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Abstract

Statistics is well acquainted with the use of exploratory techniques to reveal
detail about the structure of the data. Graphical displays of data are key in
this process, chief amongst them the scatterplot. However, a scatterplot is
restricted to use with data comprising at most three variables. For higher
dimensional data comprising p > 3 variables, the analogue to this display
is the biplot. It is a plot that displays axes for all the variables that have
been measured together with points to represent all the subjects in a low
dimensional approximation of the p dimensional space. It is useful in that it
affords the means to instantly assess correlations between variables as well
as any groupings of the subjects that might be inherent in the data set.

This display is well developed for data comprising n samples and p vari-
ables. Such data sets are referred to as two mode data where the objects and
variables represent modes. This dissertation is focused on using biplots for
data of a different nature. More specifically, three mode data is considered.
Generally this type of data comprises a number of objects on which a number
of measurements have been made under different conditions. The modes are
thus subjects, variables and conditions.

This dissertation is primarily concerned with exploring different techniques
to use for the purpose of performing an exploratory data analysis on a three
mode data set. More specifically, the focus is on the use of biplots for this
purpose. The techniques considered include Principal Component Analysis
biplots, Canonical Variate Analysis biplots, Common Principal Component
Analysis as well as Generalised Orthogonal Procrustes Analysis. Tensor de-
composition techniques are also explored and whilst the Tucker3 decomposi-
tion is used to construct biplots, the Parallel Factor Analysis model is shown
to have undesirable properties for the construction of an exploratory plot.
Tensor Singular Value Decomposition is thus discussed and used as a frame-
work for the construction of a triplot, a plot that simultaneously displays all
three modes comprising the data.
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All these methods are applied to a longitudinal data set taken from Mansoor
et al. (2009) in order to ascertain whether they are effective in untangling the
relationships in the data but also whether they convey similar information
about the data.
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Chapter 1

Introduction

Exploratory data analysis is undoubtedly one of the most useful tools in the
realm of Statistics. Before embarking on a rigorous statistical analysis of any
data set the statistician is taught to consult a myriad of graphical displays in
order to develop a rudimentary understanding of various aspects of the data.
This supports any rigorous analysis and serves to strengthen the researcher’s
intuition about the data, so that any results from formal modelling can be
interrogated with knowledge of the data. Exploratory data analysis relies
to a large extent on two graphical displays in the statistician’s arsenal: the
scatterplot and the box and whisker plot. These tools have proved invaluable
in the task of untangling relationships in any particular data set. In the face
of data comprising a large number of variables, the exploratory aspect of the
analysis becomes cumbersome because of the large number of plots that must
be interpreted. Interactions between subjects, variables as well as subjects
and variables can only be understood by considering a number of different
plots. A scatterplot provides a sense of the relationship between the two
variables comprising the axes. In order to understand other relationships,
more scatterplots must be considered. While the need for multiple scatter-
plots might not have traditionally been a consideration as data tended to
comprise few variables, the new paradigm in Statistics concerns itself with
large data sets (Efron, 2007). Multivariate data have become ubiquitous.
What has now also become commonplace is data that are collected at differ-
ent time points or under different conditions, and as such are deemed three
mode data. Such data are often seen in the fields of Chemometrics and Psy-
chometrics (Bro, 1997).

The biplot, so named because it allows observations and variables to be
simultaneously displayed, was introduced by Gabriel (1971) and is the mul-
tivariate analogue to the scatterplot. It has proven itself to be a powerful
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CHAPTER 1. INTRODUCTION 2

tool for the purpose of understanding multivariate data from an exploratory
perspective. It has also proved effective in making the exploratory task effi-
cient, in that the biplot conveys a great deal of information about the data
that would ordinarily be gleaned from a combination of scatterplots and box
plots. Although this technique has enjoyed extensive use in the context of
multivariate data, it has not been as popularly used for exploring three mode
data. For this reason, this dissertation is concerned with exploring various
techniques that can be used to produce biplots for three mode data, as well
as considering the construction of a triplot. Each technique is applied to a
longitudinal data set to assess its efficacy as an exploratory tool, as well as
to determine whether the various techniques yield similar conclusions about
the structures inherent in the data.

1.1 Background information

The common thread throughout this dissertation is Principal Component
Analysis (PCA). It has proven invaluable for exploratory data analysis in
a two mode multivariate context. The fact that exploratory tools for three
mode data are not well developed motivated this research. Graphical tools
are vital in Statistics and they are used primarily as exploratory or diagnos-
tic tools. Kroonenberg (2008) dedicates a chapter to graphical displays for
three mode methods but the emphasis is on aiding in the interpretation of
parameter estimates, as well as considering graphical means to assess the va-
lidity of a chosen model. Only brief mention is made of exploratory tools for
three mode data. The most comprehensive work on this subject is a paper by
Kiers (2000a) which has a stronger exploratory emphasis than what is seen
in Kroonenberg (2008). The literature in the area of exploratory analysis for
three mode data is therefore somewhat lacking. This dissertation thus seeks
to provide some methods for the express purpose of exploratory analysis and
although techniques may seem disjointed, it is PCA that reveals itself con-
stantly. The choice of multivariate longitudinal data for the application is
born of the fact that this is a common form of three mode data. Longitudi-
nal studies are common thus simple, comprehensive exploratory techniques
will prove valuable. The methods discussed are not limited to longitudi-
nal data however and could also be used on data comprising subject scores,
for example on various intelligence tests under different conditions affecting
concentration.
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1.2 Objectives

The objectives of the research undertaken in this dissertation relate to build-
ing a sound understanding of the biplot construction and applying this to
three mode data in order see how it fairs as an exploratory tool. More specif-
ically the objectives can be summarised as follows:

1. Provide a comprehensive explanation of the theoretical foundations un-
derpinning biplot construction. Focus will be on Principal Component
Analysis as well as Canonical Variate Analysis Biplots;

2. Discuss the theoretical framework for two main classes of tensor decom-
position techniques and exploring whether these techniques can be used
to produce biplots. There is a brief discussion on triplot construction
and interpreting some aspects of this plot;

3. Exploring the use of other multivariate techniques for the construction
of biplots in a three mode data context;

4. Applying all these methods to a data set taken from Mansoor et al.
(2009) in order to determine whether the different techniques convey
similar information about the structure of the data. Careful consid-
eration is given to the interpretation as well as any similarities and
differences that arise in the plots.

It is argued that although different methods are to be used in the construction
of the biplots, they will convey similar information about the structure of the
data. These plots are used in an exploratory context and thus should lead
to the researcher drawing similar conclusions about the data.

1.3 Scope and Limitations

Biplot methodology comprises a vast array of methods but this dissertation
is focused on the analysis of asymmetric, linear biplots. Gower et al. (2011)
provide an excellent introduction to the various aspects embodied in biplot
methodology. The techniques that are considered in this dissertation are
applied to a longitudinal data set only although they are not limited to use
with such data. There is a vast body of literature pertaining to three mode
data modelling including issues of dimensionality selection, interpretation of
parameter estimates and diagnostic tools, however the fundamental topic of
this dissertation is exploratory in spirit and so these issues are not consid-
ered here. Kroonenberg (2008) is an excellent reference for understanding
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these issues but they are not key in constructing and interpreting the biplots
that lie at the heart of this dissertation. The methods discussed in this dis-
sertation are largely limited to three mode profile data comprising subjects,
variables and conditions or occasions. Specifically, the variable mode should
comprise continuous measurements. Longitudinal data tends to fall into this
category. A similar perspective to that of Kroonenberg (2008) is taken here
where the time aspect of the data is used as an interpretational device rather
than being explicitly considered as a modelling device. This is done primar-
ily because the data are not being modelled but explored in the way that
precedes rigorous statistical analysis.

1.4 Chapter layout

The dissertation is largely divided into two parts with the former consid-
ering simple multivariate techniques that can be considered two mode in
nature and the latter looking at three mode techniques, with the final chap-
ter considering tensor decomposition. The remainder of this dissertation is
divided as follows: Chapter 2 provides a brief overview of three mode data,
defining pertinent concepts that are needed for this dissertation. Chapter 3
discusses the Mansoor et al. (2009) data, giving some technical background
and performing a traditional exploratory data analysis. Chapter 4 introduces
biplots and considers the construction and interpretation of these plots. The
basic tools required for biplot construction are discussed and then detail is
given on how the marriage of these various aspects results in the PCA bi-
plot. This chapter also constructs PCA biplots for the Mansoor data and
discusses the interpretation and conclusions. Chapter 5 goes on to discuss
how the grouped nature of the data can be included in the biplot construc-
tion process by considering Canonical Variate Analysis (CVA) biplots. This
technique is applied to the matricised forms of the Mansoor data and the
results discussed. Chapter 7 considers the use of Common Principal Com-
ponent Analysis (CPC) and how this technique can be used to construct
biplots. This is done from the perspective of the researcher having satisfied
themselves that the CPC hypothesis is valid and now seeks to construct and
interpret a biplot from the parameter estimates. This chapter is vital for
an important novel development later on. Chapter 6 details how Generalised
Orthogonal Procrustes Analysis (GOPA) can be used to combine into a single
plot, the separate PCA biplots produced for each of the data sets compris-
ing the three mode data. Chapter 8 discusses a novel development focused
on representing separate CVA biplots in a single comprehensive plot. The
method is applied to simulated data and then to the Mansoor data. Chapter
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9 is distinctly different in that it explores tensor decomposition techniques
and considers the two main classes of models that generalise PCA to three
mode data. The Tucker model with orthogonality constraints is used to
construct biplots, whilst the Parallel Factor Analysis (PARAFAC) model is
discussed and reasons provided for why this is not a suitable model for the
construction of an exploratory plot. Finally, a third decomposition technique
is discussed and this is used to construct triplots (Araújo, 2009). These tech-
niques are applied to the Mansoor data and the conclusions discussed. The
dissertation draws to a close with Chapter 10, which comprises a summary
of the conclusions reached throughout and makes a recommendation on the
use of the various techniques.

1.5 Software

The implementation of the various methods discussed in this dissertation
was performed in the commonly used programming environment R version
2.14 (R Development core team, 2011). The functions used to produce the
actual biplots are taken from the package developed for use with Gower et al.
(2011). Where necessary, modifications have been made to these functions.
The implementation of some tensor decomposition techniques was performed
in Matlab using the N-way toolbox developed by Andersson and Bro (2000).
All the code can be found in the appendix.

1.6 Notation

In order to provide a frame of reference for the reader’s convenience, com-
monly used notation throughout the dissertation is defined here. The con-
vention is that bold uppercase letters represent matrices and bold lowercase
symbols represent column vectors. Also note that where convenient the Man-
soor et al. (2009) data set will simply be referred to as the Mansoor data.
Legends have been placed on some plots and apply in a similar fashion to
those that do not have legends.

• n/N : refers to the number of subjects comprising the data.

• p/P : refers to the number of variables comprising the data.

• k/K : refers to the number of occasions comprising the data.

• g: number of groups into which the subjects are divided.
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• X : Data matrix with dimensions subjects × variables i.e. n× p.

• X : Order three tensor with dimensions subjects × variables × occa-
sions i.e. n× p× k.

• ‖X ‖ : Frobenius norm.

• 1 : column vector of ones with size determined by context.

• tr(X) : trace of the matrix X.

• X(m): Unfolding of X in the mth mode.

• Ψ: a p× p covariance matrix.



Chapter 2

Three way data

2.1 Introduction

Statistics is best acquainted with the analysis of data comprising “scores of
subjects on a number of variables” (Kroonenberg, 2008, p. 146). This data
can be arranged in a two mode regular rectangular array with rows repre-
senting subjects and columns representing variables. When data is collected
at different time points or under different conditions, a third way is intro-
duced. In a very crude sense, such data cannot be contained on a single
index card but comprises a collection of index cards that must be contained
in a box. A myriad studies produce data of this nature. An example can be
drawn from child studies where the scores on a collection of variables such
as intelligence, mass, age and physical fitness are measured for a number of
children over a period of time. A second example comes in the form of mea-
suring plant characteristics for different species of plants grown in different
locations. It is important to remember that although three way data comes
in different forms such as categorical, and rating scale data, the focus is on
data comprising subjects with a number of continuous measurements taken
under different conditions or at different occasions. For the remainder of this
section, three way data will be thought of as comprising subjects, variables
and time points for ease of explanation. This chapter is brief and introduces
basic three mode terminology and the concept of matricisation.

2.2 Modes and ways of an array

Figure 2.1 is an illustration of a three-way data array. The entries along
the vertical axis, denoted by index i, represent one entity, those along the
horizontal axis, denoted by index j, represent another entity and those along

7
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Figure 2.1: Illustration of a three way data set.

the depth axis, denoted by index k, represent yet another entity. Each sep-
arate entity is referred to as mode. More specifically, the word mode refers
to the content of each of the ways so that each of the objects, variables and
conditions comprising the data array can be thought of as modes.

Three-way data can be classified by mode in the following way: When three
different entities occur in each of the ways then the data is referred to as
three mode three way data. The examples provided at the beginning of this
section could be classified as such. When the same entity occurs in two of the
ways then the data is referred to as two mode three way data. A collection
of correlation matrices for the same variables from several different samples
is an example of data of this type where the samples and the variables define
the two modes. One mode three way data thus refers to data where the same
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entity occurs in all three ways.

Figure 2.2: Illustration of matricising a three way data set.

2.3 Matricisation of three way data array

Before the advent of statistical methods capable of analysing three mode
data, two mode methods were used for the purpose of analysis. The data
had to be restructured in order to make it amenable to the application of two
mode methods. One of three methods is most commonly used to restructure
the data and all of these methods are illustrated in Figure 2.2. The first
of these methods, referred to as flattening, requires that the three way data
array be collapsed into a single matrix by removing one of the ways. This is
usually done by averaging the subject scores across the depth axis or what is
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usually the time/condition mode. This results in any trends over time being
lost. The process of matricisation, which describes the remaining restructur-
ing methods, requires that two modes be combined by either placing each of
the data matrices comprising the three way data array next to each other
to from what is called a wide combination-mode matrix or by forming what
is called a tall combination-mode matrix. Both of these are illustrated in
Figure 2.2. In the former case, the variable and time modes are combined
so that any relationships between the variables at different time points are
neglected. In the latter case, the subject and variable modes are combined
so that any similarities between an individual’s score at different points in
time are lost. These methods provide a means of simplifying the data so as
to apply two-mode statistical methods however they are not without a price.
Valuable information inherent in the data is lost by applying these methods
and it must thus be done with caution when undertaking rigorous statistical
analysis.

2.4 Conclusion

This chapter served to introduce the notion of three way data as well as
pertinent concepts. Specifically, the concepts of modes and ways was intro-
duced followed by the process of matricisation which is significant in later
discussion.



Chapter 3

Mansoor data

3.1 Introduction

Mansoor et al. (2009) undertook an investigation to determine the Immune
Response induced by Bacille Calmette Guérin (BCG) vaccine in HIV pos-
itive (HIV +) patients. It is commonly used as a vaccine in sub-Saharan
Africa and has been found to be particularly efficacious in protecting against
Pulmonary Tuberculosis. BCG has been found to cause complications in
patients, particularly an illness known as “BCGosis” which has a high level
of morbidity in infants. The primary aim was to ascertain whether BCG
induces what is thought to be the required immune response in HIV + in-
fants to protect against TB. A secondary aim was to determine whether the
immune strength induced in HIV-uninfected infants born to HIV-infected
mothers was similar to that induced in HIV-unexposed and healthy infants.

3.2 Data Structure

Participants comprised infants born to HIV infected and uninfected moth-
ers recruited from the Worcester region in the Western Cape from 2003 to
2006. All infants had been given the BCG vaccine at the date of birth and
received an HIV test at age six weeks. Furthermore, the subjects were as-
signed to one of three groups. These groups were defined as follows: Group
1 comprised HIV infected infants, Group 2 comprised HIV exposed but
uninfected infants and Group 3 comprised HIV unexposed and uninfected
infants. The infants in group 2 were born to HIV infected mothers. An-
tiretroviral therapy was not made available at any point during the study
with the implication that any immune strength was attributable to the BCG.

11
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The study has a longitudinal aspect to it in that each of the infants were
seen at 3 months, 6 months, 9 months and 12 months respectively. Blood
samples and T-cell marker measurements were obtained at each occasion. To
better understand the data, a brief digression into the realm of T-cells and
cytokines is necessary.

According to Ibelgaufts (2009), T-Helper cells or Th cells are a type of white
blood cell that is instrumental in maximizing the ability of the immune sys-
tem to launch an immune response. These cells express the protein CD4
on its surface and consequently are also referred to as CD4 cells. Th cells
are incapable of killing infected cells or any pathogens present in the body,
but their importance can be attributed to the fact that they are responsible
for secreting the cytokines that activate and direct the other immune cells
(Ibelgaufts, 2009). These cells are activated when exposed to peptide anti-
gens which are presented by Antigen Presenting Cells. Following activation,
these cells divide and produce cytokines. Several distinct Th cells have been
identified, each secreting different cytokines to facilitate different immune
responses. Most of these cells secrete only a single cytokine per cell (Karulin
et al., 2000). The concern of the Mansoor investigation was the Th 1 cell
which is known to cause strong cellular immunity.

Cytokines produced by the immune system are a group of immune-modulatory
proteins or immune-transmitters that are responsible for the modulation of,
the reproduction and bioactivity of the immune cells (Ibelgaufts, 2009). In
effect, these cytokines facilitate communication between the immune system
and other cell types. Several different cytokines have been identified and
the Th 1 cells produce a number of these cytokines, commonly referred to
as Type 1 cytokines. These include Interferon-γ (IF-γ), Tumour Necrosis
Factor-α (TNF-α) and Interleukin-2 (IL-2). Each of these cytokines has a
specific function. For example, it is understood that IF-γ and TNF-α are
vital in the prevention of viral replication amongst other things where as IL-2
is pivotal in cell replication.

This brief digression affords the means to state clearly how the data is used
to answer the questions put forward in Mansoor et al. (2009) regarding the
immune response and immune strength amongst the groups in the study.
Recall that the primary aim of the study was to determine whether BCG in-
duces what is thought to be the required immune response for TB protection
in HIV infected infants. According to Mansoor et al. (2009), what is widely
thought to be essential in the protection against TB is the Th 1 cell cytokine
response comprising TNF-α, IL-2 and IF-γ. Th 1 cells that coexpress all 3
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these cytokines, polyfunctional T-cells, are thought to be good indicators of
quality of immune response and evidence gathered from TB vaccine studies
done on animals has shown that these polyfunctional cells are associated with
protection against TB. It is for this reason that these T cell markers were
the primary measurement in this study.

Response Presence of Cytokines Number of Cytokines Expressed
IF-γ IL-2 TNF-α

V2 cd4 ifngpil2mtnfm Yes No No 1
V6 cd4 ifngmil2ptnfm No Yes No 1
V5 cd4 ifngmil2mtnfp No No Yes 1
V3 cd4 ifngpil2ptnfm Yes Yes No 2
V1 cd4 ifngpil2mtnfp Yes No Yes 2
V7 cd4 ifngmil2ptnfp No Yes Yes 2
V4 c d4 ifngpil2ptnfp Yes Yes Yes 3

Table 3.1: Combination of cytokines with the measure of polyfunctionality.

Table 3.1 indicates the combination of cytokines together with the measure
of “polyfunctionality”, the number of cytokines expressed by the Th 1 cells,
observed in the T cell marker data set collected. The strength of the cell’s
polyfunctionality is measured by the number of cytokines coexpressed. In the
context of this study, at the very most three cytokines can be coexpressed.
For the remainder of the dissertation the labelling in column 1 of Table 3.1
will be used to refer to the the T cell markers.

Table 3.2 indicates how the the number of participants in the study changed
over time. It is evident that the number of infants in all three groups of in-
terest declined possibly due to death or withdrawal from the study for other
reasons. For the purpose of this dissertation all missing observations were
removed so that the final data set used contained 29 observations at each
occasion. Of the 29 observations, 3 comprised the first group, 10 comprised
the second group and 16 comprised the third group.

A pertinent question is whether the data collected in this study can be
classified as three-way data and thus amenable to modelling by means of
three-way techniques. It is clear that this is indeed a three-way data set in
which the infants participating in the study represent one way, the T cell
markers measured as described in Table 3.1 represents the second way and
the measurements taken at different time points represents the third way.
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Group Time Point (months) Total
3 6 9 12

HIV infected 20 12 8 5 45
HIV exposed and uninfected 25 17 15 12 69
HIV unexposed and uninfected 23 22 22 19 86

Table 3.2: Number of subjects at each occasion.

3.3 Exploratory Data Analysis

Figure 3.1: Boxplots representing four variables comprising data.

Data exploration is key in any statistical analysis and the boxplot and scat-
terplot are the traditional tools used for this task. When data comprises a
large number of variables a myriad of these plots are needed to tease out
the data structure. A brief rudimentary exploration of the data by means
of boxplots serves to sketch a preliminary image of the structure inherent in
the data. Biplots are fundamentally exploratory in spirit and this section is
included in order to get a sense of the data but also to show that the biplot
serves well to encompass most of the information that is gleaned from the
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separate plots used for the exploratory analysis.

Figure 3.2: Boxplots for the remaining three variables comprising data.

Figures 3.1 and 3.2 represent boxplots constructed for the data. Each vari-
able is represented and for each variable the grouped nature of the data is
considered in the plot. It is immediately clear that there was a general de-
crease in variation in the data across occasion for all groups. This reduction
was generally more distinct for infants comprising the HIV -uninfected groups
across most variables. The group comprising the HIV+ infants demonstrated
behaviour that was contrary to this trend particularly in Figure 3.1. The
infants comprising the uninfected and unexposed group, group 3, showed
the most variation on V 2 and V 5 in Figure 3.1, particularly at occasion 3.
Another striking feature is the fact that the median score for the infants in
groups 2 and 3 are similar on all variables across occasion. Furthermore,
there was a general decreasing trend in the score on most variables across
occasion. The scores for the subjects comprising group 1 was seen to be rela-
tively smaller than the scores for the other two groups. These plots thus seem
to indicate that BCG did not have the same effect in terms of producing the
required immune response in each of the groups as opined by Mansoor et al.



CHAPTER 3. MANSOOR DATA 16

(2009) with the uninfected groups scoring relatively higher on the variable
coexpressing all three cytokines, V 4. In fact, the infants comprising the first
group seemed to obtain relatively lower scores on most of the variables with
the difference becoming less marked over time. If the biplot can be used to
condense this information into a single display it will be quite convenient.
The next aspect to consider is that of the correlation between the variables
and how that evolves over time. Although the pertinent information for the
investigative questions posed by Mansoor et al. (2009) is contained in Fig-
ures 3.1 and 3.2, it is worth examining the associations between variables if
only to see how well this information is captured in a biplot.



V 1 V 2 V 3 V 4 V 5 V 6 V 7

V 1 1 0.82 0.77 0.90 0.42 0.19 0.26

V 2 0.82 1 0.76 0.69 0.23 0.33 0.06

V 3 0.77 0.76 1 0.82 0.29 0.31 0.24

V 4 0.90 0.69 0.82 1 0.47 0.19 0.47

V 5 0.42 0.23 0.29 0.47 1 0.64 0.76

V 6 0.19 0.33 0.31 0.19 0.64 1 0.55

V 7 0.26 0.06 0.24 0.47 0.76 0.54 1





V 1 V 2 V 3 V 4 V 5 V 6 V 7

1 0.58 0.64 0.79 0.70 0.69 0.48

0.58 1 0.73 0.53 0.23 0.63 0.18

0.64 0.73 1 0.70 0.35 0.61 0.20

0.79 0.537 0.70 1 0.79 0.46 0.67

0.70 0.23 0.35 0.79 1 0.43 0.83

0.69 0.63 0.61 0.46 0.43 1 0.20

0.48 0.18 0.20 0.67 0.83 0.20 1




V 1 1 0.35 0.87 0.95 0.43 0.33 0.57

V 2 0.35 1 0.45 0.34 0.09 0.36 0.22

V 3 0.87 0.45 1 0.84 0.25 0.37 0.52

V 4 0.95 0.34 0.84 1 0.35 0.28 0.73

V 5 0.43 0.09 0.25 0.35 1 0.51 0.36

V 6 0.33 0.36 0.37 0.28 0.51 1 0.49

V 7 0.57 0.22 0.52 0.73 0.36 0.491





1 0.80 0.91 0.90 0.23 0.13 0.51

0.80 1 0.91 0.75 0.20 0.09 0.27

0.91 0.91 1 0.87 0.11 0.01 0.30

0.90 0.75 0.87 1 0.11 0.17 0.53

0.23 0.20 0.11 0.11 1 0.39 0.17

0.13 0.09 0.01 0.17 0.39 1 0.50

0.51 0.27 0.30 0.53 0.17 0.50 1



Figure 3.3: Correlation matrices for each occasion with occasion 1 top left,
continuing clockwise.

Figure 3.3 illustrates the correlation matrices for the seven variables compris-
ing the Mansoor data across occasion. V 1 and V 4 show a particularly strong
correlation across occasion. V 1 and V 3 as well as V 3 and V 4 display similar
behaviour across occasion. V 5 and V 7 show strong correlation at occasions
1 and 2 with a marked reduction in correlation at occasions 3 and 4. V 2
and V 7 display relatively weak correlation across occasion and the same can
be said for V 3 and V 5. It is possible to continue in this vein in order to
better understand the relationships between variables and how this evolves
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over time. In order to hail the biplot as an efficacious tool for exploratory
data analysis, it should be possible to see some of these relationships.

3.4 Conclusion

This Chapter briefly detailed the aims of the Mansoor et al. (2009) investi-
gation and digressed into a discussion on cytokines in order to facilitate the
understanding of these aims. An exploratory data analysis was undertaken
in order to gain a sense of the nature of the data set. This was done primarily
to see whether the biplot, when used later on, will convey similar information
regarding the nature of the data.



Chapter 4

Biplots

4.1 Introduction

As previously mentioned, data visualisation forms an integral part of the sta-
tistical analysis process. It affords the means to glean pertinent information
about the data before delving into the more technical aspects of the analy-
sis. The scatterplot is one graphical tool available for the purpose of data
visualisation. This is a mathematical diagram which make use of Cartesian
co-ordinates in order to show the values for two or three variables for a given
set of data. Figure 4.1 is an illustration of a scatterplot. The axes are orthog-
onal and each represents a specific variable whilst the sample is represented
as a collection of points, the position of each being determined by the values
of the variables on the horizontal and vertical axes respectively. Naturally
the diagram is two-dimensional, a dimension for each variable. Primarily it
conveys information about the strength of the relationship between the vari-
ables. In this case Figure 4.1 conveys a strong positive linear relationship
between V 1 and V 2. It also affords the means to make a statement about
the magnitude of the variation for the variables represented by examining
the spread of the data in the direction of each axis. Since the data are rel-
atively dispersed in the direction of V 2, it suggests that V 2 displays large
variation. When samples comprising three variables are collected such an
accurate representation remains possible since three dimensional diagrams
can be accurately depicted in two dimensions with modern computer graph-
ics. However, in the realm of higher dimensions this becomes difficult. The
question is thus how multivariate data comprising more than three variables
can be visualised in a similar fashion. Biplots lie at the heart of the answer
to this enigma.

18
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Kroonenberg (2008) provided an eloquent description of the biplot as “al-

Figure 4.1: Scatterplot for variables one and two at time point three

low[ing] for the analysis of two-way interaction in a table of n objects and
p variables such that systematic patterns between rows, between columns
and between rows and columns can readily be assessed and evaluated” (p.
492). The prefix bi is not a reference to the idea that these plots most often
occur in two dimensions but rather to the fact that they allow for the simul-
taneous display of both the rows and columns of the data matrix X. It is
possible to distinguish between symmetric and asymmetric biplots. In the
former instance, the biplots provide information on data matrices comprising
sample units and variables and as such the rows and columns of the matrix
are not interchangeable. Symmetric biplots provide information on two-way
tables in which rows and columns are interchangeable since this would have
no effect on the information contained in the table. Attention is focused on
the construction of asymmetric biplots. The next section discusses the con-
struction and interpretation of the most fundamental biplot, the Principal
Component Analysis (PCA) biplot.
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4.2 Basic tools for constructing a biplot

There are a number of mathematical tools that are vital in the process of
constructing a biplot and more specifically a PCA biplot. This section offers
a brief discussion of each and begins with the Singular Value Decomposi-
tion (SVD), moves on to the Eckart-Young Theorem and finally discusses
Huygen’s Principle.

4.2.1 Singular Value Decomposition

Suppose that a two way data matrix X comprising information of n objects
on p variables with more objects than variables (n > p) has been collected.
This data matrix X can be decomposed as:

X = ŨΣ̃Ṽ
′

,

where Ũn×n and Ṽ p×p are orthogonal matrices and Σ̃ is an n×p matrix with
singular values σj where j = 1, . . . , s are arranged in decreasing magnitude
on the principle diagonal. The value s is equal to the rank of the matrix X.
Define

Σ̃ =

( s p− s
s Σ 0
n− s 0 0

)
, (4.1)

so that Σ is a diagonal s× s matrix with the singular values on its diagonal.
Σ̃ is referred to as a rectangular diagonal matrix and (4.1) makes it clear
why this is the case. The column vectors comprising Ũ are the n orthogonal
eigenvectors of the matrix XX

′
referred to as the left singular vectors and

the columns comprising Ṽ are the p orthogonal eigenvectors of the matrix
X

′
X and are referred to as the right singular vectors. Both matrices are

orthonormal. Gower et al. (2011) show that by defining matrices Un×s
and V p×s comprising the first s columns of Ũ and Ṽ respectively makes it
possible to represent the SVD of X as

X = UΣV
′
. (4.2)

Note that the matrices U and V are orthonormal. It is also pertinent to
note that the decomposition of the data matrix X can be represented in
summation notation as

xij =
s∑
t=1

σtuitvjt, (4.3)

implying that s terms are generally required in order to reproduce the data
matrix X perfectly. This notation becomes useful later on when the discus-
sion turns to the actual construction of the biplot.
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4.2.2 Eckart-Young Theorem

As discussed in section 4.1 , when data matrices comprises more than three
variables, perfect graphical representation akin to a simple scatterplot is
problematic. Failing the ideal of presenting a data set perfectly, the best
option is to find a low dimensional approximation of the data matrix that
lends itself to graphical display. The Eckart-Young theorem (Eckart and
Young, 1936) provides a means to determine the best r -dimensional least
squares approximation of the data matrix X where the value of r is usually
2. Formally, the Eckart-Young Theorem can be stated as follows

Theorem 4.2.1. Given an n × p matrix X with a specific rank s, X can
be approximated by an n × p matrix X̂ [r] with rank r such that r ≤ s. The
approximation is based on the minimisation of the Frobenius Norm

‖X − X̂ [r]‖F=

√√√√ n∑
i=1

p∑
j=1

(xij − x̂ij)2 = tr((X − X̂ [r])
′
(X − X̂ [r]))

1
2 ,

under the constraint that rank(X̂ [r])=r and the solution is given by the Sin-
gular Value Decomposition of X

X̂ [r] = UΣ[r]V
′
,

where Σ[r] replaces the s − r smallest singular values on the diagonal of Σ
with 0.

Proof. The aim is to minimise ‖X − X̂ [r]‖F subject to the constraint that

rank(X̂ [r])=r. Suppose that the Singular Value Decomposition of X is

UΣV
′

so that Σ = U
′
XV . The Frobenius Norm is unitarily invariant;

that is for any matrix A, ‖A‖F= ‖UAV ‖F where U and V are unitary
matrices. A real matrix U is deemed unitary if UU

′
= U

′
U = I. The prop-

erty of unitary invariance implies that minimising ‖X − X̂ [r]‖F is equivalent

to minimising ‖Σ−U ′
X̂ [r]V ‖F .

It is clear that since Σ is an s×s diagonal matrix, U
′
X̂[r]V must also be diag-

onal in order to minimise the Frobenius norm. Define this diagonal matrix to
be S = diag(si) for i = 1, . . . , s so that U

′
X̂[r]V = S and X̂ [r]=USV

′
. The

problem thus reduces to finding the minsi ‖Σ−S‖F= minsi(
∑s

i=1(σi−si)2)
1
2 .

Due to the rank constraint the above expression has minimum

min
si

(
r∑
i=1

(σi − si)2 +
s∑

i=r+1

(σi)
2)

1
2 =

√√√√ n∑
i=r+1

σ2
i ,
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when σi = si for i = 1, . . . , r and the corresponding singular vectors are the
same as those for the matrix X.

Define the s× s matrix J as(
Ir 0
0 0

)
, (4.4)

where Ir is an r × r identity matrix. Note that J2 = J as well as that
diagonal matrices commute. X̂ [r] can be written as U (ΣJ)V

′
. Due to the

properties mentioned, this expression can be represented as (UJ)Σ(V J)
′
.

The final s− r columns of UJ and V J comprise zeros though the matrices
have dimension n×s and p×s respectively. The usefulness of this expression
will become apparent later.

4.2.3 Huygen’s Principle

At this point it is necessary to merely state and prove Huygen’s Principle.
It will become apparent at a later stage why this Principle is in fact so
important in the process of constructing a biplot.

Result 4.2.1. Let c ε<p and X an n× p matrix then the sum of squares

‖X − 1c
′‖=‖X − 1

n
11

′
X‖ +n‖1X ′ − c′‖,

is minimized when c
′

= 1
n
1

′
X. More succinctly, the sum of squares about

the mean is smaller than it is about any other point.

Proof. First consider the L.H.S

‖X − 1c
′‖ = tr[(X − 1c

′
)(X − 1c

′
)
′
]

= tr[XX
′ −Xc1′ − 1c

′
X

′
+ 1c

′
c1

′
]

= tr[XX
′ − 1

′
Xc− c′

X
′
1 + 1

′
1c

′
c]

= tr[XX
′ − 1

′
Xc− c′

X
′
1 + nc

′
c].
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Now consider the expression on the R.H.S of the equation in Result 4.2.1.

‖X − 1

n
11

′
X‖ +n‖1X ′ − c′‖

= tr[(X − 1

n
1 1

′
X)(X − 1

n
1 1

′
X)

′
+ n(1X

′ − c′
)(1X

′ − c′
)
′
]

= tr[XX
′ − 1

n
XX

′
11

′ − 1

n
11

′
XX

′
+

1

n2
11

′
XX

′
11

′

+
1

n
1

′
XX

′
1− c′

X
′
1− 1

′
Xc+ nc

′
c]

= tr[XX
′ − 2

n
1

′
XX

′
1 +

2

n
1

′
XX

′
1− c′

X
′
1− 1

′
Xc+ nc

′
c]

= tr[XX
′ − 1

′
Xc− c′

X
′
1 + nc

′
c].

This proves equality and inspecting the R.H.S reveals that setting c
′
= 1

n
1

′
X

results in n ‖1X ′ − c′‖= 0. This minimises the R.H.S and implies that in
order to obtain a minimum, c

′
= 1

n
1

′
X.

4.2.4 Factorisation of data matrix

This section seeks to succinctly express the ideas put forward by Gabriel
(1971). More specifically, it introduces the notion that any matrix can be
factorised and then considers how that factorisation is used in the process
of constructing a biplot. The first result is a simple one and pertains to the
factorisation of any n× p matrix.

Result 4.2.2. Any n× p matrix X of rank r can be factorised as

X = GH
′
,

into an n × r matrix G and an p × r matrix H, both necessarily of rank r.
This factorisation is not unique (Rao, 1965).

Considering each element in the data matrix X, Result 4.2.2 can be written
as

xij = g
′

ihj ,

where xij is the element in the ith row and jth column of the data matrix
X, gi is the ith row of the matrix G and hj is the jth row of the matrix H .
Each of the vectors g1, . . . , gn are assigned to the rows of X, one for each
row and are termed the row effects. Similarly each of the vectors h1, . . . ,
hp are assigned to the columns of X, one for each column and are termed
the column effects (Gabriel, 1971). Each of these vectors are of order r thus
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providing a means to represent the matrix X in the r-space by means of
these n + p vectors. Without loss of generality, the assumption is that all
matrices X will be of rank two.

When considering a matrix X of rank two, the row and column effects are
all vectors comprising two elements. As a result, these n + p vectors can
be plotted in the plane and each of the np elements of the matrix X can
be represented by the inner products of the corresponding row and column
effects. These plots are extremely useful in visually assessing the structure of
the data matrix. The following example is taken from Gabriel (1971) and will
emphasise an apparent obstacle in the graphical representation of a matrix
of rank two.

Consider the following matrix with the associated factorisation:

X =


2 2 −4
2 1 −3
0 −1.5 1.5
−1 −0.5 1.5

 =


2 2
2 1
0 −1.5
−1 −0.5

( 1 0 −1
0 1 −1

)
.

An alternative factorisation of the matrix X is as follows:
2 −4
0 −1
−3 4.5
0 0.5

( −3 −1 4
−2 −1 3

)
.

In the first factorisation of the matrix X, the row effects are g1 = (2,2), g2
= (2,1), g3 = (0,-1.5), g4 = (-1,-0.5) and the column effects are h1 = (1,0),
h2 = (0,1), h3 = (-1,-1). These vectors can be plotted on the plane affording
a visual appraisal of the structure of the data and this is shown in Figure 4.2.

The actual interpretation of these graphical representations will be deferred
but what is poignant is the fact that the two possible factorisations produce
disparate plots for the same matrix X as is evident from a quick study of the
two diagrams in Figure 4.2. The disparity is evidence of the non-uniqueness
of the factorisation of the matrix X and results from the fact that the fac-
torisation stated in Result 4.2.2 can be replaced by

X = (GR
′
)(HR−1)

′
= GR

′
(R

′
)−1H

′
= GH

′
, (4.5)

for any non-singular matrix R. Equation (4.5) makes it clear that although
the matrices G and H are transformed to GR

′
and HR−1 respectively, the
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Figure 4.2: Gabriel Biplots illustrating effect of non-unique factorisation.

resulting matrix product of the transformed matrices is equal to that of the
original G and H matrices. In order to understand how these transforma-
tions translate to the disparity in the graphical representations of the matrix
X, consider the SVD of the non-singular matrix R

′
,

R
′

= V
′
ΣW (4.6)

V and W are orthonormal matrices and will cause a rotation and possible
reflection of the axes in the graphical representation of the matrix X where
as the matrix Σ results in stretching or shrinking of the axes. The conclusion
is thus that the graphical representation on the right of Figure 4.2 results
from transforming the graphical representation in the left hand panel by the
means described. This serves to emphasise the fact that the factorisation of
the matrix is non-unique and that the graphical representation of the matrix
X depends to a large extent on the factorisation. The question is thus how
this apparent obstacle to producing a plot that affords the means to make
meaningful inferences about the relations between the rows and columns of
the matrix X can be conquered. The solution is rather simple and requires
that a metric be imposed thus making the factorisation and the resulting
plot unique (Gabriel,1971).
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There are two possibilities to consider. The biplot can either accurately
represent the relations between the samples which means that the the dis-
tances between the rows of the matrix X will be equivalent to the distances
between the rows of the matrix G. Alternatively, the relationship between
the columns of the matrix X can be accurately represented which means
that the correlations between the variables will be accurately represented on
the biplot. Gabriel (1971) states that if it is the relations between the rows
of the matrix X that are to be represented accurately by the corresponding
relations between the rows of G, then imposing the following requirement
ensures that this is the case

H
′
H = I2. (4.7)

This condition yields a number of different results, the first of which indicates
that the inner products of the rows of X is equivalent to that of the matrix
G.

