest case characterizes scenarios where the noise is iid and  
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Figure 1.5.  Error covariance matrices for measurement error, which follow the a) iid 
condition and the b) non – iid condition. 
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is numerically represented by only one element, σ2. On the other hand, in some cases the 

error structure is so pervasive and unequal among the elements that a full error 

covariance matrix Ψ (n x n) in needed. A number of more “grey” scenarios exist in 

between these extremes. For instance, correlations may only exist among measurements 

within one order of the data matrix. This is usually the case, for example, when 

measurements from absorption spectrometers are employed, since errors in adjacent 

channels are correlated by source flicker noise or cell positioning errors, but there are no 

errors from sample to sample. Similarly, for thee-way data obtained by pairing emission-

excitation profiles for different sample compositions, we might expect measurement error 

correlation to exist over the entire excitation-emission matrix (EEM). Other cases, 

simpler and more complex, can be envisioned, producing all kinds of simplifications to 

the full error covariance matrix due to the inherent symmetry. Therefore, the information 

forming the full error covariance matrix can be equivalently conveyed by smaller 

matrices carrying the same information in some cases. A more extensive discussion about 

the error structure and the error covariance matrix can be found in reference 46.  

1.4.2 Measurement error structure and model estimation 

The numerical methods previously introduced to estimate structural models such 

as PCA and PARAFAC can be applied to data with any error structure. However, the 

optimal estimates of the true parameters, which are in essence, the maximum likelihood 

parameter estimates, will be only obtained if the measurement errors corrupting the data 

are iid and normal. As mentioned above, the iid error assumption is largely a remnant of 

the age of univariate calibration. The appearance of multichannel instruments leads to 

measurement errors that can be correlated in several different ways in a data matrix X. 

There may be correlations among channels in the calibration spectra (columns in the 

matrix), for instance. This is often the prevailing scenario in spectroscopic calibration, 

and can arise from a variety of conditions including sensor spatial correlations in the 

instrument, source flicker, and numerous signal-processing techniques. Another example 

can be samples that are not run in random order, in which case low-frequency variations 

in the instrument performance (e.g., temperature drift, source degradation) can become 

embedded in the measurement error structure. The presence of non-iid noise will 
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seriously hamper the estimation process, since most of the methods used assume these 

characteristics. The graphical example depicted in Figure 1.6, can be used to illustrate the 

problem and the proposed solution. 

a) Least squares projection onto the subspace under iid condition

x̂
ox
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x

XS

uncertainty
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b) Maximum likelihood and least squares projections onto 
the subspace under non-iid condition 

x
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uncertainty
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Figure 1.6. Maximum likelihood estimation approaches for different noise structures: a) 
least squares projection under iid conditions, and b) maximum likelihood projection and 
least squares projection when the iid conditions are violated. 

 

Figure 1.6a shows the simple scenario of a noise-corrupted bivariate vector, x, 

related to the unattainable true vector, ox . The subspace oX
S  where the true vector 

resides is assumed known. The best representation of the vector x in the subspace oX
S  is 

obtained by the orthogonal projection of x onto the subspace oX
S . This orthogonal (least-
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squares) projection minimizes the length of the error between x and x̂  ( x̂  is the 

projection of x onto oX
S ). On the other hand, Figure 1.6b shows a case where the errors 

are non-iid.  In this case, the sphere shown in the previous figure is stretched along the 

coordinate axes in some fashion. By considering the shape of this ellipse, it can be said 

that the data are corrupted by some heteroscedaticity and correlation, since the principal 

axes of the ellipse have different radii and are not aligned with the coordinate axes. If a 

standard method is used, the best estimate will be obtained by orthogonally projecting the 

vector onto the oX
S  subspace. As seen here, this vector is very distant from the true 

vector ox , therefore it is an unlikely estimate. Rather, if the error covariance matrix is 

utilized to provide a directional guide for the projection of the vector x onto the 

subspace oX
S , this oblique projection yields an estimate that is very close to the true 

vector ox . 

In order to translate this geometrical example mathematically, it is important to 

realize that a measurement error vector can be described by a multivariate probability 

distribution. In practice, multivariate probability density functions are difficult to obtain 

but, as previously mentioned, the normal condition is seldom violated and, therefore, a 

multivariate normal distribution is usually assumed. For the vector of measurement 

errors, e from the previous example, this is shown as: 

 

⎥⎦
⎤

⎢⎣
⎡−=

⎥⎦
⎤

⎢⎣
⎡ −−−=

−

−

eΨe
Ψ

xxΨxx
Ψ

x

1T
21

1T
21

2
1exp

2
1              

)ˆ()ˆ(
2
1exp

2
1)(

π

π
PDF

 (1.29)

In maximum likelihood estimation, the error ellipsoid, Ψ , is associated with some “true” 

point which lies on the hyperplane described by a trial model. Since the actual error-free 

measurement is not known, a best guess is required, and this is the maximum likelihood 

estimate for the point. For the general case, the maximum likelihood estimate is obtained 

by finding the point in the subspace where the measured value maximizes the 

multivariate probability density function for that measurement. Thus, the maximum 

likelihood estimate of x is the one for which the observed measurement is “most 
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probable”. The joint probability density function is called the likelihood function. The 

objective of this method is to maximize its value with respect to x̂  (although this method 

usually maximizes with respect to a parametric model of x̂ ). Alternatively, we could 

minimize the constant part of the logarithm of this function likelihood represented in 

equation 1.29: 

 )ˆ()ˆ( 1T2 xxΨxx −−= −S  (1.30)

This is the goodness-of-fit objective function. In this equation x and x̂ represent the 

observed and the maximum likelihood estimates of the measurement vector. In fact, this 

is a sum of squared residuals for all measurements weighted by the appropriate error 

covariance matrix. For iid measurement errors, this function can be reduced to the least-

squares objective function, represented in equation 1.31, and is usually mimimized by 

methods such as PCA and PARAFAC: 

 )ˆ()ˆ(1 T
2

2 xxxx −−=
σ

S  (1.31)

It is important to note that the use of a vector to formulate the statistical model in 

a generic way is not introduced only for the sake of simplicity, but also because it 

provides a more general way in which this problem can be treated, since the errors for a 

given analytical experiment can be correlated along any order. In many cases, this 

general scenario, which can be prohibitive for practical cases, can be alleviated by 

equivalent but more compact representations, as in the case shown in equation 1.31 for 

the iid case. Additional simplifications are possible by using equivalent representations of 

the structural models in conjunction with alternative optimal representation of the error 

covariance matrix. For example, in kinetic studies, the course of the reaction is followed 

spectroscopically, giving rise to errors that are correlated in both the time and wavelength 

modes. The other mode may be composed of samples, but the structure of this correlated 

noise changes from sample to sample independently. This type of situation is not 

uncommon when spectroscopic techniques such as NIR spectroscopy are used due to path 

length variations. Mathematically, the trilinear errors-in-variable model best suited to 

describe these data can be obtained by minimizing equation 1.32: 
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For this case, we will consider that the three-way data X, will be unfolded preserving the 

samples of different compositions in mode A, while modes B and C will be combined in 

one composite mode, formed by the spectral information and the time information for 

each sample. However, if the sample contribution to the error structure can be alleviated 

somehow, the objective function in this case can be expressed as shown in equation 1.33. 

 ]))(())([( TT1T2 BCAIXΨBCAIX ⊗−⊗−= −
aaaaatraceS  (1.33)

The philosophy introduced above has been successfully used by MLPCA to treat 

bilinear data in a number of analytical scenarios [9, 14, 45, 47, 48]. The implementation 

details of MLPCA will not be given here as they can be found elsewhere [17,49]. For the 

case of three-way data, a generic method called Maximum Likelihood via Iterative Least 

Squares Estimation (MILES) was introduced by Bro et al. [12]. MILES works as an 

iterative preprocessing tool to condition the data from a maximum likelihood perspective 

in order that least squares methods such as PCA and PARAFAC can optimally handle the 

estimation process. The method is based on a majorization strategy in which the original 

objective function is substituted by a simpler and equivalent objective function in each 

step of the estimation process. Unfortunately, the simplicity of this numerical 

implementation is hindered by the amount of computation time needed. Since the method 

runs the full least squares optimization in each step, the time needed to obtain an estimate 

is sometimes excessive. Another important drawback of this approach is that the physical 

problem becomes obscured by the efficient but unfamiliar numerical methodology. 

The present work introduces the theoretical foundations for a maximum 

likelihood implementation of the PARAFAC model. The method will be called 

Maximum Likelihood Parallel Factor Analysis (MLPARAFAC) and is an errors-in-

variables modeling method in that it accounts for measurement errors in the estimation of 

model parameters.  It is an optimal modeling method in a maximum likelihood sense for 

functional models with no errors in the model equations. The present method is a natural 

extension to PARAFAC of the MLPCA method introduced by Wentzell et al. [9].   The 

mathematical aspects of the algorithm will be described in detail to allow the principles to 
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be readily applied.  The algorithm can accommodate heteroscedastic and correlated noise 

in one or more dimensions and has excellent convergence characteristics since its core is 

based on an ALS framework.  
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Chapter 2 
Maximum Likelihood Parallel Factor Analysis (MLPARAFAC)1 

2.1 Abstract 

Algorithms for carrying out maximum likelihood parallel factor analysis 

(MLPARAFAC) for three-way data are described.  These algorithms are based on the 

principle of alternating least squares, but differ from conventional PARAFAC algorithms 

in that they incorporate measurement error information into the trilinear decomposition.  

This information is represented in the form of an error covariance matrix.  Four 

algorithms are discussed for dealing with different error structures in the three-way array.  

The simplest of these treats measurements with non-uniform measurement noise which is 

uncorrelated.  The most general algorithm can analyze data with any type of noise 

correlation structure.  The other two algorithms are simplifications of the general 

algorithm which can be applied with greater efficiency to cases where the noise is 

correlated only along one mode of the three-way array.  Simulation studies carried out 

under a variety of measurement error conditions were used for statistical validation of the 

maximum likelihood properties of the algorithms.  The MLPARAFAC methods are also 

shown to produce more accurate results than PARAFAC under a variety of conditions. 

                                                 
1 Submitted to Journal of Chemometrics (Published, April 2003) 
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2.2 Introduction 

With advancing technology of analytical instrumentation, data in the form of 

tensors of second order and higher have become more commonplace.  Examples of such 

techniques include fluorescence excitation-emission spectroscopy and chromatography 

with multichannel detectors. In 1980, Hirschfeld [1] provided a very complete table of all 

the feasible combinations of techniques capable of providing second order data at that 

time and estimated that about 60% of the techniques are bilinear under certain conditions.  

Extension to trilinear data is easily accomplished when several samples are analyzed by 

these methods.  This list has continued to expand in terms of the number of techniques 

and possible analytical orders as this instrumentation becomes commonplace in chemistry 

laboratories.  Ever since Appellof and Davidson [2] provided the first application of 

trilinear decomposition to chemistry using both simulated and real 

LC/emission/excitation fluorescence data, the number of applications has expanded to 

many branches of chemistry, ranging from basic research to environmental and food 

chemistry. 

Trilinear data (and multilinear tensors in general) share common properties with 

bilinear data that make the latter structure central to modern chemometrics.  Both types of 

data can model deterministic relationships among variables, especially in cases where a 

high degree of collinearity exists.  These types of models allow multivariate and 

multiorder data to be represented by a smaller number of variables.  Using this smaller set 

of variables, the data can be described within experimental error as a P-dimensional 

hyperplane.  In this case, P is called the chemical rank or “true” rank of the data set in 

order to distinguish it from the mathematical rank. In general, the chemical rank is 

typically related to the number of underlying chemical factors or chemical components 

present in the mixture. However, contrary to what happens in bilinear models, where the 

smaller set of variables are abstract solutions of the underlying physical factors which are 

not unique due to rotational ambiguities, the trilinear and higher multilinear models can 

produce unique and well-identified solutions (up to trivial differences in factor order and 

relative scaling across modes) [3].  In addition, the uniqueness of the solution gives rise 
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to the “second order advantage” which allows the quantitation of an analyte in the 

presence of interferences with only one calibration sample. 

A variety of algorithms have been developed to estimate the multilinear model, 

including parallel factor analysis [4] (PARAFAC), direct trilinear decomposition [5] 

(DTLD), and positive matrix factorization [6] (PMF3).  These algorithms are based on 

different numerical approaches, namely alternating least squares (ALS), eigenproblem 

formulation and a Gauss–Newton approach, respectively.  Each has its own advantages 

and disadvantages that make it suitable in a specific situation.  However, PARAFAC 

(ALS) is currently the most widely used algorithm, mainly due to its good convergence 

properties.  ALS, which was introduced by Yates [7] in 1933, works by simply dividing 

the parameters into several sets.  Each set of parameters is estimated in a least squares 

sense conditionally on the remaining parameters.  The estimation of the parameters is 

repeated iteratively until a certain stop criterion is reached.  In this way, a very complex 

nonlinear problem becomes a sequence of simpler least squares steps in which the 

parameter sets are improved in each step.  As all estimates of parameters are least squares 

estimates, the procedure can only improve the fit or keep it the same if converged.  It 

follows from this that the objective function decreases monotonically, and, since it is also 

bounded from below (the objective function cannot be less than zero), convergence is 

always reached.  This does not imply that the global minimum is guaranteed, since a 

problem like this is characterized by several local minima.  Global convergence can be 

assessed when repetitions using different starting points yield similar sets of parameters.  

In addition to the reliable convergence characteristics of ALS, it is also used because it 

yields maximum likelihood estimation under certain noise characteristics. 

Methods such as PARAFAC give maximum likelihood estimates of the model 

parameters when the noise is independently and identically distributed with a normal 

distribution (iid normal).  Noise can be broadly defined as an undesirable variation in a 

measured signal which obscures the measurement of interest, the true signal.  Based on 

the specific advantages of multilinear data, this definition will be narrowed to undesirable 

variation attributable to non-chemical sources (e.g. instrumental sources).  Noise can 

have many different origins, having a very complex range of properties and 

characteristics.  Unfortunately, these properties and characteristics are not mutually 
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exclusive making the number of possibilities of noise structures very large.  The term iid 

has been coined in the chemometric literature to make a precise and concise description 

of the fundamental properties needed to characterize the instrumental noise in the “ideal” 

case.  It conveys information about independence (i.e. the error observed at any one 

channel is uncorrelated with the error observed at any other channel) and the 

homogeneity of distributions (i.e. identically distributed implies the error variance and 

distribution are the same for all measurements).  Conventional least squares approaches 

to trilinear decomposition are maximum likelihood methods only under iid conditions.  

These naïve assumptions about the noise structure corrupting the multilinear data can 

lead to poor models, since all of the methods rely on a least squares procedure.  

PARAFAC and DTLD are the most affected since both independence and 

homoscedasticity (identical distributions) need to be satisfied to yield the maximum 

likelihood solution.  PMF3 can overcome the need for homoscedastic noise to yield the 

maximum likelihood solution because it applies a weighting scheme that solves this 

impediment.  When minor variations from the assumption of iid normal noise are 

observed, some scaling techniques can be used with PARAFAC in order to alleviate the 

deviations from the iid condition, but this will only yield a maximum likelihood solution 

when the noise is uncorrelated and the heteroscedasticity follows a certain structure.  A 

more general approach to tackle this problem, W-PARAFAC, was introduced in 1997 by 

Kiers [8], who used a weighted objective function to remedy the problem of 

heteroscedastic noise.  The algorithm is based in a majorization procedure instead of an 

ALS algorithm.  W-PARAFAC and PMF3 both overcome the heteroscedasticity of the 

noise using a weighted objective function, but the issue of the noise correlation is still a 

problem for both methods, since they cannot accommodate error covariance terms in the 

procedure. 

The presence of covariance among measurement errors is an ubiquitous and 

pernicious effect produced by several sources ranging from the temporal correlation of 

pump noise in chromatography to the spatial correlation of array detectors in 

spectroscopy. Another important source of correlation in the measurement errors is signal 

processing, particularly electronic or digital smoothing filters.  Because of all of these 

effects, correlated measurement errors are likely to be the rule rather than the exception 
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for multivariate data sets, implying that standard methods of analysis (both two-way and 

multiway) that make assumptions of iid normal noise are suboptimal.  The only optimal 

means to account for the correlation in measurement errors is using a maximum 

likelihood approach to estimate model parameters that are most likely to give rise to the 

observed measurements.  For bilinear data, this problem has been addressed through the 

development of maximum likelihood principal component analysis (MLPCA) [9], which 

has been shown to provide improved results where the effects of noise correlation are 

significant. 

Correlation among measurement errors in three-way data is complicated by the 

unfolding/matricization process usually used in ALS algorithms.  Elements with 

correlated measurement errors which may appear adjacent to one another in a “slice” of 

the three-way array may become spatially separated from one another when the cube is 

unfolded in certain ways.  Because of this, conceptualization and simplification of error 

covariance structures for three-way data is more difficult, and this has impeded the 

development of maximum likelihood methods for three-way data.  Until recently, this 

problem was avoided by the standard estimation algorithms.  Recently, a method called 

MILES [10], which is based on a majorization-ALS algorithm, was introduced to address 

the problem of correlated measurement errors for multilinear data.  The extent to which 

this method yields maximum likelihood estimates is unclear since no validation of the 

results was done in this context and the theoretical foundation of the method is obscured 

by the complexity of the algorithm.  

This paper introduces the theoretical foundations for Maximum Likelihood 

Parallel Factor Analysis (MLPARAFAC).  MLPARAFAC is an errors-in-variables 

modeling method in that it accounts for measurement errors in the estimation of model 

parameters.  It is an optimal modeling method in a maximum likelihood sense for 

functional models with no errors in the model equations. The present method is a natural 

extension to PARAFAC of the MLPCA method introduced by Wentzell et al. [9].   The 

mathematical aspects of the algorithm are described in detail to allow the principles to be 

readily applied.  The algorithm can accommodate heteroscedastic and correlated noise in 

one or more dimensions and has excellent convergence characteristics because its core is 
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based on an alternating least squares procedure.  Although, all the cases used in this paper 

will be three-way data this algorithm is extensible to N-way data.  

2.2.1 Notation 

In this paper, scalars are indicated by italics and vectors by bold lower-case 

characters.  Bold upper-case letters are used for two-way matrices and underlined bold 

upper-case letters for three-way data.  The letters A, B ,C and I, J, K are reserved for 

indicating the first, second and third mode of three-way data and the dimensions of those 

modes respectively. Also the letter P is reserved to represent the number of factors used 

in the model. The terms mode, way and order are used indistinctively, as well as the 

terms factors and components.  When three way arrays are unfolded to matrices, the 

following notation will be used.  If X (I x J x K) is unfolded while retaining the first order 

to produce a (I x JK) matrix, this will be designated Xa.  In the same way, matrices Xb (J 

x IK) and Xc (K x IJ) will be used to represent unfolded matrices which retain the second 

and the third orders, respectively.  In general, other matrices with subscripts a, b and c 

represent unfolding while retaining the first, second and third modes.  The symbol “ ⊗ ” 

will be used primarily to indicate the Kronecker product, but will also be used to 

represent the tensor product in certain cases which will be clearly distinguished. 

2.3 Theory 

PARAFAC is an acronym used to refer to two different, though closely related 

concepts.  It is used to describe the model that the trilinear structure of the data follows, 

and it is also used to refer to one of the various algorithms used to estimate the 

parameters of the aforementioned model.  PARAFAC was originally introduced by 

Harshman [4] and simultaneously and independently by Carroll and Chang [11], who 

referred to it as Canonical Decomposition (CANDECOMP).  The model can be seen as 

an extension of bilinear PCA to higher orders.  The PARAFAC model for a three-way 

array is defined by three loading matrices, A, B and C, with elements aip, bjp and ckp.  It 

can be written as a tensor product, as shown in equation 2.1: 

 EcbaX +⊗⊗= ∑
=

P

p
ppp

1
 (2.1) 
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where ap, bp and cp are the pth columns of the loading matrices A, B and C, respectively.  

The model can also be expressed in scalar form as shown in equation 2.2: 

 ∑
=

+=
P

p
ijkkpjpipijk ecbax

1
 (2.2) 

Here, xijk is an element of the three-way array X, and eijk is an element of the 

corresponding residual matrix, E, where the indices refer to modes A, B, and C, 

respectively. 

Since most of the mathematical/statistical tools and concepts used in 

chemometrics rely on the foundations of linear algebra, a matrix representation of a three-

way array is very useful.  The process of converting a cube or higher order arrangement 

of data into a matrix is called unfolding or matricization and it can be done in at least as 

many ways as the array has orders.  Equation 2.3 represents the unfolded data when the 

first order is retained. 

 Xa = AZa + Ea (2.3) 

The Xa matrix is obtained from the matrix multiplication of loading matrix A and a 

matrix Za which is formed from loading matrices B and C. The Za matrix can be obtained 

as a Khatri-Rao product [12] of matrices B and C or as a Kronecker product [13] of 

matrices B and C premultiplied by the unfolded superdiagonal “identity” matrix of order 

P (Ia).  These alternative representations are shown in equations 2.4 and 2.5, respectively. 

 )( TT BCZ ⊗=a  (2.4) 

 )( TT BCIZ ⊗= aa  (2.5) 

Analogous equations can be used to represent X as the matrices obtained when the 

second and third orders are retained (Xb and Xc). 

Assuming B and C are known (or estimated) and iid noise conditions, then an 

estimate of A can be obtained solving the conditional least squares problem to minimize 

the sum of the squares of the residuals in E.  The solution to this problem is given by 

equation 2.6. 

 1TT )ˆˆ(ˆˆ −= aaaa ZZZXA  (2.6) 
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This least squares estimate of A can in turn be used to obtain estimates of B and C (given 

Ĉ  and B̂ , respectively) by employing similar equations involving Xb and Xc.  This leads 

naturally to the iterative ALS procedure which can be used to estimate all of the loadings 

in a stepwise procedure. 

2.3.1 Non-uniform Measurement Errors 

Unfortunately, in cases where iid noise conditions are violated, the conventional 

ALS algorithm will produce suboptimal estimates of the loadings.  In those cases where 

measurement errors remain independent but the condition of homoscedasticity is violated 

(i.e. each measurement can have a different variance), a more general objective function 

can be minimized to satisfy the maximum likelihood criterion.  Consider the three-way 

array of measurements X and an associated array Σ , which contains the variances of the 

measurements of the corresponding elements in X.  For a given trial solution X̂  (based 

on estimates of Â , B̂ , and Ĉ  such that aZAX ˆˆˆ = ), equation 2.7 gives the likelihood 

function in terms of the matrices unfolded in the A mode.  

 ∏
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1 xxΨxx
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 (2.7) 

In this equation, ixa represents the ith row of the unfolded matrix Xa and a
i x̂ represent the 

corresponding vector of estimates of aX̂ .  The matrix a
iΨ  is the measurement error 

covariance matrix for the ith row of Xa, which in the case of uncorrelated errors will be a 

diagonal matrix (JK x JK) containing the variance of the measurement errors of ixa ; that 

is, it is the diagonalized form of the ith row of aΣ .  The error covariance matrix is 

defined according to: 

 )]()[( oTo
a

i
a

i
a

i
a

i
a

i E xxxxΨ −⋅−=  (2.8) 

where “E” designates an expectation value and o
a

i x  represents ith row of o
aX , which is 

the true or expectation value of Xo unfolded in the A mode.  Since Xo is not normally 

known, it is normally estimated on the basis of mean values, or else a
iΨ  is estimated on 

the basis of prior information (e.g. an assumption of proportional errors). 
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Obtaining the maximum likelihood estimates of Â , B̂ , and Ĉ  means maximizing 

the likelihood function in equation 2.8 with respect to these loading parameters.  This is 

equivalent to minimizing the logarithm of the likelihood function, which, when constant 

terms are ignored, results in the objective function in equation 2.9.  
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To minimize the objective function, S2, with respect to the loadings Â  given B̂  and Ĉ , 

we first recognize that each term, 2
iS , in the summation is an independent function of the 

ith row of Â , designated as âi , and the given matrix aẐ , that is a
i

a
i Zax ˆˆˆ = .  This means 

that S2 can be minimized by minimizing the individual terms, allowing each row of A to 

be estimated independently as shown in equations 2.10 to 12. 
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 1T11 )( ˆ −−−= aa
i

aaa
i

a
i ZΨZZΨxa T  (2.12) 

It should be emphasized that, in these equations, âi  is used to designate a row of Â  and 

does not represent a loading vector of Â .  From equation 2.12, estimates of âi  can be 

combined to give Â .  In cases where the error covariance matrix is the same for all the 

rows of Xa, equation 2.12 can be generalized to the matrix form represented in equation 

2.13. 

 1T11 )(ˆ −−−= aaaaaa ZΨZZΨXA T  (2.13) 

This equation can also be reduced easily to equation 2.6 in cases where the noise is the 

same (homoscedastic) for all the channels. 

Since the requirement for this development was independence of measurement 

errors, the error covariance matrices for all the orders are diagonals.  Unfolding X in the 
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other two directions leads to similar equations for B̂  and Ĉ , allowing an equivalent 

maximum likelihood estimation of X̂  in all the spaces, subject to the constraint that two 

of the spaces remain fixed.  This occurs because the objective function of X unfolded in 

all the orders reduces to the same summation but in a different order.  To obtain the 

unrestricted maximum likelihood estimation of X̂ , it is necessary to optimize the 

objective function with respect to all three sets of loading vectors.  An alternative to such 

a direct optimization is an iterative approach using ALS. 

The algorithm for the Maximum Likelihood PARAFAC in cases of 

heteroscedastic noise is given in Table 2.1.  The algorithm alternately uses the maximum 

likelihood estimates of two modes, say B̂  and Ĉ , to update the estimates in the mode left 

out, say Â .  This procedure is carried out iteratively, using the previously estimated 

mode and one of  the other two modes, say Â  and Ĉ , to estimate the other, say B̂ .  This 

procedure has been found to be simple, fast and reliable.  Although, global convergence 

is not guaranteed, it does not seem to be susceptible to local minima as is the case with 

gradient methods.  In addition, this method is very attractive since its core is based on an 

ALS framework, which ensures an improvement of the solution in each step.  The 

algorithm is easily applied in cases where there are missing values by incorporating large 

variances for the missing measurements.  Convergence time depends on the 

dimensionality of the data, the degree of similarity of the components forming the 

system, the accuracy of the initial estimates and the structure of the errors.  The two most 

important factors increasing the convergence time are the dimension of the model and the 

degree of similarity, especially the former, which makes each step longer and increases 

the  necessity  for  more  iteration.  Some  strategies  have  been  reported  to  improve the  
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Table 2.1. Standard MLPARAFAC algorithm (uncorrelated errors). 

1. Given an I x J x K cube of data X and a corresponding I x J x K cube Σ of measurement 
error variances, the algorithm is initialized using random values of the correct dimensions or 
using estimates obtained by TLD.  

 ),(]ˆ,ˆ,ˆ[ Ptld XCBA =  (T.1) 
2. Unfold X and Σ retaining the first order and calculate the maximum likelihood estimation of 

Â  conditional on B̂  and Ĉ . 

 ),( aunfolda XX = ; ),( aunfolda ΣΣ = ; )( a
i

a
i diag ΣΨ =  (T.2) 
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a
ii ZΨZZΨxa T  (T.3) 

Here Tâi  is a row vector of Â . Using this estimate and the estimates of B̂  and Ĉ  the 
objective function can be calculated using equation T.4. 
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3. Unfold X and Σ retaining the second order and calculate the maximum likelihood estimation 
of B̂  conditional on Ĉ  and Â . 

 ),( bunfoldb XX = ; ),( bunfoldb ΣΣ = ; )( b
j

b
j diag ΣΨ =  (T.5) 
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Here Tb̂j  is a row vector of B̂ . Using this estimate and the estimates of Ĉ  and Â  the 
objective function can be calculated using equation T.7. 

 ∑
=

− −−=
J

j
a

j
b

j
b

j
b

j
b

j
bS

1

T12 )ˆ()ˆ( xxΨxx  (T.7) 

4. Unfold X and Σ retaining the third order and calculate the maximum likelihood estimation of 
Ĉ  conditional on Â  and B̂ . 

 ),( cunfoldc XX = ; ),( cunfoldc ΣΣ = ; )( c
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c
k diag ΣΨ =  (T.8) 
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Here Tĉk  is a row vector of Ĉ . Using this estimate and the estimates of Â  and B̂  the 
objective function can be calculated using equation T.10. 
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5. Calculate the convergence parameters 1λ  and 2λ . 

 222
1 /)( aab SSS −=λ ; 222

2 /)( aac SSS −=λ  (T.11) 
If  1λ  and 2λ  are less than the convergence limit (typically 10-8 in this work), terminate. 
Otherwise return to step 2. 
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efficiency of the algorithm [14], but these will not be incorporated here. Comparative 

data on convergence time will be reported in a future paper.  

It is worth noting that the algorithm presented in Table 2.1 imposes restrictions on 

the presence of offsets in any mode.  Normally, this would be equivalent to saying that 

the data have been properly mean centered [15], but in the case of non-uniform 

measurement errors, mean centering is not equivalent to eliminating offsets. The case of 

offsets will be treated from a more optimal, though incomplete perspective in Section 

2.3.4. 

Although, the problem of heteroscedastic noise has been addressed in the 

literature using weighted PARAFAC algorithms, the description presented here marks the 

first time (to our knowledge) that a formal theoretical treatment of this problem from a 

maximum likelihood perspective has been given.  It also represents a good starting point 

to generalize this algorithm to more complicated scenarios, such as systems affected by 

correlated noise and heteroscedastic and correlated noise in two or more dimensions. 

2.3.2 Correlated Measurement Errors  

The incorporation of uncorrelated, heteroscedastic measurement errors into the 

ALS framework as described in the preceding section is relatively straightforward.  On 

the surface it may appear that extension to correlated measurement errors is a trivial 

matter, since the likelihood function expressed by equation 2.7 should be equally 

applicable for error covariance matrices that are not diagonal.  However, there is a critical 

difference that relates to the way in which the information in the error covariance 

matrices is transformed when the three-way array is unfolded.  In the case of uncorrelated 

measurement errors, the diagonal error covariance matrices in each mode contain all of 

the information about the uncertainty in the measurements, although the order in which 

this information appears varies with the modes.  In the case of correlated measurements, 

some of this information will be lost in one or more modes, making it impossible to 

maintain consistency in the ALS estimates obtained when using the same strategy as for 

independent errors. 

To illustrate this point consider the relatively simple case where the errors are 

correlated in one order only.  For example, we may have a case where multiple samples 
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of different composition are separated by chromatography with multichannel detection 

and there is significant correlation in the time domain due to pump noise.  Alternatively, 

we could imagine fluorescence excitation-emission measurements for a series of samples, 

which are correlated in the emission domain due to source fluctuations, but uncorrelated 

in the excitation domain because it is scanned at longer time intervals as the second order.  

For convenience, we will say that the measurements along the rows, which make up 

mode B are correlated, but there is no correlation among these rows in the three-way 

array.  This situation is conceptually illustrated with a small 4x3x2 array in Figure 2.1.   
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 Figure 2.1.  Illustration of the unfolding of a three-way array and its effect on the 
structure of the error covariance matrix for the first row of the unfolded matrix.  Elements 
with correlated measurement errors are labelled with the same letter. 

The elements of the array that are labeled with the same letters are considered to 

be correlated in this example.  Considering unfolding in the A mode first, the figure 

shows the structure of the error covariance matrix for the first row of Xa, which is block 
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diagonal due to the presence of two sets of correlated measurement errors.  The 

remaining 3 rows will have the same error  covariance  structure,  resulting  in  72  non-

zero  elements  in  total  describing  error covariance.  On the other hand, the error 

covariance matrix for the first row of Xb has a diagonal form since the correlated 

measurements appear in the columns.  Considering all three rows of Xb, this results in 

only 24 non-zero elements describing the error structure. Information on the covariance 

has been lost in this representation.  Finally, the error covariance matrix structure for the 

first row of Xc is band diagonal.  The two error covariance matrices resulting from this 

unfolded matrix will have a total of 72 non-zero values describing the error covariance 

and contain the same information as the A mode, only in a different representation.  

However, because the error covariance matrices for Xb contain incomplete information, 

the sequence of steps in the ALS algorithm described in the previous section cannot be 

completed using this approach. 

