
Multivariate statistical modelling
of the pharmaceutical process of 

wet granulation and tableting



RIJKSUNIVERSITEIT GRONINGEN

Multivariate statistical modelling
of the pharmaceutical process of

wet granulation and tableting

PROEFSCHRIFT

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. F. van der Woude,

in het openbaar te verdedigen op
maandag 22 september 1997

des namiddags te 4.15 uur

door

Johannes Arnold Westerhuis

geboren op 1 juni 1966
te Groningen



Promotores:

Prof. dr. D.A. Doornbos
Prof. dr. ir. C.F. Lerk

Co-promotor:

Dr. P.M.J. Coenegracht



Promotiecommisie:

Prof. dr. H.E. Junginger
Prof. dr. J.F. MacGregor
Prof. dr. A.K. Smilde

Paranimfen:

Mirjam Koetse
Betty Westerhuis

Acknowledgement:
The research in this thesis was sponsored by three Dutch pharmaceutical companies.
Pharmachemie (Haarlem, the Netherlands) is thanked for supplying of the model drugs.
Power consumption records were obtained at Solvay Duphar (Weesp, the Netherlands).
Organon NV (Oss, the Netherlands) is thanked for the experimental effort and guidance
for the research presented in Chapter 5, which resulted in the corresponding paper. 

The studies in this thesis were carried out at the Groningen Utrecht institute for drug
exploration (GUIDE).

ISBN 90-3670797-8

An electronic version of this thesis in Adobe-format is available on:
http://docserver.ub.rug.nl/eldoc/dis/science/j.a.westerhuis/



Contents

Preface 9

List of symbols and abbreviations 11

1 Introduction 13

2 Multivariate design considerations 39

3 Prediction of the uncritical liquid amount in wet granulation 51

4 Multivariate calibration of the process of 67
wet granulation and tableting 

5 Optimisation of the composition and production of 83
mannitol/microcrystalline cellulose tablets

6 Multivariate modelling of the process of wet granulation 99
and tableting for tablet optimisation and in-process control

7 Multivariate modelling of the pharmaceutical two-step   109
process of wet granulation and tableting with 
multiblock partial least squares

8 Multiblock partial least squares path modelling 127
for multivariate processes

Summary 147

Samenvatting 151

Dankwoord 157



9

Preface

This thesis is the result of a combined project between the research group of
chemometrics (Prof. Doornbos) and the department of pharmaceutical technology (Prof.
Lerk), both at the University Centre for Pharmacy at the University of Groningen. The
cooperation between these two groups earlier resulted in the theses of van Kamp, Bos,
de Boer and Duineveld [1!4]. They all describe the use of chemometrical techniques
for the development of pharmaceutical dosage forms.

The cooperative research of the two groups was mainly focussed on the relation
between the components in tablet mixtures and physical properties of the tablets such
as crushing strength and disintegration time. The theses of van Kamp, Bos, de Boer and
Duineveld all applied the direct compression method for the production of
pharmaceutical tablets. Van Kamp investigated the relation between the composition
of the tablet mixture and the tablet properties. This was done with use of mixture
designs and mixture regression models. Experiments were carried out with specific
concentrations of the mixture components according to a mixture design. Mixture
regression models were developed that fitted the physical properties very well. By use
of optimisation techniques settings for the concentrations of the components  could be
found to give tablets with optimal physical properties

De Boer extended the research with multi criteria optimisation. Optimal crushing
strength and disintegration time required a different composition of the mixture.
Therefore, regions in the mixture space had to be found where both the crushing
strength and the disintegration time were within a specified range. Pareto optimality and
overlay contour plots were used to find these regions in the mixture space. De Boer also
studied the robustness of mixtures. When small changes in the mixture composition
have a large effect on the tablet properties, the mixture is not robust, and another
mixture composition should be used for the large scale production of tablets. The
robustness was also combined with the tablet properties in a multi criteria optimisation
to find tablet mixtures that are robust to small changes and give tablets with specified
properties.

Next to the composition of the mixture, the process variables also influence the
physical properties of the tablets. Mixing time and compression force are process
variables that have a strong effect on crushing strength and disintegration time of the
tablets. New designs were developed that combine the mixture variables and process
variables. This is necessary because interactions may exist between the mixture
components and the process variables. These combined designs and the associative
regression models were investigated by Duineveld. 
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Bos used these combined designs for the optimisation of direct compression tablet
formulations for use in tropical countries. Several mixtures of three components were
lubricated and compressed, both at two levels according to a 2  factorial design.2

Furthermore, the tablets were stored at two different temperatures and relative
humidities also according a 2  factorial design.2

In the present thesis different drugs were selected to investigate the effect of drug
properties on the physical properties of the tablets, with wet granulation as the
preprocessing method. Because it is not possible to vary only the solubility or the
wettability of a specific drug on several levels, an experimental design for drug
properties cannot be used. Therefore, experiments have been carried out according to
a multivariate design. The regression models are developed with multivariate regression
techniques because the properties of the drugs are correlated. Partial least squares
regression (PLS) is a multivariate regression method used to construct models between
physical properties of the drugs, such as the solubility and particle size, and physical
granule and tablet properties. 

In the wet granulation process, granulations are produced that will be processed
further into tablets. Physical properties of the granulations affect the properties of the
tablets. The multivariate calibration of the whole tablet manufacturing process with a wet
granulation step deals with several blocks of physical properties, i.e. drug, granule and
tablet properties. Multiblock PLS methods are used to deal with these blocks of data.

References

1. Kamp van HV, Optimization of the formulation of fast disintegrating tablets, Ph. D. thesis, Groningen,
The Netherlands, 1989.

2. Bos CE, Tropical tablets: The development of tablet formulations for use in tropical countries, Ph. D.
thesis, Groningen, The Netherlands, 1990.

3. Boer de JH, Chemometrical aspects of quality in pharmaceutical technology. The application of
robustness criteria and multi criteria decision making in optimization procedures for pharmaceutical
formulations, Ph. D. thesis, Groningen, The Netherlands, 1992.

4. Duineveld CAA, Construction and analysis of mixture!process variables designs as applied to tablet
formulations, Ph. D. thesis, Groningen, The Netherlands, 1993.
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List of symbols and abbreviations

X data matrix or design matrix
X’ transpose of X
I number of objects or experiments (i=1...I)
J number of variabelen (j=1...J)
K number of PC’s or PLS factors (k=1...K)
y response
Z response
D block with design variables
G block with granulation properties
t k  score vectork

th

u k  score vector of responsek
th

w k  weight vectork
th

p k  loading vectork
th

$$ population model coefficients
b estimation of $$ with the OLS method
b estimation of $$ with the PLS methodPLS

s standard deviation, reproducibility

OLS ordinary least squares regression
PLS partial least squares regression
MBPLS multiblock partial least squares regression
PCA principal component analysis
RMSE root mean squared error 
PRESS predictive residual error sum of squares of leave one out predictions
Q squared correlation between measured values and leave one out predictions2

CS crushing strength
DT disintegration time
EF ejection force

PVP polyvinylpyrrolidone
MCC microcrystalline cellulose
HPC hydroxypropyl cellulose
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Chapter 1

Introduction

Tablets are by far the most popular dosage form for pharmaceutical products for
therapeutic use. Tablets are prepared by compressing a powder mixture in a die at
high compression force. The powder mixture contains next to the drug generally
also filler binders, disintegrants, lubricants, glidants etc. The large scale production
of high quality tablets requires a tablet mixture with excellent properties regarding
homogeneity, flowability and compactibility. When the powder mixture does not
possesses these properties it has to be preprocessed, else direct compression can
be used (Table 1). With direct compression the powder mixture is blended during a
period of time and can directly be compressed into tablets. Only a lubrication step
may be necessary to prevent the mixture from adhesion to the die and punches
during compression. Direct compression can be used when the mixture already has
good tableting properties of itself. The mixture has to flow easily and give good
binding during compaction. Unfortunately, most tablet mixtures lack these properties
and a wet granulation step is necessary. 

With wet granulation, extra process steps are necessary to produce a tablet mass
with sufficient tableting properties. The powder mixture is dry blended to give a
homogeneous distribution of all the components in the mixture. Then a binder
solution is added to the mixture to moisten the particles. By introduction of the
solution, binding between the primary particles improves and stronger tablets can be
produced. Mixing is continued until the granulation end point has been reached. The
end point may be defined as the mixing time or amount of granulation liquid that
produces a certain amount of granules with a specific diameter. The mass is
screened to remove large lumps, and dried to remove the granulation liquid. Finally,
the granulations may be dry sieved to remove the agglomerates that were formed
during drying. Just as with direct compression, lubrication of the granulations may be
necessary. There are various techniques of producing granules such as dry and wet
granulation, extrusion, or spray drying. Most commonly used is wet granulation. Here
the aggregates are produced by agitation of moistened powders [1]. This thesis
deals with the wet granulation process as a preprocessing technique for the
manufacturing of pharmaceutical tablets.
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Table 1: Steps in production of tablets by direct compression and wet granulation.

Direct compression Wet granulation

Dry mixing of powders Dry mixing of powders

Lubrication Lubrication
Compression Compression

Addition of binder solution
Wet massing
Wet screening
Drying
Dry screening

Wet granulation

According to the Encyclopedia of pharmaceutical technology, granulation is a
process of size enlargement whereby small particles are gathered into larger
permanent aggregates in which the original particles can still be identified [1].
Reviews of pharmaceutical granulation technology have been given by Record,
Schwartz and Kristensen et al. [2-4]. The very thorough review of Kristensen and
Schaefer reviews all aspects of the wet granulation process for high shear mixers
and fluid bed granulators. Granulation usually refers to processes whereby
agglomerates with sizes ranging from 0.1 to 2.0 mm are produced. The most
important reasons for a granulation step prior to tableting are to [2]:
C improve the flow properties of the mix and hence the uniformity of the dose
C prevent segregation of the ingredients
C improve the compression characteristics of the tablet mixture
C reduce dust during handling 

The flowability of the tablet mixture improves because the granules are larger and
more spherical than the primary particles. Larger particles usually flow better than
small particles (e.g. compare the flowability of crystal sugar with powder sugar). In
the hopper of tablet machines, small particles tend to segregate from the larger ones
because of the vibration of the machine. This causes higher concentrations of small
particles at the bottom of the hopper. After granulation all particles are bound tight in
the right amount in the granules, which prevents segregation of the small particles.

Instruments
Type of granulators
Until the nineteen sixties, granulation was mainly performed in planetary mixers with
low speed and low shear forces. Then, fluid bed granulators were introduced in
pharmaceutical industry. Some ten years later, high shear mixers were introduced. 
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A B

Figure 1: Two types of granulators: A: Fluid bed granulator (1 material container, 2 ventilator, 3
binder solution, 4 nozzle, 5 heating, 6 inlet air filter, 7 outlet air filter). B: Changeable bowl high shear
mixer [4].

Figure 1 shows both types of granulators. In fluid bed granulators heated air (40-
80EC) is drawn by a ventilator through a material container of a conical shape. The
binder solution is sprayed on the fluidising particles that go up in the centre of the
container and down again at the wall. After liquid addition has been finished,
particles are dried in the same equipment. Granulation in fluid bed granulators is
studied by several authors [5-8].

High shear mixers (high speed mixers, high intensity mixers) are large kitchen
blenders that give high densification to the granules because of the high rotating
speed of the impeller. The binder solution may be poured or pumped into the mixing
bowl. When all the liquid is added, mixing is continued for a while (wet massing) to
get a homogenous distribution of the liquid and to further densify the granules. This
thesis only deals with wet granulation in high shear mixers as a primary step in the
manufacturing of pharmaceutical tablets.

The major advantages of these high shear mixers/granulators are the short
process time and the production of very dense granules with low porosity. Most high
shear mixers are equipped with an impeller and a chopper (Figure 1B). The impeller
rotates at a speed of 100 - 500 rpm. and exerts the high shearing and compaction
forces on the material. The chopper is a small cutting tool which rotates between
1000 and 3000 rpm. The size of the high shear mixer bowl changes from 5 litres for
laboratory scale to 600 litres in production. Extensive lists of different types of high
shear mixers used in industry are given by Kristensen et al., Record and by Timko et
al. [1,2,9].



16      Chapter 1

A

B

Figure 2: Illustration of granule growth by nucleation (A) and by coalescence (B) [4].

Dryers
Drying of the granulations can be done in tray ovens or in fluid bed dryers. In tray
ovens, the material is dried at a predefined temperature for a specific period of time.
In fluid bed dryers heated air is blown through the granulations. Drying may be
considered complete when the outlet air temperature is constant. Disadvantage of
the granulation in high shear mixers is that the material has to be transferred to a
drying equipment. However recently, micro wave equipment has been introduced in
the high shear mixer, which allows drying in the same apparatus [10,11]. 

Granulation mechanisms
The formation of agglomerates and growth of granules can be described by two
mechanisms which operate during granulation (Figure 2): 
C nucleation of particles
C coalescence between agglomerates

Both grow mechanisms require the presence of a liquid binder to establish bindings
with sufficient strength. Knight studied the kinetics of granulation in high shear
mixers [12]. The binding strength is a significant factor in granule growth, which
depends on the surface tension of the liquid, the contact angle of the particles,
particle size diameter and the packing of the spheres [13]. 

Newitt and Conway-Jones [14] and Barlow [15] described four different states of
moist agglomerates having an increased content of liquid phase (Figure 3):
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Figure 3: Diagram of bonding mechanism for particles in the presence of liquids. Four different states
can be observed: pendular, funicular, capillary and droplet [4].

1) pendular state
2) funicular state
3) capillary state
4) droplet state

The states are distinguished by the amount of liquid phase in the mixture as
expressed by the liquid saturation. The liquid saturation S is the ratio of the volume
of liquid phase to the total volume of the pores. It depends on the amount of liquid
and the intragranular porosity (porosity within the granules).

H is the ratio of the mass of liquid to the mass of solid particles, , is the intragranular
porosity and D the particle density. The liquid density is assumed to be unity. The
pendular state has a saturation lower than 25%, a saturation between 25%-80% is
called the funicular state, and the capillary state has a saturation of more than 80%.
When the liquid saturation is more than 100%, the granulation becomes a
suspension. Kristensen et al. showed that the effects of process conditions upon
granule growth could be described by the effect of S on the mean granule size [16].
However, the correlation between S and the mean granule diameter is a
characteristic of the feed material in a particular type of mixer. The correlation is
influenced by the particle size distribution of the feed material [17].
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Liquid requirements
The granulation process proceeds within a narrow range of liquid content. The
amount of liquid required to run an uncritical granulation step depends on feed
material properties (particle size distribution, solubility in the liquid and ability to
absorb the liquid), liquid characteristics (viscosity and surface tension) and the
equipment used [18]. Prediction of the required amount of liquid from knowledge of
the feed material has not been successful. From theoretical models, that assume
that the amount of liquid saturation should be equal to 100%, predictions could made
with an accuracy of about 30% only. Leuenberger et al. used a simplified model and
took into account that cohesiveness in the wet mass may appear before the
agglomerates are fully saturated with liquid [19]. Then predictions agreed better with
experiments in planetary mixers. Nowadays, instrumental methods are implemented
for the monitoring of the granulation process and used to define the end point of the
granulation.

In the mixing process, changes in power consumption occur as a result of a
change in the cohesive force of the agglomerates. It should therefore be possible to
interpret the power consumption record on the basis of the cohesive forces during
the moist agglomeration process. Rumpf et al. [20,21] calculated the cohesive forces
that exist between two particles. The cohesive force depends on the surface tension
of the granulation liquid, the contact angle, the separation between the particles and
the particle diameter. They calculated the cohesive forces between two particles for
rhombohedral and for cubical packing assuming ideal wettability and no separation
between the particles. Using the cohesive forces, Leuenberger et al. made a
theoretical estimate of the quantity of granulation liquid required in the granulation
process [19].

When the powder mixture consists of several components with varying particle
diameter and particle shape, the theoretical model for estimation of the required
liquid amount cannot be used anymore. Moreover, during the granulation, some
particles may dissolve partly in the liquid, which leads to very complicated binding
forces between the particles. Therefore, multivariate calibration has to be used to
model the required liquid amount. Chapter 3 describes the prediction of the uncritical
granulation liquid amount that can be added to a specific mixture.

End point control
The physical changes of the granulations that occur in the high shear mixer during
granulation cannot be measured directly. Therefore, it is difficult to determine the
granulation end point, which is the processing time and amount of liquid at which the
desired granulation quality is achieved. During the last few years much effort has
been put in the development of reliable instrumental methods that have the ability of
process control. These techniques include measurement of the change in impeller
speed during granulation or motor slip [22], measurement of power consumption of
the main impeller [23-28], probes in the powder mass [29,30] and torque
measurement of the main impeller shaft [31,32]. It has been found that the measured
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Figure 4: Division of the power consumption curve in 5 phases, according to different states of the
powder mixture [4].

quantities reflect changes in the rheological properties of the moist mass and that
changes are related to the granule growth process. Different techniques for end
point control have been compared [33,34]. Corvari et al. found a strong correlation
between the records of power consumption and torque measurement. In Chapter 3
power consumption measurements are used to determine the optimal liquid amount
for several tablet mixtures with different drugs. The techniques mentioned above
provide indirect measurement of the changes in consistency of the wet mass. In a
series of articles, Leuenberger divided the obtained power consumption curve into
several phases [13,19,35,36]. Each phase in the curve can be related to a particular
feature of the mixture (Figure 4). Lindberg presented a similar curve when he
recorded the change in rotation speed in a Diosna P-25 during granulation of
lactose. [37,38]. The characteristic curve can be found in most power consumption
records, independently of the mixer. However, the power consumption curve
depends on the feed material in the mixer bowl [39]. Correlation between power
consumption records and the mean granule size was demonstrated by Holm et al.
[39,40]. Ritala et al. showed correlation between power consumption and granule
porosity [41,42].

Physical properties of granulations and tablets
The reason for a wet granulation step is mainly to improve the tableting properties of
the powder mixture. This means that the flowability and the compression
characteristics of the granules are important. The following characteristics of the
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granulations are often determined:
C particle size distribution (by sieve analysis or laser diffraction measurement)
C mean granule diameter
C poured and tapped density
C flow rate 
C moisture content (by drying or Karl Fisher titration)

The crushing strength (N) of the tablets is measured because tablets need sufficient
mechanical resistance to withstand stresses and strains of transportation and
storage. For fast dissolution of the pharmaceutical component, the tablet has to
disintegrate within a specific period of time. Therefore, the disintegration time (s) is
determined.

Systematic optimisation in tablet production

In systematic optimisation two approaches can be distinguished: the sequential
approach and the simultaneous approach. Gould calls these methods model
independent and model dependent [43]. In the sequential approach no model is
developed. It consists of a series of measurements, where each new measurement
is defined after the response of the previous experiment is known. Experiments are
continued according to a direction in the search space that looks promising until no
further improvement of the response variable is found. This is called a hill!climbing
method. Sequential methods include the simplex method [44].

In the simultaneous or model dependent approach, experiments are performed
according to specified settings of the variables (experimental design). An empirical
model is developed according to the results of the experiments. The model can be
used to predict the response value at every position in the experimental space.
Several steps can be distinguished in the simultaneous approach.

Problem definition
The first step in the optimisation is the definition of the process. Which response
variables have to be optimised, which design variables may affect these responses
and what kind of relation is expected between the design variables and the
response? The selection of the experimental range is of importance. The knowledge
of pharmaceutical engineers should be used to define the feasible region.

Reproducibility tests
The reproducibility of the process has to be high to study the effect of design
variables on the responses. Several levels of reproducibility can be defined.
Therefore experiments have to be repeated on several days and by different
analysts. Factors that influence the experiment have to be controlled.
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Screening of variables
Screening designs are used to study which variables of a large group indeed affect
the responses. Only a small number of experiments is necessary to study the effect
of a large number of variables [45]. In screening designs only the main effects of the
variables are considered. The first three steps, problem definition, reproducibility
tests and the screening of variables must also be used in the sequential optimisation
approach.

Design selection
Experimental design techniques were developed to obtain greatest amount of
information using the least number of experiments [46,47]. Reviews and tutorials on
the use of experimental design and optimisation in pharmaceutical development
have appeared [48-50]. Factorial designs are used to study the effect of design
variables on the response and the presence of interactions between the design
variables [46,47]. Response surface methodology (RSM) uses a particular group of
statistical designs to explore the dependency the response surface on independent
process variables. The goal of RSM is to obtain a regression model that describes
the dependent response variables as a function of the independent variables. The
model is used to define the response surface which can be used for optimisation.

Selection of the experimental design is based on the expected relation between
the design or independent variables and the responses. The more complicated this
relation is, the more design points are necessary to model this relation. Besides the
necessary design points, some extra design points are to be measured for the model
validation.

Outlier selection
Outliers are caused by errors in the measurement. The recorded response may be
incorrect because of unknown factors affecting the measurement, or the settings of
the experimental variables may be incorrect. Several methods have been described
to detect outlying experiments [51,52,53]. Schofield et al. [54] used Cook’s distance
to determine an outlying experiment. The effect of removing this experiment on the
regression coefficients is enormous. 

Model selection
The model describes the relation between the dependent response variable and the
independent process variables. Not all model terms may be needed to model the
response. Only the significant terms have to be selected in the model. Model terms
are said to be significant if their effect is at least twice as large as the standard error.
Several methods of model selection, such as forward selection and backward
elimination are described in literature [52,55,56]. Schofield et al. [54] showed model
selection by backward elimination of the model terms. The simpler model is judged
to be better than the full model.
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Model evaluation
The final model for a response can be used for optimisation. Predictions in the whole
experimental range are made. Graphical techniques such as surface plots and
contour plots can be used to show the relation between the independent process
variables and the dependent responses. The model can also be used to acquire
knowledge of the process.

Optimisation in direct compression
Several authors investigated the optimisation of direct compression [57-61]. They
studied the relation between the composition of the tablet mixture and the physical
properties of the tablets. The crushing strength of the tablets and the disintegration
time were influenced not only by the type of components used in the mixture, but
also by their concentrations. This optimisation was based on the use of mixture
designs. In mixtures, the concentrations, c, of all components add to 1. Furthermore,
the concentration of each component varies from 0 to 1. This causes the
experimental space to be limited to (c-1) dimensions. The theory of mixture designs
and mixture regression models is described by Cornell [62]. 

During direct compression, also several process variables have to be controlled to
obtain tablets with specific characteristics. The crushing strength of the tablets and
the disintegration time have to be optimised. The process variables that influence
these tablet properties are the mixing time, the compression force etc. The designs
for these experiments have to combine both mixture variables and process variables
[63-65]. Bos et al. used combined designs to optimise direct compression tablet
formulations for use in tropical countries [59-61].

Optimisation in wet granulation
Several composition and process variables in the wet granulation process affect the
physical properties of the granules and tablets. During the last ten years, much effort
has been spent at a more systematic optimisation of the granulation process in high-
speed mixers. Aulton and Banks [6] distinguished between three groups of variables
that influence the wet granulation process: apparatus variables, process variables
and product variables.

Apparatus variables
Apparatus variables such as the size and shape of the bowl, impeller and chopper
are dependent on the type of mixer used. Holm [66] showed that the effects of the
impeller design in high-speed mixers can be described in terms of volume swept out
by the impeller. A high swept volume causes high densification of the agglomerate
and narrow granule size distribution. Chopper size and rotation speed had no effect
upon the granule size distribution. Schaefer investigated nine types of mixers. The
differences in granule growth could be explained by difference in shear,
consolidation and particle motion. [67,68]. Schaefer also compared two sets of
mixing tools in a Diosna mixer [69]. The standard tools resulted in a considerable
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amount of wetted mass adhering to the wall, but with the specialized tools adhesion
was prevented.

Process variables
Granulation in a high shear mixer is mainly controlled by the mechanical forces on
the moist powder mass by the mixing tools. The most important variables are the
impeller speed and wet massing time. The combined effect of these two variables
can be understood in terms of liquid saturation. In general, a higher impeller speed
leads to an earlier densification of the granules, and longer wet massing times lead
to higher densification of the granules. Higher densification of the granules gives
higher liquid saturation and therefore an increased granule size. The effect of
impeller speed was shown in many papers [16,70-79]. The granulation time was also
studied in many papers [73,76-81]. 

The effect of the impeller speed and wet massing time depends on the physical
properties of the materials. If the materials are easily densified, minimum porosity is
reached at short wet massing times and at relatively slow impeller speed. In this
case, higher speed and longer massing times have no effect on the porosity, and
therefore on the liquid saturation and granule growth. For cohesive materials,
however, which are difficult to densify, impeller speed and massing time are critical
parameters. The chopper design changes with the type of mixer, and therefore, the
effect of the chopper speed depends mainly on the type of mixer used.

The method of liquid addition can change from pouring the total amount of liquid
at once, to the pumping of liquid for a specific period of time during granulation.
When the liquid is pumped into the mass, atomisation may be used to obtain a
homogeneous liquid distribution [70].

Product variables
It was shown that the effect of the process variables in granule growth depends on
the material used. The effects found in these investigations are only valid for the
specific powder mixtures used. The powder mixture consists of several components.
Besides the drug, also filler binders, disintegrants and binders are present in the
mixture. Batch differences of one or more of the components influence the properties
of the mixture. When the composition of the mixture changes, (e.g. more disintegrant
is used and therefore less filler binder material) the properties of the total mixture
change even more. When a new filler binder or disintegrant is used, the powder
properties may vary dramatically. Knowledge of the effects of physical properties of
the components (or total mixture) on the process of granulation is therefore very
important. 

The particle size and solubility in the granulation liquid are the most important
properties of the mixture. A small particle size results in a large surface area.
Therefore, more liquid is needed to keep the granule size constant [35, 82]. Ritala et
al. also found the granule friability to increase when smaller particles are used.
Kristensen et al. found that densification of dicalciumphosphate was dependent on
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mean particle size and distribution [16].
When the powder is soluble in the binder solution, the amount of liquid has to be

lower since the amount of powder is reduced, and therefore, also the surface area of
the mixture [83]. Recrystallisation during drying will increase the strength of the
granules. If the starting material is poorly wettable, granule growth is much less. This
results in smaller granules [84].

Many studies investigated the effect of the binder concentration in the granulation
[85-88]. The binder may be added in dry form to the powder mixture, and then water
can be used as granulation liquid. D’Alonzo et al. found that dry addition resulted in
larger granules. The mean granule size increased with an increasing binder level.
The dry addition method also showed a better relation between the concentration
and the mean granule size than the wet addition method. Similar findings were
reported by Lindberg and Jönsson [38]. When the binder is dissolved, the solution
must not be too viscous, because this leads to inhomogeneous distribution of the
binder which results in weaker granules [89].

It is difficult to vary the physical properties of the drugs and excipients to be
granulated systematically because it is impossible to vary only one property of a
substance without changing other properties as well. Kristensen et al. [4] already
mentioned that the effect of the starting material on granule formation and growth is
a complex interaction between different properties. The drug and excipients have
several relevant physical properties. It is therefore difficult to draw conclusions about
the effect of only one physical property. When only a single parameter is optimised
at the time, interactions between parameters cannot be detected. Interactions
between parameters are very likely to occur in the granulation process, therefore, a
multivariate approach is necessary. 

Granulation properties affecting tablets
Kristl [90] shows that tablet crushing strength is influenced by granule diameter and
angle of repose, and to a lesser extent by the flow rate of the granules. The
liberation constant and the friability of the tablets were also influenced by these
granule properties. The fragmentation propensity of the granules is important for the
tablet strength just as the distribution of the binder, granule size and the moisture
content [91]. The granulation properties can be combined with the process variables
of both the granulation and the tableting steps to describe the crushing strength and
disintegration time of the tablets [75,92].

Scaling-up of the process
In 1987 Kristensen and Schaefer reviewed the scaling-up of the wet granulation
process and concluded that trial and error is still the most widely used technique [4].
Since then scaling-up was investigated more systematically many authors [67,68,94-
97]. Neural networks were also used in upscaling of the granulation process [98].
Schaefer used dicalciumphosphate as a model substance. The degree of filling of
the bowl, relative amount of binder solution and wet massing time were kept
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constant. Scaling up results in a higher porosity of the granules, which is undesirable
because it might affect the strength and bioavailability of the final granulation.
Besides the increased porosity, scaling up resulted in a slightly inhomogeneous
liquid distribution and a wider granule size distribution. Horsthuis et al. showed that
scaling-up in Gral high shear mixers could be controlled by keeping the Froud
number constant. The dimensionless Froud number is the ratio of the centrifugal
force to the gravitational force. It can be a criterion for the dynamic similarity of
mixers. 

Robustness in tablet production
An increasing interest in robust processes has grown in pharmaceutical technology.
The ideas of Genichi Taguchi have been used to find one or more optimal
combinations of the process variables that would not only lead to the required
granulation properties, but also to a stable product of which the properties are not
sensitive to noise factors or other causes of variation [77,79,99]. Vojnovic et al. used
the Taguchi approach to prepare an optimal product that is not sensitive to a change
in impeller speed, because the impeller speed cannot be controlled easily during
upscaling of the process. De Boer et al. introduced a robustness criterion to optimise
the robustness of a process [100-102]. This criterion can easily be combined with
other responses in a multi criteria optimisation procedure [101]. Hendriks et al.
reviewed robustness in analytical chemical methods and in pharmaceutical
technological development [103].

During the last ten to fifteen years, many systematic optimisations were performed
using factorial, fractional factorial, RSM designs, mixture designs and D-optimal
designs [49,70-72,75-81,92,96,97,104-116]. These experimental designs have not
only been used to optimise the process, but also to validate the operation of wet
granulation and tableting. However, in most of these investigations, only one
formulation is optimised by varying parameters such as impeller speed, granulation
time, moisture level, concentration of binder solution etc. Therefore, the results of
these optimisations are only valid for the specific drug under investigation. They are
not applicable to the granulation of other drugs and excipients.

In the present thesis different drugs are wet granulated to study the effect of physical
properties of a new drug on the process and on the granulation and tablet
properties. Multivariate analysis will be used to select a set of model drugs that have
a large spread in the drug properties that are assumed to be of importance for the
wet granulation process. Multivariate calibration is used to model the relations
between the drug properties and the physical properties of the granulations and
tablets.