XX
′

= GH
′
HG

′
= GG

′
, (4.8)

implying that for any two rows xi and xj of the matrix X

x
′
ixj = g

′

igj. (4.9)

It follows very simply from Equation (4.9) that

‖xi‖=‖gi‖, (4.10)

implying that the inner product of any two row vectors from the matrices
X and G is equivalent. Note that the inner product of two vectors can be
written as <xi,xj>=‖xi‖‖xj‖ cos(xi,xj). Combining Equations (4.9) and
(4.10) with this form of the inner product immediately implies that

cos(xi,xj) = cos(gi, gj). (4.11)

The next result is perhaps the most pertinent because it shows that imposing
the condition in (4.7) will ensure that the Euclidean distances between the
rows of the matrix X are accurately represented by those of the matrix G
which is what is meant by preserving the relations between the samples of
the matrix X. Recall that the Euclidean distance between two vectors xi
and xj can be written as

‖ xi − xj ‖=
√
‖ xi ‖ + ‖ xj ‖ −2 < xi,xj >, (4.12)
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but ‖xi‖=‖gi‖ and ‖xi‖=‖gi‖ and < xi,xj >=< gi, gj > so that

‖ xi − xj ‖=‖ gi − gj ‖ . (4.13)

Though the relations between the rows of the matrix X are accurately pre-
sented by those of the matrix G, the same cannot be said for the way in
which the rows of the matrix H represent the columns of the matrix X. In
fact, the precise relationship between the inner product of the columns of H ,
the vectors hj where j = 1, . . . , p, and those of the matrix X is

X
′
(XX

′
)−X = HH

′
, (4.14)

where (XX
′
)− is any conditional inverse of the matrix XX

′
.

Proof.
X

′
(XX

′
)−X = HG

′
(GH

′
HG

′
)−GH

′
, (4.15)

and H
′
H = I2. A property of the conditional inverse of a matrix A is that

AA−A = A and using GG
′

instead of A yields

GG
′
(GG

′
)−GG

′
= GG

′
.

Multiplying from the left with G
′

and from the right with G yields

(G
′
G)G

′
(GG

′
)−G(G

′
G) = G

′
GG

′
G. (4.16)

Multiplying (4.16) by (G
′
G)−1 from the left and right yields

G
′
(GG

′
)−G = Ir, (4.17)

where r indicates the rank restriction imposed and in this instance r is 2 so
that I is in fact the 2 × 2 identity matrix. Substituting (4.17) into (4.16)
produces the result in (4.14).

The alternative is to ensure that the relations between the columns of the
matrix X are accurately represented by those of the rows of H so that the
inner products of the columns of X are reproduced by the inner products of
the rows of H . In order to achieve this, the necessary requirement is that

G
′
G = I2, (4.18)

so that
X

′
X = HH

′
. (4.19)

In order to understand how the accurate representation of the relation be-
tween the columns of the matrix X can be interpreted geometrically, it is
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necessary to understand how the angle between two variables relates to their
correlation. In the context of the biplot, the oblique axes represented by
the hj vectors represent the variables and the angle between these axes is
equivalent to the correlation coefficient of these variables provided that the
variables are centered. Consider two columns of X, x and y and

rxy =

∑p
i=1(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
. (4.20)

In the event that the variables are centred, (4.20) reduces to

rxy =

∑
xiyi√∑

x2i
√∑

y2i
=

< x,y >

‖ x ‖‖ y ‖
= cos θxy. (4.21)

The expression in (4.21) indicates that an angle θxy of 0 degrees or 180 de-
grees between the vectors is equivalent to perfect correlation of 1 and −1
respectively. Equation (4.19) implies that the columns of X can be replaced
by the rows of H in (4.21) and this shows that the relations between the
columns of X are accurately represented by those between the correspond-
ing rows of H (Gabriel, 1971).

Choosing to have the correlations between the p variables of the data ma-
trix accurately represented implies that the Euclidean distance between the
sample points will not be optimally presented by the inner products of row
effects. Instead of the inner product of the rows of G reproducing that of
the rows of X, the precise relationship becomes

X(X
′
X)−X

′
= GG

′
. (4.22)

The proof of (4.22) follows analagously to that of (4.14). This has a tangible
interpretation in the context of Principal Component Analysis biplots which
will be discussed later.

4.3 Principal Component Analysis biplot

The Principal Component Analysis (PCA) biplot is arguably the simplest
of the asymmetric biplots and this section concerns itself with the technical
aspects underpinning the construction of such a biplot before delving into
its applications. For the purpose of illustration an example is taken from
(Gower et al., 2011). A data set comprising 25 observations on 3 variables
is used in the process of examining how a multidimensional data set,which
would ordinarily be represented by a multidimensional scatterplot, can in
fact be represented by a two dimensional plot viz. a PCA biplot.
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4.3.1 Principal Component Analysis and its biplot

Principal Component Analysis is one of the oldest techniques forming part of
the arsenal of multivariate analysis (Joliffe, 2002). The technique was devel-
oped by Pearson in 1901 and then independently discovered by Hotelling in
1933. The context in which each of these prolific scientists made this discov-
ery was vastly different. Pearson (1901) was concerned with finding the best
line or plane to represent a system of points in p dimensional space and the
solution came in the form of Principal Components. Hotelling (1933) was
concerned with reducing the dimensionality of a data set by finding a smaller
set of variables that expressed the original p variables. Hotelling’s approach
has become a popular definition for Principal Components. Joliffe (2002) de-
fines PCA in the same vein as Hotelling, essentially stating that it is aimed
at “reducing the dimensionality of a large set of interrelated variables, whilst
retaining as much of the variation present in the data” (p.1). Ultimately
these two approaches are different perspectives on the problem of dimension
reduction where Pearson (1901) had a geometric interpretation and Hotelling
(1933), a more statistical interpretation. Naturally in the context of graphi-
cally representing a multivariate data set, the geometric interpretation is the
pertinent one. Furthermore, the construction of the biplot will emphasise a
slightly different aspect of the PCA transformation to that mentioned in the
definition provided by Joliffe (2002).

Formally, PCA seeks to approximate a data matrix X, comprising n ob-
servations and p variables, by a matrix X̂ [r] of rank r. The approximation is
based on minimizing a least-squares criterion which can be represented as

‖X − X̂ [r]‖2= tr[(X − X̂ [r])
′
(X − X̂ [r])]. (4.23)

Geometrically, the n observations comprising the matrix X can be repre-
sented in p dimensions and PCA seeks to find the best fitting r dimensional
plane, a subspace of the p dimensional space, containing the points with co-
ordinates given by the rows of X̂ [r]. The best-fitting plane is the one that
minimises the criterion in (4.23).

Section 4.2 outlined the tools necessary for the construction of a biplot and
what follows is a description of how those tools apply by considering an ex-
ample. The fictitious data set as well as the accompanying figures are taken
from Gower et al. (2011). The data set used in the example comprises 25
observations on 3 variables, the values for n and p respectively. Figure 4.2 is
a three dimensional plot of the data and is the geometric representation of
the data matrix X. The aim of PCA is to find a two dimensional plane that
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Figure 4.3: Three dimensional representation of the data, (Gower et al.,
2011).

bests fits the data as displayed in Figure 4.2. The significance of Huygen’s
Principle is that it implies that the best fitting plane should pass through
the centroid of the points in X because the sum of squares about the mean
is smaller than that about any other point. The expansion of the expression
in (4.23) will include tr(X

′
X) which is effectively the sum of squares about

the origin. Since the aim is to minimise (4.23), X is replaced by (X- 1
n
11

′
X)

thus ensuring that the centroid of the data is at the origin at that the term
tr(X

′
X) is minimised. Ultimately, Huygen’s Principle requires that the data

be centered.

What remains is to determine the direction of the best-fitting plane (Gower
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et al., 2011). The Eckart-Young Theorem (Eckart and Young, 1936) holds
the solution to this problem. The Eckart-Young Theorem gives the approxi-
mation of X as

X̂ [r] = UΣ[r]V
′
. (4.24)

Equation (4.24) can be represented in J notation as

X̂ [r] = (UJ)Σ(V J)
′

= U [r]ΣV
′

[r], (4.25)

where U [r] and U [r] comprise the first r columns of U and V respectively.
Introducing a parameter α leads to (4.25) being represented as

X̂ [r] = U [r]Σ
αΣ1−αV

′

[r]. (4.26)

The equation in (4.26) can be related to the representation that Gabriel
(1971) put forward where G = U [r]Σ

α and H
′

= Σ1−αV
′

[r]. The parameter

α commonly takes on the value 0, 1
2

or 1. This determines whether the Eu-
clidean distances between sample points or correlations between variables is
optimally approximated on the biplot. In the case of the PCA biplot, α is
set equal to 1 and condition (4.7) is satisfied so that the relationship between
the rows of G accurately represent the relationship between the correspond-
ing rows of X. Rudimentary algebraic manipulation yields G = XV [r] and
H = V [r]. This representation provides some insight into the geometrical in-
terpretation. G indicates that the n rows ofX are projected onto the column
space of V [r] to produce the row markers or sample point representations. In
this form, G comprises n row vectors with r elements; it is a representation
of the sample point relative to the orthogonal axes which underly the best-
fitting plane. This can be understood geometrically by considering Figure
4.4 which shows how each of the observations in three dimensional space are
orthogonally projected onto the best-fitting two dimensional plane. This pro-
cess is referred to as interpolation. The orientation of this best-fitting plane
is determined by the columns of V [r]. As a direct result of the fact that
interpolating sample points is based on orthogonal projection and that V [r]

is orthogonal, a representation of the sample points relative to the original p
orthogonal axes is given by

XV [r]V
′

[r]. (4.27)

The direction of the p variable axes are given by rows of V [r]. In effect, the
first r columns of the matrix V represent the direction cosines of the best
fitting plane and XV [r] represents the projection of the n sample points onto
the best fitting plane. It is assumed that r is equal to 2 since a two dimen-
sional representation of the data is sought. This is shown in Figure 4.4. Note
that the correlation between the variables comprising the data matrix are no



CHAPTER 4. BIPLOTS 32

Figure 4.4: Geometric illustration of the rows of G, (Gower et al., 2011).

longer optimally approximated by the column effects but it is still possible to
make a statement about the extent of the correlation between the variables
in a qualitative sense; the smaller the angle between the column effects, the
greater the correlation between the corresponding variables.

The alternative of setting α to 0 results in condition (4.20) being satisfied
and consequently the cosine of the angles between the column effects opti-
mally approximate the correlations between the p variables comprising the
data matrix X. In this case the inner products of the row effects have a
meaningful interpretation in that the Euclidean distance between any two
row effects gi and gj is proportional to the Malahanobis (1936) distance be-
tween the ith and jth observations in the data matrix X. Combining the fact
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that X is centered with definition of the Malahanobis distance together with
(4.22) is sufficient to proof this statement.

Attention can now be directed to a providing a more comprehensive un-
derstanding of the biplot axes. Notice that the Gabriel biplot represents the
biplot axes as arrowed vectors. The length of this vector from the origin to
the tip of the arrowhead typically indicates one standard deviation of the
variable considered. Gower and Hand (1996) contend that though this is an
acceptable form of representation especially useful when the purpose is to
approximate variance, covariance and correlation, even then it is not entirely
satisfactory. This is because in treating the biplot as the multivariate analog
to the scatterplot, one would require that the axes be calibrated and that
orthogonal projections onto the axes can be done simply. In the vector rep-
resentation the axes need to be extended at times in order to facilitate the
orthogonal projection of sample points onto the axes and they are not cali-
brated either. This dissertation follows the convention described by Gower
and Hand (1996) thus the discussion on biplot axes starts with the process
of calibration.

Figure 4.5: Illustrating the process of axes calibration.

Figure 4.5 provides a simple means to explain the process of calibrating the
biplot axis. Recall that the data matrix can be approximated with X̂ [2] based
on the SVD of X. This can be factorised into the product of two matrices
G and H with each of the rows of G representing the row effects and each
of the rows of H representing column effects as described in section 4.2.4.

Figure 4.5 is a representation of a hypothetical row effect gi as well as a
column effect hj associated with X̂ for an n × p data matrix X. In the
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context of the physical plot, the points gi and hj are termed the row mark-
ers and column markers respectively. The vector hj is commonly referred to
as a biplot axis since the column markers represent the variables. Further-
more, each element of X̂ [2] is represented by the inner product of the row
and column effects. This can be represented by

x̂ij =‖ gi ‖‖ hj ‖ cos θij. (4.28)

The inner product is integral in calibrating the biplot axis because g
′
i hj is

constant for all points on the locus that project gi onto hj (Gower and Hand,
1996). The point of projection is calibrated with a value µ, the inner product.
The point of projection λhj lies on the locus and thus it must satisfy the
condition

λh
′

jhj = µ. (4.29)

This indicates that λ = µ

h
′
jhj

which is a scalar and in order to obtain the

co-ordinates of the point to be calibrated with the µ, hj is multiplied by
lambda. Generally, µ will take on various integer values such as 1,2,3,. . . or
any values that are convenient for the calibration which will be determined
by the size of the inner products. Generally the mean of the variable in
question is used to conveniently calibrate the axis. This gives a basic un-
derstanding of the process of calibration of the biplot axes however there is
a further complication to consider in the form of prediction and interpolation.

It is necessary to ponder whether a single set of axes can serve both as
predictive and interpolative axes. By virtue of the fact that prediction uses a
process of orthogonal projection onto the biplot axes where as interpolation
uses vector addition by means of the parallelogram method to add a new
sample point to the biplot display it should be immediately obvious that one
set of axes cannot suffice for both purposes. An interpolated point will not
yield the values used for the interpolation when read off of the axes in the
manner prescribed by the process of prediction. In the process of interpola-
tion, the biplot axes are used for the purpose of adding new sample points to
the plot by means of vector addition and are thus termed interpolative biplot
axes. In effect, the process of interpolation gives co-ordinates of the sample
points in the lower dimensional space L. In context, the interpolated point
is the two dimensional representation in L of the p dimensional representa-
tion in the original space. Recall that the point x in p-dimensional space is
interpolated into the two dimensional plane L to the point z as follows

z = xV [2]. (4.30)
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Consider the k 1× p vectors e
′

k as representing the unit vectors in the direc-
tions of each of the p axes in the original space, then equation 4.30 can be
represented as

z =

p∑
k=1

xke
′

kV [2]. (4.31)

Graphically the original axes are simply being projected onto the best fitting
plane L which is represented by e

′

kV [2]. This is represented in Figure 4.6.
In order to calibrate the axes, consider the expression µe

′

kV [2]. Varying the
value µ as described previously will provided the co-ordinates for the points
to be calibrated with the value µ.

Figure 4.6: Constructing interpolative biplot axes (Gower et al., 2011).
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Predictive biplot axes are more commonplace and coincide with the notion
that the biplot is an abstraction of the simple scatterplot. More specifically,
projections onto the biplot axes can be used as approximate values for the
variables comprising the data set. The basis for calibrating these axes is
closely related to the general discussion on calibrating biplot axes. It was
shown that the co-ordinates for calibrating the r× 1 biplot axis hj with the
value µ could be found by calculating

µ

h
′

jhj
hj. (4.32)

In the case of the PCA biplot, the direction of the axes are given by the 1×2
vectors e

′

kV [2] which is identical to the the direction of the interpolative axes,
however the co-ordinates will be given by the expression

µ

e
′
kV [2]V

′

[2]ek
e

′

kV [2], (4.33)

where the value of µ is varied across suitable integer values as determined by
the data and hj is replaced by V

′

[2]ek in (4.32) .

4.4 Application to Mansoor data

This section concerns itself with applying the PCA biplot methodology to
matricised forms of the Mansoor data. More specifically the biplot method-
ology will be applied to the averaged data set, the tall combination as well
as the wide combination of the data. The merits and shortcomings of each
biplot will be discussed.

Before delving into constructing each of the biplots it is necessary to consider
how to assess the efficacy of biplots as exploratory tools. In attempting to
answer this question one must be cognisant of the types of questions that
three way analysis is capable of answering and evaluate whether the biplot
affords the means to answer these questions. Kroonenberg (2008) provides
an eloquent discussion on the power of three-way analysis by way of exam-
ple. He uses the example of children being tracked over a number of years
on a number of attributes and defines questions that might be of central
importance. The researcher is bound to ask questions like

• What are the relationships between the variables?

• What trends may be discovered over time?



CHAPTER 4. BIPLOTS 37

• Is there any structure to the children being tracked?

These questions in effect ask something about each way comprising the data.
Three way analysis is capable of answering questions in which the various
ways are combined. For instance, do the relationships between the variables
change over time? Do the children score differently on the various attributes
over time? The most complex questions combine all three ways. The assess-
ment framework thus becomes whether these PCA biplots afford the means
to answer complex questions in which various ways of the data are combined.

To begin, the wide combination of the data will be considered. Recall that
the wide combination of the data matrix combines the variable and time
modes so that their effects are confounded in the context of formal statistical
modelling procedures. It might be that in the process of data visualisation
the possibility to make a statement about time and variable effects is pos-
sible. In other words, the question at hand is whether the PCA biplot of
the wide combination matrix provides the means to make a statement about
how the relationships between variables evolve over time. In constructing
the associated PCA biplot the n × kp matrix was constructed by placing
each of the data matrices for each time point next to one another. In this
instance n is equal to 29 and since k is 4 and p is 7, the matrix has size
29 × 28. Figure 4.7 illustrates the wide combination PCA biplot for the
Mansoor data and it was constructed so that the correlation between vari-
ables is optimally represented. Before evaluating this biplot use as a tool for
visualising threeway data attention will be given to understanding what it
reveals about the structure of the data. It is logical to link the interpreta-
tion to the questions that Mansoor et al. (2009) were seeking to answer in
their investigation and thus a succinct reminder is provided. Mansoor et al.
(2009) was interested in determining whether the vaccine BCG induced the
required immune response for TB protection in HIV + infants and whether
the induced immune strength in the two groups of HIV negative infants was
the same. The axes with the labels including V 4 represent the T-cells that
co-expressed all three cytokines, which is thought to be the required immune
response. It is perfectly clear that the observations comprising group 1 are
clustered close to the zero points for each of the axes. This implies that all
these sample points having relatively low scores for the number of T-cells
co-expressing all three cytokines, variable four. At first glance this seems
to suggest that BCG does not induce the required immune response in HIV
positive infants. Although a fair number of infants in group 3, children born
to HIV negative mothers, also score low on the number of cells co-expressing
all three genes it is members of this group that show the highest scores on
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Figure 4.7: PCA biplot for the wide combination of the Mansoor Data with
correlation optimally represented.

this variable also. Furthermore, there is a lot more variation present in group
3 as indicated by the spread of the sample points in the display.

If the vaccine induced similar immune strength in groups 2 and 3 then infants
in these groups would have similar scores on most of the variables. Graphi-
cally this would translate to a similar spread of the observations comprising
these groups. The observations in group 2 are more tightly clustered relative
to those in group 3. In general infants in group 3 tend to score higher than
those in group 2 particularly for the polyfunctional T-cells. It may well be
the case that infants in group 3 enjoy greater immune strength induced by
the BCG vaccine. It is interesting to note that of the highest and lowest
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scores of all the infants belong to members in group 3. It is necessary to re-
iterate that this is an exploratory process and the data should be subjected
to more formal statistical modelling but it is clear that the biplot provides
a sense of the structure of the data. It should be noted that to get a sense
of changes in variability across occasion one need only project the sample
points onto the relevant axes to see how dispersed the variables scores are.
For example projecting all the sample points onto V 1.1 and V 1.2 and com-
paring the spread gives a sense of how the variability has changed on this
variable.

A statement can also be made about the relationship between the variables
as indicated by the acute angles between the variable axes. Notice that
statements can be made about relationships between variables across times
points which is an extra element unique to three mode data. All the angles
between axes can be interpreted as giving information about the strength
of association between variables. As an example, consider the relationship
between V 1.1. and V 1.2 where V 1.1 refers to V 1 at occasion 1 and so forth.
The angle between these variables axes is relatively small indicating a strong
relationship between the variables and this correlation coefficient was found
to be 0.63. The plot also gives an indication of how the relationship between
variables evolved over time. The relationship between variables one and two
can be examined over time. It is important to note that this plot is based
on approximation and that the PCA technique is scale invariant. The scale
invariance means that if the data are not standardised before applying the
PCA technique then directions with a lot of variation will be influential in
determining the orientation of the scaffolding axes and will thus be better
represented than other directions. Standardising the data prevents this from
happening but it also makes it difficult to see differences in the variation in
the data over time. The fact that the plot is based on a two dimensional
approximation of the data means that not all information is accurately con-
veyed. V 6.1 and V 2.1 have a correlation of 0.32 and examining Figure 4.7,
the angle between these two axes suggests a stronger relationship than this.
This is attributable to the issues of scale invariance and approximation. This
does not render the tool useless since it still indicates a relationship between
the variables albeit overstated. In effect, variables that show relatively small
angles between them should be inspected by considering the correlation ma-
trices because these variables are bound to have an association.

In the context of the investigation, the biplot provided answers and when
assessed as a tool for answering research questions that are three-way in na-
ture it serves well, giving information on how observation scores evolve over



CHAPTER 4. BIPLOTS 40

time as well as how relationships between variables evolve over time.

The next consideration is that of a tall combination of the data in which
the sample and time ways are confounded. It is precisely this problem in
formal modelling that allows the associated biplot to shed light on questions
of a three-way nature. Here the separate data matrices are combined into a
single matrix with dimensions 116×7, the number of rows being the product
of the number of observations per occasion, 29, and the number of occasions,
4. This combined matrix is used to construct the PCA biplot. Figure 4.8
illustrates the PCA biplot for the tall combination of the Mansoor data and
the Euclidean distance between observations is optimally represented. The
most notable difference between this biplot and that in Figure 4.7 is that
there are fewer axes but more sample points on the plot. In terms of the as-
sessment framework described, this biplot would thus serve well in answering
questions about the evolution of an attribute over time but fails in providing
information about how the relationships of the variables changes over time.
Careful inspection of the plot reveals much the same information regarding
the distribution of the sample points as in the wide combination biplot. The
power of this plot lies in the fact that it affords the means to visually appraise
how observation scores evolve over time. Where as the wide PCA biplot al-
lowed the researcher to read off the scores for a given observation over time,
the tall PCA biplot allows the researcher to see whether the scores have
changed substantially by looking at the Euclidean distance between points
corresponding to the same observation. One key aspect of the data that is
revealed in Figure 4.8 is that the variation in the data decreases over time.
It also indicates that the mean of the variables tended to decrease over time.

It is important to be aware of the fact that the biplot has been constructed
so that the Euclidean distances between the sample points are optimally rep-
resented. The implication is that the angles between variable axes do not
optimally approximate the correlations between variables but it is still possi-
ble to make a statement about the strength of association between variables;
smaller angles suggest strong association. It is not completely clear what
the strength of association represented in Figure 4.8 actually means and this
must be considered. Thinking about the construction of the tall PCA biplot
from a geometric perspective may shed some light on this matter. Construct-
ing the tall PCA biplot amounts to finding the best fitting plane in <p where
p = 7. It is very similar to the construction process that occurs when PCA
biplots are constructed for each occasion separately but for the fact that in
this context all observations across occasions are used in the construction
process. The dispersion of the observations in <p determines the orientation
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of the best fitting plane and in the case of the tall PCA biplot the dispersion
of all the observations comprising the data set influence the orientation of
the scaffolding. If there are associations between variables that persist across
occasion and this is represented in the separate biplots then it will certainly
appear in the biplot constructed from all the observations collectively. The
separate PCA biplots for the four occasions show persistent associations be-
tween variables one and four, variables five and seven and variables three
and six. A quick examination of Figure 4.8 indicates that these variables
are shown to have an association. The strength of association indicated on
the tall PCA biplot is thus that which persists across occasion. The con-
tention here is that this biplot is better for understanding the evolution of
observations over occasion not only because it provides a visual appraisal but
also because of the construction process. If directions of greatest variability
are very similar across occasion then this is preserved and the biplot should
represent the observations well.

Finally the averaged data set is considered where the data are collapsed
along the third way. In this instance the data are averaged across the third
way(time) so that every entry in the averaged data matrix M is calculated
as

mij =
1

4

4∑
k=1

xijk. (4.34)

A PCA biplot is then constructed from this matrix M . The result of this
process can be seen in Figure 4.9. The biplot constructed from the averaged
data is the least useful of the three biplots considered here. It still provides a
modicum of information regarding the spread of the observations and paints
a similar picture to the previous displays. What is interesting about the plot
is that the associations between V 1 and V 4 as well as V 5 and V 7 are similar
to that seen in Figure 4.8, the tall PCA biplot. In fact, the orientation of
the variable axes in Figure 4.9 looks very similar to that of the PCA biplot
for occasion 1. The variation was greatest at occasion 1 and so it stands to
reason that this occasion would have substantial influence in the construction
process.

4.5 Conclusion

This chapter detailed the construction of the PCA biplot, the simplest of
the asymmetric biplots. PCA biplots were then constructed for the matri-
cised Mansoor data. It was seen that BCG did not seem to induce the
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required immune response in HIV + infants with similar immune strength
being displayed by the groups comprising the uninfected infants. The wide
combination PCA biplot afforded the means to make a statement about the
relationship between variables over time. It was argued that the tall PCA
biplot was preferred for making a statement about the evolution of observa-
tion scores over time and this was due to the construction process and the
fact that it provided a visual means of gleaning this information. This plot
also gave information regarding the change in variability in the data. Finally
the PCA biplot for the averaged data was discussed and this was deemed
to be the least useful of the array of biplots discussed. The PCA biplots
proved to be useful as an exploratory tool for providing answers to questions
of a three way nature. More than that, these displays were able to reveal
much about the structure of the data. It is thus useful to use specifically the
tall and wide PCA biplot in conjunction with one another to understand the
structure of the data as opposed to a myriad scatterplots and boxplots which
is traditional.
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Figure 4.8: PCA biplot for the tall combination of the Mansoor Data.
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Figure 4.9: PCA biplot for the aggregated Mansoor Data.



Chapter 5

Canonical Variate Analysis
Biplots

5.1 Introduction

In a seminal paper, Hotelling (1936) introduced the ideas of understanding
the relations between two sets of variables which form the foundations of
Canonical Variate Analysis (CVA); a technique specifically concerned with
data that are grouped into g classes. In this instance the two sets of variables
of interest comprise the group indicators as well as the variables measured
in the dataset. When data are grouped in this fashion then there is both
between and within group variation that is of interest and the primary ques-
tion is how to exhibit this graphically. CVA biplots provide the means to
represent this type of data and visually appraise the separation between the
groups comprising the data. Gabriel (1972) introduced what he termed a
MANOVA biplot in order to analyse meteorological data and this is the first
instance of constructing a biplot affording the means to visually appraise the
separation of groups in the data. A likely question might be how CVA bi-
plots differ from their PCA counterparts and the answer predominantly lies
in the fact that although the grouped nature of the data can be represented
on the PCA biplot in a number of ways it is not considered in the process of
constructing the biplot where as this group structure is specifically taken into
consideration in the process of constructing the CVA biplot. The grouped
nature of the data can only be represented by means of colour and symbols in
the PCA biplot. Group means can also be interpolated onto the PCA biplot.
Gower et al. (2011) mention some of the differences between CVA and PCA
biplots but go on to mention what is arguably the fundamental difference;
in PCA biplots the interpolated group means make no contribution to the

45
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scaffolding axes of the biplot where as in the CVA biplot the scaffolding axes
are determined by the group means. This chapter briefly explains the con-
struction of such biplots as well as considers its applications to the Mansoor
data set.

5.2 Canonical Variate Analysis

Consider an n×p centered data matrix X grouped into g classes. Define the
diagonal g× g matrix N = diag(n1, . . . , nk) as well as X as the g×p matrix
of group means. N is the matrix with the sample size of each of the g groups
on the diagonal. These matrices afford the means to construct a between and
within analysis of variance as illustrated in Table 5.1. Gower and Hand (1996)

Between groups g − 1 B = X
′

NX

Within groups n− g W = X
′
X −X

′

NX

Total n− 1 T = X
′
X

Table 5.1: Decomposition of the Total Sums of Squares and Products.

provide an elegant means of posing the question that CVA seeks to answer.
In essence, CVA is concerned with finding the p× 1 vector m such that the
linear combination Xm of the p variables maximizes the between-to-within
groups variance ratio. Mathematically the ratio is represented as

m
′
Bm

m′Wm
. (5.1)

As a result of the fact that the scaling of m is not unique, the solution to
the maximisation problem will not be unique. To circumvent this problem, a
constraint is placed on the scaling of m which is given as m

′
Wm = 1. The

problem is thus to maximise (5.1) subject to the imposed constraint and the
process of solving this yields

Bm = λWm. (5.2)

Given the constraint that was imposed, (5.2) implies that m
′
Bm = λ. This

shows immediately that the ratio in equation (5.1) to be maximized is in
fact equal to λ. Equation (5.2) represents the two-sided eigenvalue problem
(Gower and Hand, 1996). The solution to the CVA problem is given when
m is chosen to be the eigenvector associated with the largest eigenvalue of
(5.2). There are p solutions to the problem, p − 1 of which are associated
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with sub-optimal values of λ. All p solutions are important in the process of
constructing the CVA biplot. Of fundamental importance is the fact that the
Euclidean distance between the canonical means, the representation of the
means after applying the transformation, is equivalent to the Mahalanobis
distance between the group means. In order to see this, first all p eigenvectors
are gathered in the form

BM = WMΛ, (5.3)

where M is the p×p matrix with columns comprising the p eigenvalues that
solve (5.2) and Λ is the diagonal p×p matrix with the associated eigenvalues
on the diagonal in descending order. (5.3) is the matrix representation of the
two-sided eigenvalue problem. It can be shown that M is orthogonal in W
and this implies that

M
′
WM = I. (5.4)

An equivalent representation of (5.4) is given by MM
′

= W−1. The data
matrix X as well as the group means X are represented as XM and XM
respectively in the canonical space. The canonical means for the kth group

can be represented as x∗
′

k = x
′
kM where x

′
k is a 1 × p vector. Consider

finding the Euclidean distance between canonical means x∗
′

k and x∗
′

h for the
kth and hth group respectively.

(x∗
k − x∗

h)
′
(x∗

k − x∗
h) = (xk − xh)

′
MM

′
(xk − xh)

= (xk − xh)
′
W−1(xk − xh),

(5.5)

which is equivalent to the Mahalanobis distance between the group means
in Euclidean space. The Mahalanobis distance, introduced by Mahalanobis
in 1936, differs from Euclidean distance in that the latter effectively treats
all variables as having equal variances and being uncorrelated where as the
former gives relatively lower weights to those variable with large variances
and groups of variables that are highly correlated (Joliffe, 2002). If there is
pronounced separation between the groups in the data then it is expected
that variables are not highly correlated across groups. This results in higher
weights being assigned to these variables which leads to the separation be-
tween groups that is seen in the CVA biplot. It is thus not surprising that
the Mahalanobis distance should reveal itself in the process of constructing
a solution to the problem posed by CVA.

Armed with the means of answering the question CVA poses it is possi-
ble to turn attention to the construction of the biplot. The canonical means
have rank less than or equal to the minimum of g − 1 and p. Furthermore,
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given that multiplication by a non-singular matrix leaves the rank of a ma-
trix unchanged, the canonical means will have the same rank as the means
in the original space. Geometrically this implies that the canonical means
can be represented in at most min(g − 1, p) dimensions. The objective is
to represent the canonical means in ρ dimensions, more specifically in two
dimensions. The two dimensional space in which the canonical means are to
be represented is given by L. The approximation of the canonical means in L
is simply obtained by considering the first two columns of the transformation
matrix M , denoted by M [2]. Mathematically this is represented as

Z = XM [2]. (5.6)

The fact that the first two columns of M span the subspace L can be better
understood if the process of constructing the CVA biplot is thought of as
a two-step process (Gower et al., 2011). The first step concerns itself with
finding a non-singular p× p matrix transformation L so that the Euclidean
distances between the group means of the transformed variables is equiva-
lent to the Mahalanobis distance between the original group means. Working
from the definition of the Mahalanobis distance as illustrated in (5.5), this
implies that the matrix L is such that LL

′
= W−1. Solving the eigenvector

equationWL = LΛ subject to the the scaling LWL
′
= I provides a feasible

solution for the matrix L. In effect this represents the linear transformation
to the canonical space. The second step is concerned with constructing the
biplot and this is based on performing PCA on the canonical means XL and
employing the methodology for PCA biplot construction detailed in Chapter
3. The methodology described by Gower and Hand (1996) essentially com-
bines these two steps into a single calculation represented by the two-sided
eigenvalue problem. The eigenvalue decomposition used to solve the second
step in the process can be represented as

(L
′
X

′

CXL)V = V Λ, (5.7)

where C is a centering operation to be discussed shortly. Left-multiplying
both sides of (5.7) by L yields

(X
′

CX)(LV ) = W (LV )Λ. (5.8)

The matrix M is thus equivalent to LV . When the matrix C = N then
(5.8) becomes the two sided eigenvalue problem in (5.3) which provided the
solution to the problem that CVA seeks to solve. From this perspective it is
clear that the solution to the two-sided eigenvalue problem is an amalgama-
tion of the two-step process so that the first two columns of the associated
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eigenvector matrix, M , spans the subspace L in the canonical space. The
construction of the ordinary PCA biplot relies on the V matrix obtained
from the SVD of the centred data matrix X and V also diagonalizes X

′
X.

For an accurate PCA interpretation the matrix V must meet this require-

ment yet in this case in does not since it is derived from the matrix X
′

NX.

Redefining B as X
′

X and solving (5.3) leads to a different matrix V how-
ever the Mahalanobis distance property is preserved with the added benefit
that an exact interpretation for the principal components is established.

This opens the discussion on the centering operation C defined in Gower
et al. (2011). PCA requires that the data matrix be centered so as to ensure
that the best fitting plane passes through the centroid of the data. In the
context of CVA, there is a choice of weighting the groups means by their
sample sizes so that the best fitting plane passes through the weighted cen-
troid. The Malanahobis distance property remains regardless of whether the
group means are weighted or not. According to Gower et al. (2011). the
choice depends on the context and specifies that if the goal is to get a sense
of the Mahalaonbis distances between samples then the unweighted form is
the better since the weighting will lead to groups comprising larger samples
being better represented. The approach adopted here is to consider the un-
weighted case if only because the biplot is an exploratory tool and one would
want a general appreciation of the distances between samples.

5.2.1 CVA biplot axes

Having come to understand the fundamentals of constructing the best fit-
ting plane L it is now necessary to consider the process of how the original
variables are displayed in this space. CVA biplots present the simplest case
in which the variable axes for interpolation and prediction are both linear
but differ in direction (Gower and Hand, 1996). This is different to the PCA
biplot where interpolative and predictive axes differed only in calibration.
Interpolation axes are considered first. For the purpose of interpolation, the
process of representing the original variables is very similar to that used in
the case of PCA biplots. Any sample point x in <p can be represented
as
∑p

k=1 xke
′

k where e
′

k is the 1 × p unit vector in the direction of the kth

Cartesian axis in <p. Interpolating any point into the space L is achieved by
multiplying by the matrixM [2] so that the interpolated point z is represented
as
∑p

k=1 xke
′

kM [2]. The Cartesian axes are represented by e
′

kM [2] in L. This
representation is used for the purpose of interpolation. Calibrating the axes
is simply a matter of considering µe

′

kM [2] and plotting the co-ordinates for
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varying values of µ.

The process of prediction is different and it is important to be cognisant of
the fact that the objective is to use the axes in order to find the co-ordinates
for the the sample points in the original space and not in the canonical space.
This means that the objective is to be able to read off the values for the sam-
ple point x

′
in the original space which is represented as y

′
= x

′
M in the

canonical space. From this expression it is evident that

x
′
= y

′
M−1. (5.9)

The direction for the predictive axes will depend on the rows of the matrix
M−1 since (5.9) makes it clear that the original observed value x

′
is repre-

sented as a linear combination of the rows of M−1. The value on the kth

original axis is given by y
′
M−1ek making it clear that the directions of the

predictive axes will be determined by M−1ek. In order to calibrate the kth

predictive axis, a plane N is constructed so that it is orthogonal to the kth

axis in the canonical space at an arbitrary value µ. The equation for N is
given by

µ = y
′
M−1ek. (5.10)

Any point on the plane N predicts the value µ for the kth original axis.
Assume that the point z lies in the plane L represented relative to the vectors
spanning L so that z is 2× 1. The plane N intersects the best-fitting plane
L where

µ = z
′
(JM−1)ek, (5.11)

where J is the matrix defined for J -notation in Chapter 4. In order to facili-
tate orthogonal projection onto the predictive biplot axis for the kth variable,
the axis will be defined so that it is perpendicular to the line (5.11) which
represents the point on the biplot axis that predicts µ for the kth original
variable. The direction of the kth predictive biplot axis is thus specified by
e

′

k(JM
−1)

′
. The location of the point to be calibrated as µ on the axis is

given by
z

′

µ = σe
′

k(JM
−1)

′
. (5.12)

In order to find the point in (5.12) on the line of intersection between L and
N , it is a simple matter of substituting (5.12) into (5.11) and solving for σ.
This process yields

z
′

µ =
µ

e
′
k(JM

−1)′(JM−1)ek
e

′

k(JM
−1)

′
. (5.13)

Equation (5.13) represents the location of the point on the kth predictive axis
to be labelled as µ. Varying values of µ completes the calibration process.
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It is also evident that the predictive and interpolative axis do not share
direction albeit that both are linear. This provides the foundations for the
construction of the CVA biplot.

5.3 Application to matricised data

The CVA biplot is used predominantly to ascertain the extent of the sep-
aration between the groups comprising the data. Gower and Hand (1996)
contend that if variables are strongly correlated then this will reveal itself in
the biplot, however the angle between variable axes is not directly related to
the strength of association between variables. It is also instructive to consider
whether any of the resulting CVA biplots will look similar. Denote the ma-
tricised data as X tall, Xavg and Xwide for the tall combination, aggregated

data and the wide combination respectively. Xavg is calculated as 1
k

∑k
i=1X i

where X i denotes the ith data set. The separate datasets are not centred
before combining into the tall and wide combinations. A moment’s thought
reveals that Xavg is equivalent to X tall. It is thus immediately clear that
although W avg and W tall will not be equivalent, Bavg and Btall as defined
in order to maintain the PCA interpretation will be equivalent. This raises
questions about the similarity of the CVA biplots associated with the aggre-
gated and tall data and this will be explored. The next aspect to consider
is the extent of the separation between the groups comprising the data, how
this changes over occasion and how it is represented in the matricised CVA
biplot. All CVA biplots are constructed with predictive variable axes.