As correlation among the orders becomes more complex, the inability to represent 

this information becomes more obvious.  This is clear if one realizes that a complete 

description of all correlations in the general case would require (IJK)2 elements, but the 

total number of elements in the row covariance matrices for, say Xa , is only I(JK)2.  In 

order to circumvent this problem a more general solution for correlated errors will be 

obtained redefining the problem and modeling the measurements as a single point in an 

IJK-dimensional space.  To do this, X (or alternatively any unfolded representation) is 

vectorized by applying the ‘vec’ operator and the equations are adapted as necessary. The 

generalization of equations 2.12 and 2.10 are: 

 )()()ˆ( T1T11TT
aaaaaa vecvec XΩVVΩVA −−−=  (2.14) 

 )()( T1TT2
aaa vecvecS XΩX ∆∆= −  (2.15) 

where, 

 Tˆ
aIa ZIV ⊗=  (2.16) 

 ])))((()))(([( TToTo
aaaaa vecvecE XXXXΩ −⋅−=  (2.17) 
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 )ˆ( aaa XXX −=∆  (2.18) 

In these equations, the ‘vec’ operator reshapes a matrix into a column vector by taking the 

elements in sequence column-wise [13]. The symbol ‘ ⊗ ’ as used here identifies the 

Kronecker product such that each element of II is multiplied by Tˆ
aZ  therefore Va is an IP 

x IJK matrix with T
aZ  repeating along the diagonal.  The matrix aΩ  is the full error 

covariance matrix for )( T
avec X , providing information about the error covariance among 

all the measurements.  Similar equations can be obtained by making the appropriate 

substitutions for the second and third mode in a trilinear case, or to the other dimensions 

in a multilinear case.  Based on this, an alternating regression algorithm similar to the one 

in the preceding section can be formulated as shown in Table 2.2.  

In a manner analogous to the ALS algorithm for heteroscedastic errors, the 

generalized algorithm presented in Table 2.2 uses the maximum likelihood estimates in 

two spaces to estimate the solution in the other space.  In order to exchange the solutions, 

the error covariance matrix for )( T
avec X , given by aΩ , needs to be modified to give the 

error covariance matrix for )( T
bvec X  and )( T

cvec X , given by bΩ  and cΩ respectively.  

This can be done on an element-by-element basis; but since these matrices contain the 

same elements in a different order, it is simpler to apply a special type of matrix called 

permutation matrix to carry out the rearrangement.  The permutation matrix is an 

orthonormal matrix that changes the arrangement of the elements.  Conveniently, the 

same permutation matrix that is used to convert error covariance matrices can also be 

used to convert between the vectorized forms of Xa, Xb, and Xc.  Equations 2.19 through 

2.22 show how this is done. 

 )()( TT
abb vecvec XPX =   (2.19) 

 )()( TT
acc vecvec XPX =  (2.20) 

 T
babb PΩPΩ =  (2.21) 

 T
cacc PΩPΩ =  (2.22) 
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The construction of the permutation matrices Pb and Pc, which consist only of ones and 

zeros, is conceptually straightforward but algorithmically involved, so the details of this 

will not be presented here. 

The algorithm presented in Table 2.2 represents a completely general treatment for the 

case where correlation can exist among all of the measurement errors.  Although it is 

presented for the trilinear case, extension to higher orders is trivial.  The algorithm also 

has very good convergence characteristics and gives results that are identical to those 

obtained by  the  algorithm  in  Section 2.2.1  in  the presence  of  uncorrelated  noise.   In 

practice, implementation of the algorithm is limited to some extent by the size and 

stability of the matrices and the convergence time.  These three factors are not completely 

independent from one another.  For example, as X becomes large, the associated error 

covariance matrices tend to become ill-conditioned, causing convergence problems.  A 

variety of approaches, such as compression [14], line search extrapolation [16], and 

simplifications based on the error structure [17] may be adapted to the present algorithm 

to avoid these problems.  The first two modifications will not be treated in this paper 

since the first is beyond the scope of the present work and the second is primarily an 

algorithmic modification to the ALS algorithm.  However, the third approach has 

important practical implications and for this reason will be the focus of the next section. 

2.3.3 Simplification: Correlation Along One Order Only 

For many chemical applications, error covariance affects only one order or at least 

the covariance in other orders can be neglected.  This can, in certain cases, result in 

substantial simplification of the generalized algorithm. For the purpose of illustration, 

only the case where correlations exist along the rows (i.e. in the second order, as 

illustrated in Figure 2.1) will be considered, since correlations along other orders can be 

rendered  equivalent  through  permutation of the original array or appropriate adjustment  
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Table 2.2. General MLPARAFAC algorithm (correlated measurement errors). 

1. Given an I x J x K cube of data X, a corresponding IJK x IJK matrix aΩ of error covariances 
for vec(Xa) and two permutation matrices Pb and Pc to permute from vec(Xa) to vec(Xb) and 
vec(Xc), respectively, the algorithm is initialized using random values of the correct 
dimensions or using estimates obtained by TLD.  

 ),(]ˆ,ˆ,ˆ[ Ptld XCBA =  (T.12) 
2. Unfold and vectorize X retaining the first order and calculate the maximum likelihood 

estimation of Â  conditional on B̂  and Ĉ . 

 )),(()( TT aunfoldvecvec a XX = ; Tˆˆ
aIa ZIV ⊗= ; aΩ  (T.13) 

 )(ˆ)ˆˆ()ˆ( T111TT
aaaaaa vecvec XΩVVΩVA T −−−=  (T.14) 

Here )ˆ( TAvec is the vectorized row form of Â . Using this estimate and the estimates of B̂  

and Ĉ  the objective function can be calculated using equation T.15. 

 )ˆ( aaa XXX −=∆ ; )()( 1T2
aaaa vecvecS XΩX ∆∆= −  (T.15) 

3.  Vectorize X retaining the second order and calculate the maximum likelihood estimation of 
B̂  conditional on Ĉ  and Â . 

 )()( TT
abb vecvec XPX = ; Tˆˆ

bJb ZIV ⊗= ; T
babb PΩPΩ =  (T.16) 

 )(ˆ)ˆˆ()ˆ( T111TT
bbbbbb vecvec XΩVVΩVB T −−−=  (T.17) 

Here )ˆ( TBvec  is the vectorized row form of B̂ . Using this estimate and the estimates of Ĉ  

and Â  the objective function can be calculated using equation T.18. 

 )ˆ( bbb XXX −=∆ ; )()( 1T2
bbbb vecvecS XΩX ∆∆= −  (T.18) 

4. Vectorize X retaining the third order and calculate the maximum likelihood estimation of Ĉ  
conditional on Â  and B̂ . 

 )()( TT
acc vecvec XPX = ; Tˆˆ

cKc ZIV ⊗= ; T
cacc PΩPΩ =  (T.19) 

 )(ˆ)ˆˆ()ˆ( T111TT
cccccc vecvec XΩVVΩVC T −−−=  (T.20) 

Here )ˆ( TCvec  is the vectorized row form of Ĉ . Using this estimate and the estimates of Â  

and B̂  the objective function can be calculated using equation T.21. 

 )ˆ( ccc XXX −=∆ ; )()( 1T2
cccc vecvecS XΩX ∆∆= −  (T.21) 

5. Calculate the convergence parameters 1λ  and 2λ .  

 222
1 /)( aab SSS −=λ ; 222

2 /)( aac SSS −=λ  (T.22) 
If  1λ  and 2λ  are less than the convergence limit (typically 10-8 in this work), terminate. 
Otherwise return to step 2. 
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of equations which will be presented. For this case, three common cases can be 

distinguished: (1) the error covariance is different among all of the rows forming the 

array; (2) the error covariance is different among rows forming different slices but 

identical among the rows of the same slice; and (3) the error covariance is identical 

among the rows of all the slices.  This section will focus in the second and third cases, 

since the first case can only be treated using the general algorithm.  To begin, however, it 

is helpful to examine the second case, which is more general and can be extended to the 

third case in a straightforward manner.  

Imagine a trilinear data set such as the examples presented in Section 2.2.2, where 

the error correlation can be expected to affect only one order, which we will assume to be 

the second order as noted above.  In addition, in certain cases where this assumption 

applies, it may be possible to make the additional assumption that the error covariance 

matrix is the same for each row in the same vertical slice of data.  Considering that the 

correlation occurs along the rows of Xa and is the same in each row, all the covariance 

information is contained in a single JK x JK covariance matrix aΨ  defined by: 

 )]()[( oTo
aaaaa E xxxxΨ −−=  (2.23) 

Here, xa and o
ax  can represent any row of Xa and o

aX , the unfolded forms of the 

measured data array and the error-free data array, respectively.  Of course, o
aX  is not 

generally known, so in the absence of a priori knowledge of the error covariance matrix, 

aΨ  might typically be  estimated by obtaining replicates of the measurements for each 

row and using the means in place of o
ax , then pooling all of the results, as indicated in 

equation 2.24. 

 ∑∑
==

−−
−

≈
N

n
a

i
a

in
a

i
a

in
I

i
a NI 1

T

1
)()(

)1(
11 xxxxΨ  (2.24) 

In this equation, a
in x  is the nth replicate measurement of the ith row of Xa and a

i x  is the 

mean of the N replicates for that row.  (Note that these replicates would likely be 

obtained through separate experiments for each of the K slices.)  Other strategies are also 

possible, but these will not be discussed in detail here.  The full covariance matrix, aΩ , 

will now be block diagonal, consisting of I identical diagonal units of dimension JK x JK.  



 

53 

This situation offers a number of advantages to the algorithm.  From a storage capacity 

point, the improvement is related to the reduction of the number of non-zero elements 

from a maximum of (IJK)2 in the general case to (JK)2, since aΩ , that has the form 

represented in equation 2.26, can also be represented as the sparse Kronecker product 

shown in equation 2.26. 
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 aIa ΨIΩ ⊗=  (2.26) 

Additionally, this improves the numerical stability of the algorithm since the Kronecker 

form allows aΩ to be inverted by inversion of the individual covariance matrix aΨ  as 

shown in equation 2.27. 

 11 −− ⊗= aIa ΨIΩ  (2.27) 

The companion error covariance matrices for the other orders can be obtained using the 

permutation matrices via equations 2.28 and 2.29. 

 T11
babb PΩPΩ −− =  (2.28) 

 T11
cacc PΩPΩ −− =  (2.29) 

Based on these equations and in the identical block diagonal form of aΩ , it is easy to 

demonstrate that the maximum likelihood solution for the A loadings is obtained using 

equation 2.30. 

 1T11 )(ˆ −−−= aaaaaa ZΨZZΨXA T  (2.30) 

Although, the equation for order A under this assumptions is analogous in form to 

equation 2.13 for the heteroscedastic case, the rest of the equations needed to implement 

the ALS algorithm are different.  In order to obtain these equations, it should first be 

realized that 1−
cΩ can be represented as shown in equation 2.31, as is apparent from 

Figure 2.1, while 1−
bΩ  cannot be similarly simplified under these circumstances. 
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This leads to equations 2.32 and 2.33 for the maximum likelihood estimation of B and C, 

respectively under this assumption. 

 )()()ˆ( T1T11TT
bbbbbb vecvec XΩVVΩVB −−−=  (2.32) 

 1T11T )(ˆ −−−= cc
k

ccc
k

c
k ZΨZZΨxc T  (2.33) 

Besides the storage improvements achieved, speed enhancements are also realized since 

A can now be estimated projecting the data at once onto a smaller set of matrices.  In 

order to estimate the C loading, a row-by-row procedure has to be implemented since the 

error covariance matrices change from slice to slice.  The estimation of B has to be done 

using the full error covariance matrix as in the general case since the error covariance 

terms needed cannot be summarized in a more efficient manner.  This algorithm for this 

simplified case is presented in Table 2.3. 

A further simplification is possible when the error covariance matrix is the same 

for each row in all the slices, a situation which is not uncommon, at least to a first 

approximation.  In this case equations 2.27 and 2.30 can be used to estimate A as before, 

and analogous equations can be used to estimate C by making the appropriate 

substitutions, since all of the cΨ ’s are now the same.  The calculations are further 

simplified by realizing that 1−
bΩ , under these noise characteristics, can be expressed as in 

equation 2.34, since the permutation matrix in this case is similar to the commutation 

matrix used in reference17, reducing the estimation of B to equation 2.35. 

 Jbb IΨΩ ⊗= −− 11  (2.34) 

 1TT )(ˆ −= bbbb ZZZXB  (2.35) 

Table 2.4 gives the algorithm under these assumptions. 
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Table 2.3.  Simplified MLPARAFAC algorithm (Simplification 1 - same error 
covariance matrix for each row in a slice, but different between slices). 
1. Given an I x J x K cube of data X, a corresponding IJK x IJK matrix bΩ of error covariances 

for vec(Xb) and two permutation matrices Pb and Pc to migrate from vec(Xa) to vec(Xb) and 
vec(Xc) respectively. The algorithm is initialized using estimates obtained by TLD.   

 ),(]ˆ,ˆ,ˆ[ Ptld XCBA =  (T.23) 
2. Unfold X retaining the first order and calculate the maximum likelihood estimation of Â  

conditional on B̂  and Ĉ . Since aΩ  is block diagonal as shown in T.24, Â  can be 
calculated at once.  

 ),( aunfolda XX = ; bbba PΩPΩ T= ; aIa ΨIΩ ⊗=  (T.24) 

 1T11 )ˆˆ(ˆˆ −−−= aaaaaa ZΨZZΨXA T  (T.25) 

Using Â  and the estimates of B̂  and Ĉ  the objective function can be calculated using 
equation T.26. 

 ))ˆ()ˆ(( T12
aaaaaa trS XXΨXX −−= −  (T.26) 

3. Unfold X retaining the second order and calculate the maximum likelihood estimation of B̂  
conditional on Ĉ  and Â  using bΩ . 

 TT ))(()( bb unfoldvecvec XX = ; Tˆˆ
bJb ZIV ⊗= ; bΩ  (T.27) 

 )(ˆ)ˆˆ()ˆ( T111TT
bbbbbb vecvec XΩVVΩVB T −−−=  (T.28) 

Here )ˆ( TBvec  is the vectorized row form of B̂ . Using this estimate and the estimates of Ĉ  

and Â  the objective function can be calculated using equation T.29. 

 )ˆ( bbb XXX −=∆ ; )()( 1T2
bbbb vecvecS XΩX ∆∆= −  (T.29) 

4. Unfold X retaining the third order and calculate the maximum likelihood estimation of Ĉ  
conditional on Â  and B̂ . c

k Ψ  is constructed taking the corresponding block of cΩ  since it 
is block diagonal. 

 ),( cunfoldc XX = ; TT
cbbbcc PPΩPPΩ = ; c

k Ψ  (T.30) 

 1T11T )ˆˆ(ˆˆ −−−= cc
k

ccc
k

c
kk ZΨZZΨxc T  (T.31) 

Here Tĉi  is a row vector of Ĉ . Using this estimate and the estimates of Â  and B̂  the 
objective function can be calculated using equation T32. 

 ∑
=

− −−=
K

k
c

k
c

k
c

k
c

k
c

k
cS

1

T12 )ˆ()ˆ( xxΨxx  (T.32) 

5. Calculate the convergence parameters 1λ  and 2λ .  

 222
1 /)( aab SSS −=λ ; 222

2 /)( aac SSS −=λ  (T.33) 
If  1λ  and 2λ  are less than the convergence limit (typically 10-8 in this work), terminate. 
Otherwise return to step 2. 
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Table 2.4.  Simplified MLPARAFAC algorithm (Simplification 2 - same error 
covariance matrix for each row in each slice). 

1. Given an I x J x K cube of data X, and the error covariance matrices aΨ  and 

cΨ for the A and B orders respectively. The algorithm is initialized using random 
values of the correct dimensions or using estimates obtained by TLD.  

 ),(]ˆ,ˆ,ˆ[ Ptld XCBA =  (T.34) 
2. Unfold X retaining the first order and calculate the maximum likelihood 

estimation of Â  conditional on B̂  and Ĉ .  

 ),( aunfolda XX = ; aΨ  (T.35) 

 1T11 )ˆˆ(ˆˆ −−−= aaaaaa ZΨZZΨXA T  (T.36) 

Using Â  and the estimates of B̂  and Ĉ  the objective function can be calculated 
using equation T.37. 

 ))ˆ()ˆ(( T12
aaaaaa trS XXΨXX −−= −  (T.37) 

3. Unfold X retaining the second order and calculate the maximum likelihood 
estimation of B̂  conditional on Ĉ  and Â . 

 ),( bunfoldb XX =  (T.38) 

 1T )ˆˆ(ˆˆ −= bbbb ZZZXB T  (T.39) 

Using B̂  and the estimates of Ĉ  and Â  the objective function can be calculated 
using equation T.40. 

 ))ˆ)(ˆ(( T2
bbbbb trS XXXX −−=  (T.40) 

4. Unfold X retaining the third order and calculate the maximum likelihood 
estimation of Ĉ  conditional on Â  and B̂ . 

 ),( cunfoldc XX = ; cΨ  (T.41) 

 1T11 )ˆˆ(ˆˆ −−−= cccccc ZΨZZΨXC T  (T.42) 

Using Ĉ  and the estimates of Â  and B̂  the objective function can be calculated 
using equation T.43. 

 ))ˆ()ˆ(( T12
cccccc trS XXΨXX −−= −  (T.43) 

5. Calculate the convergence parameters 1λ and 2λ .  

 222
1 /)( aab SSS −=λ ; 222

2 /)( aac SSS −=λ  (T.44) 
If  1λ  and 2λ  are less than the convergence limit (typically 10-8 in this work), 
terminate. Otherwise return to step 2. 
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2.3.4 MLPARAFAC with Offsets 

So far, it has been assumed that the multilinear data is not affected by offsets in 

any mode.  Unfortunately, it is not uncommon in chemical system to have offsets 

affecting different orders.  The sources of offsets range from instrumental artifacts, such 

as a spectral background for all samples or variations in cell position, to factors related to 

sample preparation.  One general model to describe trilinear data affected by different 

kinds of offsets is represented by equation 2.36. 

 ∑
=

++++=
P

p
kpjpipkjiijk cbax

1
γβαµ  (2.36) 

Here, µ is the grand mean of X and αi, βj and γk represent the offsets for mode A, B and 

C, respectively.  It has been reported [15] that, in cases where an overall offset exists; it 

can be removed by eliminating the offset associated with any mode.  Therefore, the grand 

mean can be incorporated into any or all the offset terms affecting the individual modes.  

When the measurements in X are corrupted by iid noise, proper mean-centering to 

remove the offset is a convenient approach since this pre-processing step does not destroy 

the multilinear characteristics of the data.  It is important to note, however, that mean-

centering will alter the structure of the loadings so that they may no longer be readily 

identified with real factors, counteracting one of the main benefits of trilinear 

decomposition. 

From a mathematical point of view, the mean-centering is equivalent to adding 

trilinear factors that are formed by the product of a vector of offsets and two other 

loading vectors set to ones as shown in equation 2.37. 

 ∑
=

⊗⊗+⊗⊗+⊗⊗+⊗⊗=
P

p
pppJIKIKJ

1
)()()( cbaγ111β111αX  (2.37) 

Note that equation 2.37 is a general formulation and in a given application, the offset 

affecting any of the modes could be set to zero, i.e. α, β or γ could be a zero vector.  In 

addition, it could even be constrained to be a general offset affecting all the 

measurements equally and then, loadings representing each mode would be equal to a 

vector of ones and everything multiplied by a scalar representing the offset.  However, 

the presence of non-uniform and/or correlated error distribution makes mean centering no 
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longer optimal from a maximum likelihood point of view.  This can be understood 

considering that mean centering in any mode is the projection of X unfolded in this mode 

onto the null space spanned by the vector of ones corresponding to this mode.  Therefore, 

this projection will only be optimal under iid conditions.  In order to mean center 

optimally, the procedure should be incorporated into the ALS algorithm.  Contrary to 

what happens in MLPCA, where the loadings are constrained to be orthogonal, 

PARAFAC does not impose any constraints on the estimation of the loadings, making the 

inclusion of offsets in the ALS algorithm a more straightforward task.  Additionally, an 

important benefit is that the offsets may often be uniquely determined because of the 

uniqueness of the PARAFAC model. 

A relatively simple approach to handling offsets can be used when the offsets 

follow the structure represented by equation 2.37.  It is clear from this equation that the 

offsets can be incorporated by using from one to three more factors (in the trilinear case) 

than the number of factors expected in the absence of offsets.  The number of additional 

factors which should be added depends on how many modes exhibit the offsets in 

equation 2.37.  This means of dealing with offsets is easily incorporated into the 

MLPARAFAC algorithm, and will yield maximum likelihood estimates of the loadings 

in accordance with the model, but is not the best approach.  This is because the loadings 

in the two modes other than the one in which the offsets occur are allowed to “float”; that 

is, they are not constrained to unity (or, more generally, a constant value).  While these 

loadings may be nearly constant and will constitute a maximum likelihood solution to the 

expanded-factor model, all of the loadings in this case should experience a greater 

variance than would be expected with the true model.  The situation is analogous to 

fitting simple bivariate straight line data with an intercept of zero to linear models.  The 

data could be fit using only a slope term (intercept forced to zero), or with a slope and 

intercept term.  Both approaches will yield a maximum likelihood solution, but the latter 

strategy (which has a closer fit but fewer degrees of freedom) will produce a larger 

variance in the slope, so it is the less preferred method given a priori knowledge of a zero 

intercept.  Likewise, if we have prior knowledge of a structure such as that in equation 

2.37, it is better to incorporate this into the modeling process. 
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Equation 2.37 is only one of many possible constrained structures that can exist in 

trilinear models, and it is clear that the question of offsets is part of a more general issue 

of constrained factors.  The nature of these constraints is very application dependent and 

relies on prior information.  While such constraints can be incorporated into the 

MLPARAFAC algorithm, a general discussion of strategies is premature and beyond the 

scope of the current paper.  However, one example will be presented in Section 2.4.5 to 

demonstrate the performance of MLPARAFAC in the presence of offsets. 

2.3.5 Estimation of Error Covariance Matrices 

The error covariance matrix is of critical importance in maximum likelihood 

methods such as MLPCA and MLPARAFAC.  Consequently, questions often arise 

related to procedures used to estimate the error covariance matrix, the quality of these 

estimates, and the implications of this on the subsequent analysis.  While the emphasis of 

this work is on the development of the algorithm, it is legitimate to raise these concerns, 

so they will be addressed here, although only briefly. 

Perhaps the most obvious way to estimate the error covariance matrix is through 

the use of replicates, as indicated in the discussion related to equation 2.24.  In practice, 

such an approach may be limited by experimental design considerations or realistic 

constraints on the number of experiments that can be conducted.  Covariance estimates, 

like variance estimates, are notoriously imprecise unless a large number of replicates is 

employed.  This is often impractical, although pooling can sometimes be used.  The 

question then becomes whether it is better to employ traditional methods (which assume 

an iid-normal error structure) or maximum likelihood methods with a noisy error 

covariance matrix.  Maximum likelihood methods will generally be favored in situations 

where the number of replicates is large and/or the level of heteroscedastic/correlated 

noise is high.  The precise point at which the use of maximum likelihood methods 

becomes advantageous will depend on the particular application and a detailed 

examination of this is beyond the scope of the present work. 

An alternative to the often unpopular approach of measuring replicates is to 

characterize the error covariance structure for a particular instrument or application based 
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on empirical evidence or theoretical considerations.  In the same way that certain 

instruments are known to exhibit proportional noise, it may be possible to obtain a 

functional form for the error covariance in certain types of applications.  This is already 

done to some degree when multiplicative signal correction (MSC) is applied to near-

infrared data dominated by scatter noise.  Furthermore, in some circumstances, it may be 

possible to describe covariance arising from techniques such as filtering or 

transformation on a purely theoretical basis.  By using such approaches, more reliable 

error covariance matrices can be obtained that are not subject to the statistics of a small 

number of replicates. 

For the work presented here, which is intended to validate the algorithm rather 

than to demonstrate its practical application, the theoretical error covariance matrix based 

on noise simulation was used.  This removed any uncertainties associated with the error 

covariance in the statistical validation. 

2.4 Experimental 

2.4.1 Data Sets 

Since the objective of this work is to describe the theoretical basis of the 

MLPARAFAC algorithm and to validate its capabilities, all of the data sets employed in 

this work were simulated so that the rank and error structure could be known with 

confidence.  Future studies will examine the performance of the algorithm for real 

experimental systems.  Although a wide range of simulations were carried out, the results 

from only six data sets are presented here to support the main conclusions.  In all cases, 

the data sets were relatively small, since the studies generally involved statistical 

validation requiring numerous runs. 

Data Set 1 was a rank-three data set of dimensions 8x7x4 used to test the degrees 

of freedom with conventional PARAFAC algorithm under conditions of  iid normal noise 

and compare it with the new algorithms.  The loadings for mode A were represented by 

an 8x3 matrix drawn from a uniform distribution of random numbers from zero to three 

(U(0,3)).  Similarly, B was a 7x3 matrix from U(0,2) and C was a 4x3 matrix from 
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U(0,5).  The error free data were generated using equation 2.3, yielding the 8x28 matrix 

of error-free data, unfolded to maintain the A mode.  The matrix of measurement errors 

was an 8x28 matrix of normally distributed random numbers (µ = 0, σ = 0.1, or N(0,0.1)), 

which was added to the error-free data to generate the unfolded form of Data Set 1.  This 

matrix was then folded into a three-way array and passed to the PARAFAC algorithms. 

Data Set 2 was a rank-three data set of dimensions 6x7x3 and was used to test the 

algorithm under conditions of heteroscedastic but uncorrelated noise.  The error-free data 

was generated in the same fashion as Data Set 1, with the same ranges of loadings but 

using the corresponding dimensions.  The matrix of measurement errors was created by 

the Hadamard (element-by-element) multiplication of a 6x21 matrix of normally 

distributed random numbers drawn from N(0,1) and a 6x21 matrix of random numbers, 

Qa, drawn from U(0,0.1), representing the matrix of standard deviation for each 

measurement in Xa.  The noise matrix and the error-free data set were added and the 

resultant matrix was folded. 

The error-free part of Data Set 3, which was used to test the general algorithm for 

correlation in multiple orders, is identical to Data Set 1.  The noise matrix was created to 

introduce non-uniform and correlated noise at the same time.  Initially, an 8x28 matrix of 

normally distributed random numbers drawn from N(0,1) was generated and multiplied in 

an element-by-element fashion by one-tenth of the value of the error-free measurements.  

The resultant matrix was treated with a 15 point moving average filter along each row in 

order to produce error covariance.  At the boundaries of the error matrix the filter was 

wrapped around the to the opposite side in order to eliminate edge effects.  Since the 

error matrix was unfolded to maintain mode A, this approach produced correlation 

among the measurements in the two other modes.  Although this approach is not 

particularly realistic, it represents a general case for which the covariance structure could 

be easily predicted. Again, the error-free data set was added to the noise matrix in order 

to generate the data set. 

Data Sets 4 and 5 were 5x8x4 matrices, again formed by three components in the 

same manner as already described for error-free data.  These data sets were used to test 
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simplifications to the general algorithm related to the error covariance structure.  In both 

cases, the error-free data were the same and only the measurement error matrices 

differed.  The noise matrix for Data Set 4 was generated to simulate a system where the 

errors are correlated along only one order (the B mode) and the error covariance matrix is 

identical for each vector in this mode.  To do this, four 5x8 matrices of normally 

distributed random numbers drawn from N(0,0.1) were generated and all of them were 

individually treated with a 5 point moving average filter along the rows.  The filtered 

error matrix was added to the error-free matrix and used in the simulations.  For Data Set 

5, the correlated errors were also only in one order and all the vectors in a given ‘slice’ 

(mode C fixed) had the same error covariance structure, but this structure varies from 

slice to slice.  The measurement error matrices for this data set were generated in the 

same manner as for Data Set 4, but the standard deviation of the normal distribution and 

the filter width were varied between slices (σ = 0.15, 0.15, 0.2, 0.1, 0.05; w = 3, 5, 7, 3). 

Data Set 6, which was used to test the performance in the presence of offsets, was 

constructed from a 7x8x4 rank three matrix with the same distribution of loading values 

and the same noise correlation structure as Data Set 3 – heteroscedastic and correlated in 

two orders.  In this case, however, a single vector offset was added to the second order; 

that is, a 1x8 vector of values drawn from U(0,2) was added to each row of the three way 

array. 

2.4.2 Computational Aspects 

All the calculations performed in this work were carried out on a Sun Ultra 60 

workstation with 2 x 300 MHz processors and 512 MB of RAM and a 700MHz Pentium-

III PC with 128 MB of RAM. All programs were written in-house using Matlab 6.0 (The 

MathWorks Inc., Natick, MA).  

2.5 Results and Discussion 

2.5.1 Statistical Validation 

In order to validate the various proposed algorithms, it was necessary to verify 

that they yield the maximum likelihood solution.  This can be accomplished by exploiting 



 

63 

the statistical characteristics of S2 values for the correct model.  Operationally, this is 

done by analyzing replicate data sets, each with the same matrix of error-free data and the 

same error structure, but with different realizations of the measurement error each time.  

If the distribution of S2 values for these replicates follows a χ2 distribution with the 

appropriate degrees of freedom, it can then be concluded that the algorithm is finding the 

maximum likelihood solution.  Probability plots are used in this work to make this 

comparison.  Initially, the replicate data sets (normally 100 replicates) are analyzed and 

the S2 values are stored. Then, the S2 values are sorted from the smallest to the largest and 

assigned a cumulative probability according to their position in the list; this is called the 

observed probability.  For instance, the third element in the list would be assigned an 

observed probability of 2/n, where n is the number of replicates.  The expected 

probability is then calculated using the χ2 distribution.  The cumulative probability 

density function for χ2 can be calculated using the incomplete gamma function included 

in Matlab as shown in equation 2.38: 

 ⎟⎟
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⎝

⎛
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,

2
)|(

2
2 νν SSP inc  (2.38) 

where ν is the number of degrees of freedom.  If the two distributions are the same, a plot 

of the observed probabilities vs. the expected probabilities should yield a straight line 

with a slope of unity.  If the model is insufficient to account for the systematic variance, 

either because the form of the model is incorrect or the parameters are suboptimal, then 

the points of the plot will lie above the ideal line. If the model accounts for an excessive 

amount of variance, i.e. the estimated rank is too high and measurement variance is 

modeled, the points will lie below the ideal line.  It should be pointed out that the only 

way to employ this approach is to use simulated data where the true noise characteristics 

are known.  Because error estimates for virtually all experimental measurements will 

have some (often substantial) degree of uncertainty, the resulting S2 values will not 

follow a χ2 distribution.  (For this reason, it can be argued that the present methods are 

not truly, “maximum likelihood”, since they should also estimate the error covariance, 

but this is not practical in most situations.) 
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The issue of degrees of freedom for trilinear data is far from being trivial.  Bro 

has suggested that degrees of freedom do not exist a priori [18], but have to be 

determined from the specific data.  This situation arises from the fact that the rank of a 

trilinear data set cannot be calculated based on the same approach used in bilinear data.  

For instance, the maximum rank of a 3x3x3 array is five [19] contrary to what happens in 

bilinear data, where the maximum rank of a 3x3 matrix is always three.  Unfortunately, 

there is no simple rule for calculating the maximum rank of arrays in general, except for 

the bilinear case and some simple trilinear arrays. However, Durell et al [20]. reported 

two equations to calculate the degrees of freedom in trilinear and quadrilinear models, as 

given in equation 2.39 and 2.40. 

 ν (X)3-way = IJK - P(I + J + K – 2) (2.39) 

 ν (X)4-way = IJKL - P(I + J + K + L – 3) (2.40) 

The theoretical foundation of these equations is not completely clear, but it has been 

suggested in the literature that they might be used for exploratory (qualitative) purpose.  

In other words, they should not be used as the statistically correct number of degrees of 

freedom.  In the present work, the approach was to use equation 2.39 as estimator of the 

statistically meaningful number of degrees of freedom for a trilinear case.  In order to 

assess the merit of this approach, trilinear data corrupted with iid normal noise, such as 

Data Set 1, were submitted to the standard PARAFAC algorithm, which is well-known to 

yield the maximum likelihood solution under these noise characteristics.  The replication 

procedure described above was performed using 100 and 1000 replicates and the 

probability plot, shown in Figure 2.2, was constructed.  It is observed that the plot 

follows the theoretical slope very closely for 1000 replicates, indicating that equation 

2.39 provides a credible number of degrees of freedom, at least for the purposes of this 

study.  For 100 replicates, the agreement is not as good due to the smaller sample size, 

but these results are included as a point of reference for other studies that involve only 

100 replicates.  It is worth noting that, even though the results are not shown, analysis of 

all of the trilinear data structures used in this work was carried out under iid conditions 

using PARAFAC to confirm the estimated degrees of freedom. 
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Figure 2.2.  Probability plot for PARAFAC results under conditions of iid normal errors 
for 100 ( ) and 1000 (+) replicates.  The solid line with unity slope indicates ideal 
behaviour for maximum likelihood estimation. 