X '

x11 x12 þ x1J

x21 x22 þ x2J

! ! !

xI1 xI2 þ xIJ

x̄j '
1
I j

I

i'1
xij

s 2
j '

1
I&1 j

I

i'1
(xij!x̄j)

2

26      Chapter 1

Multivariate analysis

Multivariate analysis deals with data containing measurements of more than one
variable for a number of objects [117-119]. Pharmaceutical drugs can be described
in various ways by different properties of the drug. Analytical chemists may study the
purity of the drug. Pharmacochemists measure the binding affinity of the drug to a
certain receptor. Pharmaceutical technologists want to know the particle size
distribution of the drug powder and its flowability and compressibility properties. The
drugs are characterised in several ways. Multivariate analysis searches for
interdependences among all variables. Various methods have been developed for
the analysis of the multivariate data.

Multivariate data is often presented in a data matrix. The data is arranged in such
a way that each row represents one object, characterised by several variables. Each
column represents the same variable for all objects. A (I*J) data matrix X consists of
measurements of J variables on I objects. 

In most cases the data has to be preprocessed to obtain maximal information from
the data. Two much used preprocessing methods are centring and scaling of the
data. For these methods the mean (x̄ ) and variance (s ) of each column of the matrixj j

2

are calculated. 

The square root of the variance s , is the standard deviation, s , of the columns. Withj j
2

mean centring the mean x̄  of each column j is subtracted from each value in columnj

j. The mean of each column will, therefore, be shifted to zero. Mean centring is used
because multivariate techniques are usually concerned with relative differences
between objects. Scaling of the data matrix is usually done by dividing each column
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by its standard deviation. After scaling every column has the same variance, one.
Scaling is performed to give each variable equal weight. When the variables are not
represented in the same unit, the magnitude of the values may influence the results
of the data analysis. When each column of the data matrix is represented in the
same unit, e.g. absorbance in a UV or IR spectrum, scaling may not be the right
preprocessing method. Often mean centring and scaling are combined and called
autoscaling. 

Latent variables
Multivariate analysis methods search for interdependences between the variables
and between the objects. They also give information about outlying objects that do
not fit within the group of objects. The data are presented in simple plots to visualize
the features that are hidden in the data. 

Multivariate methods make use of latent variables which are linear combinations
of the original variables. Latent variables in the data are directions that cannot be
measured directly, but are principal properties that explain most of the variation
between the objects. Latent variables may be defined to be orthogonal, i.e.
uncorrelated (if X is centred). Then each new latent variable describes a direction in
the data that is not described by any other latent variable. In Chapter 2, principal
component analysis (PCA) is introduced, which is a multivariate analysis method
that uses latent variables to describe the variations between drugs in a few
orthogonal latent variables. This makes the selection of model drugs much easier.

Multivariate calibration
Multivariate calibration models play an important role in systems with numerous
input variables and responses that are difficult or expensive to measure. A
mathematical function, the calibration model, is needed to predict the responses for
new experiments from data which can be obtained easily or cheaply. Calibration
models are often used to predict the concentration of specific compounds in a
sample from data measured by an instrument. This can be the absorption of a
specific UV wavelength (univariate) or a whole near infrared (NIR) spectrum
(multivariate). The calibration model is developed by the results of several
experiments that were defined according to an experimental design. These
experiments together are called the training set. In developing a calibration model it
is assumed that the relation that holds for the model objects is also valid for new
objects.

In the granulation process of a new drug the 'hard to measure' variables are the
settings of the process variables, and the properties of the produced granules and
tablets. These parameters are hard to measure because the amount of new drug
available is usually not sufficient for a series of experiments. Therefore, ‘easy to
measure’ variables, such as physical drug properties, will be used to predict optimal
settings of process variables and the physical tablet properties.
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Ordinary least squares
Ordinary least squares (OLS) regression can be used to obtain a linear model
between the response y and the settings of independent variables X that are
expected to affect the response. Let X be a matrix of I observations and J variables
(I$J) and y is a vector of I responses, which is said to be dependent of X. Let X and
y be centred.

y = X$$,

where $$ consists of the J regression coefficients for the variables of X. An estimation
of $$ can be given with OLS, 

b = (X’X) X’y.-1

Now,

y = X b + ,,,^

where ,, is a vector of deviations between the real y and y predicted by the model.^

The deviations are assumed to be independent and normally distributed. b is an
unbiased estimator, this means that the expected value of b equals $$. The total sum
of squares (SS ) of the data can be divided in a sum of squares due to regressionT

(SS ) and the sum of squares of the residuals (SS ).R ,

SS  = G(y!y)) ) ,T i
2

SS  = G(y!y)) ) , andR i
^ 2

SS  = G(y!y ), i i
^ 2

The correlation coefficient R  is a much used criterion for the descriptive2

performance of  models. The correlation coefficient only describes linear relations
between X and y.

R  = SS  / SS2
R T

When models with a different number of variables have to be compared, it is better
to use the adjusted correlation coefficient. 
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2

Introduction      29

where P is the number of coefficients in the model (including $ ). The adjustment is0

necessary because R  is a nondecreasing function of the number of variables. Both2

R  and R  can maximally become 1 for perfect relationship between X and y. R2 2 2
adj. adj.

can even become smaller than 0 when no relationship exists.

Partial least squares regression
Partial least squares regression (PLS) is, like OLS, a least squares regression
method. Several tutorials are found in literature [120,121]. With PLS, the regression
of the response y is carried out on latent variables of X, which are selected to
maximise the covariance with y. A mathematical description of PLS regression
method is presented in Chapter 7.

Validation
The calibration model is validated by a test set. Predictions of the response variable
for experiments in the test set are compared to the measured response values. A
real test set with new data obtained from the same process gives the best estimation
of prediction properties of the calibration model. When a real test set is not
available, a part of the training set may be used as a test set. Common practice is to
use part of the data for the test set. Both sets of data must be distributed well over
the whole experimental space. If only few experiments are available, cross validation
can be used. With cross validation one or a few experiments are left out of the
training set in the calibration phase and used as a test set. This is repeated with
other experiments until all objects have been left out ones. During cross validation
each new training set may be centred and scaled but the original centring and
scaling may also be maintained.

The prediction error sum of squares (PRESS) is a good criterion for the predictive
properties of the calibration model. 

PRESS = G(y!y ) ,i /i
^ 2

where y  is the predicted value for y  when object i has not been used in the^
/i i

calibration phase. With PLS, the model with the lowest PRESS will be selected.
Besides a PRESS value, the Q  criterion can be calculated which is the squared2

correlation between the measured y values and the cross validated predictions y .^
/i

Q  can maximally be 1 for perfect predictive models, and may even be smaller than 02

for models without predictive quality.



30      Chapter 1

                                            Mixing time                                          Compression force

Concentration of                                                  Particle size                                                Crushing
components                                                          distribution                                                  strength

Figure 5: The two-step process of wet granulation and tableting.

Multivariate statistical process modelling
During the last few years, the multivariate statistical modelling of large processes
received much attention [122-129]. As opposed to fundamental modelling where
theoretical models are developed to describe the process, statistical modelling uses
the experimental results to develop the models. Processes may be distinguished in
batch processes and continuous processes. Batch processes play an important role
in chemical, pharmaceutical and food industry. Examples include the manufacturing
of pharmaceutical and polymers. Batch processes are characterised by a prescribed
processing of materials for a defined period of time or until the product has reached
a specified characteristic [128]. It is very difficult to develop fundamental models for
batch processes. 

Continuous processes are present in chemistry and pharmaceutical technology
(continuous granulation). Here flow rates of materials and process variables as the
temperature must be controlled to produce the product with a stable purity.

For the modelling of large processes multivariate regression methods such as
PLS and principal component regression (PCR) have been used. These methods
make use of latent variables because the variables in the processes are numerous.
Processes may consist of several steps, with intermediate products that have to be
processed further to the final product. Quality variables of the intermediates can be
obtained for in-process control. It is also possible that in continuous processes
measurements at different parts of the process have been taken. Then a predefined
causal relation exists between the measurements of the various intermediates and
between measurements at different parts of the continuous process. Multiblock
methods have been introduced to deal with these several blocks of data
[122,124,130-132]. In multiblock methods the data from several parts of the process
or from several intermediates can be separated in blocks. These blocks can be
connected according to a predefined pathway according to the process. In the
analysis of the data it is possible to zoom in into the blocks to learn more about a
specific part of the process. Because of the numerous variables in the process
specific information of certain parts in the process will be lost when all data is
examined simultaneously. Another advantage of blocking is that the effect of process
variables can be set explicitly to the blocks that are influenced.
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The process of tablet manufacturing with a wet granulation step, can be viewed as a
two-step process (Figure 5). In the first step, the powder mixture that consists of
several components is wet granulated for a specific period and dried to improve the
tableting properties such as flowability and compactibility. Physical granule
properties such as the particle size distribution can be obtained by measurements to
judge if the granulation step was successful. The granulation may be further
processed into tablets in the second step of the process with a specific compression
force. Crushing strength, disintegration time and other physical tablet properties can
be measured to evaluate the tablets.

The aim of this whole process is to produce tablets that meet certain
specifications. The quality of the granulations is not the main goal in the process,
however, some specifications have to be met.

Scope of this thesis

Wet granulation is a complex process to improve the tableting properties of powder
mixtures. It is much used in pharmaceutical industry because the powder mixtures
lack characteristics necessary for the large scale production of tablets. When new
drugs have been synthesized, the solid dosage form has to be developed.
Experiments are necessary to optimise the wet granulation and tableting process for
the specific mixture with the new drug. However, only a small amount of the new
drug is available for experimentation. Some guidelines are needed in the
optimisation of the process to decrease the number of experiments. Physical
properties of the new drug may give information for the optimisation strategy.

As indicated in this introduction, many authors studied the influence of process
variables in wet granulation on the granule and tablet properties. However, the
effects that were found are only valid for the powder mixture that was studied. In
most cases the effect of the product variables on the properties of the granules and
tablets was studied qualitatively. In this thesis the effect of different drugs on the
process is studied quantitatively. Therefore, a number of model drugs must be
selected that are representative for a large group of drugs that can be wet
granulated. The model drugs must have a large spread in physical properties that
are important in the granulation process. Each drug will be described by a number of
physical properties. These physical properties are not only related to the tablet and
granule properties, but also to the settings of the process variables that control the
wet granulation step. These settings, such as the amount of water that can be added
during granulation have to be controlled to produce granulations that can be used in
the tableting step. Chapters 2-4 describe the selection of the model drugs, the
prediction of an uncritical amount of granulation liquid that can be added to the
mixture and the multivariate modelling of the wet granulation process for a specific
mixture with various drugs.
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The whole process of wet granulation and tableting is a two-step process.
Variation in the powder mixture, e.g. batch differences or another composition of the
mixture, affect not only the granule properties but also the tablet properties.
Modelling of this two-step process is necessary to control the production of tablets
with specific characteristics. In everyday production of tablets, batch differences and
other uncontrolled factors may influence the granule and tablet properties. If this can
be detected in an early stage, process variables can be adjusted, to correct for these
disturbances in tablet production.

Chapters 5-8 describe the modelling of the two-step process of tablet
manufacturing with a wet granulation preprocessing step. Calibration models can be
used to predict the crushing strength and disintegration time of the tablets. When the
wet granulation has been carried out, physical granule properties can be used to
improve the predictive properties of the model.
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Chapter 2

Multivariate design considerations

In multivariate data analysis it is essential that training set systems are selected to
provide data with information essential for the construction of calibration models; data
should encompass any future situation where the multivariate model is used for
predictions. Chapter 2 describes the selection of model compounds that will be used for
the multivariate calibration of the process of tablet manufacturing with wet granulation.
From a set of potential model compounds physical properties were obtained that, from
previous experience, were thought to be important for the wet granulation process.
Principal component analysis is used to reduce the dimension of the drug space, to
enable a good selection. Eight compounds that are representative for the whole set
were selected. In the following chapters these compounds will be used to study the
whole process of tablet manufacturing with wet granulation.

Introduction

If a textbook on the art of baking would claim that all types of bread, e.g. loaves of black
bread, sponge-cakes and ginger biscuits, should be baked at the same oven
temperature and for an equally long time, that book would probably not be a best-seller.
Each sort of bread has its own optimal process settings, and they must be compared
at their own optimal response values [1].

The process of baking is not very different from the process of granulation. When
formulations with new drugs or excipients have to be granulated, it is not likely that the
amounts of binder and granulation liquid have to be equal to previous granulations. A
comparison of the granulation of various formulations using the same processing
conditions would not be fair. Just as the black bread, the cakes and biscuits all have
their own optimal oven temperature and baking time, granulations all have different
optimal settings of the process variables.

In a process such as baking or granulation we can distinguish two different
multivariate spaces, the experimental space and the response space. The experimental
space is spanned by the variables that are varied during the experiments. Each point
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in the experimental space represents an experiment performed at specific settings of
the process variables. In the granulation process the experimental space is spanned
with process variables such as the amount of granulation liquid, the granulation time,
impeller speed etc. The composition of the formulation (amount of drug, disintegrant
and filler binders) is also part of the experimental space. The extremes of this space are
set by the limitations of the apparatus, the formulation constraint (amounts of all
ingredients sum to 100%) and by what the technician thinks is reasonable.

The response space is spanned by response variables that characterize the product
of the experiments. The response variables of wet granulation comprise particle size
distribution, flowability and porosity of the granules. Each product can be viewed as a
point in the response space. Each point in the experimental space is connected to a
point in the response space. The response space may not be continuous; not all
combinations of responses are possible. Optimising a process is searching for optimal
areas in the response space, and finding areas in the experimental space that are
related to these optimal areas.

When a new drug or excipient is used in the formulation, the new experiment does
not fit in the original experimental space anymore, because there is no single variable
that distinguishes between several drugs. A new experimental space for each new
formulation would be needed. This new space is connected to the response space in
a different way than the former experimental space. The optimal area in the
experimental space might not be the same for the various experimental spaces. If
predictions have to be made about the optimal region in the experimental space of a
new drug, there must be a relation between the properties of the drug and the optimal
region in its experimental space. All drugs can be represented as a point in the drug
space. The drug space is spanned by variables that make distinctions between the
drugs and are thought to be of interest for the studied process.

In the analysis of multivariate data it is essential that the training set consists of
drugs, selected to provide data with essential information for the construction of
calibration models, and to represent any future situation where the multivariate model
is used for predictions [2]. The model drugs must have a sufficient range of variation in
all physical properties considered important in the granulation process. When the model
drugs are rather similar, no predictions can be made from the model for a new drug that
differs too much from the model drugs. On the other hand, when the drugs are too
widely different, a good model may be very difficult to construct. In some papers it
seems that the authors have used the "what could be found on the shelf" strategy to
select their model-objects. This may lead to highly biased information due to the narrow
span of important properties of the objects [1]. 

Before a selection can be made, all potential model drugs have to be described by
descriptors that may be of importance for the studied process. Descriptors are variables
that describe the properties of the drugs as good as possible in relation to the specific
problem. These descriptors can be physical properties (melting point, particle size),
chemical properties (pKa, logP) or spectroscopic data (UV, IR). The descriptors span
a specific space of drug properties. The dimensionality of this drug space is equal to the
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number of descriptors used. All potential model drugs can be described as a point in
that space. So I drugs give a swarm of I points in the same space. If the drugs are
similar, the variation will be very small. Correlation can exist between two or several
descriptors. The real dimension of the drug space is lower than the number of
descriptors. Not every axis in the drug space describes an independent property of the
drugs because this may also have been described by another descriptor. If the selection
of model drugs is based only on the descriptors, it may be biased. Model drugs that are
rather similar may be chosen because correlated descriptors were expected to describe
new variation between the drugs. Principal component analysis (PCA) is used to
prevent this biased selection. PCA selects orthogonal directions in the drug space.

Principal component analysis
The goals of PCA can be: simplification of the data, data reduction, outlier selection and
classification [3]. The central idea of PCA is to reduce the dimensionality of a data set
which consists of a large number of interrelated variables, while retaining as much as
possible of the variation present in the data set. The orthogonal principal components
(PC’s) are linear combinations of the original descriptors. Because of the orthogonality
each direction in the new space describes a new source of variation between the drugs.

Assume a set of I objects has been characterized by J descriptors (X ... X ). The data1 J

can be presented in an I*J data matrix.  Each object can be described as a point in the
J dimensional space. The first step of PCA is to determine the direction through the
cloud of points along which the data show the largest variation. This is the direction of
the first principal component (PC ). Say this direction is called h  then:1 1

h  = p * X  + p  * X  + ........ + p  * X1 11 1 12 2 1J J

The extent to which a descriptor contributes to this first principal component is called
the loading (p ) of a descriptor. p  is the first eigenvector of the X’X matrix. The new1j 1

direction can be seen as a principal property of the objects. This property cannot be
measured directly but it explains most of the variation between the objects.

After projection of all data points on the first PC, it is possible to calculate how well
this vector describes the data. The sum of all distances between the original point and
its projection is a measure of the variation that is not described by the first PC. A second
PC can be calculated to describe a part of the remaining variation. The second PC is
chosen in a direction that explains the largest part of the remaining variation, orthogonal
to the first PC. This can be repeated until all information in the data set is described by
J PC's. The objects can be displayed in a new J dimensional space with orthogonal
axes. Using all PC's the total variation in the data is described. Usually the first few PC's
describe a large amount of variation, the last L ones only describe minor variation. This
means that one can describe by only K=J!L principal components almost as much
variation as with J descriptors. The remaining minor variation can be considered as
noise around the important properties. It is, therefore, desirable to subtract it from the
total variation in the data.
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Figure 1: Principal component analysis in two dimensions.

Plots
From the PC analysis two sets of data are obtained: the coordinates of the objects on
the PC's (the scores) and the amount (p ) that descriptors contribute to the PC'sjk

(loadings). A scores plot presents the objects projected on two PC's, and a loadings plot
presents the weights of the descriptors on the PC's. When descriptors lie close to each
other in the loading plot of PC  against PC  they are highly correlated provided the total1 2

variation explained by the first two PC's is large enough. Descriptors that have a strong
contribution on one PC are far away from the origin and lie close to the PC axis.
Descriptors that have high influence on several PC's are projected in the quadrants of
the loading plot. Descriptors that give no specific information about the objects lie close
to the origin.

A two dimensional example 
Two physical properties (X  and X ) of 6 objects have been measured and are plotted1 2

in Figure 1. The first principal component (PC ) is chosen in the direction that describes1

most of the variation. The objects are projected on this PC. A second component (PC )2

is chosen orthogonal to the first in the direction that explains the remaining variation.
The two PC's are shown in Figure 2 with the projected objects. 

An important result is that we now can describe the main systematic variation (say
75%) in the data using fewer variables (only PC ) than the J original (X  and X )1 1 2

descriptors. When there are more than three descriptors it is difficult to visualize the
data and, therefore, the selection of objects that give a wide spread in most of the
important descriptors is not easy. By the use of principal components analysis, the data
can be presented in fewer dimensions. Most of the variation can still be explained and
selection of objects is much easier. The remaining variation that is not explained by the
principal components can be seen as noise. Figure 2 shows the scores and loading
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A B

Figure 2: The scores of the objects (A) and the loadings of the variables (B) on the first two principal
components.

plots of the data given in Figure 1.
In the scores plot (Figure 2A) we see that the variation in the PC  direction is the1

largest. In some software programs the scores plot shows equal spread in both
directions, even when higher order PC's are shown. The axes have equal length, but
are scaled differently. Therefore, the importance of the higher order PC's is visually
exaggerated by the plot. It must always be kept in mind the amount of variance that is
explained by a given PC. The loading plot shows the weights of the descriptors X  and1

X  on the PC's. Along the positive direction of PC  (in Figure 1, left under to upper right)2 1

we see that both descriptors X  and X  increase but X  increases more than X .1 2 2 1

Therefore, X  has a higher weight on the first PC (Figure 2B). The second PC shows2

that X  has a high positive and X  a small negative weight. The advantages of PCA1 2

become more clear when it is used for larger data sets with more descriptors where the
dimension reduction is more obvious than it is for the two descriptor case.

Calculation of principal components
PCA can be computed in several ways. Here the singular value decomposition (SVD)
of the X matrix will be shown. The use of SVD for calculating PC’s is well described in
literature [3!5]. Carlson visualizes PCA with many pictures [1]. Other methods that can
be used are the eigenvector analysis [1,4,5,6] that handles the symmetric (X’X) matrix,
and the NIPALS (nonlinear iterative partial least squares) algorithm. NIPALS is an
iterative method to calculate SVD.

The I*J X-matrix can be decomposed according to the singular value decomposition
(I$J):

X = UDV’ = d u v’  + d u v’ + ... + d u v’1 1 1 2 2 2 J J J

with U’U=I  and V’V=VV’=I , and D diagonal with nonnegative diagonal elements (d ...d ;J J 1 J
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      X             =      t    *   p ’     +       t    *   p ’  + ....... +  t    *   p ’    +             E1 1 2 2 K K

Figure 3: The building up of X with the principal components that consist of the scores t ...t  and the1 K

loadings p ...p . E consists of the residuals.1 K

singular values) arranged from high to low and X’X = V’D V. The columns of U and V’2

are called the left and right-hand singular vectors of X respectively. The relation of SVD
with PCA becomes clear when V’ equals the loadings P’ and UD equals T, the scores
of X, which gives X=TP’.

When only K columns of T are used, some variation is not be described: X=T P ’+E,K K

where E contains the unexplained variation. In Figure 3 we see that the X-matrix is built
up from several PC's where each PC is again built from the outer product of a column-
vector t  of the T matrix times a row-vector p ’ of the P’ matrix which gives an estimationk k

of the X-matrix. All these estimates are mutually independent (because of the
orthogonality) and can be added together to produce X.

Selection of model drugs from the PCA plots 
The selected model-drugs should have maximal spread in all their properties. Such a
selection is accomplished by choosing objects projected at the borders of the score plot
and as far as possible from each other. Some caution, however, must be exercised: one
must be careful not to choose outliers. Besides objects at the borders it is wise also to
take some random objects. The objects selected from the plot of PC  against PC  must1 2

also have a good spread in all the other PC score plots to make sure that enough
information is caught. When some obvious classes of objects that belong together can
be discerned, it is wise to select representatives from those classes [7]. Representatives
of classes or typical objects lie close to the middle of the class.

Materials
A set of 42 potential model drugs were selected by considering first their price.kg ,-1

because large amounts of drug are used during the experiments. The drugs were also
selected to have a broad range in the solubility in the granulating liquid. Some model
drugs, that were suspected to give problems in the granulation experiments, were
removed from the list. From the final nineteen potential model drugs, descriptors were
obtained by measurement and from literature.
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It is important to remember that the selected model drugs represent just a set of
physical properties. The name of the drug represents a property that says only little
about the drug considering its behaviour in the granulation process (e.g. paracetamol
45µm and paracetamol 180µm are two different model drugs that have the same name
but a different particle size, and therefore a different compactibility, poured density etc.)
For the selection of the model drugs, the following easy to obtain descriptors were
selected that were thought to be important for the calibration of the granulation process.

Solubility: The solubility of the drugs in the granulation liquid is of main importance
[8,9]. When a drug dissolves well in the granulating solution, it cannot take part in the
granulation process. A relatively small amount of solution can lead to over wetting. In
our case the granulation liquid will be water. The solubility of the drugs in water is given.

Compactibility: The compactibility of the drug is especially important for tableting of
the granulation. It is a measure for several aspects that involve the binding between
particles. The specific surface area is important for the mechanical strength of the
tablets. This area is affected by physical properties of the drug such as particle size and
shape, but also by fragmentation or plastic deformation occurring during compaction.

Thickness tablet: The thickness of the tablets of the pure drugs is influenced by the
crystal form and poured density of the drug and the particle size, the particle size
distribution and the poured density of the granulation. The thickness must be related
to the weight of the tablets.

Poured density: The poured density gives in combination with the tapped density an
idea about the flowability and the porosity of the starting material. The tapped density
is the density of the bulk after 500 taps in a tap apparatus (J. Engelsman, Ludwigshafen
a. Rhr).

Hausner ratio: The Hausner ratio is defined as the poured density divided by the
tapped density. It  measures of flowability of the drug. A low Hausner ratio means that
the drug has a high flowability.

Contact angle: The contact angle is a measure for the wettability of the material. If
drugs are easily wetted, granule formation is much faster. The contact angles were
measured with the h-, method [10]. The influence of the wettability was already
described by Jaiyeoba et al.[11].

Particle size: The particle size of the drugs is of main importance. It is a measure for
the relative surface of the drug. It affects the speed in which the drug dissolves, the
poured density, the compactibility etc. The particle size was not actually measured at
first but the substances were classified to have a large or a small particle size. Most of
the drugs have a small particle size. Ascorbic acid, paracetamol cryst. and
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Table 1: The dataset used in the principal component analysis. The solubility of the compounds in water
(Sol.), the compactibility (Comp), the thickness of the tablets (Thick.), poured density (Bulk), Hausner
ratio (Haus), cosine of the contact angle (Cos 2) and the particle size (Size) are given. Large particles
are indicated with a 1, and small particles with a 0. The open places  are caused by missing values. In
the calculations, column means were introduced for the missing values.

nr Compounds Sol. Comp Thick. Bulk. Haus. Cos 2 Size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Ascorbic acid
Salicylic acid
Aluminum oxide
Carbromal
Diprophylline
Ferrousfumarate
Isoniazid
Lithiumcarbonate
Meprobamate
Sodiumsalicylate
Nicotinamide
Paracetamol
Paracetamol cryst.
Phenobarbital
Phenytoin sodium
Sulfadimidine
Sulfamethizole
Thiamine.HCl
Dicalciumphosphate

0.544
2.700
4.300
2.700
0.700
2.700
0.903
2.700
2.700
0.000
0.000
1.845
1.845
3.000
1.300
3.700
3.300
0.000
4.300

0
96

145
54
90

8
29

0
100

57
24

0
0
0

260
32

0
146

37

2.59
3.20
3.39
2.50
2.73
2.07
2.87

3.21
2.60
3.03
3.46
3.21
3.24
2.92
2.98

2.94
2.06

0.909
0.588
0.208
0.435
0.400
1.111
0.625
0.385
0.417
0.263
0.400
0.244
0.667
0.435
0.278
0.385
0.435
0.222
0.833

1.13
1.24
1.39
1.20
1.47
1.21
1.23
1.57
1.29
1.39
1.45
1.40
1.13
1.51
1.53
1.59
1.63
1.59
1.15

0.67
-0.22

0.66
0.64
0.12

0.67
0.50
0.50
0.24

0.67
0.54
0.67
1.00

1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1

dicalciumphosphate have a large particle size.

Table 1 shows the data set used. The solubility of the drugs is given as the logarithm
of the parts of water needed to dissolve 1 part of drug. The logarithm is used because
the original values do not have a normal distribution. High values stand for low
solubility. Tablets (13 mm, 500 mg, 20 kN) were compressed using a hydraulic one
punch tablet press (Mooi / ESH). The compactibility is given as the crushing strength
of a tablet of the pure drug (mean of 10 measurements). The poured density is given
in (g.ml ) and it is the mean of 5 experiments. The Hausner ratio is determined as the-1

ratio of the volume of 100 g drug before and after 500 taps. The contact angle is
measured using the 'h-,' method. The cosine of the values is given. Ascorbic acid,
nicotinamide and thiamine.HCl were known to have low contact angles [12]. The contact
angle of these drugs were set to the lowest available value of 48 . o

The open places in the table are caused by missing values. Missing values in the
tablet thickness are caused by the fact that it was not possible to produce tablets of
some drugs. The table of Lagas [11] with contact angles did not contain all substances
used in the experiments. For the calculation of the principal components the column
means are used for the missing values.
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Table 2: Loadings of the descriptors on the principal components and the percentage of variance
explained by each PC.

drug descriptors PC1 (42%) PC2 (18%) PC3 (14%)

Solubility
Compactibility
Thickness tablet
Poured density
Hausner ratio
Cos (2)
Size

0.07
-0.30
-0.41
0.52

-0.44
0.24
0.46

-0.45
 0.13
-0.36
-0.18
 0.35
 0.71
-0.01

 0.75
-0.41
-0.04
-0.06
 0.40
 0.31
-0.13

Results and discussion

The results of the PCA were calculated using the PLS toolbox [13] for Matlab [14]. The
first three PC's explain about 74% of the variation in the data. These three PC’s were
used for the selection of the model drugs. Table 2 shows the loadings of the descriptors
on the first three PC’s and the percentage of variance explained by each PC.

The method used is rather rough because only few drug descriptors were used to
separate between the drugs. Figures 4A-C show score plots of the first three PC’s. Each
plot shows the score values of two PC’s. The numbers marked within a square
(1,2,3,7,11,13,16,18) are selected as model drugs. The selection was done on sight
from all three score plots. Experiments showed that model component number 3
(aluminium oxide; marked with a circle) could not be used in the Gral high-speed mixer.
Therefore, another substance far away from object 3 in the multivariate space (19,
dicalciumphosphate) was selected. In the first analysis, dicalciumphosphate was not
taken into account. The figures show results from the analysis which included calcium
phosphate. Aluminium oxide is still presented to show its position in the drug space.
According to the score plots it is not outlying object, and its strange behaviour in the
granulation process cannot be explained from its position in the drug space.

The first step was the selection of the outer corner points in all plots: 2, 18 and 19
in Figure 4A and 1 and 16 in Figure 4B. Object 15 in Figure 4B is close to objects 2 an
18 and was, therefore, not selected. Object 7 is selected because it is in the middle of
each score plot. Objects 11 and 13 were selected to complete the eight model drugs.
The selected drugs have a good spread in all PC’s. The first PC gives the spread of the
drugs in particle size and poured density. The contact angle dominates the second PC
and the variation in the third PC is mainly caused by the solubility of the drugs. The
selected drugs have enough variation in these important variables. Three drugs with
large particles and zero compactibility were selected (1, 13 and 19), one drug with high
contact angle (2) and two drugs with very low solubility (16 and 19). Two drugs (7, 11)
have intermediate score values on each PC. The selected substances that will be used
in following experiments are: ascorbic acid, salicylic acid, isoniazid, nicotinamide,
paracetamol cryst., sulfadimidine, thiamine.HCl and dicalciumphosphate.
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A

B

Figure 4: The scores of the compounds on PC1 and PC2 (A) and on PC1 and PC3 (B). The
compounds are represented by the corresponding numbers. The selected model drugs are presented
in a square. Compound 3, (aluminum oxide) indicated in a circle could not be used in the GRAL
granulator.
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C

Figure 4C: The scores of the compounds on PC2 and PC3 are represented by the corresponding
numbers. The selected model drugs are presented in a square.