Time point 1 Time point 2 Time point 3 Time point 4
Σ Σ 2Σ 2Σ

µ
′
1 = (0 0 0) µ

′
1 = (2 2 2) µ

′
1 = (0 0 0) µ

′
1 = (2 2 2)

µ
′
2 = (1 0 0) µ

′
2 = (5 0 0) µ

′
2 = (1 0 0) µ

′
2 = (5 0 0)

µ
′
3 = (0 1 1) µ

′
3 = (0 1 1) µ

′
3 = (0 1 1) µ

′
3=(0 1 1)

Table 5.2: Parameter Values for the Simulation.

Σ =

 0.1 0 0
0 0.1 0
0 0 0.1


In order to explore this, data were simulated from the multivariate normal
distribution. The data comprised 45 observations with scores on three vari-
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ables at four different occasions, classified into three groups of equal size.
This afforded the means to manipulate the variation and degree of separa-
tion between the groups at each of the four occasions. Table 5.2 contains the
parameters used for the simulation of the data. Figure 5.1 is a representation
of the separate CVA biplots constructed for each occasion with occasion 1 in
the top left panel, moving in a clockwise fashion to occasion 4 in the bottom
left panel. The black markers represent group 1, the red markers represent
group 2 and the green markers represent group 3. It is immediately clear
that the separation between groups changed with occasions 2 and 4 show-
ing clear separation between the groups. Group 2 is particularly separate
from the other two groups. Occasions 1 and 4 show less separation with
the observations comprising groups 1 and 2 overlapping on variables 2 and
3. When all three variables are considered simultaneously there is still some
modicum of separation between the groups at occasions 1 and 3. Is is worth
mentioning that the CVA biplot makes it possible to consider the degree of
separation of the groups not only collectively but also on particular variables
by projecting the observations onto the variable of interest and studying the
differences between groups.

Having come to understand the separation that is inherent in the data it
is now possible to explore how this is represented on each of the matricised
CVA biplots. Figure 5.2 illustrates the CVA biplot for the aggregated data
and as one would expect it is impossible to appreciate the evolution of the
extent of the separation between the groups in this plot. The information
that can be gleaned from Figure 5.2 is that group 2 is quite different from the
remaining groups on all variables since projecting onto the axes reveals that
the separation occurs on each of the variables. The within-group variation is
also relatively small across each of the groups as evidenced by the fact that
points are so clustered around the interpolated means, represented by the
unfilled symbols. In an attempt to understand what informs the construction,
consider two arbitrary data matrices X1 and X2. The within-group and
between-group variation matrices for the aggregated data W avg and Bavg

are calculated as

W avg =
1

4
[W 1 +W 2 + (X

′

1X2 −X
′

1X2) + (X
′

2X1 −X
′

2X1)],

Bavg =
1

4
(X

′

1X1 +X
′

1X2 +X
′

2X1 +X
′

2X2), (5.14)

where W 1 and W 2 are the within-group variation matrices calculated from
X1 andX2 respectively. What is striking is that the cross product terms play
a role in determining both W avg and Bavg. In order to gain some sense of
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Figure 5.1: Separate CVA biplots for each occasion.

the effect of these cross product terms, the matrices resulting from excluding
these terms in (5.14) are computed and the result is compared with W avg

and Bavg. For the simulated data,

Bavg =

 67.71 −25.02 −24.33
−25.02 10.35 10.23
−24.33 10.23 10.12

W avg =

 1.68 0.22 0.63
0.22 1.88 −0.32
0.63 −0.32 1.67

 .

(5.15)

The matrices that result from excluding all the cross product terms, denoted
by W ∗

avg and B∗avg are as follows

B∗avg =

 24.21 −6.38 −6.89
−6.38 4.67 4.89
−6.89 4.89 1.58

W ∗
avg =

 1.63 0.11 0.37
0.11 1.78 −0.16
0.37 −0.16 1.58

 .

(5.16)
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Figure 5.2: CVA biplot for the aggregated Mansoor data.

A comparison of (5.15) and (5.16) reveals that the difference between W ∗
avg

and B∗avg is much more pronounced than the difference between W avg and
Bavg and this is attributable to the fact that the crossproduct terms seem
to make the entries in Bavg relatively bigger than those in B∗avg. This in-
creased difference could possibly account for the fact that observations are
more tightly clustered around their respective group means and that the
separation is quite pronounced. A similar result was observed when this
comparison was done for a combination of X1 and X3 as well as for X2

and X4. The inclusion of the crossproduct terms tended to exaggerate the
difference between B and W .
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Figure 5.3: Separate CVA biplots for each occasion.

When considering the Mansoor data, Figure 5.3 shows that there is hardly
any separation between the groups comprising the Mansoor data and that
this is the case across occasion. The within-group variation matrix contained
entries much larger than those in the between-variation matrices. Again the
crossproduct terms seemed to exaggerate this with the difference between W
and B being more pronounced for the aggregated data when compared to
the same matrices calculated without the inclusion of the crossproduct terms.
Although these are but two numerical examples they seem to suggest that
the structure inherent in the data tends to be exaggerated when constructing
a CVA biplot for the aggregated data. Figure 5.4, the CVA biplot for the
aggregated Mansoor data, captures this structure. It is important to note
the fact that because the separation between groups did not vary over time,
the CVA biplot for the aggregated data can be deemed useful. This notion
is corroborated by examining Figure 5.4 and noticing that the separation
reflected is similar to that seen across occasion in Figure 5.3.
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Figure 5.4: CVA biplot for the aggregated Mansoor data.

Attention now turns to examining the CVA biplot resulting from the tall
combination of the data. Firstly, the interpolated means represent the over-
all means and are equivalent to the means determined in the aggregated data
case. Furthermore, the directions of the variable axes in Figure 5.5, the tall
combination CVA biplot for the simulated data, are similar to those in Fig-
ure 5.2. The same can be said for the Mansoor data when Figures 5.4 and
5.7 are compared. This is attributable to the fact that the matrix B used in
the second step of the CVA biplot construction process is equivalent for both
these cases. The similarity of the variable axes is less notable when the inter-
polative axes are used although this in not illustrated here. An interesting
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Figure 5.5: CVA biplot for the tall combination of the Simulated data.

observation is made on closer examination of Figure 5.5. It is clear that the
change in the separation between the groups is represented here. Occasions
1 and 3 show less separation between groups whilst the separation is marked
for occasions 2 and 4. When compared with Figure 5.1 it is clear that the
separation between groups at occasions 1 and 3 is less pronounced where as
occasions 1 and 4 seem well represented. The tall combination CVA biplot
in Figure 5.7 also indicates that the observations are less dispersed than is
illustrated in Figure 5.3. The CVA biplot can be used to interpolate new
samples for the purpose of classification and this is based on the nearest
mean to the interpolated observation (Gower et.al., 2011). Using an overall
mean as is done here is not useful for this purpose because the mean evolves
over time. Although the tall combination CVA biplot can indicate separa-



CHAPTER 5. CANONICAL VARIATE ANALYSIS BIPLOTS 58

Figure 5.6: CVA biplot for the tall combination of the Mansoor Data.

tion in the data and separate group means can be interpolated in order to
visualise the evolution of the group means over time, it cannot serve well to
facilitate the classification of new sample points because this would be based
on an overall mean.

Finally the wide combination CVA biplot is examined. Figure 5.7, the CVA
biplot for the simulated data, indicates that the separation between groups
is distinct with observations clustered very closely around the interpolated
means. Evidently the wide combination CVA biplot suffers from the same
shortcoming as the aggregated data CVA biplot in that the changes in group
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Figure 5.7: CVA biplot for the wide combination of the Simulated data.

separation over time cannot be visualised. When compared to Figure 5.1
the observations are more closely clustered around their respective interpo-
lated means. The wide combination CVA biplot could not be constructed
for the complete Mansoor data because there were too few observations for
the number of variables thus the first 6 variables at each occasion were used
to construct the wide combination data set and consequently the biplot is
displayed in Figure 5.8. It can be seen that this biplot overstates the sepa-
ration between the groups comprising the Mansoor data. A comprehensive
reason for this is elusive however the answer may lie in examining the lin-
ear transformation to the canonical space, L. Consider the case of a single
data matrix from the simulated data X1 with corresponding 3× 3 matrix of
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Figure 5.8: CVA biplot for the wide combination of the Mansoor data.

group means X. The SVD of the transformation matrix L = PDQ
′

and
the transformation to the canonical space is given by XPDQ

′
. Since P and

Q are orthogonal matrices, geometrically this results in a rotation of the co-
ordinate axes. The diagonal matrix D results in the stretching or shrinking
of each of the dimensions. For the purpose of example, consider two data
matrices combined into a wide combination matrix Xwide = [X1 X2] with
dimensions n × 2p. The SVD of the transformation to the canonical space
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Lwide can be represented as

Lwide =

(
U 11 U 12

U 21 U 22

)(
D11 0
0 D22

)(
V

′

11 V
′

21

V
′

12 V
′

22

)
(5.17)

=

(
U 11D11V

′

11 +U 12D22V
′

12 U 11D11V
′

21 +U 12D22V
′

22

U 21D11V
′

11 +U 22D22V
′

12 U 21D11V
′

21 +U 22D22V
′

22

)
(5.18)

where each of P wide, Dwide and Qwide are partitioned into matrices of dimen-
sion p × p. It is thus clear that the transformation to the canonical space
in this context is quite complex with the terms D11 and D22 both affecting
the transformation and this might account for the fact that the separation is
overstated in the context of the wide combination CVA biplot.

5.4 Conclusion

This chapter detailed the basic theory underlying Canonical Variate Analysis
and how this technique can be used in the process of constructing a biplot in
order to optimally represent the separation between the groups comprising
the data in a visual context. The technique was then applied to simulated
data as well as to the Mansoor data in order to construct CVA biplots for
the matricised forms of these data sets. In general in was determined that
regardless of the matricised form of the data being used, the resulting biplot
had some deficiencies. Both the aggregated and wide combination CVA bi-
plots did not perform well when the separation between groups changed over
time and simply represented the dominant structure in the data. Further-
more, the wide CVA biplot tended to overstate the separation regardless of
the structure of the data and the aggregated CVA biplot tended to emphasise
the group structure inherent in the data. The tall combination CVA biplot
provided a sense of the time profile of the group structure in the data but
did not afford to classify observations. The matricised CVA biplots thus did
not perform well and it is best to just consider the separate CVA biplots for
each occasion. The ideal would be to represent the separate CVA biplots in
a single comprehensive biplot where all of the group means are considered in
the construction and a novel way to do this is developed in Chapter 8.



Chapter 6

Procrustes Analysis and Biplots

6.1 Introduction

Gower and Dijksterhuis (2004) describe Procrustes Analysis in its simplest
form as a technique that seeks to solve the problem concerned with finding
a matrix T such that

‖X1T −X2‖2, (6.1)

is minimised over T p1×p2 for given matrices X1 and X2 with dimensions
n × p1 and n × p2 respectively. Procrustes problems come in various forms
depending largely on the constraint that is placed on the transformation ma-
trix T . In its application to biplots, T is constrained to be a general rotation
or rather an orthogonal matrix.

The name of the techique is attributable to Hurley and Cattell (1962) who
used it in the context of relating a factor structure X1 obtained from Fac-
tor Analysis to a hypothesised factor structure X2 by means of estimating
a transformation matrix T that would transform X1 to fit X2. It is taken
from Greek mythology where it is alleged that the murderer Procrustes had
an iron bed on which he would place his victims with the aim of ensuring
that their bodies fit the length of the bed. In a similar fashion, “X1 is trans-
formed by the matrix T to fit the ‘bed’ of X2” (Gower and Dijksterhuis,
2004, p. 2). The technique as employed in this context can be traced back
even earlier to Mosier (1939).

The focus here is on Orthogonal Procrustes Analysis where the transfor-
mation matrix T is required to be an orthogonal matrix Q. According to
Gower and Dijksterhuis (2004), the solution to this Procrustes problem is
attributable to Green (1952) though the assumption was that both X1 and
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X2 were both of full column rank. This assumption was relaxed by Schöne
(1966). Ultimately it was Gower (1971) who made the first strides in extend-
ing the technique for use with K matrices as opposed to just two, X1 and
X2. This is the technique that is employed in this section.

Generalised Orthogonal Procrustes Analysis (GOPA) is used in this con-
text to effectively superimpose the PCA biplots produced for each of the
four separate occasions. The reason for choosing orthogonal transformations
should be fairly obvious in light of the fact that each biplot can be though
of as a configuration and the aim is really to superimpose each of these con-
figurations optimally without altering them materially. This means that the
distances between the sample points as well as the angles between the axes
remain unchanged after the rotation.

6.2 GOPA

Before delving into the specifics of Generalised Orthogonal Procrustes Anal-
ysis it is instructive to consider the simplest orthogonal Procrustes problem
and its solution first. In the simple case, the aim is to find a matrix T such
that (6.1) is minimised and T is constrained to be an orthogonal matrix.
Orthogonality implies that the inner product of any of the columns of the
matrix is equal to zero and the norm of each column is one. Henceforth, the
transformation matrix T will be represented by Q to emphasise that it is an
orthogonal matrix. Note that Q is a general rotation matrix which includes
the possibility of reflection.

Figure 6.1 illustrates the procedure of rotating X1 to best fit X2 where
both represent dissimilar triangles. X11X12X13 and X21X22X23 represent two
dissimilar triangles with the same centroid. X1

21X
1
22X

1
23 represents the po-

sition of the second triangle after rotating it to best fit the first triangle
in accordance with the orthogonal Procrustes criterion. It must be said
that Procrustes solution to the problem illustrated in Figure 6.1 employed
isotropic scaling. Isotropic scaling refers to the application of scaling factors
to entire configurations in order to magnify or reduce its size. The rotated
triangle in Figure 6.1 was also scaled to be smaller. Each of the co-ordinates
defining the triangle were multiplied by the same scaling factor. Isotropic
scaling is not considered in this dissertation. Figure 6.1 a visual idea of how
the process works. It is also necessary to consider the mathematical solution
to the simple orthogonal Procrustes problem since it is instrumental when
considering the solution to the generalised problem.
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Figure 6.1: Graphical illustration of Orthogonal Procrustes Analysis using
two dissimilar triangles

The criterion that is to be minimised can be written as

‖X1Q−X2‖ = tr(Q
′
X

′

1X1Q+X
′

2X2)− tr(X
′

2X1Q)− tr(Q′
X

′

1X2)

= tr(X
′

1X1 +X
′

2X2)− 2tr(X
′

2X1Q). (6.2)

The first equality follows from the definition of the norm. The second equality
relies on the use of a couple of properties of the trace operator, namely
that tr(AB) = tr(BA) and that tr(A

′
) = tr(A). The significance of this

result is that the first term does not include Q so in order to minimize
(6.2) we simply need to maximize 2tr(X

′

1X1Q) which simplifies the problem
somewhat. Consider the SVD of the matrix X

′

2X1 to be UΣV
′
. Using this

result leads to the following:

tr(X
′

2X1Q) = tr(UΣV
′
Q)

= tr(ΣV
′
QU)

= tr(ΣH)

=

p∑
i=1

σiihii,



CHAPTER 6. PROCRUSTES ANALYSIS AND BIPLOTS 65

where H = V
′
QU and is orthogonal by virtue of the fact that it is the

product of orthogonal matrices. Since all the singular values are positive,
a maximum is obtained when each hii is equal to 1 for i = 1, . . . , p. The
implication is thus that H is in fact the p×p identity matrix suggesting that
the Q matrix which solves the Procrustes problem is equal to

Q = V U
′
. (6.3)

This provides a firm foundation for understanding the solution to the gener-
alised problem and so focus is shifted to defining the orthogonal Procrustes
problem in the general sense and discussing the solution. Mathematically
the Generalised Orthogonal Procrustes Analysis (GOPA) problem can be
stated as follows: GOPA seeks to solve the problem of finding the matrices
Q1, . . . ,Qk such that the norm

K
K∑
k=1

‖XkQk −G‖=
(
K − 1

K

)2 K∑
k=1

‖XkQk −Gk ‖ (6.4)

is minimized over all Qk which are constrained to be orthogonal matrices,

G = K−1
K∑
k=1

(XkQk) (6.5)

and

Gk =
1

K − 1

K∑
i 6=k

(X iQi). (6.6)

The matrices G and Gk are often referred to as the group-average configu-
ration and k-excluded group average configuration (Gower and Dijksterhuis,
2004). In effect the problem is much like the simple problem but in this
instance each of the matrices X1, . . . ,Xk is being transformed to best fit the
group-average configuration according to the least squares criterion specified
in (6.4).

The problem has no closed form solution and thus it must be solved by
means of an algorithm. A simple alternating least squares algorithm can be
specified in order to solve the problem which is guaranteed to converge at
least to a local minimum. The algorithm is specified in the following way:

1. Initialise G, setting it equal to X1

2. Update the current setting of G
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3. FindQ1, . . . ,Qk for each term in the summation (6.4) with Orthogonal
Procrustes Analysis

4. Test for convergence and if it is not attained return to 2.

The importance of the solution to the simple orthogonal problem has yet
to be revealed. In the second step of the algorithm, each of the transfor-
mation matrices need to be evaluated and this can be done considering the
simple case where each Xk is being fit to G. As an example, the solution
to Q1 comes from the SVD of G

′
X1 as discussed previously in the context

of the simple problem. Consideration is given to proving this assertion and
the process begins with understanding the necessary and sufficient condi-
tions for an optimal solution in the simple orthogonal problem. The “neces-
sary condition” can be stated as follows: if tr(X

′

2X1Q) is maximised then
X

′

2X1Q is a symmetric positive semi-definite matrix (psd). To see this, re-
call that Q = V U

′
maximises tr(X

′

2X1Q). Substituting for Q implies that
X

′

2X1Q = UΣU
′
. This serves to show that at a maximum, X

′

2X1Q is a
symmetric positive semi definite matrix (psd). The “sufficient” condition for
optimality is embodied in the converse of the “necessary condition”. In order
to prove this consider the fact that the spectral decomposition of X

′

2X1Q
is given by LΛL

′
where L is an orthogonal matrix and Λ is diagonal with

non-negative eigenvalues. It is immediately clear that

X
′

2X1 = LΛ(QL)
′
, (6.7)

which is the SVD of X
′

2X1. It follows that for any arbitrary orthogonal ma-
trix Q∗, tr(X

′

2X1Q
∗) is maximised when Q∗ = (QL)L

′
= Q, showing that

the symmetric psd matrix X2X
′

1Q maximises tr(X2X
′

1Q
∗) thus proving

the “sufficient” condition. Differentiating (6.4) with respect to Qk yields

(X
′

kXk)Qk −X
′

kGk = ΛQ, (6.8)

where ΛQ is a Langrangian term expressing the orthogonality constraint on
Qk. It can be shown that ΛQ = QkΛ where Λ is a symmetric matrix and
this follows from the orthogonality of Qk (Gower and Dijksterhuis, 2004).
Pre-multiplying (6.8) by Q

′

k gives

Qk(X
′

kXk)Qk −Q
′

kX
′

kGk = Λ. (6.9)

Equation (6.8) shows that Q
′

kX
′

kGk must be symmetric and thus by virtue
of the necessary condition Q

′

k is derived from the SVD of (X
′

kGk). It is
thus obvious that Qk is derived from the SVD of (G

′

kXk). Furthermore,
by equation(6.4) replacing Gk with G is acceptable since the solution Qk
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not only provides the best fit to the the group average G but also to Gk.
This justifies the simple alternating least squares algorithm used to find the
optimal solution. Convergence of the algorithm is guaranteed to a local min-
imum (Gower and Dijksterhuis, 2004).

Two issues need to be addressed before discussing the biplot construction
viz. data preprocessing and translation. Each will be discussed in turn be-
ginning with matter of data preprocessing which is done in the following
way:

x∗ijk =
xijk − x.j.

s.j.
,

where x.j. = 1
nk

∑
i

∑
k xijk and s.j. = 1

nk−1
∑

i

∑
k(xijk − x.j.)2. If the data

are arranged in an array, these quantities represent the mean and standard
deviation calculated by for the values on the lateral slice obtained by slicing
the array across variable j where j = 1, . . . , p. This form of preprocessing,
slice centering and scaling is mentioned by Kroonenberg (2008). Gower and
Dijksterhuis (2004) speak of the importance of ensuring that variables are
commensurate before employing the Procrustes technique. It is thus impor-
tant to ensure that variables are commensurate across the occasion mode
but that it is still possible to see the change in variability across occasions.
Choosing the slice transformation ensures that changes in variation in the
data can still be captured in the biplot. Had each matrix Xk been standard-
ised it would not have been possible to see the spread of the sample points
change over time since the variance on all variables would be one. One must
be weary of the fact that PCA is not scale invariant implying that the inclu-
sion of s.j. in the preprocessing will affect the orientation of the best-fitting
plane. This results in the seperate PCA biplots looking different to those
that would have been obtained using the raw data. It does serve to mitigate
the phenomenon of variables showing considerable variation dominating the
orientation of the best fitting plane and can result in relationships between
variables being better approximated. Full detail on the issue of scale in-
variance can be found in Gower et al. (2011). This justifies the choice of
preprocessing and attention shifts to ensuring that PCA biplots are compa-
rable after rotation.

Define Zk(2) and V k(2) to be the two dimensional representations of the
sample points and variable points in the best-fitting plane respectively. The
GOPA technique can be applied to the sample point representations Zk, the
variable axes representations V k or a combination of the two A

′

k = [Z
′

kV
′

k].
Cox and Cox (2008) show that before determining the rotation, it is optimal
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Figure 6.2: Illustration of OPT and translation of biplots for occasions 1 on
the left and occasion 4 on the right.

to have the configurations translated so that they have their centroids at the
origin. Since this occurs in the process of PCA, no translation is performed
on the configurations before determining the rotation matrices Qk. Once
these matrices have been determined and applied accordingly, what remains
to be done is to superimpose the optimally rotated PCA biplots for each of
the k occasions. Figure 6.2 will aid in describing this process which begins
with interpolating the mean vector (x.1., . . . , x.p.) onto each of the k PCA
biplots after the application of the rotation matrices. The interpolated mean
is defined as

z
′

k(2) = [
x.1. − x.1.

s.1.
− x∗.1k, . . . ,

x.p. − x.p.
s.p.

− x∗.pk]V k(2)Qk,
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where x∗.jk = 1
n

∑n
l=1 x

∗
ljk. This interpolated mean is represented by the red

marker in each of the panels comprising Figure 6.2. The variable axes in each
of the k PCA biplots undergo orthogonal parallel translation(OPT) such that
the axes coincide in the interpolated mean. This is illustrated in the top left
and right panel of Figure 6.2. The grey axes represent the original variable
axes passing through the centroid for occasion 1 and occasion 4 respectively.
The black variable axes result after application of OPT and it is evident that
these axes pass through the interpolated mean. OPT entails moving each
of the variable axes parallel to themselves whilst ensuring that the markers
are moved in a consisent fashion. This means that any line joining the same
marker on each of the parallel variable axes be orthogonal to these axes. The
next step in the process requires that the scaffolding axes for each of the k
PCA biplots be moved so that the interpolated point is at the origin (0, 0).
This step effectively sets the k rotated PCA biplots on one another. The k
sets of scaffolding axes are then used to produce the combined PCA biplot
of all k occasions. In order to accomplish this, z

′

k(2) is subtracted from each

of the rows of ZkQk to produce T (ZkQk) as well as from the translated
variable axes representations for the kth occasion to produce T (V kQk). The
effect of this translation is shown in the bottom left and right panels of Fig-
ure 6.2. Notice that when compared to the top panels, the red marker in the
bottom panels coincide with the (0, 0) point of the scaffolding axes. These
quantities are then used in order to construct the combined PCA biplot. It
is this process that ensures that the differences in means over occasion can
be visualised in the final plot.

A final matter of interest before moving to the application is the inter-
pretation of the biplots that result from employing this technique. More
specifically the question of import is what visual information can this biplot
provide about changes over time in the samples and variables. Since a biplot
conveys information about the strength of association between variables as
well as the distribution of sample points, each is considered in turn. Suppose
that the biplot is constructed by fitting sample points optimally. Recall that
GOPA works on the basis of fitting each of the k configurations to a group-
average configuration, G. This means that observations for the first subject
at each occasion are going to be as close as possible to the representation of
observation one in the group-average configuration, for example. The impli-
cation is that visually such a plot will give a distorted image of the Euclidean
distances between the representations for subject one over time and as such is
not the plot to use when seeking an accurate visual representation of the time
profile for subjects. The PCA biplot that results from fitting the variable
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axes optimally is not necessarily better in this regard particularly for sample
points that are very close to the variable axes. In fitting the variable axes
optimally, variable axis one at each occasion will be rotated to be as close
as possible to the group configuration representation of variable axis one,
for example. If a particular observation is close to variable axis one across
occasion then the Euclidean distances between the representations of this
observation at each occasion will be distorted. Furthermore, the fact that
the mean changes over time means that variable axes are calibrated differ-
ently across time and sample points that are close together in the combined
PCA biplot might not have similar scores in reality. It can thus be argued
that the combined PCA biplot does not give an accurate representation of
the Euclidean distances between sample points across time. It is possible to
see how the relationship between particular sample points, one and two for
example, changes over occasion. Similarly it is only possible to say how the
strength of association between particular variables changes over occasion.
The PCA biplot also does not convey information regarding how variable
one is related to itself across occasion for example. It is possible however to
see how the variation in the data changes over time. The plot also preserves
the separation between the data across occasion so that it is possible to get
a sense of how the mean has changed over occasion.

The PCA biplot can be constructed so that either the Euclidean distances
between sample points or the correlations between the variables are opti-
mally represented and there are three possible configurations, Zk(2), V k(2)

and Ak(2) to which GOPA can be applied. This implies that there are six
possible Procrustes biplots that can be constructed. Furthermore, the bi-
plots constructed using Ak(2) and Zk(2) are likely to look very similar. This
is because there are often more observations than variables in each of the
datasets thus the observations will make a much bigger contribution to the
least squares convergence criterion. In this chapter attention has only been
given to the Procrustes biplot in which Euclidean distances between sample
points is optimally represented although the the technique can be applied to
biplots in which the correlation between variables is optimally represented.

6.3 Application to Mansoor data

Given the nature of the investigation undertaken by Mansoor et al. (2009),
the PCA biplot in which the distance between sample points is optimally
represented is studied given that the researchers were largely concerned with
variation between group members. In the first instance, the sample points,
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Zk(2) are rotated to fit optimally so that the criterion to be minimised is

min
Q1...Qk

4
4∑

k=1

‖Zk(2)Qk −G‖, (6.10)

where

G =
1

4

4∑
k=1

(Zk(2)Qk). (6.11)

Figure 6.3: Procrustes PCA biplot in which sample points have been opti-
mally fitted.

Figure 6.3 shows the resulting biplot. The most striking feature of the plot
is the fact that variation within the data decreases from time one to time
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Figure 6.4: Procrustes PCA biplot in which both sample points and variable
axes have been optimally fitted.

four with the reduction from time one to time two being particularly notice-
able. The separation of the sample points across occasion is also palpable
with occasion one having the largest mean. It is also clear that the members
comprising the group of HIV + infants scored relatively low on all variables
across occasion particularly on variable 4. The distribution of members com-
prising the remaining two groups is quite similar across time. Although a
visual appraisal of the Euclidean distances between sample points is not ac-
curate it is possible to read off the scores for sample points to get an idea
of how an observation has evolved over time. It is clear that the scores for
all observations tended to decrease over time. The next aspect to consider
is how the strength of association between variables is represented. Tak-
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ing variables 1 and 4 for example it can be seen that the variables display
relatively strong association at occasions 3 and 4 with relatively weaker as-
sociation at occasions one and two. This type of comparison can be done
for all variables. The last aspect of the application is to ascertain whether
the data corroborates the thought that the biplot constructed by optimally
fitting the samples should look similar to that constructed by optimally fit-
ting both samples and variables. The latter biplot is illustrated in Figure 6.4
and comparing this to Figure 6.3 reveals that these two biplots are indeed
remarkably similar.

Figure 6.5: Procrustes PCA biplot in which both sample points optimally
fitted and labelled.

The last aspect to consider is whether the Euclidean distances between ob-
servations across occasions are not well represented. Table 6.1 contains the
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Sample 41 Sample 74
Sample 103 30.48 16.94

Table 6.1: Euclidean distances between observations.

Euclidean distances between some of the observations. Studying Figure 6.5
reveals that the Euclidean distances are indeed not well represented. Al-
though observation 74 is closer in proximity to observation 103 than ob-
servation 41, the biplot does not represent this. The implication is that
Euclidean distances between points across occasions are indeed distorted in
the combined display.

6.4 Conclusion

This chapter detailed the application of GOPA to PCA biplots. The theoret-
ical foundation of GOPA was detailed as well as the process of constructing
the combined PCA biplot. Although six possible biplots could be constructed
attention was only given to the one in which Euclidean distances were opti-
mally represented. The biplots constructed from optimally fitting Ak(2) and
Zk(2) were shown to be very similar. It was established that the combined
biplot did not provide an accurate visual appraisal of the Euclidean dis-
tances between sample points across occasion but afforded the means to read
off scores for observations across time. Furthermore, the plot immediately
gives a sense of the separation in the data across time as well as changes
in variation. In terms of the application to the Mansoor data it was seen
that variation in the data reduced over occasion. Furthermore, it was seen
that across all occasions the groups comprising the uninfected infants scored
better than those comprising the infected group. The plot thus serves well
as an exploratory tool.



Chapter 7

Common Principal
Components Biplots

7.1 Introduction

Common Principal Components Analysis (CPC) is a technique introduced
by Flury (1988) and generalizes PCA to several groups. The CPC model
was in fact motivated by biometrical applications where it is commonplace
to observe a pattern of similar principal components derived from covariance
matrices for different species that have different variances (Neuenschwander
and Flury, 2000). The idea is to take the covariance matrices of k indepen-
dent groups, Ψ1, . . . ,Ψk and find an orthogonal matrix that simultaneously
diagonalises the matrices so that Ψi = BΛiB

′
. An extension of this tech-

nique is described by Flury and Neuenschwander (2000) to include instances
where the assumption of independence between the k groups is violated.
One such case is that of repeated measures studies where p measurements
are taken on the same subject over k different time points as is the case in
the Mansoor et al. (2009) investigation. This chapter is something of an
interlude and begins by discussing the theoretical foundations of CPC and
CPC for dependent random vectors (DCPC). Its inclusion at this stage is
two fold. CPC can be considered a three mode technique and it is thus inter-
esting to consider whether the technique lends itself to constructing a biplot
and how such a biplot should be interpreted. A biplot constructed from the
CPC technique affords the means to produce a parsimonious display which
comprises p variable axes as opposed to kp variable axes as is the case when
Procrustes Analysis was used in the construction of biplots. This can be
very useful especially when both k and p tend to be large. Furthermore, this
technique is critical in a later novel development allowing the display of k

75
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CVA biplots on a single plot.

7.2 Common Principal Components Analysis

7.2.1 Foundations of CPC

CPC seeks to find an orthogonal matrix that simultaneously diagonalises
covariance matrices Ψ1, . . . ,Ψk for each of the k independent groups so that

Ψi = BΛiB
′
. (7.1)

Maximum Likelihood estimation is the technique employed in determining
the matrix B and as such an assumption needs to be made regarding the
distribution from which the data is drawn. It is thus assumed that the p
variate random vectorsX i are independently distributed as Np(µi,Ψi) where
µi ε <p and Ψi is a positive definite symmetric covariance matrix. The focus
is on Ψi since the CPC model is concerned with the covariance matrices.
Assuming a sample of size n, the covariance matrices can be represented
by the sample covariance matrices Si due to the fact that it is a sufficient
statistic for the covariance matrix. Furthermore, (n−1)Si follows a Wishart
Distribution with n−1 degrees of freedom. This makes it possible to construct
the common likelihood function of Ψ1, . . . ,Ψk given S1, . . . ,Sk as

L(Ψ1, . . . ,Ψk) = C ×
k∏
i=1

etr
(
− n

2
Ψ−1i Si

)
|Ψi|−

n
2 , (7.2)

where etr represents the natural exponent of the trace. Flury (1984) suggests
that instead of maximising the likelihood function, the function g(Ψ1, . . . ,Ψk)
be minimised. This function is defined as

g(Ψ1, . . . ,Ψk) = −2logL(Ψ1, . . . ,Ψk) + 2logC

=
k∑
i=1

ni(log|Ψi|+ tr(Ψ−1i Si). (7.3)

Since the log likelihood is multiplied by −2 the problem becomes one of min-
imising the function. The addition of 2logC removes the constant term from
the log likelihood function so that the function to be minimised depends only
on the parameters of interest. Equation (7.3) must be altered so that the
matrix B is included since this is what is to be estimated. Each term com-
prising (7.3) is considered in turn. Assume that (7.1) holds for some matrix
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B. It is a well known fact that given an n × n matrix A with eigenvalues
λ1, . . . , λn, the determinant can be calculated as det(A) =

∏n
i=1 λi. This

implies that

log|Ψi| =
p∑
i=1

logλij, i = 1, . . . , k. (7.4)

Using the fact that tr(AB) = tr(BA), it is a simple matter to show that

tr(Ψ−1i Si) = tr(BΛ−1i B
′
Si) = tr(Λ−1i B

′
SiB)

=

p∑
j=1

b
′

jSibj

λij
, i = 1, . . . , k (7.5)

where bj represents the jth column of the matrix B. Substituting (7.4) and
(7.5) into (7.3) results in

g(b1, . . . , bp, λ11, . . . , λ1p, λ21, . . . , λkp) =
k∑
i=1

ni

( p∑
j=1

(logλij +
b

′

jSibj

λij
)
)
.

(7.6)
Equation (7.6) is to be minimised subject to the constraint that the matrix
B is orthogonal. Mathematically this is represented as

b
′

hbj = 0 if h 6= j

b
′

hbj = 1 if h = j. (7.7)

Since the estimation of B is a constrained optimisation problem, the solution
lies in constructing the Langrangian function and minimising this function
which takes the form

G(Ψ1, . . . ,Ψk) = g(Ψ1, . . . ,Ψk)−
p∑

h=1

γh(b
′

hbh − 1)− 2

p∑
h<j

γhjb
′

hbj. (7.8)

Incorporating the constraints requires the inclusion of p(p+1)
2

Langrange mul-
tipliers. Differentiating with respect to the λij and setting the result equal
to zero yields

λij = b
′

jSibj i = 1, . . . , k, j = 1, . . . , p. (7.9)

This result, when combined with (7.5) implies that tr(Ψi
−1Si) = p. Taking

the partial derivative with respect to b
′

h yields

k∑
i=1

ni
Sibj
λij
− γjbj −

p∑
h=1
h6=j

γjhbh = 0 j = 1, . . . , p. (7.10)
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where γjh = γhj if h > j. Premultiplying by b
′

j and remembering the orthog-
onality constraint together with (7.9) leads to

γj =
k∑
i=1

ni j = 1, . . . , p. (7.11)

Substituting (7.11) into (7.10) yields

k∑
i=1

ni
Sibj
λij
−
( k∑
i=1

ni

)
bj −

p∑
h=1
h6=j

γjhbh = 0 j = 1, . . . , p. (7.12)

Now consider premultiplying (7.12) by b
′

l where l 6= j. Due to the orthogo-
nality constraint this yields

k∑
i=1

ni
b

′

lSibj
λij

= γjl j = 1, . . . , p, l 6= j. (7.13)

At this stage it is necessary to consider the effect of interchanging the indices
j and l so that j is replaced with l and vice versa in (7.13). Noting that
b

′

lSibj = b
′

jSibl as well as the fact that γjl = γlj, interchanging the indices
implies that

k∑
i=1

ni
b

′

lSibj
λil

= γjl l = 1, . . . , p, j 6= l. (7.14)

The final step in determining the system of equations to solve in order to
estimate the matrix B is simply to equate (7.13) and (7.14) which produces
the system of equations

b
′

l

k∑
i=1

(
ni
λil − λij
λilλij

Si

)
bj = 0 l = 1, . . . , p, l 6= j. (7.15)

Equation (7.15) represents the system of equations that needs to be solved
in order to estimate B subject to the orthogonality constraint as well the
condition in (7.8). Flury and Gautschi (1984) developed an efficient algo-
rithm to solve this problem called the FG algorithm. This is an iterative
algorithm that is guaranteed to converge to a solution for (7.15) which min-
imises (7.8). This provides the means to find B̂ as well as Λ̂i for i = 1, . . . , k.
The mechanism of the FG algorithm will be detailed.
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7.2.2 The FG algorithm

Since the algorithm is iterative in nature the most pertinent question is which
quantity is being used in order to determine convergence. Consider the pos-
itive definite symmetric matrix Λ and define a measure of deviation from
diagonality as

φ(Λ) :=
det(diag(Λ))

det(Λ)
. (7.16)

Flury (1988) proves that φ(Λ) ≥ 1 with equality resulting from Λ being
exactly diagonal. Furthermore, the function φ(Λ) is monotonically increasing
as Λ shifts from a diagonal matrix to a full positive definite symmetric matrix
Λ. φ(Λ) is a function in one symmetric positive definite matrix Λ but the
FG algorithm seeks to simultaneously diagonalise k matrices, each of which
ought to be considered in the convergence criterion. Flury (1988) thus defined

Φ(Λ1, . . . ,Λk;n1, . . . , nk) :=
k∏
i=1

[φ(Λi)]
ni , (7.17)

which is a measure of simultaneous deviation from diagonality. Representing
each of Λi as B

′
ΨiB and substituting this into (7.17) yields a function in

Ψi. Flury (1988) defines this as a measure of simultaneous diagonalisability
of the matrices Ψ1, . . . ,Ψk

Φ0(Ψ1, . . . ,Ψk;n1, . . . , nk) = min
B∈O(p)

Φ(B
′
Ψ1B, . . . ,B

′
ΨkB;n1, . . . , nk),

(7.18)
where O(p) is the set of orthogonal p × p matrices. Due to the fact that
φ(Λi) ≥ 1 with equality when Λ is exactly diagonal, it follows immediately
that Φ0 ≥ 1 with equality resulting if all the matrices Ψi are simultaneously
diagonalisable with the same orthogonal matrix B. It may seem odd that
the convergence criterion for the algorithm is different from the likelihood
estimation procedure that has dominated the discussion however, when con-
sidering (7.9) it is clear that the matrix B that maximises the likelihood
function also minimises (7.17). The FG algorithm thus solves the system of
equations in (7.15) and minimises (7.17) in the process. A solution B̂ which
minimises (7.17) always exists due to the fact that the set of p×p orthogonal
matrices O(p) is compact implying that the sequence of matrices {Bj} will
converge to a matrix in the set O(p). Given that the equations which the
FG algorithm seeks to solve has been described, it is now possible to discuss
the mechanism by which the algorithm works. In order to appreciate the
foundation of the FG algorithm the Jacobi algorithm must be explained.
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Flury (1988) states that the oldest known method for diagonalising symmet-
ric matrices can be attributed to Jacobi (1846). This algorithm is fundamen-
tal to the FG algorithm since the latter can be considered a generalisation of
the Jacobi algorithm to several groups (Flury, 1988). The idea underpinning
the Jacobi algorithm is simply to pre- and post- mulitply a symmetric matrix
with orthogonal matrices so as to annihilate off-diagonal elements. Consider
the p × p symmetric matrix Ψ to be diagonalised. Flury (1988) defines a
Jacobi rotation as a p× p matrix

J = J(m, j, θ) =



m j

1 . . . 0
...