2.5.2 Non-uniform (Uncorrelated) Measurement Errors: Data Set 2 

In order to test the validity of the algorithm depicted in Table 2.1, Data Set 2, 

which was corrupted with heteroscedastic error, was employed.  Since the main objective 

of this study is the statistical validation of the algorithm, the theoretical error covariance 

matrix obtained from the simulation parameters was employed.  The theoretical error 

covariance matrix for each row is calculated using equation 2.41: 

 2)( a
i

a
i diag qΨ =  (2.41) 

where diag( ) represents the diagonalization operator that transforms the vector argument 

into a diagonal matrix.  The result is a diagonal matrix with the squared elements of iqa 

(the ith row of Qa, the matrix of standard deviations unfolded in the A mode) along the 
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diagonal.  Error covariance matrices for the other orders were obtained using the same 

equation applied to Qb and Qc accordingly. 

Figure 2.3 shows the results obtained for the analysis of Data Set 2 using 

PARAFAC and the version of MLPARAFAC designed to accommodate heteroscedastic 

noise.  
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Figure 2.3.  Probability plot for the analysis 100 replicates of Data Set 2 (non-uniform, 
uncorrelated errors) by MLPARAFAC ( ) and PARAFAC ( ). 

The S2 values in both cases were calculated in the same manner, i.e. using 

equation 2.9 with either the PARAFAC or MLPARAFAC estimates of aX̂ .  It is clear 

from the figure that the estimates obtained using MLPARAFAC follow the expected 

behavior for maximum likelihood estimation, with only minor deviations attributable to 

the statistical limitations of the study.  On the other hand, the models obtained by 

PARAFAC do not adequately account for the systematic variance in the data set, 

producing suboptimal solutions that deviate radically from the line representing expected 
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χ2 distribution in the probability plot. Although this data set was not designed to test the 

more general algorithm depicted in Table 2.2, it was also analyzed using that algorithm to 

test its generality.   The general algorithm produced exactly the same set of solutions, 

indicating that the two algorithms are equivalent under these noise characteristics. 

2.5.3 Non-uniform and Correlated Measurement Errors: Data Set 3 

In the preceding section, it was noted that the general MLPARAFAC algorithm 

for correlated errors was able to handle the case of uncorrelated errors as well.  Data Set 3 

was designed to test the general algorithm in the presence of errors which were correlated 

and heteroscedastic.  Again, the theoretical error covariance matrix was used.  For this 

specific data set, the covariance matrix in the A mode is given by: 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

a
I

a

a

a

Ψ

Ψ
Ψ

Ω
.

2

1

 (2.42) 

where a
iΨ  represents the error covariance matrix of the i row of Xa and was calculated 

using equation 2.43. 

 FxFΨ 2oT )))1.0((( a
i

a
i diag ⋅=  (2.43) 

Here, F is the 28x28 filter matrix designed to carry out the 15-point moving average 

smooth on the noise (ecorr = eiid F), and second term is a diagonal matrix of the variance 

of the noise in the ith row of noise matrix prior to smoothing, equal to 10% of the error-

free measurement squared.  The companion error covariance matrices, bΩ  and cΩ , were 

calculated using their respective permutation matrices as shown in equation 2.21 and 

2.22. 

Figure 2.4 shows the probability plots obtained using Data Set 3.  Results for the 

general MLPARAFAC algorithm, which can accommodate any covariance structure, are 

shown for both 100 and 1000 replicates.  Both of these show good agreement with the 

expected slope of unity, indicating that a maximum likelihood solution has been obtained. 
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Figure 2.4.  Probability plot for the analysis of Data Set 3 (correlated measurement errors 
in two modes) using the general MLPARAFAC algorithm with 100 ( ) and 1000 (+) 
replicates, the standard MLPARAFAC algorithm for uncorrelated errors with 100 
replicates ( ) and PARAFAC with 100 replicates ( ). 

In contrast, it is clear that the PARAFAC model has substantial systematic error, since it 

generates a maximum expected probability of unity across all observed probabilities.  In 

order to test whether the superior performance of the general MLPARAFAC algorithm 

was due to its inclusion of the error covariance structure or simply because it accounts for 

heteroscedasticity, results were also generated using the version of MLPARAFAC 

designed to accommodate only heteroscedasticity.  For this analysis, only the diagonal 

elements of the full error covariance matrix (Ω ) were employed.  Like the standard 

PARAFAC algorithm, these models result in systematic errors, indicating that modeling 

the covariance structure is a critical factor. 
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2.5.4 Simplified Error Covariance Structures: Data Sets 4 and 5 

While the general MLPARAFAC algorithm should be able to deal with any error 

covariance structure, in many cases it may be possible to use the simplified algorithms 

presented in Tables 2.3 and 2.4.  These algorithms were tested using Data Sets 4 and 5.  

Data Set 4, which has a simple error covariance structure consisting of correlation in one 

mode only and identical error covariance matrices for all the vectors in this mode, was 

used to test the corresponding algorithm in Table 2.4, which will be referred to as 

Simplification 2.  The probability plots for this study are shown in Figure 2.5, together 

with the results of the generalized algorithm and conventional PARAFAC.  
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Figure 2.5.  Probability plot for the analysis of 100 replicates of Data Set 4 (identical row 
correlations) using the general MLPARAFAC algorithm ( ), Simplification 2 of the 
general MLPARAFAC algorithm ( ) and PARAFAC ( ). 

Note that the results of the general algorithm and Simplification 2 are identical, 

confirming that the latter is a special case of the former, and that both appear to produce 

the maximum likelihood results.  As before, the performance of PARAFAC is 

suboptimal. Simplification 1, which appears in Table 2.3, is designed to handle the case 
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where: (i) error correlation exists in one mode only, and (ii) the error covariance structure 

differs from  vector  to  vector  along  one  of  the remaining modes, but is the same along 

the other remaining mode.  Data Set 5, which was simulated to test this algorithm, was 

created such that errors were correlated along the rows (mode B) and the error covariance 

matrix was identical for rows within the same slice (mode A), but different across 

different slices (mode C).  The results from analysis of 100 replicates are summarized in 

Figure 2.6.   
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Figure 2.6.  Probability plot for the analysis of 100 replicates of Data Set 5 (different row 
correlations along mode A, same row correlations along mode C) using the general 
MLPARAFAC algorithm ( ), Simplification 1 of the MLPARAFAC algorithm ( ) and 
PARAFAC ( ). 

As with Simplification 2, the figure shows the identical results for Simplification 

1 and the generalized algorithm, both of which produce maximum likelihood estimates, 

and poor results for PARAFAC. 
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2.5.5 MLPARAFAC with Offsets: Data Set 6 

As noted in Section 2.2.4, the inclusion of certain kinds of offsets in the trilinear 

structure can be modeled by using an expanded rank model.  This can be demonstrated 

with Data Set 6, which has offsets added to one order (i.e. α and γ are zero in equation 

2.37, but β is not).  Therefore, expansion of the PARAFAC model to rank four should 

accommodate the offsets.  This is demonstrated with the probability plots in Figure 2.7, 

which  compares  the results  of  MLPARAFAC  (general algorithm)  with  conventional 
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Figure 2.7.  Probability plot for the analysis of 100 replicates of Data Set 6 (correlation 
along modes B and C plus offset on modeB) using the general MLPARAFAC algorithm 
( ) and PARAFAC ( ). 

PARAFAC, both with rank four models.  It is clear that MLPARAFAC produces the 

maximum likelihood solution while PARAFAC does not.  Furthermore, this approach to 
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handling offsets is superior to mean-centering in that the integrity of the loading vectors 

is retained. 

As noted in Section 2.2.4, the maximum likelihood solution extracted in this 

manner does not represent the “best” solution in this application because information 

about constraints on the loading vectors in the A and C modes of the offset factor (i.e. 

that they are fixed) is not incorporated into the ALS algorithm.  While it is possible to do 

this, the inclusion of constrained factors adds algorithmic complications and introduces 

questions regarding degrees of freedom, so this issue will not be dealt with in this paper. 

2.5.6 Model Quality 

The preceding sections dealt with the statistical validation of the maximum 

likelihood estimation process, but nothing has been said about the quality of the estimates 

obtained using these new algorithms.  Although the implication has been that the 

MLPARAFAC solutions are better, two reasonable questions that arise are: (1) Are the 

MLPARAFAC estimates closer to the true underlying factors than the PARAFAC 

estimates?, and (2) Do the MLPARAFAC estimates offer a significant advantage over the 

estimates obtained by PARAFAC?.  The first question can be answered easily using 

simulated data.  The second question is more general in essence and it can only be 

addressed on a case-by-case basis since the advantages gained by MLPARAFAC will 

strongly depend on the type and magnitude of error corrupting the data and the correct 

use of a number of parameters related to the estimation of the model.  Some of the 

parameters determining the success of MLPARAFAC over PARAFAC are the number of 

components, accuracy of the estimation of the error covariance matrix, and the use of the 

correct algorithm based on the error structure present.  

The first issue, the closeness of estimates to the true factors, will be addressed 

using vector angles as a figure of merit.  This figure of merit is the angular difference 

between the true loading vectors and the estimated loading vectors in each mode.  For 

example, the vector angle between two loading vectors in mode A is given by: 



 

73 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= −

pp

ppa
p aa

aa
ˆ

ˆ
cos

T
1θ  (2.44) 

where ap and pâ  are the true and estimated values for the pth loading vector of A.  

Analogous equations can be used for the other orders.  Smaller angles mean a greater 

similarity, so by comparing the vector angles obtained by MLPARAFAC with those of 

PARAFAC, the agreement with the true vector can be assessed.  An alternative measure 

is the correlation coefficient of the vectors, which is simply the term in parentheses, but 

since this approaches unity with small differences, it is less sensitive. 

To evaluate the accuracy of the loadings extracted by MLPARAFAC and 

PARAFAC under different conditions, loadings extracted from 100 replicates of Data 

Sets 2 through 6 by both MLPARAFAC and PARAFAC were used to calculate vector 

angles for each of the loadings.  These angles were then averaged over the 100 replicates 

to give 9 mean angles and their standard deviations (3 modes x 3 factors) for each 

method.  These results are summarized in compressed form in Table 2.5, which, in the 

interest in saving space, shows only the results for the first loading vector in each mode.  

The uncertainty given is the population standard deviation. 

Table 2.5.  Comparison of vector angle accuracies for PARAFAC and MLPARAFAC. 
Results are based on 100 replicates and uncertainties are given as standard deviations. 

Mean angular deviation (°) 
PARAFAC 

Mean angular deviation (°) 
MLPARAFAC Data 

Set 
A B C A B C 

2 0.27± 0.15  0.33± 0.13  0.21± 0.18  0.17± 0.09 0.19± 0.08 0.14± 0.11 

3 0.90± 0.36  0.61± 0.34  0.58± 0.37  0.08± 0.02 0.14± 0.05 0.09± 0.04 

4 0.17± 0.07  0.27± 0.14  0.21± 0.16  0.07± 0.04 0.19± 0.08 0.10± 0.09 

5 0.25± 0.12  0.43± 0.23  0.32± 0.25  0.10± 0.05 0.23± 0.16 0.16± 0.16 

6 1.77± 1.30  3.04± 1.16  1.52± 1.03  0.24± 0.12  0.47± 0.14  0.31± 0.19  

The results in Table 2.5 support the general view that MLPARAFAC produces 

more accurate estimates of the loading vectors than PARAFAC.  Both the mean vector 

angles and their uncertainties are smaller in all cases for MLPARAFAC, although the 

degree to which this is true varies with the data set.  For Data Set 2, the differences 
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between the two methods is relatively small.  This might be expected, however, since this 

data set contains heteroscedastic errors only with no correlated errors, and the degree of 

heteroscedasticity, arising from proportional errors, is not very large.  Nevertheless, 

differences are statistically significant (note that the standard deviation of the mean will 

be the value reported in the table divided by 10).  The differences are much more 

dramatic for Data Set 3, which has correlated errors in two modes, and illustrates the 

importance of modeling error covariance.  To further emphasize this point, the analysis of 

Data Set 3 by MLPARAFAC assuming only heteroscedastic errors (i.e. using only the 

diagonal) produced corresponding vector angles of 0.92+0.37, 0.59+0.34, and 0.57+0.35, 

which are not significantly different from the PARAFAC results.  Data Sets 4 and 5, 

which exhibit a smaller degree of error covariance than Data Set 3, also show less 

dramatic differences between MLPARAFAC and PARAFAC, but the angular differences 

are still about a factor of two and are statistically very significant.  The analysis of these 

two data sets employed the simplified algorithms, but it should be noted that the general 

algorithm produced identical results, as expected.  In Data Set 6, the addition of a fourth 

factor representing the offset decreases the quality of the estimates in general compared 

to Data Set 3 (the most similar data set).  Because of the highly correlated error structure, 

this data set exhibits a difference of a factor of five or more in the mean vector angles 

obtained by the two methods.  For comparison purposes, the corresponding vector angles 

for the rank three MLPARAFAC model are 1.52+0.55, 3.79+0.17 and 1.44+0.42, 

indicating that the inclusion of the fourth factor to model the offset is essential. 

These results clearly demonstrate that improved estimates of loadings can be 

obtained from the trilinear model when information about the measurement error 

structure is available and is incorporated into the modeling process in the correct way.  

As already noted, the extent to which these improvements will be significant for a given 

application depends on nature of the application and the characteristics of the noise.  

Furthermore, the results presented here were obtained assuming an absolute knowledge 

of the measurement error covariance matrix, but in practice this is typically estimated on 

the basis of replicate measurements and hence may be less reliable.  The benefits of 

including measurement error information must therefore be weighed against the 

detrimental effects of including poor quality information.  The development of the 
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algorithms presented here has demonstrated the potential for improvements that could be 

achieved and facilitates application to more practical situations in which an experimental 

assessment of their benefits can be made. 

2.6 Conclusions 

Four algorithms for carrying out MLPARAFAC based on an ALS framework 

have been described in this work.  The simplest of these is designed to work with cases 

where the measurement errors are non-uniform (heteroscedastic) but uncorrelated.  The 

most general form of the algorithm can treat data with any type of error covariance 

structure.  Two simplifications of the general algorithm were also presented which more 

efficiently handle more restricted error covariance structures.  All of the algorithms were 

shown to produce maximum likelihood estimates through a comparison of the 

distribution of the objective function with the χ2 distribution.  It was also shown that the 

quality of the estimated loading vectors for MLPARAFAC was significantly better than 

for the PARAFAC models in cases where the error covariance matrix is known. 

Although the principles of MLPARAFAC have been established here, a number 

of more practical aspects related to its implementation remain to be examined.  These 

include issues related to the computational efficiency and stability of the algorithms for 

large arrays, the estimation of error covariance matrices for three-way data, and the 

implementation of constraints on the loadings within the algorithms.  These subjects will 

be the focus of future investigations. 
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Chapter 3 
Mathematical Improvements to Maximum Likelihood Parallel Factor 

Analysis: Theory and Simulations2 

3.1 Abstract 

A number of simplified algorithms for carrying out Maximum Likelihood Parallel 

Factor Analysis (MLPARAFAC) for three-way data affected by different error structures 

are described. The MLPARAFAC method was introduced to establish the theoretical 

basis to treat heteroscedastic and/or correlated noise affecting trilinear data. 

Unfortunately, the large size of the error covariance matrix employed in the general 

formulation of this algorithm prevents its application to solve standard three-way 

problems. The algorithms developed here are based on the principle of alternating least 

squares, but differ from the generalized MLPARAFAC algorithm in that they do not use 

equivalent alternatives of the objective function to estimate the loadings for the different 

modes. Instead, these simplified algorithms tackle the loss of symmetry of the 

PARAFAC model by using only one representation of the objective function to estimate 

the loadings of all of the modes. In addition, a compression step is introduced to allow the 

use of the generalized algorithm. Simulation studies carried out under a variety of 

measurement error conditions were used for statistical validation of the maximum 

likelihood properties of the algorithms and to assess the quality of the results and 

computation time. The simplified MLPARAFAC methods are also shown to produce 

more accurate results than PARAFAC under a variety of conditions. 

                                                 
2 Submitted to Journal of Chemometrics  (Submitted March 2005) 
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3.2  Introduction 
Over the past three decades, the use of multivariate [1-2] and multi-way [3-5] 

methods have driven a change in the analytical laboratory from a univariate and 

chemically selective paradigm into a multivariate/multi-way and mathematically selective 

philosophy. Nonetheless, it was not until the 1990’s that some researchers [6-11] started 

to consider in a consistent manner the nature of the noise corrupting these measurements 

in the context of multivariate analysis. The assumption of iid -normal (independent and 

identically distributed noise with a normal distribution) upon which univariate least 

squares methods [12] relied to provide optimal estimates was recognized as a limitation 

in the presence of other types of noise cases. The nature of the noise affecting 

multivariate measurements is strongly related to the nature of the experiment and the type 

of instrument employed [13], as well as different cosmetic manipulations [14-15] that 

make the noise deviate from the iid condition.  Instrumental factors, such as spatial 

correlation in the detector sensors, detector response variation, source intensity 

instability, temperature fluctuations and physical variation in the sample and in the 

positioning of the sample within the instrument are a few examples of the causes of the 

existence of correlated noise.  

In 1994, Paatero and Tapper [6] resurrected the idea of introducing some kind of 

weight information related to the uncertainty of the variables when the method Positive 

Matrix Factorization (PMF) was introduced. Unfortunately, this weighting information 

was only related to the variance of these variables, correcting for the violation of the 

identical distribution of the noise, but their method still assumed that the errors were 

independent from channel to channel. A more complete alternative was available a few 

years later when Wentzell et al. [7] formulated Maximum Likelihood Principal 

Component Analysis (MLPCA) which considered cases where the iid condition was 

completely violated due to the presence of heteroscedasticity and correlated noise. A 

principal innovation of this method was the use of the error covariance matrix (ECM), 

which is a more general way of describing the magnitude of the errors and the 

relationships among them. A few other closely related methods [8-10] have also been 

introduced to handle bilinear data in a maximum likelihood fashion, sometimes adding 

other constraints or information. 
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The application of this philosophy to multi-way data lagged behind the bilinear 

case until Bro et al. [11] introduced a generic method called Maximum Likelihood via 

Iterative Least Squares Estimation (MILES), which worked as a iterative preprocessing 

tool to condition the data from a maximum likelihood perspective in order that least 

squares methods such as PCA and PARAFAC could optimally handle the estimation 

process. The method is based on a majorization strategy in which the original objective 

function is substituted by a simpler and equivalent objective function in each step of the 

estimation process. Unfortunately, the simplicity of this numerical implementation is 

hindered by the amount of computation time needed.   Since the method runs the full 

least squares optimization in each step, the time needed to get an estimate is sometimes 

excessive. Another important drawback of this approach is that the physical problem 

becomes obscured by the efficient but unfamiliar numerical methodology. 

Recently, a method called Maximum Likelihood Parallel Factor Analysis 

(MLPARAFAC) was introduced to the chemometrics literature [16]. The main difference 

with respect to MILES is that MLPARAFAC is a method based solely on an alternating 

least squares (ALS) optimization. The implementation is straightforward and runs faster 

since the noise information is introduced in each iteration rather than in each optimization 

step as it is in MILES. The method was designed to estimate the parameters of the well-

known PARAFAC model from a maximum likelihood perspective in cases where 

different violations of the assumed iid-normal error condition exist. Four algorithms for 

carrying out MLPARAFAC based on an ALS framework were described in this work.  

The simplest of these was designed to work with cases where the measurement errors are 

non-uniform (heteroscedastic) but uncorrelated.  The most general form of the algorithm 

can treat data with any type of error covariance structure.  Two simplifications of the 

general algorithm were also presented which more efficiently handle more restricted error 

covariance structures.  All of the algorithms were shown to produce maximum likelihood 

estimates through a comparison of the distribution of the objective function with the χ2 

distribution.  It was also shown that the quality of the estimated loading vectors for 

MLPARAFAC is significantly better than for the PARAFAC models in cases where the 

error covariance matrix is known. 
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Although the original paper on MLPARAFAC outlined the theory for dealing 

with correlated error, demonstrated its validity through simulation, and introduced some 

exact simplifications based on mathematical properties of the matrices used in the 

estimation process, it was found that many important situations remained uncovered and 

they are the subject of this paper. This work will be divided in two parts: the first part 

will introduce, test and apply the methodology to simulated data, while a companion 

paper will treat the application of MLPARAFAC to three experimental data sets. This 

paper will initially analyze the two simplifications introduced in the earlier work, since 

more interesting and useful simplifications can be found when those algorithmic 

alternatives are approached from a geometrical and computational point of view. This 

will lead us to the extension of one of these alternatives to more general cases where the 

noise structure along one order is less restricted and to cases were the error structure is 

correlated along two orders.  Cases where the noise structure is correlated along more 

than two orders will need to be treated using the general algorithm, but since this is 

usually impractical from a computational point of view when the raw data are used, a 

compression approach will be introduced. After the algorithmic issues have been 

covered, a thorough analysis will be provided in order to go from these mathematically 

clear and well-defined cases to the more “grey” real cases. Also, some simulations will 

show the effects in the estimate when some cases with a considerable departure from the 

assumed structure are used with the corresponding simplification. Figure 3.1 shows the 

scenarios treated in this work. 

3.2.1 Notation 

In this paper, scalars are indicated by italics and vectors by bold lower-case 

characters.  Bold upper-case letters are used for two-way matrices and underlined bold 

upper-case letters for three-way data.  The letters A, B ,C and I, J, K are reserved for 

indicating the first, second and third mode of three-way data and the dimensions of those 

modes respectively. Also, the letter P is reserved to represent the number of factors used 
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Figure 3.1.  Illustration of the possible scenarios in which correlated errors might 
pervade a three-way array and the corresponding representations of the structure of the 
error covariance matrix to describe all the sources of variation. Arrows indicate which 
elements of the unfolded or vectorized three-way array have correlated errors. Different 
arrows represent different error structures.  

 in the model. The terms mode, way and order are used interchangeably, as well as the 

terms factors and components.  When three-way arrays are unfolded to matrices, the 

following notation will be used.  If X (I x J x K) is unfolded while retaining the first order 

to produce a (I x JK) matrix, this will be designated Xa.  In the same way, matrices Xb (J 

x IK) and Xc (K x IJ) will be used to represent unfolded matrices which retain the second 

and the third orders, respectively.  In general, other matrices with subscripts a, b and c 

represent unfolding while retaining the first, second and third modes. The use of 

subscripts i, j, k and p accompanying matrices and vectors refers to the use of the i, j, k 

and p – th slice or row of the corresponding data array or matrix. An important exception 
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to this notational rule is when subscripts i, j, k and p accompany matrix I in which case it 

refers to the identity matrix of order represented by the subscript.  The use of superscript 

“-T” accompanying square matrices indicates that the inverse of the transpose of the 

corresponding matrix is calculated. The symbol “ ⊗ ” will be used primarily to indicate 

the Kronecker product, but will also be used to represent the tensor product in certain 

cases which will be clearly distinguished. The symbol “ ⊗ ” will be used to indicate the 

Khatri-Rao product, which is a compact version of a column-wise Kronecker product. 

3.3 Theory 

In the original paper introducing MLPARAFAC [16], it was noted that for many 

chemical applications, error covariance affects only one order, or at least the covariance 

in other orders can be neglected.  This can, in certain cases, result in substantial 

simplification of the generalized algorithm.  For the purpose of illustration, only the case 

where correlations exist along the rows will be considered, since correlations along other 

orders can be rendered equivalent through permutation of the original array or 

appropriate adjustment of equations introduced.  For this case, three common situations 

can be distinguished: (1) the error covariance is different among all of the rows forming 

the array; (2) the error covariance is different among rows forming different slices but 

identical among the rows of the same slice; and (3) the error covariance is identical 

among the rows of all the slices.  Simplifications for cases (2) and (3) were formulated 

based on mathematical identities and the more general scenario represented by case (1) 

was considered unsolvable by any simplification. Deeper scrutiny of these simplifications 

led the authors to realize the existence of more powerful and general simplifications for 

these cases. The next subsections will revisit these two simplifications from a geometrical 

and algorithmic point of view. One of these simplifications will be further extended to the 

case where error covariance is different among all of the rows forming the array and to 

the case where correlation is present along two modes.  
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3.3.1 Correlation along One Order 

3.3.1.1 Case 1A 
Imagine a trilinear data set such that the error correlation can be expected to affect 

only one order, which we will assume to be the second order.  In addition, in certain cases 

where this assumption applies, it may be possible to make the additional assumption that 

the error covariance matrix is the same for each row in all the slices of data. Given that 

the observed data, X , can be considered the sum of the true data, oX , and a array of 

measurement errors, E ,  this can be mathematically represented using any of the 

following three equations: 

 

exx

EXX
EXX

+=

+=

+=

o
:

o

o

kii:k

kk  (3.1) 

The trilinear data can be equivalently represented as a three-way array of elements, a 

slice by slice representation or as a vector representation, respectively.  As mentioned 

above, all these representations are equivalent but only the last representation allows a 

clear representation of the characteristics of the noise, which follows a normal 

distribution around zero and with variance /covariance matrix Σ, e ~ N(0, Σ).  Since the 

errors are correlated, Σ cannot be expressed as a multiple of the identity matrix. This case 

is conceptually similar to the case treated by Brown et al. [15] in which bilinear data 

corrupted by drift noise were accommodated by applying an optimally designed filter. 

Therefore, we can consider our problem as a similar preprocessing problem in which 

each frontal slice k of data is multiplied by a filter as shown in Equation 3.2: 

 FXX kk =F  (3.2) 

F is an optimal filter matrix that will be applied to the data, and thus to the individual 

error vectors in each slice as shown in Equation 3.3: 

 EFFXFEXXF +=+= oo )( kkk  (3.3) 

The error covariance matrix after filtering can be expressed as: 

 )( TTF eFeFΣ E=  (3.4) 
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Since the filter matrices are constant, they can be extracted from the expectation operator 

( )•E  to obtain: 

 ΣFFFeeFΣ TTTF )( == E  (3.5) 

F is an optimally constructed filter in the sense that it will rotate and scale the data 

yielding a new noise data, EF, which follows a normal distribution around zero with 

variance/covariance matrix equal to a multiple of the identity matrix, IΣ 2F σ= . 

Therefore, dropping the proportionality constant (which can be viewed simply as a 

scaling factor) and substituting this equality into Equation 3.5 yields: 

 ΣFFI T=  (3.6) 

The filter matrix F which solves Equation 3.6 can be readily obtained considering the 

estimation process as an extended eigenproblem in which matrix Σ is initially rotated to 

yield a diagonal matrix that then goes through a scaling process producing the identity 

matrix. This linear transformation can only be executed when F is defined as the product 

of the eigenvectors of F, U, multiplied by the inverse of the diagonal matrix S formed by 

the square root of  corresponding eigenvalues of F as shown in Equation 3.7.  

  
TT

1         
USSUUUSΣ

S*UF
2 ==

= −

 (3.7) 

It is worth noting that, even though the term filter has been used thus far, this optimal 

filter will not have the typical form of a least-squares polynomial filter such as the usual 

symmetric/antisymmetric band diagonal Savitzky-Golay filters [17]. In fact, it will not 

technically be a filter since no noise reduction is carried out. It can be better understood 

as a “modulator” which transforms the original signal corrupted by non-iid noise to a 

signal corrupted by iid-noise. This transformation not only affects the noise but also 

affects the imbedded true signal that is the aim of the estimation process. Fortunately, this 

transformation will not affect the trilinear structure, since all the slices are going to be 

rotated and scaled equivalently, as is evident from Equation 3.3. Additionally, 

uniqueness, which is one of the most appealing characteristics of trilinear data, will be 

preserved since the inverse transformation exists and can be easily applied to the 
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estimated loadings describing the order along which the noise is correlated. This is 

mathematically represented by Equation 3.8: 

 ( )BFB

BCIAXF

ˆˆ     

)ˆˆ( ˆˆ
F1

TFT

−=

⊗= aa  (3.8) 

The advantages of this approach with respect to the previous approach formulated in 

Table IV of reference 16 to treat this type of data optimally is two-fold. First, it will not 

be necessary to calculate the inverse of Ψa (Ψa = IK ⊗ Σ) in order to estimate the 

parameters of the model since the error structure information is reflected in the data and 

not in the projection of the data. This is rather convenient, since Σ can be rank deficient 

for a variety of reasons. Second, the estimation procedure will be carried out using the 

standard PARAFAC algorithm, which is more stable and less computationally involved 

than the algorithm in Table IV of reference 16. 

3.3.1.2 Case 1B 

In addition to the simplest case treated above, Figure 3.1 represents a few other 

cases where the complexity of the error structure increases gradually up to the most 

complex case where the errors affecting all the elements of the multi-way data are 

related. Case B represented in Figure 3.1 takes the simplest error structure one step 

further to the case where noise is still correlated along one dimension but the structure 

and/or magnitude of it changes from slice to slice. The first reasonable approach to treat 

such a case might be to use the previously described strategy, utilizing in each case a 

filter matrix derived from the error covariance matrix obtained for each individual slice 

as shown in Equation 3.9: 

 kkk FXX =F  (3.9) 

Equation 3.10 shows that the reasoning holds from a noise treatment perspective, since 

the local filtering will produce a diagonal matrix because the filter matrices are going to 

rotate and scale the original error covariance matrix for each slice in order to fulfill the iid 

condition.  

 kkkkkkkk E FΣFFeeFΣ TTTF )( ==  (3.10) 
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However, when this strategy is thoroughly explored via equation 3.11, it is clear that the 

“cleaning effect” produced over the noise has a negative collateral effect over the part of 

the data related to the chemical information since the trilinearity is destroyed by applying 

different rotation to the data in each slice.  

 kkkkkkkk FEFXFEXXF +=+= oo )(  (3.11) 

A solution based on a mathematical simplification of the full error covariance matrix was 

introduced in reference 16.  The approach used to obtain this simplification was based on 

the idea of finding a simpler representation of the error covariance matrix to express the 

normal equations to estimate the loading for each mode. A relatively concise and 

computationally efficient formulation was found for the estimation of the loading for the 

modes A and C, but the equation for the estimation of B was still a function of the full 

error covariance matrix for this particular mode, as can be seen in equation 3.12: 

 )()()ˆ( T1T11TT
bbbbbb vecvec XΩVVΩVB −−−=  (3.12) 

Equivalently to the notation in reference 16, Vb is a JP x IJK matrix with  
T
bZ = (C ⊗ A)T repeating along the diagonal.  The matrix bΩ  is the full error covariance 

matrix for )( T
bvec X , providing information about the error covariance among all the 

measurements. The presence of bΩ  in this equation makes this simplification practically 

useless since its dimensions in a practical application will make the storage and 

manipulation for this equation prohibitive.  

The lack of success of this approach can be attributed to the well-established 

strategy in standard PARAFAC in which the different estimation sub-steps are 

formulated using the same objective function expressed differently for each mode. This 

strategy is used because, due to the symmetry of the PARAFAC model, the 

implementation is not only efficient but extremely simple, making the normal equations 

very similar from one mode to the other. However, when the characteristics of the noise 

are taken into account, this symmetry is lost, making it necessary to express the problem 

as the general problem, since the existence of a simplified version of the error covariance 

matrix in the given space is not possible or extremely difficult to find. Therefore, in this 

paper, a new approach is introduced in which the data are initially arranged in order to 
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have the major source of correlated noise along the mode B, followed by the second 

major source of correlation along mode C leaving mode A as the mode not affected by 

correlated noise. After the data are arranged, the estimation equations are obtained by 

expressing all the sub-steps as minimization problems of the objective function written to 

preserve mode A alone. It is worth noting in advance that this alternative is laborious, 

since the equations will no longer be simple bilinear representations in which the mode to 

be determined is represented independently and the other two modes are represented as a 

composite mode, but as a more complex set of equations in which the modes are going to 

be interrelated most of the time. 

We will start by showing the estimation of the normal equation for case B 

represented in Figure 3.1. For this particular case, we will be able to see how the equation 

obtained for mode A is exactly the same as the equation shown in reference 16 as proof 

that this strategy is equivalent to the standard strategy used in the past. Also, our goal will 

be accomplished by formulating a tractable equation for mode B, making equation 3.12 

unnecessary.  Even though the estimation of the loading for mode C was not particularly 

complex, the new strategy will provide a set of equations that is less demanding from a 

storage point of view. We start by defining the objective function as equation 3.13: 

 ])()[( TT

1

1T BADXΨBADX kk

K

k
kkktracef −−= ∑

=

−  (3.13) 

In this equation, Xk represents the k-th slice of the three-way array X, A and B are 

matrices of dimensions I x P and J x P representing the loading vectors for mode A and B 

respectively, Dk is a P x P diagonal matrix with the k-th row of the K x P matrix C along 

the diagonal and 1−
kΨ  is the inverse of the error covariance matrix that describes the noise 

affecting all the rows of the k-th slice of the three-way array X. The implementation of an 

alternating least squares algorithm for the estimation of mode A loadings assumes B and 

C are known and then equation 3.13 is minimized with respect to each element forming 

A. Before proceeding with the derivation, it will be convenient to express equation 3.13 

as the quadratic form shown in equation 3.14 where Mk = Xk - ADkBT : 

 ) ( T

1

1
k
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−=  (3.14) 
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equation 3.15 shows the derivation: 
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Equation 3.15 represents the first derivative of the objective function with respect to the 

elements of A. The matrix Eip is an elementary I x P matrix with all of its elements equal 

to zero with the exception to the element located in the position i x p, which is equal to 1. 