Conclusion

In the multivariate calibration of the granulation process a calibration model has to be
developed that predicts the settings of process variables of the granulation and physical
properties of the granulation to produce tablets of new drugs. To develop the calibration
model, some model drugs are needed. The selection of the model drugs for
experimentation has to be based on information relevant for the specific process.
Because of possible interaction effects all properties must be considered
simultaneously. Multicollinearity can bias the selection of the model drugs. Principal
component analysis simplifies the problem of selection, because it searches for new
orthogonal directions in the drug space. The spread in the properties of the model
drugs, should guarantee the validity of the calibration model for the granulation process
over a large area in the drug space. In this application only few and easy to obtain
variables were used to separate between the drugs. In the calibration of the tablet
manufacturing process, in the following chapters, more physical properties of the
selected drugs will be used to relate to the characteristics of the granulations and
tablets.
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Chapter 3

Prediction of the uncritical liquid amount
in wet granulation

Granulation of the model drugs, selected in Chapter 2, is examined. Due to the large
differences in physical properties between the selected drugs, the design levels of the
process variables of the granulation process have to be varied also. The amount of
water added during granulation has to be adjusted for each drug to produce
granulations that can be further processed into tablets. Chapter 3 describes the
determination of an uncritical amount of granulation liquid that can be added to a
specific formulation containing lactose, corn starch, polyvinylpyrrolidone and a model
drug. Wet granulation proceeds by agitation of a powder mixture in the presence of a
liquid. Granules are formed and grow because of effects of mobile liquid bonds formed
between the primary particles. Wet granulation in high-shear mixers proceeds within a
narrow range of liquid amount. When too much liquid is added, the powder mixture
becomes overwetted and cannot be used for tableting. When too little liquid is added,
a large percentage of primary particles is still present in the mixture and the granules
disintegrate during drying. The uncritical liquid amount could safely be added to the
mixture without causing overwetting and the percentage of primary particles decreased
to a small amount. The uncritical liquid amount is determined from the power
consumption curve of the impeller, obtained during continuous addition of granulating
liquid. It is defined as the middle of stage three, according to Leuenberger’s division of
the power consumption curve. In the present chapter the uncritical liquid amount is
related to physical properties of the model drug. For drugs with a low solubility in the
liquid and for drugs that have a large surface area, extra granulation liquid is necessary
to produce granules that can be further processed into tablets.

Introduction

In pharmaceutical practice it is well known that wet granulation in high-shear mixers
proceeds within a narrow range of liquid contents. The liquid saturation S is claimed to
be the major controlling factor for the granule growth process [1!3]. It expresses the
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degree of filling the intra granular voids with the binder liquid. It depends on the
moisture content relative to dry material of the agglomerates (H), the particle density (D)
and the porosity (,). When the powder dissolves partly or totally in the liquid, the
relation becomes invalid because the porosity of the particle and the intra granular
voids increase. 

According to Kristensen and Schaefer, the liquid amount required to run an uncritical
granulation process depends on a large number of factors which include feed material
properties, such as the particle size distribution, solubility in the liquid and ability to
absorb the liquid [4]. Paris and Stamm also showed the influence of powder quantity,
particle size, solubility and the type of granulation liquid on the amount of liquid [5,6].
Prediction of an uncritical amount of granulation liquid on the basis of knowledge of the
feed material has not been very succesful. Rumpf et al. calculated the cohesive forces
that exists between two particles for rhombohedral and for cubical packing assuming
ideal wettability and no separation between the particles [7,8]. The cohesive force
depends on the surface tension of the granulation liquid, the contact angle, the
separation between the particles and the particle diameter. With the cohesive forces,
Leuenberger et al. made a theoretical estimate of the quantity of granulation liquid
required in the granulation process [9].

For some time now, instrumental techniques have been used to determine an
uncritical liquid amount. These techniques include measurement of temperature of the
granulation, change in impeller speed during granulation or motor slip [10!13],
measurement of power consumption [3,5,6,9,14!20], probes in the powder mass [21]
and torque measurement of the main impeller shaft [22,23]. It is found that the
measured quantities reflect changes in the rheological properties of the moist mass and
that changes are related to the granule growth process. In some papers several
techniques for end point control have been compared [24,25]. Corvari et al. found a
strong correlation between power consumption and torque measurement.

In a series of articles Leuenberger et al. showed the relation between the power
consumption profile of the impeller shaft and the physical properties of the moist mass
[9,14-16]. In the power consumption record five different phases can be observed.
Figure 4 of Chapter 1 shows a typical power consumption profile given for a
lactose/corn starch powder mixture. In the first phase no increase of power consumption
is observed because components in the powder mass can take up water and, therefore,
no interparticulate liquid bridges are formed. The second phase shows a fast increase
of power consumption as liquid bridges are formed. The mass becomes much more
cohesive. During phase three the interparticulate void space is filled with granulating
liquid. No increase of the power consumption is observed. Within phase three granules
can be obtained that differ in their properties. At the start of phase three, porous and
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fragile granules will be formed where at the end of the plateau, the granules will be
more dense and thus harder. After phase three, parts of the powder mix will be
saturated with liquid. This produces lumps in the mixture which causes the power
consumption to fluctuate. Finally, the whole mix will be saturated and a suspension will
be formed and the power consumption decreases rapidly. The 100% saturation may
give a peak in the power consumption profile depending on the type of granulator and
material used. In high shear mixers this peak may not be as obvious as in planetary
mixers. For the definition of the degree of liquid saturation it is essential to measure the
total power consumption profile till the state of a suspension is obtained. Then it is
possible to define a normalized value S* of the liquid saturation of the interparticulate
void space:

Here S is the amount of liquid at a certain point in the curve between S  and S , where3 5

S  and S  are the boundaries between phase two and three and between phase four3 5

and five respectively. S* is the percentage the granules are filled up with liquid. Several
papers have shown that usable granulations should be obtained at phase three of the
typical power consumption profile [5,6,15,17-20,24]. Leuenberger showed the increase
of the mean granule diameter, and the decrease of the percentage of fines and granule
friability in the range from phase S  to S  [15]. Holm et al. showed that the typical power3 4

consumption record only holds for lactose and not for other formulations such as
dicalciumphosphate or mixtures of dicalciumphosphate and corn starch [17]. Power
consumption profiles vary from product to product. This must be caused by differences
of the energy required to rearrange and compact the particles composing the moist
agglomerate. The start of the rapid grow of granules, caused by partial saturation of the
interparticle voids happens at different liquid saturation levels for different materials.
Leuenberger stated that pharmaceutical granules can only be obtained for an amount
of granulation liquid in a range up to a degree of saturation of about 60% of the
interparticulate void space [15]. Beyond the 60% of liquid saturation the granule size
increases exponentially, and lumps will be formed. The same amount is found for a
Fielder PMAT 25 VG high-speed mixer [17]. The 60% liquid saturation, however, is only
valid for lactose. Holm et al. showed that for other substances, the granule size
increases in the same way at other values for the liquid saturation. Dicalciumphosphate
has a saturation limit of 70%, dicalciumphosphate/corn starch (85:15) of 85% and
dicalciumphosphate/corn starch (55:45) of 90%.

Shiraishi et al. granulated a mixture of theophylline, lactose and corn starch and
stopped liquid addition at several points in the power consumption curve [19,20].
Granulation stopped at the start of phase 3 resulted in tablets with the lowest friability
and disintegration times. When more water was added, tablet disintegration times
increased. Stamm and Paris studied the influence of technological factors and physical
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properties of the solvents and products used on the optimal granulation liquid
requirement measured by power consumption [5,6]. The optimal liquid amount was
calculated according to Leuenberger’s formula: S=½(S +S ), which corresponded to the3 4

liquid amount as determined by particle size investigation. The flow rate showed no
influence on the optimal amount. The optimal liquid amount decreases when particle
size of the mixture increases. Powders having the same solubility need the same
amount of liquid, but granule properties may change due to different wettability
properties.

Theoretical evaluations of the maximal liquid saturation are given, but they assume
perfect spherical particles [15]. The influence of the various substances on the critical
saturation amount can be fairly large. When mixtures of several compounds are
granulated, the estimation of the uncritical liquid amount becomes even harder due to
large number of factors and the unknown interactions between the various particles.
During the granulation, some particles may dissolve partly in the liquid, which leads to
very complicated binding forces between the particles. The theoretical model becomes
too complicated for common use. Therefore multivariate calibration will be used to
model the required liquid amount for several mixtures of lactose and corn starch with
varying drugs. The model makes use of the important physical properties of the drugs,
under which the particle size distribution, contact angle and solubility in the granulation
liquid.

Multivariate calibration
Partial least squares regression (PLS) is a biased multivariate calibration technique
much used in the field of chemometrics. It can be used instead of ordinary least squares
regression (OLS) when serious multicollinearity exists between the descriptor variables
or when the number of descriptors exceeds the number of objects. PLS is used to model
relations between predictors and response variables and to make predictions. Tutorials
on PLS were given by Geladi and Kowalski [26] and by Höskuldsson [27]. PLS finds
latent directions in the descriptor data set that have a good relation with the response
variable. In Chapter 7, PLS regression will be introduced in detail. Multivariate analysis
and calibration in pharmaceutical development work have recently been reviewed by
Lindberg and Lundstedt [28].

In the present chapter multivariate calibration is used for the modelling of the uncritical
liquid amount (ULA). This amount is defined as ULA= ½(S +S ), where S  and S  are3 4 3 4

the start and the end of phase three in the power consumption profile. The profiles were
obtained from several powder mixtures consisting of lactose, corn starch and one of the
selected model drugs at concentrations of 5% and 50%. The mean granule diameter
and the percentage of fines were also measured during stage three of the records. The
model can be used to predict uncritical amounts of water that can be added to mixtures
of lactose 200 mesh, corn starch, polyvinylpyrrolidone with a new drug.
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Table 1: Composition of the powder mixtures used in the experiments with 5% drug (A), 50% drug (B)
or without drug (C).

Component A B C

model drug (%)
lactose 200 m (%)
corn starch (%)
PVP 15k (%)

5
81
10

4

50
36
10

4

0
86
10

4

Experimental

Mixtures of lactose 200 mesh (DMV,Veghel), corn starch (AVEBE) and
polyvinylpyrrolidon (PVP 25k, Brocacef) were combined with the model drugs: ascorbic
acid, dicalciumphosphate, isoniazid, nicotinamide, paracetamol, salicylic acid,
sulfadimidine and thiamine.HCl (Pharmachemie). Paracetamol was milled to study the
effect of particle size on the uncritical liquid amount  From the eight selected model
drugs two different formulations (A and B) were made. Further, a third mixture
containing no model drug (C) was granulated. Table 1 shows the percentages of
substances in the formulations.  Mixture C was considered as mixture A or B with
lactose 200 mesh as the model drug.

Power consumption records were obtained from a GRAL 10 high-speed mixer with
power consumption measurement supply. Power consumption was measured during
continuous liquid addition of water to the mixture. PVP was dry added and water was
used as the granulation liquid. Water was added with a peristaltic pump at 30 ml.min .!1

During granulation the impeller speed was maintained at 300 rpm and the chopper
speed at 1500 rpm. For each experiment 1.5 kg material was used. The records were
evaluated and phase three was determined for each mixture. During new experiments,
samples were taken from the mixture at several positions in the third phase of the power
consumption record. The samples were dried for at least eight hours at 40EC in a tray
oven. The samples were screened (2mm) and particle size distribution was obtained by
sieve analysis (1.40, 1.12, 0.85, 0.60, 0.425, 0.30, 0.15, 0.00 mm).

Table 2 shows the physical properties of the model drugs that were used for the
calibration of the ULA. Sol is the logarithm of the amount of water (g) needed to dissolve
1 g. of drug. The particle size distribution of the drugs was measured by laser diffraction
(Sympatic Helos). 10%, 50% and 90% are the boundaries in the particle size
distribution curve that indicate that 10%, respectively 50% and 90% of the particles
have a smaller particle diameter than the value given. S  is the surface area (m .cm )v

2 -3

based on the bulk of the material. The poured and tapped density (g.cm ) were-3

measured for all drugs. The surface area was also determined by adsorption of N2

(BET). Here also the internal surface area of the pores is included. The contact angle
2 of the drugs was measured by the h!, method [29]. Lactose 100 mesh is used as a
test drug and will not be used in the calibration.  The PLS toolbox [30] for MATLAB [31]
was used for the calibration calculations of the uncritical liquid amount.
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Table 2: Physical properties of the model drugs used in the calibration of the uncritical liquid amount and
the range. The descriptors are explained in the text.

Compound Sol 10% 50% 90% Sv Bulk Tap Th. BET Cos 2

ascorbic acid
dicalciumphosphate
isoniazid
nicotinamid
paracetamol
salicylic acid
sulfadimidine
thiamine.HCl
lactose 200 mesh

0.54
3.70
0.90
0.00
1.85
2.70
3.70
0.00
0.70

81
88
10

8.0
37

3.0
9.9
4.3
2.2

216
242
39.5
25.9

360
12
54.5
20.7
26.6

398
375
89.0
62.3
570
24
140
55.0
77.3

0.07
0.14
0.41
0.53
0.11
1.08
0.33
0.69
0.93

0.91
0.87
0.58
0.46
0.69
0.28
0.58
0.26
0.55

1.00
1.00
0.78
0.68
0.77
0.43
0.78
0.43
0.85

5.63
4.12
5.78
6.02
6.56
5.63
5.77
5.81
5.81

0.06
0.32
0.19
0.18
0.03
0.41
0.07
0.39
0.50

0.78
1.00
0.66
0.70
0.50

-0.22
0.67
0.64
0.80

lactose 100 mesh 0.70 25 134 223 0.25 0.75 0.85 5.61 0.18 0.80

Results and discussion

Large deviations were found between the power consumption records when the mixture
consisted of 50% model drug. When 5% drug was used, only minor differences were
found between the records. Therefore, only the 50% mixtures will be considered. Most
power consumption records seemed to follow the record of Leuenberger. However, the
power consumption records of salicylic acid and milled paracetamol deviated too much
from the typical curve of Leuenberger. Both model drugs had very small particles and
could not be wetted easily. For these two model drugs, it was not possible to define the
start and end of either phase. Therefore, the records of these two model drugs were not
used in the calibration.

In the Appendix of this chapter the power consumption records of the model drugs,
the mean granule diameter (d , mm) at certain stages of the curve and the percentagegw

of fines at the same stages are shown. Samples were taken from the start of phase
three with steps of about 1.5 % water until the particle size was too large to fit through
the 2 mm screen. The mean granule size at that latest point was set to 3 mm. The
percentage of fines (t; <150 µm) of the samples is given for all model drugs. For model
drugs with a large particle size, the percentage of fines is also given for a larger particle
size dependent on the size of the specific drug (o), (lactose 100 mesh, <300 µm;
ascorbic acid, <425 µm; dicalciumphosphate, <425 µm; paracetamol, <600 µm).

In each power consumption profile, the five phases can be determined. Large
differences exist between the start and end of each phase for the various model drugs.
The rise in power consumption in phase two may be steep, as with isoniazid, or may be
rather weak as with lactose 200 mesh. The precise start and end of phase three is not
always easy to detect from the curves. Phase three starts at the end of the first increase
of the power consumption. At the end of phase three the power consumption drops and
rises again with more noise than in phase three. For model drugs with small particle
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Table 3 ULA for mixtures with 50% model drug

model drug ULA 50%

ascorbic acid
dicalciumphosphate
isoniazid
nicotinamid
paracetamol
salicylic acid
sulfadimidine
thiamine.HCL
lactose 200 mesh

8.4
13.6
12.6
9.6
9.2
*
14.1
11.9
15.3

lactose 100 mesh 12.1 / 11.5

size, a peak arises before the drop in power consumption. For model drugs with a larger
particle size, the peak disappears, however, lactose 100 mesh also shows a small peak
at the end of phase three. The same peak at the end of phase three was already
mentioned by Shiraishi et al. [19]. The end of phase three corresponds well with the
exponential growth of the mean granule diameter. In most cases of the drugs with small
particle size, the peak at the end of phase three gives overwetting of the mixture.
However, for sulfadimidine and lactose 200 mesh this position still gives usable
granulations. 

For the dicalciumphosphate mixture, only the small particles agglomerate at the
beginning of phase three. Dicalciumphosphate does not participate in the agglomeration
until the second half of the third phase. Then the amount of particles smaller than 425
µm starts to decrease below 20%. Dicalciumphosphate has a large range of phase
three, but good granules can only be obtained at the second half of phase three. The
plots of nicotinamide, thiamine.HCl and also ascorbic acid show that before phase three
is reached, there is still a large percentage of fines in the mixture. In all of these latter
cases the first sample was taken in phase two.

The uncritical liquid amount (ULA = ½(S +S )) is defined, which is the amount of water3 4

that can be safely added to a mixture with lactose 200 mesh, corn starch, PVP and a
drug without causing overwetting of the mixture and providing only a small percentage
of fines. The figures in the appendix of this chapter show that for all model drugs, the
percentages of fines at the ULA is small. For drugs with large particle sizes, the drug
particles also take part in the granulation at the ULA. Table 3 shows the mean of two
ULA values all model drugs.

Paracetamol was milled to study the effect of particle size reduction. However, the
milled paracetamol could not be used in the calibration because of the power
consumption record deviation caused by cohesiveness of the material. Therefore,
lactose 100 mesh was used to study the effect of particle size reduction on the
granulation. For lactose 100 mesh, phase three was reached with less water. The total
amount of water to reach phase four is only a little less than for lactose 200 mesh.
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Table 4: Results of the calibration of the uncritical liquid amount of granulation liquid

% Explained %X %y

1
2
3

43
77
87

62
84
94

RMSE
RMPRESS
s
Q2

0.6
1.1
0.6
0.8

PLS regression was used for the calibration of the amount of water to reach the ULA.
The descriptor variables were autoscaled so they all would have the same weight. The
ULA values were mean centred. Table 4 shows the results of the calibration.

For the PLS model of the uncritical liquid amount, three PLS factors were selected
with cross validation, which explained 94% of the variance in the response variable. The
root mean squared error (RMSE) of the model is comparable to the experimental error
(s). RMPRESS is somewhat higher. Q  gives the squared correlation between the leave2

one out predictions and the measured ULA values. The separate training sets in the
cross validation steps were not mean centred. This would increase the extrapolation of
the models because only eight, rather different, drugs were used in the modelling.
Three PLS factors are rather high for the model, however, PRESS kept decreasing
when more factors were included. Figure 1 shows the predicted vs. observed ULA.
Lactose 100 mesh was also used as a test drug for the calibration. The measured ULA
values were compared with the predicted values by the PLS model. The predicted ULA
values of lactose 100 mesh are also given (t). The predicted value corresponds rather
well with the measured ULA values.

Table 4 also shows the regression coefficients that were calculated from the PLS
factors. The ULA can be predicted according to the next formula:

ULA = 11.8 + 1.8 (Sol) ! 0.8 (10%) ! 0.3 (50%) ! 0.3 (90%) + 0.7 (S ) v

+ 0.5 (Tap) ! 0.3 (Thick) + 0.8 (BET)

A strong relation exists between the amount of water that can be added to the mixture
and the surface of the specific drug during granulation. The surface area comprises the
outer and inner surface of the particles. Drugs with large surface area (high S  and BET)v

have high ULA values. The negative sign of the regression coefficient of (10%)
indicates that drugs without small particles need less water than drugs with small
particles. Drugs that dissolve easily in the liquid (low sol) only need a small amount of
water to reach the ULA. During water addition, part of the model drugs may dissolve in
the water. This leads to a decrease of the surface area.

The total range of phase three (Range=S -S ) could not be described by the physical4 3

properties of the model drugs. No explanation could be found why some drugs start to
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Figure 1: Predicted vs. observed uncritical amount of granulation liquid (ULA) for the model drugs
(+). The measured ULA values were compared with the predicted values by the PLS model. The
predicted ULA value of lactose 100 mesh is also given (t).

agglomerate earlier than others. The comparison between lactose 100 mesh and
lactose 200 mesh shows that the first starts to agglomerate with less water than lactose
200 mesh.

The ULA for mixtures with lactose 200 mesh, corn starch, PVP and a drug can be
predicted rather well with the model. One must keep in mind that only 8 model drugs are
used in the calibration, however these drugs were selected to have a broad range in
physical properties. For a better prediction model, more drugs are to be used, or the
drugs have to be more similar. A limitation however is that for drugs with very small
particle size (such as salicylic acid and milled paracetamol) the model cannot be used.
The power consumption records for such drugs were too different from the regular curve
given by Leuenberger, that was found for the rest of the model drugs.

Conclusion

Mixtures of lactose 200 mesh, corn starch, PVP with several model drugs at the 50%
level have been studied. Power consumption curves have been recorded for several
drugs that were selected to have large spread in physical properties. In was shown that
during phase three of the records, the mean granule size increases and the
percentages of fines decreases. An uncritical liquid amount (ULA) was defined to be in
the middle of phase three. The ULA is the safe amount of water that can be added to
the powder mixture without causing overwetting of the mass. The percentage of fines
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at the ULA was very small for all model drugs. The ULA was related to physical
properties of the drugs that were used. The surface area of the particles and the
solubility of the drugs are of main importance for the amount of water that can be added.
Drugs with a large surface area can take much water before overwetting will occur.
Drugs with high solubility in the liquid, tend to dissolve during granulation. Therefore,
the surface area of the powder mixture decreases and only a small amount of water can
be added. The calibration model can be used for prediction of liquid amount that can
safely be added to mixtures of lactose 200 mesh, corn starch, PVP and a new drug.
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A

B

Figure  A and B: Mean particle size, power consumption profile and percentage of fines (t=<150µm,
o=<425µm) for ascorbic acid and dicalciumphosphate.
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C

D

Figure  C and D: Mean particle size, power consumption profile and percentage of fines (t=<150µm)
for isoniazid and nicotinamide.
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E

F

Figure  E and F: Mean particle size, power consumption profile and percentage of fines (t=<150µm,
o=<600µm) for paracetamol and sulfadimidine.
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G

H

Figure G and H: Mean particle size, power consumption profile and percentage of fines (t=<150µm)
for thiamine.HCl and lactose 200 mesh.
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I

Figure I: Mean particle size, power consumption profile and percentage of fines (t=<150µm,
o=<300µm) for lactose 100 mesh.
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Chapter 4

Multivariate calibration of the process of
wet granulation and tableting

The pharmaceutical process of wet granulation and tableting is examined with different
model drugs that were selected to have large spread in the most important physical
properties for the wet granulation process (Chapter 2). Chapter 3 showed the influence
of the physical descriptors of the drugs on the uncritical amount of granulation liquid
that could be added to the powder mixture. The present chapter describes the
granulation experiments, in a high-shear mixer, of powder mixtures of lactose 200 mesh,
corn starch, polyvinylpyrrolidone (PVP) and a model drug with the uncritical amount of
water added to the mixture. Furthermore, granulations were carried out with less water
to reach the start of phase three in the power consumption profile as presented in
Chapter 3. The tablet mixtures containing 0, 5 or 50% drug were wet granulated and
further processed into pharmaceutical tablets. The addition of extra water during the
granulation increased both the median particle size of the granulations and
disintegration time of the tablets. Both the percentage of fines and the Hausner ratio of
the granulations decreased. The influence of physical properties of the model drugs on
the granule and tablet properties were also examined. The effect of the drug on the
granule and tablet properties was only small when 5% drug was used. For the 50% drug
mixtures, the solubility in the granulation liquid and the particle size of the pure drug
were the most important descriptors of the drugs. High solubility and large particles of
the drugs led to large median granule size and a small percentage of fines. A significant
interaction between the amount of water added during granulation and the solubility of
the drug was found. The difference in median granule size between soluble drugs and
insoluble drugs increased when more water was added. Crushing strengths of the
tablets were found dependent on the compactibility of the pure drugs. However, if a
large amount of water was added during granulation, this effect diminished and the
strength of the tablets shifted to the level of the tablet strengths of the standard mixture
without drug. Disintegration times of the tablets were short for drugs with a high
solubility and large surface area. No interactions between the amount of water and the
drug descriptors were found to influence the tablet  properties.
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Introduction

Wet granulation in high-shear mixers is a process of particle size enlargement much
used in the pharmaceutical industry to improve the tableting properties of powder
mixtures, such as flowability and compactibility, necessary for the large scale production
of tablets. High-shear mixers are used for their short process time and high
densification. When a new drug has been developed, the process of wet granulation
has to be optimised for this drug in an initial stage. However, often only a small amount
of the new drug is available for experimentation. Therefore, some initial knowledge of
the behaviour of the new drug in the wet granulation process is necessary. The effects
of apparatus variables and process variables on the physical properties of granules and
tablets have been investigated by many authors [1-11]. Studies on the influence of the
components in the tablet mixture have not been very systematical. In most cases only
two components were compared for their effect on granule properties and the process
[12]. This cannot lead to general conclusions about the effects of drug descriptors, and
predictions of granule and tablet properties for mixtures with a new drug are not
possible. Kristensen et al. already mentioned that the knowledge of the effect of the
starting material is rather unsystematical because it is difficult to make an experimental
design for drugs where only one of the drug properties is varied [13]. The concept of
multivariate design, for compounds that cannot be handled with standard experimental
designs, described by Wold et al. and by Carlson [14,15], has been used in this
investigation. For this approach, model drugs were selected with principal component
analysis in Chapter 2 to have a large spread in important descriptors. In the present
chapter the effect of physical drug descriptors on the granule and tablet properties is
examined. Multivariate regression techniques will be used to develop regression models
that can be used to study the effect of drug descriptors on granule and tablet properties,
and to make predictions of physical granule and tablet properties for mixtures of
lactose, corn starch, PVP and a new drug. Partial least squares regression (PLS) is
used for the modelling of the physical granule and tablet properties. PLS is a biased
regression method that searches for latent directions in the descriptor space with high
covariance with the response variables. A biased regression method is used because
multicollinearity exist between the descriptors. Furthermore, the descriptor variables
may outnumber the objects. A mathematical description of the PLS method is given in
Chapter 7 of this thesis. Tutorials on the PLS regression method have been given by
Geladi and Kowalski [16] and by Höskuldsson [17].

Experimental

Granulations were carried out in a GRAL 10 high shear mixer (N.V. machines Colette,
Wommelgem). The total amount of material for each experiment was maintained at 1.5
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kg. Lactose 200 mesh, corn starch, polyvinylpyrrolidone (PVP) and one of the model
drugs were dry mixed with an impeller speed of 300 rpm. The chopper speed was
maintained at 1500 rpm. After two minutes of dry mixing, water was added continuously
at a flow of 30 cm .min . The total mixing time was set to 12 minutes (the dry mixing3 -1

time included). Granulations were screened on a 2-mm screen on a Frewitt rotating
granulator to remove large lumps. The granulations were dried in a fluid bed dryer
(Aeromatic) for at least 25 minutes until constant temperature of the outlet air. After
drying, another screening step was carried out on a 1.5 mm screen to remove the lumps
that were formed during drying. Physical properties of the granulations were determined
after one day of storage.  Particle size distributions of the granulations were measured
by sieving analysis (850, 600, 425, 300, 150 and 0 µm). Poured and tapped density of
the granulations were measured. The moisture content in the granules was determined
by Karl Fischer titration.

Prior to tableting, the granulations were lubricated with 0.5% magnesium stearate
and mixed for two minutes in a Turbula mixer (Bachofen) at 90 rpm. Tablets (500 mg,
13 mm) were compressed from the granulations on a hydraulic tablet press (Hydro
Mooi, 20 kN, 2kN.min ). Tablet crushing strengths of ten tablets were determined!1

(Schleuniger), and disintegration times of six tablets were measured without disks. 
The composition of the mixtures was shown in Table 1 of Chapter 3. Mixture A and

B contain 5 and 50% of drug, respectively and mixture C contains no drug. Experiments
were carried out according to the experimental design shown in Figure 1. The circles
indicate repeated experiments. Each model drug was granulated at two different
concentrations, 5% and 50%. For powder mixture C, the drug was replaced by lactose,
which is considered to be the model drug of the standard mixture for both 5% and 50%
of drug concentration. The influence of the model drug was investigated at two levels,
on a low dose (5%) and on a high dose level (50%). The mixture without a model drug
was granulated three times. Each mixture was granulated with two different amounts of
water. The levels of water were set according to the power consumption records given
in Chapter 3. The high level was set to the uncritical liquid amount (ULA) which was
defined as the middle of phase three of the power consumption record. The low level
was set to the start of phase three of the record for the specific mixtures.

For the modelling of the granule and tablet properties, PLS computations were
carried out with the PLS toolbox [18] and the H-principle toolbox [19] in MATLAB [20].

Results and discussion

The mixtures of lactose, corn starch, PVP and the model drug were wet granulated. The
granulations were evaluated and compressed into tablets after one day of storage.
Crushing strengths and disintegration times of the tablets were obtained one day after
compression. Table 1 shows the physical granule and tablet properties of the powder
mixtures for all model drugs granulated at the 5 or 50% drug level with a low or high
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Figure 1: Experimental design of the granulation experiments. For each model drug granulations
were caried out at three drug concentrations (0, 5, 50%) and two levels of granulation liquid. Each plot
shows the amount of water (g) added to the powder mixture with a specific percentage of drug.
Mixtures with 0% drug were repeated twice, whereas some other granulation experiments •O were
repeated once.

amount of water added during granulation. At the 5% drug level, deviations of the
granule and tablet properties according to the mixture without drug were only small. The
deviations are much larger when 50% of drug was used, which was already observed
in the power consumption records of Chapter 3.