...
m 0 . . . c . . . −s . . .

...
...

j . . . s . . . c . . .
...

...
1


, (7.19)

where c = cos(θ) and s = sin(θ). The matrix J is effectively an identity ma-
trix in which the entries with indices m and j are replaced as shown. It is also
orthogonal. To see how this rotation can result in zero off-diagonal elements
consider the example taken from Flury (1988). Consider the transformation

H = J
′
AJ , (7.20)

for a given value of m and j such that 1 ≤ m < j ≤ p. The matrices H and
A are the same but for the differences in the elements with indices m and j.
These entries are determined by

hmm = c2amm + s2ajj + 2csamj,

hjj = c2amm + s2ajj − 2csamj,

hmj = hjm = (c2 − s2)amj + cs(ajj − amm).

(7.21)

The objective is to get hmj = hjm = 0. Dividing the expression by amj and
c2 then setting t = s

c
= tan(θ) allows hmj to be expressed as

t2 +
amm − ajj

amj
t− 1 = 0. (7.22)

If it happens that amj = 0 then Flury (1988) states that c should be set
to one and s should be set to zero. It is clear that (7.22) has two real
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roots since the discriminant is greater than zero. Denote these roots as
t1 = tan(θ1) and t2 = tan(θ2). Notice that expressing these in terms of the
quadratic formula and taking their product yields t1t2 = −1. This implies
that the corresponding angles θ1 and θ2 differ by π

2
. It is important to choose

the solution that corresponds with |θ| ≤ π
4

due to the nature of the FG
algorithm which will be explained shortly. Flury (1988) frames this problem
in a different light when he states that determining the matrix J(m, j, θ) to
make the (m, j)th element of the matrix A zero is equivalent to finding the
eigenvectors of the 2× 2 matrix(

amm amj
ajm ajj

)
. (7.23)

This perspective is important in constructing the FG algorithm. This pro-
cess described here is performed iteratively in the Jacobi algorithm and the
choice of m and j is based on finding the largest off-diagonal element in
absolute value in the matrix A. In order to avoid finding the largest off-
diagonal element in the matrix A, Flury (1988) suggests sweeping through
all possible pairs in a cyclic fashion; this means considering pairs in the or-
der (1, 2), (1, 3), . . . , (1, p), (2, 3), . . . , (p−1, p) for example. Rotating through
each of these

(
p
2

)
pairs is referred to as a sweep by Flury (1988). It is pre-

cisely because of this cyclic rotation that it is important to choose the angle
of rotation |θ| ≤ π

4
. This prevents large off-diagonal elements from constantly

being moved ahead of the (m, j)th element under consideration so that re-
peated sweeps lead to convergence. The FG algorithm is a generalisation of
this cyclic approach to the Jacobi algorithm. This background affords the
means to describe the workings of the FG algorithm.

The FG algorithm effectively comprises two separate algorithms viz. the
F algorithm and the G algorithm, the latter nested within the former. The
F algorithm, on the outer level, comprises a cyclic rotation through all

(
p
2

)
columns of the matrix B̂. Every pair of columns of the current approxima-
tion B̂ is rotated so as to satisfy the corresponding equation in (7.15). The
G algorithm, on the inner level, seeks to find an orthogonal 2×2 matrix that
solves a two dimensional analogue of (7.15) by means of an iterative process.
The resulting solution determines the rotation of the pair of columns of B̂
that is currently under consideration in the F algorithm. In effect, the F
algorithm sweeps through all pairs of columns of B̂, making use of the G
algorithm to determine the appropriate rotation for each of the pairs. The
G algorithm represents the different perspective mentioned when discussing
the Jacobi algorithm. This broadly describes the mechanism by which the
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FG algorithm works. The implementation of the algorithm, coded in R, is
based on code received from Le Roux (2012).

7.2.3 Foundations of DCPC

Before endeavouring to marry CPC and biplot methodology, the estimation
procedure required for DCPC is briefly discussed. Recall that the fundamen-
tal difference between CPC and DCPC is the relaxation on the assumption
that the k groups be independent in the latter case. To understand what
this means mathematically, consider the matrix Ψ, the matrix of covariance
matrices represented as

Ψ = [Ψij] =

 Ψ11 . . . Ψ1k
...

. . .
...

Ψk1 . . . Ψkk

 . (7.24)

In the context of CPC, Ψij = 0 for i 6= j which is as a result of the assump-
tion that the groups are independent. DCPC allows for the off-diagonal
matrices to be non-zero which would imply dependence between groups. Ex-
tending CPC to allow for dependence simply means that the orthogonal
matrix B that originally diagonalised only the covariance matrices on the
diagonal of Ψ must now ensure that all the matrices comprising Ψ are di-
agonalised. The DCPC hypothesis as stated by Neuenschwander and Flury
(2000) is as follows: The matrix Ψ satisfies the common principal components
model for dependent random vectors if there exists an orthogonal matrix B
such that

B
′
ΨijB = Λij = diag(λij,1, . . . , λij,p). (7.25)

DCPC is also based on Maximum Likelihood Estimation and as such it is
assumed that the data come from a multivariate normal distribution. The
process for developing the equations to estimate the matrix B is very similar
to that described for CPC albeit slightly more complex. The development
will not be discussed here but rather the final system of equations to be solved
in order to estimate the parameters B and Λij is provided. The interested
reader is referred to Neuenschwander and Flury (2000) for the details. The
Maximum Likelihood Estimators B̂ and Λ̂ := [Λ̂ij] is given by the solution
to the system of equations

b
′

m

[ k∑
i=1

k∑
j=1

(λij,l − λij,m)(Sij + Sji)
]
bl = 0 (7.26)

λij,h = b
′

hSijbh, (7.27)
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for l,m, h = 1, . . . , p, (l 6= m), i, j = 1, . . . , k , B is orthogonal and λij,h
are the elements of Λij in Λ = [Λij]i,j=1,...,k. Neuenschwander and Flury
developed an algorithm to solve this system rather aptly named the FG+

algorithm given that it is an extension of the FG algorithm. The algorithm
works in a similar fashion to the FG algorithm described in the previous
section with some adjustments to the G algorithm. The interested reader
can find the technical detail in Neuenschwander and Flury (2000).

7.3 Constructing the biplot

The question to be addressed is how the matrix B̂, whether estimated in
the context of CPC or DCPC, can be used in order to construct a biplot.
Recall that in the construction of a PCA biplot, the first two columns of
the matrix V resulting from the SVD of the centred data matrix was used
to determine the scaffolding axes. It may seem curious that in this context
the data matrix is considered where as CPC and DCPC is concerned with
the covariance matrices. Using the fact that the covariance matrix for group
k is given by Ψk = X

′

kXk and that the SVD of the centered data matrix
Xk = U kΣkV

′

k, it is evident that the matrix which serves to diagonalise Ψk

and the matrix V arising from the SVD of the centered data matrix is one in
the same. The implication is that the columns of B̂ can be used to determine
the scaffolding axes for the construction of the biplot. Ordinarily, the first
two columns of V are used since they are associated with the directions of
greatest variation. The choice is not as simple for the CPC biplot since the
diagonal matrices Λi are not ordered as in the case of SVD. This means that
it is not simply a matter of using the first two columns of the matrix B̂. The
choice is further complicated by the fact that there are k separate diagonal
matrices Λ̂k to consider. Determining which columns of B̂ to use requires
a new definition for a measure of quality based on the variation in the data
captured in the biplot display. In order to achieve this a new measure of
quality needs to be defined based on that which is used for ordinary PCA
biplots. This new measure of quality is defined as

quality(bi, bj) :=

∑k
h=1

λh(i,i)+λh(j,j)∑p
n=1 λh(n,n)

k
, (7.28)

in the case of CPC where λh(i, i) is the ith element on the diagonal of Λh.
Division by k ensures that the average quality measure falls between 0 and
1 since the defined measure is based on the sum of k qualities. The quality
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measure is defined somewhat differently in the context of DCPC as

quality(bi, bj) :=

∑k
h=1

∑k
m=1

λhm(i,i)+λhm(j,j)∑p
n=1 λhm(n,n)

k
, (7.29)

where λhm(i, i) is the ith element on the diagonal of Λhm. The two vectors bi
and bj that give the highest quality measure are used to construct the biplot.
Once this has been established, the construction process is identical to that
used in producing a PCA biplot. Assume that b1 and b2 represent the direc-
tions of the best fitting plane. The rows of the p×2 matrix B̂2 = [b1, b2] will
be used to represent the variable axes. For each of the data matrices X i, the
interpolated sample points are represented as Zi = X iB̂2 for i = 1, . . . , k.
The rows of Zi are plotted to represent the samples.

There is one more aspect of the construction process that should be con-
sidered and that is how the variables axes are to be calibrated. In Chapter
4, the calibration process was detailed and it was shown that the variable
means are used in determining the values that appear on the markers. In
the context of CPC, k different data matrices are being considered and that
implies that there are k sets of p variable means to consider. This presents a
problem, however there are two possible solutions. The first option is simply
to have k sets of markers on each of the variable axes relating to each of
the k groups. Although this is a viable option it can make reading values
off of the biplot very cumbersome and more trivially it affects the aesthetics
of the display. The second option relies on centering each of the k datasets,
binding it into a single dataset and using the resulting columns to calibrate
the axis. In this instance the values read off will represent deviations from a
mean as opposed to the approximated data value. This means that if a value
is read off of variable axis one for a sample point in the first dataset, that
value represents the deviation of the observation from the mean for variable
one in group one. To find the approximated value, the mean for variable one
in group one must be added back to the value that was read off of the axis.
Although this method is cumbersome in its own right it makes for a display
that is easier to read. For illustration purposes consider x̂111 and call the
value read off of the axis x. The mean vector X1 = (X11 . . . Xp1) represents
the mean for each variable at occasion one. Since this observation is for
subject one on variable one at occasion, the approximation x̂111 = x + X11.
Both of these will be illustrated graphically.

Although the construction of the biplot has been detailed it is important
to give thought to how to interpret the resulting plot. More specifically,
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careful consideration must be given to how to interpret the angles between
the variable axes. Since the constructed biplot is akin to that which opti-
mally represents the Euclidean distances between sample points, the angles
between the variable axes only provide a sense of the strength of associa-
tion. The question is really what association is in fact being measured and
in order to answer this it is necessary to appeal to the intuitive foundation
of CPC and what the technique seeks to do. Essentially the technique posits
that the principal component transformation is identical across the k groups
under consideration and in order for that to be the case there needs to be
similarity in the covariance structure of the k groups. In fact there must be
a latent or underlying variation that is common across groups. This can be
thought of as systemic variation. It is argued that the association read off
of the biplot provides a sense of the latent relationship between variables.
For example, a small angle between variable axes one and two would suggest
that V 1 and V 2 have a latent relationship. Since the covariance structure is
not assumed to be identical across groups, the relationship between variables
does not remain constant. This is due to the effect of the unique variation
inherent in each dataset comprising the complete data. Furthermore it is
vital to be cognisant of the fact that the constructed biplot does not truly
present the Euclidean distances between sample points optimally. In effect
the CPC biplot is related to its PCA cousin in that both rely on projecting
both sample points and variable axes onto a plane in <p. In the former in-
stance, the sample point co-ordinates that are plotted are not in principal
co-ordinates as would be the case for an ordinary PCA biplot. It is for this
reason that Euclidean distances are not necessarily preserved but the same
interpretational tools used for the PCA biplot are used for the CPC biplot.

7.4 Application to Mansoor data

This section details the construction of both the CPC and DCPC biplots and
seeks to ascertain whether the assertions made regarding the interpretation
are evidenced by the data. The constructed biplots will be compared to the
PCA biplots produced for each of the four occasions comprising the data.
In this way it is possible to see how well the sample points are represented
and surmise on what impacts the quality of the representation. Furthermore
the strength of association between variables in the CPC and DCPC biplots
will be compared with those in the single PCA biplots to see whether it is
markedly different or not. Note that the data were seen not to follow a mul-
tivariate normal distribution. Flury (1988) suggests that even in the face of
the distributional assumption being violated, it is still instructive to employ
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the CPC technique. Distributional considerations are beyond the scope of
this dissertation. It is also assumed that the CPC hypothesis applies to the
Mansoor data since the aim is to consider the biplot and interpret it.

After applying the FG algorithm to the estimated variance matrices S1, . . . ,S4

and employing the quality measure defined in 7.28, it was found that the first
two columns of the matrix B̂ was to be used in the biplot construction since
these columns yielded a quality score of 81.8%. The estimated matrix B̂2 is
given by

B̂2 =



−0.167 0.352
−0.922 −0.357
−0.152 0.144
−0.302 0.717
−0.044 0.374
−0.071 0.101
−0.0347 0.253


. (7.30)

The directions of the variable axes are based on plotting the rows of B̂2. The
sample points are represented by the rows of the matrices X1B̂2, . . . ,X4B̂2.
Comment should be passed on the nature of the estimated diagonal matri-
ces Λ̂1, . . . , Λ̂4. Although these estimated matrices do not closely resemble
diagonal matrices in the sense that off diagonal elements are large, Beaghen
(1997) argues that if off-diagonal elements are small relative to the diagonal
elements per column then the CPC hypothesis is appropriate. This was seen
to be the case for the columns comprising B̂2. Attention now falls to inter-
preting the resulting plot.

Figure 7.1 represents the collection of PCA biplots for each occasion, con-
structed so as to approximate Euclidean distances between sample points
optimally. Figures 7.2 and 7.3 both represent the CPC biplot for the Man-
soor data differing only in the calibration of the axes. Figure 7.2 makes use of
multiple markers and Figure 7.3 calibrates the axes with deviations from the
relevant mean and for the purposes of discussion Figure 7.2 will be referred
to. The first aspect to compare is the display of the sample points. Figure
7.2 adequately captures the gradual reduction in variation from occasion 1
to occasion 4. Furthermore it is clear that the CPC biplot seems to display
the sample points for occasion one in a similar fashion to that seen in the
separate PCA biplot for that occasion. The display of the sample points
for the remaining occasions, although sharing similarities with display in the
separate biplots, is less similar in comparison. This is to be expected since
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Figure 7.1: Separate PCA biplots for each occasion ordered in a clockwise
fashion with the biplot corresponding to occasion 1 in the top-left.

the scaffolding produced by the CPC estimation represents a compromise be-
tween the best-fitting planes if each occasion were to be analysed separately.
This does not render the display useless in conveying information about the
sample points because although Euclidean distances between sample points
is on well represented, the orientation of the points is very similar and it is
possible to read off approximate values for these data points. In fact the
displays look similar but for the fact that the Euclidean distances between
the sample points in the CPC biplot are distorted when compared to the dis-
play in the separate PCA biplots. It is natural to wonder why occasion one
seems relatively well represented when compared with the other occasions.
The answer is not concrete and is rooted in conjecture however considering
the estimating equations might shed some light on the matter.
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Figure 7.2: CPC biplot for the Mansoor data calibrated with deviations from
relevant mean.

Equation (7.15) shows that the estimation procedure rests on a weighted sum
of the variance matrices S1 . . . ,S4. It is not only the weighting factor but
the actual variance matrices that have an impact. For this specific dataset it
was seen that weighting factors did not differ vastly throughout the various
iterations of the FG algorithm but the elements of the variance matrix S1

are relatively big when compared with the remaining variance matrices. It
could thus be that S1 is influential in the estimation of the final matrix B̂
and as such the sample points at occasion 1 are better displayed.

The next aspect to consider is the interpretation of the angles between the
variable axes as a measure of systemic association. Take V 5 and V 7 as an
example and notice that in Figure 7.1 these variables seem strongly asso-
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ciated at occasions 1, 2 and 3 with a slightly less pronounced association
conveyed at occasion 4. Figure 7.2 shows a strong association between these
variables as evidenced by the magnitude of the angle between the variable
axes. Considering V 2 it is clear that with the exception of occasion 1, this
variable shows no particular association with any of the variables. This is
reflected in the CPC biplot in Figure 7.2. This lends credence to the notion
that the CPC biplot illustrates the systemic relationship between variables.

Figure 7.3: CPC biplot for the Mansoor data with multiple markers on the
variable axes.

The last consideration is what information the biplot provides regarding the
research questions posed by Mansoor et al. (2009). Recall that the authors
were concerned with ascertaining whether the immune response after the ad-
ministration of the drug BCG accorded with that which is though to be the
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Figure 7.4: DCPC biplot for the Mansoor data calibrated with deviations
from relevant mean.

required immune response in HIV+ patients . This required that patients
score highly on V 4. Figure 7.2 shows that the patients comprising the HIV+

group scored poorly on V 4. Furthermore, although the variation reduced
over time, it is evident that infants comprising groups 2 and 3 mustered ap-
preciably better scores on all variables across time. The infants in group 3
generally seemed to achieve the best scores. The application of the DCPC
technique was based on the fact that repeated measures data likely violates
the independence assumption that is made in the context of CPC. Using the
quality measure defined in (7.29) it was determined that columns two and
four of the estimated matrix be used to construct the scaffolding since this
yielded a quality score of 88.39%. Figure 7.4 is an illustration of the resulting
DCPC biplot and it is interesting to note that the information conveyed by
the plot is very similar to that seen in the CPC biplot. Both the orientation
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of the variable axes as well as the orientation of the sample points is very
similar to that seen in the CPC biplot.

7.5 Conclusion

This chapter detailed the theory underpinning the techniques of CPC and
DCPC with the intention of constructing biplots. The focus was not on test-
ing whether the CPC hypothesis was feasible but rather assuming that a
researcher is satisfied that this is indeed the case, using the estimates pro-
duced by this technique for graphical displays. New quality measures were
defined in order to determine the scaffolding for the biplot construction. It
was seen that the angles between variable axes represent systemic relation-
ships between the variables as evidenced by the comparison of the CPC and
DCPC biplots to the separate PCA biplots produced for each occasion. Fur-
thermore, it was seen that whilst the Euclidean distances between sample
points are not optimally represented, occasions with large variation relative
to the rest may be better represented. The plot was also useful in showcasing
changes in variation in the data over time and provided an approximation of
how sample points relate to one another. Calibration presented a problem
and the solution was either to show multiple markers on the variable axes
relating to each occasion or to calibrate with deviations from the relevant
mean. In effect, although the CPC and DCPC biplots are based on approx-
imating a common scaffolding as opposed to using the optimal scaffolding
at each occasion, it provided valuable information about systemic variable
associations, changes in variation in the data as well visualising how sample
points evolve over time or differ across condition.



Chapter 8

A Common CVA Biplot

8.1 Introduction

Chapter 6 detailed the use of GOPA in order to superimpose k PCA bi-
plots and thus represent all biplots in a single plot. It might be tempting
to use precisely the same technique with CVA biplots however this would
not be correct. The problem with this method is that CVA requires that
a non-singular linear transformation be employed to display the data in the
canonical space. By virtue of the fact that the transformation is non-singular,
the basis vectors for the canonical space are oblique and thus possibly com-
pletely different for each matrix Xk. Ultimately this implies that each Xk

is transformed to its unique canonical space in which the CVA biplots are
constructed and as such it would not be valid to simply superimpose them.

This chapter is geared at alleviating this problem by introducing a means
to effectively represent a Common CVA biplot so that each occasion can be
represented on a single biplot. In order to achieve this, Common Principal
Component Analysis (CPC) is used in order to find a solution to the problem
of CVA as discussed in Chapter 5. Since the theoretical foundations of these
techniques have been discussed previously, this chapter simply details the
construction of the biplot and applies it to simulated data as well as to the
Mansoor data.

8.1.1 Constructing a Common CVA Biplot

This section details how the two techniques can be combined to construct
a common CVA biplot. It builds on the two-step approach to CVA in a
simple manner. Recall that the first step is related to finding a matrix L
such that L

′
WL = Ip. Now there are k datasets X i and consequently k
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between and within group variation matrices Bi and W i respectively. The
first step in the process of constructing the Common CVA biplot is to apply
the FG algorithm to find a matrix L∗ that simultaneously diagonalises the
matrices W i so that L∗′

W iL
∗ = Φi. Define Li = L∗Φ−0.5i to ensure that

L
′

iW iLi = Ip as required. The next step in the process is then to use the
FG algorithm to find a matrix V ∗ that will simultaneously diagonalise the
matrices L

′

iBiL resulting in k near diagonal matrices Λi. The second step
can be represented mathematically as

Φ−0.5i L∗′
BiL

∗Φ−0.5i = V ∗ΛiV
∗′
. (8.1)

This implies that

L∗′
BiL

∗ = (Φ0.5
i V

∗)Λi(Φ
0.5
i V

∗)
′
. (8.2)

Define a matrix V i = Φ0.5
i V

∗. A slight alteration is made to the FG algo-
rithm in the convergence criterion to accommodate the fact that the matrix
Bi has rank, s equal to the minimum of g − 1 and p. The alteration results
in only the first s columns of V

′
L

′

iBiLV being used in the calculation of
the convergence criterion. This ensures that the convergence criterion does
not contain division by the product of eigenvalues of which some are zero.
CPC has thus been used in both steps comprising the two-step approach to
CVA.

Finding the two dimensional approximation of the data in traditional CVA
requires that the first two columns of the matrix XLV be plotted. Define
the matrix M to be LV . The question at hand in the process of construct-
ing the common CVA biplot is which matrices to use for L and V since in
each case there are two options; L∗, Li in the former instance and V ∗, V i in
the latter instance. If this methodology is to reduce to ordinary CVA when
applied to a single data set then LiV

∗ is to be used. This means that each
data set X i will be associated with a different M i = L∗Φ−0.5i V ∗ and this
immediately raises the question of how all the data can be displayed on one
plot. The reason given for why it was not possible to simply apply GOPA to
CVA biplots produced for each data set X i was that the respective bases for
the canonical spaces were not orthogonal and thus each space was unique.
This is no longer of concern when using each of the M i matrices because
the basis vectors have the same direction in each instance and differ only in
length. This means that all the axes can be projected onto a single plane
resulting in a plot with kp axes together with the sample points.
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8.2 Application to simulated and Mansoor data

The data set that was simulated in Chapter 5 is used in order to assess how
well the extent of the separation and within-group variation is captured in
the display of the data. Recall that µ3 remained unchanged over time where
as there is a pattern in the way that the mean vectors µ1 and µ2 change. It
is also important to note the fact that the variation at timepoints 3 and 4 is
greater relative to timepoints 1 and 2. These aspects of the simulated data
would be expected to be represented in the biplot constructed if it is to be
considered an adequate means of representing the data.

Figure 8.1: Legend for biplots.

Figure 8.2 represents the biplot constructed by using the four different M
matrices. The solid blocks represent the interpolated means and the colours
correspond to groups and timepoints as indicated in Figure 8.1. From the
position of the interpolated means for group 1 it is evident that the biplot
captures the fact that the mean increased from timepoint 1 to timepoint 2,
decreased back to its original value and increased once again at timepoint 4.
Consider group 2 and notice that the biplot clearly shows greater variation
for timepoint 4 relative to timepoint 2. The biplot does well to separate the
groups and seems to provide a poor approximation of changes in group 3,
particularly on variable 1. Notice that the plot contains 12 axes as opposed
to 3. This is due to the fact that this plot contains kp axes where k = 4
and p = 3 in this example. This biplot however has the advantage that
the predictions are very close to the specified vectors for the interpolated
means which suggests that it fares well in providing a means of predicting
data values. Biplots are often useful in providing a sense of the correlation
between the variables comprising the data. Σ indicates that the variables are
uncorrelated since it is a diagonal matrix. Visually this would be represented
as orthogonal axes but it is clear that though variables 1 and 2 are near or-
thogonal, variable 3 seems closely related to variable 2 given that they are
relatively close in Figure 8.2. There are two reasons for this. Given that this
is a two dimensional approximation it is impossible to represent all axes or-
thogonal to one another. Secondly, since there was more variation in variables
one and two, those are better represented. V 3 is possibly orthogonal to the
display space and as such projection onto the biplot could be in almost any
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Figure 8.2: CVA biplot constructed using M i where i = 1, . . . , k

direction. Figure 8.3 represents the biplot constructed for the Mansoor data
with the legend in Figure 8.1 still applying for reference purposes. Bearing in
mind that the CVA biplot is predominantly used to ascertain the separation
between the groups in the data it is clear that there is not a great deal of
separation between groups at any occasion. It also seems that the groups
maintain very similar separation across time. One limitation results from the
fact that four occasions are being represented simultaneously but each of the
group means differ across occasion. The group means for occasions one to
three respectively are as follows:
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Figure 8.3: CVA biplot constructed using M i where i = 1, . . . , 4 for the
Mansoor data.


V 1 V 2 V 3 V 4 V 5 V 6 V 7

600.67 708 95.67 1077 799 88 543.33

2371.3 3785.7 524 2245.4 853.2 511.6 689.5

3190.19 3188.38 529.25 2348.56 1187.31 466.56 582.63




V 1 V 2 V 3 V 4 V 5 V 6 V 7

395.33 454 86 854 724.67 109.67 760.67

498.7 1214.5 231.5 619.4 349.4 441.3 235.6

451.38 972.8 277.07 877.38 513.5 261.88 309.82




V 1 V 2 V 3 V 4 V 5 V 6 V 7

27 181.67 6.33 44 291.67 59.67 63.67

222.4 1678.8 240 420.5 295 269.3 144.8

206.88 603.38 169.69 474.56 406.75 240.19 210.88


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Reading off the variables axes for the mean of group one at occasion one
reveals a relatively good approximation but notice that the calibration on
the axes are very different across variables. The point being made is that
although reading off the axes can yield a relatively good approximation, the
Euclidean distances between the samples will not be represented accurately.
Nonetheless, the biplot remains useful in determining the extent to which the
groups comprising the data are separated and how that separation changes
over time. The plot also shows how the mean changes over time

8.3 Conclusion

In this chapter a novel method for displaying grouped longitudinal data on a
single biplot was proposed. The methodology was based on marrying the
ideas of Canonical Variate Analysis and Common Principal Components
Analysis. The biplot constructed relies on the use of K different M ma-
trices. This method reduces to classical CVA when applied to a single data
matrix. It is this property that results in the Euclidean distance in the canon-
ical space being equivalent to the Mahalanobis distance in the original space.
Since any CVA biplot is concerned the separation of groups and the Mansoor
data does not display a well separated group structure, the proposed biplot
was tested using a simulated data set in order to vary certain aspects of the
data and see how well the constructed biplot did to convey this information.
The results indicated that the biplot produced a superior display of the data.
The method was also applied to the Mansoor data and it was revealed that
there was not a great deal of separation between the groups comprising the
data.



Chapter 9

Three mode models, biplots
and triplots

9.1 Introduction

Mathematicians at the beginning of the twentieth century, particularly those
in the field of Linear Algebra, showed interest in finding ways to handle more
than one matrix at a time and in understanding the properties and eigen-
decompositions of multiway arrays, also referred to as tensors. The earliest
work in tensor decompositions and the problems related to the rank of multi-
way structures was done by Hitchcock (1927a, 1927b). This chapter takes on
a distinctly different flavour in that consideration is given to the methods for
higher order multiway array or tensor decomposition. In other words, meth-
ods that can be thought of as true three mode decomposition techniques are
discussed. It is arguably the natural progression given the fact that biplot
methodology depends on representing the best rank r approximation to a two
mode dataset. The notion of best rank r needs to clarified in the three mode
context before considering whether biplots can be produced and whether bi-
plot methodology can in fact be extended to produce triplots, a graphical
display that reflects information not only about samples and variables but
also occasions or conditions. Although the ideas underpinning rank in the
context of higher order tensors are very similar to those of matrix rank, there
are nuances that introduce complexities. Here, the notion of tensor rank is
thoroughly explored together with two classes of tensor decomposition meth-
ods, the Tucker three (Tucker3) model as well as the Parallel Factor Analysis
(PARAFAC) model. Although statistical context will be given to these mod-
els with respect to their development as data analysis tools it is important to
be cognisant of the inherent dual perspective in these methods. This can be
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likened to the different perspectives that resulted in the discovery of PCA.
Where Pearson (1901) was concerned with a best fitting line or plane in p
dimensional space, Hotelling (1933) was concerned with reducing the data to
a few fundamental variables which he initially termed factors but later chose
to call components. The former perspective is inherently geometric and sits
at the heart of PCA biplot methodology. The latter perspective is somewhat
more data analytic and seeks to give meaning to the components derived from
a PCA. This paradigm extends to tensor decomposition techniques and this
sentiment is echoed by Bro (1997) when he speaks of using the PARAFAC
model in particular for parameter estimation or simply as a means to decom-
pose multi-collinear data. The significance of this duality is that issues that
are of a modelling nature are not considered here particularly dimensionality
selection as well as component and core interpretation. The interested reader
is referred to Kroonenberg (2008) which provides a comprehensive discussion
on these issues. Instead a more exploratory approach is taken where methods
are considered purely to decompose tensors and these simplified structures
are used to produce biplots and attempt to extend biplot methodology to
produce triplots. Given the fact that the SVD is fundamental to biplot con-
struction, each tensor decomposition method will be considered in terms of
the SVD properties that it preserves. The word tensor will refer to order
three tensors or three mode arrays throughout this chapter.

9.2 Basic definitions

9.2.1 Matrix representations of order three tensors

As a result of the fact that tensor decomposition techniques are often repre-
sented in “unfolded” form and that multilinear rank is defined in this way it
is necessary to consider what precisely is meant by unfolding a tensor in each
of its modes. These definitions differ somewhat to those given in Chapter
2 with the exception of the first unfolding in Figure 9.1. There are various
definitions available but the one given here is taken from Kiers (2000b). It is
easiest to define this notion with the aid of Figure 9.1. Unfolding the tensor
X in the first mode, represented as X(1) is achieved by taking the frontal
slices of the array and placing them next to one another as indicated in the
first diagram in Figure 9.1 so that X(1) has dimensions N × PK. X(2) and
X(3) are defined by placing the lateral and horizontal slices of the array X
next to another with dimensions P ×NK and K ×NP respectively.
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Figure 9.1: Visual representation of various matrix unfoldings of X .

9.2.2 Scalar product, orthogonality and norm of ten-
sors

It is necessary to define each of these concepts in the tensor context because
they become important when placing tensor decomposition techniques in a
SVD framework, particularly the Tucker3 decomposition. Each definition
will simply be stated with the defined concepts being used later on. The first
notion to define is that of the scalar product of tensors.

Definition 9.2.1. The scalar product of tensors X ,Y ∈ <d1×d2×d3, denoted
by < X ,Y >, is defined as

< X ,Y > :=
∑
d1

∑
d2

∑
d3

xd1d2d3yd1d2d3 . (9.1)

In essence, the scalar product is calculated by multiplying corresponding
tensor entries and summing these products. Tensors for which the scalar
product is 0 are deemed orthogonal. Finally the notion of the Frobenius
norm of a tensor is defined.

Definition 9.2.2. The Frobenius norm of a tensor X is given by

||X || =
√
< X ,X >. (9.2)
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9.2.3 Matrix Tensor multiplication

The motivation for defining the notion of tensor matrix multiplication will
be given later. At this stage, it suffices to simply provide the definition.
Naturally the definition will rely on the tensor unfolded in the nth mode,
X(n), where n = 1, 2, 3 and the product referred to as the n-mode product.

Definition 9.2.3. The n-mode product of a tensor X ∈ <d1×d2×d3 with a
matrix U ∈ <Jn×dn is denoted by X×nU and is defined as

X×nU := UX(n). (9.3)

This definition gives the n-mode product in matrix form though it is certainly
possible to rearrange the resulting matrix into a tensor with the dthn dimension
replaced by Jn. As an example consider the unfolding of the tensor X in the
first mode

X(1) =

 x111 . . . x1p1 x112 . . . x1pk
...

...
...

xN11 . . . xNp1 xN12 . . . xNpk

 , (9.4)

and the 1-mode product of X with the matrix Um×n yields

X×1U =


∑N

i=1 u1ixi11 . . .
∑N

i=1 u1ixip1
∑N

i=1 u1ixi12 . . .
∑N

i=1 u1ixipk
...

...
...∑N

i=1 umixi11 . . .
∑N

i=1 umixip1
∑N

i=1 umixi12 . . .
∑N

i=1 umixipk

 .

(9.5)
This can be rearranged into a tensor Ym×p×k with ijkth element {

∑N
h=1 uihxhjk}.

9.3 Higher Order Tensor Rank

The concept of the rank of a tensor is more complex than what is encountered
in the context of matrices. Shedding light on tensor rank requires that the
notion of a decomposable tensor be defined. A tensor X ∈ <d1×...×dk is said
to be decomposable if it can be written in the form

X = x1 ◦ . . . ◦ xk, (9.6)

where xi ∈ <di for i = 1, . . . , k and ◦ is the outerproduct operator. The
tensor X can thus be represented as the outerproduct of k vectors. Armed
with this definition it is possible to formulate the definition of outer-product
rank.
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Definition 9.3.1. A tensor X has outer-product rank, denoted by rank◦(X ),
r if it can be written as the sum of r decomposable tensors but no fewer.
Mathematically this is represented as

rank◦(A) := min{r|A =
r∑

i=1

ui ◦ vi ◦ . . . ◦ zi}.

This definition was first introduced by Hitchcock (1927a) and then indepen-
dently discovered by Kruskal (1977). There is currently no general means
of determining the outer product rank of a tensor (Acar and Yener, 2009).
The next conceptualisation of the rank of a tensor is referred to as multi-
linear rank. This definition generalizes the ideas of column and row rank
of a matrix to higher order tensors. As a consequence of the fact that this
dissertation is concerned with three mode data, the definition will only be
given for tensors of order three. In order to define this concept some notation
is required. Let X := [[xijk]] ∈ <d1×d2×d3 . For fixed values of j and k consider
the vector x•jk := [xijk]

d1
i=1 ∈ <d1 . In the same vein it is possible to define

column vectors xi•k for fixed values of i and k and row vectors xij• for fixed
values of i and j. De Silva and Lim (2004) thus define multilinear rank as

r1(X ) := dim(span<{x•jk|1 ≤ j ≤ d2, 1 ≤ k ≤ d3}),
r2(X ) := dim(span<{xi•k|1 ≤ i ≤ d1, 1 ≤ k ≤ d3}),
r3(X ) := dim(span<{xij•|1 ≤ i ≤ d1, 1 ≤ j ≤ d2}).

(9.7)

Notice that the multilinear rank of the order three tensor,denoted by rank�(X )
is defined by the 3-tuple (r1(X ), r2(X ), r3(X )). This concept was first intro-
duced by Hitchcock (1927b) under the name multiplex rank. Despite the
seemingly complex definition of multilinear rank there is a simple way to
interpret it. The rank r1(X ) is interpreted as the rank of the d1 × d2d3 ma-
trix X(1) that is produced by unfolding the array X in the first mode. The
d2 × d1d3 and d3 × d1d2 matrices X(2) and X(3) can be used to determine
r2(X ) and r3(X ) respectively. The multilinear rank and outerproduct rank
are in general all different, which is a complex departure from the case of
matrices (Bader and Kolda, 2008).

Both multilinear rank as well as the outerproduct rank for a data matrix
can be determined from the SVD of that matrix. The number of non-zero
singular values is equivalent to the outerproduct rank of the matrix and this
number corresponds to both the row and column rank of the matrix. This
does not hold for tensors of order three and higher implying that the outer-
product rank and the multlinear rank need not be the same. Moreover, the
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multilinear rank can comprise different numbers so that the matrix concept
of row and column rank being equivalent does not extend to higher order
tensors.

9.4 Data preprocessing

The fact that PCA is not scale invariant and that the decomposition tech-
niques to be discussed can be considered generalisations of PCA, (Kroo-
nenberg, 1983) makes data preprocessing a necessary consideration in the
context of tensor decomposition techniques. More specifically, the manner
in which data is preprocessed can change the PCA biplot materially. This
section offers a brief and simplistic outline of data preprocessing in a three
mode context. The aim is really to introduce the reader to the complexities
of preprocessing and to explore the effects on the graphical displays in later
sections. Kroonenberg (2008) discusses two primary forms of preprocessing
viz. centering and scaling. The former requires that a constant value be
subtracted from every element in the data matrix and the latter refers to
dividing every element in the data matrix by a constant, so that the scale
of the resulting data values has a fixed value. In this context scale refers
to some measure of variability, oftentimes the standard deviation. These
operations are simple in the context of a two mode data matrix and their
effects are well understood. Centering a n × p data matrix X requires that
the relevant mean be subtracted from each element and scaling requires that
each element be divided by the relevant standard deviation. The means and
standard deviations are calculated from the columns of X and this is the
only way to calculate these quantities. Preprocessing is considerably more
complex in the context of three mode data because there are a number of
different means and scaling factors to consider (Kroonenberg, 2008). In fact
Kroonenberg (2008) states that three mode data allows three different sets of
one-way means, three different sets of two mode means and an overall mean.
Similarly, it is possible to define three different slice scaling factors, three
different fiber scaling factors as well as an overall scaling factor. Table 9.1

Mean Scaling factor
one-way xi.. = 1

PK

∑
j

∑
k xijk si.. = 1

PK−1
∑

j

∑
k(xijk − xi..)2

two mode x.jk = 1
N

∑
i xijk s.jk = 1

I−1
∑

i(xijk − x.jk)2
overall x... = 1

NPK

∑
i

∑
j

∑
k xijk s.jk = 1

NPK

∑
i

∑
j

∑
k(xijk − x...)2

Table 9.1: Different possibilities for means and scaling factors.
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illustrates how the various means and scaling factors can be calculated. The
terms one-way and two mode can be interchanged with slice and fibre pre-
processing. Not only are there considerably more scaling factors and means
to consider but the choice of how to centre and scale is also not a simple
one. The complexities of preprocessing can be untangled to an extent by
understanding what informs the choice of centering and scaling as well as
what the reasons for performing these operations are. The former aspect is
considered first.

Kroonenberg (2008) suggests that the choice of preprocessing technique is
informed by one of two types of arguments. The first of these arguments
relies on choosing the preprocessing technique based on the measurement
characteristics of the variables comprising the data as well as the research
questions which may indicate a specific kind of preprocessing. This is re-
ferred to as content-based preprocessing. The second type of argument relies
on choosing preprocessing methods that are allowed by the model to be used.
Harshmann and Lundy (1984) provides an extensive theoretical framework
for preprocessing techniques that are deemed appropriate and those that
are not. This is referred to as model-based preprocessing. In spite of the
fact that this latter argument exists, Harshmann and Lundy (1984) opine
that preprocessing is largely informed by content-based arguments although
model-based arguments do play a role. Inevitably, within the realm of what is
deemed appropriate by model-based arguments, the choice of preprocessing
is at the discretion of the researcher and hinges on content-based arguments.
Content based considerations include aspects such as whether variances are
comparable or should be made comparable and whether it is better to model
relative to deviations from a base-line which is what centering would achieve.