This equation will be equal to zero for the optimum value of Aip given B and C. In order 

to calculate this value of Aip equation 3.15 is transformed as follows: 
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Equation 3.16 is one of the IP equations necessary to estimate the loadings of A. The rest 

of the equations are obtained as the right and left parts of this equation are multiplied by 

the different vectorized Epi matrices. Since this term is completely independent in both 
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sides of the equation, the process can be carried out in a straightforward manner using a 

matrix E formed as [vec(E11) vec(E21) … vec(EIP)]. A closer examination of this matrix 

reveals that E is the identity matrix of order IP, making the multiplication theoretically 

sound but numerically unnecessary and providing equation 3.17 to estimate the loadings 

of mode A: 
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Taking into consideration the properties of the vec operator and the Kronecker product, 

equation 3.17 can be transformed to: 
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For this scenario, equation 3.18 is a more compact and computationally efficient 

representation of the equivalent equation 30 in reference 16 and reproduced here as 

equation 3.19.  

 1T11 )( −−−= aaaaaa ZΨZZΨXA T  (3.19) 

The summations over k found in equation 3.18 can be eliminated by using the unfolded 

representation of X retaining mode A (Xa) and by expressing Ψa as the block diagonal 

error covariance matrix with the individual error covariance matrices for each slice along 

the diagonal and expressing the projection space by T)( BCIZ ⊗= aa . 

For convenience, the mathematical procedure to derive the estimation equations 

for the rest of the loadings in this and the rest of the different scenarios are provided in 

Appendix I. The results of these derivations are given below. 
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 ( ) ( )[ ] EBΨXAAABΨBc
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1T1T1' −−− ⊗= kkkk vec  (3.21) 

It is interesting to note how both equations are composed of the two key parts of a 

standard weighted least squares estimator: a projection matrix spanning the space where 

the best approximation of the noiseless signal is located and a vector representing a 
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weighted projection of the data onto the space where the signal is located. The awkward 

form of these two components is a consequence of the manner in which these equations 

were obtained, as anticipated at the beginning of this section. Two important details have 

to be mentioned for the expression to obtain loadings for mode C: vector T
kc  represents 

the k-th row of the K x P matrix C and the matrix E in this case is a matrix formed as 

[vec(E11) vec(E22) … vec(EPP)] and is used to choose the necessary elements for the 

estimation of kc , since the optimization was originally designed to have this vector along 

the main diagonal of Dk . 

3.3.2 Correlation along Two Orders 

3.3.2.1 Case 1C  
Figure 3.1C represents cases where the error structure becomes more complex by 

affecting elements of the data set located in two different modes. Such types of scenarios 

are not unusual, for example in kinetic studies where the course of the reaction is 

followed spectroscopically giving rise to errors that are correlated in both the time and 

wavelength modes, while the other mode may be composed of samples with different 

compositions of the reactants that are run independently of one another. For this case, we 

will consider that the three-way data X, will be unfolded preserving the samples of 

different compositions in mode A, while modes B and C will be combined in one 

composite mode formed by the spectral information and the time information for each 

sample. The objective function in this case can be expressed as shown in equation 3.22. 
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As mentioned in the notation section, the variables with the “a” subscript such as Xa and 

Ia represent the three-way arrays X and I unfolded preserving mode A independently. 

Array I is P x P x P with all the elements equal zero but those on the superdiagonal, 

which are equal to unity. A small modification was made in the second expression in 

equation 3.22 to make it more compact by expressing A~  as the product of A by Ia. 

Equation 3.22 will be used only to obtain the loadings for modes B and C, since the 

loadings for mode A can be obtained by equation 3.19. It is important to anticipate that 
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the expressions obtained are not going to have the visual clarity to be interpreted as 

equation 3.19 due to the manner in which they were obtained. The expression for the 

estimation of the loadings B for this noise characteristic is shown in equation 3.23: 
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Equations 3.24 and 3.25 show the expressions to calculate matrices R and L, 

respectively.  

 TT )(~~)( pP ICAAICL ⊗⊗=  (3.24) 

 aP XAICR T~)( ⊗=  (3.25) 

It should be noted that in order to obtain equation 3.23, a number of manipulations of the 

different matrices involved in the estimation process are performed as shown in the 

Appendix. The most remarkable manipulation the reader must be aware of in order to 

understand equation 3.23 is the partitioning of the JK x JK inverse error covariance 

matrix Ψ−1, the KP x KP matrix L and the KP x KJ matrix R into three K x K super-

matrices composed of the corresponding J x J, P x P and P x J matrices. A graphical 

representation is presented in equation A.19 in the Appendix. It is clear from the equation 

that subscripts m and n indicate the use of different partitioned pieces of Ψ−1, L and R. 

Although equation 3.23 does not resemble the traditional representation of a weighted 

least squares estimator, a closer look will actually indicate, as before, that it is formed by 

the key pieces of this type of estimator: a projection matrix spanning the space where the 

vector to be estimated resides (the term within the inverse operator) and a weighted 

image of the signal in the same space (the term following the inverse operator). The 

equation to estimate the loadings for mode C are equivalently obtained and will have a 

similar structure as can be seen in equation 3.26: 
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Equations 3.27 to 30 show the necessary expressions to calculate the matrices involved in 

equation 3.26. As before, matrices KJK and KKJ are JK x KK commutation matrices. 

 KJaJKK KΨKIBT 1T )( −⊗=  (3.27) 
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 AAIBS ~~)( T
P⊗=  (3.28) 

 KJa KΨL 1−=  (3.29) 

 aP XAIBR T~)( ⊗=  (3.30) 

Again, the subscripts m and n indicate the use of different partitioned pieces of the full 

matrices previously shown. In all cases, we have tried to produce the most compact 

representation for the expression used to calculate the estimates, but it is possible that 

further simplifications have been unnoticed by the authors. Also, some of these 

expressions will be computationally implemented in a more efficient way than the one 

used here, which was preferred for its notational simplicity. 

3.3.2.2 Case 1D 

Figure 3.1D represents chemical scenarios that are very similar to the previous 

case. The complexity of the system is taken a step further by considering that the noise 

propagates in a correlated fashion along two modes but the structure of this correlated 

noise changes from sample to sample independently. This type of situation is not 

uncommon when spectroscopic techniques susceptible to path length variations such as 

NIR spectroscopy are used. Mathematically, the trilinear errors-in-variable model best 

suited to describe these data can be obtained by minimizing equation 3.31: 
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This objective function yields expressions for the estimates that are very similar to the 

previous case, but in this particular case the estimates are obtained in a row by row 

fashion for mode A, and as a summation over the I objects in mode A for modes B and C, 

as can be seen in equations 3.32 to 34: 
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 (3.34) 

The estimations of the loadings for mode B and C will use the same equations shown 

before, but in all cases the matrix A~  will be replaced by the corresponding row vector 

a~i and the I x JK matrix Xa will be replaced by the row vector a
i x . It is important to 

emphasize that a set of I error covariance matrices of dimensions JK x JK will be used by 

this method making this alternative very expensive from a storage and computational 

point of view.  

Thus far in section 3.2, a number of different simplified scenarios have been 

examined, ranging from the simplest, where the error covariance matrix can be fully 

represented by a J x J matrix, to the most complex case, where it is necessary to consider 

I different JK x JK error covariance matrices. From the estimation equations, it is evident 

that the computational effort and the storage space increase as the complexity of the error 

structure characterizing the noise affecting the data grows. Therefore, the main advantage 

of using a simpler alternative will be the reduction of time needed to estimate the 

loadings for each mode.  On the other hand, some scenarios will show the merit of using 

the more complex alternatives in order to provide the maximum likelihood estimation for 

each mode. The situation in which practioners will have to compromise to estimate the 

best possible errors-in-variables model using the minimum amount of time will depend 

on the characteristics of the data at hand and will be difficult to assess on an a priori 

basis. In the experimental section of this paper, a number of simulated data sets are used 

to validate the statistical properties of these algorithms and also to show the advantages 

of using one algorithm over the other in terms of time, computational power and quality 

of the results. 

3.3.3 Correlation along Three Orders 

In the previous sections, the expressions for a number of simplified algorithms 

were derived for a variety of scenarios characterized by error covariance matrices of 

different complexity. However, there are going to be cases where none of these 

simplifications will provide the best solution, making it necessary to use the full 

algorithm presented in reference 16. As noted in that work, the full algorithm is not a 
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viable alternative except when the dimensions of each order are unrealistically small. 

This is also the case with some of the simplifications discussed here (e.g. case 1D) for 

which the amount of storage space is prohibitive from a practical point of view. In these 

cases, some compression methods, taking advantage of different intrinsic levels of 

structure present within the data, will be introduced to tackle the situation. This section 

provides the theoretical basis of this approach and describes the implementation in the 

context of the model using the full error covariance matrix, although it is important to 

note that this can also be applied to some of the simplified models previously discussed.  

3.3.3.1 Compression 

Compression is a natural concept for two-way and multi-way data since both 

types of data can model deterministic relationships among variables, especially in cases 

where a high degree of collinearity and multilinearity exist.  These types of data can be 

represented by a smaller number of variables.  Using this smaller set of variables, the data 

can be described within experimental error as a P-dimensional hyperplane.  In this case, 

P is called the chemical rank or pseudorank of the data set in order to distinguish it from 

the mathematical rank. In general, the chemical rank is typically related to the number of 

underlying chemical factors or chemical components present in the mixture. For multi-

way data, the theoretical basis of the idea was initially introduced by Carroll et al.  [19] in 

1980, stating the optimality theorem of the Canonical Decomposition with Linear 

Constraints (CANDELINC)  model, which ensures that the compressed array preserves 

the original variation maximally when a set of orthogonal bases, usually Tucker3 factors, 

are used to project the original array onto the space spanned by them.  In 1981, Appellof 

and Davidson [20] provided the first application of trilinear decomposition to chemistry 

using both simulated and real LC/emission/excitation measurements by compressing the 

original data. They used the scores provided by the principal component decomposition 

of the unfolded data in each mode as compression bases. Later, Alsberg and Kvalheim 

published a number of papers [21-22] proposing a method called Postponed Basis Matrix 

Multiplication (PBM) using B-spline basis sets for the compression of high dimensional 

arrays. A comparative study done by Kiers and Harshman [23] proved that PBM is 

equivalent to the more general approach based on the CANDELINC model. They also 
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stressed that there is no need for special algorithms in the CANDELINC approach, 

showing it was only necessary to compress the array using a select set of optimal bases, 

to use any existing multi-way algorithm on the compressed array, and to decompress the 

result by post-multiplying the solution with the bases. The latest additions to the arsenal 

of compression basis sets have been a variety of wavelet families of basis sets not only 

used as compression devices but also as smoothing and denoising alternatives [24]. It is 

worth noting that these positive side effects commonly attributed to the compression 

using wavelets are not completely an intrinsic characteristic of the basis set, but a 

consequence of the projection step involved in the compression procedure. 

From a structural point of view, the possibility of using different basis sets such as 

Tucker3 factors, PCA factors, B-splines and wavelets is a consequence of the different 

levels of underlying structure present in the chemical part of any multi-way data. The 

type of data encountered in chemistry is normally collinear (well suited for B-splines and 

wavelets), bilinear (ideally treated by PCA) and, in many cases, trilinear (where Tucker3 

basis sets are the perfect option). This idea will be clearly demonstrated from a 

mathematical point of view throughout the theoretical development of an example shown 

next.  

An I x J x K array X is given, such that matrices U (I x D), V (J x E) and Z (K x 

F), representing orthogonal basis for the systematic variation in the first, second and third 

mode respectively, are considered known. Dimensions D, E and F are the pseudo-rank 

(i.e.  the rank of the subspace spanning the systematic variation when noise is not present 

[25]) for each mode. It is important to clarify that matrices U, V and Z as well as ranks D, 

E and F must be estimated beforehand, but in this case, for the sake of illustration, will be 

considered known. The standard estimation of the PARAFAC model can be expressed 

via equation 3.36: 
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T)( BCAIX
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⊗− aamin  (3.36) 

The CANDELINC optimality theorem expresses the existence of three matrices ∆, Θ and 

Φ of orders (D x P), (E x P) and (F x P) that are related to A, B and C through a bilinear 

relationship with U, V and Z as shown in equation 3.37: 
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=
=
=

 (3.37) 

From a geometric point of view, this is equivalent to saying that each mode is linearly 

constrained to sub-spaces U, V, and Z.  Therefore, if the minimization problem 

represented by equation 3.36 is to be solved subject to the constraints expressed by 

equation 3.37, it is only necessary to estimate the much smaller matrices  ∆, Θ and 

Φ using the smaller array Y of order D x E x F obtained after the projection. 

Mathematically, this is carried out by projecting X onto the space spanned by U, V and Z 

as shown in equation 3.38: 

 )(ˆ TTT VVZZXUUX ⊗= aa  (3.38) 

Using equation 3.38, array Y can be defined as: 

 )(T VZXUY ⊗= aa  (3.39) 

Equation 3.39 coincides with the expression used to calculate the core matrix for the 

Tucker3 model [26] when matrices U, V and Z represent the respective modes for this 

model. This is a clear mathematical proof to demonstrate the earlier statement indicating 

Tucker3 loadings as the perfect basis set for compression of multi-way data. As 

mentioned before, array Y can be used to estimate  ∆, Θ and Φ and, using the expressions 

depicted in equation 3.37, the loadings in the original space can be calculated as the 

standard estimation problem depicted in equation 3.36, which is reduced to the one 

represented in equation 3.40: 
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⊗− aamin  (3.40) 

Thus far, it has been demonstrated why Tucker3 provides the best basis set for 

compression.  In addition to the method of choice for the compression basis set, another 

key piece of information is the dimensions for corresponding basis set. In general, 

compression will provide an approximate solution, although it has been reported in the 

literature [27] that, in situations where only one mode is high dimensional, an exact 

compression can be obtained by compressing this mode with a basis set of dimension 

equal to the product of dimensions of the other smaller two orders. In reality, exact 



 

 98

compression can be considered the exception instead of the rule. No formal theory exists 

to choose the number of components for each Tucker3 loading. A rule of thumb is to use 

at least five more components than the number of components expected for the system, 

since the main objective is to speed up the algorithm and therefore only information 

related to the chemical structure is needed. 

Up to this point, the theory and most important equations for the compression and 

estimation of multi-way data to be treated with the standard PARAFAC and other multi-

way models such as PARAFAC2 and PARATUCK2 have been introduced. However, 

when this philosophy is to be extended for cases where a maximum likelihood method 

such as MLPAPAFAC is to be used, a few other equations must be introduced. These 

new equations will lead us to issues related to the selection, calculation and number of 

basis sets needed for this approach.  

Even though compression can be applied to any of the simplified scenarios, we 

will treat here the case where the full error covariance matrix must be used. The 

expression used to compress the full error covariance matrix is a direct extension of the 

projection expression shown in equation 3.39 in a vectorized form: 

 ))()( T VZUΩVZUΞ ⊗⊗⊗⊗= aa  (3.39) 

Equation 3.39 will convert the original IJK x IJK full error covariance matrix describing 

the noise structure present in the original array X in a compressed DEF x DEF full error 

covariance matrix describing the noise in the compressed array Y. Although equation 

3.39 represents the theoretical expression to compress the error covariance matrix, it does 

not solve the size problem associated with it. In order to solve this problem, the 

compression step must be carried out on the original data and the compressed arrays used 

to calculate the compressed error covariance matrix. These alternatives are equivalent, as 

can be seen in equation 3.40, where equation 3.39 is used as starting point in a backward 

transformation. 
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It is important to differentiate in equation 3.40, the expression ( )•E , which represents the 

expectation value of the expression in parenthesis from expression, Ea which represents 

the noise array E unfolded as an I x JK matrix. Expression 3.40 represents the symmetric 

outer product of the multiplication of the unfolded error array and the compression basis 

set in vector form. This can be transformed to the following matrix expression to be 

further explored: 
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Here, Xa and o
aX  are the unfolded forms of the measured data array and the error-free 

data array, respectively.  Equation 3.41 shows that a successful estimation of the noise in 

the compressed space can be obtained if the compression basis sets are chosen to 

optimally compress the chemical part represented by o
aX . Two detrimental effects can be 

foreseen if the chosen basis set does not span the space of o
aX  properly. The first is 

related to the loss of meaningful chemical information during the projection step and it is 

common to PARAFAC and MLPARAFAC. The second is a direct consequence of the 

first one and related to the inclusion of chemical variability in the error covariance matrix 

as if it were noise. Clearly, the second detrimental effect will only affect MLPARAFAC 

since PARAFAC does not use any noise information. In order to prevent these effects 

when compression is used with MLPARAFAC, it is necessary to retain as much variation 

as possible. This alternative is not advisable for PARAFAC, since including a large 

amount of variation can increase the uncertainty of the estimates, but in the case of 

MLPARAFAC there is no danger of this, since this meaningless variation (noise) will be 

down-weighted via the error covariance matrix during the estimation process. 
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It is well known that, in practice, o
aX  is not generally available, hence in the 

absence of a priori knowledge, the error-free data array is replaced by its best unbiased 

estimate (considering the normal assumption), which is the average array aX  calculated 

by obtaining replicates of the measurements.  For practical applications, equation 3.41 

becomes equation 3.42: 
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 (3.42) 

Equation 3.42 also unveils another important practical issue regarding the selection of the 

compression basis sets, indicating that the optimal basis set will be obtained as a Tucker3 

decomposition of the mean array X. The compressed error covariance matrix aΞ will be 

calculated using a set of R replicates as shown in equation 3.43: 
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Based on the theoretical expressions derived in this section, a sequence of steps to 

prepare the data for the most general MLPARAFAC algorithm is shown in Table 3.1. 

It is important to note that, although this strategy was explained for the 

compression of all three orders, it can also be applied to the compression of one or two 

orders in a very straightforward manner. For example, if only mode A is compressed, 

equation 3.39 will become equation 3.44, since in that case Z and V will be the identity 

matrix of orders J and K respectively and JKIVZ =⊗ )( .  

 aa XUY T=  (3.44) 

This result is equivalent and symmetric for all the orders. Therefore, if an order 

different from A is to be compressed, the data will be unfolded, keeping the desired order 

unmodified, and multiplied by the optimal base describing this order.  Equivalently, if 

more than one order needs to be compressed, this methodology can be individually 

repeated for both orders, including a folding and unfolding intermediate step between the 

multiplication by each basis set. 
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In the experimental part of this paper, a number of simulated data sets will be 

used to test the performance of the compression approach under different conditions, 

such as the level of noise and the amount of structure in the chemical data. Also, a 

comparative study between Tucker3 and PCA loadings will be carried out to confirm the 

theoretical results. 

Table 3.1.  Algorithm for the MLPARAFAC algorithm using compression. 

 

1. Given R replicates of an I x J x K cube of data X. The algorithm starts by 
calculating a Tucker3 model for the average cube of data, X .  

 ),(3],,,[ Ptucker XYZVU =  (T.1) 
2. For each replicate, unfold Xr, retain the first order and regress r

aX onto the 
subspace spanned by U, V and Y in order to calculate r

aY for each replicate as 
shown in equation T.2: 
 

 )(T VZXUY ⊗= r
a

r
a  (T.2) 

Using all the r
aY , estimate the error covariance matrix in the compressed 

subspace, represented by aΞ  in equation T.3. 
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3. Submit aΞ  and each r
aY  to the MLPARAFAC algorithm previously introduced 

until convergence is achieved. 

 ),,(],,[ PMLPARAFAC a
rrrr ΞYΦΘ∆ =  (T.4) 

4. Using the following relationships, the uncompressed MLPARAFAC loadings can 
be obtained.  

 
rr

rr

rr

ZΦC
VΘ B
U∆A

=

=

=

 (T.5) 

 



 

 102

3.4 Experimental 

3.4.1 Data Sets 

Since the objective of this work is to introduce the theoretical basis and test the 

statistical properties and performance of a number of simplified alternatives of the 

MLPARAFAC algorithm, all of the data sets employed in this work were simulated so 

that the rank and error structure could be known with confidence.  Experimental results 

will be presented in a companion paper to examine the performance of the algorithm for 

real experimental systems.  Although a wide range of simulations were carried out, the 

results from only six data sets are presented here to support the main conclusions.  In all 

cases, the data sets were relatively small, since the studies generally involved statistical 

validation requiring numerous runs. 

Data Sets 1 to 5 share the same noise-free structure. This structure was a rank-

three data set of dimensions 12x15x6 used to test the statistical characteristics and the 

performance of the different algorithms introduced.  The loadings for mode A were 

represented by a 12x3 matrix drawn from a uniform distribution of random numbers from 

zero to three (U(0,3)).  Similarly, B was a 15x3 matrix from U(0,2) and C was a 6x3 

matrix from U(0,5).  The error-free data were generated using the well known 

PARAFAC model, yielding the 12x90 matrix of error-free data, unfolded to maintain the 

A mode. Each data set is used to generate 100 replicates obtained by adding this noise-

free structure to different realizations of the following error structures. 

The matrix of measurement errors for Data Set 1 was a 12x90 matrix with a very 

simple structure. The simplest noise structure studied in this paper (Case 1A) was 

imposed on this data set. Initially, six different 12x15 matrices of normally distributed 

random numbers drawn from N(0,0.1) were generated.  These matrices were individually 

treated with a 7 point moving average filter along each row in order to produce error 

covariance.  At the boundaries of the error matrix, the filter was wrapped around the 

opposite side in order to eliminate edge effects.  Since these error matrices were 

individually treated with the same filter, this approach produced correlation among the 

measurements in one mode, and it is identical for all the slices (Case 1A).  Although this 



 

 103

approach is not particularly realistic, it represents a general case for which the covariance 

structure could be easily predicted. Finally, the error-free data were added to the noise 

matrix in order to generate the data set. 

The matrix of measurement errors for Data Set 2 was a created in a very similar 

fashion to the matrix of measurement errors for Data Set 1. The only difference is that 

each of the six different 12x15 matrices of normally distributed random numbers drawn 

from N(0,0.1) were individually multiplied by a different filter matrix. The filter matrices 

were constructed from moving average filters (wrapped around the opposite side in order 

to eliminate edge effects) of dimensions   3, 5, 7, 7, 9, 5.  Since these error matrices were 

individually treated with the same filter, this approach produced correlation among the 

measurements in one mode, and different from slice to slice (Case 1B).  

The noise matrix of Data Set 3 was created to introduce correlated noise in two 

orders.  Initially, a 12x90 matrix of normally distributed random numbers drawn from 

N(0,0.1) was generated.  This matrix was treated with a 67 point moving average filter 

along each row in order to produce error covariance.  Since the error matrix was unfolded 

to maintain mode A, this approach produced the same row correlation among the 

measurements in the other two other modes (Case 1C). 

The noise matrix of Data Set 4 was constructed in a similar way to the the noise 

matrix of Data Set 3. However, different size moving average filters were used along 

each row in order to produce error covariance among the measurements in the two other 

modes but with a different structure for each row. Twelve different moving average filter 

matrices with sizes in the range between 53 and 77 points were used (Case 1D).  

The matrix of measurement errors for Data Set 5 was created to have the most 

complex noise structure studied in this paper (Case 1E). Initially, a 12x90 matrix of 

normally distributed random numbers drawn from N(0,0.1) was generated.  This matrix 

was vectorized by stacking the transposed rows on top of each other producing a 1080x1 

vector that was multiplied by a 1080x1080 filter matrix.   This filter matrix was formed 

by accommodating eigth 135x135 filter matrices of 127 points moving average filter 

along the diagonal to produce error covariance.  As before, the boundaries of the filter 
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matrices were wrapped around the opposite side in order to eliminate edge effects.  

Considering that dimension of the filter matrices was 135 x 135 this approach produced 

correlation among the measurements in three modes. Again, the error-free data were 

added to the noise matrix in order to generate the data set. 

The matrix of measurement errors for Data Set 6 was also created to represent the 

most complex in case 1E but with a more heterogeneous structure. The noise structure 

was constructed in a similar fashion to Data Set 5, but in this case nine different 120x120 

filter matrices of 101, 133, 109, 131, 119, 121, 127 and 97 point moving average filter 

along the diagonal to produce error covariance.  As before, the boundaries of the filter 

matrices were wrapped around the opposite side in order to eliminate edge effects.  

Considering that dimension of the filter matrices was 135 x 135 and each individual filter 

matrix was created with a different number of points, this approach produced correlation 

with a very heterogeneous structure among the measurements in three modes. 

Data Sets 7 to 10 were rank-three data sets of dimensions 32x128x8 and were 

used to test the compression approach for different conditions of noise and data structure. 

In a generic way, the data sets are generated to contain the same broad spectral 

characteristics commonly observed in fluorescence excitation/emission matrices. The 

pure components for modes A and B were generated by adding Gaussian peaks of 

random means and standard deviations. The position of the center of each peak is a 

random number drawn between one and the largest channel number. The width of each 

peak is also drawn from a uniform distribution with a range between 10 and 40 (U(10, 

40)). The spectra were normalized to unit length in all cases. The information about the 

intensity for each component is carried in mode C, in which the pure component 

concentrations are represented by an 8x3 matrix drawn from a uniform distribution of 

random numbers from zero to thirty (U(0,30)). Two different issues affecting the 

compression were investigated with these data sets: the amount of chemical information 

contained in the data and the level of noise affecting the data. Data Sets 7 and 8 were 

constructed with unimodal components for modes A and B. Data Sets 9 and 10 were 

constructed using components obtained by adding five Gaussian peaks for each 

component. All the data sets were constructed using the same error structure. In all cases, 
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an error structure equivalent to Data Set 1 was used to compare the results obtained after 

compression with results obtained without any compression using an algorithm which is 

optimal but not computationally involved.  For this case a 61 point moving average filter 

was used for each row. The error structure is the same in each case but the signal-to-noise 

ratio (SNR) is varied to test the performance of compression with respect to the noise. 

Data Sets 7 and 9 have a SNR = 1000 and Data Sets 8 and 10 have a SNR = 250. The 

SNR values reported here represent the best case scenario, since they are calculated as the 

ratio between the maximum peak for the most concentrated sample and the value for the 

noise defined as three times the standard deviation. Therefore, there will be parts of these 

data sets with poorer SNR. All the data sets utilize 25 replicates calculated by adding the 

respective noise-free data and a different realization of the noise structure described for 

each data set. 

3.4.2 Computational Aspects 

All calculations performed in this work were carried out on a Sun Ultra 60 

workstation with 2 x 300 MHz processors and 512 MB of RAM and a 3.2 GHz Pentium-

IV PC with 1 GB of RAM. All programs were written in-house using Matlab 6.0 (The 

MathWorks Inc., Natick, MA) with the exception of the PARAFAC and TUCKER3 

functions that were run using the N-Way Toolbox [28].  

3.5 Results and Discussion 
In this section the estimation equations for each method will be validated using 

Data Sets 1 to 5 in order to cover different possible scenarios. In addition to the 

validation discussion, some general conclusions will be drawn about the merits of using 

the different algorithms based on the quality of the results and computational efforts 

invested to get them. Data Sets 7 to 10 will be used to compare the quality of the results 

for the compression approach with standard PARAFAC using different scenarios (noise 

level, amount of structural information and different basis sets) which have a very simple 

error structure in order to use the simplification developed for Case 1A as a benchmark 

value. 
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3.5.1 Statistical Validation 

In order to validate the various proposed algorithms, it was necessary to verify 

that they yield the maximum likelihood solution.  This can be accomplished by exploiting 

the statistical characteristics of S2 values for the correct model.  This methodology has 

been explained elsewhere [8,16] but it will be briefly reproduced here for the sake of 

completeness. Operationally, this is done by analyzing replicate data sets, each with the 

same matrix of error-free data and the same error structure, but with different realizations 

of the measurement error each time.  If the distribution of S2 values for these replicates 

follows a χ2 distribution with the appropriate degrees of freedom [16,29], it can then be 

concluded that the algorithm is finding the maximum likelihood solution.  Probability 

plots are used in this work to make this comparison.  Initially, the replicate data sets 

(normally 100 replicates) are analyzed and the S2 values are stored. Then, the S2 values 

are sorted from the smallest to the largest and assigned a cumulative probability 

according to their position in the list; this is called the observed probability.  For instance, 

the third element in the list would be assigned an observed probability of 2/n, where n is 

the number of replicates.  The expected probability is then calculated using the χ2 

distribution.  The cumulative probability density function for χ2 can be calculated using 

the incomplete gamma function  as shown in equation 3.45: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ=

2
,

2
)|(

2
2 νν SSP inc  (3.45) 

where ν is the number of degrees of freedom [16].  If the two distributions are the same, a 

plot of the observed probabilities vs. the expected probabilities should yield a straight line 

with a slope of unity.  If the model is insufficient to account for the systematic variance, 

either because the form of the model is incorrect or the parameters are suboptimal, then 

the points of the plot will lie above the ideal line. If the model accounts for an excessive 

amount of variance, (i.e. the estimated rank is too high and measurement variance is 

modeled), the points will lie below the ideal line.  

Figure 3.2 shows the probability plots obtained when all of the algorithms 

introduced  in  this  work,  in  addition  the  general  MLPARAFAC  algorithm   (without 
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Figure 3.2.  Probability plots obtained for 100 replicates of different simulated data sets 
using different algorithms such as PARAFAC ( ); simplifications 1A (+), 1B ( ), 1C 
( ), 1D ( ); and full MLPARAFAC ( ). The solid line with unity slope indicates ideal 
behaviour for maximum likelihood estimation. 

compression) and PARAFAC are used to estimate Data Sets 1 to 5. The general 

MLPARAFAC was included as a benchmark since it can accommodate any covariance 

structure. Figure 3.2 shows a perfect trend, starting with all the methods but PARAFAC 

providing optimal models and ending with only the general MLPARAFAC algorithm 

providing an optimal model. As the complexity of the error structure increases, the 

methods designed to handle simpler error structures join the PARAFAC method, 

indicating the suboptimality of their estimates. Even though this trend was theoretically 

expected since each data set was constructed mimicking the error structure and therefore 

the objective function used to derive the estimation equation for each method, the results 

show from a numerical point of view the correctness of the estimation expressions for 

each case and how all of these methods are different simplified instances of a general 
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class of method. It is important to emphasize that this particular methodology is very 

sensitive to suboptimal solutions; therefore, it should not be used to compare the quality 

of different solutions.  

3.5.2 Model Quality and Performance 

The preceding sections dealt with the statistical validation of the maximum 

likelihood estimation process, but nothing has been said about the quality of the estimates 

obtained using these new algorithms.  Although it has been previously demonstrated [16]  

that  MLPARAFAC estimates are closer to the true underlying factors than the 

PARAFAC estimates, two reasonable questions are still not answered: (1)  How do the 

MLPARAFAC estimates from different simplifications behave as the complexity of the 

error structure increases?, and (2) What is the computational price paid for the increment 

on complexity?.  Both questions will be answered using simulated data. The 

computational workload and the quality of the data will be assessed using the average 

time needed for convergence and loading vector angles, respectively. Both magnitudes 

will be calculated using 100 replicates.  In order to put this comparison into context, the 

value for each method relative to the value for the PARAFAC model will be used.  

As mentioned above, the quality of the estimates will be measured as the 

closeness of estimates to the true factors using vector angles as a figure of merit.  This 

figure of merit is the angular difference between the true loading vectors and the 

estimated loading vectors in each mode.  For example, the vector angle between two 

loading vectors in mode A is given by: 

 ⎟
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p aa
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ˆ

ˆ
cos

T
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where ap and pâ  are the true and estimated values for the pth loading vector of A.  

Analogous equations can be used for the other orders.  Smaller angles mean a greater 

similarity, so by comparing the vector angles obtained by the different simplifications of 

MLPARAFAC with those of PARAFAC, the agreement with the true vector can be 

assessed.  An alternative measure is the correlation coefficient of the vectors, which is 

simply the term in parentheses, but since this approaches unity with small differences, it 
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is less sensitive. The quality of the estimates as well as the computation time will be 

compared in a relative fashion with respect to the corresponding values for the 

PARAFAC model. Equations 3.47 and 3.48 represent the expressions to calculate the 

relative average angle (RA) and the relative computation time (RCT): 

 
PAR

XRQ
θ
θ

=  (3.47) 

 
PAR

XRCT
t
t

=  (3.48) 

Two completely different scenarios will be explored in order to have a broad view 

of the problem, since the degree to which these results will be extendable to a given 

application depends on the nature of the application and the characteristics of the noise. 

