
FISHER
TESTING INDEPENDENCE

IN r× c TABLES



(Figure 1 on page 1.)



FISHER 3.10
TESTING INDEPENDENCE

IN r× c TABLES
(2nd revised printing)

Albert Verbeek & Pieter M. Kroonenberg



This is the User’s Manual of Fisher 3.11. The program itself is available for
IBM PCs and compatibles, and can be made available for most other computer
systems with an ISO Fortran compiler. Copies of this manual and the program
can be ordered from

The Three-Mode Company - P. M. Kroonenberg

Mail: Department of Education and Child Studies,
Leiden University, Wassenaarseweg 52
2333 AK Leiden, The Netherlands

Email: kroonenb/@/fsw.leidenuniv.nl
Tel: +31 71 5273446/3434
Fax: +31 71 5273945

c© iec ProGAMMA, 1990, 1993; The Three-Mode Company, 2004
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

ISBN 90-5144-010-3

The Three-Mode Company is a non-profit institution supported by the buyers
of its software and by the Leiden University. Sole representative: Pieter M.
Kroonenberg

Manual date: August 1, 2005

Acknowlegdements. The Fisher team consisted of Albert Verbeek († 1970),
Pieter Kroonenberg, Siep Kroonenberg, and Bill Barit, with financial support
from

- the University of Utrecht,
- Leiden University,
- the Netherlands Organization for the Advancement for Pure Research,
ZWO, Grant 56-185,

- the Netherlands Society for Road Safety Research, SWOV,
- iec ProGAMMA.

This book has been prepared with LATEXand has been reproduced from camera-
ready copy supplied by the authors.



Contents

Preface ix

Part I. Statistical Background 2

1 Introduction 2

1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Large sample methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A word of warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Notation and terminology 5

2.1 The p-value, observed values, and expected values . . . . . . . . . . . 5

2.2 Scores or values of the categories . . . . . . . . . . . . . . . . . . . . 6

2.3 The isomarginal family . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Distributional assumptions 6

3.1 Sampling schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 The hypergeometric distribution as null hypothesis . . . . . . . . . . 7

4 Sketch of the algorithm 8

4.1 Exact computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Monte Carlo estimation . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Test statistics 13

5.1 Pearson’s X2 (X2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 The log likelihood ratio G2 (LR) . . . . . . . . . . . . . . . . . . . . . 13

5.3 The Freeman-Tukey test statistic F -T (F-T) . . . . . . . . . . . . . . 13

5.4 The exact probability test statistic (EPT) . . . . . . . . . . . . . . . . 13

5.5 Kruskal-Wallis’ test statistic H (K-W) . . . . . . . . . . . . . . . . . . 14

5.6 The correlation ratio η2 (ETA2) . . . . . . . . . . . . . . . . . . . . . 14

5.7 Kendall’s τb (TAU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.8 Spearman’s rank correlation coefficient RS (RS) . . . . . . . . . . . . 15

5.9 Pearson’s correlation coefficient R (R) . . . . . . . . . . . . . . . . . . 15

5.10 Tests for two columns = two groups . . . . . . . . . . . . . . . . . . . 16

5.11 Which test statistic? . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.12 Scores for numerical variables . . . . . . . . . . . . . . . . . . . . . . 18

5.13 Midranks for ordinal variables . . . . . . . . . . . . . . . . . . . . . . 18

6 Large sample tests 20

6.1 Limit distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2 Should most expected values be larger than about 1? . . . . . . . . . 21

v



7 Small sample tests 22

7.1 The calculation of the probability mass at the observed value . . . . . 22

7.2 One-sided tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.3 Two-sided tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Criterion robustness versus inference robustness 25

9 More on Pearson’s X2 26

9.1 X2 terms and residuals . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9.2 Collapsing and grouping . . . . . . . . . . . . . . . . . . . . . . . . . 27

9.3 Quick methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Part II. Example of a Fisher job 33

10 Input 33

Part III. Reference Manual 37

11 The user interface 37

11.1 General points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11.2 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11.3 Writing the entire distribution to file . . . . . . . . . . . . . . . . . . 38

11.4 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 Fisher command syntax 39