Another important aspect of deciding on preprocessing is understanding why
it needs to be done at all and what the effects of basic preprocessing tech-
niques are. Kroonenberg (2008) suggests that preprocessing is paramount
because the raw data may obscure the true relationships that are contained
in the data. Without preprocessing the data may provide an inaccurate
description of the relationships between the three modes in the data. The
reason for normalisation is simple in that variables may have arbitrary or in-
commensurate measurement scales and scaling ensures that these differences
do not influence the outcome of any analysis. A consequence of effectively
creating this standard scale across variables is that “all parts of the data ex-
ercise equal influence on the outcomes of the analysis” (Kroonenberg, 2008).
Centering can also be thought of as a means to remove undue influence of
constants in the data. An example comes in the form of considering the
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effect of not removing the centroid from a two way data set when performing
PCA; if the centroid is far from the origin in the space spanned by the vari-
ables then the first component is likely to run from the origin to the centroid
(Kroonenberg, 2008). This influences the decision to centre the data.

It is important to note that there are several centerings and scalings that
can be performed. Several slice or fiber centerings can be performed and this
applies to scaling too. Once the data have been centered in a particular mode
or across several modes, centering across a different mode cannot alter the
centering of the data. In other words, several centerings can be performed
without concern for undoing previous centering operations. Scaling is more
complex in that several scalings can affect one another. Moreover, scaling
perpendicular to the direction of centering will affect the centering opera-
tion. To understand this consider an n × p × k tensor X . Centering across
the subject mode means subtracting the mean xi... Slice normalisation in
the variable mode (using s.j.) would constitute scaling perpendicular to the
centering operation and thus impact the centering (Kroonenberg, 2008). In
this dissertation the focus will be on understanding the effects of the recom-
mended form of preprocessing for profile data which is considered here. The
preprocessing operation is defined as

x∗ijk =
xijk − x.jk

s.j.
. (9.8)

This combines fiber centering across the subject mode with slice centering in
the variable mode. This type of centering is suggested because it ensures that
scores on each variable represents the deviation from the average subject’s
profile. The slice normalisation ensures that all parts of the data have an
equal influence on the analysis. This form of centering is favoured on a
model-based argument basis because it ensures that if a three mode model is
valid for the raw data then it still holds after this form of preprocessing has
been applied (Kroonenberg, 2008). This type of preprocessing is also similar
to that seen in the application of two mode PCA. It is important to reiterate
that this section served to introduce the reader to the complexities of data
preprocessing in the three mode context. Furthermore, although a vast body
of literature exists on the subject it is not geared towards understanding
the effects of preprocessing on an exploratory graphical display but rather
speaks to the effects in a modelling context. For a comprehensive discussion
on data preprocessing, the interested reader is directed to Harshmann and
Lundy (1984).
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9.5 Multilinear rank decomposition

The basic definitions together with the definition of rank in the tensor con-
text affords the means to define a multilinear tensor decomposition, which
is in fact the Tucker3 Decomposition with orthogonality constraints. The
development in this section follows that of De Lathauwer et al. (2000). In
order to see why this decomposition has been referred to as Higher Order
Singular Value Decomposition (HOSVD) by De Lathauwer et al. (2000),
the definition of SVD is restated in different notation in order to facilitate
comparison to the HOSVD. Recall that SVD can be defined as follows:

Definition 9.5.1. Every real matrix X with size n× p can be written as the
product

X = U (1)D(V (2))
′
= D ×1 U

(1) ×2 V
(2) (9.9)

where U (1) is an n× n unitary matrix; V (2) is an p× p unitary matrix and
D is an n× p matrix with properties of

• pseudo-diagonality so that D = diag(σ1, σ2, ..., σmin(n,p)),

• ordering so that σ1 ≥ σ2 ≥ . . . ≥ σmin(n,p) ≥ 0.

Each of the σi are the singular values of X and the columns of U (1) and V (2)

represent the left and right singular vectors respectively. These matrices are
in fact orthonormal bases for the nth mode of the matrix X.

It is now possible to define the HOSVD as follows:

Definition 9.5.2. (De Lathauwer et al., 2000) Any third order tensor X ∈
<d1×d2×d3 can be represented as the product

X = D ×1 U
(1) ×2 U

(2) ×3 U
(3) (9.10)

where U (n) is an dn× dn unitary matrix, D is a tensor ∈ <d1×d2×d3 of which
the subtensors Ddn=α obtained by setting the nth index to α has the following
properties

• all-orthogonality so that two subtensors Ddn=α and Ddn=β are orthogo-
nal for all possible values of n, α, β subject to α 6= β. This means that
< Ddn=α,Ddn=β >= 0 when α 6= β

• ordering so that ‖Ddn=1 ‖≥‖Ddn=2 ‖≥ . . . ≥‖Ddn=Dn ‖.

The Frobenius norm of the subtensor ‖Ddn=i ‖ denoted by σ
(i)
n are referred to

as the n-mode singular values of X and U (n) comprises the n-mode singular
vectors.
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Figure 9.2: Visual representation of the Tucker3 decomposition of X .

Figure 9.2 affords a visual illustration of the Tucker3 decomposition. It is
interesting to compare the SVD definition to that of HOSVD definition in
order to understand the similarities and differences between them. One key
property of the SVD is that it defines an orthonormal basis for each of the
row and column spaces of an n× p matrix X. The columns of the matrices
U and V represent the orthogonal bases for the row and column space of
X respectively. This property is preserved in the HOSVD context where
the matrices U (n) represent orthonormal bases for each of the n-mode vec-
tor spaces represented. Furthermore the ordering property of the singular
values is also preserved. The difference lies in the fact that the tensor D
is a full tensor rather than being pseudo-diagonal which would imply that
non-zero entries could only occur when indices i1 = . . . = iN as in the SVD
instance. HOSVD requires that the tensor D adhere to the property of all-
orthogonality which is also obeyed by the matrix D in the case of SVD. De
Lathauwer et al. (2000) list a myriad other properties that strengthen the
notion that HOSVD is one generalisation of SVD. The previous remark raises
an important fact in that although HOSVD is considered a generalisation of
SVD, it is not the only generalisation. SVD allows a matrix to be uniquely
expressed as the sum of the outerproduct of two vectors (X =

∑R
i=1 ui ◦ vi

where R is the rank of the matrix X). This property does not extend to
HOSVD. A class of models that preserves this property will be discussed
later. In essence, this decomposition is based on the mulitlinear rank of the
tensor X . Before considering whether the truncated HOSVD provides the
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best low multilinear rank approximation in the least squares sense it is in-
structive to put the HOSVD into a more familiar matrix representation akin
to the SVD representation.

A matrix representation of the HOSVD is simply obtained by the process
of unfolding the tensors X and D in equation (9.10). As an example consider
the unfolding in the first mode which yields

X(1) = U (1)D(1)(U
(3) ⊗U (2))

′
. (9.11)

Similarly, expanding in the second and third modes yieldsX(2) = U (2)D(2)(U
(3)⊗

U (1))
′

and X(3) = U (3)D(3)(U
(2) ⊗U (1))

′
. This still does not correspond to

the SVD definition that is most familiar viz. X = UDV
′
. For the purpose

of illustration, the unfolding in the first mode will be used. Define the d1×d1
diagonal matrix Σ(1)

Σ(1) := diag(σ
(1)
1 , σ

(1)
2 , σ

(1)
3 , . . . , σ

(1)
d1

), (9.12)

as well as the column-wise orthonormal matrix (V (1))
′

given by

(V (1))
′
= D̃1.(U

(3) ⊗U (2))
′
, (9.13)

where
D̃(1) = (Σ(1))−1D(1), (9.14)

is a normalized version of D(1). De Lathauwer et al. (2000) state that the

matrices Σ(1) and (V (1))
′

make it possible to represent the HOSVD as an
SVD of the matrix unfolding X(1) given by

X(1) = U (1)Σ(1)(V
(1))

′
. (9.15)

The only question left to answer is whether truncating the HOSVD by simply
using the first two columns of each of the matrices comprising the SVD of
the unfolded matrix in (9.15) yields the best low multilinear rank-(2,2,2)
approximation of the tensor X in a least squares sense. In Chapter 4 it
was shown that ordinary SVD yields the best low rank approximation of the
matrix by simply considering the truncated form of the SVD. Kroonenberg
and De Leeuw (1977) made an important contribution by devising a least
squares algorithm to estimate D and U (1),U (2),U (3). Some attention will be
given to detailing the mechanism by which this algorithm operates. Formally,
the problem at hand can be thought of as seeking the best rank-(R1, R2, R3)
approximation, X̂ to the N × P ×K tensor X . Any least squares solution
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would seek to minimise the error, implying that the function to be minimsed
can be defined as

‖X − X̂ ‖2=‖X(1) −U (1)D1(U
(3) ⊗U (2))

′ ‖2, (9.16)

where D(1) has dimensions R1 × R2R3 and U (1),U (2) and U (3) are column-
wise orthonormal matrices with dimensions N × R1, P × R2 and K × R3

respectively. The algorithm works on the basis of iteratively estimating one
of the four parameters D,U (1),U (2) and U (3) conditional on the remaining
parameters being fixed. Notice that the unfolded core array, D(1) can be
expressed in terms of X(1) together with the component matrices implying
that

D(1) = (U (1))
′
X(1)(U

(3) ⊗U (2)). (9.17)

Substituting (9.17) into the unfolding of the approximation X̂(1) yields

U (1)D1(U
(3) ⊗U (2))

′
= U (1)(U (1))

′
X(1)(U (3) ⊗U (2))(U (3) ⊗U (2))

′

= U (1)(U (1))
′
X(1)(U (3)(U (3))

′ ⊗U (2)(U (2))
′
). (9.18)

Andersson and Bro (1998) defineM = X(1)(U (3)(U (3))
′⊗U (2)(U (2))

′
) which

allows (9.18) to be expressed as U (1)(U (1))
′
M . Expanding (9.16) with re-

spect to the trace operator results in

tr
(
(X(1) −U (1)(U (1))

′
M)(X(1) −U (1)(U (1))

′
M)

′)
= tr(X(1)X

′

(1))− 2tr(U (1)(U (1))
′
MX

′

(1)) + tr(U (1)(U (1))
′
MM

′
U (1)(U (1))

′
).

(9.19)

Using the fact that MX
′

is equivalent to MM
′
, U (1) is column-wise or-

thonormal and that tr(XX
′
) is fixed, minimising (9.19) is equal to minimis-

ing

− 2tr(U (1)(U (1))
′
MX

′

(1)) + tr(U (1)(U (1))
′
MM

′
U (1)(U (1))

′
)

= −tr((U (1))
′
MM

′
U (1)). (9.20)

Given that the development assumes that all parameters but U (1) are fixed,
(9.19) is being minimized in U (1). Minimising (9.19) is thus equivalent to
maximising tr((U (1))

′
MM

′
U (1)) (Andersson and Bro, 1998). As a result of

the fact that MM
′

is symmetric and that the trace of a matrix is equal to
the sum of its eigenvalues it is clear that the optimal matrix U (1) is given
by the first R1 left singular vectors of the SVD of M . The estimation of the
optimal U (2) and U (3) follows a similar process as that described for U (1)
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and this forms the basis for the least squares algorithm. Before detailing
the skeleton of the alternating least squares (ALS) algorithm some thought
must be given to what is to be used as the convergence criterion. Closer
inspection of tr((U (1))

′
MM

′
U (1)) reveals that it is in fact equivalent to

‖D(1) ‖2. Andersson and Bro (1998) contend that this “provides a robust and
monotonically increasing parameter that may be used to detect convergence”.
A generic algorithm for estimation is constructed as follows:

1. Initialise U (2) and U (3).

2. Calculate M (1) from U (2), U (3) and X(1). Find U (1) as described.

3. Calculate M (2) from U (3), U (1) and X(2). Find U (2) as described.

4. Calculate M (3) from U (1), U (2) and X(3). Find U (3) as described.

5. Check for convergence based on ‖D(1) ‖2. If convergence occurs, ter-
minate else return to step 1.

This algorithm is guaranteed to converge to a local minimum. In order to
check the stability of the solution Kroonenberg (2008) suggests initialising
U (2) and U (3) in different ways and comparing the resulting estimates. The
most common way to initialise these matrices is by using the first R2 and
R3 left singular vectors of X(2) and X(3) respectively and that is the con-
vention adopted in this dissertation. There is a vast body of literature on
various methods of introducing orthogonality constraints to the HOSVD,
but given that the purpose here is to explore methods of representing a
decomposition, these are not considered here. Andersson and Bro (1998)
provides a comprehensive overview of the various methods used. Recall that
the primary consideration was whether the truncated HOSVD yielded the
best rank-(R1, R2, R3) decomposition of the tensor X in a least squares sense
and it turns out that the truncated HOSVD solution tends not to agree with
the least squares solution which is deemed the best rank-(R1, R2, R3) ap-
proximation in a least square sense. The least squares estimation procedure
was implemented using the N-Way Toolbox in Matlab that was developed by
Andersson and Bro (2000).

9.5.1 The Tucker3 biplot

With due consideration having been given to the development as well as
the estimation of the parameters of the Tucker3 or HOSVD decomposition
it is now possible to consider the construction of what Kroonenberg (2008)
refers to as a nested-mode biplot. The construction will be based on the
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HOSVD representation given in (9.15). It is known that X(1) has dimen-
sions N × PK so the constructed biplot will comprise N samples and PK
variable axes. Two modes, the occasion and variable mode, are thus nested
giving rise to the name used by Kroonenberg (2008). Chapter 4 detailed the
construction of the biplot based on the SVD and following the same method-
ology discussed there it is simply a case of plotting the rows of G = U (1)Σ(1)

to represent the observations and the rows of the H = V (1) to represent
the variable axes with the former in principal-coordinates and the latter in
normalised co-ordinates. Geometrically the data are being represented in the
space <PK and the N sample points are being projected onto the plane, the
basis for which comprises the columns of U (1).

A rather obvious question is the choice of values for R1,R2 and R3. G has
dimensions N × R1 and H has dimensions PK × R1. It is thus imperative
that R1 = 2 and in general that the mode in which the matrix be unfolded is
approximated with two components. The values for R2 and R3 can be arbi-
trary though Kroonenberg (1983) provides restrictions for these values. It is
certainly possible to fix R1 to be two and compare the fit of decompositions
for various values of R2 and R3 based on the amount of explained variability,
however this speaks to dimensionality selection which is beyond the scope of
this dissertation. For the purpose of this dissertation it is convenient to find
the best rank-(2, 2, 2) approximation. The same reasoning can be applied to
X

′

(2) = V (2)Σ(2)(U
(2))

′
. Geometrically, the data are being represented in the

space <P and the NK sample points are being projected onto the plane, the
basis for which is the columns of U (2). There is a key difference between the
construction of the Tucker3 biplot and the PCA biplots considered earlier.
Where as PCA biplot construction relies on the use of the right-singular vec-
tor matrix V , the Tucker3 model estimates left-singular vector matrices U
and these are used in the process of constructing the Tucker3 biplot. All the
interpretational tools that are valid for the PCA biplot apply to the Tucker3
biplot (Kroonenberg, 2008).

9.5.2 Application to Mansoor data

With the construction process of the Tucker3 biplot having been explained,
it is now possible to apply this method to the Mansoor data in order to see
what these biplots reveal about the structure of the data. In the applica-
tion, the centered data as well as the centered and scaled data were used to
construct the biplots. The centering and scaling used is that which is shown
in (9.8). A Tucker3 model was fitted with two components in each of the
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modes. It is important to remain cognisant of the fact that after estimating
the Tucker3 model, the data were matricised to form a 29× 28 data matrix
akin to the wide combination matricisation seen in Chapter 4. This will be
termed the wide Tucker3 biplot. Similarly, the data were matricised to form
a 116× 7 matrix akin to the tall combination matricisation seen in Chapter
4 and this will be termed the tall Tucker3 biplot. These biplots are assessed
on how well they capture the structure inherent in the data.

Figure 9.3: Wide combination Tucker biplot for centered Mansoor data.

Figure 9.3 illustrates the wide Tucker3 biplot for the centered Mansoor data.
What is immediately obvious is that the distribution of the observations is
similar to that seen in Figure 4.7. By projecting onto the variable axes it
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is evident that there is a reduction in variation over time. If occasion 4 is
considered as an example it is clear that the observations projected onto
the variable axes for this occasion display relatively small variation when
compared to occasion 1. Moreover it generally seems to be the case that
infants comprising the HIV + group achieved relatively lower scores across
occasion when compared with the groups of uninfected infants. Although
the latter observation is also made in Figure 9.4, the wide Tucker3 biplot for
the centered and scaled data, the reduction in variation is not immediately
distinguishable in this plot. The technique is thus not scale invariant. This
is further evidenced by the fact that the variable axes look markedly differ-
ent in the respective plots. The fiber centering employed implies that the
angles between axes provide an approximation to the correlation between
the relevant variables. Consider V 5 and V 7 for example. The correlation
between these two variables was seen to be 0.73, 0.86, 0.36 and 0.17 over the
four occasions. This correlation profile can be seen in Figure 9.3 with the
variable axes being near orthogonal at occasions 3 and 4 but much closer
at occasions 1 and 2. It is also revealed that V3 at occasions 1 and 2 have
an association and this is corroborated by the correlation coefficient of 0.55.
Not all associations are well represented. The orientation of the variable
axes for occasion 4 suggests that all variables are associated bar V 5. V 6
is not strongly correlated with any of the variables except V 7 and this is
clearly not well represented on the biplot. It is important to be aware of the
fact that this small angles between variable axes suggest that relationships
between the relevant variables should be investigated by considering the cor-
relation matrix. The biplot will never represent two variables axes as nearly
orthogonal if they do in fact have a relationship. Comparing Figure 9.4 to
the correlation matrices for the data reveals that this biplot does relatively
well in conveying the associations between variables accurately. Naturally,
not all associations will be well represented because the sample points are
in principal co-ordinates and this is based on a model approximation to the
data. In spite of this, these biplots suggest similar answers to the questions
put forward in the Mansoor et al. (2009) investigation as those methods that
have been discussed previously. Notice the extensive negative values for the
calibrations on each of the axes for the tall Tucker biplots. Although it is not
common, some observations clearly score negative values in Figure 9.5. This
is a product of the approximation. The model does not fit the data perfectly.

Figures 9.5 and 9.6 illustrate the tall Tucker3 biplot for the centered as
well as the centered and scaled data respectively. One notable difference
in these biplots when compared to Figure 4.8 is that the axes are calibrated
with multiple markers. This is because of the fiber centering that was used in
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Figure 9.4: Wide combination Tucker biplot for centered and scaled Mansoor
data.

preprocessing the data. In Chapter 4, the data was simply matricised to form
a tall combination matrix and PCA applied to produce a biplot. The mean
used in the calibration of each axes was an overall mean calculated from all
the observations for each variable. In this context however the fiber centering
is performed prior to the Tucker3 analysis and so by similar reasoning to that
used in Chapter 7 on CPC biplots, multiple markers must be used to cali-
brate the axes. Alternatively a single set of markers can be used which would
represent deviations from the overall mean for each of the variables. One of
the key revelations of the tall combination PCA biplot was that the variation
in the data changes over time. This can be seen in Figure 9.5 with occasion
1 displaying the most variation followed by a distinct reduction in variation
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Figure 9.5: Tall combination Tucker biplot for centered Mansoor data.

over time. This phenomenon is not as obvious in Figure 9.6 however there
is a clear reduction in variation from occasion 1 to occasion 2. Occasions 3
and 4 show similar variation. It is interesting to note that the orientation of
the axes in Figure 9.6 is quite similar to that seen in Figure 4.7. The biplot
in Figure 9.5 does not look quite as similar however it does reveal similar in-
formation about the associations between variables with V 5 and V 7, V 1 and
V 4 as well as V 2 and V 6. These pairs of variables show similar relationships
here and in Figure 4.7. The reason why the similarity between Figure 9.6
and Figure 4.8 is so interesting is because the former biplot is based on scaled
data where as the latter biplot is not constructed from scaled data yet they
reveal similar information about variable associations. This could be because
slice normalisation ensures equal influence across occasion but does preserve
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differences in variation within an occasion. The fact that the variation in the
data is studied from the perspective of the left-singular vectors as opposed
to the right-singular vectors could also play a role. Ultimately these biplots
do not indicate anything substantially different to the tall combination PCA
biplots.

Figure 9.6: Tall combination Tucker biplot for centered and scaled Mansoor
data.

9.6 Outerproduct rank decomposition

Although the multilinear decomposition of a tensor is amenable to producing
biplots, it is important to note that this can only be done after the tensor
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Figure 9.7: Visual representation of a triadic decomposition of X̂ .

has been unfolded. Kiers (2000a) remarked that these plots “rely on two
mode PCA models, obtained after rewriting the three mode model at hand”.
The question is thus whether it is possible to construct a plot that does
not rely on this unfolding process and captures information about all ways
comprising the data, a triplot. The reason why the HOSVD was not used in
considering the construction of such a plot was because it did not preserve the
property of the unique link between components. To better understand this,
consider Figure 9.7. In order to develop a triplot, the ideal would be to have
a unique decomposition of the tensor that allows each mode to be displayed
in a single plot. The HOSVD can be represented as a triadic decomposition,
however components are not uniquely linked and as such choosing which set
of components to represent is not a simple task. A unique triadic decompo-
sition would remove this problem and make it a simple matter. In order to
construct such a decomposition it is necessary to consider the outerproduct
rank decomposition of the tensor which displays this uniqueness property
that is sought. This is precisely the type of decomposition provided by the
PARAFAC model. It can be thought of as another generalisation of SVD
that preserves the uniqueness property of the components and seeks to de-
termine the best rank R approximation where R is related to the concept of
outerproduct rank. Define three component matrices (U (1))N×R, (U (2))P×R
and U

(3)
K×R so that

X̂ =
R∑
r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r . (9.21)

This is essentially the PARAFAC model. It should be noted that if R is
chosen so that it corresponds with the outerproduct rank of a tensor X then
the model will fit perfectly. Given the fact that the columns of each of the
component matrices are uniquely linked to another so that the first columns
in each of the matrices U (1), U (2) and U (3) are exclusively linked for example
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it is only natural to assert the existence of a single set of components with
different coefficients in each of the modes. For the sake of completeness,
some statistical context is provided. The year 1970 saw the development of
the PARAFAC model by two independent researchers, Harshmann (1970) as
well as Carroll and Chang (1970). Harshmann (1970) conceived this model
as an extension of component analysis and with Cattell’s (1944) parallel pro-
portional profiles principle he managed to show that PARAFAC solved the
problem of rotational indeterminacy that plagued ordinary two-mode PCA
as well as the Tucker3 model. This model was independently developed by
Carroll and Chang (1970) and called Canonical Decomposition (CANDE-
COMP). The contribution of the latter authors came in the form of tackling
algorithmic aspects of the model rather than developing it for the analysis of
standard three mode data (Kroonenberg, 2008). It was Harshmann (1970)
who developed the model for standard three mode data and in order to un-
derstand the modelling principle underpinning the PARAFAC model it is
necessary to explore his motivations.

The foundation of two mode factor analysis is the notion that groups of
highly correlated variables represent single underlying constructs or factors
responsible for the observed correlations and the researcher wishes to uncover
these factors and give meaning to them. Harshmann (1970) contends that
what is fundamental to using factor analysis as a tool of scientific discovery is
“the distinction between its ‘descriptive’ and its ‘explanatory’ application”.
The former application is concerned with finding a convenient and simplified
representation of the relationships in the data where as the explanatory ap-
plication seeks to provide sound estimates of the true underlying influences
responsible for the structure of the observed data. This duality speaks di-
rectly to the use of methods like varimax rotation to simplify the factors and
make them more interpretable. Harshmann (1970) refers to this as the factor
analysis solution not being sufficiently constrained by the data leaving the
problem of rotational indeterminacy. It is thus an arbitrary exercise to chose
the solution which is most convenient and simplest to interpret.

This is the problem that Harshmann (1970) sought to address in the de-
velopment of the PARAFAC model as a statistical data analysis tool. His
solution rested on the parallel proportional profiles idea put forward by Cat-
tel in 1944. Cattel (1944) suggested that in order for a factor to correspond
to some real “organic unity” in the data, it would surely retain its pattern
from one study to another changing only in its impact in the latter study.
This means that whilst the pattern is retained, the loadings are simultane-
ously raised or lowered to account for the fact that the impact of the factor
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will differ from one study to another. The factors were thus the same in each
study, accounting for the parallel aspect of the nomenclature but they would
vary proportionately across studies. He further contended that no arbitrary
“mathematical abstraction” would exhibit such behaviour. This argument
lay at the heart of the PARAFAC model but it imposes rather stringent con-
ditions on the nature of the variation in the data. The data must exhibit
strong system variation and this concept is best illuminated by way of an
example taken from Harshmann (1970). Consider an economic system in
which a data set comprises a number of businesses measured on a number
of variables over a number of months. Here the notion of system variation
is reasonable since there are underlying factors that affect all businesses to
varying degrees. One such factor could be inflationary pressure. Data of this
nature lends itself to analysis with the PARAFAC model, however in the
absence of this type of system variation, applying the PARAFAC model is
problematic.

9.6.1 Degeneracy

This leads into the discussion on degeneracy. It is a well studied phenomenon
that Harshmann (1970) suggests results from applying the PARAFAC model
to data that contains more unique variation which he terms Tucker variation.
In order to appreciate the problem of degeneracy it is necessary to have a
basic understanding of what the PARAFAC model seeks to do on a more
intuitive level. Consider the frontal slices of a three mode data array. The
PARAFAC model is geared towards finding a common set of component axes
across each of the frontal slices called factors. These factors have the same
orientation across slices but can be stretched or shrunk to indicate the im-
portance of a particular factor at each level of the third mode. In the absence
of true systemic variation however the factors need not only be reweighted
but their orientation, the angle between the axes, must also change. When
Tucker (1966) originally introduced the Tucker3 model there was a form that
was unconstrained. The HOSVD is a constrained form of the Tucker3 model.
As a result of the fact that the unconstrained Tucker3 model would allow for
axes orientation to change, Harshmann referred to data containing this kind
of variation as Tucker variation. The PARAFAC model attempts to compro-
mise when faced with data of this nature by introducing a shearing operator
in one mode which forces the angles between the factors to change. To com-
pensate for this an anti-shear which has the opposite affect of the shearing
operator is applied in a second mode, the variable mode for example. This
shearing effect is illustrated in Figure 9.8 where the original shape is a rect-
angle with orthogonal axes as seen on the left. The effect of shearing is to
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force the y-axis closer to the x-axis thereby changing the angle between the
axes. This in fact causes the coefficient estimates to diverge but their con-

Figure 9.8: Illustration of the shear operator (Harshmann,2004).

tribution to the convergence criterion tends to cancel out which may lead
to convergence at times (Harshmann, 2004). There are instances where this
compromise that the PARAFAC model tries to make is not sufficient and
no solution can be found. This provides an intuitive understanding of the
notion of degeneracy. With respect to the estimated component matrices,
the anti-shear tends to create highly negatively correlated columns in one of
the component matrices which is evidence of degeneracy. Furthermore, if the
estimating algorithm takes an extraordinary amount of time to converge this
could point to a degenerate solution.

The discussion on degeneracy from a modelling perspective makes the con-
cept relatively simple to understand but the focus is on the PARAFAC model
as a tensor decomposition technique. What remains is to understand what
degeneracy implies for using the PARAFAC model as a decomposition rather
than a modelling technique. Degeneracy represents a much more fundamen-
tal problem in this regard; it implies that the best rank R solution does not
exist. De Silva and Lim (2004) produced seminal work on the topic of best
rank R approximations for tensors. In fact Lim (2004) opined that rank is
an algebraic concept where as approximate solutions is an analytic concept.
The amicable relationship between these two concepts for matrices need not
necessarily extend to third order tensors. De Silva and Lim (2004) showed
that the best rank R problem has no general solution for higher order ten-
sors. This implies that a best rank R approximation may not exist. For some
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time researchers clung to the hope that tensors that exhibited this patho-
logical behaviour comprised a small number, but De Silva and Lim (2004)
showed that the set of tensors that fail to have a best rank R approximation
has positive volume, which means that there is a non-zero probability that
a tensor chosen at random will fail to have a best rank R approximation.
Furthermore, regardless of the choice of norm used in the approximation,
Frobenius or otherwise, the problem still fails to have a solution in general
(De Silva and Lim, 2004). A tensor X is deemed degenerate if it can be
approximated arbitrarily well by a factorisation of lower rank (Kolda and
Bader, 2008). Figure 9.9 illustrates this notion by showing the problem of
approximating a rank three tensor Y with a tensor of rank two. A sequence
of rank two tensors X k are shown to give increasingly better approximations
to the tensor Y with the best estimate necessarily on the border of the space
of rank two and rank three tensors. The problem lies in the fact that the
space of rank two tensors is not closed which implies that a sequence of rank
two tensors could converge to a tensor of rank other than two. In Figure 9.9,
the sequence converges to a tensor of rank three. This is precisely why the
definition of degeneracy speaks to a tensor X being approximated arbitrarily
well by a factorisation of lower rank. There simply is no best rank two tensor
to approximate Y because the sequence of rank two tensors {X (k)} converge
to a rank three tensor.

Figure 9.9: Sequence of tensors converging to one of higher rank (Kolda and
Bader, 2008).

De Silva and Lim (2004) suggest that when degenerate solutions arise they
are not truly providing a best rank R approximation of the given tensor X ,
but rather providing a solution to a slightly perturbed version of the tensor
X . This thought aligns with the fact that the PARAFAC model tries to com-
promise when faced with data that cannot be modelled with this technique.
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One may be tempted to suggest that if a degenerate solution arises then it
is satisfactory since the tensor has been decomposed and it serves to give
a good approximation to the rank R approximation to the tensor X . The
problem with this reasoning is that if degeneracy occurs it suggests that the
best rank R approximation to a tensor X does not exist; it is not possible to
approximate the best rank R tensor decomposition to the tensor X precisely
because it does not exist. This is why these authors refer to the problem
of determining the best rank R solution as being “ill posed”. Recall that a
decomposition technique such as the PARAFAC model was considered to be
the best candidate for producing a triplot. In fact, Araújo (2009) used the
PARAFAC model to produce such a plot that afforded the means to explore
interactions between all three modes in a single display. The contention here
is that the problem of degeneracy is a serious one and given that it is not a
rare or pathological phenomenon, the PARAFAC model does not serve well
as a tool for constructing an exploratory plot. The ideal would be a method
that can be applied generally without having to be concerned with problems
like degeneracy.

Interestingly the problem of degeneracy can be remedied by applying an
orthogonality constraint to a component matrix in one of the modes. Harsh-
mann and Lundy (1984) suggest that this will often suffice to block the
degeneracy provided that the correct mode is selected and “there is no string
internal characteristic of the data promoting highly correlated factors”. Fur-
thermore, the data should determine in which mode the orthogonality con-
straint is applied. This is because it makes most sense to apply the constraint
which forces factors to be uncorrelated to the mode in which this assertion
has some intuitive appeal. It should be fairly obvious why an orthogonality
constraint prevents degeneracy from occurring since it implies that factors
must be uncorrelated. It becomes clear that even the task of choosing where
to apply the orthogonality constraint is not a simple matter. The contention
here is that the PARAFAC decomposition is thus not ideal for constructing
an exploratory plot. There is hope yet and it comes in the form of a decom-
position technique that preserves the outer product decomposition property
of the PARAFAC model together with the orthogonality property of the
HOSVD. This technique is referred to as Tensor Singular Value Decomposi-
tion (TSVD).
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9.7 Tensor SVD

It is simplest to begin the exploration of this decomposition technique with
a definition.

Definition 9.7.1. (Chen and Saad, 2009) A tensor X ∈ <d1× d2×d3 admits
a tensor SVD if it can be written in the form

X =
R∑
r=1

σru
(1)
r ◦ u(2)

r ◦ u(3)
r , (9.22)

where σ1 ≥ σ2 ≥ . . . ≥ σR > 0 and <u
(n)
j ,u

(n)
k >= δij for n = 1, 2, 3. δij is

the Kronecker delta, σr’s are the singular values and u
(n)
r for r = 1, 2, . . . , R

are the n-mode singular vectors.

An equivalent representation, also taken from Chen and Saad (2009), is
given by

X = D ×1 U
(1) ×2 U

(2) ×3 U
(3), (9.23)

where D ∈ <R×R×R is the diagonal core tensor with Dii...i = σi and

U (n) =
(
u

(n)
1 ,u

(n)
2 , . . . ,u

(n)
R

)
∈ <dn×R, (9.24)

are orthogonal matrices for n = 1, 2, 3. It is interesting to note the simi-
larities between (9.23) and the definition of HOSVD given in (9.10). The
fundamental difference between the two decompositions is that D is a diago-
nal tensor in the TSVD instance where as it is often a full tensor in the case
of HOSVD. There is an intimate link between the HOSVD and the TSVD in
that a tensor X will admit a TSVD if and only if the core tensor arising from
a HOSVD is diagonalisable but in general this cannot be done (Bro, 2008).
A tensor may thus fail to have a decomposition as defined in (9.23). This
would seem to put paid to the notion that the TSVD can in fact provide
the most general means to construct a triplot but exploring the implications
of the TSVD definition will prove otherwise. The TSVD definition refers to
a tensor of rank R being expressed as in (9.23). It can be shown that if a
tensor X is decomposed as in (9.23) and the vectors comprising the outer-
product terms are linearly independent, then the tensor X will have rank
R. The importance of this assertion is that a TSVD might not exist to fully
decompose a tensor into the sum of R outerproducts where R is the rank of
the tensor but this does not make a statement regarding the ability to use
TSVD to find a lower rank approximation to the tensor X . Here the problem
of interest is to minimise

‖X −
r∑
i=1

σiu
(1)
i ◦ u

(2)
i ◦ u

(3)
i ‖2, (9.25)
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subject to the constraint that < u
(n)
j ,u

(n)
k >= δij for n = 1, 2, 3. It has al-

ready been established that this problem might not have a solution if r = R,
the rank of the tensor X . It is thus necessary to determine which values
of r result in a solution. Chen and Saad (2009) showed that the minimi-
sation problem will always have a solution for any X ∈ <d1×d2×d3 and any
r ≤ min{d1, d2, . . . , dn}. The proof will not be included here but some math-
ematical detail is required in order to explain the mechanics of the estimating
algorithm. Chen and Saad (2009) showed that (9.25) can be written as

‖X −
r∑
i=1

σiu
(1)
i ◦ u

(2)
i ◦ u

(3)
i ‖2=‖X ‖2 −

r∑
i=1

σ2
i . (9.26)

The implication of this is that minimising (9.25) can be based on maximising
the quantity

∑r
i=1 σ

2
i subject to the same orthogonality constraints specified

earlier. On this basis, Chen and Saad (2009) define the Langragian as

L =
r∑
i=1

σ2
i −

R∑
j,k=1

3∑
n=1

µnj,k(<u
(n)
j ,u

(n)
k > −δjk), (9.27)

where
σi = X ×1 (u

(1)
i )

′ ×2 (u
(2)
i )

′ ×3 (u
(3)
i )

′
, (9.28)

and µnj,k terms represent the langrangian multipliers. Remaining ever cog-

nisant of the fact that the maximisation is done relative to u
(n)
i , the partial

derivative of L with respect to u
(n)
i is given as

∂L

∂u
(n)
i

= 2σiv
(n)
i −

r∑
j=1

µnj,iu
(n)
i −

r∑
k=1

µnk,iu
(n)
i , (9.29)

for any n and i. The definition of v
(n)
i is best explained by way of example.

The term v
(1)
i is equal to the unfolding of the tensor X ×2 (u

(2)
i )

′ ×3 (u
(3)
i )

′

in the first mode with dimensions d1 × 1 × 1. Similarly v
(2)
i is equal to

the unfolding of the tensor X ×1 (u
(1)
i )

′ ×3 (u
(3)
i )

′
in the second mode with

1× d2 × 1. The unfolding vni is also the partial derivative of σi with respect

to u
(n)
i and a simple application of the product rule yields the first term in

(9.29). Setting the partial derivative equal to zero and collecting all terms
referring to the same n in matrix form yields

[
vn1 . . .v

n
r

] σ1
. . .

σr

 =
[
u

(n)
1 . . .u(n)

r

]
µ
(n)
1,1+µ

(n)
1,1

2
. . .

µn1,r+µ
n
r,1

2
...

. . .
...

µnr,1+µ
n
1,r

2
. . .

µnr,r+µ
n
r,r

2

 ,

(9.30)
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for n = 1, 2, 3. This expression can be represented in a neater fashion as

V (n)Σ = U (n)M (n), n = 1, 2, 3 (9.31)

where the matrices V (n),Σ,U (n) and M (n) correspond to those in (9.30)
respectively and note that M (n) is symmetric. An estimating algorithm
is required to estimate matrices U (n) and M (n) that satisfy the system of
equations in (9.31). Note that by virtue of the fact that U (n) is orthogonal
andM (n) is a symmetric matrix, the right hand side of (9.31) is thus the polar
decomposition of V (n)Σ and this is at the heart of the estimating algorithm.
Suppose that a matrix A has SVD WDY

′
, then the polar decomposition of

A can be defined as the product of the orthogonal matrix WY
′

and positive
semi-definite symmetric matrix Y DY

′
. The significance of this is that it

affords the means to calculate the polar decomposition from the SVD of
V (n)Σ. It is now possible to detail the estimating algorithm as presented in
Chen and Saad (2009).

1. InitialiseU (1),U (2) andU (3) which is often based on truncated HOSVD.

2. For n=1,2,3 do the following:

3. Compute V (n) .

4. Compute Σ.

5. Compute [Q(n),H(n)]← polar decomposition(V (n)Σ).

6. Update U (n) ← Q(n).

7. Check for convergence based on
∑r

i=1 σ
2
i . If convergence has not been

obtained return to step 2.

The algorithm described is based on an alternating procedure where all but
one parameter, U (n), is fixed during each step. Furthermore, Chen and Saad
(2009) could not prove that the algorithm converged globally so it may suffer
from the same shortcoming as alternating least squares algorithms in general.
With the estimating algorithm having been discussed attention turns to the
triplot.

9.7.1 Triplot construction

Now that a suitable decomposition technique has been found, thought must
be given to constructing a plot that simultaneously represents each of the
three modes comprising the tensor X . This construction is based on the
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work by Araújo (2009), the only modification being the choice of tensor
decomposition technique employed. The first matter to attend to is the
choice of value for r in (9.25). In order for the approximation to yield a
result, r ≤ min{d1, d2, d3}, the dimensions in each of the modes. Choosing
r = 2 allows the matrices U (1),U (2) and U (3) to be represented in a two
dimensional plot. Furthermore it is not likely that any three mode data
array will have less than two entries in any one of the modes implying that
the TSVD approximation can always be found. Is is thus assumed that
r = 2 for the remainder of this chapter. The TSVD decomposition can be

Figure 9.10: Representation of the triplot construction.

represented as

x̂ijk =
2∑

n=1

σnu
(1)
in u

(2)
jnu

(3)
kn . (9.32)

As an example, consider the expression for x̂111 which is given by

x̂111 = (σ1u
(1)
11 )u

(2)
11 u

(3)
11 + (σ2u

(1)
12 )u

(2)
12 u

(3)
12

= y1y2y3 + z1z2z3.