Data Sets 1 and 5 will be used since they represent very different scenarios in which clear 

comparisons can be made and conclusions drawn. The validation results showed that all 

of the simplifications provided optimal estimates for Data Set 1; therefore, this is a good 

scenario to test the computational advantages of using simpler algorithms over more 

complex algorithms when the data merit the simplification.  Data Set 6 has a more 

complex error structure and these simplifications are also used to treat it.  

Figures 3.3 and 3.4 show the results for the comparison in terms of quality and 

performance, respectively, when different simplifications are used. As expected, all the 

methods but PARAFAC provided the same results for Data Set 1 in terms of quality in 

Figure 3.3, since the error structure used was the simplest case. However, when the time 

employed to reach the convergence is taken into account (Figure 3.4), it is possible to 

appreciate the advantages of using simplified algorithms when the data at hand merit the 

use of a simplification.  

In Figure 3.3, the relative average angle for Data Set 5 exhibits a nice trend, 

showing an improvement of the quality of the results as the complexity of the algorithms 

used increases. PARAFAC and general MLPARAFAC are located at the two extremes, 

corresponding to the methods providing the worst and best estimates. Again, a positive 

correlation between the complexity of the algorithm and the time needed to obtain the 
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best possible solution is observed, indicating in this case that a better solution will require 

the use of more computational effort. These results were expected, since the common 

wisdom tends to assume that the application of more complex algorithms (which in turn 

translates into error covariance matrices that are bigger and richer in information) will 

provide estimates of a better quality. Even though the error structures in real applications 

tend to be simple in general [13], the authors believe that in this particular case, the 

perfect monotonic trend in quality was mainly the result of an oversimplified (i.e. very 

symmetric) error structure. To avoid a misleading conclusion in this regard, this issue 

was further explored using a Data Set 6, which has a similar but less symmetric error 

structure. 
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Figure 3.3.  Comparison of the improvements in the quality of the estimates obtained for 
different MLPARAFAC algorithms for three characteristic data sets. The quality is 
measured using the relative average vector angle with respect to PARAFAC and the 
results are based on 100 replicates. 

The results for Data Set 6 are quite surprising. For Data Set 5, a trend showing a 

monotonic improvement in the quality of the results with the complexity of the algorithm 
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used was observed, but the simulations for Data Set 6 show a very different scenario. 

PARAFAC  and  general  MLPARAFAC  were  the only methods  that  coincide with the 

expected trend results. The remainder of the simplifications did not provide a clear trend 

in quality. For instance, the simplifications assuming that the errors are correlated along 

one order and are the same everywhere (Case 1B) gave estimates that are as good as the 

ones provided by the methodology assuming errors with the same structure affecting two 

orders (Case 1D).  
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Figure 3.4. Comparison of the time utilized by different MLPARAFAC algorithms for 
three characteristic data sets. The performance is measured using relative time with 
respect to PARAFAC and the results are based on 100 replicates. 

Another striking inconsistency evident from Figure 3.3 is that the quality of the 

results for the simplifications representing case 1B and 1D were worse than the quality of 

the results for Cases 1A and 1C, respectively. The mathematical theory behind these 

expressions makes Cases 1A and 1C subsets of the more general implementations 

representing Cases 1B and 1D, respectively, when the models are properly used. 

Therefore, all these inconsistent results clearly illustrate the importance of a thorough 
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characterization of the error structure, since the applications of an incorrect model can 

significantly degrade the quality of the result. It is important to note that the comparison 

of these methodologies from a computational point of view is meaningless for Data Set 6, 

since all of them produced a variety of sub-optimal models. 

In reality, data commonly found in chemistry will have a behavior closer to the 

scenario illustrated by the simulations using Data Set 5. Probably, the error structure will 

not be exactly equivalent to the error covariance matrix used to derive the expression for 

a particular simplification, but it will not depart to the extent that Data Set 6 did to make 

the simplifications useless. However, it is important to fully characterize the error 

structure in order to apply the most suitable algorithm given the data set at hand in order 

to avoid erratic results such as the ones shown for Data Set 6. Unfortunately, due to the 

length and scope of this paper, only exact mathematical simplifications were shown, but 

in a companion paper to this work, a number of important guidelines will be introduced 

and used with different experimental data sets in order to cover more grey scenarios.  

Finally, it is important to emphasize that, although only the results for three data 

sets were shown, many different data sets with the same characteristics of Data Sets 1, 5 

and 6 were used to ensure the generality of the conclusions drawn. 

3.5.3 Compression results 

In the results shown in the previous section, general MLPARAFAC always 

provided the best solution, provoking the question: why not use general MLPARAFAC 

for every case? There are two reasons for this. The first is that general MLPARAFAC 

usually takes more time to produce the estimates, as already demonstrated. The second 

reason is that the previous results used general MLPARAFAC for a very small data set. 

For a more typical size data set, general MLPARAFAC cannot be applied directly due to 

storage and memory limitations. In order to overcome these limitations, a compression 

strategy was formulated. This section will show that, even though compressed 

MLPARAFAC will not give exactly the same results as general MLPARAFAC, the 

solutions will generally be superior to the PARAFAC solution. Figure 3.5 shows the 

comparative results for different cases (Data Sets 7, 8, 9 and 10) and compression basis 
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sets  with  respect to  PARAFAC  and  general  MLPARAFAC.  In general,  these  results 

clearly demonstrate that improved estimates of loadings with respect to PARAFAC can 

be obtained from the general algorithm when information about the measurement error 

structure is compressed and is incorporated into the modeling process in the correct way.  

As already noted, the extent to which these improvements will be significant for a given 

application depends on the nature of the chemical data and the level and structure of the 

noise affecting the measurements.  As can be seen from Figure 3.5, when the amount of 

information related to the chemical data increases, a larger number of factors are needed 

to yield better estimates using the compressed data. For Data Sets 7 and 8, which are 

constructed  by  unimodal  components,  six  factors  are  enough  to produce good results  

5 10 15 20

Data Set 7 (SNR = 1000)

0.1

0.2

0.3

0.4

5 10 15 20
0

0.5

1

1.5

5 10 15 20
0

0.2

0.4

0.6

0.8

5 10 15 20
0

1

2

3

4

5

PARAFAC Tucker3-MLPARAFAC

MLPARAFAC Tucker1-MLPARAFAC

Tucker3-PARAFAC

Data Set 8 (SNR = 250)

Data Set 9 (SNR = 1000) Data Set 10 (SNR = 250)

Number of Components

θ
(°

)

 

Figure 3.5.  Comparison of the quality, in terms of average vector angle, of the estimates 
obtained for four different data sets when PARAFAC and general MLPARAFAC are 
employed on the original data and on compressed data. Tucker1 (PCA) and Tucker3 
loadings were used as compression basis sets. 
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while for Data Sets 9 and 10, ten components are necessary to produce similar results. It 

is important to note, that Tucker3 and Tucker1 (PCA) basis sets produces very similar 

results in all cases, at least to the extent of these simulations. The different noise levels 

produce an equivalent worsening of all methods, indicating that this does not play an 

important role in the compression strategy. In addition to the PARAFAC, general 

MLPARAFAC, Tucker1-MLPARAFAC and Tucker3-MLPARAFAC, Tucker3-

PARAFAC is also included to dissect the improved results with respect to PARAFAC in 

its two most important contributions: the effects of compression and the use of the error 

information in the estimation process. It can be observed in all cases that although the 

compression step by itself produced some improvement in the results, the use of 

compression and weighting yield much better estimates. It is also important to comment 

about the worsening of the estimates as the number of components increases, shown as a 

trend in all cases when the compressed data are treated with standard PARAFAC. This 

situation does not occur when MLPARAFAC is used due to its capacity to down-weight 

noisy regions as anticipated in the theory section 

In reality, the difference between the quality of the estimates of compressed 

MLPARAFAC and PARAFAC will not be as large as the differences encountered in the 

simulation studies, since the results presented here were obtained assuming an absolute 

knowledge of the measurement error covariance matrix, while in practice this is typically 

estimated on the basis of replicate measurements and hence may be less reliable.  

Therefore, the benefits of including measurement error information must be weighed 

against the detrimental effects of including poor quality information. In many cases, it 

will be more advisable to use one of the previous simplifications because, in those 

situations, the advantages gained by pooling error covariance estimates may outweigh the 

benefits of using the full error covariance matrix. 

3.6 Conclusions 

In this work, the standard practice of expressing the estimation process by 

minimizing the different formulations of the same objective function was discarded since 

it does not take into account the loss of symmetry caused by the introduction of error 

information.   A new approach, in which the same objective function is used to estimate 
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the loadings for all the modes, was introduced due to the benefits of locating the noise 

information in one or two modes as a simple representation and using it equivalently to 

obtain the estimation equations for each mode. 

  Four algorithms for carrying out simplified variations of general MLPARAFAC 

when the data at hand are corrupted by correlated noise affecting one or two orders have 

been described in this work by using the new approach.  Also, a compression step was 

included prior to the use of general MLPARAFAC for cases where the noise structure is 

affecting three modes and the volume of data precludes the use of general MLPARAFAC 

on the raw data.   

All of the algorithms were shown to produce maximum likelihood estimates 

through a comparison of the distribution of the objective function with the χ2 distribution.  

It was also shown that the use of simplified algorithms when the data at hand merit the 

simplification is beneficial from a computational point of view. When the error structure 

was properly used, the quality of the estimates was the same for all the methods designed 

to handle this error structure.  Two simulated scenarios where the error structure assumed 

departs from the actual error structure were studied to illustrate the importance of a 

thorough characterization of the error structure. 

The merits of using compressed MLPARAFAC over PARAFAC were studied in 

different scenarios. Also, no significant differences were found between Tucker3 and 

Tucker1 basis sets, at least for the data used in the simulation studies.   

Although the principles of general MLPARAFAC and a number of 

simplifications have been established here, a number of more practical aspects related to 

its application on experimental data remain to be examined.  These include issues related 

to the characterization of the error structure and the application of the different 

simplifications.  These subjects will be the focus of a companion paper. 
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3.7 Appendix 

Case 1B: 

Mode B 
 

This scenario is represented by the following objective function: 
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Defining: Mk = Xk − ADkBT, equation A.1 can be modified to yield: 
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Using standard relations for derivatives of matrices and vectors [20], this gives:  
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Setting this derivative equal to zero to find the minimum leads to: 
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Expressing the traces as the product of two vectors [20] yields: 
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Equation A.5 is one of the JP equations necessary to estimate the loadings of B. The rest 

of the equations are obtained as the right and left parts of this equation are multiplied by 

the different vectorized Ejp matrices. Since this term is completely independent in both 

sides of the equation, the process can be carried out in a straightforward manner using a 

matrix E formed as [vec(E11) vec(E21) … vec(EJP)]. A closer look of this matrix shows 

that E is the identity matrix of order JP, making the multiplication theoretically sound but 

numerically unnecessary and providing equation A.6 to estimate the loading of B: 
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Mode C 
 

Similarly, this objective function is used to represent the following scenario. It is 

important to realize that it can be expressed as the summation over the K slices: 
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Defining: Mk = Xk − ADkBT, equation A.7 can be modified to yield: 

 

 ) ( T1
kkkk tracef MΨM −=  (A.8) 

Using standard relations for derivatives of matrices and vectors [20], this gives:  
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Setting this derivative equal to zero to find the minimum leads to: 
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The last expression in equation A.10 is one of the PP equations necessary to estimate the 

loadings of k row of matrix C. The rest of the equations are obtained as the right and left 
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parts of this equation are multiplied by the different vectorized Epp matrices. Since this 

term is completely independent in both sides of the equation, the process can be carried 

out in a straightforward manner, using a matrix E formed as [vec(E11) vec(E22) … 

vec(EPP)]. Contrary to what happened in the estimation of mode B, matrix E is used to 

pick the relevant elements in both members, since we are only interested in the estimation 

of the elements located in the diagonal of Dk. Therefore, equation A.11 is used to 

estimate the loading of C in a row by row fashion: 

 ( ) ( )[ ] EBΨXAAABΨBc
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1T1T1T −−− ⊗= kkkk vec  (A.11) 

Case 1C: 

Mode B 
This scenario is well represented by the following objective function: 
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In order to make the equation more tractable the following modifications were applied: 
TT ))(~( BCAXM ⊗−= a  and aAIA =

~  to yield: 
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Setting this derivative equal to zero to find the minimum leads to: 
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Equation A.15 becomes equation A.18 using the matrices L and R as defined in equation 

A.16 and A.17 respectively. 

 aP XAICR T~)( ⊗=  (A.16) 

 TT )(~~)( pP ICAAICL ⊗⊗=  (A.17) 

 ( ) ))()(()( T11 BILEIΨREIΨ ⊗⊗=⊗ −−
KjpKajpKa tracetrace  (A.18) 

Equation A.18 can be expressed as equation A.20 when the matrices forming both 

members of the previous equation are partioned as shown in equation A.19. Matrices 
1−

a
mnΨ , Rnm  and Lnm have orders J x J; P x J and P x  P, respectively. 
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Equation A.20 is one of the JP equations necessary to estimate the loadings of B. The rest 

of the equations are obtained as the right and left parts of this equation are multiplied by 

the different vectorized Epj and Ejp matrices, respectively. Since these terms are 

completely independent on both sides of the equation, the process can be carried out in a 

straightforward manner using matrices E1 and E2 formed as [vec(E11) vec(E21) … 

vec(EPJ)] and [vec(E11) vec(E21) … vec(EJP)], respectively. A closer look at these 

matrices shows that E1 is the identity matrix of order JP while E2 is equal to the 

commutation matrix KPJ. When the equation is rearranged to estimate the loading of B 

equation A.21 is obtained: 
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Mode C 
 

This scenario is well represented by the following objective function: 

 ]))(~())(~[( TT1T BCAXΨBCAX ⊗−⊗−= −
aaatracef  (A.22) 

In order to make the equation more tractable the following modifications were applied: 
TT ))(~( BCAXM ⊗−= a  and aAIA =

~  to yield: 
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Setting this derivative equal to zero to find the minimum leads to: 
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It is worth noting two important manipulations carried out in equation A.25. First, the 

commutation matrices are introduced in order to invert the order of the Kronecker 

products )( Jkp IE ⊗ and )( JIC ⊗ . Second, due to the sparse nature of A~ , the following 

equality holds: 

 TT ~~ AAK =PP  (A.26) 

 Equation A.25 becomes equation A.31 using the matrices T, S, L and R as defined in 

equations A.27 to A.30: 

 KJa KΨL 1−=  (A.27) 

 aP XAIBR T~)( ⊗=  (A.28) 

 AAIBS ~~)( T
P⊗=  (A.29) 

 KJaJKK KΨKIBT 1T )( −⊗=  (A.30) 

 ( ) ( )TEISCIREIL )()()( pkPJkpJ tracetrace ⊗⊗=⊗  (A.31) 
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Equation A.31 can be expressed as equation A.33 when the matrices forming both 

members of the previous equation are partioned as shown in equation A.32. Matrices 

Lmn , Rnm  , Smn  and Tnm  have dimensions K x K; P x K ; P x  P and K x K respectively. 
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Equation A.33 is one of the KP equations necessary to estimate the loadings of C. The 

rest of the equations are obtained as the right and left parts of this equation are multiplied 

by the vectorized Epk matrix. Since these terms are completely independent on both sides 

of the equation, the process can be carried out in a straightforward manner using matrices 

E1 formed as [vec(E11) vec(E21) … vec(EKP)]. A closer look at these matrices shows that 

E1 is the identity matrix of order PK, providing equation A.34 to estimate the loadings of 

C: 
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Case 1D: 
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This scenario is structurally similar to the previous case, but more complex since the 

error covariance matrix changes from row to row. Therefore, the estimation process 

cannot be carried out in one step, but rather as a sequence of I independent problems 

solved by minimizing equation A.35:  
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As mentioned before, the only difference in the minimization process between equation 

A.35 and equation A.12 is the sequential manner in which the former is solved. This 

situation leads to estimation equations that are similar to the previous case, but solved in 

a sequential manner. Mathematically, this is carried out by solving row by row in mode A 

and solving over a sequence of I summations for mode B and C as shown next: 
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where: 
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Chapter 4 
Mathematical Improvements to Maximum Likelihood Parallel Factor 

Analysis: Experimental Studies3 

4.1 Abstract 

In this paper, the application of a number of simplified algorithms for Maximum 

Likelihood Parallel Factor Analysis (MLPARAFAC) to experimental data is explored. 

The algorithms, described in a companion paper, allow the incorporation of a variety of 

correlated error structures into the three-way analysis. In this work, three experimental 

data sets involving fluorescence excitation-emission spectra of synthetic three-component 

mixtures of aromatic compounds are used to test these algorithms. Different experimental 

designs were employed for the acquisition of these data sets, resulting in measurement 

errors that were correlated in either two or three modes. A number of data analysis 

methods were applied to characterize the error structures of these data sets. In all cases, 

the introduction of statistically meaningful information translated to estimates of better 

quality than the conventional PARAFAC estimates of concentrations and spectra. The 

use of the algorithms that employ the error structure suggested by the analysis of the error 

covariance matrix yielded the best results for each data set.  

                                                 
3 Submitted to Journal of Chemometrics (Submitted March 2005) 
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4.2 Introduction 
In 1980, Hirschfeld [1] presaged the current state of analytical instrumentation 

when he made a very complete compilation of all feasible combinations of techniques 

capable of providing second order data at that time. Nowadays, many of these 

combinations are commonplace in the analytical laboratory and they have been extended 

a step further by adding other orders to produce three-way and multi-way data in general. 

The vast majority of these combinations involves a spectroscopic domain, where 

measurements are made as a function of wavelength. The spectroscopic order can be 

combined with a broad selection of techniques exploiting different spectroscopic, 

chromatographic, kinetic and physicochemical characteristics of the analyzed samples. 

Even though the combination of spectroscopic information with chromatographic, kinetic 

and physicochemical attributes have a number of drawbacks, such as poor reproducibility 

of retention times for chromatography, poor sensitivity in the spectroscopic order with 

respect to changes in physicochemical properties and important deviations from the 

bilinear structure in kinetic experiments, these combinations have been extensively used 

in the chemical literature [2-23].  

Three-way data obtained by pairing fluorescence excitation and emission spectra 

to produce fluorescence excitation-emission matrices (EEMs) is perhaps the most 

common combination used in chemistry due to the wide availability of 

spectrofluorometers and a number of useful features. First, the measurements can be 

made on a single instrument with consistent channel registration. Second, EEMs are 

characterized by excellent sensitivity, selectivity and bilinearity. Finally, a wide variety 

of different options can be used to produce trilinear data [17-23]. However, real EEMs 

can give rise to non-ideal behavior that can disturb the trilinearity of the data. Among the 

most common cases are nonlinear effects caused by high concentration of the analytes 

and the presence of instrumental effects such as scattering within the measurements. 

A common problem that arises in the analysis of experimental fluorescence data is 

related to primary absorption due to high concentration of chromophores. As the 

concentration of the compounds increases, their absorptions become more significant at 

the edge of the cuvette and it will reduce the amount of light reaching the fluorophores in 
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the rest of the cell. This will decrease the emission intensity in a nonlinear fashion. In 

order to avoid this situation, fluorescence excitation-emission measurements of dilute 

samples are usually preferred, or in cases where this is not possible, some corrections can 

be applied [24-25].   A second problem is the inadequacy of the mathematical model to 

represent scattering effects in the samples (i.e. Rayleigh and Raman scatter).  

Unfortunately, corrections for scattering effects cannot be implemented as easily as the 

previous case from an experimental point of view and in general corrections have to be 

made in the estimation step. Further scrutiny of this problem has been done and thus far 

the only real applications use some kind of weighted decomposition [9, 24, 26] to 

eliminate this problem by considering the scattering as noise rather than model 

deviations. In this work, special attention has been given to the selection of a range of 

concentration profiles and excitation and emission wavelengths to produce data sets that 

are not affected by these deviations of the model. 

Deviations apart, the physical model describing this type of measurements is 

equivalent to the well known structural model called PARAFAC [27-28]. Many different 

algorithms [28-35] based on different optimization strategies have been formulated to 

estimate the parameters describing the model. However, the PARAFAC algorithm, based 

on an alternating least squares optimization technique, accounts for the majority of the 

applications reported in the chemical literature due to its excellent convergence 

characteristics and simplicity. A few examples cover areas as dissimilar as the estimation 

of sugar quality and process parameters in the food industry and the determination of 

polycyclic aromatic compounds, pesticides and dioxins in different matrices [36-41].  

In general, even though the characteristics of the noise affecting fluorescence 

EEMs are well documented [42], they are disregarded in favor of the more simplistic and 

therefore unrealistic features characterized by an identical distribution of independent 

errors from channel to channel, since this provides optimal estimates when algorithms 

based on simple least squares optimization are used. Recently, two methods, called 

MILES (Maximum Likelihood via Iterative Least Squares Estimation) and 

MLPARAFAC (Maximum Likelihood Parallel Factor Analysis), have been introduced to 

the chemometrics literature [26, 43] to optimally estimate the model using measurement 

error information. The main difference between MILES and MLPARAFAC is that 
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MLPARAFAC is a method based solely on ALS optimization, while MILES works as an 

iterative preprocessing tool to condition the data from a maximum likelihood perspective 

in order that least squares methods such as PCA and PARAFAC can optimally handle the 

estimation process. 

In an earlier companion paper [44], a number of important simplifications of the 

general MLPARAFAC [43] methodology for cases where the error covariance matrix is 

dominant along one or two orders, and a compression step prior to the use of general 

MLPARAFAC for cases where the error was corrupting more than two orders, were 

introduced.  These simplifications complete the theoretical background of the general 

methodology presented in the original work [43] by introducing a new approach to obtain 

the estimation equations.  

Traditionally, the estimation equations for the standard PARAFAC model and for 

its derived errors-in-variables model, general MLPARAFAC, were obtained by switching 

among different mathematical arrangements of the same objective function, expressed 

differently for each mode. This strategy is used because, due to the symmetry of the 

PARAFAC model, the implementation is not only efficient, but extremely simple, 

making the normal equations very similar from one mode to the other. However, when 

the characteristics of the noise are taken into account, this symmetry is lost, making it 

necessary to express the estimation problem as the general problem, since the existence 

of a simplified version of the error covariance matrix in the given space is not possible or 

extremely difficult to find. Therefore, a new approach was introduced in which the data 

are initially arranged in order to have the major source of correlated noise along the mode 

B, followed by the second major source of correlation along mode C, leaving mode A as 

the mode not affected by correlated noise. After the data are arranged, the estimation 

equations are obtained by expressing all of the sub-steps as minimization problems of the 

same objective function written by preserving mode A alone.  

The simplifications obtained by using this approach were tested using 

simulations. These simulations showed the statistical characteristics of these new 

algorithms and the improvements in terms of performance and quality of the estimates 

when the proper simplifications given the available data were used. However, they also 
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illustrated the importance of a thorough characterization of the error covariance matrix in 

order to use the most suitable algorithm. Unfortunately, the simulations had a very well 

defined error structure, making the process of choosing the appropriate simplification 

extremely simple, since information about the number of orders affected by the correlated 

noise and its structure were accurately known in advance. Real life applications are not 

characterized by this simplicity, making the decision process a more complex task. 

Therefore, the objective of the present paper is three-fold. First, a set of guidelines are 

introduced to thoroughly characterize the error structure and rationalize the way in which 

the different orders are arranged and the simplifications used. Second, the different 

simplifications are applied to experimental EEM data sets to test whether the 

improvement observed in simulations can translate to experimental data. Finally, the 

effect of using the different simplifications is explored with variations in the way the 

orders are arranged.  

4.3 Theory 
The companion to this paper showed the relationship between the optimal 

representation of the error covariance matrix  (the one including all the information about 

the variance and the covariance among the elements) for different scenarios and the 

different simplifications used in each case, reducing to a considerable degree the 

computational burden for MLPARAFAC. Unfortunately, for all cases, it was assumed 

that the error covariance matrix describing the given system was completely known in its 

structure as well as its numerical value. In reality, the situation is more complex. For a 

given application, it is necessary to initially characterize the structure of the error 

covariance matrix to choose the proper representation and, once this is established, its 

numerical estimation has to be performed. Until recently, the literature on characterizing 

error covariance matrices was virtually nonexistent but a recent paper by Leger et. al. 

[45] has shed some light on this topic. A number of two-way data sets were analyzed in 

this work using those tools developed by the authors, and these tools can be extended to 

three-way data in a straightforward manner, as suggested by the authors and to be 

demonstrated here. A principal objective of this work is to develop a set of tools for 

understanding and classifying the measurement error structure of a given multi-way 

system through an analysis of the error covariance matrix. This knowledge will then be 
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used in conjunction with the different simplifications of general MLPARAFAC 

introduced in the companion paper.  There are two immediate benefits to such an 

analysis.  First, the analysis can provide insight into the main sources of error affecting 

the measurement. This can potentially be used to redesign experiments to minimize these 

error sources, since the error structure is directly related to the experimental design as 

well as the detection technique used to collect the data. Most importantly, it can help the 

practioner choose the proper estimation method to accommodate the error structure in an 

optimal way.  Leger et al. [45] also speculated on the idea of using this information to 

produce a deterministic model of the error covariance matrix in order to eliminate the 

need for extensive replication in order to estimate the error covariance matrix. However, 

in this work, this possibility will not be explored.  

In order to put into context the motivation behind these tools, a brief description 

of the structure of error covariance matrices will be given. The tools will then be 

described, devoting some attention to the pieces of information provided by them. 

Finally, a flow chart will be presented to choose the optimal representation of the error 

covariance matrix and, in turn, the algorithm needed to estimate the PARAFAC model. 

4.3.1 Analysis of the Error Covariance Matrix 

A few important pieces of information are needed to construct an optimal 

representation of the error covariance matrix. The first one is the answer to the following 

question: How many orders are affected by correlated noise? Second: Which are the 

orders affected by correlated noise? Once these two questions are answered and the data 

are reorganized by using permutations in a way that the order affected by correlation is 

located in mode B if the errors are only affecting one order, or in mode B and C if the 

errors are only affecting two orders.  At this point, another important issue must be 

addressed by answering the following question: Is the correlation structure the same for 

all the objects used in the construction of the error covariance matrix? (In other words, is 

pooling of the individual error covariance matrices statistically correct?).   

Figure 4.1 shows a schematic representation of the structure of the full error 

covariance matrix and its equivalent simplified representations for each case in order to 

understand the characterization of the error covariance matrix and the tools used to do it. 
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Figure 4.1.  Illustration of the possible scenarios in which a full error covariance matrix 
can be expressed using different simplified representations of the error structure to 
describe all of the sources of variation.  

It is clear from Figure 4.1 that the errors can be correlated along one, two or three 

orders, giving rise to different representations of the full error covariance matrix. For the 

cases where the errors are correlated along only one or two orders, more simplified 

representations exist. Unfortunately, the analysis of the full error covariance matrix is 

usually precluded by its size. Therefore, this case has to rely on alternative 

representations providing similar information. A substantial amount of information about 

the measurement error structure can often be gleaned through a visual examination of the 
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pooled experimental error covariance matrix for each mode.  As already noted elsewhere 

[45-47], this matrix is typically obtained through the use of replicate measurements.  

Normally, a series of R replicates of each object order is obtained.  The definition of a 

replicate can vary for different fields, applications and experiments, but in the present 

context it is defined as the measurement realization made to capture the relevant sources 

of variation while the underlying chemical information defining the unattainable true 

signal is kept constant.  

Operationally, the process to construct the pooled error covariance starts by 

unfolding the replicate r of the three way data rX retaining the order to be analyzed. This 

operation is repeated for the R replicates. For example, to calculate the error covariance 

matrix for mode A, rX (I x J x K) is unfolded while retaining mode A, producing rXa  

(I x JK). Then, rXa is transposed and used to calculate the individual experimental error 

covariance matrix for each object included in mode B and C via equation 4.1.  
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where rxo is the oth 1 x I row vector of replicate r taken from T
a

r X and x o is the 1 x I 

mean vector of the replicate measurements. The superscript “o” is used in a generic way 

to represent objects from mode B and C. The degrees of freedom used in this equation are 

analogous to the calculation of variance (which will be represented by the diagonal 

elements of Σ) and, as with the calculation of variance, the estimated error covariance 

matrix will have a high degree of uncertainty unless a large number of replicates are used.  

In many cases, as we will see shortly, the error covariance matrices estimated for several 

objects can be combined to give a pooled error covariance matrix, Σavg. For this example 

Σavg can be calculated as follows: 
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Of course, such a pooling is statistically valid only if it can be assumed that the row error 

covariance structure is the same for all the objects in the other modes. This situation will 

be rigorously analyzed in the next step of the characterization process, but here only a 



 

 136

subjective analysis will be carried out to determine the extent of the error correlation 

effect. Mathematically, equations 4.1 and 4.2 can be combined to give a clearer view of 

this calculation. This is done by considering the I x JKR matrix of residuals for all 

replicates of all objects, Ea.  The equation can then be written as: 

 T

)1(
1

aaavg RJK
EEΣ

−
=  (4.3) 

It is important to emphasize, that despite the use of mode A for the example, this process 

is exactly the same for the rest of the modes, but with the given equation adapted 

accordingly. 

 Despite the central role of error covariance matrices in maximum likelihood 

estimation, their visual interpretation may be of limited utility since, in the presence of 

heteroscedastic errors, a few elements with a high variance can obscure the interactions 

among other elements.  A more complete understanding of the interactions of the 

elements in the error structure can be gained through inspection of error correlation 

matrices.  Error correlation matrices can be calculated by dividing each element of the 

covariance matrix by the two contributing standard deviations: 

 
sr
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rs σσ
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In this equation, ρrs and σrs represent the elements in the rth row and sth column of the 

correlation and covariance matrices, respectively, and σr and σs are the standard 

deviations at elements r and s, calculated from the square root of the corresponding 

elements of the diagonal of the covariance matrix.  In matrix notation, this can be given 

as: 

 T)()(. ΣΣΣΣ diagdiagcorr ⋅=  (4.5) 

where the notation “./” indicates an element-wise division (Hadamard quotient), the 

function “diag” converts the diagonal of Σ into a column vector, and the square root is 

taken to be an element-wise operation.  By definition, the diagonal elements of the 

correlation matrix will be unity.  The off-diagonal elements will indicate the degree of 
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error correlation among elements, although information about the absolute magnitude of 

the covariance is lost. 

Once these correlations matrices are constructed for each mode, a conclusion 

regarding what orders are affected by correlated errors can be drawn. Based on this 

conclusion, the three-way arrays can be permuted in order to have either the uncorrelated 

orders in mode A and C for cases where correlation is only affecting one order, or the 

uncorrelated order in mode A for cases where correlation is affecting two orders. 

It is worth noting, that the construction of error covariance matrices for cases 

where correlated noise is affecting two orders is extended in a straightforward manner as 

shown in the following equation where the correlated orders are B and C: 
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where i
a

r x  is the 1 x JK row vector of replicate r and x  is the 1 x JK mean vector of the 

replicate measurements.  The pooled error covariance matrix is calculated as shown: 
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4.3.2 Homogeneity among Different Error Covariance Matrices 

The visual analysis of the average error covariance and correlation matrices treats 

the error structure as a pooled entity.  The pooling of individual error covariance matrices 

is permitted by an a priori assumption that the sources giving rise to this error structure 

are constant from object-to-object, and that each object’s own contribution to the error 

structure is fairly constant. Even though a few statistical tests, such as Wilks’ Λ  and 

Box’s M tests [48], have been designed to test the similarity and homogeneity of 

covariance matrices, the approximations used for these tests are only valid when the 

number of replicates is larger than 20 and the number of objects/variables is less than 5.  

Usually, for multi-way data, these assumptions are violated. Therefore, since the 

assessment of structure and homogeneity of error covariance matrices is an important 

subject, a decomposition tool will be introduced here taking into account the special 

requirements of this type of data.  
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To understand the theoretical idea behind the decomposition tool used in this 

work, we will initially assume that the measured error covariance matrix can be 

factorized according to a low rank bilinear model.  This assumption is obviously limiting 

in the context of a general model for error covariance.  The authors recognize the limited 

scope of this assumption. For instance, the simplest error structure, iid-normal errors, 

cannot be represented by this low rank bilinear model, and neither can certain sources of 

covariance arising from cosmetic manipulations, such as digital filtering. Nevertheless, 

reference 45 demonstrated the validity of these simplified assumptions using a number of 

examples. 