Multivariate calibration of the process of wet granulation and tableting      71

Table 1: For each tablet mixture the specific drug, the percentage of drug in the mixture and the amount
of water (g) are given. Median granule size (d , µm), fines < 300 µm (%) and the Hausner ratio of thegw

granules are given as are the crushing strength (CS) and disintegration time (DT) of the tablets.

drug % drug water (g) d  (µm)gw %<300 Hausner CS (N) DT (s)

lactose 200 mesh
lactose 200 mesh
lactose 200 mesh
lactose 200 mesh
lactose 200 mesh
lactose 200 mesh
ascorbic acid
ascorbic acid
ascorbic acid
dicalciumphosphate
dicalciumphosphate
isoniazid
isoniazid
nicotinamide
nicotinamide
nicotinamide
paracetamol
paracetamol
salicylic acid
salicylic acid
salicylic acid
sulfadimidine
sulfadimidine
sulfadimidine
thiamine.HCl
thiamine.HCl
thiamine.HCl
ascorbic acid
ascorbic acid
dicalciumphosphate
dicalciumphosphate
dicalciumphosphate
dicalciumphosphate
isoniazid
isoniazid
isoniazid
nicotinamide
nicotinamide
nicotinamide
paracetamol
paracetamol
paracetamol
salicylic acid
salicylic acid
sulfadimidine
sulfadimidine
sulfadimidine
thiamine.HCl
thiamine.HCl

0
0
0
0
0
0
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

150
150
150
225
225
225
142.5
143
198.5
150
225
135
210
138
175
175
142.5
189
165
210
210
150
150
225
127
165
170

75
126
127.5
127.5
205
205
135
135
190

90
90

145
97.5
97.5

138
203.5
330
150
210
210
120
178

227
173
191
518
412
491
228
228
364
215
479
224
561
294
605
660
188
305
239
350
344
184
194
488
229
350
421
278
626
260
203
331
301
328
314
494
221
213
662
444
479
731
158
230
218
427
356
151
621

64
80
76
17
25
16
60
65
26
64
15
66
17
37

3
3

69
42
59
27
34
79
73
20
65
29
16
43

2
49
76
32
41
41
43
25
59
74
13
10

5
2

75
56
78
11
24
77
13

1.18
1.19
1.17
1.11
1.12
1.10
1.17
1.14
1.13
1.16
1.13
1.19
1.15
1.16
1.15
1.11
1.11
1.18
1.19
1.15
1.17
1.18
1.16
1.17
1.16
1.13
1.11
1.16
1.09
1.13
1.17
1.15
1.14
1.22
1.19
1.14
1.19
1.18
1.11
1.12
1.12
1.14
1.18
1.17
1.16
1.15
1.13
1.18
1.14

59.3
45.2
50.3
38.3
49.9
40.1
53.7
44.1
55.1
47.2
39.6
47.3
75.3
67.4
81.3
85.4
45.4
45.9
54.2
52.4
56.3
50.9
53.7
52.3
44.5
58.5
48.3
25.0
57.2
38.0
43.9
46.8
47.8
77.7
74.4
63.1
57.2
62.1

101.4
21.7
22.1
22.1

160.8
106.3

83.4
72.6
72.8
86.7
85.8

149
184
163
286
229
259
268
252
383
215
336
233
344
669
643
662
206
233

29
54
54

215
186
201
349
444
473
114
324
463
138
404
244
351
378
418
489
489
304
339
248
263
156
335

1000
1000
1000

231
241
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Table 2: Physical drug properties of the model drugs used in the modelling of the granule and tablet
properties. LAC=lactose 200 mesh, ASC=ascorbic acid, DIC=dicalciumphosphate, ISO=isoniazid,
NIC=nicotinamide, PAR=paracetamol, SAL=salicylic acid, SUL=sulfadimidine, TIA=thiamine.HCl. The
drug properties are explained in Chapter 3 and in the text of the present chapter.

drug descriptor LAC ASC DIC ISO NIC PAR SAL SUL TIA

Solubility
10%
50%
90%
Sv

Poured
Tapped
Thickness
BET
Cos 2
Hausner ratio
Compactibility

0.70
2.2

26.6
77.3
0.93
0.55
0.85
5.81
0.50
0.80
1.55

56

0.54
81

216
398
0.07
0.91
1.00
5.63
0.06
0.78
1.10

0

3.70
88

242
375
0.14
0.87
1.00
4.12
0.32
1.00
1.15

37

0.90
10

39.5
89.0
0.41
0.58
0.78
5.78
0.19
0.66
1.35

53

0.00
8.0

25.9
62.3
0.53
0.46
0.68
6.02
0.18
0.70
1.48

26

1.85
37

360
570
0.11
0.69
0.77
6.56
0.03
0.50
1.12

0

2.70
3.0

12.0
24

1.08
0.28
0.43
5.63
0.41

-0.22
1.56
125

3.70
9.9

54.5
140
0.33
0.58
0.78
5.77
0.07
0.67
1.35

45

0.00
4.3

20.7
55.0
0.69
0.26
0.43
5.81
0.39
0.64
1.67

95

The effect of the drug on the granule and tablet properties of the whole mixture was
examined. Each drug will have its own interactions with the other components in the
mixture. These interactions are affected by the physical descriptors of the drug such as
the solubility, contact angle and particle size, and will influence the granules and
tablets. The physical granule and tablet properties of the mixture with drug were
compared to the standard mixture without a drug. The granule and tablet properties of
the standard mixture were related to the descriptors of lactose, eventhough, the
interaction between the same particles will differ from the interaction between different
particles. 

The settings of the water level and also the spread between the two levels are not
constant. They are, however, constant in a relative way because the levels were set
optimally for all drugs separately, according to additional information obtained from the
power consumption records. Using the PLS method, regression models were developed
that relate the physical granule and tablet properties of Table 1 to the drug descriptors
in Table 2.

The effect of the physical descriptors of the drugs on the physical granule and tablet
properties were studied for the 5% and 50% mixtures separately because the relation
between the drug concentration and the granule and tablet properties were not
expected to be linear. The information obtained will, therefore, be valid for a low or high
dosage of drug, but not in between. Experiments of the two water levels were combined
in a single model. Besides the influence of the drug descriptors, also the effect of the
extra water will be studied. When this was done, fixed settings for the water levels (-1
and +1) were used instead of the actually added amounts, because the settings were
chosen optimally for each drug separately. Interactions between the water level and
some drug descriptors were also considered.

For each model the number of PLS factors used in the model, the percentage of the
explained variance of the descriptors (%X) and of the response variable (%y) will be
given. When only one water level is examined (+ or -), only 9 objects and 12 descriptors
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are used (Table 2). When both water levels are considered simultaneously (+ and -),
the number of objects is 18 (9 drugs at two water levels). The descriptors in this case
are the ones in Table 2 plus a column of -1 and +1 indicating the water level, and the
interactions between the water level and the descriptors; a total of 25 descriptors. In
each model only one response was modelled. When descriptors had no effect on the
response they were removed from the model. The root mean squared error of the model
(RMSE) will be given for the models. RMSE must be comparable to the experimental
error of the response variables. For the validation of the models, leave one out cross
validation was used. The square root of the mean PRESS values are given
(RMPRESS). PRESS has been introduced in the introduction of this thesis.
Furthermore, the predictive quality of the model is indicated with Q . The various2

training sets in the cross validation were not mean centred for the various models. This
would lead to large extrapolations because only nine drugs are used which are quite
different from each other. The predictive properties of the models (RMPRESS, Q ) may,2

therefore, have been overestimated. 

Granule properties
The amount of granulation liquid added to the powder mixture, influenced the physical
properties of the granules. Granulations with the low water amount all had small median
granule sizes and large percentages of fines < 300 µm. This resulted in higher Hausner
ratios. The granules that were formed were still very brittle and disintegrated during the
drying step in the fluid bed dryer. Furthermore, not all particles had already taken part
in granule formation. When more liquid was added, the median granule diameter
increased, and the percentage of fines decreased. The poured and tapped volumes
both decreased. The Hausner ratio also decreased for most model drugs, which means
that the flowability of the mixture improved when more water is added. The measure of
change of the physical granule properties depends on the drug and its concentration
used in the powder mixture.

Median granule diameter
The median granule diameter increased when more water is added during the
granulation. The increase depends on the drug used in the mixture. Each subplot in
Figure 2 shows the median granule size (µm) for a specific model drug at 0, 5 and 50%
drug concentration for both levels of water added during granulation. The 0% drug lines
represent mixture C in Table 1 of Chapter 3, where lactose was used as the model drug.
The increase in median granule size is less for the drugs with low solubility in the
granulation liquid (dicalciumphosphate, salicylic acid and sulfadimidine). These drugs
did take part less in granule formation than the soluble drugs. For the very soluble
drugs (thiamine.HCl and nicotinamide) the increase in median granule size was much
larger than for the standard mixture. The soluble drugs with large particles (ascorbic
acid and paracetamol) had much larger granule size in the 50% mixtures. The 5%
mixtures of these drugs had quite deviating granule size at the high water level. Table
3 shows the results of the modelling of the median granule size for mixtures with 50%
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Figure 2: Median granule size (µm) of granulations from mixtures with 0% (bold lines), 5% (dotted lines)
and 50% (thin lines) of drug for the low (-) and high (+) amount of water added to the mixture.

drug granulated with the high amount of water. The PLS model relates the median
granule size to the drug properties of lactose 200 mesh and the other eight model
drugs. The granule size was scaled logarithmically to diminish the heteroscedasticity
of the variance. Two PLS factors gave an RMSE value of 0.09 which is comparable to
the experimental error. The two PLS factors described 93% of the variance in the
median granule size and 74% of the variance of the descriptors is used. The RMPRESS
value of 0.19 is twice as high as the experimental error. Granulations will have a large
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Table 3: Results of the modelling of the logarithmically scaled median granule size (ln d ), thegw

percentage of fines < 300 µm for the mixtures with 50% drug on the high water level, and the median
particle size at both water levels. The number of PLS factors, percentage explained variances of the
descriptors (%X) and the response variable (%y), the reproducibility s, RMSE, RMPRESS and Q  are2

given for each model.

granule properties water # factors %X %y s RMSE RMPRESS Q2

ln(d )gw

% fines < 300 µm
+
+

2
3

74
88

93
90

0.10
8

0.09
6

0.19
9

0.73
0.65

ln(d )gw + and - 4 82 92 0.10 0.14 0.21 0.82

Figure 3: Predicted median granule diameter (dgw) vs. measured values for both low and high water
levels. The median granule size was scaled logarithmically. 

median granule size if the drug used has high solubility in the granulation liquid and if
the particle size of the pure drug is large. The poured and tapped density and the
Hausner ratio were removed from the model.

The second row with results in Table 3 shows the results of the modelling of the
median granule size for both water levels. Besides the drug descriptors, the relative
water level (+ and -) and all interactions between the water level and the drug
descriptors were used for the modelling. The median granule size was higher at the
high water level. Besides the solubility and the mean particle size of the drugs, the
linear factor of the water level was found to increase the median granule size. Only the
interaction of the water level with the solubility, contact angle and tablet tickness were
used in the final model. The effect of the solubility of the pure drugs is higher at the high
water level than at the low water level. The difference in median granule size between
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soluble drugs and non soluble drugs  increased when more water is added during the
granulation. Figure 3 shows the predicted vs. the measured values of the median
granule size. Some non linearities in the modelling of the median granule size were
found which could be described by a quadratic PLS model. This decreased the RMSE
value, however the RMPRESS increased. Therefore, the linear model was maintained.

Percentage of fines
The results of the modelling of the percentage of fines < 300 µm are also shown in
Table 3. Figure 4 shows the weight percentage of granules with diameter < 300 µm for
the low and the high water level. This percentage for the standard tablet mixture without
a model drug, decreased from 73% on the low water level to 19% when the high water
amount was added. Sulfadimidine and thiamine.HCl showed only small changes when
5 or 50% drug was included in the mixture. Paracetamol and ascorbic acid, which are
both drugs with large particle size and moderate solubility, had very small percentages
of fines with 50% drug in the mixture. For both the median granule size and the
percentage of fines, the same drug descriptors were important, with opposite PLS
regression coefficients. Large median granule sizes were obtained with drugs that have
large particle size and are soluble in the granulation liquid. Drugs with high contact
angles are slightly wettable and do hardly take part in primary granule formation.
Granule grow will be less and a small granule size will be obtained.

When only 5% drug is used in the powder mixtures, an obvious water effect was
observed for the granule properties, median granule size increased and the percentage
of fines and the Hausner ratio decreased when more water is added. The effect of the
drug descriptors on the granule properties was only small. The mixture consists of 81%
lactose and only 5% of the drug. Therefore, the mixture characteristics mostly come
from the lactose. Considering all granule response variables in Table 1, median granule
size, percentage of fines < 300 µm and the Hausner ratio, at both water levels, the
properties of the granules had a smaller deviation of the standard mixture than two
standard deviations. Nicotinamide had larger granules and smaller percentage of fines
than the standard mixture, whereas paracetamol had smaller granules and more fines.

Tablet properties
Tablets were compressed from the granulations after lubrication with magnesium
stearate (0.5%) for two minutes in a turbula mixer. The crushing strength and
disintegration time of the tablets were measured one day after compression. Both tablet
properties were logarithmically scaled because of the heteroscedastic variance
structure.

Crushing strength
Figure 5 shows the crushing strengths of the tablets for the mixtures with the model
drugs at 0, 5 and 50% dose. When only 5% drug was used in the powder mixtures, no
large deviations in the tablet crushing strength from the standard mixture were
observed. However, isoniazid and nicotinamide showed a large increase in crushing
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Figure 4: Percentage fines < 300 µm of granulations from mixtures with 0% (bold lines), 5% (dotted
lines) and 50% (thin lines) of drug for the low (-) and high (+) amount of water added to the mixture.

strength at the high water level. Both drugs are rather soluble in the granulation liquid
and have small particle sizes.

When 50% drug was used in the tablet mixture, compactibilities of the pure drugs
influenced the crushing strength of the tablet mixture. On the low water level, the
crushing strengths of the tablets could be described by the drug descriptors.
Granulations with drugs that have high compactibilities and small particle size had high
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Figure 5: Crushing strength (N) of tablets from mixtures with 0% (bold lines), 5% (dotted lines) and 50%
(thin lines) of drug for the low (-) and high (+) amount of water added to the mixture.

crushing strengths. Table 4 shows the results of the modelling of the crushing strength
at the low water level. With only two PLS factors 95% of the response could be
explained. A Q  of 0.80 is acceptable. Figure 6 shows the predictions of the crushing2

strength of the mixtures for the various model drugs against the measured values at the
low water level. When the high amount of water was added to the mixture,  crushing
strengths of the tablets shifted towards the crushing strength of the standard mixture.
The influence of the compactibility of the pure drug diminished when more water was
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Table 4: Results of the modelling of the logarithmically scaled tablet properties: crushing strength (CS,
50%, low water level) and the disintegration time (DT, 50%, on the low and high water level). For each
model, the number of PLS factors, percentage explained variance of X and y, reproducibility (s), RMSE,
RMPRESS and Q  have been given.2

% drug water # factors %X %y s RMSE RMPRESS Q2

ln CS 
ln DT 

50
50

-
+ and -

2
3

75
76

95
83

0.10
0.09

0.14
0.19

0.26
0.41

0.80
0.48

Figure 6: Predictions of the logarithmically scaled crushing strength (ln CS) vs. the measured values for
tablets from mixtures with 50% drug on the low water level.

added to the tablet mixture during wet granulation. However, for nicotinamide and
thiamine.HCl, both freely soluble drugs with small particle size, an opposite effect was
observed. Paracetamol tablets still had low crushing strengths even at the high water
level.

Disintegration time 
The disintegration time of the tablets was measured without disks. When the tablets had
not been disintegrated after 900 seconds, the disintegration time was set to 1000
seconds. This only occurred for 50% sulfadimidine tablets. The disintegration time of
the dicalciumphosphate tablets with 50% of drug content was found to have extremely
bad reproducibility on both water levels. It was decided to leave these disintegration
times out of the modelling. The disintegration time of the tablets is shown in Figure 7.
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Figure 7: Disintegration time (s) of tablets from mixtures with 0% (bold lines), 5% (dotted lines) and 50%
(thin lines) of drug for the low (-) and high (+) amount of water added to the mixture.

For most mixtures the disintegration time increased when 5% drug was added to the
standard mixture. However, for salicylic acid the disintegration time became much
shorter and for nicotinamide, the disintegration time got very long. For most tablet
mixtures, disintegration time increased when more water was added during granulation.

Table 4 shows the results of the PLS modelling of the disintegration time for 50%
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mixtures for both water levels. No interactions between the water level and a drug
descriptor were found. 83% of the variance of the response variable could be described
by the model with 3 PLS factors. Addition of extra water was found to increase the
disintegration time, which was also found by Shiraishi [21]. Q  of 0.48 is very low, which2

indicates that prediction of the disintegration time from the physical properties of the
drug is not good. However, a general trend is that nonsoluble drugs give longer
disintegration times, and drugs with high surface area give short disintegration times.
To control the disintegration time of the tablets, disintegrants have to be used.

The models of the granule and tablet properties were developed with only 9 or even 8
model drugs, which were more different from each other than expected. However, some
trends about the influence of drug descriptors on granule and tablet properties have
been indicated. When model drugs are more alike, as can be expected in industrial
applications, the models are expected to be better than the ones presented in this
chapter.

Conclusions

When a new drug is added to a mixture of lactose 200 mesh, corn starch and PVP, the
process variables have to be adjusted to produce granulations suitable for tablet
production. Physical properties of the granules and tablets are affected by the new
drug. The effect of the drug depends on its concentration in the mixture. A concentration
of 5% gives only minor changes as compared to the standard mixture.

At mixtures with 50% drug, median granule diameter increased and the percentage
of fines decreased when drugs are soluble in the granulation liquid or have large
median granule size. The solubility of the drugs shows a significant interaction with the
amount of water. The difference in median granule size between soluble drugs and
insoluble drugs increased when more water is added. When only 5% drug is used in
mixtures, the effect of the drug descriptors on the granule properties is only small. The
large amount of lactose dominates the properties of the mixture. The effect of adding
extra water to the mixture during granulation was found significant for the granule
properties for mixtures with 5% drug.

The tablet crushing strength of mixtures with 50% drug was found to be influenced
by the compactibility of the pure drug when only a low amount of water was added
during granulation. When more water was added, crushing strengths shift to the level
of the standard mixture. For the disintegration time of the tablets no significant
interaction between the amount of water and the drug descriptors was found. A high
solubility and large surface area of the drugs seem to shorten the disintegration time.
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Chapter 5

Optimisation of the composition and production
of mannitol/microcrystalline cellulose tablets

Mixtures of mannitol and microcrystalline cellulose (MCC) were investigated on
small-production scale by granulation in a high-shear mixer and compression into
tablets. For both excipients only a few cases of incompatibilities with active
ingredients are known. Tablets with only MCC as the filler excipient have inferior
strength as compared to pure mannitol tablets, whereas disintegration time of
mannitol tablets is inferior to pure MCC tablets. However, combination of both
excipients resulted in sufficiently rapid disintegrating tablets with acceptable
strength. The composition of the tablet mixture and the process of tablet
manufacturing were optimised using statistical techniques. Next to the effects of the
amounts of MCC and hydroxypropylcellulose (HPC) in the composition, the effects of
the amount of water and the granulation time were evaluated. For the production of
tablets both the effects of moisture content in the granules and compression force
were studied. Simultaneous optimisation of crushing strength, disintegration time
and ejection force of the tablets was carried out to find optimal regions in the design
space for these tablet properties.

In conclusion, mannitol/MCC mixtures can be considered as an interesting
alternative in case classical excipients cannot be selected in formulation
development, due to chemical incompatibilities with active ingredients or inferior
physical characteristics.

Introduction

Wet granulation is a process of size enlargement and is generally applied in the
pharmaceutical industry to prepare powdered materials for capsules and tablets.
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Several strategies have been used to optimise the process of granulation and tablet
manufacturing [1-7]. Most of the research on granulation in high-shear mixers has
been performed with lactose and calcium-hydrogen-phosphate as the major filler
excipients in the blend. Both calciumphosphate and lactose formulations can give
rise to physical and chemical problems, the latter particularly in formulations with
drugs that give the Maillard decomposition reaction. Both MCC and mannitol are
relatively inert and only a few cases of incompatibilities with active ingredients have
been reported.

The aim of this study was to evaluate the applicability of mannitol/MCC mixtures
and to optimise the composition and production of the tablets for their granulating
and tableting properties using statistical optimisation techniques.

Methods

Design of experiments
The design of experiments in this study was divided into three steps: the screening
of important process variables, the robustness of the process and the final
experimental design. The final design was restricted to 40 granulation experiments
aimed to give quantitative information about the effect of only six process or
composition variables on the granule and tablet responses.

An extensive list of all variables that affect the process of wet granulation and
tableting is based on everyday experience. From this list some variables were
chosen for further research, others were kept constant at a specified level. The
following criteria were used to come to a selection of important variables: known for
its high influence, traditionally varied to solve technological problems, easy to control
and vary, meets peoples interests, affects nearly all responses. Screening
experiments finally resulted in the selection of six variables and their valid ranges.

An essential step in the optimisation process is to establish the robustness
(reproducibility) of the manufacture of granules and tablets against disturbances in
variables that are assumed to stay constant. If the process is not robust, effects of
process variables are more difficult to detect.

The six chosen process and composition variables were set at specific levels for
the final experimental design. Because of the expected curvature in the response
surfaces, each variable was varied at three levels. A Box-Behnken design was
selected, which only needed 55 experiments [8]. Figure 1 shows a three variable Box
Behnken design. No experiments at the vertices of the cubic region are necessary.
This can be advantageous because the corners of the cube represent extreme
combinations of factors at the edge of the experimental region where physical-
chemical problems may arise.

The six variable Box Behnken design used, is shown in Table 1. The ±1 stands for
the high and low level of the specific variable, and 0 stands for the medium level.
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Table 1: Box-Behnken design with four process: water, time, moisture and compression force (Fup),
and two composition variables: MCC and HPC.

MCC HPC Water Time Moisture Fup # batches

±1
0
0

±1
0

±1
0

±1
±1

0
0

±1
0
0

0
±1
±1

0
0

±1
0

±1
0

±1
±1

0
0
0

0
±1

0
±1
±1

0
0

0
0

±1
0

±1
±1

0

8
4
4
4
2
4
7

Figure 1: A three variable Box Behnken design. Each variable is varied on three levels. No
experiments are selected at the corner points. The centre point is repeated several times.

The number of batches in each row that have to be granulated is given in the last
column. Two of the four process variables, compression force and moisture in the
granules, are not applied at the production of the granulation. These process
variables can be varied using the same batch of granules. Therefore, the number of
batches can be diminished from 55 to only 33 batches. Table 2 shows the variables
and levels that were set. Two composition variables are varied, the amount of MCC
and HPC in the blend. The other four variables: the amount of water added to the
mixture, granulation time, moisture level of the granules and compression force (F ),up

define the process. The moisture level of the granulation was set to a specific value
using methods including drying in a Kocken vacuum stove. The binary mixture of
MCC and mannitol can be represented by only one variable. The calculated effect of
MCC, therefore, is not from the pure component. It points out the effect of the
combination of MCC and mannitol.

Previous experiments showed that a high water level was incompatible with a low
amount of MCC as was a low level of water with a high amount of MCC. For this
reason the amount of water was set dependent on the amount of MCC according to
a previous defined experimental relation given in Table 2.
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Table 2 The levels of the variables in the Box-Behnken design.

Process variables low level medium level high level

MCC (%)
Water (ml)
HPC (%)
Time (min.)
Moisture (%)
Fup (kN)

65
110+4.5*MCC
2
3
3
10

75
110+5.3*MCC
3
5
4
20

90
110+6.0*MCC
5
7
5
30

Statistical analysis of the results.
The use of regression analysis in this study has two main reasons, process
investigation and optimisation of tablet properties. To obtain regression models that
describe the data well and give good predictions, a well-defined strategy is followed.
The strategy is divided into three steps.
C Outlier selection
C Model selection
C Model evaluation

The data measured are modelled to a linear model with linear, quadratic and
interaction terms. The complete model is defined as follows:

y = a +  b X  + ... + b X  + c X  + ... + c X  + d X X  + ... + d X X1 1 6 6 1 1 6 6 12 1 2 56 5 6
2 2

In this model the intercept a gives the response value y in the centre of the design
where all variables X ..X  are set to zero. The parameters b, c and d are regression1 6

coefficients for the linear, quadratic and two-factor interaction terms respectively.

Outlier selection
The residuals of the complete model are examined for outliers with an envelope plot
of the Studentized residuals. Studentized residuals have mean zero and unit
variance and they are corrected for the influence of the position in the design [9].
The residuals are plotted in an envelope plot [10]. When residuals fall outside the
envelope, they are removed as outliers.

Model selection
Model selection starts with the determination of the complexity of the model. The
successive addition of the linear, quadratic and interaction terms is evaluated with a
F-test. The adjusted correlation coefficient (R ) and Amemiya’s prediction criterium2

adj.

(PRC) are calculated for these models [11]. R  gives the variance in the data2
adj.

accounted for by the regression model. The PRC compares mean squared errors of
the models. Both are corrected for the number of observations and parameters in the
model.  For a good model, R  is close to 1 and PRC is as low as possible.2

adj.

Variable selection is carried out to use only those variables that influence the
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response. The models are stripped one group at the time. Groups of a specific
variable are formed by its linear and quadratic term and all interaction terms. Groups
are stripped until they all are significant at the 0.05 level. The p-value shows the
significance for the F-test for the mean square of the type II sum of squares
explained by the group and the mean square of the residuals [12]. In the evaluation
of the models R  and PRC are included. The model with optimal R  and PRC2 2

adj. adj.

values will be chosen as the final model. However, the figures may be ambiguous.
They are not always both optimal for the same model. When this is the case,
selection of the final model has to be made on additional arguments. The final model
was tested for lack of fit [9].

Model evaluation
After estimation of all parameters in the model, several plots of responses against
process variables can be drawn and evaluated. From these plots, optimal
combinations of the process variables can be found for the tablet responses to meet
given criteria. For prediction properties, the square root of the leave one out squared
prediction errors (RMPRESS) is calculated. If the RMPRESS, the root mean squared
error (RMSE) of the model and the experimental error (s) of the centre point are of
comparable size, the model can predict new response values with the same
precision as described by the data.

In the process of tablet making, a number of demands have to be satisfied.
Usually, optimal values for different responses are not obtained at the same settings
of the process and composition variables. Overlay contour plots can be drawn for
several responses in the experimental space, to find regions in the experimental
space that fulfil restrictions of tablet properties.

Experimental

Granulation and compression process
Granulations were prepared according to the formulation in Table 3. MCC (Avicel
PH102; Roquette) and mannitol (FMC cooperation) were mixed for 1 minute in a
Gral 10 high-shear granulator (Collette) at impeller speed 650 rpm. The HPC
(Aqualon) solution was added in the middle of the powder bed with the necessary
amount of water. The mass was granulated for 3, 5 or 7 minutes at impeller speed
650 rpm. and chopper speed 3000 rpm. After granulation, the mass was dried in a
Kocken vacuum stove at 40 C and -1000 mbar vacuum. The moisture content of theo

granules was determined with a Sartorius IR humidity analyser. The granules were
sieved through a 710 µm sieve on an Erweka AMD oscillator. From the granules 400
g was taken and admixed with 1.5% colloidal silicon dioxide (Defussa) during 1
minute followed by admixing with 0.5% magnesium stearate (Otto Breyer b.v.) during
1 minute in an Erweka mixer. After admixing, the granules were compressed into flat
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Table 3 The formulation of the tablets.

HPC
magnesium stearate
colloidal silicium dioxide
MCC + mannitol

2-3-5%
0.5%
1.5%
ad. 100%

faced tablets (9.0 mm; 250 mg) at a compression force of 10, 20 or 30 kN on a
HOKO KJ excenter press.

Granule and tablet properties
Before admixing the granules with colloidal silicon dioxide and magnesium stearate,
the particle size distribution was measured by sieve analysis (Retsch 50 Hz, 20 min.
sieves 600, 500, 355, 212, 125, 75 µm), and the median diameter of the granules
(D ) was calculated. The flow rate of 100 g of granules through a funnel with an50

orifice of 4.5 mm was measured as were the poured and tapped specific volumes.
During tableting, ejection forces of the tablets were registered with a Siemens
Oscilloreg. Thirty minutes after preparation, crushing strengths of 10 tablets were
measured on a Roche HT 300. Disintegration times of six tablets were measured
with disks according to USP XXII.

The selected Box-Behnken design needed 55 experiments. Table 4 shows
settings of the process and composition variables according to the BB design and
the measured crushing strength (CS), disintegration time (DT) and ejection force
(EF) of the tablets. Table 5 shows the measured granule properties. A-C=Flow
through funnel with orifice 4.5, 6.0 and 9.0 mm respectively (s), D, E=poured and
tapped volumes (ml.g ), F=Carr’s index, G=median granule size (D ; µm) and H--1

50

N=sieve fractions >600, 600-500, 500-355, 355-212, 212-125, 125-75, <75 (%).
From experiment 14 and 15 no tablets could be obtained because of the bad
compression characteristics of the granules.

Results and discussion

Robustness experiments showed that the process of wet granulation and tablet
making is in control. The reproducibility of the tablet responses was considered good
enough to continue the study.

Tablet properties
Tablets were compressed from the granules. One granulation experiment (90%
MCC, 3% HPC, 585g H O, 4% moisture, granulation time 7 min.) turned out to have2

extremely poor compressibility properties. This batch was supposed to be tableted at
two different compression forces. No tablet properties could be obtained for these
experiments. Table 6 shows the results of the models for the tablet responses.
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Table 4: Experimental design and measured tablet properties crushing strength (CS),
disintegration time (DT) and ejection force (EF).

Nr MCC(%) HPC(%) water(ml) time(min.) moist.(%) comp. (kN) CS(N) DT(s) EF(N)

1 75 3 500 5 3.9 20 23 11 138
2 75 3 500 5 4.3 20 48 42 110
3 75 3 510 5 4.0 20 33 24 91
4 75 3 510 5 4.3 20 38 23 91
5 75 3 510 5 3.8 20 25 11 111
6 75 3 510 5 3.8 20 35 30 92
7 75 3 510 5 3.8 20 38 34 100
8 65 3 450 7 3.8 30 55 104 126
9 65 3 450 7 3.8 10 15 2 101

10 90 3 585 3 4.0 30 11 10 50
11 90 3 585 3 4.0 10 4 2 59
12 65 3 450 3 4.2 10 23 10 235
13 65 3 450 3 4.2 30 66 291 274
14 90 3 585 7 3.7 10 * * *
15 90 3 585 7 3.7 30 * * *
16 75 5 450 5 4.0 10 14 2 99
17 75 5 450 5 4.0 30 51 138 120
18 75 5 560 5 3.8 10 17 5 74
19 75 5 560 5 3.8 30 53 400 83
20 75 2 450 5 4.2 30 75 215 358
21 75 2 450 5 4.2 10 30 2 214
22 75 2 560 5 4.0 30 51 84 99
23 75 2 560 5 4.0 10 20 6 86
24 90 3 510 5 3.3 20 22 16 81
25 90 3 510 5 4.8 20 22 15 72
26 65 3 500 5 4.8 20 61 149 117
27 65 3 500 5 3.2 20 48 65 132
28 65 3 400 5 3.1 20 44 28 141
29 65 3 400 5 4.9 20 58 72 134
30 90 3 650 5 3.4 20 6 8 53
31 90 3 650 5 5.4 20 8 15 41
32 65 2 450 7 4.0 20 49 26 153
33 65 2 450 3 4.0 20 52 42 142
34 90 2 585 7 4.4 20 9 2 68
35 90 2 585 3 4.3 20 13 4 62
36 65 5 450 3 4.0 20 37 55 138
37 65 5 450 7 4.0 20 31 32 115
38 90 5 585 7 4.2 20 6 10 44
39 90 5 585 3 4.3 20 8 16 51
40 75 3 560 7 4.5 20 65 118 79
41 75 3 560 7 3.1 20 55 54 86
42 75 3 560 3 4.6 20 57 90 88
43 75 3 560 3 3.0 20 51 33 134
44 75 3 450 3 3.0 20 51 51 134
45 75 3 450 3 4.6 20 51 38 110
46 75 3 450 7 3.1 20 43 21 127
47 75 3 450 7 4.6 20 48 47 120
48 75 2 510 5 4.8 10 22 6 92
49 75 2 510 5 4.8 30 60 125 102
50 75 2 510 5 2.8 10 11 4 91
51 75 2 510 5 2.8 30 61 48 124
52 75 5 510 5 3.1 30 57 156 110
53 75 5 510 5 3.1 10 13 6 92
54 75 5 510 5 4.5 10 23 9 85
55 75 5 510 5 4.5 30 68 421 91
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Table 5:  Measured physical granule properties of experiments given in Table 4.  A-C=Flow through
funnel with orifice 4.5, 6.0 and 9.0 mm (s), D-E=poured, tapped volumes (ml.g ), F=Carr’s index,-1

G=median granule size (D ; µm), H-N=sieve fractions >600, 600-500, 500-355, 355-212, 212-125,50

125-75, <75 (%). 