(9.33)
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Notice that for the purpose of explaining the construction process, the σi
terms have been grouped with the elements of the first matrix U (1). The
effect of these values will be explored later but for the moment it suffices
to treat them in an arbitrary fashion just for the purpose of explaining the
construction of a triplot as suggested by Araújo (2009). With the aid of
Figure 9.10 it is possible to interpret this representation in a graphical sense.
S1 represents the first row of the matrix U (1) scaled by the singular values
plotted relative to Cartesian axes, so labelled because the first mode often
refers to subjects. V1 and T1 represent the rows of U (2) and U (3) plotted
relative to Cartesian axes, labelled as they are due to the fact that variables
and time often comprise the second and third modes respectively. V1T1 is
the result of taking the product of corresponding elements of the vectors
OV 1 and OT 1. Consider a somewhat different representation of each of the
elements comprising the expansion in (9.33).

y1 = OS1cos(β1 + θ1) z1 = OS1sin(β1 + θ1) (9.34)

y2 = OV 1cos(α1 + α2) z2 = OV 1sin(α1 + α2) (9.35)

y3 = OT 1cos(α1) z3 = OT 1cos(α1) (9.36)

y2y3 = u1 = OV1T1cos(θ1) z2z3 = v1 = OV1T1sin(θ1). (9.37)

(9.38)

With this notation (9.33) can be written as

x̂111 = y1u1 + z1v1

= OS1cos(β1 + θ1)OV1T1cos(θ1) +OS1sin(β1 + θ1)OV1T1sin(θ1))

= OS1OV1T1cos(β1 + θ1 − θ1)
= OS1OV1T1cos(β1)

= OP S1OV1T1,

(9.39)

where OP S1 = OS1cos(β1) represents the projection of OS1 onto OV1T1.
This representation is based on projecting the vector representing subject
one, OS1 onto the vector that essentially represents variable one at occasion
one. This is not the only possibility however since it is also possible to project
the vector representing variable one (OV 1) onto the vector that represents
subject one at occasion one (OS1T1) or to project the vector representing
occasion one (OT 1) onto the vector that represents subject one on variable
one (OS1V1). Figure 9.11 is a representation of the first instance mentioned.
In this way the plot affords the means to examine the interactions between
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all three modes. Generally, following the same process as in (9.39) it is a
simple matter to show that

x̂ijk = OSicos(βSi,j∗k)OVjTk = OP Si
OVjTk

= OV jcos(βVj ,i∗k)OSiTk = OP ViOSiTk

= OT kcos(βTk,i∗j)OSiVj = OP TiOSiVj,

(9.40)

and βSi,j∗k refers to the angle between the vectors OSi and OVjTk. βVj ,i∗k and
βTk,i∗j are interpreted in a similar fashion. These angles carry information
regarding the sign of the value x̂ijk in that all the vector lengths are positive
but the cosine term can be positive, negative or zero. If these angles are acute
then x̂ijk will be positive since the cosine term will be positive. An angle of
90 degrees yields x̂ijk equal to zero and an angle between 90 degrees and 180
degrees yields a negative value for x̂ijk. Furthermore, the relative magnitude
of the elements x̂ijk can be compared by considering the projection vectors
since

x̂ijk

OVjTk
= OP Si

. (9.41)

It should be clear that this plot is primarily based on examining inner prod-
ucts. Beyond that, it cannot be thought of as an extension of biplot method-
ology since it is being plotted relative to Cartesian axes as opposed to making
use of the best fitting plane construction. Kiers (2000a) warns against using
Cartesian axes because it can result in the data being misrepresented in a
graphical context. Specifically, Euclidian distance between sample points for
example may not be accurately represented. An example taken from Kiers
(2000a) will serve to clarify this argument. Consider two matrices A and B
defined as

A =

(
1 1
1 0.5

)
and B =

(
1 0.5 0.5 0
0 0.5 −0.5 1

)′

, (9.42)

so that

X̂ = AB
′
=

(
1 1 0 1
1 0.75 0.25 0.5

)
. (9.43)

X̂ is a 2×4 matrix and can thus be represented in <2 by plotting the columns
or in <4 by plotting the rows. Consider representing the data in <2. The
middle plot of Figure 9.11 illustrates this representation. The left most plot
illustrates what results from plotting the columns ofB. Notice that although
both these plots suggest that observations A, B, C and D are on a line they
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give different information regarding the proximity of C from the remaining
observations. The middle plot which is the actual representation in <2 sug-
gests that C is farthest from A where as the left most plot is distorted in
this regard. Plotting the rows of B implies that the columns of A serves
as a basis so that the axes used when plotting the rows of B are in fact
the columns of A and this is not column-wise orthonormal. It is possible to
determine a transformation matrix T using an orthonormalisation procedure
such as the Gram-Schmidt orthonormalisation to A . Defining Ã = AT and

B̃ = B(T
′
)
−1

then plotting the columns of B̃ yields the right most plot in
Figure 9.11. The orientation of the points in this plot is clearly a rotated
version of that seen in the middle plot. It is thus undistorted. This illustrates
the argument made by Kiers (2000a) that plotting relative to an orthonormal
basis results in an undistorted plot.

Figure 9.11: Plots (from left to right) of rows of B, X̂ and B̃ (Kiers, 2000a).

This is a fair point and a serious consideration, however the geometry of
three mode data is very complex. Biplot methodology is so successful be-
cause visualising the construction process geometrically is not difficult. It
can be argued that is precisely for this reason that Kiers (2000a) speaks to
the fact that most graphical techniques for three mode data rely on the data
being matricised after analysis by some three mode technique; it simplifies
the geometry. Merely trying to visualise the tensor space is very difficult
if not impossible. It makes trying to extend the concept of finding a best
fitting plane exceedingly difficult. This is why the construction discussed
relies on plotting relative to Cartesian axes, a method that Kiers (2000a)
warns against. When modes are combined to create axes, these do not carry
the same meaning as they would in a PCA biplot because they do not rep-
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Sample 12 Sample 21 Sample 23 Sample 27 Sample 28
Sample 16 12626.60 8580.71 8758.430 9425.859 8852.185

Table 9.2: Extract from the distance matrix for X(1).

resent projection of the variable axes in the higher dimensional space. It is
still informative to explore the triplot methodology put forward by Araújo
(2009) even though Euclidean distances will likely not be well represented.
Moreover, the objective is to graphically represent all three modes of the
data and so none of the component matrices act as a basis relative to which
the remaining component matrices are plotted. The triplot relies on sim-
ply plotting each of the component matrices relative to Cartesian axes. The
contribution of this dissertation is to apply the triplot methodology using an
altogether different tensor decomposition technique and not the PARAFAC
decomposition that was originally used.

9.7.2 Application of Triplot Methodology

Due to the fact that the triplot is not well understood, simulated data is used
together with the Mansoor data in order to see what the triplot conveys and
how this relates to the data. In order to ascertain the effects of data pre-
processing, triplots are produced for the unprocessed data, centered data as
well as the centered and scaled data in each of the three instances considered.

Recall that the effect of the σr terms needs to be explored. The most logical
effect that these terms would have is to ensure that the Euclidean distance
between sample points, variables or occasions will be well displayed. This
is because these terms play a role similar to that of the singular value in
two-mode PCA. In order to see whether this is the case, the Mansoor data
is used. Recall that the component matrices U (1), U (2) and U (3) are associ-
ated with sample, variable and occasion modes respectively. To see whether
the σr terms where r = 1, 2 affect how well the Euclidean distances between
sample points are displayed, the rows of U (1)Σ are plotted and compared to
the plot comprising the rows of U (1). Since the initial estimate for U (1) is
based on the SVD of X(1) it is reasonable to use the matrix of Euclidean
distances calculated from X(1) to see how well the plot represents the dis-
tances between observations. The resulting distance matrix is of dimension
29×29 and thus only select observations will be used to assess the plot. Fig-
ure 9.12 illustrates the resulting plot and the panel on the right is considered
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Figure 9.12: Plot of the rows of U (1) and U (1)Σ respectively.

first. Observation 16 will be considered in relation to observations 27, 21, 28,
23 and 12 to ascertain whether Euclidean distances are accurately reflected.
Table 9.2 shows the distances of observation 16 from observations 12, 21, 23
and 28. The relationships seen in Table 9.2 are accurately reflected in the
panel on the right hand side of Figure 9.12. Of those observations considered,
observation 21 is shown to be the closest to observation 16 in the plot and
this agrees with what is seen in Table 9.2. This was seen to be the case when
the distance matrix was studied at large. The panel on the left of Figure
9.12 shows that the Euclidean distances are indeed distorted. Observation
27 is closer in proximity to observation 16 than observation 21 but this is
not the case when the distances are considered. The conclusion is thus that
the effect of Σ is to ensure that the Euclidean distances are well represented
regardless of whether it is applied to the sample, variable or occasion mode.
It thus seems to follow that at least one mode can be well represented in the
triplot display however there is a problem that shows itself in each of the
data sets considered.

The triplot display requires that all component matrices be represented on a
single plot. If for example Σ is applied toU (1) then the triplot display be con-
structed by plotting the rows of U (1)Σ, U (2) and U (3) relative to Cartesian
axes. Figure 9.13 is an illustration of the resulting triplot and the prob-
lem should be immediately clear. The points representing the variable and
occasion modes are all located around the origin whilst the sample points,
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Figure 9.13: Plot ofU (1)Σ, U (2) and U (3) relative to Cartesian axes.

represented by the triangles, is well represented. The triplot thus conveys
no useful information about the variable and occasion modes. The problem
is less pronounced when the data are scaled but it is still prominent. Al-
though this was illustrated by scaling the subject mode, it applies regardless
of which mode is scaled. The implication is that having Euclidean distances
well represented in any one mode renders the triplot impotent. The solution
to this problem lies in simply scaling the component matrices in each of the
modes equally. This means that each component matrix is post-multiplied

by Σ
1
3 . This is termed Sigma scaling by Gower et al. (2011) in the two

way context. This is how the triplot is constructed here and it is studied to
determine whether it conveys any information regarding the structure of the
data.
The first application of the triplot methodology is to the simulated data used
in Chapter 4. Recall that this data comprised 45 observations classified into
three groups with measurements on three variables taken over four occasions.
Furthermore it was simulated to show marked separation between groups at
occasions 2 and 4. Figures 9.14, 9.15 and 9.16 represent the triplots for the
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Figure 9.14: Triplot for the unprocessed simulated data set one.

unprocessed, centered as well as the centered and scaled data respectively.
The legend in Figure 9.14 applies throughout and is thus only shown once. In
order to explain the interpretation that Araújo (2009) puts on these triplots,
Figure 9.14 will be used. The first consideration is the distance of the points
from the origin which is represented by the intersection of the dashed lines.
Closeness to the origin implies stability in scores. For example, if the sym-
bol for occasion 1 were very close to the origin and the subject and variable
modes were combined to produce axes as explained previously then the pro-
jection of the point representing occasion 1 onto any of these axes will result
in similar inner products. The farther away a point is from the origin, the
more dynamic the scores for that point are expected to be. The next aspect
to consider is that of how points cluster. Occasions 1 and 3 form a group and
the same can be said for Occasions 2 and 4. Araújo (2009) suggests that this
implies that those occasions that are grouped share similar characteristics
without providing clarity on what is meant by characteristics. It is argued
that similarity with respect to characteristics can be measured by consider-
ing the similarity between variable means and variances at the occasions in
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Variable 1 Variable 2 Variable 3
Occasion 1 0.39 0.40 0.28
Occasion 2 2.39 0.99 0.95
Occasion 3 0.36 0.43 0.31
Occasion 4 2.36 0.99 0.92

Table 9.3: Means for Simulated data set one.

Variable 1 Variable 2 Variable 3
Occasion 1 0.30 0.37 0.26
Occasion 2 4.16 0.67 0.82
Occasion 3 0.38 0.45 0.39
Occasion 4 4.55 0.86 1.05

Table 9.4: Variances for Simulated data set one.

question. Tables 9.3 and 9.4 contain the means and variances respectively
for each variable at each occasion. Studying Table 9.3 reveals that the means
at occasions 1 and 3 are very similar and those at occasions 2 and 4 are very
similar. The same phenomenon can be seen when comparing the variances
in Table 9.4. The triplot thus seems to capture this aspect of the data.

Araújo (2009) states that the angles between rows within a particular mode

Variable 1 Variable 2 Variable 3
Variable 1 1 -0.18 -0.17
Variable 2 -0.18 1 0.75
Variable 3 -0.17 0.75 1

Table 9.5: Correlations between the rows of X(2).

provides a sense of the strength of association between the elements com-
prising the mode in question. For example, the angles between the vectors
drawn from the origin to the variable markers will provide an approximation
to the correlation between variables. Araújo (2009) states this without mak-
ing clear precisely which correlations are being approximated. Since the data
are three mode in nature, the correlations between variables change over time
but there are only three markers in Figure 9.14 to represent the variables.
Given that the initial estimate for the variable mode component matrix U (2)
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is taken from the SVD of the P × NK matrix X(2), it was thought that
the correlations being approximated are those that exist between the rows
of the matrix X(2). Table 9.5 contains these correlations and it is clear that
variables 2 and 3 show a strong correlation with each other where as vari-
able 1 does not show this quality. Studying Figure 9.14 reveals that this is
indeed represented on the triplot with variables 2 and 3 showing a strong
relationship. The same observation was made when considering the corre-
lations between the rows of the K × PN matrix X(3) which represents the
correlations between occasions. This lends credence to the notion that the
correlations represented are in fact those calculated by considering the rows
of the relevant unfolding.

Figure 9.15: Triplot for the centered simulated data set one.

It is interesting to note that the separation between the groups comprising
the subjects is in fact represented on the triplot. In Chapter 4 it was seen that
group 2, represented by the red symbols, is more separated from the other
two groups but Figure 9.14 suggests that group 3, represented by the green
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symbols, is more separated from the other two groups. In Figure 9.15, the
triplot for the fibre centered simulated data, this is rectified and the grouping
inherent in the data is displayed. Figures 9.14 and 9.15 are similar but for
this change in the separation between the groups comprising the subjects.
Figure 9.16, the triplot for the centered and scaled simulated data also looks
similar to the previous triplots but this is because the variance matrix used
in the simulation was diagonal with 0.1 on the diagonal. This implies similar
variation across variables and so scaling would not have any significant effect.
In effect the triplot was able to display the separation between the subjects,
indicate which occasions and variables share similar characteristics as well
as provide a sense of the correlations between elements within a mode. The
simulated data suggests that the triplot can be a useful display. The second

Figure 9.16: Triplot for the centered and scaled simulated data set one.

application of the triplot methodology is to a second simulated data set with
characteristics similar to the previous simulated data set but the variance
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matrix defined as  3.0 2.2 0.7
2.2 2.0 0
0.7 0 1

 . (9.44)

Figure 9.17: Triplot for the unprocessed simulated data set two.

Figure 9.17 represents the triplot for the unprocessed simulated data. Ta-
bles 9.6 and 9.7 provide the means and variances respectively for the second
simulated data. The most striking feature in Figure 9.17 is the lack of sep-
aration between the subjects. The plot also suggests all four occasions are
quite different with respect to characteristics but that occasions 2 and 4 share
slight similarities. Table 9.6 reveals that the means at occasions 1 and 3 as
well as occasions 2 and 4 are similar but the variances in Table 9.7 are quite
different. The distance from the origin of the occasion markers suggests that
subject scores were quite variable over time with occasion 1 showing the
most stability when compared with the other occasions. This is evidenced
by the fact that the variables at occasion 1 have the smallest variances rela-
tive to the other occasions. None of the variable markers are clustered and
the plot suggests relatively weak associations between the variables. Figure
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Variable 1 Variable 2 Variable 3
Occasion 1 0.64 0.48 0.59
Occasion 2 2.57 1.23 1.03
Occasion 3 0.54 0.34 0.64
Occasion 4 2.25 1.00 0.98

Table 9.6: Means for Simulated data set two.

Variable 1 Variable 2 Variable 3
Occasion 1 3.06 1.97 1.41
Occasion 2 6.67 3.34 1.18
Occasion 3 5.87 3.91 2.86
Occasion 4 11.44 3.53 2.67

Table 9.7: Variances for Simulated data set two

9.18, the triplot for the centered simulated data tells a somewhat different
story. Firstly, the separation of group 2 from the other two groups is clearer
and although the plot conveys similar information about the occasion mode
it does suggest different correlations between variables. Variables 2 and 3
are revealed to have a strong relationship however the actual correlation be-
tween these variables is 0.18. Variables 1 and 2 have a correlation of 0.56
and variables 1 and 3 have a correlation of 0.14. This is not well repre-
sented in Figure 9.17 or Figure 9.18. Notice that Figure 9.19, the triplot for
the centered and scaled simulated data, not only looks quite different to the
previous triplots but represents the correlations between variables relatively
well. This suggests that the triplot display is not scale invariant. Although
Figure 9.19 represents correlations within modes relatively well, the way in
which the occasion markers are represented is not completely accurate. The
large variances on the variables at occasion 2 relative to occasion 1, with the
exception of variable 3, suggests less stability in scores for this occasion than
is suggested by the plot. Furthermore, the separation between subjects is
lost. The triplot based on the centered data is the preferred one to get a
general overview of the data with the triplot based on centered and scaled
data being preferred to convey information about correlations.
The final application will be based on applying the triplot methodology to
the Mansoor data. Tables 9.8 and 9.9 provide the mean and variance in-
formation for the Mansoor data. It is immediately clear that occasion 1 is
considerably different to the other occasions given the significantly larger
variances and means. Occasions 3 and 4 show the most similarity in terms of
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Figure 9.18: Triplot for the centered simulated data set two.

means and variances. It is thus expected that these occasions should appear
relatively close to one another on the plot. Given the fact that the varia-
tion in the data is quite large, it is expected that occasion markers would
not appear close to the origin. Given that the previous triplot applications
revealed distributions of the sample values similar to what has been seen in
previous Chapters, it is expected that that would be the case for the Man-
soor data. Having established what is expected to be seen in a triplot of the
Mansoor data attention now turns to Figures 9.20, 9.21 and 9.22. Each of
these are the triplots for the unprocessed, centered as well as centered and
scaled Mansoor data respectively. All the triplots display what was expected
to be seen with respect to occasions and samples. The occasion markers do
not appear very close to the origin and occasions 3 and 4 markers appear
relatively close together. The marker for occasion 1 is relatively far from
the rest. Figure 9.23, the triplot of the scaled Mansoor data, does well to
represent the correlations between variables although Figure 9.22 also does
relatively well.
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Figure 9.19: Triplot for the centered and scaled simulated data set two.

Figures 9.23 and 9.24 illustrate the centered and the centered and scaled
data triplots together with the combination of variable and occasion mode
axes. Although the variable and occasions modes are combined for illustra-
tion purposes, it is possible to combine other modes like the occasion and
subject mode for example. Variable markers are then orthogonally projected
onto these axes to get a sense of variable scores for the subjects at various
occasions. This considers the interaction between all three modes simulta-
neously. Projecting subjects onto these axes provide a relative measure of
the subject score on a particular variable at a particular occasion. It is akin
to the wide combination PCA biplot discussed previously. The axes labels
have been placed so that they appear on the side that corresponds with the
direction of the combination vector. This means that it is possible to ascer-
tain whether subjects scored positive or negative values by considering the
angle between the subject marker and the axes of interest. Orthogonally
projecting onto these axes in Figure 9.23 reveals that the variation in the
data reduced over time, given that the projected values become more closely
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V1 V2 V3 V4 V5 V6 V7
Occasion 1 2639.93 3137.76 482.59 2181.44 1031.93 442.93 615.41
Occasion 2 461.89 1002.44 241.59 786 478.76 308 330.86
Occasion 3 193.62 930.59 177.03 411.38 356.31 231.56 176.86
Occasion 4 207 892.24 219.21 374.59 214.83 152.56 133.79

Table 9.8: Means for Mansoor data.

V1 V2 V3 V4 V5 V6 V7
Occ. 1 8615268 11028624.3 171296 3308746 781366 150576 229052
Occ. 2 301346 1124500 82338 618915 295539 155757 156219
Occ. 3 80980 1 546370 51109 407141 85533 47792 40699
Occ. 4 83411 1740210 150462 162780 52049 14806 16642

Table 9.9: Variances for Mansoor data.

clustered when projected onto the axes for occasion 4 as opposed to those for
occasion 1. This property cannot be seen in Figure 9.24 and that can only
be attributable to the fact that the data used to construct the triplot was
centered and scaled, the latter alteration being the pertinent one. Araújo
(2009) does not place an interpretation on the angles between these combi-
nation mode axes but what is interesting is that the orientation of the axes
suggest associations between variables that are indeed associated. In this
case the scaled triplot performs better. For example variables 5 and 7 are
strongly correlated at occasions 1 and 2. The same can be said for variables
1 and 3. The angles between the axes V 5.1 and V 7.1 as well as V 5.2 and
V 7.2 is relatively small in Figure 9.24. The same observation is made for axes
labelled V 1.1 and V 3.1 as well as V 1.2 and V 3.2. Consulting the correlation
matrices in Chapter 3 and comparing to Figure 9.24 reveals numerous other
examples. V 5 and V 7 show relatively weak association at occasions 3 and 4
but the plot suggests otherwise. It can thus be said that this is but one ex-
ample though it provides evidence that the angles between the combination
mode axes may be linked to correlations.

A final matter of interest is to determine whether the triplot provides answers
to the investigative questions posed by Mansoor et al. (2009). By projecting
observations onto the combination mode axes in Figure 9.23 it is evident that
the relative scores of the HIV + infants (the black markers) was lower than
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Figure 9.20: Triplot for the unprocessed Mansoor data.

the scores obtained in the other two groups. The implication is that BCG
affects the uninfected groups differently to the infected group. Moreover,
members of the uninfected groups tended to show higher scores on V 4 which
represented what is considered the required immune response. Not only did
the triplot provide insight into the investigative questions but it also provided
more information about relationships in the data.

9.8 Conclusion

This chapter focused on tensor decomposition techniques. It set out to deter-
mine how tensor decomposition techniques can be used to construct biplots
and triplots. After a brief discussion on the basics of tensor algebra, the
concept of tensor rank was discussed and a multilinear rank and outerprod-
uct rank decomposition introduced. The Tucker3 decomposition was put in
an SVD framework and used to construct biplots which were applied to the
Mansoor data. These biplots revealed similar information about the data
to that seen in previous chapters. Next, the PARAFAC decomposition and
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Figure 9.21: Triplot for the centered Mansoor data.

the problem of degeneracy were discussed. This was the reason why the
PARAFAC decomposition was deemed inappropriate for the construction of
an exploratory triplot. The tensor SVD decomposition was detailed and
considered to be an alternative for triplot construction. After detailing the
triplot construction, the method was applied to three data sets, two of which
were simulated. The triplot interpretation was discussed and it was found
to be a useful plot for revealing information about the data. The triplot
was also seen to lack the property of scale invariance. Moreover, the scaled
triplot tended to provide better information about the correlations within
modes. The effects of scaling were detrimental to visualising separation in
the data and so it was determined that the triplot for the centered data be
used together with that for the scaled data, the latter triplot used only to
ascertain correlations. There was also evidence to suggest that the angles
between combination mode axes was in fact meaningful. The triplot served
well as an exploratory tool in all instances reveals a great deal about the
interactions between the various modes.
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Figure 9.22: Triplot for the centered and scaled Mansoor data.
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Figure 9.23: Triplot for the centered Mansoor data with variable and occasion
mode combination axes shown.
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Figure 9.24: Triplot for the centered and scaled Mansoor data with variable
and occasion mode combination axes shown.



Chapter 10

Conclusion

This dissertation concerned itself with investigating different methodologies
for producing exploratory graphical plots for three mode data. More specifi-
cally, the aim was to investigate how biplots could be used in the exploratory
analysis of three mode data. Furthermore, consideration was given to explor-
ing the use of triplot methodology in the exploratory process. The research
was born of the fact that the area of exploratory data analysis in a three
mode context is not a well developed one. The objectives achieved in the
course of this dissertation were as follows: It

1. Provided a comprehensive explanation of the theoretical foundations
underpinning biplot construction, emphasising Principal Component
Analysis as well as Canonical Variate Analysis Biplots;

2. Discussed the theoretical framework for two main classes of tensor de-
composition techniques and explored whether these techniques could
be used to produce biplots. Brief mention was made regarding triplot
construction and interpreting some aspects of this plot;

3. Explored the use of other multivariate techniques for the construction
of biplots in a three mode data context;

4. Applied all these methods to a data set taken from Mansoor et al.
(2009) in order to determine whether the different techniques conveyed
similar information about the structure of the data. Careful consid-
eration was given to the interpretation as well as any similarities and
differences that arose in the plots.

The primary research questions were thus how biplots could be used to ex-
plore three mode data and whether different methodologies yielded similar
conclusions about the relationships hidden in the data. This chapter will
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show what was concluded regarding each of the objectives, provide a sense of
the significance of the research and make recommendations on future work.

10.1 Conclusions regarding objectives

Each objective listed will be considered in turn to provide a sense of how it
was satisfied in this dissertation. Chapters 4 and 5 served to meet the first
objective in that they provided a comprehensive account of the theoretical
foundations of biplot construction together with specific information on the
PCA biplot as well as the CVA biplot. It was written not only to provide a
rigorous mathematical understanding of the methodology, but also to leave
the reader with a sound intuitive appreciation of the methodology from a
geometric perspective. The techniques were used to construct biplots for the
matricised forms of the data.

The second objective of this research was addressed in Chapter 9, where the
reader was provided with rudimentary knowledge regarding the two main
contenders in the realm of tensor decomposition, namely the Tucker3 and
PARAFAC models. The focal point was the concept of rank and how this
generalises to third order tensors. Since the SVD framework is fundamental
in the biplot context, each of the tensor decomposition methods were dis-
cussed with respect to the SVD properties that they preserve. Complexities
regarding PARAFAC solutions were discussed in order to substantiate the
argument that it is not a viable model for constructing an exploratory plot.
The Tucker3 decomposition was used to construct biplots. These plots were
simply applied to the Mansoor data and the results discussed. It was noted
that this construction depended on the left-singular vectors in each mode,
which is different to the two-mode PCA counterpart. The triplot methodol-
ogy that Araújo (2009) based on the PARAFAC framework was thus placed
in the context of the third and final tensor decomposition technique dis-
cussed, the Tensor SVD. Araújo (2009) proposed the triplot but did little
to discuss interpretational issues, even in an intuitive sense and placing the
methodology in a different framework introduced new considerations, so the
effects had to be explored. The effects of data preprocessing on these plots
were also considered. It must be said that the conclusions regarding inter-
pretation of the triplot in particular were based on empirical evidence and
had no rigorous mathematical proof. The triplot showed itself to be a useful
tool for exploratory analysis particularly

The third objective has the broadest reach in terms of the content of this
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dissertation. The concluding remarks will emphasise interpretational issues
surrounding the constructed plots. Chapters 6, 7 and 8 served to satisfy
this objective in that each of these chapters discussed specific techniques
that could be used to construct exploratory plots. The application aspects
of Chapters 4 and 5 also contributed to fulfilling this objective. Chapter 4
constructed PCA biplots for the matricised forms of the data and discussed
interpretational matters surrounding the biplots. It was established that the
tall combination biplot was preferred in order to get a sense of the Euclidean
distances between subjects, due to the construction process as well as the
benefit of immediate visual appraisal. To an extent, the angles between vari-
able axes represented persistent relationships in the data, so that two highly
correlated variables would tend to be thusly related across occasion or con-
dition. The plot also provided information about changes in variation in the
data. The wide combination biplot afforded the means to understand how
a variable relates to itself across occasion or condition. The triplot was also
seen to lack the property of scale invariance. Moreover, the scaled triplot
tended to provide better information about the correlations within modes.
The effects of scaling were detrimental to visualising separation in the data
and so it was determined that the triplot for the centered data be used to-
gether with that for the scaled data. The latter triplot used only to ascertain
correlations. There was also evidence to suggest that the angles between
combination mode axes was in fact meaningful.

Chapter 6 detailed the use of Generalised Orthogonal Procrustes Analysis
to construct a biplot based on combining the k separate PCA biplots con-
structed from the separate data matrices comprising the three-mode data
set. Careful consideration had to be given to the process of superimposing
the k separate biplots after rotation and it was determined that the optimal
rotation could be based on the sample point representation, variable axes
representation or a combination of the two. The chapter was focused on
using biplots that optimally approximate the Euclidean distances between
sample points given the nature of the Mansoor et al. (2009) investigation. It
was argued that the biplot resulting from the application of this technique
did not preserve the Euclidean distances between the observations primarily
because of the construction process and issues of scale. Despite this, the plot
served well to show changes in variation in the data as well as the extent
of the separation between occasions as determined by the mean vectors at
each occasion. The plot also afforded the means to visually appraise how
the relationship between variables evolved over time or in a different context
would allow the researcher to compare the correlations across condition. It
also allowed the researcher to read off approximated variable scores for the



CHAPTER 10. CONCLUSION 150

subjects. Even with its faults, it served well as an exploratory tool.

Chapter 7 was concerned with the use of Common Principal Component
Analysis (CPC) and how the researcher could use the estimated results from
such an analysis in order to construct a biplot. After detailing the theoreti-
cal foundations of CPC and its counterpart for data that shows dependence
across occasion, the biplot construction was described. Importantly, it was
argued that the angles between the displayed variables represented systemic
relationships that persisted across occasion or condition. Furthermore, it was
argued that those occasions or conditions with comparatively larger variation
would be better represented since these occasions or conditions would exert
greater influence in the estimation procedure. The Euclidean distances be-
tween observations was not optimally approximated but the plot did afford
the means to appreciate changes in variation in the data as well as separa-
tion between occasions or conditions. Axes calibration had to be carefully
considered and two methods of calibration were provided. The content of
this chapter represented a prelude to a novel development in Chapter 8.

This chapter is particularly significant in that it represents an original contri-
bution to the field of exploratory data analysis. The methodology discussed
here was inspired by the concepts described in Chapter 6 where separate
PCA biplots could be superimposed to form a single comprehensive plot.
Attempting to perform a similar task with CVA biplots was not as simple
because the data are transformed to be represented in the canonical space,
and this implied that separate CVA biplots, could not simply be superim-
posed. The contribution of this chapter was to develop a method that could
be used to produce a consolidated CVA biplot and tests with simulated data
showed that the technique was successful in capturing the separation between
groups comprising the data.

The final objective related to the application of the various techniques to
the Mansoor data in order to ascertain whether they conveyed similar in-
formation about the data. Mansoor et al. (2009) set out to investigate the
effect of BCG, a Tuberculosis vaccine, on the immune response in HIV +

infants. To do this , BCG was administered to infants classified into one of
three groups and cytokine expression measurements taken over time. The
groups comprised HIV + infants, uninfected and exposed infants as well as
uninfected and unexposed infants. The primary investigative questions were
as follows:

1. Does BCG induce the required immune response against Tuberculosis
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in HIV + infants?

2. Is the immune response in the groups comprising the uninfected infants
similar?

All of the techniques described yielded the same conclusions regarding these
questions, and it was hypothesised that this would indeed be the case. V 4 of
the data was related to the required immune response, and it was seen that
HIV + infants scored relatively low on this variable. It was also seen that
the immune response induced in the uninfected infants was similar. Further
observations included the fact that the variation in the data reduced across
occasion and that scores tended to decrease over time. Occasion 1 showed
itself to be quite different from the other occasions in terms of subjects scores,
with occasions 3 and 4 displaying similar characteristics. Ultimately all the
techniques agreed, some emphasising different characteristics described here.

10.2 Significance of research

The major contribution of this dissertation is two-fold. Firstly, it adds sub-
stance to a field for which there is not a vast body of literature. Secondly,
it makes novel contributions in the form of placing triplot methodology in a
different tensor decomposition framework, as well as discussing the develop-
ment of a technique that allows CVA biplots to be displayed on a single plot.
The first contribution means that researchers can now find cohesive research
on matters of exploratory data analysis, in a three mode context. This will
provide them with varying techniques for displaying the data that are based
on PCA and biplot methodology. The triplot, a display technique that was
found in a rather obscure work by Araújo (2009), was placed in a different
framework to make it more generally applicable and due consideration was
given to attempting to interpret it albeit on the basis of empirical evidence.

10.3 Recommendations

It is not a simple matter to recommend any one of the techniques as supe-
rior to the others. The techniques conveyed similar information about the
data and worked well to visually represent the relationships in the data. The
choice of technique is therefore informed by what the researcher’s is inves-
tigating. For example, if the researcher sets out to do a CPC analysis then
the discussion in Chapter 7 would serve well to better understand the data.
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It was seen that the simplest of techniques, matricising the data, performed
well and would thus serve as a good starting point in any exploratory analy-
sis. It is this observation that makes a strong case for using this method as a
means to better understand the data. The simplest of techniques often prove
to be valuable and it is strongly recommended that this method be used
before embarking on a more rigorous analysis. If interest lies in visualising
changes in the mean of the data over occasion or condition then it is recom-
mended that the Procrustes technique be used because it is most successful
in displaying this separation. When faced with grouped data, it is recom-
mended that the common CVA biplot be employed in order to understand
the extent of the separation between the groups comprising the data. It is
strongly recommended that the triplot be used regardless of the nature of
the investigation because it is arguably the most revealing of the exploratory
methods discussed, embodying all characteristics of the data where as other
methods emphasised different characteristics of the data.

In terms of future research there is a great deal that can be done. While
this dissertation investigated selected techniques, there are a myriad other
three mode modelling means such as STATIS (Lavit et al., 1994) for example
that could lend themselves to constructing exploratory plots. Furthermore,
the triplot methodology can be further investigated to provide rigorous proofs
for that which is suggested by the empirical evidence. Thought can also be
given to the calibration of combination mode axes and whether there is a
way to explicitly incorporate the grouped nature of data into the triplot con-
struction. Finally, the construction of quality measures for the triplot as well
as the Tucker3 biplot is also an avenue that can be explored.
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Appendix A

R Code

Due to the fact that the function PCAbiplot contained in the package ac-
companying Gower et al. (2011), it will be shown in its entireity and only
the relevant modifications made to this function in each chapter shown.

1 function (X, G = NULL , scaled.mat = FALSE , dim.biplot = c(2,

2 1, 3), e.vects = 1:ncol(X), correlation.biplot = FALSE , classes = 1:ncol(

G),

3 samples.new = NULL , predict.samples = NULL , predict.means = NULL ,

4 samples = list (...) , ax.new = NULL , ax = list (...), new.samples =

list (...), class.means = list (...), alpha.bags = list

(...), kappa.ellipse = list (...) , density.style = list

(...), colour.scheme = NULL , Title = NULL , exp.

factor = 1.2, reflect = c(FALSE , "x", "y"), rotate = 0,

5 select.origin = FALSE , adequacies.print = FALSE ,...)