The theoretical foundation supporting this tool will be illustrated using 

fluorescence emission spectroscopy, which is the simplest case of EEMs, since a set of 

emission measurements is recorded at a fixed excitation wavelength.  Two sources of 

error that have been identified in fluorescence emission spectroscopy are offset noise and 

multiplicative offset noise [45].  In the first case, which can arise, for example, from 

variable cell positioning, the entire spectrum is offset by a fixed amount.  In the second 

case, the offset depends on the magnitude of the square-root of the signal in a 

multiplicative way.  This square root dependence might be expected due to the shot noise 

characteristics of emission measurements, which follow Poisson statistics. Therefore, a 

structural component similar to the square-root of the mean emission spectra can be 

anticipated. If we consider a series of spectra, X (R replicates by J wavelength channels), 

the errors of these types in the spectra, E (= X-Xo), could be represented as: 
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In this equation, •ix  is a row vector (replicate spectrum) from X, •ie is a row vector 

(residuals) from E, 1J is a J x 1 vector of ones, and xo is a row vector representing the 
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error-free spectrum.  The R x 1 vectors e1 and e2 contain the individual realizations of the 

offset error and the multiplicative offset error for each replicate, where e1and e2 are 

assumed to be normal random variables with standard deviations of σ1 and σ2.  Taking 

the expectation for the error covariance matrix, we can write: 

 ( ) ( ) o
T

o2
2

T2
121

T xx11ΣΣeeΣ ⋅⋅+⋅⋅=+=⋅= σσ JJE  (4.9) 

It is important to mention that the structural model shown in equation 4.1 will describe 

most, but not all, of the variation for this type of data, since the contributions of other 

sources, most notably independent errors, (either homoscedastic or heteroscedastic), are 

not included. This will have an impact when the methodology is employed to obtain a 

deterministic model for the error covariance matrix, but since our main objective is the 

characterization of the homogeneity error covariance matrix these contributions will be 

neglected here. 

Equation 4.9 represents the physical model behind the error structure for a 

particular object. When different objects are considered, this physical model can be 

mimicked by the INDSCAL structural model, introduced by Carroll and Chang [27]. 

Mathematically, this can be done by collating individual error covariance matrices into a 

three-way array consisting of symmetric slices Σ1, Σ2,…, ΣO.  The model decomposes the 

slices as: 

 ooo ΕFFDΣ += T  (10) 

where F is a J x P matrix representing the sources of variation (i.e. structural factors) and 

Do is the P x P diagonal matrix whose elements represent the contribution of each source 

of variation to the error covariance of object o. 

Often, as noted previously, error covariance matrices from different objects are 

pooled to give a better estimate of the error covariance matrix.  In these cases, it is 

expected that the decomposition of the individual error covariance matrices (different 

objects) can be factorized using common structural factors with contribution vectors that 

share the same statistical properties of the specific model. Therefore, the homogeneity of 

the individual error covariance matrices can be reduced to the homogeneity of the 
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structural factors describing the error sources and the similarity in the statistical 

properties of the contribution of each individual object. For instance, in the example 

presented, this would mean that the spectra for individual samples show a strong 

similarity (structural factors) and e1 and e2 (contribution vectors) share the same 

statistical characteristics for all samples (i.e. same σ1 and σ2). As explained in reference 

45, this model is solved using the PARAFAC algorithm [28], which is simpler and less 

constrained, but mathematically equivalent in terms of the solution produced by equation 

4.10. It is recommended that the PARAFAC algorithm be run in a split-half [49] fashion 

to make sure of the validity of the estimates.  

4.3.3 Assessment of the error structure 

Figure 4.2 depicts a flow chart indicating the important steps and metrics to direct 

the user in the optimal construction, characterization and calculation of the error 

covariance matrix. This will lead to the use of the optimal estimation method given the 

available data. 

The first step uses the information obtained though a subjective analysis of the 

pooled error correlation matrices for each mode to make a decision about the number of 

modes affected by correlated errors and to sort the modes in a way that the permuted 

array will have the uncorrelated orders in modes A and C for cases where correlation is 

only affecting one order, or the uncorrelated order in mode A for cases where correlation 

is  affecting  two  orders. This  step  will also provide the necessary information to decide 

whether a J x J, JK x JK or IJK x IJK error covariance matrix will be needed. Matrices 

with a majority of their elements showing significant correlation will be considered to 

describe important correlation in this mode. As mentioned before, this interpretation will 

be largely subjective as the different error covariance matrices are visually analyzed. 

However, some numerical interpretation can be added by considering that the 

decomposition of pooled error covariance matrices describing important sources of 

correlation will produce a low rank model with few components accounting for a large 

proportion  of  the  variance.  It  is  important  to  mention  that this interpretation must be  
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Figure 4.2.  Flow chart employed to characterize the error structure. 
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treated carefully, since on many occasions the structure in other modes will produce some 

artificial structure in the analyzed mode, as was described by Leger et al. [45].  

Once the form of the error covariance matrix is decided, an analysis of the 

homogeneity is necessary, regardless the form.  For cases where correlation is important 

along only one dimension, it is important to assess whether the objects in the other two 

orders will contribute to the structure equally. This is also true for cases where the 

correlation is affecting two orders, with the only difference being that the equivalence of 

the contribution is only tested for objects within the one remaining order. The general 

procedure starts by calculating the individual error covariance matrices of order 

determined in step 1 of the flowchart. Different split-half data sets are created to assess 

the contribution of different objects to the structural factors when the INDSCAL model is 

estimated. In the present context, the split-half method [49] is a type of cross-validation 

method in which the homogeneity of the structural factors in one or more modes is 

examined by partitioning the data in half along a remaining mode and analyzing each half 

individually. The partitioning is typically done in such a way to examine variations in the 

structural factors that depend systematically on the other mode. For example, it is 

advisable to use partition strategies that provide information about short range (e.g. by 

taking alternate objects) and long range (e.g. by taking consecutive blocks of objects) 

differences in the contribution of the objects to the error covariance matrix. 

The number of factors describing the structural model of the error covariance 

model will be chosen by using information such as variance accounted for the models, 

corcondia values and visual appearance of the factor [45]. Once this number is 

established, the structural factors obtained by different split-half models are aligned to 

eliminate the permutation indeterminacy, and then the average structural factors are 

calculated. These average structural factors are used as reference values to calculate the 

similarity of the corresponding structural factors obtained from different split-half models 

via the average vector angle. The decomposition of the INDSCAL model also provides 

information about object contributions. Low average vector angles and statistically 

homogeneous sample contribution values will indicate that that pooling of the error 

covariance matrices for different objects is correct from a statistical point of view.  
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It is important to note that, for cases where the correlation affects only one 

dimension, an additional homogeneity test separating objects from different modes has to 

be carried out if the first test fails to indicate global homogeneity. In the second test, the 

homogeneity in the other two modes is examined individually. If the second test also 

fails, the data must be treated with an algorithm that is also used to treat cases where 

correlation is affecting two modes, as shown in the flowchart. These approaches will be 

illustrated with real samples in Section 4.4. 

4.4 Experimental 

4.4.1 Sample preparation 

Reagents and Samples. Naphthalene (Fisher) was used as received. Acenaphthylene 

(Aldrich) and phenanthrene (BDH) were recrystallized prior to use. Stock solutions of the 

individual samples were prepared by mass in acetonitrile (Anachemia, 

spectrophotometric grade, 99.9%). The final concentration ranges were approximately 

0.10 to 0.34 µg/g (ace), 0.018 to 0.063 µg/g (nap), and 0.0072 to 0.027 µg/g (phe). 

Instrumentation. Fluorescence emission spectra were obtained from samples in a 1 cm 

quartz cuvette on a Shimadzu RF-301PC spectrofluorometer with a xenon lamp 

excitation source. The excitation wavelength range was between 250 nm and 305 nm 

using intervals of 5 nm. The emission wavelength was scanned between 309 and 415 nm 

in steps of 1 nm. A medium scan speed was used and the slits for both excitation and 

emission were set at 5 nm. The pure excitation and emission spectra for each component 

are the average of ten replicates using the same experimental conditions. These are shown 

in Figure 4.3. 

Procedure. Fluorescence emission spectra were obtained from mixtures of three 

polycyclic aromatic hydrocarbons (PAHs): acenaphthylene (ace), naphthalene (nap), and 

phenanthrene (phe). Five replicate sets of spectra were obtained from each of 27 

mixtures. A three level, three-factor factorial design was used to prepare the mixtures and 

a blank containing only the solvent (acetonitrile) was run before and after each block.  

It is well known that the error structure affecting spectroscopic data depends on 

both  the  spectroscopic  technique  and  the  experimental  design used to record the data.  
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Figure 4.3. Pure excitation (top panel) and emission (bottom panel) normalized spectra 
of the compounds employed in this work. Each spectrum is the average of ten replicate 
measurements. 

Since the main objective of this work is testing the performance of different 

simplifications of the general MLPARAFAC algorithm in the presence of different error 

structures, the procedure described was used to produce three different data sets through 

changes in the data acquisition protocols.  

Data Set 1 was obtained by scanning all of the samples in each replicate block in a 

randomized order. Also, in order to decrease the possibility of correlated errors, the 

excitation wavelengths were also randomized for each replicate block. Emission spectra 

were obtained in a consecutive fashion. 

Data Set 2 was also obtained by scanning all of the samples in each replicate 

block in a randomized order. In this case, the excitation and emission were scanned in a 

consecutive fashion to see if some additional correlation is introduced by the non-

randomized use of the excitation range. The excitation range was scanned from the 
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highest to the lowest excitation wavelength to decrease the potential effects of 

photodecomposition. 

Data Set 3 represents the most complex error structure since the objects in all 

modes were scanned in a consecutive fashion (i.e. samples were run in a sequential order 

and excitation and emission wavelengths were scanned consecutively). This experimental 

design is generally avoided by practitioners, since it can introduce temporal correlation 

from different sources [42]. Again, the excitation range was scanned from the highest to 

the lowest excitation wavelength. These different designs are represented pictorially in 

Figure 4.4. 

4.4.2 Computational Aspects 

All the calculations performed in this work were carried out on a Sun Ultra 60 

workstation with 2 x 300 MHz processors and 512 MB of RAM and a 3.2 GHz Pentium-

IV PC with 1 GB of RAM. All programs were written in-house using Matlab 6.0 (The 

MathWorks Inc., Natick, MA) with the exception of the PARAFAC and TUCKER3 

functions that were run using the N-Way Toolbox [50].  

4.5 Results and Discussion 

4.5.1 Analysis of the error covariance matrices 

Figures 4.5 to 4.7 show the pooled correlation matrices of each mode for Data 

Sets 1, 2 and 3, respectively.  They are plotted using an intensity map in which a darker 

tonality indicates an absolute correlation value closer to one and a paler tonality indicates 

a correlation value closer to zero. The three cases present a very strong pattern of 

correlation for the emission modes, as was expected due to the consecutive fashion in 

which this mode was recorded in every case. It is important to note that the correlation 

patterns were very similar for Data Sets 1 and 2 but some differences were observed for 

Data Set 3. The physical reason for this difference is not entirely clear, but is undoubtedly 

linked to the sequential order of the samples in the third data set and indicates the close 

relationship between experimental design and error structure.  The excitation mode was 

also highly affected by correlation in all cases, even though Data Set 1 was scanned in a 

random manner in the excitation mode.  This result is not completely surprising since, for 
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Figure 4.4. Simplified pictorial representation of the experimental designs employed to 
acquire Data Sets 1, 2 and 3. 

a given sample, the emission spectra at each excitation wavelength were recorded without 

removing the sample from the spectrometer. Therefore, the cuvette positioning will 

produce an offset, which is one of the most common sources of correlated errors. This 

will carry through all the excitation wavelengths, and is likely an important source of 

correlation affecting this mode.  Another expected result was related to the correlation 
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affecting the sample orders. Data Sets 1 and 2 showed a very random distribution of 

tonalities, indicating the lack of important sources of correlation affecting these data sets. 

However, Data Set 3 was characterized by a very dark correlation map, indicating 

important sources of correlation that need to be taken into account in the sample mode. 

Conclusions about the necessary permutations and the optimal representation of 

the error covariance matrices for each data set can be drawn based on these plots. For 

Data Sets 1 and 2, the correlation pattern suggests that the emission and excitation orders 

should be located in modes B and C and the use of a JK x JK format for the error 

covariance matrix. Order permutations are not necessary for Data Set 3, since the general 

MLPARAFAC algorithm will be needed to provide optimal estimates, requiring a full 

IJK x IJK error covariance matrix and merit the use of compression in order to use the 

algorithm. 

Although, previous results indicate that the use of J x J error covariance matrices 

was unjustified since correlation is affecting more than one order, a structural 

decomposition of the individual error covariance matrices for each mode was done. In all 

cases, it was clear that that the different objects pooled produce different sources of 

structure (results not shown) indicating again that the use a pooled J x J error covariance 

matrix would be sub-optimal. 

The flow chart in Figure 4.2 indicates that the next step in the characterization 

process is the assessment of the homogeneity of the individual error covariance matrices 

to determine whether or not pooling is theoretically justified. This step was carried out 

for Data Sets 1 and 2, but was not necessary for Data Set 3 since the full error covariance 

matrix was required in this case. 

Following the right-hand side of the flowchart in Figure 4.2, individual error 

covariance matrices were first calculated as given in step 2.1. These were organized into 

four different split-half groups and each was decomposed by PARAFAC (step 2.2). 

Figure 4.8 shows the average structural factors and sample contributions obtained for 

Data  Sets  1  and  2  when  a PARAFAC model is used. In both cases, the decomposition 
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Figure 4.5. Pooled correlation matrices for each mode of Data Set 1 using intensity 
maps. 
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Figure 4.6. Pooled correlation matrices for each mode of Data Set 2 using intensity 
maps. 
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Figure 4.7. Pooled correlation matrices for each mode of Data Set 3 using intensity 
maps. 
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Figure 4.8.  Results of two-component PARAFAC decomposition of the individual error 
covariance matrices for the composite mode formed by excitation and emission modes 
for Data Sets 1 and 2: (a) structural factors, (b) sample contributions. 
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was carried out on the error covariance matrices characterizing the composite mode 

formed by the excitation and emission modes. Consequently, the plot of structural factors 

exhibits a repeating pattern of features corresponding to each of the excitation channels. 

As discussed in reference 45 and shown in step 2.3 of Figure 4.2, different pieces of 

information, such as the variance accounted for the model, the corcondia value [51], and 

the shape of the structural factors, are used to identify the structural model that describes 

the array of error covariance matrices. Different split-half models suggest that the error 

structure in both cases can be decomposed using two factors, since the models accounted 

for more than 90% of the variance and gave corcondia values of 100%. When a third 

component was added, the corcondia values decreased in all cases to values below 70%. 

Furthermore, additional extracted components explained little variation (less than 2% in 

all cases), were very noisy, and similar in shape to the preceding components.  Based on 

these evidences, it was concluded that the error covariance matrices could be represented 

by two factors. 

The next step in this process was to assess the homogeneity of the structural 

factors (step 2.4 in the flowchart) using a combination of metrics and visual analysis (step 

2.5 in the flowchart). The first structural factor resembles the average emission profile for 

different excitation wavelengths, as anticipated in the theory section, and it also describes 

more than 90% of the variation of the model.  This component is characterized by a very 

low vector angle (2.7° and 8.9° for Data Sets 1 and 2, respectively), indicating a high 

similarity among the estimates for different split-half models. The second structural 

component is more heterogeneous than the first, as the analysis of vector angles indicates 

(16.7° and 10.8° for Data Sets 1 and 2, respectively). However, the contribution of this 

component to the error covariance matrix structure is smaller, as is the variance that it 

describes. In addition, some split-half models indicate that this high variability arises 

from a few odd-numbered samples in the first half of the data set (i.e. samples 1 to 13).  It 

is also localized in the long wavelength region of the emission spectrum where chemical 

information is likely minimal, as can be seen in Figure 4.3. 

The sample contributions for the first component are quite variable, which is 

expected since these contribution values represent the stochastic contributions of the 

structural factors, as represented in equations 4.8 and 4.10. Assuming the original 
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contributions satisfy a normal distribution, the contributions extracted from the error 

covariance matrices should follow a squared normal distribution if pooling is acceptable. 

This is consistent with the pattern observed for the first component. However, the sample 

contributions for the second component are characterized by substantial deviations in the 

contributions of samples 1, 5 and 11.  Problems with these samples are the likely cause of 

disturbances in the estimation of the second structural factor described in the previous 

paragraph. Because this disturbance appears in both data sets, it may be related to the 

preparation of these samples. However, as noted in earlier work [45], the departure from 

homogeneity due to sample contribution will not preclude the pooling of the error 

covariance matrices. This violation is not as important as the violation of structural 

similarity, and in these cases the structural differences are not really considerable, since 

the second component has a small contribution to the error structures. Based on this, it 

was concluded that the error covariance matrices were sufficiently homogeneous to 

permit pooling (step 2.6 in the flowchart) and the use of one JK x JK error covariance is 

recommended. 

Summarizing all of the information presented, it can be said that Data Sets 1 and 2 

are affected by correlated noise that permeates though the excitation and emission modes, 

while in Data Set 3, the correlated noise is also affecting the sample mode. These results 

indicate that Data Set 3 will need the use of general MLPARAFC to produce optimal 

results. The homogeneity analysis of the error covariance matrices for Data Sets 1 and 2 

using a number of split-half models indicates that pooling is advisable, since the model 

was well-described by two structural factors and followed an expected distribution in the 

sample contributions. 

4.5.2 Estimation assessment 

4.5.2.1 Figures of merit 
Due to the intrinsic differences in the experimental orders estimated 

(concentrations and spectra), two different figures of merit will be used to assess the 

performance of the methods. The figure of merit used to measure the quality of the 

concentration estimates is the root-mean-square error of the estimation (RMSEE) 

calculated as follows: 
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where r
pŷ represents the estimated Ns x 1 vector of concentrations for component p and 

replicate block r, o
py is the corresponding Ns x 1vector of standard concentrations, and Ns 

is the number of samples. The use of (Ns−1) degrees of freedom for RMSEE is justified 

by the fact that PARAFAC model has a well-known scaling indeterminacy that has to be 

estimated using at least a reference sample. This equation is applied to the R replicate 

blocks and the average value is obtained using equation 4.12: 
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In order to make the interpretation of this value more meaningful, a relative average root-

mean square error of the estimation ( pRRMSEE ) is calculated. This is determined with 

respect to the average concentration for component p, symbolized by py , yielding: 
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For the excitation and emission modes, vector angles are preferred as a figure of 

merit, since they describe the quality of the estimates more clearly from a geometric point 

of view. The expression used to calculate this figure of merit is given in equation 4.14: 
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Here, r
pf  represents the estimated emission or excitation profile for component p using 

replicate block r and pf  represents the corresponding reference emission or excitation 

profile, obtained from separate scans of the pure components. As in the case of the 

RMSEE, the vector angle is also averaged over R replicates: 
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In addition to these two figures of merit that can be used individually to assess the 

performance of each algorithm for each component and mode, a global indicator of the 

relative performance of each algorithm with respect to the corresponding standard, 

PARAFAC estimation, was used. This magnitude will be referred to as the performance 

ratio, PR, and is calculated as follows for the spectral and concentration modes: 
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In this equation the superscript “X” represents any of the possible algorithms that will be 

used in this work. PR values lower than unity will indicate superior perrformance of the 

given method over PARAFAC for the same data set, while values greater than unity will 

indicate inferior performance. The authors are aware of the drawbacks of such a summary 

statistic, which can be significantly biased by extreme values of any of the components. 

However, if the indicator is used with caution, it has the ability to simplify the analysis 

considerably. 

4.5.2.2 Performance of the algorithms 
Although a proper permutation arrangement and format for the error covariance 

matrix were suggested for each data set in Section 4.4.1, in this section, the results 

obtained for all possible permutations and with different error covariance matrix formats 

are presented.  This was done to compare the results obtained with different formulations 

and permutation orders. There were two objectives in doing this: (1) to demonstrate that 

the incorporation of measurement error information can yield improved results over 

PARAFAC, even if it is done in a sub-optimal manner, and (2) to show that best results 
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are obtained with the proper error covariance structure. It is important to note, before 

starting the description and discussion of the results, that no cross-comparisons among 

different data sets were done since a number of experimental factors such as 

photodecomposition, solvent volatilization, and other factors associated with the temporal 

stability of the samples cannot be controlled. A good indication of these effects is the fact 

that the performance of the optimal method for each data set decreases from Data Set 1 

(first data set recorded) to Data Set 3 (last data set recorded).  

Tables 4.1, 4.2 and 4.3 summarize the results for Data Sets 1, 2 and 3, 

respectively. Each table shows the performance for each component when different 

structures of the error covariance matrix and the corresponding algorithms were used. 

The first column of each table gives the algorithm used and, by implication, the format of 

the error covariance matrix assumed. The second column specifies which mode(s) were 

considered to be affected by correlated errors. The performance is measured as 

pRRMSEE  for the concentration profiles and as pθ  for the emission and excitation 

profiles. In addition, the performance ratios (PR) with respect to the PARAFAC estimates 

are also reported as a global indicator of performance.  The rows of the tables shown in 

bold indicate the best conditions found in this study for each data set. 

For all of the data sets, the use of error information translated into a superior 

performance of the algorithms tested over PARAFAC as a general trend, with the only 

exceptions being Data Sets 1 and 2 when analyzed using error covariance matrices 

assuming only sample correlation. This result is expected, since the previous analysis of 

the measurement errors indicated that, for Data Sets 1 and 2, there was no correlation 

affecting the sample domain. Therefore, the use of an erroneous error covariance matrix 

with spurious correlations will only have a negative effect on the performance. 

Comparatively, introduction of error information related to the emission order produces 

marginally better performance than the use of error information describing the excitation 

mode. Different levels of improvement were found when information about the correlated 

error affecting the emission and excitation orders as a composite mode was utilized by 

different  algorithms.  In other words, the performances of algorithms such as 1C and 1D,  



Table 4.1 Results obtained by different algorithms when applied to different arrangements of Data Set 1. Row(s) in bold represent(s) 
best case scenario. 

 RRMSEE  θ  (Emission Profiles) θ  (Excitation Profiles) 

Method Correlated 
Orders Ace Nap Phe PR Ace Nap Phe PR Ace Nap Phe PR 

PARAFAC - 0.0713 0.0827 0.0533 1.00 2.82 1.79 4.38 1.00 1.80 2.79 7.30 1.00 

Compress 
PARAFAC - 0.0673 0.0785 0.0510 0.95 2.16 1.67 3.98 0.87 1.21 0.95 3.85 0.50 

1A Emission 0.0516 0.0655 0.0399 0.76 1.71 1.30 3.17 0.69 0.94 0.76 2.95 0.39 

1A Excitation 0.0606 0.0644 0.0428 0.81 1.85 1.44 3.31 0.73 0.99 0.80 3.21 0.42 

1A Samples 0.0754 0.0904 0.0584 1.08 2.61 1.95 4.61 1.02 1.40 1.04 4.31 0.57 

1B Emission 0.0575 0.0639 0.0433 0.79 1.84 1.36 3.27 0.72 1.00 0.77 3.16 0.41 

1B Excitation 0.0596 0.0688 0.0414 0.82 1.98 1.45 3.44 0.77 1.02 0.81 3.28 0.43 

1B Samples 0.0786 0.0944 0.0582 1.11 2.55 1.98 4.47 1.00 1.39 1.09 4.25 0.57 

1C Emission 
Excitation 0.0488 0.0548 0.0338 0.66 1.61 1.13 2.81 0.62 0.85 0.63 2.57 0.34 

1C Emission-
Samples 0.0570 0.0686 0.0419 0.81 1.95 1.41 3.27 0.74 1.03 0.77 3.14 0.42 

1C Excitation 
Samples 0.0693 0.0795 0.0492 0.95 2.19 1.64 3.95 0.87 1.17 0.91 3.80 0.49 

1D Emission 
Excitation 0.0478 0.0525 0.0348 0.65 1.58 1.15 2.60 0.59 0.83 0.61 2.55 0.33 

Compress Full 
MLPARAFAC  

Sample   
Emission 
Excitation 

0.0642 0.0719 0.0491 0.89 2.06 1.60 3.63 0.81 1.13 0.88 3.58 0.47 
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Table 4.2 Results obtained by different algorithms when applied to different arrangements of Data Set 2 Row(s) in bold represent(s) 
best case scenario. 

 RRMSEE  θ  (Emission Profiles) θ  (Excitation Profiles) 

Method Correlated 
Orders Ace Nap Phe PR Ace Nap Phe PR Ace Nap Phe PR 

PARAFAC - 0.0740 0.1019 0.0618 1.00 2.55 2.62 7.45 1.00 2.12 2.60 7.20 1.00 

Compress 
PARAFAC - 0.0721 0.0965 0.0572 0.95 1.94 1.98 6.71 0.84 1.21 1.12 3.45 0.48 

1A Emission 0.0580 0.0798 0.0488 0.78 1.61 1.65 5.58 0.70 1.02 0.92 2.96 0.41 

1A Excitation 0.0651 0.0861 0.0542 0.86 1.72 1.76 6.17 0.76 1.09 1.05 3.17 0.45 

1A Samples 0.0810 0.1105 0.0694 1.10 2.32 2.30 7.94 0.99 1.47 1.34 4.14 0.58 

1B Emission 0.0615 0.0796 0.0506 0.81 1.66 1.66 5.84 0.73 1.10 0.98 3.01 0.43 

1B Excitation 0.0620 0.0886 0.0523 0.85 1.80 1.77 6.11 0.77 1.15 1.02 3.17 0.45 

1B Samples 0.0846 0.1053 0.0708 1.10 2.26 2.20 8.08 0.99 1.42 1.34 4.11 0.58 

1C Emission 
Excitation 0.0433 0.0625 0.0372 0.60 1.32 1.31 4.47 0.56 0.79 0.72 2.36 0.32 

1C Emission 
Samples 0.0618 0.0845 0.0519 0.83 1.68 1.71 6.02 0.75 1.11 0.99 3.17 0.44 

1C Excitation 
Samples 0.0713 0.0950 0.0588 0.95 1.92 1.88 6.62 0.83 1.22 1.12 3.48 0.49 

1D Emission 
Excitation 0.0454 0.0641 0.0387 0.62 1.30 1.26 4.51 0.56 0.77 0.77 2.19 0.31 

Compress Full 
MLPARAFAC  

Sample   
Emission  
Excitation 

0.0606 0.0828 0.0524 0.82 1.62 1.72 5.88 0.73 1.10 1.00 2.89 0.42 
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Table 4.3 Results obtained by different algorithms when applied to different arrangements of Data Set 1. Row(s) in bold represent(s) 
best case scenario. 

 RRMSEE  θ  (Emission Profiles) θ  (Excitation Profiles) 

Method Correlated 
Orders Ace Nap Phe PR Ace Nap Phe PR Ace Nap Phe PR 

PARAFAC - 0.1119 0.1801 0.0700 1.00 8.12 2.41 10.56 1.00 4.53 7.24 8.52 1.00 

Compress 
PARAFAC - 0.1032 0.1650 0.0666 0.92 4.18 1.90 8.82 0.71 3.16 2.32 4.07 0.47 

1A Emission 0.0944 0.1478 0.0635 0.84 3.89 1.78 8.33 0.66 2.85 2.07 3.69 0.42 

1A Excitation 0.0955 0.1587 0.0636 0.88 4.09 1.89 8.38 0.68 3.04 2.22 3.93 0.45 

1A Samples 0.0939 0.1477 0.0605 0.83 4.06 1.89 8.22 0.67 2.93 2.12 3.73 0.43 

1B Emission 0.0937 0.1546 0.0616 0.86 3.99 1.78 8.34 0.67 2.88 2.16 3.72 0.43 

1B Excitation 0.1004 0.1585 0.0605 0.88 4.14 1.86 8.41 0.68 2.98 2.29 3.92 0.45 

1B Samples 0.0893 0.1570 0.0610 0.85 3.93 1.79 8.60 0.68 2.91 2.19 3.67 0.43 

1C Emission 
Excitation 0.0979 0.1402 0.0560 0.81 3.87 1.69 7.95 0.64 2.73 2.04 3.51 0.41 

1C Emission 
Samples 0.0944 0.1467 0.0625 0.84 3.93 1.72 8.37 0.66 2.92 2.13 3.58 0.43 

1C Excitation 
Samples 0.0931 0.1398 0.0598 0.81 3.78 1.80 7.82 0.64 2.86 2.01 3.57 0.42 

1D Emission 
Excitation 0.0956 0.1476 0.0560 0.83 3.65 1.75 7.66 0.62 2.68 2.08 3.53 0.41 

Compress Full 
MLPARAFAC  

Sample  
Emission      
Excitation 

0.0870 0.1319 0.0542 0.75 3.46 1.55 7.50 0.59 2.56 1.81 3.29 0.38 
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which include error covariance information about the composite mode formed by 

emission and excitation profiles, were significantly better than the performance of 

algorithms using error covariance information of either emission or excitation profiles 

alone (e.g. algorithms 1A and 1B). Further to this argument, insignificant advantages in 

terms of performance were found by introducing more localized information about the 

error structure, as can be seen by comparing the results obtained by algorithms 1A and 

1B when the same spectroscopic order (emission or excitation) was considered. This is a 

clear indication that the sources of  variation contributing to the error structure are a 

combination of effects, such as the multiplicative and offset contributions anticipated in 

the analysis of measurement errors, that permeate through the composite mode formed by 

the excitation and emission modes. Similar levels of improvement were also observed for 

Data Set 3 when information about the error covariance affecting the sample mode was 

introduced. This was an important confirmation that the sources of correlation found for 

the sample mode in the analysis of the measurement errors for Data Set 3 were real and 

the inclusion of them will translate in a better performance. 

The results for Data Sets 1 and 2 were very similar. This was anticipated due to 

the similar error structure found in both data sets. Methods 1C and 1D using error 

covariance matrices of a composite mode formed by the emission and excitation orders 

yielded the best results for both data sets, as was anticipated by the analysis of the error 

covariance. Improvements in performance in the range between about 60 and 80% were 

observed for different modes. There were not significant differences in performance 

observed between algorithms 1C, which use a pooled JK x JK error covariance matrix, 

and 1D, which use a set of JK x JK error covariance matrices. However, for method 1D, 

only two pooled error covariance matrices were used instead of a set of I individual error 

covariance matrices. This simplification was carried out to reduce the computational load 

of the algorithm, which would have been prohibitive. One of the error covariance 

matrices was constructed by pooling the odd-numbered samples and the other was 

constructed pooling the even-numbered samples. This partitioning was based on evidence 

found during the analysis of error covariance that suggested anomalous behaviour of 

some odd-numbered samples in the first half of the data set (see Section 4.4.1).  Although 
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no significant differences were found using algorithm 1D with this approach, it is 

difficult to generalize this conclusion to the case of I covariance matrices. 

The relative improvement in predictive ability of the compressed general 

MLPARAFAC algorithm was the most important difference between Data Set 3 and Data 

Sets 1 and 2. For the three data sets, a Tucker3 compression basis set formed by 12 

components for the sample and excitation modes and 20 components for the emission 

mode was employed. These parameters were selected on the basis of principles 

developed in a companion paper [44], but results were not especially sensitive to them as 

long as a sufficient number of components was used. Even though this alternative 

produced an improvement over the PARAFAC model for Data Sets 1 and 2, the results 

were worse than the those produced by most other algorithms. This situation can be 

explained by considering that, for Data Sets 1 and 2, the introduction of error information 

about the sample domain is likely to make the error covariance matrix less reliable due to 

the introduction of spurious correlations and a reduction in the number of replicates in the 

estimation process. On the other hand, the existence of an important source of error 

structure in the sample order for Data Set 3 makes the estimation of the error covariance 

matrix essential and more than makes up for a reduction in the number of replicates. 

In the application of the general MLPARAFAC methodology to compressed data 

sets, performance enhancement can result not only from the use of error covariance 

information, but also from the compression procedure itself.  To dissect the 

improvements from each of these sources, PARAFAC was also applied to the 

compressed  data. As can be seen from the results in Tables 4.1-3, the use of PARAFAC 

on the compressed data produced some improvements, but these are not as large as the 

improvements observed by using MLPARAFAC on the same data, indicating the benefit 

of using a weighted estimation method. 

Some interesting details emerge when the prediction performances are analyzed 

for each component. In all cases the concentration profile of phenanthrene yields the 

lowest error followed by acenaphthylene and naphthalene. However, the emission and 

excitation profiles of phenanthrene are poorly predicted in comparison to the other two 

compounds. This may be indicative of a trade-off trend in the estimation process that 
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needs to be studied more thoroughly. It is also worth noting that poor performance 

exhibited by Data Sets 1 and 2 when error information describing the sample domain was 

used mainly affected the estimation of the concentration profiles, indicating again the 

irrelevant information carried by these error covariance representations. 