Nr A B C D E F G H I J K L M N

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

1.15
1.14
1.13
1.05
1.05
1.05
1.02
1.22
1.22
1.16
1.16
1.13
1.13
1.23
1.23
1.01
1.01
0.95
0.95
1.20
1.20
0.95
0.95
1.27
1.29
0.95
0.98
1.26
1.18
1.11
1.18
1.15
1.15
1.38
1.25
1.12
1.05
1.13
0.99
0.82
0.85
0.86
0.88
1.09
1.09
1.07
1.04
1.02
1.02
1.03
1.03
0.91
0.91
0.88
0.88

2.54
2.51
2.55
2.36
2.44
2.23
2.34
2.72
2.72
2.70
2.70
2.54
2.54
2.68
2.68
2.25
2.25
2.15
2.15
2.56
2.56
2.14
2.14
2.75
2.82
2.18
2.23
2.62
2.56
2.54
2.62
2.47
2.47
3.07
2.75
2.54
2.44
2.61
2.31
1.90
1.94
1.96
2.05
2.30
2.31
2.24
2.25
2.32
2.32
2.31
2.31
2.11
2.11
2.04
2.04

7.28
6.76
7.25
6.45
6.90
6.45
6.37
7.37
7.37
7.53
7.53
6.90
6.90
7.82
7.82
6.41
6.41
6.26
6.26
6.41
6.41
6.24
6.24
7.18
7.35
6.26
6.41
6.67
6.66
7.30
7.69
6.42
6.17
8.27
7.42
7.13
7.12
7.58
6.82
5.56
5.59
5.71
5.88
5.88
6.10
5.85
5.75
6.37
6.37
6.39
6.39
6.17
6.17
5.82
5.82

1.55
1.71
1.57
1.71
1.56
1.65
1.78
1.52
1.52
1.47
1.47
1.66
1.66
1.35
1.35
1.69
1.69
1.60
1.60
1.75
1.75
1.63
1.63
1.63
1.59
1.66
1.64
1.70
1.74
1.37
1.36
1.80
1.82
1.50
1.59
1.50
1.52
1.40
1.52
1.74
1.74
1.75
1.75
1.86
1.79
1.87
1.91
1.80
1.80 
1.83
1.83
1.67
1.67
1.72
1.72

1.46
1.54
1.45
1.59
1.38
1.53
1.58
1.45
1.45
1.32
1.32
1.57
1.57
1.27
1.27
1.54
1.54
1.50
1.50
1.56
1.56
1.52
1.52
1.45
1.42
1.48
1.47
1.49
1.55
1.30
1.26
1.62
1.64
1.33
1.44
1.38
1.35
1.27
1.40
1.63
1.62
1.63
1.60
1.66
1.59
1.65
1.70
1.63
1.63
1.61
1.61
1.56
1.56
1.60
1.60

6.2
11.0
8.3
7.5

13.0
7.8

12.7
4.8
4.8

11.4
11.4
5.7
5.7
6.3
6.3
9.7
9.7
6.7
6.7

12.2
12.2
7.2
7.2

12.4
12.0
12.2
11.6
14.1
12.2
5.4
7.9

11.1
11.0
12.8
10.4
8.7

12.6
9.3
8.6
6.7
7.4
7.4
9.4

12.0
12.6
12.7
12.4
10.4
10.4
13.7
13.7
7.1
7.1
7.5
7.5

344
257
378
325
429
444
280
337
337
304
304
285
285
478
478
273
273
507
507
151
151
533
533
196
189
510
507
177
184
563
539
174
177
204
212
380
475
502
520
518
529
511
509
164
181
183
183
290
290
282
282
501
501
516
516

3.9
6.2
7.3
5.0

10.6
10.2
1.2
2.9
2.9
6.0
6.0
5.3
5.3

20.6
20.6
5.9
5.9

26.1
26.1
3.3
3.3

27.5
27.5
4.2
4.0

22.2
22.8
1.6
1.4

41.8
36.0
1.3
0.8
1.7
1.9
7.5

18.7
22.8
25.3
25.2
26.4
22.6
23.6
1.2
1.6
1.4
1.4
1.8
1.8
1.2
1.2

21.8
21.8
23.2
23.2

11.6
6.5

16.7
10.0
21.0
21.8
4.0

11.0
11.0
9.6
9.6
7.2
7.2

24.3
24.3
7.8
7.8

25.6
25.6
3.4
3.4

32.8
32.8
9.8
8.0

30.4
29.8
4.6
5.2

21.0
22.6
4.5
3.4
3.9
5.4

18.3
25.5
27.7
30.4
29.6
32.6
30.8
29.2
4.8
6.0
4.8
5.4
5.8
5.8
4.4
4.4

28.6
28.6
31.8
31.8

31.4
11.3
30.9
25.6
37.5
39.2
16.2
30.1
30.1
21.0
21.0
16.2
16.2
39.1
39.1
16.4
16.4
24.5
24.5
4.7
4.7

27.7
27.7
12.2
10.6
25.6
26.2
8.8
9.8

19.4
21.6
7.0
5.8
8.8

11.8
28.8
31.1
23.3
27.9
22.8
22.0
24.2
25.6
8.2

10.2
8.8
9.2

18.0
18.0
16.8
16.8
26.8
26.8
24.8
24.8

43.2
37.2
36.4
46.2
25.8
21.2
53.4
44.9
44.9
38.5
38.5
42.5
42.5
14.4
14.4
34.3
34.3
13.8
13.8
10.0
10.0
9.0
9.0

17.8
17.0
13.8
14.0
17.0
18.0
11.0
12.6
11.8
15.4
29.7
30.6
32.9
17.6
14.9
13.9
12.8
11.0
12.8
13.0
16.2
17.2
16.8
17.4
53.0
53.0
55.0
55.0
14.4
14.4
12.6
12.6

7.9
35.2
6.3
8.6
3.5
4.3

19.6
8.2
8.2

19.1
19.1
26.4
26.4
2.1
2.1

31.1
31.1
5.2
5.2

41.5
41.5
1.6
1.6

34.6
40.8
4.6
4.6

45.2
47.2
4.0
4.4

58.9
57.9
49.7
44.3
10.0
5.1
7.6
1.8
5.4
4.2
5.4
4.8

38.4
40.2
49.6
51.6
16.4
16.4
17.8
17.8
5.2
5.2
4.4
4.4

1.2
2.0
1.2
1.6
0.8
1.4
2.8
1.4
1.4
3.5
3.5
1.3
1.3
0.5
0.5
3.6
3.6
1.8
1.8

30.7
30.7
0.3
0.3

18.0
17.0
1.4
1.4

18.8
14.2
1.2
1.2

13.4
11.2
3.7
4.4
1.4
1.1
2.2
0.2
2.0
1.4
2.2
1.8

25.6
18.6
15.0
11.6
2.4
2.4
2.6
2.6
1.6
1.6
1.4
1.4

1.0
1.2
1.2
3.0
0.7
1.8
2.2
1.2
1.2
2.7
2.7
0.5
0.5
0.2
0.2
0.6
0.6
2.9
2.9
6.8
6.8
0.7
0.7
3.6
3.2
1.6
1.6
4.2
3.8
1.2
1.4
3.2
4.2
1.0
1.3
0.8
0.5
1.5
0.2
1.8
1.8
2.0
2.2
7.0
5.4
2.0
4.2
2.2
2.2
1.6
1.6
1.8
1.8
1.8
1.8
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Table 6: Final models for the ejection force, crushing strength and disintegration time of mannitol
MCC tablets. Outliers, R , and lack of fit probability are given. Further model parameters are given2

with their significance (* p<0.05, ** p<0.01, *** p<0.001), and RMSE, error of reproduction (s) and
RMPRESS values. t1 and t2 give indications of properties for the tablets with bad compression
properties.

Response Ejection 
force (N)

Crushing 
strength (N)

Disintegration
time (s)

Outliers
R  2

p(Lack of fit)

4
0.85
0.97

-
0.93
0.75

-
0.91
0.69

Intercept
MCC
Fup
moisture
HPC
water
MCC2

Fup2

moisture2

water2

MCC*Fup
MCC*moisture 
MCC*HPC
MCC*water
Fup*moisture

98.8
-28.0 ***
   7.0 **
  -8.8 **

-11.0 ***

-9.8 **

3.3794
-0.4785 ***
0.5741 ***
0.1555 **

-0.0341
-0.3472 ***
-0.2358 ***
0.1225
0.2002 ***

-0.2660 ***
-0.1842 *

3.22
-0.658 ***
1.687 ***
0.489 ***
0.231 ***
0.278 **
-0.241 **
-0.315 *
0.527 **
0.315 **
-0.378 *
-0.357 *
0.158 *
-0.288 *

RMSE
s
RMPRESS

12
17
12

0.22
0.26
0.25

0.48
0.53
0.55

t1: 43 N
t2: 57 N

t1: 3 N
t2: 10 N

t1: 1 s
t2: 13 s

Disintegration time
The analysis of the results of the disintegration time will be used to show the
statistical route mentioned earlier in this chapter and is shown in detail. A logarithmic
transformation was used to correct for the heteroscedastic measurement error of the
disintegration time. No outliers were removed.

Scheme 1 shows the detailed results of the model building. A complete model with
linear, quadratic and interaction terms was selected to fit the disintegration time
data. A variable selection was carried out on this model. The granulation time
variable group provides no significant addition to the model (p=0.3969). The whole
variable group was removed. The new complete model shows no insignificant
variable groups (p<0.05). The second model has an improved PRC, but R2

adj.

decreased a little. Comparing both models the second was selected because it is
simpler than the first model. Looking to the model in detail, only the MCC group of
interactions is significant (p-values PROB>|T| below 0.05). The other interactions
were removed from the model as was the quadratic HPC term (p=0.25). The final
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Scheme 1: Detailed results of the modelling of the logarithmic scaled disintegration time.

ln disintegration time
----------------------------------------------------
Regressors        R2         F          p     R2adj   PRC
linear        0.8026    66.302     0.0000    0.7768    0.5149
quadratic     0.0801     6.619     0.0003    0.8475    0.3870
cross         0.0669     2.209     0.0385    0.8951    0.3267
TOTAL         0.9496    17.432     0.0000
----------------------------------------------------
full model
Factor     SSII        MS         F        p  
MCC     25.4282    3.6326   16.9917   0.0000   R2    = 0.9496
water    5.3801    0.7686    3.5951   0.0082   PRC   = 0.3267
time     1.6371    0.2339    1.0939   0.3969   R2adj = 0.8951
Fup     67.3874    9.6268   45.0296   0.0000   LOF   = 0.7491
moisture 4.8328    0.6904    3.2294   0.0140
HPC      5.3739    0.7677    3.5909   0.0082
----------------------------------------------------
full model (-time)
Factor     SSII        MS         F        p
MCC     25.3155    4.2192   19.3384   0.0000   R2    = 0.9341
water    4.8740    0.8123    3.7232   0.0064   PRC   = 0.3046
Fup     67.1179   11.1863   51.2711   0.0000   R2adj = 0.8929
moisture 4.9530    0.8255    3.7836   0.0058   LOF   = 0.7341
HPC      5.3972    0.8995    4.1229   0.0035
----------------------------------------------------
                    ANALYSIS OF VARIANCE
SOURCE     DF        SS         MS    F-value    PROB>F
MODEL      20   98.9851    4.94925    22.6843    0.0000
ERROR      32   6.98175    0.21818
TOTAL      52   105.967
RMSE = 0.46710   PRESS = 21.33245
        

PARAMETER   STANDARD    T FOR H0: 
VARIABLE ESTIMATE    ERROR       PARAMETER=0  PROB>|T|
intercept  3.2160     0.06416     50.12450     0.0000
MCC -0.6482     0.09878     -6.56183     0.0000
water  0.2556     0.09386      2.72311     0.0052
Fup  1.6419     0.10439     15.72798     0.0000
moisture  0.4919     0.11846      4.15281     0.0001
HPC  0.2965     0.11008      2.69323     0.0056
MCC -0.2515     0.09320     -2.69855     0.00552

water  0.3065     0.12420      2.46788     0.00962

Fup      -0.2671     0.15280     -1.74833     0.04502

moisture  0.4960     0.17399      2.85049     0.00382

HPC -0.0523     0.07685     -0.68069     0.25052

MCC*water -0.2896     0.12113     -2.39099     0.0114
MCC*Fup -0.3767     0.16076     -2.34306     0.0128
MCC*mois. -0.3550     0.15626     -2.27170     0.0150
MCC*HPC  0.1493     0.08598      1.73599     0.0462
water*Fup -0.2138     0.15835     -1.35010     0.0932
water*mois.  0.0977     0.13306      0.73414     0.2341
water*HPC  0.1594     0.10233      1.55816     0.0645
Fup*mois.  0.1670     0.18567      0.89956     0.1875
Fup*HPC  0.1450     0.07703      1.88236     0.0345
mois.*HPC  0.0439     0.13134      0.33459     0.3701
-----------------------------------------------------
New model
SOURCE     DF        SS        MS      F-value    PROB>F
MODEL      13   96.8979    7.45369     32.0539    0.0000
ERROR      39    9.069     0.23254
TOTAL      52  105.967

RMSE= 0.4822   R2 = 0.9144   PRESS = 16.38105
PRC = 0.2895   LOF= 0.69     R2adj =  0.8859
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Figure 2: Prediction of the disintegration time of mannitol MCC tablets as a function of the
amount of MCC and the compression force. (MCC: o=65%, +=75%, t=90%; HPC 3%,
granulation time 5 min., moisture content in granulation 4%, water at its medium level). 

model (Table 6) has a lower R , but the PRC and PRESS values improved and it2
adj

shows no lack of fit.
The amount of MCC has a reducing effect on the disintegration time. Higher

compression forces give tablets with shorter disintegration time. The effect of the
other variables depends on the level of MCC. Figure 2 shows the disintegration time
as a function of compression force and amount of MCC. High levels of MCC give
tablets that disintegrate fast as do tablets compressed at 10kN. At a low MCC
amount, the effects of compression force, amount of water and moisture in the
granules are higher than at high levels of MCC. 

Other tablet properties
Table 6 shows models for the ejection force and crushing strength of mannitol MCC
tablets. A logarithmic transformation was also used for the crushing strength of the
tablets to correct for the heteroscedastic variance structure. MCC has to be below
80% and the compression force must exceed 15 kN to obtain tablets with crushing
strengths of at least 40 N. Figure 3A shows the crushing strength as a function of
MCC and compression force.For the ejection force of the tablets four observations
(exp. 12, 13, 18 and 19; see Table 4) were selected as outliers. Figure 3B shows an
obvious effect of the amount of MCC and compression force on the ejection force.
When more water is added, the ejection force decreases. For all tablet properties the
RMPRESS values are of comparable size to the RMSE and the experimental error
(s). At the end of Table 6, indications are given for the tablet properties of the
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A B

Figure 3: Prediction of the crushing strength (A) and the Ejection force (B) of mannitol MCC tablets
as a function of the amount of MCC and the compression force. (MCC: o=65%, +=75%, t=90%;
HPC 3%, granulation time 5 min., moisture content in granulation 4%, water at its medium level).

experiments with bad compressibilities (t1, 10kN; t2, 30kN). Although the models are
extrapolating, they show that the tablets would be very weak and disintegrate fast.

Granule properties
The granule properties were also modelled on the process and composition
variables. The compression force and the moisture content in the granules are
process variables for the tableting step and are not taken into account for the
modelling of the granule properties. Table 7 shows mathematical models constructed
to describe the granule responses.

The median granule size is calculated from particle size distribution
measurements. Only linear terms of the amount of water and concentration of the
binder are used in this model. Both terms have a large positive effect on the
response, so the median granule size increases with increasing amounts of water
and concentration of binder. With this simple model the data is fitted well and
predictions are also good. The percentage of fines indicates the material that has
not been granulated or is segregated during handling. The highest percentage can
be found at low levels of water and HPC. The number of fines decreases when more
water or HPC is added. However when both are high, the percentage of fines
increases again. For the specific volumes poured and tapped the same variables are
important in the models. The highest specific volumes are obtained at a medium
level of MCC and a low amount of water. The flow through a funnel with an orifice of
4.5 mm diameter is modelled with a full quadratic model. A strong curvature of the
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Table 7: Final models for median granule diameter, % fines, specific volumes poured and tapped
and flow of mannitol MCC granulations. Outliers, R , and lack of fit probability are given. Further2

model parameters are given with their significance (* p<0.05, ** p<0.01, *** p<0.001), and RMSE,
error of reproduction (s) and RMPRESS values. 

Response Median
granule size
(µm)

Fines 
(%)

Vol.  Poured

(ml.g )-1
Vol.  Tapped

(ml.g )-1
Flow 
(g.s )-1

Outliers
R2

  

p(Lack of fit)

-
0.86
0.88

-
0.71
0.37

-
0.76
0.77

-
0.75
0.76

-
0.88
0.73

Intercept
MCC
time
HPC
water
MCC2

time2

HPC2

water2

MCC*time
MCC*HPC
time*water
HPC*water

353.58

  64.2 ***
156.8 ***

 2.18

-0.41 *
-0.37 **
-1.06 ***

 1.02 ***

 0.66 *
 1.30 ***

1.65
-0.0199
-0.018
-0.070 **
-0.051 **
-0.102 ***
 0.056 *
 0.024 *
 0.057 **

 1.50
-0.013
-0.017
-0.047 **
-0.022
-0.097 ***
 0.054 **
 0.016
 0.042 *

 1.079
-0.009
 0.007
-0.043 ***
-0.103 ***
 0.094 ***
-0.039 *

-0.046 **
 0.024 *
-0.025 **

 -0.031 *

RMSE
s
RMPRESS

55
71
57

0.92
0.66
1.02

0.08
0.09
0.09

0.07
0.08
0.075

0.052
0.053
0.062

flow in the MCC direction is observed. The lowest flow is reached at medium levels
of MCC with large amounts of HPC and water.

Multi criteria optimisation
Crushing strength, disintegration time and ejection force of the tablets are examined
simultaneously. Overlay contour plots of the tablet responses are given in Figure 4.
Each subplot shows the crushing strength, disintegration time and ejection force of
the tablets dependent on compression force and MCC.In the horizontal direction,
water is varied from 450 to 550 ml and in the vertical direction the moisture in the
granules is varied from 3 to 5%. The gray part of the plots have acceptable values
for all tablet responses: crushing strength above 40 N, disintegration times below
300 seconds and ejection forces below 120 N. In each constrained plot (because of
the MCC water relation) the upper left corner gives tablets that are too soft, the lower
left corner gives ejection forces higher than 120 N and the lower right corner gives
tablets with long disintegration times. HPC is set at 3% and the granulation time at 5
minutes.

To result in good mannitol/MCC tablets, MCC should be between 65 and 80%,
water should be about 500 g or higher, dependent on the MCC amount and
compression force must be about 25 kN. When the granulations contains more than 
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Figure 4: Overlay contour plots of crushing strength, disintegration time and ejection force. In
each plot compression force (10, 20, 30kN) and MCC (65, 75, 90%) are varied. Horizontally water
changes from 450 to 550 ml and vertically moisture in the granulation (3, 4, 5%). The dark area
represents tablets with crushing strengths > 40N, disintegration times < 5 minutes and ejection
force < 120N (HPC 3%, granulation time 5 min.).

5% moisture the tablets become stronger and a compression force of 20 kN
satisfies. This also causes a lower ejection force, but the disintegration time
increases. More compression force or less MCC gives stronger tablets. Table 8
shows predicted tablet properties for some settings of process variables. More HPC
decreases the ejection force, but if enough water is added during granulation, HPC
can be kept low.
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Table 8: Predicted properties of mannitol MCC tablets at some settings of the composition and
process variables

MCC
(%)

HPC
(%)

Moisture
(%)

Water
(g)

Fup
(kN)

Time
(min.)

Crushing
strength(N)

Disintegr.
time (s)

Ejection
force (N)

75
75
70
75
75
70
75
75

3
3
3
3
3
3
3
3

5
5
5
5
5
4
4
3

450
450
500
500
550
500
550
550

20
25
20
25
20
25
25
25

5
5
5
5
5
5
5
5

51
59
48
45
43
46
41
43

74
160
134
144
106

95
83
86

102
103
100

93
81

110
91

100

Conclusion

Mixtures of MCC and mannitol in tablets can be used as a good alternative to
classical filler excipients. The amounts of MCC, HPC and water strongly affect tablet
properties as do compression force and moisture of the granulation. Granulation
time hardly affects tablet properties. The amount of HPC does not influence the
crushing strength and ejection force of the tablets. The combination of MCC and
mannitol gives tablets with short disintegration times and sufficient strength. For
tablets with crushing strengths more than 40 N, disintegration times less than 300
seconds and ejection forces less than 120 N, the amount of MCC should be between
65 and 80%, the compression force must be 25 kN and the amount of water should
be at least 500 g, dependent on the MCC amount. When the moisture content in the
granulation is 5%, a compression force of 20 kN appears adequate.
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Chapter 6

Multivariate modelling of the process of
wet granulation and tableting for tablet

optimisation and in-process control

The process of tablet manufacturing with wet granulation is described as a two-step
process. The first step comprises the wet granulation of the powder mixture, and in
the second step the granulations are compressed into tablets. For the modelling of
the pharmaceutical process of wet granulation and tableting, two models are
constructed and compared. The first model relates the crushing strength,
disintegration time and ejection force of the tablets to the process variables from
both wet granulation and tableting steps and the composition variables of the
powder mixture. In addition to these predictor variables, the second model also uses
physical properties of the intermediate granules to improve the predictive properties
of the first model. Model 1 has to be used at the start of the process to find settings
for the process variables and the composition of the tablet mixture that produce
tablets with specific properties. Model 2 is used, in everyday production, for each
new granulation batch. The granulation properties may differ from batch to batch due
to uncontrolled external sources. With Model 2 these differences are taken into
account, and the crushing strength and disintegration time of the tablets are
predicted better than with Model 1. The advantage of incorporating the measured
granule properties in the second model is not only an improvement of the predictive
power, but the second model offers also the possibility to use a control scheme for
the second step of the process. This control scheme adjusts the variables of the
tableting step to produce tablets that better meet the specifications. Because the
granule properties are highly collinear and also dependent on the process variables
of the first step, a partial least squares regression method (PLS) has been used for
the modelling.
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Figure 1: The two-step process of tablet manufacturing with wet granulation

Introduction

In the last 15 years, the granulation process has been studied in a systematical way
by experimental design and analysis of variance (ANOVA) [1-4] and by response
surface methodology (RSM) [5-10]. In most studies, the effect of the process
variables on granule properties such as the median granule diameter, percentage of
fines, flow rate and porosity was investigated [1-4,7-9]. In some other papers, the
effect of the process variables on the tablet properties was also investigated [10-12].
Alderborn gave a list of granule properties that are important to tableting [13].
Lindberg et al. studied the influence of the granule properties combined with the
process variables for the tableting step on tablet properties as crushing strength,
disintegration time and friability [5,6]. In the present chapter, physical granule
properties are combined with the composition variables of the powder mixture and
the process variables of both granulation and tableting steps to improve the
modelling of the tablet properties. Therefore, the process of tablet manufacturing is
described as a two-step process. In the first step, the powder mixture is wet
granulated to improve the tableting properties of the mixture. Several process
variables can be adjusted to change the physical properties of the granulations such
as the granulation time and amount of granulation liquid. The granulations are
described in terms of particle size distribution, flowability parameters and poured
and tapped volumes. In the second step the granules are compressed into tablets. In
the latter step other process variables such as the compression force and moisture
content in the granules can be set to produce tablets with specific characteristics.
The tablet characteristics include crushing strength, disintegration time and ejection
force. Figure 1 shows the two-step process of tablet manufacturing with a wet
granulation step. The powder mixture is described in three phases, as a powder
mixture D, as granules G and finally as a tablet Z. The process variables PV1 and
PV2 describe the transition from one phase to another.

The modelling of two-step or multi-step processes in pharmaceutical technology
has not received much attention. Lundstedt and Thelin showed a multivariate
strategy for the optimisation of a two-step process consisting of a synthesis and a
purification step [14]. Their strategy requires that the measurements on the
intermediate product contains all information from the starting materials and the



Multivariate modelling for tablet optimisation and in-process control      101

Figure 2: Two models for the modelling of tablet properties. In Model 1, the composition variables
and the process variables of both steps are used. The granule properties are added in Model 2.

process variables of the first step that is necessary for modelling and prediction of
properties of the final product. In the tablet manufacturing process, however, only
few properties of the intermediate granules are measured, such as the particle size
distribution and some flowability parameters. The granule properties do not have a
strong relationship with the crushing strength and disintegration time of the tablets,
and cannot be used solely for the modelling of the tablet properties. 

The two-step process of wet granulation and tableting is modelled with two
different models. Figure 2 shows the two models for the process. The first model
describes the relationship between the composition of the powder mixture and
process variables of both steps (PV1 and PV2) and the tablet properties. The first
model can be used at the start of the process to find settings for the process
variables and the composition of the tablet mixture that produce tablets with specific
properties. E.g. if less binder has to be used in the formulation, Model 1 can be used
to find settings for the other process and composition variables to produce tablets
that still meet the specifications. After the granulation step, physical properties of the
granules, important for the tableting properties, are added to the variables of Model
1. The granulation properties do not represent all the information from the first step
and cannot be used solely for the modelling of the tablet properties. They do
however influence the physical tablet properties and can be used to improve the first
model. Model 2 has to be used, in everyday production, for each new batch of
granulation. The granule properties will differ from batch to batch due to uncontrolled
factors such as air humidity, temperature or other unknown features. With Model 2
these differences are taken into account, and tablet properties can be predicted
better than with Model 1. Model 2 offers the possibility to use a control scheme for
each new batch of granulation, to adjust the process variables for the tableting step,
moisture content in the granulation and compression force, to produce tablets with
specified properties.

The granule properties are highly collinear. Furthermore, the physical granule
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properties are influenced by the composition of the mixture and the process
variables of the first granulation step. Therefore, the descriptor variables of the
second model are highly collinear. The partial least squares regression method
(PLS) will be used for the modelling because ordinary least squares regression
(OLS) suffers from collinearity in the descriptor variables. With PLS, the regression
of the response y is carried out on a latent factor of X, which consists of the process
and composition variables and, in Model 2, on the granulation properties. The latent
factors, which are linear combinations of the process and composition variables in X,
are selected to describe the variance in X as good as possible and also to optimise
the correlation with y, i.e. the covariance between the latent variable of X and y is
maximised. After the first factor is determined, a second can be calculated,
orthogonal to the first that describes the variance of y that could not be described
with the first latent factor. This can be repeated until most of the variance of y is
described. PLS is much used in chemometrics and has already been introduced in
pharmaceutical technology [15-18]. The PLS model may be evaluated with the root
mean squared error (RMSE) which indicates the deviation between the measured
and predicted values. For a real validation, each experiment is left out for the
modelling once and predicted by the PLS model. The root mean of the predictive
error sum of squares (RMPRESS) indicates how well the model predicts future
response values. For a good model, RMSE and RMPRESS are comparable to the
experimental error.

Experimental

The production of the granulations and tablets is carried out according to the
experimental section of Chapter 5. The six descriptor variables consist of: two
process variables for step one (amount of water and granulation time), two process
variables for step two (moisture of granules and the compression force) and two
composition variables (HPC and MCC). Previous experiments showed that a high
water level was incompatible with a low amount of MCC as was a low level of water
with a high amount of MCC. For this reason the amount of water was set dependent
on the amount of MCC. The moisture of the granules was adjusted to a specific
value by extra drying or moistening in a fluid bed humidiser of the granulation, and
rechecked after one week of stabilisation in closed bags. Because of the expected
curvature in the response surfaces, each variable was varied at three levels.
Quadratic terms of all descriptor variables were also used for the modelling. The
PLS models were calculated with use of the PLS toolbox in Matlab [19,20]. FIgure 3
shows the datasets for the two models. For the first model, D, PV1 and PV2 and their
quadratic terms (53*12) are used to describe the tablet response y (53*1). For the
second model, 14 granulation properties are added to the descriptor variables.
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Figure 3: Dataset for the two regression models. The 2 composition variables (D) and 4 process
variables for both steps (PV1+2) with the quadratic terms and the 14 granulation properties (G) are
used to describe the tablet response y.

Table 1: Results of the modelling of the ejection force (EF), crushing strength (CS) and disintegration
time (DT) with Model 1 and Model 2. For each model, the number of PLS factors, the amount of
explained variance of the descriptors (X) and the response (y), the root meas squared error (RMSE),
the root mean of the leave one out predictions (RMPRESS) and Q  for the models are given.2

Response factors %X %y RMSE RMPRESS Q2

Model 1 ln CS
ln DT
EF

3
3
2

44
40
47

89
85
86

0.25
0.54
10.2

0.31
0.69
11.4

0.82
0.76
0.82

Model 2 ln CS
ln DT

4
4

59
61

95
92

0.17
0.40

0.23
0.55

0.90
0.85

Results and discussion

According to the experimental design in Table 4 of Chapter 5, granulations were
produced and compressed into tablets. The particle size distribution of the granules,
the flow through funnels with orifices of 4.5, 6.0 and 9.0 mm and the poured and
tapped volumes were measured and median granule size (D ) and Carr’s index50

were calculated (Table 5 of Chapter 5). The crushing strength (CS), disintegration
time (DT) and ejection force (EF) of the tablets were measured. CS and DT of the
tablets were logarithmic transformed because of the funnel shaped heteroscedastic
variance structure. Four extreme large values of EF (exps. 12,13,18,19) were
considered as outliers and were deleted before the modelling.