6 {

7 dim.biplot <- dim.biplot [1]

8 if (dim.biplot != 1 & dim.biplot != 2 & dim.biplot != 3)

9 stop("Only 1D, 2D and 3D biplots")

10 e.vects <- e.vects [1: dim.biplot]

11 reflect <- reflect [1]

12 X.info <- biplot.check.X(X, scaled.mat)

13 X <- X.info$X

14 unscaled.X <- X.info$unscaled.X

15 means <- X.info$means

16 sd <- X.info$sd

17 G <- biplot.check.G(G, nrow(X))

18 if (!is.null(samples.new))

19 X.new <- scale(samples.new , center = means , scale = sd)

20 else X.new <- NULL

21 n <- nrow(X)

22 p <- ncol(X)

23 J <- ncol(G)

24 if (!all(is.numeric(classes)))

25 classes <- match(classes , dimnames(G)[[2]], nomatch = 0)

26 classes <- classes[classes <= J]

27 classes <- classes[classes > 0]

28 svd.out <- svd(X)

29 V.mat <- svd.out$v

30 U.mat <- svd.out$u

31 Sigma.mat <- diag(svd.out$d)

32 Vr <- svd.out$v[, e.vects , drop = F]

158
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33 fit.out <- biplot.fit.measures(mat = X, mat.hat = X %*% Vr %*%

34 t(Vr), eigenvals = svd.out$d^2, eigenvecs = svd.out$v,

35 dims = e.vects)

36 quality <- fit.out$quality

37 adequacy <- fit.out$adequacy

38 axis.predictivity <- fit.out$axis.predictivity

39 sample.predictivity <- fit.out$item.predictivity

40 if (adequacies.print & predictivity.print)

41 stop("adequacies.print and predictivity.print cannot both be set to

True")

42 if (adequacies.print)

43 dimnames(X)[[2]] <- paste(dimnames(X)[[2]] , " (", adequacy ,

44 ")", sep = "")

45 if (predictivity.print)

46 dimnames(X)[[2]] <- paste(dimnames(X)[[2]] , " (", round

(axis.predictivity ,

47 digits = 2), ")", sep = "")

48 reflect.mat <- diag(dim.biplot)

49 if (reflect == "x" & dim.biplot < 3)

50 reflect.mat[1, 1] <- -1

51 if (reflect == "y" & dim.biplot == 2)

52 reflect.mat[2, 2] <- -1

53 if (reflect == "xy" & dim.biplot == 2)

54 reflect.mat[1:2, 1:2] <- diag(-1, 2)

55 rotate.mat <- diag(dim.biplot)

56 if (dim.biplot == 2) {

57 if (!is.null(ax$rotate)) {

58 if (is.numeric(ax$rotate)) {

59 radns <- pi * rotate/180

60 rotate.mat <- matrix(c(cos(radns), -sin(radns),

61 sin(radns), cos(radns)), ncol = 2)

62 }

63 else {

64 if (ax$rotate == "maxpred") {

65 ax$rotate <- (names(axis.predictivity))[axis.predictivity

==

66 max(axis.predictivity)]

67 ax$rotate <- match(ax$rotate , dimnames(X)[[2]])

68 }

69 else ax$rotate <- match(ax$rotate , dimnames(X)[[2]])

70 radns <- -atan2(V.mat[ax$rotate , e.vects [2]],

71 V.mat[ax$rotate , e.vects [1]])

72 rotate.mat <- matrix(c(cos(radns), -sin(radns),

73 sin(radns), cos(radns)), ncol = 2)

74 }

75 }

76 }

77 class.means.mat <- as.matrix(solve(t(G) %*% G) %*% t(G) %*%

78 unscaled.X, ncol = ncol(unscaled.X))

79 Z.new <- NULL

80 Z.means.mat <- NULL

81 if (correlation.biplot) {

82 lambda.r <- diag(svd(t(X) %*% X)$d[1: dim.biplot ])

83 Z <- sqrt(n - 1) * X %*% Vr %*% rotate.mat %*% reflect.mat %*%

84 (sqrt(solve(lambda.r)))

85 if (!is.null(class.means))

86 Z.means.mat <- sqrt(n - 1) * scale(class.means.mat ,

87 means , sd) %*% Vr %*% rotate.mat %*% reflect.mat %*%

88 (sqrt(solve(lambda.r)))

89 if (!is.null(X.new))

90 Z.new <- sqrt(n - 1) * X.new %*% Vr %*% rotate.mat %*%

91 reflect.mat %*% (sqrt(solve(lambda.r)))
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92 }

93 else {

94 #Z REPRESENTS THE SAMPLE POINTS TO BE PLOTTED#

95 Z <- X %*% Vr %*% rotate.mat %*% reflect.mat

96 if (!is.null(class.means))

97 Z.means.mat <- scale(class.means.mat , means , sd) %*%

98 Vr %*% rotate.mat %*% reflect.mat

99 if (!is.null(X.new))

100 Z.new <- X.new %*% Vr %*% rotate.mat %*% reflect.mat

101 }

102 dimnames(Z) <- list(dimnames(X)[[1]], NULL)

103 if (!is.null(X.new))

104 if (is.null(dimnames(samples.new)[[1]]))

105 dimnames(Z.new) <- list(paste("N", 1:nrow(Z.new),

106 sep = ""), NULL)

107 else dimnames(Z.new) <- list(dimnames(samples.new)[[1]],

108 NULL)

109 if (is.matrix(ax.new)) {

110 NewVarsMeans <- apply(ax.new , 2, mean)

111 if (scaled.mat)

112 NewVarsSD <- sqrt(apply(ax.new , 2, var))

113 else NewVarsSD <- rep(1, ncol(ax.new))

114 }

115 num.vars <- p

116 var.names <- dimnames(X)[[2]]

117 if (!is.null(ax.new)) {

118 means <- c(means , NewVarsMeans)

119 sd <- c(sd, NewVarsSD)

120 unscaled.X <- cbind(unscaled.X, ax.new)

121 num.vars <- ncol(unscaled.X)

122 if (!is.null(dimnames(ax.new)[[2]]))

123 var.names <- c(var.names , dimnames(ax.new)[[2]])

124 else var.names <- c(var.names , paste("NV", 1:ncol(ax.new),

125 sep = ""))

126 SigmaMinOne <- ifelse(Sigma.mat < 1e-10, 0, 1/Sigma.mat)

127 Vr.new <- t(scale(ax.new , center = TRUE , scale = NewVarsSD)) %*%

128 U.mat %*% SigmaMinOne

129 Vr.new <- Vr.new[, e.vects]

130 Vr.all <- rbind(Vr , Vr.new)

131 }

132 else Vr.all <- Vr

133 # DETERMINING AXES DIRECTION PREDICTIVE OR INTERPOLATIVE #

134 ax <- do.call("biplot.ax.control", c(num.vars , list(var.names),ax))

135 if (ax$type == "prediction") {

136 if (correlation.biplot)

137 axes.direction <- (sqrt(n - 1)/(diag(Vr.all %*% lambda.r %*%

138 t(Vr.all)))) * Vr.all %*% sqrt(lambda.r) %*%

139 rotate.mat %*% reflect.mat

140 else axes.direction <- 1/(diag(Vr.all %*% t(Vr.all))) *

141 Vr.all %*% rotate.mat %*% reflect.mat

142 }

143 else {

144 if (correlation.biplot)

145 axes.direction <- sqrt(lambda.r) %*% Vr.all %*% rotate.mat %*%

146 reflect.mat

147 else axes.direction <- Vr %*% rotate.mat %*% reflect.mat

148 }

149 if (length(ax$which) == 0)

150 z.axes <- NULL

151 # CALIBRATING THE AXES#

152 else z.axes <- lapply (1: length(ax$which), calibrate.axis ,

153 unscaled.X, means , sd , axes.direction , ax$which , ax$ticks ,
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154 ax$orthogx , ax$orthogy , ax$oblique)

155 alpha.bags <- do.call("biplot.alpha.bag.control", c(J, list(

dimnames (G)[[2]]) , alpha.bags))

156 z.bags <- vector("list", length(alpha.bags$which))

157 if (length(alpha.bags$which) > 0)

158 for (j in 1: length(alpha.bags$which)) {

159 class.num <- alpha.bags$which[j]

160 mat <- Z[G[, class.num] == 1, ]

161 flush.console ()

162 cat(paste("alpha bag for class ", dimnames(G)[[2]][ class.num],

163 " with ", nrow(mat), " samples", sep = ""), "\n")

164 if (dim.biplot == 2)

165 z.bags[[j]] <- calc.alpha.bags(mat , alpha.bags$alpha[j],

166 alpha.bags$max[j], alpha.bags$Tukey.median[j],

167 alpha.bags$min[j])

168 if (dim.biplot == 1)

169 z.bags[[j]] <- quantile(mat , c((100 - alpha.bags$alpha[j])/

200,

170 1 - (100 - alpha.bags$alpha[j])/200, 0.5))

171 }

172 kappa.ellipse <- do.call("biplot.kappa.ellipse.control",

173 c(J, list(dimnames(G)[[2]]) , dim.biplot , kappa.ellipse))

174 z.ellipse <- vector("list", length(kappa.ellipse$which))

175 if (length(kappa.ellipse$which) > 0)

176 for (j in 1: length(kappa.ellipse$which)) {

177 class.num <- kappa.ellipse$which[j]

178 mat <- Z[G[, class.num] == 1, ]

179 if (dim.biplot == 2)

180 z.ellipse [[j]] <- calc.concentration.ellipse(mat ,

181 kappa.ellipse$kappa[j])

182 if (dim.biplot == 1)

183 z.ellipse [[j]] <- qnorm(c(1 - pnorm(kappa.ellipse$kappa[j]),

184 pnorm(kappa.ellipse$kappa[j])), mean(mat),

185 sqrt(var(mat)))

186 if (dim.biplot == 3) {

187 require(rgl)

188 z.ellipse [[j]] <- ellipse3d(x = var(mat), centre = apply(mat

,

189 2, mean), t = kappa.ellipse$kappa[j])

190 }

191 }

192 if (dim.biplot == 1) {

193 density.style <- do.call("biplot.density .1D.control",

194 c(J, list(dimnames(G)[[2]]) , density.style))

195 z.density <- vector("list", length(density.style$which))

196 if (length(density.style$which) > 0)

197 for (j in 1: length(density.style$which)) {

198 class.num <- density.style$which[j]

199 mat <- Z[G[, class.num] == 1, ]

200 z.density [[j]] <- density(mat , bw = density.style$bw[j],

201 kernel = density.style$kernel[j])

202 }

203 }

204 if (dim.biplot == 2) {

205 density.style <- do.call("biplot.density .2D.control",

206 c(J, list(dimnames(G)[[2]]) , density.style))

207 if (!is.null(density.style$which)) {

208 if (density.style$which == 0)

209 mat <- Z

210 else mat <- Z[G[, density.style$which] == 1, ]

211 x.range <- range(Z[, 1])

212 y.range <- range(Z[, 2])



APPENDIX A. R CODE 162

213 width <- max(x.range [2] - x.range [1], y.range [2] -

214 y.range [1])

215 xlim <- mean(Z[, 1]) + c(-1, 1) * 0.75 * width

216 ylim <- mean(Z[, 1]) + c(-1, 1) * 0.75 * width

217 if (is.null(density.style$h))

218 z.density <- kde2d(mat[, 1], mat[, 2], n = density.style$n,

219 lims = c(xlim , ylim))

220 else z.density <- kde2d(mat[, 1], mat[, 2], h = density.style$h,

221 n = density.style$n, lims = c(xlim , ylim))

222 }

223 else z.density <- NULL

224 }

225 if (dim.biplot == 3) {

226 density.style <- do.call("biplot.density .2D.control",

227 c(J, list(dimnames(G)[[2]]) , density.style))

228 if (!is.null(density.style$which))

229 warning("No density plots in 3D")

230 }

231 if (!is.null(colour.scheme)) {

232 my.sample.col <- colorRampPalette(colour.scheme)

233 samples$col <- my.sample.col(samples$col)

234 }

235 samples <- do.call("biplot.sample.control", c(J, samples))

236 new.samples <- do.call("biplot.new.sample.control", c(max(1,

237 nrow(X.new)), new.samples))

238 class.means <- do.call("biplot.mean.control", c(J, list(dimnames(G)

[[2]]) ,

239 class.means))

240 legend.format <- do.call("biplot.legend.control", legend.format)

241 legend.type <- do.call("biplot.legend.type.control", legend.type)

242 if (dim.biplot == 2)

243 draw.biplot(Z = Z, G = G, classes = classes , Z.means = Z.means.mat ,

244 z.axes = z.axes , z.bags = z.bags , z.ellipse = z.ellipse ,

245 Z.new = Z.new , Z.density = z.density , sample.style = samples ,

246 mean.style = class.means , ax.style = ax, bag.style = alpha.

bags ,

247 ellipse.style = kappa.ellipse , new.sample.style = new.samples

,

248 density.style = density.style , predict.samples =

predict.samples ,

predict.means = predict.means , Title =

Title , exp.factor = exp.factor

,...)

249 if (dim.biplot == 1)

250 draw.biplot .1D(Z = Z, G = G, classes = classes , Z.means = Z.means.

mat ,

251 z.axes = z.axes , z.bags = z.bags , z.ellipse = z.ellipse ,

252 Z.new = Z.new , Z.density = z.density , sample.style = samples ,

253 mean.style = class.means , ax.style = ax, bag.style = alpha.

bags ,

254 ellipse.style = kappa.ellipse , new.sample.style = new.

samples ,

255 density.style = density.style , predict.samples =

predict.samples ,

predict.means = predict.means , Title =

Title , exp.factor = exp.factor ,

...)

256 if (dim.biplot == 3)

257 draw.biplot .3D(Z = Z, G = G, classes = classes , Z.means = Z.means.

mat ,

258 z.axes = z.axes , z.bags = z.bags , z.ellipse = z.ellipse ,

259 Z.new = Z.new , sample.style = samples , mean.style = class.means
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,

260 ax.style = ax , bag.style = alpha.bags , ellipse.style =

kappa.ellipse , new.sample.style = new.

samples ,

261 predict.samples = predict.samples , predict.means =

predict.means , Title = Title , exp.

factor = exp.factor , ...)

262 if (!is.null(ax$oblique) & ax$type == "interpolation")

263 points(0, 0, pch = "+", cex = 2)

264 if (!is.null(predict.samples))

265 predict.mat <- scale(Z[predict.samples , , drop = F] %*%

266 t(reflect.mat) %*% t(rotate.mat) %*% t(Vr), center = F,

267 scale = 1/sd)

268 else predict.mat <- NULL

269 if (!is.null(predict.mat))

270 predict.mat <- scale(predict.mat , center = -means , scale = F)

271 if (!is.null(predict.means))

272 predict.means.mat <- scale(Z.means.mat[predict.means ,

273 , drop = F] %*% t(reflect.mat) %*% t(rotate.mat) %*%

274 t(Vr), center = F, scale = 1/sd)

275 else predict.means.mat <- NULL

276 if (!is.null(predict.means.mat))

277 predict.mat <- rbind(predict.mat , scale(predict.means.mat ,

278 center = -means , scale = F))

279 if (!is.null(predict.mat))

280 dimnames(predict.mat) <- list(c(dimnames(X)[[1]][ predict.samples],

281 dimnames(G)[[2]][ predict.means ]), dimnames(X)[[2]])

282 if (any(unlist(legend.type))) {

283 windows ()

284 sample.list <- list(pch = samples$pch , col = samples$col)

285 mean.list = list(pch = rep(NA , J), col = rep(NA , J))

286 mean.list$pch[class.means$which] <- class.means$pch

287 mean.list$col[class.means$which] <- class.means$col

288 bag.list = list(lty = rep(1, J), col = rep(NA, J), lwd = rep(NA ,

289 J))

290 bag.list$lty[alpha.bags$which] <- alpha.bags$lty

291 bag.list$col[alpha.bags$which] <- alpha.bags$col

292 bag.list$lwd[alpha.bags$which] <- alpha.bags$lwd

293 if (length(alpha.bags$which) == 0 & length(kappa.ellipse$which) >

294 0) {

295 bag.list$lty[kappa.ellipse$which] <- kappa.ellipse$lty

296 bag.list$col[kappa.ellipse$which] <- kappa.ellipse$col

297 bag.list$lwd[kappa.ellipse$which] <- kappa.ellipse$lwd

298 }

299 biplot.legend(legend.type , legend.format , mean.list = mean.list ,

300 sample.list = sample.list , bag.list = bag.list , class.names =

dimnames(G)[[2]] ,

301 quality.print = quality.print , quality = quality)

302 }

303 list(predictions = predict.mat , quality = quality , adequacy = adequacy ,

304 axis.predictivity = axis.predictivity , sample.predictivity =

sample.predictivity)

305 }

PCAbiplot function

1 #FUNCTION THAT SIMULATES DATA#

2 # #############################

3
4 simulation.CPC.CVA <-function (sigma=matrix(c(0.1,0,0,0,0.1,0,0,0,0.1),ncol

=3),MU=rbind(c(0,0,0),c(1,0,0),c(0,1,1)))
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5 {

6 set.seed (4567)

7 require(MASS)

8 n1 <- 15

9 n2 <- 15

10 n3 <- 15

11 #sigma=matrix(c(3 ,2.2 ,0.7 ,2.2 ,2 ,0 ,0.7 ,0 ,1) ,ncol =3)

12
13 X11 <- mvrnorm(n1 , MU[1,], sigma)

14 X12 <- mvrnorm(n2 , MU[2,], sigma)

15 X13 <- mvrnorm(n3 , MU[3,], sigma)

16
17 X21 <- mvrnorm(n1 , MU[1,]+2, sigma)

18 X22 <- mvrnorm(n2 , MU[2,]*5, sigma)

19 X23 <- mvrnorm(n3 , MU[3,], sigma)

20
21 X31 <- mvrnorm(n1 , MU[1,], sigma)

22 X32 <- mvrnorm(n2 , MU[2,], sigma)

23 X33 <- mvrnorm(n3 , MU[3,], sigma)

24
25 X41 <- mvrnorm(n1 , MU[1,]+2, sigma)

26 X42 <- mvrnorm(n2 , MU[2,]*5, sigma)

27 X43 <- mvrnorm(n3 , MU[3,], sigma)

28
29 X1 <- rbind (X11 , X12 , X13)

30 X2 <- rbind (X21 , X22 , X23)

31 X3 <- rbind (X31 , X32 , X33)

32 X4 <- rbind (X41 , X42 , X43)

33 X <- array(NA, dim=c(nrow(X1),ncol(X1) ,4))

34 X[,,1] <- X1

35 X[,,2] <- X2

36 X[,,3] <- X3

37 X[,,4] <- X4

38 X.list <- list (X1 , X2, X3, X4)

39 }

40 # MATRICIZED MANSOOR DATA#

41 wide <-do.call("cbind",Xdat)

42 tall <-do.call("rbind",Xdat)

43 agg <-0.25*(Xdat [[1]]+ Xdat [[2]]+ Xdat [[3]]+ Xdat [[4]])

44
45 #CVA BIPLOT FUNCTION#

46 CVAbiplot <-function (X, G = NULL , dim.biplot = c(2, 1, 3), e.vects = 1:ncol(

X), correlation.biplot = FALSE , classes = 1:ncol(G),

47 samples = list (...), ax=list (...) , ax.new = NULL , samples.new = NULL ,

new.samples= list (...), class.means=list (...), predict.means =

NULL , predict.samples = NULL ,

48 alpha.bags=list (...) , kappa.ellipse=list (...), density.style=list (...)

,

49 colour.scheme = NULL , Title = NULL , exp.factor = 1.2,

50 dim3.plane.col = "lightgrey", dim3.xdiameter = 2, dim3.ydiameter = 2,

51 reflect = c(FALSE , "x", "y"), rotate = 0, select.origin = FALSE ,

52 legend.type=list (...), legend.format=list (...), weightedCVA = c("

weighted", "unweightedI", "unweightedCent"),

53 adequacies.print = FALSE , output = 1:10, predictivity.print =

FALSE , quality.print = FALSE ,

54 adjust .3d = c(0.5, 0.5), bag.alpha .3d = 0.7, aspect .3d = "iso", ax.

list.3d = "black", cex.3d = 0.6, col.text.3d = "black",

55 font.3d = 2, predictions .3D = TRUE , size.ax.3d = 0.5, size.means.3

d = 10, size.points .3d = 5, xTitles .3d = c("", "", "Dim 1", "

Dim 2", "Dim 3"),

56 ID.labs = FALSE , ID.3d = 1:nrow(X), large.scale = FALSE , ort.lty = 1,

...)
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57 {

58 # unique default arguments

59 dim.biplot <- dim.biplot [1]

60 if (dim.biplot != 1 & dim.biplot != 2) stop ("Only 1D and 2D biplots")

61 e.vects <- e.vects [1: dim.biplot]

62 reflect <- reflect [1]

63 weightedCVA <- weightedCVA [1]

64
65 # data matrices

66 X.info <- biplot.check.X (X, scaled.mat=F)

67 X <- X.info$X

68 unscaled.X <- X.info$unscaled.X

69 means <- X.info$means

70 G <- biplot.check.G (G, nrow(X))

71 Nmat <- t(G)%*%G

72 Xbar <- solve(Nmat) %*% t(G) %*% X

73 if (!is.null(samples.new)) X.new <- scale(samples.new , center=means , scale

=F) else X.new <- NULL

74
75 n <- nrow(X)

76 p <- ncol(X)

77 J <- ncol(G)

78 K <- min(p, J - 1)

79 if (K == 1) { dim.biplot <- 1

80 e.vects <- e.vects [1] }

81
82 if(!all(is.numeric(classes))) classes <- match(classes , dimnames(G)

[[2]], nomatch = 0)

83 classes <- classes[classes <= J]

84 classes <- classes[classes > 0]

85
86 # MATRIX ALGEBRA

87 SSP.T <- t(X) %*% X

88 SSP.B <- t(Xbar) %*% Nmat %*% Xbar

89 SSP.W <- SSP.T - SSP.B

90 Wmat <- SSP.W

91 svd.Wmat <- svd(Wmat)

92 lambdamatI <- diag(svd.Wmat$d)

93 Lmat <- svd.Wmat$u %*% solve(sqrt(lambdamatI))

94 if (weightedCVA == "weighted") Cmat <- Nmat

95 if (weightedCVA == "unweightedI") Cmat <- diag(J)

96 if (weightedCVA == "unweightedCent") Cmat <- diag(J) - matrix (1/J, nrow

= J, ncol = J)

97 if (is.na(match(weightedCVA , c("weighted", "unweightedI", "

unweightedCent")))) stop(" Argument ’weightedCVA ’ must be one of ’

weighted ’,’unweightedI ’,’unweightedCent ’ ")

98 svd.step2 <- svd(t(Lmat) %*% t(Xbar) %*% Cmat %*% Xbar %*% Lmat)

99 Vmat <- svd.step2$v

100 lambdamat <- diag(svd.step2$d)

101 svd.2sided <- Eigen.twosided(t(Xbar) %*% Cmat %*% Xbar , Wmat)

102 Mmat <- svd.2sided$W

103 lambdamat .2sided <- svd.2 sided$Lambda.mat

104 vec.temp <- rep(0, p)

105 vec.temp[e.vects] <- 1

106 Jmat <- diag(vec.temp)

107 XLVJ <- X %*% Mmat %*% Jmat

108 XbarHat <- Xbar %*% Mmat %*% Jmat %*% solve(Mmat)

109 XHat <- XLVJ %*% solve(Mmat)

110 I.min.H <- (diag(n) - G %*% (solve(Nmat)) %*% t(G))

111
112 # Fit measures
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113 # args(biplot.fit.measures) function (mat , mat.hat , weights = diag(nrow(mat)

), orthog.metric = diag(ncol(mat)), eigenvals , eigenvecs , dims)

114
115 fit.Canvar <- biplot.fit.measures (Xbar , XbarHat , weights=Cmat , orthog.

metric = Wmat , eigenvals=diag(lambdamat .2sided), eigenvecs=Mmat , dims=

e.vects)

116 fit.Within <- biplot.fit.measures (I.min.H%*%X, I.min.H%*%XHat , orthog.

metric = Wmat , eigenvals=diag(lambdamat .2sided), eigenvecs=Mmat ,

dims=e.vects)

117 quality.Canvar <- fit.Canvar$quality

118 quality.Origvar <- sum((diag(solve(t(Mmat)%*%Mmat)) * diag(lambdamat .2

sided))[e.vects ]) / sum(diag(solve(t(Mmat)%*%Mmat)) * diag(lambdamat .2

sided))

119 adequacy <- fit.Canvar$adequacy

120
121 axis.predictivity <- fit.Canvar$axis.predictivity

122 class.predictivity <- fit.Canvar$item.predictivity

123 within.class.axis.predictivity <- fit.Within$axis.predictivity

124 within.class.sample.predictivity <- fit.Within$item.predictivity

125
126 if (adequacies.print & predictivity.print) stop("adequacies.print and

predictivity.print cannot both be set to True")

127 if (adequacies.print) dimnames(X)[[2]] <- paste(dimnames(X)[[2]] , " (",

adequacy , ")", sep = "")

128 if (predictivity.print) dimnames(X)[[2]] <- paste(dimnames(X)[[2]], " ("

, round(axis.predictivity , digits = 2), ")", sep = "")

129
130 # reflect only for 1D & 2D biplots

131 reflect.mat <- diag(dim.biplot)

132 if (reflect == "x" & dim.biplot < 3) reflect.mat[1,1] <- -1

133 if (reflect == "y" & dim.biplot == 2) reflect.mat[2,2] <- -1

134 if (reflect == "xy" & dim.biplot == 2) reflect.mat [1:2 ,1:2] <- diag(-1,2)

135
136 # rotate only for 2D biplots

137 rotate.mat <- diag(dim.biplot)

138 if (dim.biplot == 2)

139 {

140 if (!is.null(ax$rotate))

141 {

142 if (is.numeric(ax$rotate))

143 {

144 radns <- pi * rotate/180

145 rotate.mat <- matrix(c(cos(radns), -sin(radns), sin(radns),

cos(radns)), ncol = 2)

146 }

147 else

148 {

149 if (ax$rotate == "maxpred")

150 {

151 ax$rotate <- (names(axis.predictivity))[axis.

predictivity == max(axis.predictivity)]

152 ax$rotate <- match(ax$rotate , dimnames(X)[[2]])

153 }

154 else ax$rotate <- match(ax$rotate , dimnames(X)[[2]])

155 radns <- -atan2(V.mat[ax$rotate , e.vects [2]], V.mat[ax$

rotate , e.vects [1]])

156 rotate.mat <- matrix(c(cos(radns), -sin(radns), sin(radns),

cos(radns)), ncol = 2)

157 }

158 }

159 }

160 Mr <- Mmat[,e.vects , drop=F]
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161
162 # samples and means

163 Z.new <- NULL

164 Z.means.mat <- NULL

165 Z <- X %*% Mr %*% rotate.mat %*% reflect.mat

166 Z.means.mat <- Xbar %*% Mr %*% rotate.mat %*% reflect.mat

167 if (!is.null (X.new)) Z.new <- X.new %*% Mr %*% rotate.mat %*% reflect.

mat

168 dimnames(Z) <- list (dimnames(X)[[1]], NULL)

169 if (!is.null(X.new)) if (is.null(dimnames(samples.new)[[1]])) dimnames(Z.

new) <- list (paste("N" ,1:nrow(Z.new),sep=""),NULL) else dimnames(Z.

new) <- list (dimnames(samples.new)[[1]], NULL)

170
171 if (is.matrix(ax.new)) { NewVarsMeans <- apply(ax.new , 2, mean)

172 NewVars.cent <- scale(ax.new , center = TRUE ,

scale = FALSE)

173 NewVars.means <- solve(Nmat) %*% t(G) %*%

NewVars.cent

174 }

175
176 # axes / variables

177 num.vars <- p

178 var.names <- dimnames(X)[[2]]

179 Mrr <- solve(Mmat)[e.vects , ,drop=F]

180 if (!is.null(ax.new)) { means <- c(means , NewVarsMeans)

181 unscaled.X <- cbind(unscaled.X, ax.new)

182 num.vars <- ncol(unscaled.X)

183 if (!is.null(dimnames(ax.new)[[2]])) var.names <- c(var.names

, dimnames(ax.new)[[2]]) else var.names <- c (var.names ,

paste("NV" ,1:ncol(ax.new),sep=""))

184 LambdaMinOne <- ifelse(lambdamat < 1e-10, 0, 1/

lambdamat)

185 Mr.new <- LambdaMinOne %*% t(Mmat) %*% t(Xbar)

%*% Cmat %*% NewVars.means

186 Mr.new <- Mr.new[, e.vects , drop=F]

187 Mrr.all <- rbind(Mrr , Mr.new)

188 }

189 else Mrr.all <- Mrr

190
191 ax <- do.call("biplot.ax.control", c(num.vars ,list(var.names),ax))

192 if (ax$type == "prediction") axes.direction <- solve(diag(diag(t(Mrr.all

) %*% Mrr.all))) %*% t(Mrr.all) %*% rotate.mat %*% reflect.mat

193 else axes.direction <- Mr %*% rotate.mat %*% reflect.mat

194
195 if (length(ax$which)==0) z.axes <- NULL

196 else z.axes <- lapply (1: length(ax$which), calibrate.axis , unscaled.X,

means , sd=rep(1,length(means)), axes.direction , ax$which , ax$ticks ,

ax$orthogx , ax$orthogy , ax$oblique)

197
198 # alpha -bags

199 alpha.bags <- do.call("biplot.alpha.bag.control", c(J,list(dimnames(G)

[[2]]) ,alpha.bags))

200 z.bags <- vector ("list", length(alpha.bags$which))

201 if (length(alpha.bags$which) > 0)

202 for (j in 1: length(alpha.bags$which))

203 {

204 class.num <- alpha.bags$which[j]

205 mat <- Z[G[,class.num]==1,]

206 flush.console ()

207 cat (paste ("alpha bag for class ", dimnames(G)[[2]][ class.num], "

with ", nrow(mat), " samples", sep = ""), "\n")
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208 if (dim.biplot ==2) z.bags[[j]] <- calc.alpha.bags (mat , alpha.bags$

alpha[j], alpha.bags$max[j], alpha.bags$Tukey.median[j], alpha.

bags$min[j])

209 if (dim.biplot ==1) z.bags[[j]] <- quantile(mat , c((100 - alpha.bags$

alpha[j])/200,1-(100- alpha.bags$alpha[j])/200 ,0.5))

210 }

211
212 # kappa -ellipse

213 kappa.ellipse <- do.call("biplot.kappa.ellipse.control", c(J,list(

dimnames(G)[[2]]) ,dim.biplot ,kappa.ellipse))

214 z.ellipse <- vector ("list", length(kappa.ellipse$which))

215 if (length(kappa.ellipse$which) > 0)

216 for (j in 1: length(kappa.ellipse$which))

217 {

218 class.num <- kappa.ellipse$which[j]

219 mat <- Z[G[,class.num]==1,]

220 if (dim.biplot ==2) z.ellipse [[j]] <- calc.concentration.ellipse (mat ,

kappa.ellipse$kappa[j])

221 if (dim.biplot ==1) z.ellipse [[j]] <- qnorm(c(1-pnorm(kappa.ellipse$

kappa[j]),pnorm(kappa.ellipse$kappa[j])),mean(mat),sqrt(var(mat))

)

222 }

223
224 # density plots

225 if (dim.biplot ==1)

226 { density.style <- do.call("biplot.density .1D.control", c(J,list(

dimnames(G)[[2]]) ,density.style))

227 z.density <- vector ("list", length(density.style$which))

228 if (length(density.style$which) > 0)

229 for (j in 1: length(density.style$which))

230 {

231 class.num <- density.style$which[j]

232 mat <- Z[G[,class.num]==1,]

233 z.density [[j]] <- density (mat , bw=density.style$bw[j], kernel=

density.style$kernel[j])

234 }

235 }

236 if (dim.biplot ==2)

237 { density.style <- do.call("biplot.density .2D.control", c(J,list(

dimnames(G)[[2]]) ,density.style))

238 if (!is.null(density.style$which))

239 {

240 if (density.style$which ==0) mat <- Z

241 else mat <- Z[G[,density.style$which ]==1 ,]

242
243 x.range <- range(Z[,1])

244 y.range <- range(Z[,2])

245 width <- max(x.range[2]-x.range [1],y.range[2]-y.range [1])

246 xlim <- mean(Z[,1])+c(-1,1)*0.75*width

247 ylim <- mean(Z[,1])+c(-1,1)*0.75*width

248 if (is.null(density.style$h))

249 z.density <- kde2d (mat[,1], mat[,2], n = density.style$n, lims =

c(xlim , ylim))

250 else

251 z.density <- kde2d (mat[,1], mat[,2], h = density.style$h, n =

density.style$n, lims = c(xlim , ylim))

252 }

253 else z.density <- NULL

254 }

255
256 # allows for changing the colour palette

257 if (!is.null(colour.scheme)) {
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258 my.sample.col <- colorRampPalette(colour.scheme)

259 samples$col <- my.sample.col(samples$col)

260 }

261
262 samples <- do.call("biplot.sample.control", c(J,samples))

263 new.samples <- do.call("biplot.new.sample.control", c(min(1,nrow(X.new))

,new.samples))

264 class.means <- do.call("biplot.mean.control", c(J,list(dimnames(G)[[2]])

,class.means))

265 if (length(class.means$which)==0) { class.means$which <- 1:J

266 class.means$col <- samples$col

267 class.means <- do.call("biplot.mean.control", c(J,

list(dimnames(G)[[2]]) ,class.means))

268 }

269 legend.format <- do.call("biplot.legend.control", legend.format)

270 legend.type <- do.call("biplot.legend.type.control", legend.type)

271
272 if (dim.biplot ==2) draw.biplot (Z=Z, G=G, classes=classes , Z.means=Z.

means.mat , z.axes=z.axes , z.bags=z.bags , z.ellipse=z.ellipse , Z.new=

Z.new , Z.density=z.density ,

273 sample.style=samples , mean.style=class.

means , ax.style=ax, bag.style=alpha

.bags , ellipse.style=kappa.ellipse ,

new.sample.style=new.samples ,

density.style=density.style ,

274 predict.samples=predict.samples , predict.means=predict.

means , Title=Title , exp.factor=exp.factor , ...)

275 if (dim.biplot ==1) draw.biplot .1D (Z=Z, G=G, classes=classes , Z.means=Z.

means.mat , z.axes=z.axes , z.bags=z.bags , z.ellipse=z.ellipse , Z.new=Z.

new , Z.density=z.density ,

276 sample.style=samples , mean.style=class.

means , ax.style=ax, bag.style=alpha

.bags , ellipse.style=kappa.ellipse ,

new.sample.style=new.samples ,

density.style=density.style ,

277 predict.samples=predict.samples , predict.means=predict.

means , Title=Title , exp.factor=exp.factor , ...)

278
279
280 if (!is.null(ax$oblique) & ax$type == "interpolation") points(0, 0, pch

= "+", cex = 2)

281
282 if (!is.null(predict.samples)) predict.mat <- scale(Z[predict.samples ,,

drop=F] %*% t(reflect.mat) %*% t(rotate.mat) %*% Mrr , center=-means ,

scale=F) else predict.mat <- NULL

283 if (!is.null(predict.means)) predict.mat <- rbind (predict.mat , scale(Z.

means.mat[predict.means ,,drop=F] %*% t(reflect.mat) %*% t(rotate.mat)

%*% Mrr , center=-means , scale=F))

284
285 if (!is.null(predict.mat)) dimnames(predict.mat) <- list(c(dimnames(X)

[[1]][ predict.samples],dimnames(G)[[2]][ predict.means]), dimnames(X)

[[2]])

286
287 if (any(unlist(legend.type)))

288 {

289 windows ()

290 sample.list <- list(pch = samples$pch , col = samples$col)

291 mean.list=list(pch=rep(NA,J), col=rep(NA,J))

292 mean.list$pch[class.means$which] <- class.means$pch

293 mean.list$col[class.means$which] <- class.means$col

294 bag.list=list(lty=rep(1,J), col=rep(NA ,J), lwd=rep(NA,J))

295 bag.list$lty[alpha.bags$which] <- alpha.bags$lty
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296 bag.list$col[alpha.bags$which] <- alpha.bags$col

297 bag.list$lwd[alpha.bags$which] <- alpha.bags$lwd

298 if (length(alpha.bags$which)==0 & length(kappa.ellipse$which) >0)

299 {

300 bag.list$lty[kappa.ellipse$which] <- kappa.ellipse$lty

301 bag.list$col[kappa.ellipse$which] <- kappa.ellipse$col

302 bag.list$lwd[kappa.ellipse$which] <- kappa.ellipse$lwd

303 }

304 biplot.legend (legend.type , legend.format , mean.list=mean.list ,

sample.list=sample.list , bag.list=bag.list , class.names=

dimnames(G)[[2]] , quality.print=quality.print , quality=

quality)

305 }

306 list (predictions=predict.mat , quality.Canvar=quality.Canvar , quality.

Origvar=quality.Origvar , adequacy=adequacy , axis.predictivity=axis.

predictivity , class.predictivity=class.predictivity ,

307 within.class.axis.predictivity = within.class.axis.predictivity ,

within.class.sample.predictivity = within.class.sample.

predictivity)

308
309 }

CVAbiplot function

1
2 # PROCRUSTES ALGORITHM #

3 function (X,iso ,Xdat)

4 {

5 sum <-0

6 Q<-vector("list" ,4)

7 s<-vector("list" ,4)

8 k<-0

9
10 tr<-function(X)

11 {

12 return(sum(diag(X)))

13 }

14
15 for(i in 1:4)

16 {

17 Q[[i]]<-matrix(c(1,0,0,1), nrow = 2, ncol = 2, byrow= T)

18 G<-G+X[[i]]%*%Q[[i]]

19 k<-k+tr(X[[i]])

20 }

21
22
23 for (i in 1:4)

24 {

25 if (iso)

26 {

27 s[[i]]<-((0.25*k)/tr(G%*%t(G)))*tr(t(G)%*%X[[i]]%*%Q[[i]])/tr((X[[i]]%*

%Q[[i]])%*%t(X[[i]]%*%Q[[i]]))

28 sum <-sum+tr((s[[i]]*X[[i]]%*%Q[[i]]-G)%*%t(s[[i]]*X[[i]]%*%Q[[i]]-G))

29 }

30 else sum <-sum+tr((X[[i]]%*%Q[[i]]-G)%*%t(X[[i]]%*%Q[[i]]-G))

31 }

32 if (iso)

33 totcrit <-4*sum

34 else totcrit <-sum

35 newcrit <-0

36 sum <-0
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37 while (totcrit!=newcrit)

38 {

39 newcrit <-totcrit

40 if (iso)

41 {

42 G<-0.25*(s[[1]]*X[[1]]%*%Q[[1]]+s[[2]]*X[[2]]%*%Q[[2]]+s[[3]]*X[[3]]%*%Q

[[3]]+s[[4]]*X[[4]]%*%Q[[4]])

43 for (i in 1:4)

44 {

45 Q[[i]]<-svd(t(G)%*%X[[i]])$v%*%t(svd(t(G)%*%X[[i]])$u)

46 s[[i]]<-((0.25*k)/tr(G%*%t(G)))*tr(t(G)%*%X[[i]]%*%Q[[i]])/tr((X[[i]]%*

%Q[[i]])%*%t(X[[i]]%*%Q[[i]]))

47 sum <-sum+tr((s[[i]]*X[[i]]%*%Q[[i]]-G)%*%t(s[[i]]*X[[i]]%*%Q[[i]]-G))

48 }

49 totcrit <-4*sum

50 } else

51 {

52 G<-0.25*(X[[1]]%*%Q[[1]]+X[[2]]%*%Q[[2]]+X[[3]]%*%Q[[3]]+X[[4]]%*%Q[[4]])

53 for (i in 1:4)

54 {

55 Q[[i]]<-svd(t(G)%*%X[[i]])$v%*%t(svd(t(G)%*%X[[i]])$u)

56 sum <-sum+tr((X[[i]]%*%Q[[i]]-G)%*%t(X[[i]]%*%Q[[i]]-G))

57 }

58 totcrit <-sum

59 sum <-0

60 }

61 }

62
63 result <-list(s,Q)

64 return(result)

65 }

66
67 #APPLYING GOPA METHOD#

68 function (Xdat ,Proc.type="sample",iso=F)

69 {

70 # ###################

71 #DATA PREPROCESSING #

72 # ###################

73 n<-29

74 p<-7

75 k<-4

76 threeway <-array(0,dim=c(n,p,k))

77 for (i in 1:4)

78 threeway[,,i]=as.matrix(Xdat[[i]])

79 meansk <-vector("list" ,4)

80
81 for (i in 1:k)

82 meansk [[i]]<-apply(threeway[,,i],2,mean)

83 overall.mean <- rep(NA ,p)

84 overall.sd <- rep(NA,p)

85 for (i in 1:p)

86 {

87 overall.mean[i] <- mean(threeway[,i,])

88 overall.sd[i] <- sd(as.vector(threeway[,i,]))

89 threeway[,i,]<-(threeway[,i,]-mean(threeway[,i,]))/sd(as.vector(threeway

[,i,]))

90 }

91
92 XDat <-vector("list" ,4)

93 for (i in 1:4)

94 #XDat [[i]] <-as.matrix(Xdat [[i]])

95 XDat[[i]]=as.matrix(threeway[,,i])
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96
97 X.new <-vector("list" ,4)

98 for (i in 1:k)

99 X.new[[i]]<- matrix(as.matrix(0-meansk [[i]]),nrow =1)

100
101 #DEFINING GROUP INDICATOR MATRICES#

102 G1<-G2<-G3<-G4<-matrix (0,29,3)

103 p<-7

104 G1[1:3 ,1] <-G1[4:13 ,2] <-G1[14:29 ,3] <-1

105 G2[1:3 ,1] <-G2[4:13 ,2] <-G2[14:29 ,3] <-1

106 G3[1:3 ,1] <-G3[4:13 ,2] <-G3[14:29 ,3] <-1

107 G4[1:3 ,1] <-G4[4:13 ,2] <-G4[14:29 ,3] <-1

108 dimnames(XDat [[1]]) <-dimnames(XDat [[2]]) <-dimnames(XDat [[3]]) <-dimnames(XDat

[[4]]) <- list(paste (1: nrow(XDat [[1]])), paste("V", 1:p, sep = ""))

109
110 #DEFINING SAMPLE POINT AND VARIABLE POINT CONFIGURATIONS #

111 outt <-lapply (1:k,function(j) {PCAbiplot2(XDat[[j]], samples.new=matrix(X.new

[[j]],nrow =1),Title="PCA of X1",new.samples=list(col="red",pch =16),

samples=list(col=3))})

112 Zk<-lapply(outt ,function(x) {x$Z})

113 Vk<-lapply(outt ,function(x) {x$Vr})

114 Z.new <-lapply(outt ,function(x) {x$Z.new})

115 both <-lapply (1:k,function(x) {rbind(Vk[[x]],Zk[[x]])})

116 lambda.r<-lapply(outt ,function(x) {x$lambda.r})

117
118 #DETERMING ROTATION MATRICES FROM GOPA#

119 if (Proc.type=="both")

120 {

121 estimates <-proc(Zk,iso=F)

122 Q<-estimates$Q

123 Z <- lapply (1:k,function(x){rbind(Zk[[x]]%*%Q[[x]])})

124 z.ax <-lapply (1:k,function(x){rbind(Vk[[x]]%*%Q[[x]])})

125 }

126 if (Proc.type=="sample")

127 {

128 estimates <-proc(Zk,iso=F)

129 Q<-estimates$Q

130 s.vec <-estimates$s.vec

131 Z<-lapply (1:k,function(x){rbind(Zk[[x]]%*%Q[[x]])})

132 z.ax<-lapply (1:k,function(x){rbind(Vk[[x]]%*%Q[[x]])})

133 }

134 if (Proc.type=="ax")

135 {

136 estimates <-proc(Zk,iso=F)

137 Q<-estimates$Q

138 s.vec <-estimates$s.vec

139 Z<- lapply (1:k,function(x){rbind(Zk[[x]]%*%Q[[x]])})

140 z.ax<-lapply (1:k,function(x){rbind(Vk[[x]]%*%Q[[x]])})

141 }

142
143 z.axes <-lapply (1:k, function(x) {outt[[x]]$z.axes})

144 Z.new <-lapply (1:k,function(x) {Z.new[[x]]%*%Q[[x]]})

145
146 #ROTATING THE AXES#

147 for(i in 1:4)

148 {

149 for (j in 1:7)

150 outt[[i]]$z.axes[[j]][ ,1:2] <- outt[[i]]$z.axes[[j]][ ,1:2]%*%Q[[i]]

151 }

152
153 #OPT SO THAT AXES PASS THROUGH INTERPOLATED POINT#
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154 z.axes .1.OPT <- lapply (1:7, calibrate.axis , unscaled.X=do.call("rbind",Xdat)

, means=meanscaled , sd=overall.sd, axes.rows =(1/(diag(Vk [[1]] %*% t(Vk

[[1]]))) * Vk [[1]])%*%Q[[1]], ax.which =1:7, ax.tickvec=outt [[1]]$ax.

style$ticks , ax.orthogxvec=rep(Z.new [[1]][1] ,7) , ax.orthogyvec=rep(Z.new

[[1]][2] ,7) ,ax.oblique=out1$ax.style$oblique)

155 z.axes .2.OPT <- lapply (1:7, calibrate.axis , unscaled.X=do.call("rbind",Xdat)

, means=meanscaled , sd=overall.sd, axes.rows =(1/(diag(Vk [[2]] %*% t(Vk

[[2]]))) * Vk [[2]])%*%Q[[2]], ax.which =1:7, ax.tickvec=outt [[2]]$ax.

style$ticks , ax.orthogxvec=rep(Z.new [[2]][1] ,7) , ax.orthogyvec=rep(Z.new

[[2]][2] ,7) ,ax.oblique=out1$ax.style$oblique)

156 z.axes .3.OPT <- lapply (1:7, calibrate.axis , unscaled.X=do.call("rbind",Xdat)

, means=meanscaled , sd=overall.sd, axes.rows =(1/(diag(Vk [[3]] %*% t(Vk

[[3]]))) * Vk [[3]])%*%Q[[3]], ax.which =1:7, ax.tickvec=outt [[3]]$ax.

style$ticks , ax.orthogxvec=rep(Z.new [[3]][1] ,7) , ax.orthogyvec=rep(Z.new

[[3]][2] ,7) , ax.oblique=out1$ax.style$oblique)

157 z.axes .4.OPT <- lapply (1:7, calibrate.axis , unscaled.X=do.call("rbind",Xdat)

, means=meanscaled , sd=overall.sd, axes.rows =(1/(diag(Vk [[4]] %*% t(Vk

[[4]]))) * Vk [[4]])%*%Q[[4]], ax.which =1:7, ax.tickvec=outt [[4]]$ax.

style$ticks , ax.orthogxvec=rep(Z.new [[4]][1] ,7) , ax.orthogyvec=rep(Z.new

[[4]][2] ,7) ,ax.oblique=out1$ax.style$oblique)

158
159 out1 <-outt [[1]]

160 out2 <-outt [[2]]

161 out3 <-outt [[3]]

162 out4 <-outt [[4]]

163
164 #BINDING ROTATED AND TRANSLATED SAMPLES FOR K OCC INTO ONE#

165 p <- 7

166 Z <- rbind (out1$Z%*%Q[[1]]- matrix(1,nrow=n1,ncol =1)%*%Z.new[[1]], out2$Z%*%

Q[[2]] - matrix(1,nrow=n2,ncol =1)%*%Z.new[[2]], out3$Z%*%Q[[3]]- matrix(1,

nrow=n2 ,ncol =1)%*%Z.new [[3]] , out4$Z%*%Q[[4]]- matrix(1,nrow=n2,ncol =1)%*%

Z.new [[4]])

167 print(Z)

168 z.axes <- vector("list" ,4*p)

169
170 #MOVING AXES TO NEW ORIGIN AT INTERPOLATED POINT#

171 for (j in 1:p)

172 { z.axes[[j]] <- z.axes .1. OPT[[j]]

173 z.axes[[j]][ ,1:2] <- z.axes[[j]][ ,1:2] - matrix(1,nrow=nrow(z.axes .1.