Even though the time involved in the calculations of these models was not 

specifically tabulated, it typically ranged from one to a few hours. By comparison, 

PARAFAC models were computed in time windows of a few minutes to an hour, 

depending on the size of the data set and initial estimates. Therefore, the construction of a 

table similar to the ones presented here to choose the best arrangement and algorithm for 

a given data set is not recommended. However, the results presented here validate the 

analysis of error covariance as an exploratory strategy to choose the best arrangement and 

algorithm given the available data.  

4.6 Conclusions 
In this work, a number of practical aspects related to the application of the 

different simplifications of MLPARAFAC to experimental data have been explored.  The 

algorithms employed were described in an earlier companion paper [44] and these were 

applied to three sets of fluorescence EEM data from mixtures of three polycyclic 

aromatic hydrocarbons.  A number of important tools, previously introduced for the 

analysis of the error structure affecting two-way data [45], were extended to three-way 

data in this work. These tools were applied to the three different data sets to characterize 

the error structure. Two of the data sets exhibited error covariance along the composite 

mode consisting of excitation and emision modes, while the third exhibited error 

covariance along all three modes. These characterizations allowed estimation of an 

optimal representation of the error covariance matrix for each data set. When used with 

the corresponding algorithm, these error covariance matrices yielded the best models in 

each case. Different error structures and algorithms were employed, showing that the 

inclusion of statistically meaningful error information always produced an improvement 

in the estimates over conventional PARAFAC, even in cases where the error covariance 

information was incomplete. The level of improvement depends on the quality and 
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importance of the error information, but in this work, improvements over PARAFAC by 

as much as a factor of three were observed. 
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Chapter 5 
Approaching the Direct Exponential Curve Resolution Algorithm from 

a Maximum Likelihood Perspective4 

5.1 Abstract 

The implementation of Maximum Likelihood Parallel Factor Analysis 

(MLPARAFAC) in conjunction with the Direct Exponential Curve Resolution Algorithm 

(DECRA) is described. DECRA takes advantage of the intrinsic exponential structure of 

some bilinear data sets to produce trilinear data by a simple shifting scheme, but this 

manipulation generates an error structure that is not optimally handled by traditional 

three-way chemometrics methods such as TLD and PARAFAC. In this work, the effects 

of these violations are studied using simulated and experimental data used in conjunction 

with the well-established TLD and PARAFAC. The results obtained by both methods are 

compared with the results obtained by MLPARAFAC, which is a method designed to 

optimally accomodate a variety of measurement error structures. The impact on the 

estimates of different parameters linked to the data sets and the DECRA method is 

investigated using simulated data. The results indicate that PARAFAC produces 

estimates of much poorer quality than TLD and MLPARAFAC. Also, it was found that 

the quality TLD estimates was comparable or only marginally poorer than the 

MLPARAFAC estimates. A number of commonly used algorithms were also compared 

to MLPARAFAC using two sets of published experimental data from kinetic studies. The 

MLPARAFAC estimates of rate constants were more precise than the other methods 

examined. 

                                                 
4 Submitted to Analytica Chimica Acta (Submitted March 2005) 
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5.2 Introduction 

The method called the Direct Exponential Curve Resolution Algorithm (DECRA), 

introduced to the chemometrics literature by Antalek and Windig [1], was originally 

formulated as a manageable alternative to treat pulse-gradient-spin-echo (PGSE) NMR 

data for separating highly overlapped spectra. In PGSE-NMR experiments, the strength 

of two sets of magnetic field gradient pulses is varied to produce a data set in which the 

signal of each component forming the sample decays exponentially. In turn, this leads to 

two dimensions: one dimension is conventional chemical shift and the other is diffusion 

time. The self-diffusion coefficient is a property intimately related to characteristics of an 

individual sample, such as size, shape, mass and charge, as well as its surrounding 

environment, such as solution, temperature and aggregation state. This quantity can be 

calculated for each component from these experiments since the decays are a function of 

time. From an experimental point of view, the use of this technique is extremely 

advantageous since it provides a non-invasive and straightforward method to obtain both 

physical and chemical information. However, the main challenge of this technique 

resides in the mathematical implementation of data analysis. Two classes of techniques 

are commonly used to interpret the data: single channel methods and multivariate 

methods. These two approaches differ from a fundamental perspective. The single 

channel methods, represented by SPLMOD and CONTIN [2,3], rely on a hard model 

where pure or nearly pure channels are sought to use during the estimation process. 

Unfortunately, overlapping regions are commonly present in the spectra of real mixtures, 

hence single channel methods find it difficult to deal with complex mixtures. Unlike 

single channel methods, multivariate methods analyze the total information available in 

the data set simultaneously. The most important characteristic of this approach is the 

capability to analyze overlapping regions. Mathematically, the ideal method of choice is 

multivariate curve resolution (MCR) [4] due to the intrinsic bilinear structure of the data. 

However, it is well known that an infinite number of solutions are possible with MCR 

even when the model is estimated using several constraints. This deficiency led Schulze 

and Stilbs [5] to utilize a method proposed by Kubista [6] for the estimation process. The 

solution for Kubista’s method is equivalent to the already well-established generalized 
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rank annihilation method (GRAM), as shown by Sanchez and Kowalski [7]. GRAM 

solves the structural PARAFAC model [8] using an extended eigenvalue problem. The 

strict trilinear structure needed to estimate the model was theoretically sound but 

impractical from an experimental point of view since the proposed experiment required 

the use of a complicated data acquisition scheme in order to avoid peak shift and gradient 

level shift while a second sample was recorded. 

These problems motivated Antalek and Windig to propose DECRA. The 

innovative idea behind DECRA’s implementation is the use of the existing underlying 

exponential structure in the decay data, eliminating the need for a second sample. The 

method utilizes only a single sample described by an exponential decay. Then this sample 

is shifted in the “time domain” yielding a second sample which is proportional to the 

first. To illustrate this basic principle with a simple example, consider a vector of 

exponentially decaying values, d, as given in equation 5.1: 

 td ke−=  (5.1) 

where k is the decay constant and t represents a vector of uniformly increasing time 

values of length N. We can now parse this vector into new vectors, d1 and d2: 
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where S is a positive integer less than N. These vectors can be combined into a matrix D: 
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Here, t’ represents the vector formed by the first (N-S) elements of t and tS is element S of 

t. Note that matrix D has a rank of unity since the second column will simply be a scalar 

multiple of the first. Furthermore, the decay constant can be obtained from the ratio of the 

elements in the two columns: 
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Thus, this simple process of creating a matrix (two-way data) by offsetting a single vector 

(one-way data) in time, leads to a method which can extract the decay constant. With 

DECRA, this relatively simple concept is extended in a number of ways. First, DECRA is 

based on the idea that any system that can be decomposed into a linear combination of 

exponentials can be subjected to an analysis similar to above. Moreover, DECRA starts 

with bilinear matrices (two-way data) and, through the shifting process, generates 

trilinear data (three-way data). The decomposition of these matrices, which is described 

in greater detail in Section 5.2.1, yields spectral and decay constant information. 

This simple but elegant idea was easily extended to the PGSE-NMR bilinear data, 

yielding a two sample trilinear array suitable to be decomposed using GRAM. The use of 

DECRA instantly gained a number of advocates because of the possibility of obtaining 

unique solutions to the decomposition problem. GRAM was initially preferred over MCR 

and other multilinear methods [9] due to the non-iterative nature of the algorithm. 

The application of this technique to other types of data such as magnetic 

resonance spectra and images [1, 11-14], short-wavelength near-infrared [15], UV-Vis 

[16], solid-state NMR and mid-infrared spectroscopy [17], motivated the exploration of 

other decomposition methods such as direct trilinear decomposition (DTLD) [9], 

Levenberg-Marquardt-PARAFAC (LM-PARAFAC) [15], weighted curve resolution 

(WCR) [9] and successive Bayesian estimation (SBE) [18].  With the exception of 

DTLD, which is an extension of GRAM for cases where more than two samples are 

analyzed, the other methods share a common property that makes them different from 

GRAM. GRAM and DTLD provide exact solutions to the decomposition problem when 

the data are not corrupted by noise. For cases where noise is present, the solutions are 

approximated but not in an optimal sense. In contrast, all the other methodologies have a 

well-defined objective function and optimization strategy providing the optimal values 

when the noise follows a normal-iid (independent and identically distributed) structure. 

Unfortunately, these noise conditions are rarely met in real applications, making the 

estimation suboptimal. Furthermore, the situation becomes worse when the bilinear data 

are shifted in order to produce the second pseudo-sample, since some correlated errors 

appear as a consequence of the shift. Even though this situation has been barely 

recognized in the literature [19-20], Pedersen et al. [19] tried to correct for it by 
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introducing a shift scheme in which non-overlapping measurements are used to produce 

the second pseudo-sample, but their results were not promising.  Recently, a method 

called maximum likelihood parallel factor analysis (MLPARAFAC) was introduced [21-

23] to treat cases where the standard assumptions about the noise were violated for 

trilinear data. The presence of a trilinear structure corrupted by non-iid noise makes the 

matrices used for DECRA quite suitable for MLPARAFAC. These three-way data sets 

fulfill the trilinear condition needed to apply the PARAFAC model, and are constructed 

by shifting bilinear data so that a non-iid structure will result, making MLPARAFAC the 

most optimal alternative. This new method will be applied to two experimental data sets 

and some simulated data to show the improvements in terms of accuracy and precision in 

the estimates. 

5.3 Theoretical aspects 

5.3.1 DECRA 

In this paper, MLPARAFAC will be used to estimate the rate constants for two 

kinetic studies previously reported in the literature [9]. Accordingly, a first-order kinetic 

model will be used to illustrate the effects of applying the principle of DECRA to the 

structure of the chemical data and the noise. Suppose that a system under study involves 

consecutive first-order reactions as shown below: 

WVU 21 ⎯→⎯⎯→⎯ kk  

Let the M x N matrix Y be a collection of spectra obtained during the time course of the 

reaction, with M equidistant time points at N wavelengths for the mixture of the three 

species. Assuming the Lambert-Beer’s Law holds, Y can be decomposed into the product 

shown in equation 5.5: 

 Y = FLT + E (5.5) 

where every row in Y denotes a spectrum recorded at certain time. F is an M x P matrix 

(P is the number of components) with the variation of the concentration profile in time 

for each component along each column. L is an N x P matrix containing the pure spectra 

for each component along the columns, and E is an M x N residual matrix that includes 
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model errors, experimental errors and instrumental noise. Analytically, the columns of F 

can be represented by the integrated rate laws shown in equations 5.6 to 5.8: 

 tf 1o k
UU eF −=  (5.6) 
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where fU, fV and fW are the concentration profiles of species U, V, W along the time 

vector t, respectively. Vector t is the sequence of uniformly spaced times at which the 

reaction is monitored and it is represented as: t = [t1 t2 … tM]T. o
UF is the initial 

concentration of component U. Equations 5.6 to 5.8 indicate that all of the columns of F 

(and therefore Y) are exponentials or combinations of exponential equations.  The 

bilinear decomposition of Y can be equivalently expressed as shown in equation 5.9 

when equation 5.5 is expanded and the similar terms are grouped: 
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ke−= , ta 2
2

ke−= , a3 = e0t, b1= gU + kgV – (k-1)gW, b2 = k(gW – gV) and b3 = gW  

with k = k1/(k2 - k1). The concentration profiles fU, fV and fW are rearranged into 

exponentially decaying functions a1, a2 and a3, and the columns of B are linear 

combinations of the spectra of U, V and W, designated by gU, gV and gW, respectively. 

Therefore, the response matrix Y consists of linear combinations of exponentially 

decaying functions, which justifies the implementation of DECRA. The matrix Y (M x N) 

is used to build two matrices, X1 and X2, partitioning Y with a constant time shift S as 

shown: 
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Equations 5.11 and 5.12 show the factorization of both matrices using the bilinear model 

shown in equation 5.5: 
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Equation 5.12 can be rewritten as equation 5.13 by using the intrinsic structure present in 

the exponential profiles shown in equation 5.3: 
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This transformation makes X1 and X2 appears as two parallel matrices with different 

contributions to the same concentration and spectral profiles. In other words, this 

partitioning strategy produces trilinear data (as represented in equation 5.14) that can be 

decomposed using different algorithms. 

 [ ] )( TT
121 BCIAXXX ⊗== aa  (5.14) 

Here Xa is the (M-S) x 2N matrix representing the M-S x N x 2 array X unfolded to retain 

mode A. Ia (P x P2) is the unfolded superdiagonal “identity” matrix of order P used to 

obtain the column wise Kronecker product of the loadings for modes B and C. Matrix C 

holds a new set of loadings pertaining the reaction rate constant as shown in equation 

5.15. 
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This methodology has been further extended to cases in which three or more 

slices are generated [9] using the same shift S. The argument given in the original paper 

is that this can be advantageous in terms of noise reduction. The procedure is similar to 

the two-slice case, but in this case (K-1) estimates (i.e. K is the number of created slices) 

can be obtained for each rate constant, and these can be averaged to obtain a better 

estimate. For example, the composition matrix of the C matrix for K = 3 and P = 3 is 

shown in equation 5.16. 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−−

−−

SSkSk

SSkSk

eee
eee

0

0

21

21

111
C  (5.16) 

So far, the authors have used the standard notation employed in previous papers to 

introduce DECRA in which mode A (rows) of the three-way array (I x J x K) represent 

the concentration profiles (time), mode B (columns) represents the spectra (wavelength) 

and mode C (slices) represents the rate constants. However, in order to maintain a 

consistent notation with the previous MLPARAFAC papers [21-23], in this paper the 

trilinear data will be arranged in a fashion such that the time domain is represented by 

mode B, mode A will carry spectral information and mode C will carry information about 

the rate constants. This permutation pre-step is due to the loss of symmetry of the 

PARAFAC model due to the introduction of the error information as explained in 

reference 22. The value for I will be equal to the number of spectral channels N, and K 

will be the number of slices that will be used.  The value of J will be a function of the 

original number of time points M, the data shift value S, and the number of slices K via 

equation 5.17: 

 SKMJ )1( −−=  (5.17) 

5.3.2 Noise considerations 

Up to this point, the DECRA procedure has been illustrated by using the part of 

the data that is related to the underlying deterministic structure. However, the 

manipulations are carried out over all components of the acquired data, and therefore they 

are consequently carried out over the noise structure as well, leading to some artificial 

correlations among the elements when the trilinear data are analyzed. This is a 
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consequence of the shifting strategy, which copies measurement errors along with the 

data when creating a new slice of the three-way array, leading to perfectly correlated 

noise among the slices. Even for the simplest scenario, where noise in the original matrix 

is independent and identically distributed, the pattern of correlation is going to be 

considerable.  This is illustrated in Figure 5.1, which shows the relationship among the 

measurements (and therefore measurement errors) in the folded and unfolded arrays for a 

simple 3 x 5 matrix with S = 1 and K = 3.  
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Figure 5.1. Illustration of the DECRA procedure and its effects on the error structure. 

The I x J x K array is unfolded to retain mode A, which is the spectral order. This gives 

an I x JK matrix. Because of the shifting process, a certain number of measurements will 

be repeated among the slices (unless S > (M/K) + 1). This means that the measurement 
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errors for repeated measurements will be perfectly correlated, leading to a near band-

diagonal structure in the JK x JK error covariance matrix for the rows of the unfolded 

matrix, Xa, as shown in Figure 5.1. The error covariance matrix is not perfectly band-

diagonal because there are some unrepeated measurements in each slice, so the bands off 

the main diagonal have some uncorrelated measurements. For iid measurement noise, all 

of the non-zero elements of this matrix will be equal to σ2, the variance of the 

measurement errors. In practice σ2 would not need to be known, since only relative 

magnitudes are important in maximum likelihood estimation. For iid noise case, the error 

covariance matrix will be the same for all of the rows of Xa, and the total number of 

bands (including the main diagonal) will be 2K-1 (except when S > (M/K) + 1, where 

there will only be the main diagonal). 

Figure 5.2 shows the effect of various values of the number of slices (K = 2, 3, 4) 

and shift parameter (S =3, 6, 11) on the structure of the error covariance matrix for Xa in 

the iid noise case. This figure assumes that the total number of time points is 36, which 

together with K and S, will define the dimension J of X (as given in equation 5.17) and 

hence the dimension of the unfolded matrix, Xa, and the error covariance matrix, Ψa. The 

reduction in size for the time mode is the most important effect related to the increment 

of the shift step S, although it will also affect the length of the bands off the main 

diagonal and eliminate them when S is larger than M/K.  A case where the value of S is 

larger than this limit is represented at the bottom right of Figure 5.2. As mentioned 

earlier, such a case where the shift was conveniently made to eliminate correlation did 

not produce good estimates, as reported in reference 19. 

Real error structures are much more complex than the iid scenario depicted above. 

PGSE-NMR data and spectrophotometric-kinetic data, which are the most common types 

of bilinear data used in conjunction with DECRA, are already permeated by correlated 

noise due to the continuous way in which the data are recorded. This produces a temporal 

noise correlation related to experimental variables (e.g. start time, gradient variations, 

temperature, instrument drift, etc.) along the sample mode, which will also combine with 

correlation that arises from factors such as cell positioning and cross talk among different 

channels in the spectral domain. The effects on both orders will readily interact due to 
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experimental design factors. Therefore, the correlation pattern in these cases will be much 

more complex than the cases represented in Figures 5.1 and 5.2. This extreme departure 
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Figure 5.2.  Illustration of the relationship between the error structure and the values of 
the shifting parameter (S) and the number of slices (K). In this example M =36, S = 3, 5 
and 11, and K = 2, 3 and 4. 

from the expected iid noise characteristics should have an impact on the estimation 

process. The main aim of this paper is to investigate the extent of this impact by 

comparing the results of different estimation methods with the results of MLPARAFAC 

for two well-studied data sets and a number of simulated data sets. 

It should be noted that there are not widely accepted criteria given in the literature 

for the selection of values of S and K. Different selection strategies, ranging from 

empirical expertise to trial-and-error, are usually employed.  In general, only anecdotal 

explanations, such as the relationship between exponential decay rate and the shift 
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parameter [16] and the relationship between the number of slices and noise reduction 

during the estimation process [9], have been given as rational reasons for these 

approaches. For this reason, a variety of S and K values will be examined in this study. 

5.3.3 MLPARAFAC 

MLPARAFAC is an errors-in-variables modeling method that accounts for 

measurement errors in the estimation of model parameters for trilinear data.  It is an 

optimal modeling method in a maximum likelihood sense for functional models with no 

errors in the model equations. It is a natural extension to PARAFAC of the MLPCA 

method introduced by Wentzell et al. [24].   The mathematical aspects of the algorithm 

have been described in detail elsewhere [21,22] to allow the principles to be readily 

applied.  There are a number of simplified algorithms that can accommodate a variety of 

error structures, such as heteroscedastic and correlated noise in one and two orders. Also, 

when correlation is affecting more than two orders, the more general algorithm is 

normally used after a compression step [22] to make the size of the data manageable. All 

of the algorithms have excellent convergence characteristics because their core is based 

on the same alternating least squares procedure as the original PARAFAC. The statistical 

properties of these algorithms have been tested using simulated data, and the 

corresponding improvement in the quality of parameter estimates has been demonstrated 

using simulated and experimental data [22,23]. 

Two different MLPARAFAC algorithms will be employed in this work due to the 

expected error characteristics of the trilinear data obtained after the application of 

DECRA. Initially, it will be assumed that the experimental data are corrupted by iid noise 

and the only source of correlation is related to the data shift. In such a case, elements 

along the time domain in different slices will be affected only by the repetition, as shown 

in Figure 5.1. In this case, a theoretical error covariance matrix can be formulated from 

knowledge of the shift value, S, the number of slices used, K, and a global estimate of the 

error variance. This error covariance matrix will be used with the MLPARAFAC 

algorithm designed to handle the same correlation structure affecting two orders (i.e. 

simplified algorithm 1C in reference 22). This algorithm, which will be referred to as  

S-MLPARAFAC in this work, minimizes the following objective function: 
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 ]))(~())(~[( TT1T BCAXΨBCAX ⊗−⊗−= −
aaatracef  (5.18) 

Here Xa is an I x JK matrix representing the trilinear data unfolded by preserving mode A 

(spectral mode). A~  is an I x P2 matrix, which is a compact representation of mode A 

(spectral information, I x P) multiplied by the P x P2 unfolded superdiagonal matrix of 

order P (in this case P = 3), aAIA =
~ . B is a J x P matrix carrying the exponential decay 

profiles. C (K x P) will have information regarding the rate constants. Finally, aΨ  is the 

JK x JK error covariance matrix describing the variance/covariance structure among the 

elements in mode B along different slices. It is assumed for this algorithm that the error 

covariance matrix is the same for all the rows. Usually, this error covariance matrix is 

calculated using replicate measurements, as has been discussed elsewhere[21-24], but in 

this case, a theoretical error covariance matrix considering only the shifting process will 

be used, since it is assumed that the measurements are corrupted by iid noise. It is likely 

that this will not be the most optimal choice, but it will provide an excellent pivotal 

benchmark to compare methods that do not include any information about the error 

structure with a method that includes all the available information about the error 

structure. 

 The general MLPARAFAC (G-MLPARAFAC) algorithm will be the algorithm 

of choice to include all the available information about the error structure. This is 

motivated by the anticipated existence of sources of correlation affecting all the orders. 

The general algorithm minimizes the following objective function: 

 [ ]{ } [ ]{ })()()()()()( TT1TTT
aaaaa vecvecvecvecf IBCAXΩIBCAX ⊗⊗−⊗⊗−= −  (5.19) 

The only difference of this equation with respect to the previous equation is that, due to 

the generalized error structure, the error covariance matrix aΩ must be IJK x IJK in order 

to include all the necessary information. Therefore, the estimation process has to be 

carried out using the vectorized representation of the measurements and the PARAFAC 

model.  Even for small arrays, an IJK x IJK matrix is generally very large, making 

necessary the use of a compression step. In this work, the previously formulated 

operational procedure depicted in Table 5.1 of reference 22 will be used. The 

MLPARAFAC estimates will be compared with estimates obtained by a number of 
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methods previously used with the experimental data sets. For the case of simulations, the 

estimates will be compared with TLD estimates (equivalent to GRAM when K = 2) and 

standard PARAFAC, since they represent the sub-optimal but fast methods, and the 

optimal methods assuming iid noise characteristics, respectively. 

5.4 Experimental 

5.4.1 Simulated data 

Simulations are used in this work to characterize the performance of different 

representative estimation methods in terms of accuracy and precision, since the true 

values of the parameters are known in advance. Therefore, the data were constructed to 

closely resemble the experimental data sets used in this paper, which follows the three-

component bilinear system as shown in equation 5.5. For the true signal part of the 

simulated data, the first-order consecutive reaction, already described in Section 5.2.1 of 

this paper, was used as a model kinetic system. The concentration profiles are decaying 

functions governed by the reaction constants k1 = 0.30 and k2 = 0.05 respectively. The 

time range was 0 to 20 min with increments of 0.2 min (M = 101). Pure spectra were 

simulated with Gaussian peaks for the three individual species over a range of 100 

channels with increments of 1 nm. The peak maxima of the species U, V and W were at 

channels 22, 72 and 52 respectively and widths corresponded to σ = 15 to simulate a 

strong spectral overlap. The concentration profiles and pure spectra of the individual 

species are shown in Figure 5.3. 

For the noise contribution of the simulated data, different scenarios were 

generated. Initially, a matrix E of random numbers with elements characterized by iid-

normal noise was created. Three levels, with standard deviations equal to 0.1%, 1% and 

2% of the maximum absorbance of the simulated spectrum at time zero, were used. As 

mentioned in Section 5.2.2, the kinetic data usually used in conjunction with DECRA are 

corrupted by correlated noise affecting both time and spectral modes. Therefore, in order 

to mimic these cases, a two-dimensional moving average filter block was convolved with 

the error matrix E before it was added to the error-free measurements. At the boundaries  
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Figure 5.3. Concentrations profiles (A) and spectra (B) of the compounds employed in 
the simulations. 

of the error matrix, the filter was wrapped around to the opposite side in order to 

eliminate edge effects. Although this approach is not likely to reflect the actual 

correlation structure in experimental data, it represents a general case for which the 

degree  of  correlation  and  the  resultant  level  of noise  can  be  controlled. The filtering 

procedure was carried out in an element-wise manner by defining a M x N matrix Fmn 

containing the filter coefficients applied to the error matrix E to give the filtered error 

element Emn. Figure 5.4 shows a pictorial representation of F11, where the filled squares 

show the position of the filter coefficients for a 3 x 3 filter matrix. For F12 the squares 

shift right and for F21 they shift down. The correlated noise matrix can be obtained by 

iterating through equation 5.20: 
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 )()( T EFE vecvec mn
correlated
mn =  (5.20) 

It is worth noting that the convolution with this filter will produce some attenuation of the 

error variance in addition to the introduction of correlation. The level of attenuation is 

given by equation 5.21: 

 ∑= 2
2

2

ij
unfiltered

filtered c
σ
σ

 (5.21) 

Here 2
filteredσ  and 2

unfilteredσ  are the noise variances of the filtered and unfiltered noise 

matrix, respectively, and the cij represent the coefficients for the smoothing filter used. 

For a simple moving average filter, all of the coefficients are the same and equal to the 

reciprocal of the number of coefficients. For example, for a 5 x 5 two-dimensional 

moving average filter, cij = 1/25 = 0.04. Therefore, to keep the level of noise variance 

consistent among the simulations, equation 5.21 was used to normalize the correlated 

noise levels. In order to introduce different levels of correlation, two-dimensional moving 

average filter blocks of sizes 9 x 9 and 43 x 43 were used. 
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Figure 5.4. Pictorial representation of the elements F11 and F12 of a 3 x 3 wrap-around 
moving average filter. 

Each simulated data set consists of ten replicates calculated using the same 

noiseless data and different realizations of the error structure. The replicates will have the 

double aim of allowing calculation of the error covariance matrices and the bias and 

variance components of the estimates. 
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5.4.2 Experimental data 

The two experimental data sets employed in this work were obtained from 

previously published studies from the laboratory of Prof. Age Smilde [9]. Data Set 1 

consisted of short-wavelength near-infrared (SW-NIR) spectra sequentially recorded in 

time during the epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone using tert-butyl 

hydroperoxide and Triton B as a catalyst. The proposed reaction mechanism consisted of 

two steps: 

DCBA 1 +⎯→⎯+
k  

DEBC 2 +⎯→⎯+
k  

Species A, B, C, D and E are specified in Table 5.1. No distinction is made between the 

cis and trans isomers (E) of the second step of the reaction since they are 

spectroscopically indistinguishable in SW-NIR. Species B is present in large excess, 

therefore the first and second steps of the reaction both become pseudo-first-order instead 

of second-order. Hence, equations 5.6 to 5.8 can be used to describe the concentration 

profiles of the reactant (A), intermediate (C) and main product (E) of the reaction 

respectively. Species A, C and E were monitored spectroscopically. 

Data Set 2 is a collection of UV-VIS spectra recorded in a consecutive fashion 

during the reaction of 3-chlorophenylhydrazonopropane dinitrile (U) with 2-

mercaptoethanol (V). The proposed reaction mechanism consisted of two steps: 

WVU 1⎯→⎯+
k

 

ZYW 2 +⎯→⎯
k

 

Species U, V, W, Y and Z are also specified in Table 5.1. Similar to the first case, V is 

present in large excess, so the first step of the reaction becomes pseudo-first-order instead 

of second-order. Hence, equations 5.6 to 5.8 can be used in order to describe the 

concentration profiles of U, W and Y respectively. In this work, species U (reactant), W 

(intermediate) and Y (product) were monitored spectroscopically. 
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Table 5.1. Species involved in Data Set 1 and Data Set 2 

Data Set 1 Data Set 2 

A: 2,5-di-tert-butyl-1,4-benzoquinone U: 3-chlorophenylhydrazonopropane dinitrile 

B: tert-butyl hydroperoxide V: 2-mercaptoethanol 

C: 2,5-di-tert-butyl mono-epoxide-1,4-            

benzoquinone 
W: Intermediate adduct 

D: tert-butyl alcohol  Y: 3-chlorophenylhydrazonocyanoacetamide 

E: cis and trans 2,5-di-tert-butyl di-epoxide-

1,4-benzoquinone 
Z: ethylene sulphide 

Both data sets used the same experimental set-up. A Hewlett Packard 8453 UV-

Vis spectrophotometer with diode array detection was used to measure spectra of the 

reacting system. For Data Set 1, a quartz cuvette with 10 cm path length was used to 

obtain spectra of the reaction mixture. For Data Set 2, a quartz cuvette with 1 cm path 

length was used. The experimental conditions for the two data sets are summarized in 

Table 5.2. 

Table 5.2. Experimental conditions used for Data Set 1 and Data Set 2 

Experimental conditions Data Set 1 Data Set 2 

Reaction temperature ( °C) 17 25 

Integration time (s) 1 1 

Sampling time (s) 5 10 

Total run time (s) 1200 2700 

Wavelength range (nm) 860-880 300–500 

Wavelength interval (nm) 1 1 

Number of recorded spectra 241 271 

To stress the dynamic spectral features for Data Set 1, second-derivative spectra 

were estimated using a third-order Savitzky–Golay filter [25] with a window size of 15 
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data points. Second-derivative spectra were calculated after subtracting the fourth 

recorded spectrum from all the other spectra remaining. The first three recorded spectra 

were not used for data processing because of the unsatisfactory reproducibility of these 

spectra as described in an earlier paper [26]. The small wavelength range 860–880 nm 

was used for data processing, since spectral features caused by the three species which 

were monitored (species A, C and E ) are located in this region. Data Set 2 was obtained 

by subtracting a spectrum of KH2PO4 buffer solution used as blank. The wavelength 

range 300–500 nm was used for data processing since there are only spectral features 

caused by species U, W and Y in this spectral range. Figure 5.5 shows spectra for the first 

replicate (i.e. batch) in each of these data sets. Spectra in both cases are shown after blank 

subtraction and, in the case of Data Set 1, after second-derivative filtering.  More details 

about the reactions, experimental set-up and preprocessing steps can be found in the 

original papers [9, 16]. 
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Figure 5.5. Representative spectra of the first replicate for Data Set 1 (top panel) and 
Data Set 2 (bottom panel). Only every tenth spectrum is shown for clarity. 
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5.4.3 Computational Aspects 

All the calculations performed in this work were carried out on a Sun Ultra 60 

workstation with 2 x 300 MHz processors and 512 MB of RAM and a 3.2 GHz Pentium-

IV PC with 1 GB of RAM. All programs were written in-house using Matlab 6.0 (The 

MathWorks Inc., Natick, MA) with the exception of the TLD, PARAFAC and 

TUCKER3 functions that were run using the N-Way Toolbox [27]. 

5.5 Results and Discussion 
Both simulated and experimental data were used to investigate the performance of 

different estimation methods for DECRA transformed data under a variety of conditions. 

The metric chosen for this comparison was the mean squared error (MSE), as shown in 

equation 5.22, for the case of simulated data: 
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In this equation, R is the number of replicate experiments and θ   represents the parameter 

estimated (k1 and k2 in this work). For simulated data, the true value of the parameter 

(θ° ) is known, so the MSE can be further broken down into the two terms representing 

estimates of the precision (variance) and accuracy (bias), respectively. For experimental 

data, the true parameter value is unknown, so MSE is estimated from the mean 

parameter:  

 ∑
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MSE
1

2)(
1

1 θθ  (5.23) 

5.5.1 Simulated data 

Different contributors can affect the quality of the rate constants estimated 

through the DECRA approach. These contributors can be grouped into two different but 

related classes. The first class consists of attributes related to intrinsic properties of the 

original data set, such as the dimensions of the data, the level and structure of the noise, 

the spectral characteristics, and the values of the decay constant imbedded in the data. 

The second class consists of features related to the application of the mathematical 
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methods, such as the choice of S and K, the decomposition algorithm employed and (in 

the case of MLPARAFAC) the quality of the error covariance estimates. These two 

classes of parameters are related to one another. For instance, aspects such as the level 

and structure of the noise will have an impact on the quality of results obtained by 

different decomposition algorithms. The structure of the measurement errors in the three-

way array, as well as its size, will depend on the dimensions of the original matrix and on 

the choice of the shift parameter, S, and the number of slices, K. Other parameters, such 

as number of replicates used to estimate the error covariance matrix and the use of 

compression can also play an important role in the quality of the estimates. Therefore, in 

order to analyze all of these factors, the performance of TLD, PARAFAC and 

MLPARAFAC (as representative of eigenvalue, least squares and maximum likelihood 

formulations, respectively) will be evaluated for scenarios with different levels of noise 

and correlation that have been modified with different combinations of S and K.  