12.1 General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12.2 Command descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12.3 Data entry commands . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12.4 Analysis commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

12.5 Control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12.6 File commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Part IV. Appendices 51

A Installing and running Fisher on IBM PCs and compatibles 52

A.1 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.2 The distribution disk . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.4 Running Fisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.5 Running the demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



B Additional technical information 54
B.1 Marginal zeroes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.2 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.3 Monte Carlo estimation . . . . . . . . . . . . . . . . . . . . . . . . . 57

C Annotated output 60

References 71

Fisher command summary 74

List of Tables

1 Violations of Cochran’s rule of thumb . . . . . . . . . . . . . . . . . . 4
2 Example of one- and two-sided tests in a 2×2 table . . . . . . . . . . 8
3 Example of exact testing in a 2×3 table . . . . . . . . . . . . . . . . 10
4 The null distribution of X2 . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Choosing a statistic based on the alternative hypothesis . . . . . . . . 16
6 The calculation of midranks . . . . . . . . . . . . . . . . . . . . . . . 18
7 Asymptotic approximations to the null distributions . . . . . . . . . . 20
8 Example of collapsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

List of Figures

Hypergeometric and generalized hypergeometric probabilities . . . . . ii
1 Hypergeometric distributions with 1 and 2 df . . . . . . . . . . . . . . 9
2 3D Plots of Pearson’s X2 and the hypergeometric probabilities . . . . 11
3 3D Plots of p, X2, η2, τ , and R . . . . . . . . . . . . . . . . . . . . . 19

vii



Preface

Fisher is a program to test independence in r×c contingency tables, especially
(but not only) when the sample size is small. In all tests we will condition on the
margins. We hope that the program will be useful to applied statisticians and to
users of statistics from other disciplines. As minimal prerequisites we assume a basic
understanding of statistical tests in general, and of the usual test statistics for r×c
tables in particular.

Originally Fisher has beeen developed to compute exact p-values (as opposed
to the usual asymptotic approximations). This is necessary for small samples. Un-
fortunately no one knows what ‘small’ really means. Notwithstanding the emphasis
on small sample tests, the program is so easy to use, that many people use it rou-
tinely for the computation of statistics in r×c contingency tables with or without
any testing. However, one should not use exact testing routinely, as this may be
prohibitively costly in terms of computer time. Remember always to take a good
look at your data first. For many tables a little ingenuity can give results faster
than the time required for keying the data into a computer program. Some quick
and dirty methods are described in section 9.3.

The statistics built in are:
- Pearson’s X2 and some asymptotically equivalent χ2 statistics, such as G2 = −

2 loglikelihood ratio, and the Freeman-Tukey statistic,
- the correlation ratio η2 from one-way analysis of variance, which is equal to

explained SS/total SS,
- Kruskal-Wallis’ H, the nonparametric counterpart of η2,
- Kendall’s τb, which as a test statistic is equivalent to the other τ -s and to

Kruskal-Goodman’s γ,
- Spearman’s rank correlation coefficient RS, and
- Pearson’s (ordinary) correlation coefficient R.

Implicitly included are:
- Fisher’s exact test (r = c = 2, in which case all one-sided test statistics are

equivalent),
- Mann-Whitney-Wilcoxon’s test (= two-sided Kruskal-Wallis with c = 2), and
- the two-sample t-test (equivalent to the correlation coefficient R with c = 2).

For definitions, references and other details see section 5. For these statistics Fisher
provides the observed value and

- the popular, large sample approximations of the p-values (default)
- the exact p-values (optionally, if the table and the total number of observations

are not too large, if ANAL EXACT is specified)
- a Monte Carlo estimate of the exact p-values (optionally, if ANAL MC is speci-

fied)

Presto

For the user who wants to use Fisher straightway: First make sure Fisher is
installed on your computer system. For a PC , Appendix A contains a summary
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of the installation procedure, and indicates how Fisher is run. For installation
on other systems consult the README file on the distribution tape. For PCs the
distribution diskette also contains the file DEMO.BAT that invokes Fisher with
the input file DEMO.