The first PLS model describes CS, DT and EF of the tablets dependent on the
composition of the mixture and process variables. Previous calculations showed that
quadratic terms were important to describe CS and DT, so they were included in the
model for these tablet properties, but not for the modelling of EF [12]. Cross
validation showed that three factors gave the best models for CS and DT, and only
two PLS factors were needed for EF. Table 1 shows the results for the CS, DT and
EF models. The percentage of explained variance of the descriptor variables and of
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the response are given as are the RMSE, RMPRESS and the Q  values for the three2

tablet properties.
The linear and quadratic MCC term and the compression force are the most

important variables for both CS and DT. Water is only important for CS and HPC
influences only DT. For EF, both MCC and water had negative coefficients, i.e. high
MCC and water levels give low ejection forces. The first model can be used for
predictions at the start of the process, before a granulation step has been done.

In Model 2, the granulation properties are added to the first model. These
properties improve the modelling of CS and DT, but the modelling of EF is not
improved. For the second model, four PLS factors were found significant according
to cross validation. Table 1 shows the results of Model 2 for CS and DT separately.
The addition of the granulation properties requires one extra factor in the model.
This factor is dominated by the flow times and poured and tapped volumes. Long
flow times and low volumes give higher crushing strengths and disintegration times.
The addition of the physical granule properties improves the modelling of the tablet
properties CS and DT. The percentage explained variance increased from 89 to 95
for CS and from 85 to 92 for DT. Both RMSE and RMPRESS values decreased. The
ejection force model was not improved by the addition of the granule properties.
Figure 4 shows the observed CS and DT and the leave one out predictions by Model
1 and Model 2. The values predicted with Model 2 (closed circles) are closer to the
observed ones than the predictions of Model 1 (open circles).

The physical properties of the granulations are also subject to the variation
introduced by the composition variables and the process variables for the first
granulation step. 60% of the variance in the granule properties could be explained
by these design variables. The other 40% is, besides reproduction error, introduced
by uncontrolled external sources and other unknown features. This causes the
spread in granule properties when the settings of the process variables were kept
the same. The extra variation in the granules, which is not introduced by the
experimental design, is used to explain the variation in CS and DT that cannot be
described by the variables in the experimental design.

The prediction of the physical properties of the tablets from Model 2 may differ
from the ones of Model 1. Therefore, adjustment of the settings of the process
variables for the second step may be necessary. This in-process control can lead to
production of tablets that better meet the specified properties. A control scheme has
been introduced to study the effect of the process variables of the second step on
the compression of the granulations. Figure 5 shows the control scheme for two
different granulations. For the granulations of experiment 5 and 7 (Tables 4 and 5 of
Chapter 5), the ejection force, crushing strength and disintegration time are given in
a contour plot respectively. CS and DT are predicted with Model 2 and EF is
predicted with Model 1. In the control scheme, the compression force is varied from
10 to 30 kN and the moisture content in the granules is varied from 3 to 5%. The
moisture content of the granulation is considered to be a process variable because it
is set and rechecked to the predefined level by extra drying or humidising. For all
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Figure 4: Leave one out predictions of the crushing strength (CS) and disintegration time (DT) with
Model 1 (F) and Model 2 (M). 

combinations of the compression force and moisture content, combined with the
fixed settings the process variables of step 1, the composition variables of the
mixture and the measured granulation properties, predictions of the tablet properties
are given.

The predicted ejection force is shown with the small dots. It increases from left to
right, when the compression force increases, and the ejection force decreases when
more moisture is present in the granulations. The crushing strength and
disintegration time increase when both process variables are increased. With the
control scheme a specific setting of the process variables can be selected to obtain
tablets with specific characteristics. Experiments 5 and 7 are both centre points of
the experimental design. The settings of the composition variables and PV1 are
equal. The difference between the plots is due to the difference in granule
properties. The granule properties only affect CS and DT. Experiment 7 has higher
predicted CS and DT for the same settings of the compression force and moisture
content in the granulation. Experiment 7 has a lower median granule size, higher
poured and tapped volumes and it has shorter flow times through the funnels. The
combinations of these effects cause CS and DT of tablets from experiment 7 to be



10 15 20 25 30
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Compression Force (kN)

M
oi

st
ur

e 
(%

)
CONTROL SCHEME

15

30

45

10

40

120

92

100

110

10 15 20 25 30
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Compression Force (kN)

M
oi

st
ur

e 
(%

)

CONTROL SCHEME

25

40

55

20

60

150

92

100

110

106      Chapter 6

A

B

Figure 5: Control scheme for granulation 5(A) and 7(B). A) Predictions for the ejection force(!,
92, 100, 110 N), crushing strength(t, 15, 30, 45 N) and the disintegration time(—, 10, 40, 120
sec) are given for different setting of compression force (kN) and moisture in the granulation (%).
B) Predictions for the injection force(!, 92, 100, 110 N), crushing strength(t, 25, 40, 55 N) and the
disintegration time(—, 25, 60, 150 sec) are given.
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higher than the tablets of experiment 5.
For the production of tablets with specific properties, Model 1 is used to define

settings of the composition and of the process variables of both steps. When the first
granulation step has been carried out and the granule properties have been
measured, the control scheme can be used to adjust the settings of the step two
process variables.

Conclusion

For modelling of the two-step tablet manufacturing process, two models are used.
The first model relates the crushing strength, disintegration time and ejection force to
the composition variables and process variables of both steps. In the second model
the physical properties of the intermediate granules, are included. The first model
can be used at the start of the process to find settings for the process variables and
the composition of the tablet mixture that produce tablets with specific properties.
Model 2 has to be used, in everyday production, for each new granulation batch.
The granule properties may differ from batch to batch due to uncontrolled sources
such as air humidity, temperature or other unknown features. With Model 2 these
differences are taken into account, and the crushing strength and disintegration time
are predicted better than with Model 1. Model 2 offers the possibility to use a control
scheme for each new batch of granulation, to adjust the process variables for the
tableting step, moisture in the granulation and compression force, to produce tablets
with specified properties. Because of this adjustment, in-process control is possible
and tablets can be produced that better meet the specifications. The control scheme
gives predictions for all tablet properties at various settings of the process variables
for the second tableting step for a specific granulation.
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Chapter 7

Multivariate modelling of the pharmaceutical
two-step process of wet granulation and tableting

with multiblock partial least squares

In Chapter 6, the pharmaceutical process of wet granulation and tableting was
described as a two-step process. Besides the process variables of both steps and
the composition variables of the powder mixture, the physical properties of the
intermediate granules were also used to model the crushing strength and
disintegration time of pharmaceutical tablets. In the present chapter, multiblock
partial least squares regression (MBPLS) is used to model the two-step process.
With MBPLS the highly collinear granulation properties can be segregated from the
process and composition variables to study separately the influence of both groups
of descriptor variables on the tablet properties. This improves the interpretability of a
PLS model. The multiblock PLS model will be described after an introduction of the
ordinary two-block PLS. Two different approaches of the MBPLS algorithm are
compared for the modelling of the two-step process. One approach suffers severely
from correlation between the two descriptor blocks, but when the correlation is
removed the approach improves.

Introduction

Chapter 6 described the pharmaceutical two-step process of granulation and
tableting with two models. The first model only uses the composition variables of the
mixture and the process variables of both steps to describe the variation in the
crushing strength, disintegration time and ejection force of tablets. In the second
model, the physical granule properties are added to the first model to improve the
predictive properties and to use a control scheme for the second step of the process.
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1: centre and scale X and y
2: w = X’y
3: scale w to ||w||=1
4: t = Xw
5: c = y’t/t’t
6: p = X’t/t’t
7: X = X-tp’
8: y = y-tc

Figure 1: Algorithm and arrow scheme of the PLS1 method.

In the present chapter a multiblock partial least squares method is used for the
second model. Instead of combining the variables into a large descriptor block, the
variables are segregated into two blocks to study separately the influence of
different parts of the process. After an introduction of the ordinary PLS method and
the multiblock PLS method, the modelling of the granulation and tableting process
with MBPLS will be shown.

Partial least squares regression
Partial least squares (PLS) is the name for a class of methods, used for relating
blocks of independent and dependent variables measured on a system. The
pioneering work of PLS was largely done by H. Wold. PLS was introduced mainly as
a path modelling device [1]. It produced latent variables that contained the essentials
of the original data and could be used in a simplified path model (PLS is also called
‘Projections to Latent Structures’). The next quotation of H. Wold gives a good idea
about the nature of PLS models: ’The model is designed in terms of blocks of directly
observed variables; each block is approximately represented by a latent (indirectly
observed) variable; The path of inner relations between the latent variables are the
causal-predictive core of the model’[2].

PLS is a method for biased regression, introduced in chemistry in the late 1970s.
Multivariate instrumental methods as spectroscopy and chromatography were
producing large numbers of related variables for only few objects that could not be
handled by the ordinary least squares regression methods. Therefore, new
calibration techniques were needed. Since then, many publications have shown the
use of PLS not only in chemistry but also in pharmaceutic fields [3-5]. Frank and
Friedman compared the PLS method with other biased regression techniques and
studied the statistical properties of the regression method [6].

Partial least squares regression minimizes the sum of squared residuals between
the response y and a model of y based on the descriptor variables X. The model of y
is based on latent variables which are linear combinations of the variables in X. PLS
can handle several responses at once, but often only one response variable is used
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(PLS1). Several slightly different algorithms have been introduced during the last 20
years [7-11]. 
Figure 1 shows an arrow scheme for the algorithm. A model is estimated between
the response y (I*1) and the descriptors X (I*J). It is assumed that y and X are mean-
centered and scaled. The X-variables can be weighted if additional information is
known about the variables. PLS suggests to find a set of orthogonal latent score
vectors t in the column space of X which is well suited to describe the response
vector y. Any vector t in the column space of X can be written as t=Xw (t=w x  +1 1

w x  + ... + w x ). In PLS the w vector is chosen to be w=X’y, to maximise the2 2 J J

covariance between t and y. In step 5, y is regressed on the vector t in a least
squares sense, with c being the regression coefficient. Step 6 is to ensure that the
score vectors t are mutual orthogonal, p being the loading of X. In step 7 and 8
residuals of X and y are calculated, and another score t can be determined by
repeating step 2 to 8 of the algorithm. This can be continued until the prediction
properties of the model become worse, which can be tested with a separate test set
or by cross validation. The score and the loading vector together give an
approximation of X. With each additional t and p vector, the approximation of X
improves. When K is the number of PLS factors,

For prediction of the response y for new objects, the X variables must be known and
scaled just as the calibration X matrix was scaled. The w, c and p vectors from the
model are used for prediction.

1: y=0;^

2: for k=1 to K:
3: t =x w /w ’wk new k k k

4: y=y + t c  ^ ^
 k k

5: x =x  ! t p ’new new k k

6: end

The predicted value for y is build up in a number of steps according to the number of^

scores in the model. The successive parts of y (t c ) are estimated independent from^
k k

each other. This is possible because of the mutual orthogonality of the t scores.
The optimal number of scores that must be used for a model with minimal

prediction error is determined with cross validation (CV). In CV, one observation is
left out and predicted by the model constructed with all other observations. This is
repeated until all observations have been left out once. The model with the lowest
prediction error sum of squares (PRESS) is preferred. 
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where y  = the response value for object i and y  is the predicted response value fori /i
^

object i, predicted with a model made without object i. When the model has been
estimated, we want to know how good it is. The fit of the model is usually measured
by R . The R  value represents the proportion of variation in the response data that2 2

is explained by the model.

The R  criterion can vary form 0 to 1; the closer R  is to 1, the better the fit of the2 2

model. R  measures how well the model describes the variation in the response, it is2

also the squared correlation between y and y. For the predictive properties of the^

model, Q  can be used. Q  is the squared correlation between the cross validated2 2

predictions (y ) and y. The model with lowest PRESS value will have the highest Q .^ 2
/i

For the interpretation of the model, regression coefficients b  for each descriptorPLS

variable can be calculated:

The regression coefficients can be used to study the influence of the various
variables.

Multiblock partial least squares regression
For the modelling of the two-step granulation process, a multiblock partial least
squares (MBPLS) method is used. MBPLS is an extension of the PLS method. The
ordinary two-block PLS method has been used intensively in chemometrics during
the last decade. This method combines all the descriptor variables into one block
that is used to fit the response data in the second block. Geladi [12] mentioned that
for prediction purposes it is best to put all the variables in one block. However, to
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improve the interpretation of the model, the variables can better be separated into
meaningful blocks of variables as in MBPLS. 

In the early days, PLS has been developed as a least squares path modelling
technique to deal with several blocks of data [1]. Only few cases are known where
PLS is used with more than two blocks [13-20]. However, the descriptor variables
can often be divided into several blocks according to the nature of the data. In
quantitative structure-activity relationships (QSARs) the steric and electronic
descriptors of the molecules can be subdivided into two blocks. In comparative
molecular field analysis (CoMFA) several probes are used at every grid point to give
extra information about the molecules. The gridpoints of each probe can be divided
into separate blocks. In continuous processes measurements are made at various
points of the process and in different compartments of the reactors. In batch
processes the starting material and the intermediates both give information about the
end product. The information from these different sources has to be combined to
improve fit of the model and predictions for the chemical systems. 

Blocking of variables gives a better reflection of the process in the PLS method.
MacGregor et al. showed the division of the descriptor variables of a low density
polyethylene process in two blocks according to different parts of the process [18].
Because of this blocking approach, disturbances in the process can be detected
earlier and it can be shown in which part of the process the disturbance occurs.
Wold et al. showed the blocking of both predictor variables and response variables
of a catalytic cracking process [20]. For interpretation purposes one can look at the
overall information concerning all data at once, but it is also possible to zoom into a
specific block to learn more of local phenomena.

Just as in Chapter 6, the present chapter combines the granulation properties with
the process and composition variables to model the crushing strength and the
disintegration time of pharmaceutical tablets. The MBPLS technique is used to
segregate the highly collinear granule properties from process and composition
variables to study separately the influence of both groups of descriptor variables on
the tablet properties. Two different MBPLS approaches will be compared for their
use in the modelling of a two-step process.

Theory

In the model, the total variation that influences the physical properties of the tablets
is divided into two blocks. The process variables of both steps (PV1 and PV2) and
the composition of the powder mixture are put in block D. The physical properties of
the granulations are put in a second block G. The different sources of variation are
used in two different blocks in the MBPLS method to improve the interpretation of the
regression model. This specific separation of variables was chosen because then
the effect of the granulation properties on the tablet properties can be studied
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separately. The variables in block D are varied according to a Box-Behnken design,
and are nearly orthogonal. The granulation properties are highly collinear. The
process variables of the second step could also have been placed in a separate
block, but for simplicity all process and composition variables were left in one block.

Multiblock PLS can be used for any number of blocks with any kind of relations
between the blocks. Wangen and Kowalski presented a general algorithm that can
be used in all possible cases. The model used in this article has been used by
Wangen [17, (simulated test problem A)] and MacGregor et al. [18], i.e. two
descriptor blocks D and G are used to model only one response block Y. Each block
has the same number of observations (rows), but the number of variables (columns)
may vary freely. Figure 2 shows an arrow scheme of the algorithm used.

The MBPLS algorithm:
1: take u = some column of Y
2: w =D’u; w =G’uD G

3: normalise ||w || and ||w || to 1D G

4: t  =Dw ; t  =GwD D G G

5: Combine t  and t  into block TD G

6: w  = T’uT

7: normalise ||w || to 1T

8: t  = TwT T

9: c = Y’t /t ’tT T T

10: u = Yc/c’c
return to 2 until convergence of u

First some column of Y is selected as the response score vector u. This can be the
column with the highest variance. When only one response variable is modelled, u
equals Y and steps 9 and 10 are not used because u converges in the first cycle.
For both blocks D and G, block scores t  and t  are calculated, which are linearD G

combinations of the variables in the blocks with the highest covariance to u. The
block weights w  and w  are the covariance vectors of the variables in D and GD G

respectively and the u score. In step 5 t  and t  are combined in the super block T.D G

Then T and the response Y are used in a two-block PLS step (6!10). The super
weight w  shows how much each block score participates in the super score t . AfterT T

convergence of u, loadings p  and p  can be calculated. D G

The residual of Y is calculated as:

11: b = u’t /t ’t ; (b is the regression coefficient of the relation between t  and u)T T T T

12: Y = Y-bt c’;T

Two different approaches have been used for the calculation of the residuals in D
and G. The first approach, used by MacGregor et al. [18] and Wangen and Kowalski
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Figure 2: Arrow scheme of the MBPLS algorithm. See text for explanation.

[17], uses the block scores, t  and t , for the calculation of the loadings andD G

residuals, and is in this paper referred to as the block score update method, or
method a.

13a: p  = D’t /t ’t ; p  = G’t /t ’t ;D D D D G G G G

14a: D = D!t p ’; G = G!t p ’;D D G G

The block score update method a produces orthogonal block scores, but the t  superT

scores are not orthogonal. One can also choose to obtain orthogonal super scores.
Frank and Kowalski used this second method b to calculate residuals in their
averaging algorithm [16]. This method is referred to as the super score update
method or method b.

13b: p  = D’t /t ’t ; p  = G’t /t ’t ;DT T T T GT T T T

14b: D = D!t p ’; G = G!t p ’;T DT T GT

The residuals can be used to calculate the next factor, starting again at step 1. The
block score update method a of Wangen and MacGregor produces correlated super
scores which are used for the modelling and update of the response Y. The whole tD

direction is removed from D, but only w *t  is used for the modelling of u, with wT(D) T T(D)
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being the super weight belonging to block score t . Although (1-w )*t  is not usedD T(D) T

for modelling, it is nevertheless removed from block D. The explained amount of
variance is therefore less than when the two blocks D and G were combined into one
large descriptor block. The explained variance of the descriptor blocks becomes
higher, which seems to give a more stable model. According to MacGregor et al. the
loss of prediction power is only small if the blocks are hardly correlated. However,
when a strong relation exists between the predictor blocks, the prediction can be
worse. The super score update method b gives orthogonal t  super scores, but theT

block scores are mutually correlated. This update method produces exactly the same
results as the two-block PLS method when the variables are not blocked but are
combined in one large X-block. The difference in explained variance of the blocks
and the response between the two update methods appears after the first factor. The
block and super scores of the first factor are the same for the two methods. The
difference is introduced after subtraction of the first factor, because different t-scores
are used in the update of the blocks.

For the prediction of new response values, the new values for all descriptor
blocks D and G must be scaled and weighted in the same manner as the data used
for calibration.

15: t  =D w ; t  =G wD new new D G new new G

16: t  = w t  + w tT new T(D) D new T(G) G new

17: u  = btnew T new

18: y  = 3u cnew new 

For each descriptor block, block scores are calculated. The super score t  is a linearT

combination of all block scores. Finally a new u score is calculated, which gives the
response value for properties of the new tablets. For the calculation of the residuals
from the new data, the same update method as in the calibration must be used. For
the block score update method a this is:

19a:D  = D  ! t p ’; G  = G  ! t p ’new new D D new new G G

and for the super score update method b:

19b:D  = D  ! t p ’; G  = G  ! t p ’new new T DT new new T GT

For a comparison with the PLS method, the block loadings are scaled to equal the
loadings of the PLS method, when all blocks would have been combined into one
large descriptor block. This causes the t  super scores to be equal to the PLS scoreT

t. The block weights w  and w  times their corresponding super weight w  andD G T(D)

w  equal the PLS weight w.T(G)
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Weighting of blocks
Variable weighting can be important in all methods where least squares fitting is
used to concentrate the information of many variables into a lower number of
phenomena. Blocking of variables can lead to large differences between block sizes.
When autoscaling of all blocks is used on all variables, the variance in each block
equals the number of variables in the block. Therefore, larger blocks have larger
weights. The information of a small block will be overwhelmed by that of the large
blocks. One may choose to give each block the same weight. Then the weighting of
a block is made dependent on the number of variables in the block. Weighting can
also be made dependent on the rank of a block. E.g. when a block consists of
spectra, the number of latent directions is important for the scaling, not the resolution
used to measure the spectra.

Diagnostics
Just as in two-block PLS, plots of scores and loadings can be examined to learn
from the process. The super level scores t  and weights w  give information aboutT T

the whole descriptor data set. The plot of the super score t  vs u shows the fit of theT

data set with all descriptors of all blocks considered to Y. Super weights w  show theT

relative position of the several blocks. The block scores give information of the
descriptor blocks only, t  vs u shows the fit of the model to Y when only theD

descriptors of block D are considered. A score plot of the block scores t (1) vs t (2)G G

shows for the variables in block G if there are outlying objects or groups in the data.
Block loadings can be evaluated as well. The percentage of explained variance for
each block shows how much the blocks participate in the final model. Just as in
ordinary PLS, regression coefficients can be calculated for the variables.

with: w = [w *w , w *w ], p’  = [p’ , p’ ]MB k D k T(D),k G k T(G),k MB D G

Experimental

The experimental details of the granulation and tableting experiments were shown in
Chapters 5 and 6. Both approaches of the multiblock partial least squares method
were programmed in MATLAB [21]. The super score update method was compared
with the PLS function of the PLS Toolbox [22].
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Table 1: Percentage of explained variance for the descriptor blocks D and G and the response
variable y for the block and super score update method for the crushing strength (CS) and disintegra-
tion time (DT). PRESS values are also given.

Method # factors Response %D %G %y PRESS

Block 3
3

CS
DT

37
38

83
80

91
83

4.4
24

Super 4
4

CS
DT

42
39

72
80

95
92

2.8
16

Results and discussion

Tablets were compressed from the granules with varying compression force. The
crushing strength (CS) and disintegration time (DT) of the tablets were
logarithmically transformed because of the funnel shaped heteroscedastic variance
structure. Previous calculations showed that quadratic terms of the process and
composition variables were important to describe both tablet responses, so they
were included in the model. Both blocks of variables are necessary for the
prediction. Block D describes 89% and 85% of the variance in CS and DT
respectively, and block G describes only 53% and 20% of the responses. Block G
together with the process variables of step two describe 79% and 83% for CS and
DT respectively. All blocks together explain 95% and 92% of the crushing strength
and the disintegration time.

The design and granule variables were divided into two blocks. The six design
variables and their quadratic terms were placed in block D and fourteen granule
properties in block G. The blocks were given equal weights, i.e. after autoscaling
they were divided by the number of columns in the blocks. Four PLS factors were
found significant according to cross validation for the super score update method b,
where the block score update method a only needs three factors. Table 1 shows the
results for both tablet response variables separately with both update methods. The
explained variances are given for both blocks D and G for CS and DT of the tablets.

Table 1 shows that the block score update method a needs less latent variables
to reach the minimal PRESS value, but the PRESS values are higher than with the
super score method b. The amount of variance explained in the descriptor blocks
cannot be compared because of the different number of PLS factors (f1-f4) used in
the model. The super block weights w  for both blocks are given in Table 2 for bothT

update methods. Both methods have the same weight (w ) for the first factor. TheT

block score update method a subtracts important information from the G block. In the
next factors, G is hardly used by the block score method. In the super score update
method, more of block G is used which leads to better prediction of the response. An
extra factor is needed for this information.

The performance of the block score and super score update methods was also
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Table 2: The super score weights w  of the first four PLS factors (f1-f4) given for each block D and GT

for both the disintegration time (DT) and crushing strength (CS) for the block score and super score
update method.

Method Response Block f1 f2 f3 f4

Block DT D
G

0.78
0.62

0.98
0.19

0.91
0.41

CS D
G

0.74
0.68

0.92
0.38

0.89
0.45

Super DT D
G

0.78
0.62

0.85
0.52

0.55
0.84

0.72
0.69

CS D
G

0.74
0.68

0.85
0.53

0.46
0.89

0.93
0.35

studied in a small simulation test. Two X-blocks (40*10) were created, with three and
two different underlying latent variables respectively (t , t , t  for X  and t , t  for X ).0 1 2 1 3 4 2

All five latent variables were necessary to fit the single response variable
(y=t +t +t +t +t ). During the test the correlation between both X-blocks was0 1 2 3 4

increased by adding a certain amount of t  and t  to t  and t  respectively. This1 2 3 4

amount was varied from 0 to 2 times t  and t . This causes not only an increase in1 2

correlation but also dominance over the latent variables of block X  by the latent2

variables of block X . The noise level on both X-blocks and the response was1

simultaneously increased from 0 to 40%. Figure 3 shows the mean of the minimal
PRESS values of 20 data sets for the super score update method (Figure 3A) and
for the block score update method (Figure 3B). The increasing correlation of both X-
blocks hardly affects the performance of the super score update method when only a
limited amount of noise is added. The block score update method is severely
influenced by an increased correlation of both X-blocks, even without any noise
added. For a dependence above 0.5, the PRESS values increase rapidly.

The advantage of the multiblock approach becomes clear when the score plots of
the various blocks are examined. The super score method is used. Figures 4 and 5
show the score plots of the first two scores of block D and G respectively for the
disintegration time of the tablets. Here only the influence of the specific block is
shown. Figure 6 shows the score plot of the PLS model when no blocking was used
(i.e. block D and G are combined into one large descriptor block).

First the centre points of the experimental design are observed. There is some
small spread between the centre points because the amount of moisture content in
the granulation was not set precisely to the specific value. Figure 6, the combined
score plot, shows some spread between the centre points, indicated by t. This has
to be caused by a large spread in granule properties because the settings of the
centre points in the experimental design are almost the same. This is exactly what
we see in Figures 4 and 5. Figure 4, the score plot of the design D shows almost no
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A B

Figure 3: Performance of the super score update method (A) and the block score update method (B)
in a simulation test. The PRESS value is shown as a function of the dependence between the blocks
and the additional noise added to the descriptors and the response. The block score update method
suffers from correlation between the descriptor blocks.

spread, where the score plot of block G of the granule properties shows a large
spread in the centre points. So the variation between the centre points is caused by
the variation in granule properties. This unintended variation influences the tableting
process. Therefore, by including it in the model, the tablet properties can be
modelled better.

Furthermore some objects (11,18,28,29,32) have been marked in all score plots.
The numbers correspond to the experiment numbers given in Table 4 and 5 of
Chapter 5. In Figure 6, objects 11 and 32 are obvious extreme values and object 29
also lies at the border of the plot. Experiments 18 and 28 are not at the border. The
plot gives no information why these experiments lie at the border of the plot. Looking
at the D score plot, Figure 4, we see that objects 11, 28 and 29 lie at the outside.
Their extreme values are caused by some event in the experimental design. If we
look at the data, we see that for objects 28 and 29 the percentages of moisture in the
granules was set at a too high level. The position of object 11 is merely caused by
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Figure 4: Score plot of block D from the MBPLS model for the disintegration time. Stars represent the
centrepoints, the dots are the other experiments. The numbered objects are explained in the text.

Figure 5: Score plot of block G from the MBPLS model for the disintegration time. Stars represent
the centrepoints, the dots are the other experiments. The numbered objects are explained in the text.

an extreme low response value for the disintegration time (2 sec.). Score plot G
shows that objects 18, 32 and 11 are at the outside of the plot. These are caused by
a very low particle size for object 18 and a high flowability for object 32. The block D
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Figure 6: Score plot of the PLS model where block D and G are combined into one large descriptor
block for the disintegration time. Stars represent the centrepoints, the dots are the other experiments.
The numbered objects are explained in the text.

score plot shows three groups of objects with the centre points almost in the middle
of the groups. The lowest group consists of experiments with high compression force
and a low or mean amount of MCC. The group at the left side of the plot consists of
experiments with high levels of MCC. These groups cannot be noticed in the G score
plot. So, by dividing the descriptor data in several meaningful blocks, extra
information can be obtained from specific parts of the process.

The blocking of the process variables could have been extended by also splitting
up the process variables according to the step of the process. This could have given
extra insight in the effect of the compression force and the moisture content in the
granulations on the tablet properties, but the prediction of these responses would
not have been improved.
 Loading plots can become very messy when the number of variables increases
rapidly.The block loading plots only show the loadings of the variables in the specific
block. The contribution of important variables in blocks of minor importance would be
missed in the large bulk of variables, but can be studied when blocking is used. In
this study with only few variables, no loading plots were shown. The loadings were
scaled to be equal to PLS loadings, so the MBPLS approach used here, gives no
extra information on the loadings of the blocks compared with the ordinary PLS
method.

In a two-step process such as the tablet manufacturing process with a granulation
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Table 3: PRESS values for the disintegration time (DT) and crushing strength (CS) and for the block
and super score update method when redundant information in G is removed. G1-G4 present the
PRESS values after removal of the predicted G with 1-4 PLS factors respectivily.

G (0%) G1 (17%) G2 (39%) G3 (52%) G4 (58%)

Block CS
DT

4.4
24

4.0
30

2.8
19

2.5
17

2.5
17

Super CS
DT

2.8
16

2.6
16

2.7
17

2.6
18

2.7
19

step, correlation exists between the two blocks because the second block is
influenced by the first. Some variation in the second block is redundant. When this
redundant variance is removed from the second block, the correlation between both
blocks diminishes and the block score update method a performs better.

For the removal of the redundant variance in the granule block, a PLS model
between the granulation block and the process variables of the first step and the
composition variables is developed. The part of the variance in G that can be
explained by the model is subtracted from the G block in four steps. The residuals of
the granule matrix, G1 to G4, will be used in the multiblock PLS method. The G-
block residual was not autoscaled because this would increase the noise in the block
but the means of all variables were zero. Because most of the correlation between
the two blocks is removed, the block score update method to calculate residuals can
be used as well. Table 3 shows the PRESS values for the models with the redundant
information removed from block G in steps for both response variables. 