Two types of plots are used to analyze the influence of these parameters in the 

estimation of k1 and k2. The first type of plot, exemplified by Figures 5.6 and 5.7, is a 

relative plot to more readily compare the quality of the estimates for PARAFAC and 

TLD with respect to MLPARAFAC. The logarithm of the ratio of the root mean square 

error (RMSE) for the method in question and MLPARAFAC is shown for different 

scenarios with different values of S and K. The logarithm is used for scaling convenience 

since it can accommodate wide differences in magnitude and is symmetric in the 

visualization of relative performance.  The second type of plot, exemplified by Figures 

5.8 and 5.9, shows the MSE divided into its contributors, variance and bias, for different 

values of K and S to assess the influence of different parameters in the absolute value of 

the errors. 

The first important conclusion that can be drawn from the results of the 

simulations shown in Figures 5.6-5.9 is the obviously poor performance of conventional 

PARAFAC for parameter estimation. This is clearly shown in Figure 5.6, where the 

RMSE for PARAFAC can be as much as three orders of magnitude worse than that for 

MLPARAFAC. In some cases, PARAFAC failed to converge to real-number solutions, 

hence  some  of  the  lines  in  Figure  5.6  are  discontinuous.  The  poor  performance of  
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Figure 5.6. Comparative plots illustrating the relative performance of PARAFAC with 
respect to MLPARAFAC in the form of the logarithmic ratio of the root-mean-squared 
error of both methods. The different plots show the results for different levels of noise 
and error structures in the estimation of k1 (left column) and k2 (right column). 

PARAFAC was found to be a general trend that was encountered in all cases (e.g. k1, k2, 

different combinations of K, S, error structures and noise levels). This indicates that 

measurement error correlation introduced by DECRA (even in the case of iid noise in the 

original data) will have an enormous negative impact on the estimates. This is consistent 

with the fact that conventional PARAFAC is rarely used for DECRA, and more 

constrained algorithms (e.g. LM-PARAFAC) are typically employed. Also, for the 

PARAFAC estimates, Figures 5.8 and 5.9 suggest that variance, as opposed to bias, was 

the major contributor to MSE in most scenarios. Because of the generally poor results 

obtained by PARAFAC, this decomposition approach will not be treated in detail in the 

remainder of this discussion. 
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Figure 5.7. Comparative plots illustrating the relative performance of TLD with respect 
to MLPARAFAC in the form of the logarithmic ratio of the root-mean-squared error of 
both methods. The different plots show the results for different levels of noise and error 
structures in the estimation of k1 (left column) and k2 (right column). 

A second important observation that can be made from the results shown in 

Figure 5.7 is that MLPARAFAC and TLD provided similar results for different 

combinations of K and S. Even though this robustness in the results was expected for 

MLPARAFAC due to its use of error information, it was completely unexpected for 

TLD. It has been extensively reported in the literature [28] that GRAM and TLD are 

suitable for cases where the signal-to-noise ratio is very high, since they give an exact 

solution for the noise free data, but they lack a clear objective function to be minimized 

when noise is present.  Although Figure 5.7 shows some stochastic variations in relative 

performance, as well as some systematic differences that are elaborated upon below, the 

differences between MLPARAFAC and TLD are not dramatic. 
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Figure 5.8. Comparative plots illustrating the absolute performance of TLD (left 
column), PARAFAC (center column) and MLPARAFAC (right column) in the form of 
the mean-squared error dissected into its two components, bias2 and variance. The 
different plots show the results in the estimation of k1 for different levels of noise and an 
iid error structure affecting the two-way data. 

In Figures 5.7a and 5.7b, which represent cases where the noise in the original 

data is iid, no important differences in performance can be observed for different levels 

of noise. This indicates the introduction of non iid-noise (correlation) due to the inherent 

shifting in DECRA does not seem to adversely affect TLD. A probable explanation is 

that the amount of noise introduced was not high enough to reach a point in which TLD 

becomes significantly suboptimal. Since the structure of the error covariance matrix for 

these simulated cases is exactly known (because of the assumed iid structure of the 

original data), these results indicate that the similarity in performance of TLD and 

MLPARAFAC is a merit of TLD, and not connected with a poor estimation of the error 

covariance matrix used with MLPARAFAC due to the limited number of replicates used. 
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Figure 5.9. Comparative plots illustrating the absolute performance of TLD (left 
column), PARAFAC (center column) and MLPARAFAC (right column) in the form of 
the mean-squared error dissected into its two components, bias2 and variance. The 
different plots show the results in the estimation of k2 for different levels of noise and an 
iid error structure affecting the two-way data. 

In contrast to Figures 5.7a and 5.7b, Figures 5.7e and 5.7f show the effect of 

extensively correlated noise (filter size = 43) on the estimation for different settings of K 

and S. In this case, the existence of highly correlated noise affecting the bilinear data and 

the introduction of correlation due to the shifting affect the TLD estimates, yielding cases 

where MLPARAFAC performed better than TLD. These differences are observed for 

both rate constants at different levels of noise, although the best examples are for the 

scenarios with high S/N ratios. Although error covariance matrices in these cases were 

estimated from replicates, it seems that the amount of correlated noise is sufficiently 

important to influence the results and diminish the effects of a limited number of 

replicates and the use of a compression preprocessing step. 
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Figures 5.7c and 5.7d show the results for intermediate cases where correlated 

noise affecting the bilinear data was also present, but was not very pervasive (filter size 

equal to 9). MLPARAFAC outperformed TLD for the scenario with the highest S/N 

(noise equal to 0.1% of the maximum), but differences in the two methods are not 

distinguishable as the S/N decreases. These results are consistent with those observed in 

the preceding paragraphs and suggest that MLPARAFAC will provide better 

performance than TLD for cases where there is significant correlated noise in the original 

data and the S/N is relatively high.  

While Figures 5.6 and 5.7 show the relative performance of the three methods 

considered, information about the absolute performance is lost.  Figures 5.8 and 5.9 show 

the absolute mean-squared error, broken down into bias and variance contributions, for 

the estimation of k1 and k2, respectively, for different settings of K and S in cases where 

different levels of iid noise are corrupting the original data. As noted above, the 

performance of PARAFAC was comparatively very poor and, although it is included in 

the figures for completeness, it will not be discussed in detail. In the examination of the 

results for TLD and MLPARAFAC, there is a significant variation in the results due to 

the complex relationship between the selection S and K and features such as the size of 

the three-way data matrix, its error structure, and the information contained in the 

individual slices. Because of this, some combinations of S and K produce estimates that 

do not correspond to apparent trends. These cases will be easier to observe in the absolute 

plots, since the relative plots will diminish this behavior. 

One of the first noteable features of Figures 5.8 and 5.9 are the differences in the 

quality of the estimates of k1 and k2 for different values of K and S. As the values of S and 

K increase, the MSE values for k1 also increase, while the MSE values for k2 remain 

relatively stable. It is likely that this behavior arises from the difference in the magnitudes 

of k1 and k2. Since k1 is much larger (faster decay) than k2, increasing the values for K 

and/or S will employ a proportionately larger amount of data at extended times, where the 

variation in the signal due to k1 becomes very small in comparison to the level of noise, 

introducing a large amount of variance in the estimates. On the other hand, the small 

value of k2 will provide a slow decay, which in turn will translate into good S/N ratios 

and estimates of similar quality for different combinations of K and S. 
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Figures 5.8 and 5.9 also show that, as expected, the quality of the estimates 

decreases with the level of noise introduced in the original data.  In most cases, however, 

the quality of the estimates was good, typically below 1% error in the corresponding 

parameter, although there is a wide variation.  The plots show that most of the MSE arises 

from variance contributions in most cases, with the exception of the estimation of k2 in 

the lowest noise case, which was dominated by bias for both TLD and MLPARAFAC. 

It is important to note that, although Figures 5.8 and 5.9 show only the cases 

where the original data was affected by iid noise, the same trends were found for cases 

where correlated noise was affecting the original data. However, these results are not 

shown for conciseness.  

5.5.2 Experimental data 

5.5.2.1 Analysis of the error covariance matrices 

Figures 5.10 and 5.11 show mesh plots of the pooled error correlation matrices for each 

mode of Data Sets 1 and 2, respectively. In both cases a very strong pattern of correlation 

for the spectroscopic and the time modes is observed. The sources of this correlation are 

likely to include offset effects  due to variability in cell positioning, long- term instrument 

drift, temporal correlation during scanning, temporal variation in reaction initiation, and 

(for Data Set 1) effects related to derivative filtering. No attempt was made to decompose 

these complex error covariance structures into individual contributions, but some cursory 

observations can be made. For Data Set 1, the correlations in the spectral mode show a 

systematic variation, with both positive and negative correlations in the measurement 

errors. Correlation in the time domain was essentially flat, with values off the main 

diagonal around 0.75, which suggests a significant offset contribution coupled with a 

contribution from iid noise.  For Data Set 2, the error correlation in the spectral domain 

again shows a complex structure, similar in nature to the spectral error correlation in Data 

Set 1, but with no negative correlation. Some regions of small correlation are evident. In 

the time domain, Data Set 2 also shows a large flat region similar to the case of Data Set 

1, but in this case the correlation values are smoother and approach unity, likely because 

the  contribution  of  iid noise is smaller, as is evident in Figure 5.11. Also, there is a band  

 



 

 194

Wavelengths (nm)

Wavelengths (nm)

Time (sec)
Time (sec)

A

B

 

Figure 5.10. Pooled correlation matrices for each mode of Data Set 1 (SW-NIR). Plots A 
and B show the correlation matrix for the spectral and the time domain of the two-way 
data, respectively.  
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Figure 5.11.  Pooled correlation matrices for each mode of Data Set 2 (UV-Vis). Plots A 
and B show the correlation matrix for the spectral and the time domain of the two- way 
data, respectively.  
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of low correlation near the edges of the correlation matrix. Although the source of this 

behavior is unknown, it may be related to variations in the start time of the reaction. 

These correlation patterns indicate that the use of the general MLPARFAC 

algorithm will be necessary, since both modes are affected by correlated noise and the 

shifting strategy will introduce correlation in the third mode. The existence of correlation 

in more than two modes precludes the use of any of the published simplifications of the 

general algorithm [22] to obtain an optimal solution. However, for comparison purposes, 

the deterministic model of the error covariance matrix assuming iid errors (i.e. only 

considering the correlation related to the shifting procedure) was also employed. This 

simplified algorithm will be referred to as S-MLPARAFAC, while the generalized 

algorithm will be referred to as G-MLPARAFAC. It is important to note that, in order to 

use G-MLPARAFAC, a compression of the trilinear data set, as explained in reference 

22, needs to be carried out. For both data sets, this was done using 21 Tucker3 factors for 

the spectral and the time modes. The mode related to the shifting scheme was not 

compressed due to its small dimension. 

5.5.2.2 Data Analysis 

Figures 5.12 and 5.13 depict the estimates for the rate constants and their standard 

deviations for Data Sets 1 and 2, respectively, when different values of K (2 to 5) and S 

(20 to 70 for K = 2 and 3, and 20 to 30 for K = 4 and 5) are used in conjunction with the 

G-MLPARAFAC, S-MLPARAFAC and TLD algorithms. It is important to note that the 

variations in the estimates from different replicates (represented by the standard 

deviations) can arise from a variety of sources which include model errors (e.g. kinetic 

model, Lambert-Beer Law), experimental errors (e.g. concentration errors, time errors) 

and instrumental noise (e.g. variation of the spectrometer). The combined effect of all of 

these sources is known as the upper error limit [15]. There are a number of approaches 

[15, 20] to obtain estimates that represent the lower error limit, which is mainly related to 

instrumental noise, but none of these were used in this work, since the upper error limit is 

more relevant in the context of maximum likelihood estimation, which considers all 

sources of error. 

Estimated values for Data Set 1 for different combinations of K and S show 

substantial standard deviations for the individual cases, as well as among the different 
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combinations, suggesting that the quality of the data was poor. The variability was much 

lower for the estimates of k1 than for the estimates of k2 for all the estimation methods. In 

general, the estimates of the rate constants for G-MLPARAFAC are smaller than the 

other two methods, although they are typically within one standard deviation of those 

methods. In addition G-MLPARAFAC appears to provide the most precise estimates for 

both rate constants, but in only a few cases were these differences appreciably important.  
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Figure 5.12.  Comparison plots showing the estimates of k1 and k2 and their precision (as 
one standard deviation) obtained by G-MLPARAFAC, S-MLPARAFAC and TLD when 
different combinations of S and K are used for Data Set 1. 

S-MLPARAFAC estimates seemed to be of similar magnitude and quality to 

those provided by TLD in many cases, indicating that, despite the introduction of some 

weighting information, the results are not completely optimal, since other sources of 

variation (i.e. correlation among samples and channels in the bilinear data) are not 

included. However, it should be noted that, in spite of the relatively simple error model, 

the performance of S-MLPARAFAC was still far superior to conventional PARAFAC 

(results not shown), which typically converged to very poor or imaginary solutions. 
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Figure 5.13.  Comparison plots showing the estimates of k1 and k2 and their precision (as 
one standard deviation) obtained by G-MLPARAFAC, S-MLPARAFAC and TLD when 
different combinations of S and K are used for Data Set 2. 

For Data Set 2, estimated values for k1 and k2 are not affected by a high variability 

indicating that the quality of the data was excellent, as has been recognized in the 

literature [20]. For both rate constants, the estimates were very similar for different 

values of S when two slices were employed. When more than two slices were used, the 

standard deviation of the estimates increased for all methods when k1 was estimated and 

for both MLPARAFAC methods when k2 was estimated. In general, G-MLPARAFAC 

again appeared to provide the most precise estimates in most cases. It is important to 

note, however, that TLD provided estimates of high quality for both k1 and k2 at a small 

fraction of the time needed for the more computationally involved MLPARAFAC 

algorithms (seconds vs. hours).  

Despite the practical importance of testing new algorithms on experimental data, a 

drawback is that an absolute assessment based on a known “true” value cannot be made. 
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To put the results obtained here into an appropriate context, Figures 5.14 and 5.15 have 

been constructed to compare the MLPARAFAC estimates with other known approaches 

to kinetic rate constant estimation. Each method is shown by its 95% confidence interval 

ellipse (based on a bivariate normal distribution) that was constructed using data 

presented in the literature [9, 18]. It is worth noting that, although Faber has reported [20] 

that the estimation of k1 and k2 could be done independently (different pairs of K and S 

values for each rate constant) instead of finding a compromise value (same pair of K and 

S values providing a low variability for both rate constants), the second alternative will be 

used here to maintain the comparison consistent with previous studies. All of these 

methods are well-described in the literature [9], therefore only a brief summary is given 

here.  
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Figure 5.14.  Comparison plots showing the estimates of k1 and k2 and their confidence 
interval (as 95 % probability) obtained by different methods when the best combination 
of S and K values are used for Data Set 1. 

Classical curve resolution (CCR) is the successive two-step algorithm that utilizes 

the intrinsic bilinearity of the data set. Weighted curve resolution (WCR) is also an 

approach that exploits the intrinsic bilinearity of the data set, but in this case combining a 

soft model using singular value decomposition of the data set with a hard model 
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representing the concentration matrix.  Successive Bayesian estimation (SBE) [18] solves 

a sequence of univariate models in which the previous results are used to construct the 

“prior”.  The Levenberg-Marquardt-PARAFAC (LM-PARAFAC) algorithm combines 

one alternating least squares step of the PARAFAC algorithm with a sequence of 

nonlinear optimization steps that use the Levenberg-Marquardt algorithm. This method, 

as well as TLD, simplified MLPARAFAC (S-MLPARAFAC) and generalized 

MLPARAFAC (G-MLPARAFAC), uses the DECRA shifting scheme in order to obtain 

trilinear data that will provide the rate constants via equation 5.15. 
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Figure 5.15.  Comparison plots showing the estimates of  k1 and k2 and their confidence 
interval (as 95 % probability) obtained by different methods when the best combination 
of S and K values are used for Data Set 2. 

Figure 5.14 shows the 95% confidence boundaries for all of these methods 

applied to Data Set 1. The confidence interval for the G-MLPARAFAC (K = 3, S = 55, k1 

= 0.250, k2 = 0.07, σ(k1) = 0.006, σ(k2) = 0.01, r = -0.62) method is the smallest, 

indicating that it yielded the most precise estimates for the rate constants. Simple 

inspection of the figure reveals a strong overlap in the confidence intervals for all 
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methods, suggesting a consistency in the results obtained. Even though S-MLPARAFAC 

(K = 2, S = 20, k1 = 0.22, k2 = 0.03, σ(k1) = 0.02, σ(k2) = 0.03, r =0.55) gave a smaller 

confidence region than most of the traditional methods, the size of its region is 

appreciably bigger than the region for G-MLPARAFAC, probably because some 

important information (correlation in the spectral and time modes) was not included 

during the estimation process. Although the precision of the estimates does not guarantee 

accuracy, these results reinforce confidence in the method. 

In contrast to Data Set 1, the different estimates for Data Set 2 were widely 

spread, as can be seen in Figure 5.15. It was somewhat disturbing to find that the values 

obtained in this work for the TLD estimates of Data Set 2 and its standard deviations 

were different from those previously published [9]. The standard deviations obtained 

were about a factor of two smaller than the previously reported values. This situation was 

previously reported by Faber [20], and the differences were attributed to the existence of 

different TLD implementations. The confidence interval region for all traditional 

methods but the TLD used in this work were much bigger than both MLPARAFAC 

algorithms, indicating that the introduction of a weighting scheme is necessary to obtain 

better estimates. The confidence regions of G-MLPARAFAC (K = 3, S = 50, k1 = 

0.28403, k2 = 0.026241, σ(k1) = 5.1868 x 10-3, σ(k2) = 8.8338 x 10-5, r = 0.14) and S-

MLPARAFAC (K = 3, S = 70, k1 = 0.27951, k2 = 0.028765, σ(k1) = 4.3011 x 10-3, σ(k2) = 

1.5771 x 10-4, r = 0.32) were very similar in shape and size, possibly indicating that 

correlation due to shifting is more important than other sources of correlated errors in this 

case. On the other hand, the TLD results (from this work) (K = 2, S = 70, k1 = 0.28287, k2 

= 0.028767, σ(k1) = 4.9091 x 10-3, σ(k2) = 1.6859 x 10-4, r = 0.19) exhibit a confidence 

region that was also very similar in shape and size to both MLPARAFAC 

implementations. Qualitatively, this scenario seems to bear resemblance to the simulated 

case represented in Figures 5.8 and 5.9, where the level of noise and the amount of 

correlated noise were not very high. This scenario provided estimates where the main 

contributor to the mean-squared error for k2 was the bias and not the variance, with 

MLPARAFAC and TLD giving very similar results. This hypothesis is reinforced when 

these values are compared with the bias-corrected TLD estimates published by Faber [20] 



 

 202

(k1 = 0.29775 min-1 and k2 = 0.028837 min-1), indicating the excellent quality of both 

MLPARAFAC and TLD estimates, even though they are uncorrected estimates. 

5.6 Conclusions 
A number of important conclusions can be drawn from this work. First, through 

the use of simulated and experimental data, it was shown that MLPARAFAC can be 

applied to DECRA to produce results far superior to those generated by conventional 

unconstrained PARAFAC. This implies that an important reason for the failure of the 

traditional PARAFAC algorithm is its inability to accommodate correlated errors that 

arise from the shifting procedure in DECRA. Unlike TLD, MLPARAFAC has a well-

defined and rational objective function which makes use of measurement error 

information, but unlike some constrained PARAFAC algorithms, it makes no additional 

assumptions about the underlying model. 

A second important result of this study is the similarity of the performance 

observed for MLPARAFAC and TLD.  Although the performance of MLPARAFAC was 

somewhat better in a number of cases, the quality of results was comparable overall. The 

much greater computational efficiency of TLD is clearly an important consideration in 

this comparison, and these results support the widespread application of TLD to DECRA. 

Simulation studies suggested that the quality of results can be significantly 

affected by the selection of S and K, but optimal methods for their selection were not 

investigated.  As expected, the quality of the results diminished as the level of noise 

(correlated or uncorrelated) was increased. 

Two sets of published and widely-studied data were also used to investigate the 

performance of the MLPARAFAC algorithms, which were compared to a variety of other 

methods.  The experimental data sets exhibited strong correlations in both the time and 

spectral modes.  The application of the generalized MLPARAFAC algorithm produced 

the most precise estimates for the rate constants for both data sets.  A simplified 

MLPARAFAC algorithm, considering only correlation introduced by the shifting 

procedure, also produced good results. 

Although the results of this work did not indicate a clear superiority of 

MLPARAFAC over TLD, as had been anticipated, this is nevertheless useful in that it 

validates the application of TLD, which is a much faster algorithm. Moreover, this study 
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has demonstrated that the weakness of the conventional PARAFAC algorithm lies in its 

inability to properly treat correlated errors, and this can be overcome through the use of 

MLPARAFAC. 
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Chapter 6 
Conclusions 

6.1 Summary 

The evolution of analytical instrumentation has increased the amount and 

complexity of the measurements produced. This increment in complexity of the analytical 

data has been accompanied by a departure from the standard assumptions about the errors 

corrupting these measurements. A few examples of the sources producing these 

ubiquitous and pernicious effects are cell positioning errors, multiplicative noise effects, 

spatial or temporal correlation of detectors in spectroscopy, temporal correlation of pump 

noise in chromatography, and electronic or digital signal processing. These deviations 

make least squares estimation methods suboptimal from a statistical point of view. The 

only optimal means to account for the correlation in measurement errors is using a 

maximum likelihood approach to estimate model parameters that are most likely to give 

rise to the observed measurements.  For bilinear data, this problem has been addressed in 

the literature through the development of maximum likelihood principal component 

analysis (MLPCA) and related techniques, which have been shown to provide improved 

results where the effects of noise correlation are significant. The objective of this work 

was to extend the maximum likelihood approach to treat the parallel factor analysis 

(PARAFAC) model by formulating a method called maximum likelihood parallel factor 

analysis (MLPARAFAC). 

In Chapter 2, the basic principles of two algorithms for carrying out 

MLPARAFAC were introduced. The simplest of these algorithms was designed to work 

with cases where the measurement errors are non-uniform (heteroscedastic) but 

uncorrelated.  On the other hand, analytical data corrupted by errors characterized by any 

type of error covariance structure can be treated by the most general form of the 

algorithm. Unfortunately, the vectorized formulation used by the general algorithm 

precludes its use to treat typical experimental data sets because of memory 
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considerations. Therefore, two additional algorithms, based on exact simplifications of 

the error structure, were presented as exploratory alternatives to extend the maximum 

likelihood approach in a more manageable manner to data sets of typical size. The four 

algorithms were shown to produce maximum likelihood estimates through a comparison 

of the distribution of the objective function with the χ2 distribution.  It was also shown 

that the quality of the estimated loading vectors for MLPARAFAC was significantly 

better than for the PARAFAC models in cases where the error covariance matrix is 

known. In this work, the standard practice of expressing the estimation process by 

minimizing the different formulations of the same objective function was employed. It 

was later realized by the author that, even though this approach was optimal from a 

statistical perspective, it was not as efficient as it could be from a 

computational/numerical point of view, since it accounted for the loss of symmetry 

caused by the introduction of error information in a naive manner. 

Chapter 3 introduced a new approach which, in contrast to the standard practice, 

involved no alternation amongst objective functions to estimate the loadings for all the 

modes.  The new approach has the benefits of locating the noise information in one or 

two modes as a simple representation and using it equivalently to obtain the estimation 

equations for each mode. Using this approach, four algorithms for carrying out simplified 

variations of general MLPARAFAC when the data at hand are corrupted by correlated 

noise affecting one or two orders were described. For completeness, a compression step 

was included prior to the use of general MLPARAFAC for cases where the noise 

structure is affecting three modes and the volume of data precludes the use of general 

MLPARAFAC on the raw data. To test the optimality of these algorithms, a comparison 

of the distribution of the objective function with the χ2 distribution was carried out for 

data sets corrupted by noise realizations that follow the corresponding error structure. A 

number of simulated data sets were employed to illustrate that the use of simplified 

algorithms when the data at hand merit the simplification is beneficial from a 

computational point of view, and the quality of the estimates is improved when the data 

are treated with the algorithm designed to handle the corresponding error structure. Also, 

two simulated scenarios where the error structure assumed departs from the actual error 

structure were used to illustrate the importance of a thorough characterization of the error 
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covariance. Regarding the compression step used with the general formulation of 

MLPARAFAC, it was found that no significant differences were detected between 

Tucker3 and Tucker1 basis sets, at least for the data used in the simulation studies. 

In Chapters 2 and 3, a number of algorithms were developed and tested using 

simulated data. Even though simulated data are very convenient to test the statistical 

properties of these algorithms, the simulations had a very well defined error structure, 

making the process of choosing the simplification extremely simple, since information 

about the number of orders affected by the correlated noise and its structure were 

accurately known in advance. Practical applications are not characterized by this 

simplicity, making the decision process a more complex task. Therefore, in Chapter 4 

practical aspects related to the application of the different simplifications of 

MLPARAFAC to experimental data were explored using three sets of fluorescence EEM 

data from mixtures of three polycyclic aromatic hydrocarbons. Because of the different 

experimental design protocols used to acquire these data sets, two of the data sets 

exhibited error covariance along the composite mode consisting of excitation and 

emission modes, while the third exhibited error covariance along all three modes. These 

error structures were confirmed by the use of a set of novel tools, previously introduced 

for the analysis of the error structure affecting two-way data, and extended to three-way 

data in this work. This characterization process allowed estimation of an optimal 

representation of the error covariance matrix for each data set. The use of these optimal 

representations in conjunction with the corresponding algorithm yielded the best models 

in each case. In addition, different error structures and algorithms were employed, 

showing that the inclusion of statistically meaningful error information always produced 

an improvement in the estimates, by as much as a factor of three, over conventional 

PARAFAC, even in cases where the error covariance information was incomplete. 

In Chapter 5, the testing of MLPARAFAC algorithms was taken a step further 

when one of the simplifications and the general algorithm were used to estimate the rate 

constants of reactions for two widely-studied experimental data sets and a number of 

simulated ones. The algorithms were used in conjunction with the Direct Exponential 

Curve Resolution Algorithm (DECRA), a novel method to exploit the intrinsic structure 

present in exponential-decay bilinear data to produce three-way data. In all cases 
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(simulated and experimental) when MLPARAFAC was applied to DECRA, it produced 

results far superior to those generated by conventional unconstrained PARAFAC. These 

results were a clear indication that the failure of the traditional PARAFAC algorithm was 

linked to its inability to accommodate correlated errors that arise from the shifting 

procedure in DECRA. In contrast, TLD, which is usually regarded as a suboptimal 

estimation approach, provided estimates of comparable overall quality to MLPARAFAC, 

supporting the widespread application of TLD to DECRA. The experimental data sets 

employed in this work were characterized by correlations in both the time and spectral 

modes. The quality of the estimates obtained by the MLPARAFAC algorithms was 

compared with a number of algorithms previously used with these data sets. For both data 

sets, the generalized MLPARAFAC algorithm produced the most precise estimates for 

the rate constants.  Also, the simplified MLPARAFAC algorithm, considering only 

correlation introduced by the shifting procedure, produced good results. 

6.2 Future Avenues of Investigation 

The present work explored the introduction of measurement errors in the 

estimation of the PARAFAC model. As a result, a number of possible scenarios were 

typified and corresponding algorithms were formulated. However, in all of the cases, 

simulated as well as experimental, the data employed followed the structural model 

closely. Unfortunately, this is not always the case for experimental data sets. Depending 

on the severity of these deviations, mathematical constraints can be added to the 

estimation process. It is properly argued that the addition of constraints should be 

superfluous in the case of the PARAFAC model, since the presence of trilinearity assures 

the uniqueness of the solution. However, a number of practical motivations, such as 

accounting for deviations of the data from the trilinear model, avoiding degeneracy and 

numerical problems, achieving uniqueness in cases where ambiguous solutions are 

possible, and obtaining estimates that do not contradict a priori knowledge (i.e. require 

chromatographic profiles to be unimodal), can justify the use of constraints. The work 

presented here can be improved and/or extended by implementing the use of constraints 

in the formulated algorithms. 
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Constraints can be added in two different manners, constraints affecting the 

structural model and constraints affecting the structural factors. Constraints can be added 

to (or perhaps, more accurately, partially removed from) the structure of the PARAFAC 

model. It is well-known that the PARAFAC model is the most constrained model of the 

Tucker-model family. At one extreme is located the Tucker3 model, and at the other is 

the PARAFAC model. In between are a number of other models, such as Tucker1 [1], 

Tucker2 [1], PARATUCK2 [2], and PARAFAC2 [3]. However, only the PARATUCK2 

and PARAFAC2 models are relevant for spectral data, since these preserve some 

uniqueness in the decomposition. Structurally, these models can be expressed as a more 

constrained Tucker3 model or as a less constrained PARAFAC model. Mathematically, 

the formulation of any of these models differs from the PARAFAC model in the structure 

of the core array, G , which is expressed for the PARAFAC model as a super-identity 

array. For instance, the PARATUCK2 model, which is well-suited for some analytical 

scenarios that involve interaction among factors (i.e. rank deficient problems) can be 

expressed in its more restricted form as in eqquation 6.1.  

 ))( TBCAHIX ⊗= aa  (6.1)

Here, Xa is an I x JK matrix representing the trilinear data unfolded by preserving mode 

A, aI  is a P x P2 unfolded superdiagonal matrix of order P, and B (J x P) and C (K x P) 

matrices represent the loadings for mode B and C, respectively. A (I x Q with Q < P) is a 

matrix formed by the loadings of mode A and H (Q x P) is the interaction matrix, formed 

by ones and zeros. For example a 2 x 3 H matrix could appear as follows: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

100
011

H  (6.2)

When the product AH is evaluated, the following matrix is obtained: 

 [ ] [ ]21121 100
011

 aaaaaAH =⎥
⎦

⎤
⎢
⎣

⎡
=  (6.3)

Different arrangements of H will reproduce the interactions in different ways, and 

therefore lead to different manifestations of the rank-deficiency for the model. When the 

model is solved using ALS in conjunction with the standard methodology of expressing 

the different conditional linear problems by an equivalent but differently expressed 



 

 210

objective function, H can be absorbed by the product ))( TBCHIZ ⊗= aa when A is 

estimated, and expressed as AHA =
~  when B and C are estimated. If the rank deficiency 

is located in mode B or C, the model is equivalently permuted to have the rank deficiency 

in mode A. Often, the interaction matrix is known in advance and it is introduced in the 

estimation process as a deterministic entity, but in many practical cases, it will be 

estimated to explore the interaction of the given rank-deficiency problem. 

Unfortunately, if the iid assumption is not fulfilled by the data and a maximum 

likelihood approach is more suitable, a more complex problem has to be solved. As 

shown in this work, the introduction of the error structure destroys the symmetry of the 

structural model. Therefore, since the arrangement of the array is going to be primarily 

determined by the error structure, two additional estimation equations (one for the rank 

deficient mode and the other for the interaction matrix) are going to be needed for each 

error structure scenario. In this way, the full modes can still be estimated using the 

equations used for each mode in each error structure scenario. In general, this is the more 

recommended procedure to implement maximum likelihood algorithms for the other 

modes, since only a small number of equations will need to be derived. 

On the other hand, the estimation algorithms can add constraints to the estimation 

of the loading describing each mode. Constraints such as non-negativity, symmetry, 

monotonicity, unimodality, smoothness, and orthogonality are a few examples. These 

types of constraints are easily implemented by a column-wise estimation, since the 

influence of each component in a mode can be determined separately, conditionally on all 

remaining components in that mode and the remaining modes [4]. An extreme example 

of these constraints is the N-PLS model [5], which can be seen as a rotated version of the 

PARAFAC model to better describe the variation given by an external vector or matrix (y 

or Y). To conclude this topic, it is important to say that a considerable effort needs to be 

invested into understanding and implementing the use of constraints in algorithms 

involving compressed data, which could then be extended to the compressed version of 

the generalized MLPARAFAC algorithm. 

In this work, a number of tools were introduced to characterize the error structure 

of three-way arrays, since the correct use of this information translated into better quality 

estimates throughout the data sets investigated. A rational extension of these techniques 
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can ultimately lead to a deterministic modeling of the error covariance structure for a 

particular experimental system, which in turn will greatly reduce the need for extensive 

replication and make the error structure more reliable by removing “statistical effects” 

within the structure. 

Finally, a number of figures of merit have been introduced in the literature to 

assess the quality and statistical properties of the estimates [6] for three-way data. 

However, the established figures of merit depend highly on the assumptions made about 

the error structure. Therefore, an important goal of future research should be the 

development of a more fundamental approach to incorporate more realistic measurement 

error information into these metrics.  Only with the refinement of such tools can the 

variety of multi-way methods now available be reliably evaluated and compared. 
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