Now, before you get started, there are six more things you should know.
- One exits Fisher by specifying STOP, BYE, END, or QUIT
- All key words can be abbreviated to the first 3 characters.
- Almost all parameters in Fisher are optional. Almost all parameters are order

independent. Almost all unspecified parameters retain the previous values, and
all parameters are initialized. There are a few exceptions, but these are very
natural.

- Data are entered after the command
DATA nr nc

where nr is the number of rows, and nc is the number of columns. Thus, for
a 3×4 table, type DATA 3 4

- Subsequently an analysis starts with ANA. To explore the program, first run
ANA without any options, and then compare ANA ALL with ANA X2 and ANA

X2+. Next compare ANA EXACT, ANA APPROX, and ANA MC. For a list of all
(optional) parameters see HELP ANA. Finally, try TABLE to see the observed
table, or EXRE to inspect the EXpected values and the REsiduals.

Adagio

This book consists of four parts. Part I gives the statistical background. It explains
how exact tests in r×c contingency tables work, it gives the formulas of the statistics
incorporated in Fisher, and it explains which statistic should be used for which
alternative hypothesis. Most sections are short, so the table of contents gives a
convenient survey.

Part II gives an example of the use of Fisher. It gives the input of a job with
some typical analyses, and it gives an annotated listing of the output.

Part III is the Reference Manual.
Part IV consists of assorted appendices. The main topics are the installation

of Fisher on a PC, limitations and restrictions, and an extensive bibliography. A
summary of the command syntax is printed on the last page for easy reference.

For teachers of statistics we have the following suggestion. Rather than pro-
viding only the p-values, Fisher can also write the entire distribution (or a Monte
Carlo sample thereof) of the statistic(s) to a file (which easily becomes enormous;
take care). For details, see section 11.3. Small examples of exact distributions as
provided in section 4 are very helpful to explain the basic notions of statistical test-
ing in a classroom even to statistical laymen. The output provides an excellent
illustration for the introduction of the very idea of statistical testing, but also for
more specific notions such as critical regions, p-values, the difference between differ-
ent statistics, and equivalence of statistics (especially in 2×2 tables). Also Monte
Carlo sampling, simulation, and empirical cumulative distribution functions can be
introduced this way.
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Availability, support & fair play: from us to you, and from you to us.
Fisher Version 3.10 is available for IBM PCs and compatibles, and also for many
other computer systems. Distribution of the program plus this manual is handled
by the Interuniversity Expertise Centre ProGAMMA. ProGAMMA is a non-profit
institution, but for its continuation it depends on the success of its sales. Fisher is
not copy protected, illegal copying is prohibited, and the price of Fisher is small.
Hence, if you are frequently using an illegal copy of the program, or of this manual,
please be decent enough to buy a legal copy.

If the program contributes to your research, please make an acknowledgement
and include this booklet in your list of references. We would be pleased to receive a
reprint.

If you have any suggestions, questions, or if you should observe any errors, let
us know. The second author1 can be contacted via ProGAMMA.

1Note to the second printing. Albert Verbeek died on 9 September 1990 only weeks after
finishing the final version of Fisher 3.0. This second revised printing of the manual had to be
reconstructed from his original files, some minor errors have been corrected, some new ones may
have unintentionally crept in, and references to papers he still intended to write have now been
removed. New technical appendices have been included as well.
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2 PART I: STATISTICAL BACKGROUND

1 Introduction

1.1 Purpose

Fisher is a program for testing independence or homogeneity in an r×c contingency
table. It calculates descriptive levels of significance (= p-values) or, optionally, entire
distributions of nine popular statistics. Usually the significance levels are calculated
by large sample methods (and the program provides these too). In 2×2 tables large
sample methods are satisfactory only if all expected values exceed 25. (Although
several computer programs suggest otherwise, it is not the overall sample size that
matters in 2×2 tables, but the smallest expected value.) For smaller samples, Fisher’s
exact test (Fisher, 1925, 1970) is a popular and superior alternative. However, also
for larger tables, it is theoretically straightforward to compute the exact distributions
of test statistics; for details see section 4.