In Table 3, G1 to G4 represent the residuals of block G after removal of the
predicted G with one to four PLS factors respectively. The cumulative amount of
explained variance of the PLS factors are given. The super score and the block
score update methods are compared. The PRESS values for the super score update
method do not change much, because only redundant information has been
removed from the data. The block score update method improves when the
redundant information is removed, because the correlation between both blocks
diminishes. When G4 is used in the MBPLS method with the super score update
method, the block scores become somewhat more correlated (r=0.4). The G block
score is hardly used for the super score. Only little of the G block score direction is
therefore subtracted from the G block, which causes the second direction to be
correlated with the first. Figure 7 shows the score plot of the G4 block calculated
with the block score update method. Observation 32 is still at the outside in the plot.
This observation and also the centre points are drawn in the direction of granulations
with high flowability. Observations 11 and 18 have moved to the centre of the plot.
Their extreme value in the G score plot of Figure 5 was mainly caused by the
variation in G that was caused by block D. 
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Figure 7: Score plot of block G4 from the MBPLS model with the block score update method for the
disintegration time. Stars represent the centrepoints, the dots are the other experiments. The numbe-
red objects are explained in the text. No block weighting was used because some variance was
already subtracted from block G.

With G1 the PRESS value for the disintegration time increases a little, but thereafter
the PRESS almost decreases to the same level as the super score method. If one
wants to have orthogonal block scores, the block score update method has to be
used. The correlation between both blocks has to be removed as much as possible
to get good predictions by this method.

Conclusion

The prediction of the crushing strength and disintegration time of pharmaceutical
tablets can be improved when physical properties of the intermediate granules are
included in the model. When the highly collinear granulation properties are
segregated from the process and composition variables multiblock PLS can be used.
This regression method provides extra interpretation as compared to the common
two-block PLS method, because one is able to see which block causes certain
events in the response data. It is possible to zoom into a specific part of the process.
The block score update method suffers from correlation between the descriptor
blocks. However, when the redundant information is removed, the performance of
the block score update method improves. The super block update method is equal to
the PLS method with two blocks when all descriptor variables are put in one large X
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block. The segregation of the variables into meaningful blocks gives extra
interpretation because one can zoom into the separate blocks.
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Chapter 8

Multiblock partial least squares path modelling
for multivariate processes

The process of tablet manufacturing with wet granulation has been described as a two-
step process in the Chapters 6 and 7. The process variables can be divided into two
groups, belonging to either step of the process. In Chapter 5 the physical granule
properties were used as response variables. They were fit to the composition of the
powder mixture and the process variables of the granulation step. In the Chapters 6 and
7, the granule properties were used as predictor variables to improve the modelling of
the tablet properties. In the present chapter a multiblock partial least squares path
model is constructed that incorporates the hierarchical structure of the process. The
process variables of the wet granulation step affect both granule and tablet properties,
where the process variables of the tableting step only affect the tablet properties. The
same path model can be used for prediction of the tablet responses whether the granule
properties are unknown (at the start of the process) or whether they have been
measured (after the wet granulation step). The effect of introducing the granule
properties in the model on the regression coefficients of the composition and process
variables is smaller than when standard PLS or multiblock PLS models are used. The
prediction of the tablet properties is comparable to the standard PLS models, but the
granulation properties are predicted worse.

Introduction

Multiblock data analysis methods have their origin in path analysis and path modelling
in the fields of sociology and econometrics. Path analysis was developed as a means
for studying the direct and indirect effects of variables, where some variables are
viewed as causes and other variables are viewed as effects. In the early days, PLS was
described as a least squares path modelling technique to deal with several blocks of
data [1]. Path modelling with PLS has been thoroughly described by Lohmöller [2]. The
PLS model tries to incorporate the hierarchical structure of the process. In large
processes a hierarchical structure exists between measurements at different parts of
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the process. Intermediate materials in the middle of the process, are influenced by
previous steps, and the physical properties of these intermediates also affect
subsequent steps. For example, in a two-step process one can define starting materials,
intermediates and the final product. At the start of the process materials are combined
and several process variables are set to specific values. The intermediate, which is the
product of the first step, has to meet certain specifications. Dependent on physical
properties of the intermediate, one can set new process variables to specific values.
The first set of process variables influences both the intermediates and the final
product, whereas the second set of process variables only influences the final product.

Quality properties of the starting materials, intermediates and final products can be
measured. The data sets can be placed in the hierarchical order according to the
process. Between the data sets of properties the settings of the process variables, that
work at a specific part of the process, can be varied to influence the product. In a two-
step process, such as tablet manufacturing by wet granulation, process variables can
affect either step. In the first step the starting materials are combined in the granulation
bowl. The granulation time or amount of water can be varied to influence the wet
granulation process. From a single tablet mixture several granulations are produced.
In the second step, the different granulations can be tableted with varying compression
force or compression speed. From each granulation several tablets are produced.

In monitoring the two-step wet granulation and tableting process, predictions are to
be made for the granule and tablet properties at the start of the process. The influence
of the composition and process variables of both steps on the properties has to be
shown. When the granule properties have been obtained, they will be added to the
model in order to improve the prediction of the tablet properties. In this chapter the
multiblock PLS model will be extended to a path model to monitor the two-step process.
The basic algorithm as presented by Wangen and Kowalski will be used to build the
path model [3]. The performance and properties of the model will be investigated and
compared to the standard PLS and multiblock PLS models presented in the Chapters
6 and 7.

The path model

The causal pathway of the model is assumed from left to right, where the left end blocks
only predict (predictors) and the right end blocks are only predicted (predictees). Blocks
in the middle of the process, interior blocks, are both predictors and predictees. 

The whole process of tablet manufacturing with wet granulation is a hierarchical
batch process that exists of two steps. Three blocks of physical properties can be
distinguished. Figure 1 in Chapter 6 shows the three blocks in the granulation process.
The left end block consist of the composition of the tablet mixture. The right end block
contains the physical tablet properties and the granule properties are placed in the
intermediate block. The two sets of process variables are placed at the stage where
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Figure 1: The placement of the various blocks in the MBPLS path model for the wet granulation and
tableting process. Explanation of the blocks is given in the text. D consists of the composition of the
tablet mixture and the process variables for step 1, G contains the granule properties, the process
variables for the second step are in P and the tablet properties in Z.

they influence the process.
The main goal of the process is to produce tablets with specified physical properties.

The granules must have specific properties necessary to perform the tableting step. The
flowability and percentage of fines of the granulations have to meet certain
specifications. The granule properties G are, therefore, response values of the
granulation step. On the other hand, the tablet properties Z depend on the physical
granule properties. The intermediate block has to be used as a predictee and as a
predictor block. Two obvious relations exists, the first between the tablet mixture D and
the granule properties, and the second between the granule and tablet properties. The
third relation between the tablet mixture and the tablet properties is also important. The
granule properties do not contain all the information from the first block that is
necessary for the modelling of the tablet properties. The process variables of the first
step influence both the granule and tablet properties and can be combined with the
composition of the powder mixture. The process variables of the second step only
influence the tablet properties. Therefore, they are placed in a separate block that only
influences the tablet block Z. The data sets are placed in the hierarchical way with the
causal relation from left to right. The connections are shown with straight arrows. Figure
1 shows the four blocks and their relations in this model.

In 1988, Wangen and Kowalski presented a base algorithm from which an algorithm
for every model with any number of blocks and relations could be made [3]. The
algorithm presented here is mainly based on theirs. The MBPLS path model for the
granulation of mannitol microcrystalline cellulose granulations consists of the four data
blocks. The step one process variables are placed within the first block of starting
materials. They could also have been placed in a separated block parallel with the first
block. The step two process variables have to be placed parallel to the granule
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properties block. The step two process variables block is also a left end block. It is only
used to make predictions of the tablet properties. 

The D block consists of the composition of the tablet mixture and the settings of two
process variables that influence the first granulation step. The mixture of
microcrystalline cellulose (MCC), mannitol and HPC is presented by two variables, the
amount of HPC in the blend (2, 3 or 5%), and the percentage of MCC from the
remaining (100!HPC)%. With only two variables the three components can be
presented. The two process variables of the first step are the granulation time (3, 5 or
7 minutes) and the amount of water added during granulation. The amount of water is
a process variable and not a composition variable because the water is removed from
the granulations in a drying step. The quadratic terms of the variables are also included
because they were found to influence the tablet responses (e.g. MCC ).2

The second left end block P consists of the process variables that affect only the
second step of the process, the compression of granules into tablets. These process
variables are the amount of moisture in the granulations (3, 4 or 5%), and the
compression force (10, 20 or 30 kN). The moisture content of the granulation is in fact
a response variable, but it was set to a specific value by additional drying or moistening.
For block P, the quadratic effects of the process variables were also included, so for
each process variables also the quadratic terms are used in the blocks. Block D has
eight columns and block P has four columns.

The interior block G is filled with physical properties of the granulations. These
physical properties consist of the particle size distribution (800, 550, 428, 284, 169,
100, 38 µm), the median granule diameter (D ; µm), the flow of the granulation through50

funnels with orifices of 9, 6, and 4 mm (g.s ), the poured volume of the granulation-1

(ml.g ), the tapped volume after 1000 taps (ml.g ). These granule properties more or-1 -1

less describe a latent variable that characterizes the flowability of the granules.
The right end block Z consists of the tablet properties. In all cases only one tablet

property was handled at the time. The MBPLS path model is capable of handling more
responses simultaneously, but then the interpretation becomes much more difficult. The
crushing strength of the tablets and the disintegration time are the two tablet responses
that will be handled separately with the model. The responses were logarithmically
transformed because they both have heteroscedastic variance structures.

Block G of the granule properties needs to be weighted before calibration. This is
necessary because block D has to predict both blocks G and Z simultaneously. The
granule block however is much larger (14 columns) than the tablet block (1 column).
When both blocks are autoscaled, the total variance of the blocks equals the number
of columns. The granule block would, therefore, be favoured. The weigh factor of block
G is defined to be the number by which G is divided. With a weight factor of 2 all
granule properties are divided by 2 (after auto scaling). The weighing must not be too
strong because the granule properties also are used in predicting the tablet properties.
A too high weight factor would diminish this extra prediction power. 

For all predictor blocks a t score vector will be calculated. This t vector is a linear
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combination of all variables in the specific block. The vector w contains the weights for
each variable of the block for the t score. The t score vector will be used as predictor
for the next block or blocks. Furthermore, for each predictee block a u score vector is
estimated. The c weights vector gives the weight for every variable in the block
according to the u score.

Notation
Matrices are denoted by bold uppercase characters: D. Vectors are always column
vectors and denoted with bold lowercase characters: t , where the subscript indicatesD

to which matrix the vector belongs. Vectors and matrices might be transposed if
necessary: p ’, D’. Scalars are denoted with normal lowercase characters: r . NoD G

multiplication signs are used, so G’u  means the transpose of matrix G times the uG G

vector. Predictions of matrices of vectors are indicated with a hat: n̂ . Each block hasZ

the same number of objects, the number of variables may be different for each block.
The size of each matrix or vector is given.

I number of objects
J number of variables
K number of PLS factors
D block with mixture composition and process variables of step 1 (I*J )D

G block with physical granule properties (I*J )G

P block with process variables for step 2 (I*J )P

Z block with tablet properties (I*J )Z

T temporary super block combining t scores of D, G and P (I*3)
U temporary super block combining u scores of G and Z (I*2)
t predictor block score of block D, G, P (I)D,G,P

t predictor super score (I)T

w predictor block weight of block D, G, P (J , J , J )D,G,P D G P

w predictor super weight for variables in super block T (3)T

u predictee block score of block Z, G (I)Z,G

u predictee super score (I)U

c predictee block score of block G, Z (J , J ) G,Z G Z

c predictee super weight for variables in super block U (2)U

||w || norm of wD D

p predictive block loading of D, G, P (J , J , J )D,G,P D G P

q predictee block loading of Z, G (J , J ) Z,G G Z

b regression coefficient between t  and uU D U

b partial regression coefficient of t  to the column in U belonging to GUG D

b regression coefficient between t  and uT T Z

b partial regression coefficient of the column in T belonging to P to uTP Z

E residuals of D, G, P, Z after subtraction of explained variance (I*J , J , J , J )D,G,P,Z D G P Z

r the fraction of G being a predictorG

s the fraction of G being a predicteeG

n block D, G, P data for a new object (J , J , J )D,G,P D G P

t predictor score for block D, P, G for new objectD,P,G
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e residual of n , n , n  after subtraction of explained variance (J , J , J )D,G,P D G P D G P

û prediction of predictee score of block G for new objectG,Z

t prediction of predictor score of block G for new objectˆ
G

n̂ prediction of tablet responses for new objectZ

The multiblock PLS path algorithm
The algorithm is divided into a backward phase, where the predictor vectors (t, w) are
calculated, and a forward phase for the predictee vectors (u, c). The phases alternate
until u  converges. The first step is to scale and mean centre each block. Furthermore,Z

the blocks can be weighted according to additional information. For initialisation a t and
u vector for each block are selected. These may be the column with maximal variance.

Backward phase
In the backward phase, the t scores of the predictor blocks are calculated. Figure 2A
shows an arrow scheme for the backward phase. Block P and G predict only the tablet
property and can be calculated directly:

w =G’u ; scale w  to ||w ||=1G Z G G

t =GwG G

w =P’u ; scale w  to ||w ||=1P Z P P

t =PwP P

Both block scores t  and t  have maximal covariance with u . Block D has to predictG P Z

both G and Z. To come to a t  score that predicts both blocks, a temporary U block isD

defined, that contains the u scores of all blocks that are predicted by the specific block.

U=[u  u ]G Z

An ordinary PLS2 step is performed between D and U to calculate the t  score.D

c =U’t ; scale c  to ||c ||=1U D U U

u =UcU U

w =D’u ; scale w  to ||w ||=1D U D D

t =DwD D

Forward phase
In the forward phase, the u scores of the predictee blocks are determined. Figure 2
shows an arrow scheme of the forward phase. Only the blocks G and Z are predicted
and need a u score. G is only predicted by D, so u  can directly be calculated:G

c =G’t ; scale c  to ||c ||=1G D G G

u =GcG G
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A

B

Figure 2: Arrow scheme of the backward (A) and forward phase (B) for the development of the
MBPLS path model. In the backward phase u scores are combined in U to determine t , and in theD

forward phase t scores are combined into T to calculate u .Z
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Block Z is predicted by D, G and P. Now a temporary T block is introduced consisting
of the t scores of these blocks.

T=[t  t  t ]D G P

An ordinary PLS2 step is performed between Z and T to calculate the u  score.Z

w =T’u ; scale w  to ||w ||=1T Z T T

t =TwT T

c =Z’t ; scale c  to ||c ||=1Z T Z Z

u =ZcZ Z

After completing one cycle of backward and forward phase, u  is tested for convergenceZ

within a desired precision (e.g. 10 ).-8

Loadings 
Loadings for predictor blocks (p) and predictee blocks (q) are calculated. Just as in the
multiblock PLS algorithm introduced in Chapter 7, a distinction can be made between
block scores and super scores. Super scores appear when two or more blocks are
combined to do a prediction. The block scores t , t  and t  are combined to give theD G P

super score t . For the loadings of G and P the super score update method is used.T

Block D however, also predicts G directly. The block score t  is used for calculation ofD

the loading and residual of D, because the super score t  is also partly dependent onT

t . This part which may also be present in D would be subtracted of D without everG

being used to estimate G.

p =D’t /(t ’t )D D D D

p =G’t /(t ’t )G T T T

p =P’t /(t ’t )P T T T

q =G’u /(u ’u )G G G G

q =Z’u /(u ’u )Z Z Z Z

Path regression coefficients
Path regression coefficients are calculated for each block involved in prediction.

b =u ’t /(t 't )U U D D D

b =c b /(c ’c )UG U(1) U U U

b =c b /(c ’c )UZ U(2) U U U

b =u ’t /(t ’t )T Z T T T

b =w b /(w ’w )TD T(1) T T T

b =w b /(w ’w )TG T(2) T T T

b =w b /(w ’w )TP T(3) T T T



MBPLS path modelling for multivariate processes      135

The regression coefficients b  and b  are used for prediction of G and Z respectively.U T

b  and b  are used to determine the predictor and predictee part of the block G.UG TG

Residuals
The calculation of residuals for each block depends on the role of the block. For block
D, a left end block, the block score update method is used for reasons given earlier. For
the second left end block P, the super block score will be used.

E =D!t p ’D D D

E =P!t p ’P T P

The residual of the right end block Z:

E =Z!û c ’; where û=b tZ Z Z T T

The residuals of interior blocks are calculated according to a weighted average of its
role as predictor and predictee. Block G is the only interior block. The predictor and
predictee roles of G are determined by the ratio of the regression coefficients that take
part in predicting Z from G (b ) and in the prediction of G from D (b ).TG UG

The fractional role of G as a predictee block from D:

r =b /(b +b )2 2 2 2
G UG UG TG

The fractional role of G as a predictor block to Z:

s =b /(b +b ); so r +s =12 2 2 2 2 2
G TG UG TG G G

The residual of the interior block G:

E =G!(s t p ’+r û c ’); with û=b tG G G G G G G U D

In the next round for the calculation of the following scores and loadings, blocks D, G,
P, and Z are replaced by E , E , E  and E  respectively.D G P Z

The number of factors that will be used in the model can be estimated by validation with
a test set or by cross validation. The number of MBPLS factors that gives the lowest
prediction error is selected for the final model. However, in the MBPLS model of the
granulation process, two blocks are predicted. The user has to decide which prediction
is the most important. It is also possible to combine both prediction errors in order to
find a compromise for the final model. 
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Prediction
Prediction with the MBPLS path model depends on the calculation of the appropriate
t scores for the various blocks of data. For prediction, data for all the left end blocks of
the new objects have to be known. Right end blocks are always predicted by the model
and are unknown. If data for the interior blocks are unknown, they can be predicted by
blocks at the left of the specific block. If the data for these blocks are known, they can
be used to improve prediction of the block at the right of the specific block. For
prediction, weights of both predictor and predictee blocks and loadings of the predictor
blocks have to be used. Furthermore, the regression coefficient b , and r  and s  areTZ G G

necessary for prediction.
In the tablet manufacturing process the granulation block is the only interior block.

At the start of the process G is unknown. When a granulation step has been carried out,
G can be measured. Let n  and n  be the values for D and P for the new object. FirstD P

these new values have to be scaled according the scaling of the training set. For the
new data for the left end blocks, new t scores can be calculated:

t =n w ; e =n !t p ’D D D D D D D

t =n w ; e =n !t p ’P P P P P P P

The parts explained by the first t  and t  scores are subtracted from the new data. In theD P

next round n  and n  are replaced by e  and e  respectively. The granule properties ofD P D P

the new experiment n̂  can easily be predicted.G

û =b t ; n̂ =û cG DG D G G G

Besides the response for the first step, the granule block is also a predictor block for the
tablet properties.

t =n̂ wˆ
G G G

If real data for n  is known, a real t  can be calculated, and this value can be usedG G

instead of the predicted t . Prediction of the right end block of tablet properties n̂  isˆ
G Z

performed by combining all t scores from the blocks that predict n̂ . These scores areZ

combined in the temporary n . Prediction of t  is done by summation of all t values inT T

n  with their corresponding weight in w .T T

where NT is the number of t scores in n . The new tablet properties become:T

û =b t ; n̂ =û cZ TZ T Z Z Z
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Results and discussion

Several variations can be implemented in the MBPLS path model. Most important ones
are the use of the super score or block score update of the blocks, the calculation of the
residual of the interior block and the construction of the super blocks T and U. As was
indicated in Chapter 7, the block score update method subtracts information from the
blocks that is never used for prediction purposes. Therefore, less variation of the
response can be modelled. However, by using the super score update method, the
block scores of the various factors become dependent of each other. The residual of the
interior block can be determined in several manners. Wangen and Kowalski defined a
predictor and a predictee part of the interior block, and the residual is calculated
according to these parts. The construction of the super blocks T and U may also be
changed. According to Wangen, the T block that is used to calculate the u  score mustZ

contain not only the t scores of the predicting blocks, but also the u scores of these
blocks. In the present model the left end blocks, D and P, would have been favoured
in the t  super score estimation because for left end blocks the u scores equal the tT

scores, but u  and t  differ. In the present path model only the t scores were used in theG G

T block.

The MBPLS path model has been developed with the data described above and given
in Tables 4 and 5 of Chapter 5. The path model can be evaluated for prediction
performance of the tablet property in two different manners. In case the granule
properties have not yet been measured for the new experiment (at the start of the
process) the model can be compared with a PLS1 model with the variables of D and P
as the only descriptors. This PLS1 model is shown in Chapter 6 as Model 1. However,
in case the granulation step has been carried out and the granule properties have been
measured, the path model can be compared with a PLS1 model with variables of D, P
and G as the descriptors, which has been shown in Chapter 6 as Model 2. For the
development of the path model, the granule block G is always required.

For both response variables, the crushing strength (CS) and disintegration time (DT)
of the tablets, an optimal weight factor was found for the granule block G in the model
development. The optimal weight factor is influenced by the trade off between the
amount to which G participates in the prediction of the tablet property, and the
magnitude in which t  is drawn away from the tablet response to the granule properties.D

When t  is drawn in the granule direction, prediction of the tablet property gets worse.D

Figure 3 shows the minimal PRESS values for both tablet response variables CS and
DT for both cases, without and with block G used in prediction. When the granule
properties are not used, the minimal PRESS goes to the same level as was earlier
determined for the PLS1 model [4], and shown in Table 1, when the weight factor of G
increases. For both tablet responses the minimal PRESS values were obtained at three
PLS factors. When the weight of G is too high (the weight factor is low), t  is trying toD

fit too much of G, and Z is somewhat neglected. This results in higher PRESS values
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Figure 3: Minimal PRESS values for the crushing strength (CS) and the disintegration time (DT)
without (black lines) and with (dotted lines) block G included in prediction when the weight factor of
G is increased during development of the model. PRESS values of the PLS model with and without
G included (straight dotted lines) are also given.

for the tablet property in Z. When the weight for G is low (a high weight factor), t  is freeD

to model only the tablet response, but the extra prediction power of G has disappeared
because of the little information used from G, as a result of the high weight factor. A
compromise between these two features gives the best prediction model for the tablet
properties.

Predictions of the tablet properties with the MBPLS path model improve when the
granule properties have been measured and can be used in the prediction. For both the
crushing strength and the disintegration time, the minimal PRESS values have been
reached when the weight factor for block G is about 2.5 when G was not included in
prediction, and a weight factor of 2 when G was used in prediction. When the weight
factor is above 3, PRESS increases again. The optimal weight factor is dependent on
the use of G in prediction. A weight factor of 2.5 is used for the final models because
this weight factor gives low PRESS values for both cases (G included and G not
included).

Table 1 shows the minimal PRESS values for the PLS1 model and the MBPLS path
model. The MBPLS path model gives almost equal prediction errors for both response
variables as the PLS1 method when G is not included. When G is introduced, minimal
PRESS values decrease for both methods.
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Table 1 Minimal PRESS values for both the crushing strength (CS) and disintegration time (DT) for the
PLS1 model and for the MBPLS path model without and with block G included in the model. The weight
factor was set to 2 and 2.5.

Minimal PRESS CS DT CS (G incl.) DT (G incl.)

PLS1 model
MBPLS path model, weight factor 2.5 
MBPLS path model, weight factor 2

5.2
5.3
5.4

25.5
25.5
25.9

2.8
2.8
2.7

16.2
17.7
17.5

Table 2: Prediction of G with PLS2 and MBPLS path model when the crushing strength (CS) or the
disintegration time (DT) is modelled. The weight factor for G in the path model is set to 2.5.

model % G explained PRESS

PLS2 
MBPLS path (CS, w=2.5)
MBPLS path (DT, w=2.5)

52.8
29.5
29.2

69
93
94

In the MBPLS path model, the scores of block D have slightly been drawn towards the
granule block. This has no negative influence on the prediction quality of the models for
the tablet responses. As a bonus one gets a prediction for the granule properties with
the same model. However, the prediction of the granule properties with the MBPLS path
model are not as good as the use of a standard PLS2 model for the granule properties
with block D as the single descriptors. Table 2 shows the modelling of the granule
properties with the MBPLS path model and the standard PLS2 model.

The standard PLS2 model explains almost twice as much of the variance in block G
as the MBPLS path model. The PRESS value is also much lower for the PLS model.
The prediction of the MBPLS path model for block G is, as can be expected, not as
good as a simple PLS2 model for this block because the scores are selected to give an
optimal fit for the tablet response variables. Furthermore, the optimal number of latent
variables for the model are selected according to the lowest PRESS for the tablet
properties.

Table 3 shows the explained variances of all blocks for both response variables. The
%G presented, includes both the amount used to predict Z and the amount G is
predicted by D. The weight factor for block G is set to 2.5. The first factor describes 77
and 71% of the crushing strength and the disintegration time respectively. This variation
is mainly described by block D, where block P is the main source of information in the
second factor. This not only follows from the explained variation of the blocks in Table
3, but it can also be seen from the weight vector w  in Table 4b.T

To examine the model, the modelling of the crushing strength is studied in detail to
study the properties of the MBPLS path model. The block D score t  has to fit u  asD U

good as possible where u  is a linear combination of the u  and u  scores. The weightU G Z

c  gives the weights for block G and Z respectively for each factor (f1-f4) in the u  scoreU U
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Table 3: Cumulative explained variances of the blocks D, G, P and the respons Z in the MBPLS path
model for both the crushing strength (CS) and disintegration time (DT) of the tablets. The weight factor
for G was set to 2.5.

% explained %D %G %P %Z

# Factor CS DT CS DT CS DT CS DT

1
2
3
4

29
50
57
69

29
46
58
67

17
19
43
62

11
15
44
63

3
26
31
32

10
31
35
39

77
92
94
95

71
87
90
91

Table 4a: The weights for the scores u  and u  in c  for the four PLS factors f1-f4 for the modelling ofG Z U

the crushing strength.

f1 f2 f3 f4

uG

uZ

0.17
-0.99

-0.21
-0.98

0.83
-0.56

0.92
-0.39

Table 4b: The weights for the scores t , t  and t  in w  for the four PLS factors f1-f4 for the modellingD G P T

of the crushing strength.

f1 f2 f3 f4

tD

tG

tP

-0.84
0.40
0.38

-0.35
0.28
0.90

-0.28
0.83
0.48

0.33
0.94
0.11

Table 4c: The role of G as a predictor (s ) and as predictee (r ) in the modelling of the crushingG G

strength.

f1 f2 f3 f4

sG

rG

0.94
0.35

0.97
0.26

0.29
0.96

0.82
0.57

(Table 4a). In the first two factors D is mainly used to fit the u  score (!0.99 and !0.98)Z

where only in the third and fourth factor u  is fitted (0.83 and 0.92). Most of the variationG

in D is used to model Z instead of G.
The super score t , the score to fit Z, is a linear combination of t , t  and t . TheT D G P

super weight w  gives the weights for the scores for all four factors respectively (TableT

4b). The super weight w  shows just as the percentage explained in Table 3 that theT

first factor mainly exists of D to fit Z. In the second factor, the information of P is used
and in the last two factors the t  scores are chiefly composed of the information fromT

block G.
The interior block G is mainly used as a predictor, and only slightly as a predictee
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Figure 4: 4A) A scatter plot of the first two super scores t  and t  in the modelling of the crushingT(1) T(2)

strength. Three groups can be distinguished (X, MCC=90%; +, Fup=10 kN; �, other experiments; t
belongs to both the X and + groups). 4B and 4C show u  against the predicting super score for theZ

first and the second factor. 4D shows the crushing strength predicted without (O) and with (�) use of
the granule properties. The straight line represents the perfect fit.

block as indicated by s  and r  respectively (Table 4c). In the first two factors theG G

predictor parts of G (0.94, 0.97) are much larger than the predictee parts (0.35, 0.26). Only
in the third factor, the granule properties are described by the D block. 

Figure 4A shows a scatterplot of the first two scores of the super block T. Three
groups can be distinguished, a wide group at the left (X), a group at the bottom (+) and
a third group (�). Object t belongs to the first and the second group. The first group
consists of experiments with a composition of 90% MCC. This information comes from
block D. Experiments of the second group have compression forces of 10 kN. The
compression force is placed in block P. The third group exists of the other experiments.
Figures 4B and 4C show the t  and u  scores of the first two factors. In 4B, the fit of theT Z

super score t  against u  is mainly due to the MCC=90% group. Table 2 and w  alreadyT Z T
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Figure 5: Regression coefficients for the variables of blocks D(-, 1-8) and P(···, 9-12) for the crushing
strength (CS) and the disintegration time (DT) when the weight factor of block G during development
of the path model has been increased. Some variables are indicated with their corresponding number:
1=MCC, 2=water, 3=time, 4=HPC, 5=MCC , 9=F , 11=F  and 12=moisture .2 2 2

up up

showed that the first super score t  was built primarily of the t  score, and the secondT D

super score on t . The latter is shown in Figure 4C where the 10kN group is the mainP

predictor of small crushing strengths.
Figure 4D shows the predictions of the crushing strength of the tablets with the

MBPLS path model, without (O) and with (�) the granule properties used for prediction.
The predictions are comparable to the predictions with the PLS and MBPLS model in
Chapter 6 and 7. When G is used, the predicted values of the tablet responses are
closer to the observed ones than without G used.

Regression coefficients
Figure 5 shows the regression coefficients of the variables in block D and P for the
modelling of the crushing strength and disintegration time with the path model when the
weight factor of block G increases. Some regression coefficients change when the
weight factor increases, but they stabilize at a certain level. For the crushing strength,
the coefficients of MCC and MCC  (1 and 5) show the largest change. These variables2

also have a large influence on the granule properties. When t  is forced to fit mainly theD

tablet properties by increasing the weight factor for G, the regression coefficients of
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Figure 6: Regression coefficients for the variables in block D(1-8), P(9-12) and G(13-26) for the
OLS(+), PLS(O), MBPLS_a(�) and MBPLS path(t) models for the crushing strength (CS) and the
disintegration time (DT). For some variables the OLS solution (+) is out of the range.

these variables change from the setting where both responses have to be fitted to the
setting to fit just the tablet response.

Figure 6 shows the regression coefficients for the variables of blocks D, P and G for
the modelling of crushing strength and disintegration time for four different regression
methods: the MBPLS path model, the OLS regression method, the PLS method and the
MBPLS_a method according to Wangen. The PLS1 method  equals the MBPLS method
with super score update of the residuals, and the MBPLS_a method uses the block
score update method. The regression coefficients were determined by examining the
change in predicted values when the values for the specific variable were increased by
1 (after autoscaling of the data). The effect of the variables of D(MCC, water, time, HPC,
MCC , water , time , HPC ), P (compression force F , moisture, F and moisture ) and2 2 2 2 2 2

up up

G (granule properties) is found almost the same for all methods except for the OLS
regression method. It is obvious that the OLS models are very different from the several
PLS models. For the variables 13-27, which are the variables of the G block, the
MBPLS_a method gives slightly deviating coefficients compared to the other two PLS
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Figure 7: Differences of regression coefficients for the variables in D(1-8) and P(9-12) for the OLS
(+), PLS(O), MBPLS_a(�) and MBPLS path(t) models for the crushing strength (CS) and the
disintegration time (DT).

methods. This is mainly caused by the fact that for the MBPLS_a method only three
PLS factors were used (because three were optimal forthis method) and for the other
two PLS methods, four factors were used.