OPT[[j]]),ncol =1)%*%Z.new [[1]]

174 z.axes[[j+p]] <- z.axes .2. OPT[[j]]

175 z.axes[[j+p]][ ,1:2] <- z.axes[[j+p]][ ,1:2] - matrix(1,nrow=nrow(z.axes

.2. OPT[[j]]),ncol =1)%*%Z.new [[2]]

176 z.axes[[j+2*p]] <- z.axes .3.OPT[[j]]

177 z.axes[[j+2*p]][ ,1:2] <- z.axes[[j+2*p]][ ,1:2] - matrix(1,nrow=nrow(z.

axes .3.OPT[[j]]),ncol =1)%*%Z.new [[3]]

178 z.axes[[j+3*p]] <- z.axes .4.OPT[[j]]

179 z.axes[[j+3*p]][ ,1:2] <- z.axes[[j+3*p]][ ,1:2] - matrix(1,nrow=nrow(z.

axes .4.OPT[[j]]),ncol =1)%*%Z.new [[4]]

180 }

181
182 #DEFINING COLLECTIVE GROUP INDICATOR MATRIX#

183 G<-matrix (0,29*4,3*4)

184 for (i in 1:4)

185 {

186 a<-1+29*(i-1)

187 b<- 29*i

188 c<-1+3*(i-1)

189 d<-3*i

190 G[a:b,c:d]<-G1

191 }

192 out$G <- G
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193 out$classes <- 1:12

194 out$Z.new <- NULL

195
196
197 #DEFINING PLOT SPECIFICATIONS #

198 for (i in 1:4)

199 {

200
201 a<-1+3*(i-1)

202 b<-3*i

203 c<-2+3*(i-1)

204 out$sample.style$col[a:b]<-i

205 out$sample.style$pch[a]<-15

206 out$sample.style$pch[b]<-16

207 out$sample.style$pch[c]<-17

208 }

209 J<-12

210 out$sample.style$cex <- rep(1,12)

211 out$sample.style$label <- rep(F,12)

212 out$ax.style$which <- 1:28

213 out$ax.style$lwd <- rep(1,28)

214 out$ax.style$lty <- rep(1,28)

215 out$ax.style$label.cex <- rep (0.75 ,28)

216 out$ax.style$label.dist <- rep(0,28)

217 out$ax.style$tick.size <- rep (1 ,28)

218 out$ax.style$tick.label <- rep(T,28)

219 out$ax.style$tick.label.cex <- rep (0.6 ,28)

220 out$ax.style$tick.label.side <- rep("left" ,28)

221 out$ax.style$tick.label.offset <- rep (0.5 ,28)

222 out$ax.style$tick.label.pos <- rep (1 ,28)

223 lab <-labs <-c(rep(0,28))

224 i<-0

225 for (k in 1:4)

226 for (j in 1:7)

227 {

228 i<-i+1

229 lab[i]<-paste(j,k,sep=".")

230 }

231
232 for (i in 1:28)

233 labs[i]<-paste("X",lab[i],sep="")

234 out$ax.style$names <- labs

235
236 out$ax.style$col [8:14] <-out$ax.style$tick.col [8:14] <-out$ax.style$tick.label

.col [8:14] <-out$ax.style$label.col [8:14] <-"brown"

237 out$ax.style$col [15:21] <-out$ax.style$tick.col [15:21] <-out$ax.style$tick.

label.col [15:21] <-out$ax.style$label.col [15:21] <-"black"

238 out$ax.style$col [22:28] <-out$ax.style$tick.col [22:28] <-out$ax.style$tick.

label.col [22:28] <-out$ax.style$label.col [22:28] <-"orange"

239
240 draw.biplot(Z = Z, G = out$G, classes = out$classes , Z.means = out$Z.means ,

z.axes = z.axes , z.bags = out$z.bags , z.ellipse = out$z.ellipse , Z.new =

out$Z.new , Z.density = out$Z.density ,sample.style = out$sample.style ,

mean.style = out$mean.style , ax.style = out$ax.style , bag.style = out$

bag.style , ellipse.style = out$ellipse.style , new.sample.style = out$new

.sample.style ,density.style = out$density.style , predict.samples = out$

predict.samples , predict.means = out$predict.means , Title = "Combined

biplot", exp.factor = out1$exp.factor)

Chapter 6 code
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1 #FG ALGORITHM FOR CPC#

2 # #####################

3
4 #F ALGORITHM#

5 function(A.mat , n.vec , B)

6 {

7 PHI <- function(F.mat , B, n.vec)

8 {

9 phi <- function(mat)

10 {

11 det1 <- prod(eigen(diag(diag(mat)))$values)

12 det2 <- prod(eigen(mat)$values)

13 return(det1/det2)

14 }

15 k <- length(F.mat)

16 prod(sapply (1:k, function(x, F.mat , B, n.vec , phi)

17 phi(t(B) %*% F.mat[[x]] %*% B)^n.vec[x], F.mat = F.mat ,B = B, n.vec = n.vec ,

phi = phi))

18 }

19 p <- nrow(A.mat [[1]])

20 k <- length(A.mat)

21
22 T.mat <- lapply (1:k, function(x)

23 matrix(NA, ncol = 2, nrow = 2))

24 f.herh <- 0

25 klaar <- F

26 max.herh <- 100

27 while(!klaar) {

28 # -- Step F1

29 Bf <- B

30 f.herh <- f.herh + 1#

31 # -- Step F2

32 for(m in 1:(p - 1))

33 for(j in (m + 1):p) {

34 # -- Step F21

35 for(i in 1:k)

36 T.mat[[i]] <- t(B[, c(m, j)])%*% A.mat[[i]] %*% B[, c(m, j)]

37 # -- Step F22

38 J22 <- G.al2(T.mat , n.vec)

39 # -- Step F23

40 J <- diag(p)

41 J[m, m] <- J22[1, 1]

42 J[j, j] <- J22[2, 2]

43 J[m, j] <- J22[1, 2]

44 J[j, m] <- J22[2, 1]

45 B <- B %*% J

46 }

47 # -- Step F3

48 if(abs(PHI(A.mat , Bf, n.vec) - PHI(A.mat , B, n.vec)) < 1e-005)

49 klaar <- T

50 if(f.herh > max.herh)

51 klaar <- T

52 }

53 list(Bf=B, ff=f.herh)

54 }

55
56 #G ALGORITHM#

57 function(T.mat , n.vec)

58 {

59 k <- length(T.mat)

60 # -- Step G0

61 Q <- diag (2)
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62 g.herh <- 0

63 max.herh <- 20

64 klaar <- F

65 alpha.mat <- matrix(0, ncol = 2, nrow = 2)

66 while(!klaar) {

67 # -- Step G1

68 Qg <- Q

69 g.herh <- g.herh + 1

70 # -- Step G2

71 delta <- sapply (1:k, function(x, T.mat , Q)

72 diag(t(Q) %*% T.mat[[x]] %*% Q), T.mat = T.mat , Q = Q)

73 TT <- matrix(0, nrow = 2, ncol = 2)

74 for(i in 1:k)

75 TT <- TT + n.vec[i] * (( delta[1, i] - delta[2,i])/(delta[1, i] * delta[2, i

])) * T.mat[[i]]

76 # -- Step G3

77 Q <- svd(TT)$u

78 if(acos(Q[1, 1]) > acos(cos(pi/4)))

79 Q[, 1] <- -1 * Q[, 1]

80 # -- Step G4

81 if(max(abs(Qg - Q)) < 1e-005)

82 klaar <- T

83 if(g.herh > max.herh)

84 klaar <- T

85 }

86 return(Q)

87 }

88
89 #FG ALGORITHM #

90 function(A.mat , n.vec)

91 {

92 p <- nrow(A.mat [[1]])

93 k<- length(A.mat)

94 p<-7

95 k<-4

96 B <- diag(p)

97 F.out <- F.al2(A.mat , n.vec , B)

98 B <- F.out$Bf

99 f.herh <- F.out$ff

100 if(f.herh == 1) {

101 for(m in 1:(p - 1))

102 for(j in 1:p) {

103 G1 <- 0.8 * B[m, j] + 0.6 * B[m + 1, j

104 ]

105 G2 <- 0.8 * B[m + 1, j] - 0.6 * B[m, j

106 ]

107 B[m, j] <- G1

108 B[j, m] <- G2

109 }

110 F.out <- F.al2(A.mat , n.vec , B)

111 B <- F.out$B

112 f.herh <- c(f.herh , F.out$f.herh)

113 }

114 print(t(B)%*%A.mat [[1]]%*%B)

115 list(V=B, f=f.herh)

116 }

117
118 #FG ALGORITHM FOR DCPC#

119 # ######################

120
121 #F ALGORITHM#

122
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123 function(Smat ,p,k)

124 {

125
126 PHI <-function(F.mat ,B,p,k)

127 {

128 diagonal <-matrix(NA ,k*p,k*p)

129 F<-matrix(NA ,k*p,k*p)

130 for (i in 1:k)

131 for (j in 1:k)

132 {

133 q<-(i-1)*p+1

134 r<-i*p

135 s<-(j-1)*p+1

136 t<-j*p

137 F[q:r,s:t]<-t(B)%*%F.mat[q:r,s:t]%*%B

138 diagonal[q:r,s:t]<- diag(t(B)%*%F.mat[q:r,s:t]%*%B)

139 }

140 det1 <-prod(eigen(diagonal)$values)

141 det2 <-prod(eigen(F)$values)

142 return(as.real(det1/det2))

143 }

144
145 #--Step F0

146 f.iter <-0

147 B<-diag(p)

148 klaar <-FALSE

149 while (!klaar)

150 {

151 #--Step F1

152 Bf<-B

153 f.iter <-f.iter+1

154 #--Step F2

155 for (m in 1:(p-1))

156 for (l in (m+1):p)

157 {

158 #--Step F21

159 H<-B[,c(m,l)]

160 Ik<-diag(k)

161
162 #--Step F22

163 Tmat <-t(Ik%x%H)%*%Smat%*%(Ik%x%H)

164 #--Step F23

165 J<-g.algd(Tmat ,p,k)

166 #--Step F24

167 H_new <-H%*%J

168 B[,m]=H_new[,1]

169 B[,l]=H_new[,2]

170 }

171 #--Step F3

172 print(dim(B))

173 print(as.real(abs(PHI(Smat ,B,p,k)-PHI(Smat ,Bf,p,k))))

174 if (as.real(abs(PHI(Smat ,B,p,k)-PHI(Smat ,Bf ,p,k))) <0.00001)

175 klaar <-TRUE

176 }

177 return(B)

178 }

179
180 #G ALGORITHM FR DCPC#

181 function(Tmat ,p,k)

182 {

183 #--Step G0

184 g.iter <-0
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185 Q<-diag (2)

186 done1 <-FALSE

187 while (!done1)

188 {

189 #--Step G1

190 Qg<-Q

191 g.iter <-g.iter+1

192 T_new <-matrix (0,2,2)

193 #--Step G2

194 Ik<-diag(k)

195 M<-lapply (1:2, function(x) {t(Ik%x%as.matrix(Q[,x]))%*%Tmat%*%(Ik%x%as

.matrix(Q[,x]))})

196 #--Step G3

197 A<-solve(M[[1]]) -solve(M[[2]])

198 for (i in 1:k)

199 for (j in 1:k)

200 {

201 n<-(i-1)*2+1

202 o<-i*2

203 f<-(j-1)*2+1

204 d<-j*2

205 T_new <-T_new+A[i,j]*Tmat[n:o,f:d]

206 }

207 #--Step G4

208 if (T_new[1,2] != 0)

209 {

210 ratio <-(T_new[2,2]-T_new[1,1])/T_new[1,2]

211 discr <-sqrt(ratio ^2+4)

212 root1 <-0.5* (ratio + discr)

213 root2 <-0.5* (ratio - discr)

214 if (atan(root1)<= pi/4)

215 d<-root1

216 else d<-root2

217 c<-1/sqrt (1+d^2)

218 s<-d*c

219 } else

220 {

221 c=1

222 s=0

223 }

224
225 Q[1,1] <-c

226 Q[1,2] <--s

227 Q[2,1] <-s

228 Q[2,2] <-c

229 #--Step G5

230 if(abs(max(Q-Qg)) <0.00001)

231 done1 <-TRUE

232 }

233 return(Q)

234 }

235
236 #FG ALGORITHM FOR DCPC#

237 function(Smat ,p,k)

238 {

239 B<-f.algd(Smat ,p,k)

240 return(B)

241 }

242
243
244 # MODIFICATION TO PCABIPLOT FUNCTION#

245
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246 #DO DCPC AND CHOOSE COMPONENTS #

247 Bd<-fg.algd(Smat ,7,4)

248 p<-7

249 k<-4

250 larray <-array(NA,c(p,p,k*k))

251 l<-0

252 total <-0

253 for (i in 1:k)

254 for (j in 1:k)

255 {

256 l<-l+1

257 a<-1+p*(i-1)

258 b<-i*p

259 c<-1+p*(j-1)

260 d<-p*j

261 larray[,,l]<-t(Bd)%*%Smat[a:b,c:d]%*%Bd

262 total <-total+sum(diag(larray[,,l]))

263 }

264 combin <-combn (7,2)

265 u<-length(combin)/2

266 fit <-vector("integer",length=u)

267 for (i in 1:u)

268 fit[i]<-(sum(larray[combin[1,i],combin[1,i] ,1:16])+sum(larray[combin[2,i],

combin[2,i] ,1:16]))/total

269
270 index_max <-which(fit==max(fit), arr.ind=T)

271
272 Br<-Bd[,c(combin[1,index_max],combin[2,index_max])]

273
274 #DO THE CPC AND CHOOSE COMPONENTS #

275
276 Bd<-FG.al2(Smat ,c(1,1,1,1))$V

277 print(lapply (1:4, function(i) t(Bd)%*%Smat[[i]]%*%Bd))

278 p<-7

279 k<-4

280 larray <-array(NA,c(p,p,k))

281 l<-0

282 total <-0

283 for (i in 1:k)

284 {

285 larray[,,i]<-t(Bd)%*%as.matrix(Smat[[i]])%*%Bd

286 total <-total+sum(diag(larray[,,i]))

287 }

288 combin <-combn (7,2)

289 u<-length(combin)/2

290 fit <-vector("integer",length=u)

291 for (i in 1:u)

292 fit[i]<-(sum(larray[combin[1,i],combin[1,i] ,1:4])+sum(larray[combin[2,i],

combin[2,i] ,1:4]))/total

293
294 index_max <-which(fit==max(fit), arr.ind=T)

295 print(combin)

296 print(index_max)

297 print(max(fit))

298 Br<-Bd[,c(combin[1,index_max],combin[2,index_max])]

299 Xscaled <-lapply (1:4, function(i) scale(Xdat[[i]],center=T,scale=T))

300 X<-do.call("rbind",Xdat)

301 #IN PCAbipl , Br REPLACES Vr AND X IS DEFINED AS ABOVE#

302
303 #FOR MULTIPLE AXES#

304 #THIS IS INSERTED BEFORE THE CALIBRATION PROCEDURE #

305 num.vars <- 28
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306 var.names <- rep(paste("V" ,1:7,sep="") ,4)

307 axes.direction <-rbind(axes.direction ,axes.direction ,axes.direction ,axes.

direction)

308 unscaled.X2<-cbind(unscaled.X,unscaled.X,unscaled.X,unscaled.X)

309 means=as.vector(c(colMeans(Xdat [[1]]) ,colMeans(Xdat [[2]]) ,colMeans(Xdat

[[3]]) ,colMeans(Xdat [[4]])))

310 ax$ticks <-rep (2 ,28)

311
312 #INSERT BEFORE DRAW BIPLOT AFTER CALIBRATION #

313 for (i in 1:4)

314 {

315
316 a<-1+3*(i-1)

317 b<-3*i

318 c<-2+3*(i-1)

319 samples$col[a:b]<-i

320 samples$pch[a]<-15

321 samples$pch[b]<-16

322 samples$pch[c]<-17

323 }

324
325 ax$tick.label.col [1:7] <-ax$tick.col [1:7] <-"black"

326 ax$tick.label.col [8:14] <-ax$tick.col [8:14] <-"red"

327 ax$tick.label.col [15:21] <-ax$tick.col [15:21] <-"blue"

328 ax$tick.label.col [22:28] <-ax$tick.col [22:28] <-"green"

Chapter 7 code

1 # MODIFICATIONS TO CVAbiplot FUNCTION WHERE X IS DATA USED#

2
3
4 # MATRIX ALGEBRA

5 Wmat <- vector("list",length(X))

6 Lmat <- vector("list",length(X))

7 LBL <- vector("list",length(X))

8 Cmat <- vector("list",length(X))

9 Vmat <- vector("list",length(X))

10 Mmat <- vector("list",length(X))

11 lambda <- vector("list",length(X))

12
13 for (k in 1: length(X))

14 {

15 SSP.T <- t(X[[k]]) %*% X[[k]]

16 SSP.B <- t(Xbar[[k]]) %*% Nmat %*% Xbar[[k]]

17 SSP.W <- SSP.T - SSP.B

18 Wmat[[k]] <- SSP.W

19 }

20 #STEP 1 of COMMON CVA PROCESS#

21 Lstar <- FG.al2(Wmat , c(rep(1,length(X))))[[1]]

22
23 for (k in 1: length(X))

24 {

25 lambda [[k]] <- diag(diag(t(Lstar)%*%Wmat[[k]]%*%Lstar))

26 Lmat[[k]] <- Lstar%*%diag(diag(lambda [[k]])^ -0.5)

27 if (weightedCVA == "weighted") Cmat[[k]] <- Nmat

28 if (weightedCVA == "unweightedI") Cmat[[k]] <- diag(J)

29 if (weightedCVA == "unweightedCent") Cmat[[k]] <- diag(J) - matrix (1/J,

nrow = J, ncol = J)

30 }

31 if (is.na(match(weightedCVA , c("weighted", "unweightedI", "

unweightedCent")))) stop(" Argument ’weightedCVA ’ must be one of ’
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weighted ’,’unweightedI ’,’unweightedCent ’ ")

32
33 #STEP 2 OF COMMON CVA PROCESS#

34 for (k in 1: length(X))

35 LBL[[k]] <- t(Lmat[[k]]) %*% t(Xbar[[k]]) %*% Cmat[[k]] %*% Xbar[[k]]

%*% Lmat[[k]]

36 Vstar <- FG.al2 (LBL , c(rep(1,length(X))),r=K)[[1]]

37
38 for (k in 1: length(X))

39 {

40 Vmat[[k]] <- (lambda [[k]]) ^0.5 %*% Vstar

41 Mmat[[k]] <- Lmat[[k]] %*% Vstar

42 }

43
44
45 Zmat <- lapply(X, function(x) matrix (NA, nrow=nrow(x), ncol=dim.biplot ,

dimnames=list(dimnames(x)[[1]] , NULL)))

46 Z.means.mat <- vector("list",length(X))

47 for (k in 1: length(X))

48 {

49 Zmat[[k]] <- X[[k]] %*% Mmat[[k]][,e.vects]

50 Z.means.mat[[k]] <- Xbar[[k]] %*% Mmat[[k]][,e.vects]

51 }

52 #DEFINE SAMPLE POINTS#

53 Z <- Zmat [[1]]

54 for (k in 2: length(X))

55 Z <- rbind (Z, Zmat[[k]])

56
57 #DEFINING VARIABLE AXES#

58 z.axes.all <- vector("list",length(X)*p)

59 i <- 0

60 for (k in 1: length(X))

61 {

62 Mrr <- solve(Mmat[[k]])[e.vects , ,drop=F]

63 ax <- NULL

64 ax <- do.call("biplot.ax.control", c(num.vars ,list(var.names),ax))

65 if (ax$type == "prediction") axes.direction <- solve(diag(diag(t(

Mrr) %*% Mrr))) %*% t(Mrr)

66 else axes.direction <- Mrr[,e.vects , drop=F]

67
68 if (length(ax$which)==0) z.axes <- NULL

69 else z.axes <- lapply (1: length(ax$which), calibrate.axis , unscaled.

X[[k]], means[[k]], sd=rep(1,length(means[[k]])), axes.

direction , ax$which , ax$ticks , ax$orthogx , ax$orthogy , ax$

oblique)

70 for (j in 1:p)

71 {

72 i <- i + 1

73 z.axes.all[[i]] <- z.axes[[j]]

74 }

75 }

76 #Z AND z.axes ARE USED IN THE CVAbiplot FUNCTION#

Chapter 8 code

1 #ONE EXAMPLE FOR CENTERED DATA#

2
3 matlab <- Matlab ()

4 print(matlab)

5 isOpen <- open(matlab)

6
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7
8 ##USING MATLAB TO RUN THE TUCKER DECOMPOSITION #

9 # ##############################################

10 str(parr)

11 setVariable(matlab ,parr=parr)

12 evaluate(matlab ,"[Factors ,G,SSE]= tucker(parr ,[2 2 2])")

13 core <-getVariable(matlab ,"G")

14 evaluate(matlab ,"[A B C]= fac2let(Factors)")

15 components <-getVariable(matlab ,c("A","B","C"))

16
17
18 #PCAbipl TAKES TWO NEW ARGUMENTS components ,core#

19
20
21 # REPRESENTING X1=AF ’

22 # ##############################

23 threeway <-array(0,dim=c(n,p,k))

24
25 for (i in 1:4)

26 threeway[,,i]=as.matrix(Xdat[[i]])

27 meansk <-vector("list" ,4)

28
29 for (i in 1:k)

30 meansk [[i]]<-apply(threeway[,,i],2,mean)

31 overall.mean <- rep(NA ,p)

32 overall.sd <- rep(NA,p)

33 for (i in 1:p)

34 {

35 overall.mean[i] <- mean(threeway[,i,])

36 overall.sd[i] <- sd(as.vector(threeway[,i,]))

37 threeway[,i,]<-(threeway[,i,]-mean(threeway[,i,]))/sd(as.vector(threeway

[,i,]))

38 }

39 XDat <-vector("list" ,4)

40 for (i in 1:4)

41 XDat[[i]]=as.matrix(threeway[,,i])

42
43 #Unfolding the core in the subject mode

44 # ######################################

45 P<-Q<-R<-2

46 G1<-matrix(0,P,Q*R)

47 for (k in 1:R)

48 {

49 a<-1+R*(k-1)

50 b<-R*k

51 G1[,a:b]<-core$G[,,k]

52 }

53
54 #DEFINING F, Lambda AND SCALED MATRICES

55 # ######################################

56 A<-components$A

57 B<-components$B

58 C<-components$C

59 F<-(C%x%B)%*%t(G1)

60 lambda <-diag(diag(G1%*%t(G1)))

61 Fnew <-F%*%svd(lambda)$u%*%diag(svd(lambda)$d^-1)%*%t(svd(lambda)$v)

62 Anew <-A%*%svd(lambda)$u%*%diag(svd(lambda)$d)%*%t(svd(lambda)$v)

63
64 # MODIFICATION TO PCAbipl FOR WIDE#

65 Vr <- Fnew

66 Z <- Anew

67
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68 # MODIFICATION TO PCAbipl FOR TALL#

69 Vr<-Anew

70 Z<-t(Fnew)

71
72 #MULTIPLE MARKERS PROGRAMMED AS FOR CPC#

73
74 #TRIPLOT CONSTRUCTION

75 # ########################################

76 #LROAT ALGORITHM FOR r=2 (Chen and Saad , 2009)

77 # #######################

78 function (threeway ,r)

79 {

80 I<-dim(threeway)[1]

81 J<-dim(threeway)[2]

82 K<-dim(threeway)[3]

83 print(c(I,J,K))

84 print(dim(threeway [,,1]))

85
86 #SUBJECT MODE#

87
88 Unf_subj <-matrix(0,I,J)

89 for (i in 1:K)

90 Unf_subj <-cbind(Unf_subj ,threeway[,,i])

91
92 Unf_subj <-Unf_subj[,-c(1:J)]

93
94 #print(cor(t(Unf_subj)))

95 print(dist(Unf_subj))

96
97 U1<-svd(Unf_subj)$u[,1:r]

98 #VARIABLE MODE#

99
100 Unf_var <-matrix(0,J,K)

101 for (i in 1:I)

102 Unf_var <-cbind(Unf_var ,threeway[i,,])

103
104 Unf_var <-Unf_var[,-c(1:K)]

105
106 print(cor(t(Unf_var)))

107 U2<-svd(Unf_var)$u[,1:r]

108
109
110 #TIME MODE#

111
112 Unf_time <-matrix(0,K,I)

113 for (i in 1:J)

114 Unf_time <-cbind(Unf_time ,t(threeway[,i,]))

115
116 Unf_time <-Unf_time[,-c(1:I)]

117
118 print(cor(t(Unf_time)))

119
120 U3<-svd(Unf_time)$u[,1:r]

121
122 tr<-function(X)

123 {

124 return(sum(diag(X)))

125 }

126 oldcrit <-0

127 first <-second <-matrix(NA ,I,K)

128 first2 <-second2 <-matrix(NA ,K,J)

129 done <-FALSE
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130 while (!done)

131 # for (l in 1:20)

132 {

133 #SUBJECT MODE V and Sigma#

134 for (i in 1:I)

135 {

136 first[i,]<-t(U2[,1])%*%threeway[i,,]

137 second[i,]<-t(U2[,2])%*%threeway[i,,]

138 }

139 V1<-matrix(c(t(t(U3[,1])%*%t(first)),t(t(U3[,2])%*%t(second))),ncol=r)

140 Sigma <-diag(c(as.double(t(U1[,1])%*%V1[,1]),as.double(t(U1[,2])%*%V1[,2]))

)

141 polart <-svd(V1%*%Sigma)

142 U1<-polart$u%*%t(polart$v)

143 #VARIABLE MODE V and Sigma#

144 for (i in 1:K)

145 {

146 first2[i,]<-t(U1[,1])%*%threeway[,,i]

147 second2[i,]<-t(U1[,2])%*%threeway[,,i]

148 }

149 V2<-matrix(c(t(t(U3[,1])%*%(first2)),t(t(U3[,2])%*%(second2))),ncol=r)

150 Sigma <-diag(c(as.double(t(U2[,1])%*%V2[,1]),as.double(t(U2[,2])%*%V2[,2]))

)

151 polart <-svd(V2%*%Sigma)

152 U2<-polart$u%*%t(polart$v)

153 #OCCASION MODE V and Sigma#

154 V3<-matrix(c(t(t(U2[,1])%*%t(first2)),t(t(U2[,2])%*%t(second2))),ncol=r)

155 Sigma <-diag(c(as.double(t(U3[,1])%*%V3[,1]),as.double(t(U3[,2])%*%V3[,2]))

)

156 polart <-svd(V3%*%Sigma)

157 U3<-polart$u%*%t(polart$v)

158 newcrit <-tr(t(Sigma)%*%(Sigma))

159 print(newcrit)

160 if (abs(newcrit -oldcrit)<1e-3)

161 done <-TRUE

162 oldcrit <-newcrit

163 }

164 print(U2)

165 for (i in 1:r)

166 {

167 if (Sigma[i,i] < 0)

168 {

169 U1[,i] = -1*U1[,i]

170 Sigma[i,i] = -Sigma[i,i]

171 }

172 }

173 return(list(U1=U1 ,U2=U2,U3=U3,Sigma=Sigma))

174 }

175
176 #DRAWING THE TRIPLOT

177 # ####################

178 function (X,G,modes)

179 {

180 output <-LROAT(X,2)

181 U1<-output$U1

182 #plot(U1[,1],U1[,2],pch ="", asp=1, xaxt ="n",yaxt ="n",xlab ="", ylab ="")

183 #text(U1[,1],U1[,2], labels =1:29 , pos =3)

184 #stop ()

185 U2<-output$U2

186 U3<-output$U3

187 D<-output$Sigma

188 Aout <-cbind(D[1 ,1]^(1/3)*U1[,1],D[2 ,2]^(1/3)*U1[,2])
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189 Bout <-cbind(D[1 ,1]^(1/3)*U2[,1],D[2 ,2]^(1/3)*U2[,2])

190 Cout <-cbind(D[1 ,1]^(1/3)*U3[,1],D[2 ,2]^(1/3)*U3[,2])

191 U2<-Bout

192 U3<-Cout

193 #plot(Aout [,1], Aout [,2],pch ="", asp=1, xaxt ="n",yaxt ="n",xlab ="", ylab ="")

194 #text(Aout [,1], Aout [,2], labels =1:29 , pos =3)

195 #stop ()

196
197 # ######################

198 #CREATES BASIC TRIPLOT#

199 # ######################

200 new <-rbind(Aout ,Bout ,Cout)

201 #new <-rbind(Aout ,U2 ,U3)

202 plot(new[,1],new[,2],pch="",asp=1,xaxt="n",yaxt="n",xlab="",ylab="")

203 abline(h=0,v=0,lty=2)

204 #points(U2[,1],U2[,2],asp=1,pch =15, col =" orange ")

205 #points(U3[,1],U3[,2],col =" blue",pch =16)

206 points(Bout[,1],Bout[,2],asp=1,pch=15,col="orange")

207 points(Cout[,1],Cout[,2],col="blue",pch =16)

208 for (i in 1:ncol(G))

209 {

210 points(Aout[G[,i]==1,1], Aout[G[,i]==1,2],pch=17,col=i)

211 }

212 #text(Aout [,1], Aout [,2], labels =1: nrow(Aout), pos =2)

213 #stop ()

214 text(Cout[,1],Cout[,2],labels =1: nrow(Cout),pos =2)

215 text(Bout[,1],Bout[,2], labels =1: nrow(Bout), pos =2)

216 #legend (" topright",legend=c(" variables "," occasions "," samples "), pch =15:17 ,

col=c(" orange "," blue"," black "))

217 # #####################################

218 # COMBINATION OF MODES

219 # #####################################

220 k<-dim(X)[3]

221 p<-dim(X)[2]

222 n<-dim(X)[1]

223
224 if (modes [1]==1 && modes [2]==2)

225 {

226 A<-Aout

227 B<-Bout

228 C<-Cout

229 m<-n*p

230 g<-nrow(B)

231 h<-nrow(A)

232 G<-B

233 H<-A

234 } else if (modes [1]==1 && modes [2]==3)

235 {

236 A<-Aout

237 B<-Cout

238 C<-Bout

239 m<-n*k

240 g<-nrow(A)

241 h<-nrow(B)

242 G<-A

243 H<-B

244 }

245 else

246 {

247 A<-Bout

248 B<-Cout

249 C<-Aout
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250 m<-p*k

251 g<-nrow(B)

252 h<-nrow(A)

253 G<-B

254 H<-A

255 }

256 l<-0

257 colours1 <-vector("integer",m)

258 colours1 <-c(rep("black" ,7),rep("grey" ,7),rep("brown" ,7),rep("orange" ,7))

259 vtime <-matrix(0,m,2)

260 for (k in 1:g)

261 {

262 for(j in 1:h)

263 {

264 l<-l+1

265 b<-H[j,]*(G[k,])

266 vtime[l,]=b

267 abline(a=0,b=b[[2]]/b[[1]],col=colours1[l])

268 #colours1[l]<-k

269
270 }

271 }

272 #PROJECTS POINTS ONTO AXES#

273 # for (i in 1:n)

274 # {

275 ## proj <-((a%*%t(t(b)))/t(b)%*%t(t(b)))*b

276 # points(proj [1], proj [2], col=1,pch =1)

277 # }

278 # }

279 #}

280 l<-0

281 labels <-labs <-vector("integer",m)

282 for (i in 1:g)

283 for (j in 1:h)

284 {

285 l=l+1

286 labels[l]<-paste(j,i,sep=".")

287 }

288
289 for (k in 1:m)

290 labs[k]<-paste("V",labels[k],sep="")

291 print(labs)

292 print(colours1)

293 usr <-par("usr")

294 FINDING CO -ORIDNATES FOR AXIS LABELS

295 for (i in 1:m)

296 {

297 b<-vtime[i,]

298 if (b[1]>0 && b[2] >0)

299 if (b[2]/b[1] < usr [4]/usr [2])

300 {

301 m<-b[2]/b[1]

302 ytext <-m*usr [2]

303 mtext (text=labs[i], side=4, adj=0,at=ytext ,cex=0.85,col=colours1[i])

304 } else

305 {

306 m<-b[2]/b[1]

307 ytext <-usr[4]/m

308 mtext (text=labs[i], side=3, adj=0,at=ytext ,cex=0.85,col=colours1[i])

309 }

310
311 if (b[1]>0 && b[2] <0)
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312 if (b[2]/b[1] > usr [3]/usr [2])

313 {

314 m<-b[2]/b[1]

315 ytext <-m*usr [2]

316 mtext (text=labs[i], side=4, adj=0,at=ytext ,cex=0.85,col=colours1[i])

317 } else

318 {

319 m<-b[2]/b[1]

320 ytext <-usr[3]/m

321 mtext (text=labs[i], side=1, adj=0,at=ytext ,cex=0.85,col=colours1[i])

322 }

323
324 if (b[1]<0 && b[2] >0)

325 if (b[2]/b[1] > usr [4]/usr [1])

326 {

327 m<-b[2]/b[1]

328 ytext <-m*usr [1]

329 mtext (text=labs[i], side=2, adj=0,at=ytext ,cex=0.85,col=colours1[i])

330 m<-b[2]/b[1]

331 ytext <-usr[4]/m

332 } else

333 {

334 mtext (text=labs[i], side=3, adj=0,at=ytext ,cex=0.85,col=colours1[i])

335 }

336 if (b[1]<0 && b[2] <0)

337 if (b[2]/b[1] < usr [3]/usr [1])

338 {

339 m<-b[2]/b[1]

340 ytext <-m*usr [1]

341 mtext (text=labs[i], side=2, adj=0,at=ytext ,cex=0.85,col=colours1[i])

342 } else

343 {

344 m<-b[2]/b[1]

345 ytext <-usr[3]/m

346 mtext (text=labs[i], side=1, adj=0,at=ytext ,cex=0.85,col=colours1[i])

347 }

348 }

349 }

Chapter 9 code