Calculating the exact distribution is straightforward in theory, but in tables
with more than 1 degree of freedom it may be a lot of work in practice. The exact
distributions of the test statistics are discrete and difficult to treat analytically. In
addition, there is no convenient way to tabulate exact distributions due to the large
number of parameters. Therefore, they have to be calculated by rather involved
combinatoric methods. Actually, until the advent of sufficiently fast computers and
of efficient algorithms (around 1975) this computation was prohibitively laborious
for almost all samples of any interest. Since then many cases of practical interest can
be handled, but even with Fisher and computers built in 1990, exact calculations
are too time consuming in larger tables and/or with larger samples, and say 12 df or
a few hundred observations is pretty large. If computation of the exact distribution
is too laborious, Monte Carlo estimation is an alternative to the standard asymptotic
approach. The advantage of Monte Carlo estimation over asymptotic methods is,
that its accuracy is both known and under control. The advantage of Monte Carlo
estimation over exact computation is that the time it takes hardly depends on the
sample size. Fisher computes p-values by the following three methods:

- Large sample approximation. This is the usual method, it is very fast,
but its accuracy is unknown.

- Exact calculation by combinatorial enumeration. This is the best
method, but it may require large amounts of computer time.

- Monte Carlo approximation of the exact p-value. This takes a moderate
amount of computer time, that increases only slightly with the total number
of observations, and is proportional to the number of cells and to the Monte
Carlo sample size. Its accuracy is known, and depends on the size of the Monte
Carlo sample.

1.2 Large sample methods

What are large sample methods? Large sample methods give an approximation
to the distribution of a statistic, by letting the sample size go to infinity, while
all (population) proportions are kept fixed. This limiting distribution is called the
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asymptotic distribution. Note, that with a finite sample, there are only finitely many
possible values for the statistic, so its ‘real’ distribution is discrete. Commonly, the
asymptotic distribution is continuous, and it is used as an approximation to the real
distribution.

Why are large sample methods so popular? While the exact p-values or Monte
Carlo estimates thereof are hard to obtain without specialized software, the contin-
uous limit distributions of the most popular statistics are simple and well-tabulated
families such as normal distributions, t-distributions, and χ2 distributions. More-
over, Fisher shows that in many cases their accuracy is remarkable.

Then, what is the problem with large sample methods? The asymptotic distrib-
utions have the advantage of easy tabulation and fast computation, but except for
Pearson’s X2, little is known about the accuracy, especially for ‘small samples’. For
the use of Pearson’s X2 Cochran (1952, 1954) gave the following, famous rule of
thumb:

If in a contingency table with more than 1 degree of freedom, all expected
frequencies are larger than 1, and at least 80% of them are larger than
5, the χ2 critical region of 5 percent (1 percent) will really be at least 3
and at most 7 percent (.5 and 1.5 percent).

We will call a table satisfying these conditions a Cochran table. Often Cochran’s
rule is quoted in a washed down version, such as “In Cochran tables the χ2 approx-
imation ‘may be used’.” Note how much more precise Cochran’s rule is, and how
remarkable the precision of his statement is in those pre-computer days. Cochran’s
papers did not contain a proof. A complete search of all Cochran tables with at
most 10 cells and at most 70 observations, has revealed very few counterexamples,
and has shown that Cochran’s limits cannot be made narrower, at least not in 2×3
tables. Rather, based on extensive computer simulations, we would recommend the
following slightly amended version.

If in a contingency table with more than 1 degree of freedom, all expected
frequencies are larger than 1, and at least 80% of them are larger than
5, the χ2 critical region of 5 percent (1 percent) will really be at least 2.5
and at most 7.5 percent (.5 and 2 percent), with four minor exceptions.
All violation are 2×3-tables. They are given in Table 1.

Hence, for Pearson’s X2 we know when the sample size is large enough to apply
asymptotic methods. If the conditions from Cochran’s rule are violated however,
the literature tells us virtually nothing about the accuracy of asymptotic methods.
Many have proposed ‘corrections’ to X2 or to its approximating χ2 distribution, but
with remarkably little success. Yet for example a table in which all expected values
are around 3 may contain enough information to make the question of independence
a sensible one. In such a case, only the methods implemented in programs like
Fisher provide a reliable answer.