The effect of the variables of block D and P on the tablet responses changes when
the G block variables are included in the model because of the correlations that exist
between D and G. Figure 7 shows the differences of the OLS and PLS coefficients for
the variables in blocks D and P for the modelling of CS and DT caused by the
introduction of the granule properties in the model. The OLS method, as could be
expected, gives the largest differences, because OLS suffers from correlations between
the predictor variables. The PLS model, which equals the MBPLS model with super
score update, suffers somewhat more of the introduction than the MBPLS_a model. The
MBPLS path model shows the smallest differences in the coefficients. The path model
is developed with the granule properties present, even if prediction is done without the
granule properties. For the other two PLS methods, the model that predicts Z without
G is developed without G. When the granule properties are included, another model is
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used that was developed with G present. This may cause the effect of the D and P
variables to change more than for the MBPLS path model.

Conclusion

The multiblock PLS path model can be used for the modelling of complex processes
with two or more steps such as the wet granulation and tableting process. During
development of the model, the granule properties have to be used. For prediction
purposes, the granule properties may be used if they have been measured (after the
first step), but prediction can also be done when they have not  been obtained yet. The
prediction properties of the path model for the tablet responses are comparable to the
standard PLS methods where all data is combined in 1 block to model the tablet
responses. The MBPLS path model is less influenced by introduction of the granule
properties in the model than the standard PLS or MBPLS methods.  The path model can
be used to study the real effect of the process and composition variables and the
granule properties on the tablet responses.

The prediction of the granule properties with the MBPLS path model is not as good
as with a standard PLS2 model. The information of block D is mainly used to model the
tablet responses. For monitoring of the whole wet granulation and tableting process, it
seems better to use different models for the monitoring of the granule and tablet
properties.

Multiblock pathway models may be used when interior blocks are present in the
process, i.e. blocks in the middle of a process that are predicted by previous blocks, and
predict subsequent blocks. Just as the standard PLS models, the MBPLS path model
gives outlier detection and noise reduction for each block separately. All blocks can be
predicted with the same model. Predictions of the right end blocks become better when
the interior blocks can be filled with measured values. Furthermore, the path model may
provide extra information on the way latent variables work through the process, which
may lead to a better understanding of the process.
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Summary

Multivariate statistical modelling of the
pharmaceutical process of

wet granulation and tableting

Wet granulation in high-shear mixers is a process of particle size enlargement much
used in the pharmaceutical industry to improve the tableting properties of powder
mixtures, such as flowability and compactibility, necessary for the large scale production
of pharmaceutical tablets. High-shear mixers are used for their short process time and
high densification. When a new drug has been developed, the process of wet
granulation has to be optimised for this drug in an initial stage. However, only a small
amount of material is available for experimentation. Therefore, some initial knowledge
of the behaviour of the new drug in the wet granulation process is necessary. The
process has to be robust, and must give granules with specified characteristics that can
be compressed into tablets with sufficient strength. 

Once the wet granulation process has been optimised, it must be monitored and
controlled in everyday production. The whole process of wet granulation and tableting
is studied as a two-step process. The process variables of the first granulation step
must be set according to the material that is granulated. Adjustments in the process
variables may be necessary when the powder mixture changes. The process variables
of the second step may be adjusted according to the physical properties of the granules.
Therefore, mathematical models are used to describe the relation between the
properties of the tablets and the process variables of both steps and the composition
of the powder mixture. For the granule properties, the process variables of the tableting
step are not used because they are applied after the granule properties have been
obtained.

The thesis starts with a general introduction on wet granulation, the optimisation of this
process, and on multivariate analysis in Chapter 1. Thereafter, two parts can be
distinguished in this thesis. The first part deals with the multivariate calibration of the
wet granulation process, aggravated on the effect of the powder mixture on the
granulation process and on the granulation and tablet properties. The second part of
this thesis deals with the multivariate modelling of the whole two-step process. 
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In the first part of the thesis (Chapters 2-4), a powder mixture of lactose 200 mesh, corn
starch and polyvinylpyrrolidone is granulated with several model drugs at a
concentration of 0, 5 or 50%. The multivariate design, analysis and calibration strategy
is used to examine the effect of the physical properties of the drug on the granulation
process and on the physical properties of granules and tablets. Studying the effect of
a single drug descriptor on the granule and tablet properties is not possible because
no group of drugs exists that only differ in one property, such as the solubility. Using
standard experimental designs for drug descriptors is also not possible because not
every combination of descriptors can be combined within a drug. Furthermore, high
correlations exist between the several descriptors, which lead to designs that are not
orthogonal.

From a set of potential model compounds, physical descriptors, important in the
granulation process, were obtained. In Chapter 2, the multivariate principal component
analysis is used to find latent directions in the drug space that are uncorrelated and
describe a large amount of variance of the data in only a few factors. Eight model drugs
that have a large spread in the latent directions and are representative for the whole set
of drugs were selected as model drugs for use in the granulation experiments.

Because of the large spread in the physical properties of the selected model drugs,
the amount of water added during granulation had to be adjusted for the several
mixtures. Chapter 3 describes the prediction of a certain amount of granulation liquid
to carry out a robust granulation experiment. This uncritical amount is defined according
to the power consumption profile of the granulation obtained during continuous addition
of water. The typical profile can be divided in five phases that correspond to different
states of the powder mixture. In the middle of phase three, the percentage of fines has
decreased to a low level and overwetting of the powder mixture has not occurred. The
uncritical liquid amount has been related to the physical descriptors of the drugs. A
large surface area can take much water before overwetting occurs. When drugs
dissolve in the granulation liquid, surface area decreases, and the amount of water has
to be less. Predictions of the uncritical liquid amount for lactose 100 mesh as the new
drug corresponded well with the measured values.

Chapter 4 describes the granulation and tableting experiments with the mixtures of
the model drugs. Experiments were carried out with 0, 5 and 50% of drugs at two levels
of granulation liquid, the start of phase three of the power consumption profile and at
the uncritical liquid amount. The multivariate partial least squares regression (PLS) was
used for the modelling of the granule and tablet properties. This method finds latent
directions in the drug space that not only describe a large amount of the variance but
also are highly correlated with the response variable. The addition of extra water to the
powder mixture increased the median granule diameter and the disintegration time of
the tablets. The percentage of fines and the Hausner ratio decreased. The influence of
the drug was small when a concentration of 5% was used in the mixture. At a
concentration of 50%, the influence of the drug was more obvious. High solubility and
large particle size of the drugs lead to large median granule size and small percentage
of fines. A significant interaction between the amount of water and the solubility of the
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drug was found, meaning that the difference in median granule diameter between
soluble and insoluble drugs increases when more water is added. The tablet crushing
strength was found to be influenced by the compactibility of the pure drug when only a
small amount of water was added. At the high water level, crushing strengths shift to the
level of the standard mixture. The disintegration time of the tablets was shortened by
high contact angles and large surface area of the drugs.

The second part of the thesis (Chapters 5-8) handles the multivariate modelling and
control of the whole process. The process of wet granulation and tableting is described
as a two-step process. The first step comprises the granulation of the powder mixture
and in the second step, the granules are compressed into tablets. Process variables on
either step of the process affect the physical properties of the tablets, where only the
process variables of the first step influence the granule properties. The granules are the
product of the first step that have to meet certain specifications such as a sufficient
flowability and small amount of fines. On the other hand, the physical properties of the
granules influence the strength and disintegration time of the tablets. The granule
properties can be handled as responses in the first step but also as predictors in the
second step. 

The granulation of mixtures of mannitol and microcrystalline cellulose (MCC) was
investigated on small production scale. The effect of the composition of the mixture and
the process variables is studied with ordinary least squares regression in Chapter 5.
The construction of the experimental design and the analysis of the results is handled
in detail. The composition of the mixture and the process variables of the first step are
used to describe the variation in the granule properties. Extra water seemed to increase
the median granule diameter and decreased the percentage of fines. For the modelling
of the tablet strength, disintegration time and ejection force also the step two process
variables were used. Tablets were mainly influenced by the amount of MCC in the
mixture and the compression force. The optimal tablet properties were not obtained at
the same settings of the composition and process variables. In a multi criteria
optimisation, settings were obtained that provided tablets with sufficient strength, that
disintegrate in a short time and have low ejection force.

Chapter 6 uses the same experimental results as Chapter 5, however, the granule
properties are now used to improve the modelling of the tablet properties. The two-step
process is described with two models. The first model uses the process variables of
both steps and the composition of the mixture. It can be used at the start of the process
to find settings for the process variables and the composition for the granulation of a
new mixture. When the procedure of the wet granulation step has to be changed, e.g.
one wants to use less binder in the formulation, the first model can be used to find new
settings of the other process or composition variables to produce tablets that still meet
the specifications. The second model includes the granule properties as descriptors,
and can be used in everyday production to improve the prediction of the tablet
properties.  For both models the multivariate PLS regression method has been used
because the granulation properties are highly collinear. A control scheme is introduced
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that gives predictions for all tablet properties at various settings of the process variables
for the second tableting step for a specific granulation. From the scheme, settings for
the moisture content in the granules and compression force can be selected that
provide tablets with specified characteristics.

The two-step approach is extended in Chapter 7. A multi block partial least squares
(MBPLS) method is used for the modelling of the second model. The granulation
properties and the composition and process variables are placed in two different
descriptor blocks to study separately the effect of the groups of variables on the tablet
properties. This improves the interpretability of the PLS model because now it can be
shown which block caused a specific variation in the response variable. Two different
MBPLS algorithms have been compared, and one suffers from correlation between the
descriptor blocks. When the correlation is removed, the method improves. 

Chapter 8 describes the use of a multi block partial least squares path model for the
modelling of the wet granulation and tableting process. The path model incorporates the
hierarchical structure of the process. With the same model, the granule properties are
used as responses and as descriptors. Prediction of the tablet properties can be carried
out with the same model, whether or not the granule properties are available. The
prediction properties of the path model are comparable to the standard PLS and MBPLS
models for the tablet properties, however, the prediction of the granule properties is
much less with the path model. The regression coefficients for the process and
composition variables of the path model are more stable for the introduction of the
granule properties than the other PLS models. The path model can be used to study the
whole process, but for process control and monitoring, it seems better to use separate
models for each response.

The combination of the techniques in the Chapters 6 and 7 can directly be applied in
pharmaceutical industry for control and monitoring of large processes. The two-step
approach with two models and a control scheme for the last step can be extended to
other two-step or multi-step processes. The multi block calibration method can then be
applied for the detection of process failures. When the final product is out of
specification limits, the part of the process that caused the problems can easily be
detected.
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Samenvatting

Multivariate statistische modellering van het
farmaceutisch nat granuleer en tabletteer proces

Tabletten worden geproduceerd door poedermengsels, die bestaan uit een
geneesmiddel en één of meerdere hulpstoffen zoals vulmiddelen en uiteenvalmiddelen,
in een matrijs onder hoge druk samen te persen. Om een grote hoeveelheid tabletten
in een keer te produceren worden rondloper tablettenpersen gebruikt, die een half
miljoen tabletten per uur kunnen maken. Helaas kunnen de poedermengsels meestal
niet direct in de tablettenpers worden verwerkt omdat ze slecht de matrijs in stromen en
weinig binding geven zodat de tabletten na het persen meteen weer uit elkaar vallen.
Verder kan er ontmenging optreden tussen grote en kleine deeltjes waardoor de
verdeling over het gehele mengsel niet meer gelijk is. Daarom ondergaan de
poedermengsels een voorbewerking: het granuleren. Bij het nat granuleren wordt in een
grote mixer een opgelost bindmiddel aan het mengsel toegevoegd. Hierdoor plakken
de poederdeeltjes aan elkaar waardoor er grotere deeltjes ontstaan (de granules) die
van elke component in het mengsel de juiste hoeveelheid bevatten. De granules worden
gedroogd en vervolgens tot tabletten geperst. Door het granuleren worden de
stromings- en bindingseigenschappen van het poedermengsel verbeterd en kan er
geen ontmenging meer optreden.

Wanneer in de farmaceutische industrie een tablet wordt ontwikkeld voor een nieuw
geneesmiddel is het gedrag van het nieuwe tabletmengsel tijdens het granuleren niet
bekend. In de ontwikkelingsfase is er vaak maar weinig van het nieuwe geneesmiddel
beschikbaar om te experimenteren. Het is dus van belang dat er al enige kennis is over
hoe het mengsel met het nieuwe geneesmiddel zich tijdens het granuleren zal
gedragen.

Het onderzoek in dit proefschrift richt zich op het modelleren van het proces van nat
granuleren en tabletteren (kalibratie). Het doel van een kalibratie is het maken van een
wiskundige model tussen de instellingen van het proces (predictors) en de uitkomst van
het proces (respons). De samenstelling en de eigenschappen van het mengsel behoren
ook tot de instellingen van het proces. De predictors worden gebruikt om de respons
te kunnen voorspellen. Bij multivariate kalibratie worden meerdere predictors
gecombineerd om zo tot een beter model te komen. De onderlinge relatie tussen de
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predictors wordt gebruikt om extra informatie over het proces te krijgen. 
In dit proefschrift wordt getracht een model te maken dat de relatie beschrijft tussen

de omstandigheden van het granuleerproces (predictors) en de kwaliteit van de
tabletten (respons). De kwaliteit van de tabletten wordt hier uitgedrukt door een drietal
eigenschappen: de breukvastheid (de kracht die nodig is om een tablet te breken), de
uiteenvaltijd (de tijd nodig om tablet in water uiteen te laten vallen) en de uitwerpkracht
(kracht nodig om tablet uit de matrijs de duwen). Het model geeft voorspellingen voor
de respons op grond van de instellingen van het proces. Andersom kan het model
worden gebruikt om instellingen van het proces te vinden waarbij een optimale (zo goed
mogelijk) waarde voor de respons wordt verkregen. Dit laatste noemen we het
optimaliseren van het proces.

Om een model te maken worden experimenten uitgevoerd volgens een bepaalde
proefopzet. Deze proefopzet stelt de instellingen van het proces vast. Bij de
verschillende instellingen van de procesvariabelen worden tabletten gemaakt, en de
tableteigenschappen worden gerelateerd aan de instellingen van het proces. Om zoveel
mogelijk informatie uit zo weinig mogelijk experimenten te halen is het belangrijk de
proefopzet goed te kiezen.

Er zijn verschillende kalibratiemethoden die worden gebruikt om een model te
maken. De standaard methoden geven problemen als de predictors van elkaar
afhankelijk zijn, zoals de lengte en het volume van een poederdeeltje. Er zijn daarom
nieuwe kalibratiemethoden gebruikt die geen problemen hebben met onderlinge
afhankelijkheid van de predictors. De kwaliteit van een model wordt getest door de
voorspellingen van de respons te vergelijken met de gemeten waarden. Het verschil
tussen de gemeten tableteigenschap en de voorspelde waarde is een maat voor hoe
goed het model is. Hoe kleiner dit verschil is, des te beter is het model.

In het eerste deel van het proefschrift wordt een poedermengsel van lactose,
maiszetmeel en een bindmiddel gegranuleerd met 0, 5 of 50% van verschillende
geneesmiddelen. Het doel is modellen te maken die de granulaat- en
tableteigenschappen beschrijven afhankelijk van fysische eigenschappen van de
nieuwe geneesmiddelen, zoals de oplosbaarheid of deeltjesgrootte. Omdat er geen
reeks stoffen bestaat waarbij slechts één eigenschap verschilt, is een multivariate
strategie gebruikt om het effect van fysische eigenschappen van de geneesmiddelen
op het proces en op de granulaat- en tableteigenschappen te bestuderen.

De keuze van geneesmiddelen waarmee het model wordt gemaakt is belangrijk voor
de kwaliteit van het model. Dit is gedaan door van een grote groep geneesmiddelen
verschillende fysische eigenschappen te bepalen die belangrijk worden geacht in het
proces. Een probleem is de grote hoeveelheid eigenschappen die ook nog van elkaar
afhankelijk zijn zoals de gemiddelde deeltjesgrootte van de stoffen en de
stromingseigenschappen. Met een wiskundige methode (principale componenten
analyse) zijn enkele nieuwe eigenschappen berekend, die onafhankelijk zijn van elkaar,
maar fysisch gezien niets voorstellen. Met slechts enkele van deze nieuwe
eigenschappen worden de geneesmiddelen bijna net zo goed gekarakteriseerd als met
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de grote groep afhankelijk eigenschappen. De geneesmiddelen voor het model zijn
gekozen op grond van een grote spreiding in de nieuwe eigenschappen. De gekozen
geneesmiddelen moeten representatief zijn voor de gehele groep van geneesmiddelen
waarvoor het model moet gelden.

Omdat de gekozen modelgeneesmiddelen sterk van elkaar verschillen wat betreft de
oplosbaarheid en deeltjesgrootte, is het niet mogelijk steeds dezelfde hoeveelheid
water toe te voegen tijdens het granuleren. In het ene geval wordt het granulaat te nat
waardoor er grote klonten ontstaan, en in het andere geval zijn de deeltjes nog
nauwelijks aan elkaar gebonden. Er is een robuuste hoeveelheid water gedefinieerd
waarbij er voldoende binding tussen de deeltjes heeft plaatsgevonden, maar nog geen
overbevochtiging optreedt. Deze robuuste hoeveelheid is bepaald door het vermogen
van de granulator te meten dat nodig is om de mengarm met dezelfde snelheid rond te
laten gaan terwijl er continu water wordt toegevoegd aan het mengsel. De
vermogensmeting levert een karakteristieke curve die uit vijf verschillende fasen
bestaat, waarvan begin- en eindpunt per geneesmiddel verschillen. Veel onderzoeken
gaven aan dat de hoeveelheid water die overeenkomt met de derde fase bruikbare
granulaten oplevert. De hoeveelheid water die nodig is om het midden van de derde
fase te bereiken is daarom genomen als de robuuste hoeveelheid water. Voor alle
modelgeneesmiddelen geldt dat bij die hoeveelheid water nog geen overbevochtiging
heeft plaatsgevonden, maar er al wel voldoende binding bestaat tussen de deeltjes. De
robuuste hoeveelheid, die voor alle modelgeneesmiddelen verschilt, is gerelateerd aan
de fysische eigenschappen van de stoffen. Een geneesmiddel dat een groot oppervlak
heeft, wat kan komen doordat de deeltjes poreus of klein zijn, kan veel water opnemen
voordat er overbevochtiging optreedt. Als een geneesmiddel gemakkelijk oplost in het
water, verdwijnt een deel van het oppervlak, en kan er minder water worden
toegevoegd.

De poedermengsels met 0, 5 of 50% geneesmiddel zijn gegranuleerd met twee
verschillende hoeveelheden water, de robuuste hoeveelheid en de hoeveelheid die
overeenkomt met het begin van de derde fase van de curve van de vermogensmeting.
Op deze manier is bekeken wat het effect van het geneesmiddel is bij een lage dosering
(5%) en bij een hoge dosering (50%). Er zijn modellen gemaakt om voorspellingen te
doen over de granulaat- en tableteigenschappen wanneer er nieuwe geneesmiddelen
gebruikt gaan worden in het lactosemengsel. De modellen zijn ook gebruikt om het
effect van de fysische eigenschappen van de geneesmiddelen op de granulaat- en
tableteigenschappen te bestuderen. Een multivariate kalibratiemethode is gebruikt om
modellen te maken met de fysische eigenschappen van de geneesmiddelen als
predictors en de granulaat- en tableteigenschappen als respons. 

Bestudering van de modellen heeft geleid tot de volgende conclusies. Als er meer
water aan het poedermengsel wordt toegevoegd, neemt de gemiddelde granulegrootte
toe, wordt de stroming beter en de uiteenvaltijd van de tabletten langer. Als er 50%
geneesmiddel in het mengsel zit is het effect van het geneesmiddel op de granulaat-
en tableteigenschappen groot, terwijl bij slechts 5% geneesmiddel het effect maar klein
is. De gemiddelde granulegrootte neemt toe als de geneesmiddelen goed in water
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oplossen en grote deeltjes hebben. Er is tevens een belangrijke interactie gevonden
tussen de oplosbaarheid van het geneesmiddel en de hoeveelheid toegevoegd water.
Dit betekent dat het verschil in granulegrootte tussen oplosbare en onoplosbare stoffen
toeneemt als er meer water wordt toegevoegd. Als er weinig water wordt toegevoegd
is de breukvastheid afhankelijk van de tabletteerbaarheid van het pure geneesmiddel.
Als er meer water wordt toegevoegd verschuift de breukvastheid naar het niveau van
het standaard mengsel zonder geneesmiddel. De uiteenvaltijd van de tabletten wordt
korter als het geneesmiddel een groot oppervlak heeft.

De conclusies uit dit onderzoek kunnen worden gebruikt in de praktijk om op een
snelle manier het granuleerproces voor een nieuwe geneesmiddel in het mengsel van
lactose en maiszetmeel te optimaliseren. De hoeveelheid water die moet worden
toegevoegd, kan worden voorspeld, en ook de eigenschappen van het granulaat en de
tabletten die met het nieuwe geneesmiddel gemaakt worden.

In het tweede deel van het onderzoek is aandacht besteed aan de manier waarop het
gehele granuleer- en tabletteerproces gemodelleerd moet worden. Het gehele proces
bestaat namelijk uit twee stappen, de granuleerstap en de tabletteerstap. De stappen
zijn met verschillende modellen te beschrijven. Voor de eerste stap zijn de
procesvariabelen zoals de granuleertijd, de hoeveelheid water die wordt toegevoegd
en de samenstelling van het mengsel als predictors gebruikt. De
granulaateigenschappen zijn als respons genomen. Er kan een model worden gemaakt
tussen de predictors en de granulaateigenschappen. Van het granulaat worden
vervolgens tabletten geslagen. Er zijn nu andere procesvariabelen van belang zoals de
tabletteerkracht. Voor de tweede stap zijn de tableteigenschappen als respons
genomen, en de predictors zijn de procesvariabelen van de tweede stap, maar ook de
predictors voor de eerste stap hebben invloed op de tableteigenschappen. Als de
eerste stap van het proces is uitgevoerd, kunnen de granulaateigenschappen ook als
predictors worden gebruikt voor het beschrijven van de tabletten. In het tweede deel
van dit proefschrift is uitgegaan van een tabletmengsel dat bestaat uit de vulmiddelen
microkristallijne cellulose (MCC) en mannitol en een bindmiddel HPC. Bij deze
experimenten zijn geen geneesmiddelen in het tabletmengsel gebruikt.

In eerste instantie zijn de granulaat- en tableteigenschappen van bovengenoemd
mengsel beschreven met verschillende modellen waarbij de procesinstellingen en de
mengselsamenstelling als predictors zijn gebruikt. De breukvastheid en de uiteenvaltijd
nemen toe als er minder MCC in het mengsel zit. Als er met een grotere kracht
geslagen wordt, nemen de breukvastheid en de uiteenvaltijd ook toe. De uitwerpkracht
neemt af als er meer MCC en water wordt gebruikt. Helaas zijn niet alle
tableteigenschappen optimaal bij dezelfde samenstelling van het mengsel of bij
dezelfde procesomstandigheden. Er is daarom gezocht naar verschillende instellingen
van het proces waarbij alle tableteigenschappen aan een bepaald criterium voldoen.
Bij deze instellingen worden tabletten geproduceerd met voldoende breukvastheid, die
snel uiteenvallen, en eenvoudig uit de matrijs te verwijderen zijn.

Vervolgens is het tweestaps proces met twee modellen beschreven. Het eerste
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model gebruikt de procesvariabelen van beide processtappen en de samenstelling van
het mengsel om de tableteigenschappen te beschrijven. Dit model moet worden
gebruikt aan het begin van het proces om de juiste instelling voor de procesvariabelen
en mengselsamenstelling te vinden. Als er veranderingen in de granuleerstap
plaatsvinden, er moet bijvoorbeeld minder bindmiddel gebruikt worden, dan wordt het
eerste model gebruikt om te bepalen hoe de andere mengselcomponenten en de
procesinstellingen aangepast moeten worden zodat de tabletten de juiste
eigenschappen behouden. Het tweede model gebruikt de granulaateigenschappen
zoals de deeltjesgrootteverdeling, stromings- en volume eigenschappen om de
voorspellingen van de tableteigenschappen te verbeteren. Het tweede model wordt
gebruikt in de dagelijkse produktie. Als er twee maal op dezelfde manier een granulaat
wordt gemaakt, zullen de granulaateigenschappen toch verschillen door niet bedoelde
externe factoren. Dit verschil in granulaateigenschappen werkt door naar de tabletten.
Met behulp van het tweede model is een controleschema ontwikkeld voor de tweede
stap van het proces, het tabletteren. Dit schema geeft voorspellingen voor de
tableteigenschappen bij verschillende instellingen van de procesvariabelen voor de
tweede stap, zoals de tabletteerkracht. Met dit schema kan een bepaalde instelling voor
de procesvariabelen van de tweede stap worden gekozen om tabletten te maken die
voldoen aan gespecificeerde eisen.

Om de interpretatie van de modellen te verbeteren wordt voor het tweede model een
multiblok kalibratiemethode gebruikt. De granulaateigenschappen worden apart van de
procesinstellingen en mengselsamenstelling beschouwd. Als de tableteigenschappen
een onverwachte afwijking vertonen, kan middels het multiblok model direct worden
ontdekt of dit komt van verkeerde procesinstellingen of dat het granulaat afwijkende
eigenschappen had. Twee verschillende methoden om een multiblok model te maken
zijn met elkaar vergeleken. Eén methode leverde slechte resultaten als de predictors
in de verschillende blokken van elkaar afhankelijk zijn. Deze methode kan daarom niet
worden gebruikt voor het granuleerproces omdat de granulaateigenschappen
afhankelijk zijn van de mengselsamenstelling en de procesinstellingen voor de eerste
stap.

Tot slot is er nog gekeken naar een nieuw multiblok model waarin rekening wordt
gehouden met de hiërarchische structuur van het proces. Het model bestaat uit vier
blokken. In het eerste blok zitten de mengselsamenstelling en de procesinstellingen
voor de eerste processtap die bekend zijn aan het begin van het proces. Het tweede
blok bevat de granulaateigenschappen die afhankelijk zijn van het eerste blok. Het
derde blok bevat de tableteigenschappen die van de eerste twee blokken afhankelijk
zijn. Het vierde blok bevat de procesinstellingen voor de tweede stap die alleen van
invloed zijn op de tableteigenschappen. De granulaat- en tableteigenschappen worden
met dit model voorspeld. Indien de granulaateigenschappen na de eerste stap bekend
zijn, hoeven ze niet meer voorspeld te worden maar kunnen ze gebruikt worden om de
tableteigenschappen te voorspellen. Voorspellingen voor de tableteigenschappen met
het model kunnen dus worden uitgevoerd indien de granulaateigenschappen bekend
zijn, maar ook als ze nog niet bekend zijn (voor de granuleerstap). Voor het ontwikkelen
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van het model zijn de granulaateigenschappen altijd nodig. De eigenschappen van dit
multiblok model zijn bekeken. Het model levert vergelijkbare voorspellingen voor de
tableteigenschappen als de vorige modellen, maar de voorspellingen voor de
granulaateigenschappen zijn niet goed. Het hiërarchische multiblok model kan wel
gebruikt worden om het gehele tweestaps proces in z’n geheel te bestuderen, maar
voor controle van het gehele proces is het beter verschillende modellen voor de
granulaateigenschappen en de tableteigenschappen te gebruiken.

Een combinatie van het controleschema en de multiblok kalibratiemethode voor het
tweede model kan direct in de industriële praktijk worden toegepast. De tweestaps
aanpak met een controle schema voor de laatste stap kan worden uitgebreid naar
andere tweestaps of meerstaps processen. De multiblok modellen zouden dan gebruikt
kunnen worden voor het opsporen van fouten in het proces. Als het uiteindelijke produkt
onverwachte afwijkingen vertoont kan middels het multiblok model direct worden
opgespoord waar in het proces de fout is opgetreden.
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Stellingen

behorende bij het proefschrift

Multivariate statistical modelling of the pharmaceutical process 
of wet granulation and tableting

1. Multivariate statistische modellen zijn een goed alternatief wanneer
theoretische modellen te kort schieten.

2. Het meten van eigenschappen van tussenprodukten in een meerstapsproces
geeft de mogelijkheid tot ‘in-process control’.

3. Als bij het modelleren van een proces de procesvariabelen in blokken worden
verdeeld, kan de interpretatie van het model worden verbeterd.

4. Het feit dat MacGregor et al. verschillende waarden vinden voor het
percentage ‘explained Y’ bij de eerste factor met PLS en multiblock PLS is
onmogelijk tenzij verschillende wegingen zijn gebruikt, waardoor de vergelijking
niet meer eerlijk is.
J.F. MacGregor et al., AIChE Journal, 40(5), (1994), 826-838.

5. Zonder een gedegen kennis van experimental design technieken bij de
analytisch chemicus leidt het gebruik van de in analytische apparatuur
ingebouwde modeleringstechnieken tot ‘Garbage in, garbage out’.

6. Een farmaceutisch technoloog moet handig zijn.
“A rough way of determing the granulation end-point is to press a portion of the
mass in the palm of a hand ... if the ball crumbles under moderate pressure, the
mixture is ready for the next stage of processing.” Lachman et al., The theory
and practice of industrial pharmacy, Lea & Febiger, Philadelphia, 1986.

7. Leren programmeren vergroot het analytisch denkvermogen.

8. Strafvermindering bij gevangenisstraffen zou slechts als uitzondering toegepast
moeten worden, niet als regel.

9. Volgens de uitvoeringsinstelling sociale zekerheid voor overheid en onderwijs
(USZO) is het solliciteren belangrijker dan het vinden van een baan.



10. Voor een eerlijk verloop van het rallypointsysteem in de vijfde set van een
volleybalwedstrijd zou er om en om geserveerd moeten worden tot er een
verschil van twee punten is ontstaan. 

11. Veel rugklachten worden eerder veroorzaakt door onderbelasting dan door
overbelasting.

12. Om de macht van een onderdrukkend regime te verkleinen is het beter de
positie van de burgers te verbeteren door middel van economische impulsen
dan het land te straffen met een economische boycot.

Johan Westerhuis 22 september 1997