For χ2-statistics other than Pearson’s X2 there are no rules of thumb such as
Cochran’s. Amongst the statistics that test against the general alternative, with
(r− 1)(c− 1) df, Pearson’s X2 seems to be the one with the best χ2 approximation
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Table 1: Violations of Cochran’s rule of thumb. The p-value indi-
cated is the exact probability of the 5% χ2 region. That is the exact
probability that X2 > 5.991. Note that the smallest expected val-
ues are not very small, and that the margins are remarkably ‘nice’.

row col smallest
n margin margin p-value expected

value
44 22,22 11,11,22 .084 5.5
42 21,21 11,11,20 .079 5.5
48 24,24 16,16,16 .077 8
54 18,36 18,18,18 .077 6

for its null distribution. For example, there is ample evidence, that the –2 log like-
lihood ratio G2 is quite inferior in this respect, cf. Cressie & Read (1984). Other
possibilities are Freeman-Tukey’s statistic F -T (Freeman & Tukey, 1950), which was
especially designed to handle small samples, and the hypergeometric probability of
the table itself, which is often suggested in analogy with Fisher’s exact test for 2×2
tables. The quality of the χ2 approximation of these two statistics is even worse than
that of G2. Nevertheless, we have incorporated them in the option X2+ for the com-
mand ANAL, because the accuracy of the χ2 approximation for the null distribution
is only one property discriminating between these statistics, section 8: ‘Criterion
robustness versus inference robustness’.

Next, consider statistics which test against restricted alternatives. Fisher sup-
plies the correlation ratio η2 of one-way Anova, its nonparametric counterpart
Kruskal-Wallis’ H, Kendall’s τb, and Spearman’s and Kendall’s correlation coeffi-
cients RS and R, respectively. Some experience with Fisher suggests, that for
tables with more than 1 degree of freedom, the asymptotic p-values of the χ2 distri-
bution usually are sufficiently accurate for remarkably small samples. But it takes
a program like Fisher to be sure.

1.3 A word of warning

For more than one degree of freedom exact calculation can be very time consum-
ing. Moreover, the asymptotic approximations prove adequate in many cases with
remarkably small samples. Therefore, one should not turn to exact calculation au-
tomatically or routinely. The program can estimate the cost of exact calculations in
advance, while Monte Carlo estimation may provide a better compromise between
accuracy and costs. Moreover some quick methods for Pearson’s X2 are discussed
in section 9.3.

Let us conclude this section with a horror story. Once, many years ago now, in a
remote computing centre there was a user spending hours of CPU time on a large,
fast, and expensive Cyber main frame, doing exact calculations for a 15×2 table,
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only because Verbeek & Kroonenberg made the exact method available. In this run
so many probabilities were computed and added together, that Fisher produced a
serious warning that the accumulated roundoff error in the sum of all probabilities
(this sum should be 1) exceeded a built in threshold. So, finally, this user came to
us: throughout several identical trials, each costing several hours of CPU time, the
warning persisted. From the data, a trained statistician could tell at a glance that
the hypothesis of independence would be rejected. . .

2 Notation and terminology

2.1 The p-value, observed values, and expected values

Random variables will be denoted by italic capitals, such as X2, or by small greek
letters, such as τ . The row variable of our tables will be denoted by X, and the
column variable by Y . We use Pr(A) for the probability of an event A, S for
an arbitrary statistic, and Sobs for the observed value. The descriptive level of
significance or p-value of Sobs is defined as usual by

p-value = Pr(S ≥ Sobs) (1)

Non-random variables are denoted by small letters.
We will always condition on the margins. That is, we treat the margins as

fixed, and hence we denote them by small letters. For the heated discussion on
conditioning, see Appendix B.2.

The random table of observed frequencies is denoted by

T = (Tij)
r
i=1

c
j=1,

where Tij is the frequency or count in the i, j-cell of an r×c classification. Summation
over the first or second index will be indicated by a ‘+’ sign. Hence, the observed
marginal totals are denoted by t1+, t2+, . . . , tr+ and t+1, t+2, . . . t+c, while

n = t++

is the total number of observations. Occasionally, we will denote the random ob-
served values by

obs = Tij,

and the fixed expected values by

exp = ti+t+j/n,

Since we only treat r×c tables with fixed marginal totals, we assume (in Part I)
that all marginal totals are positive (that is, any column or row with a zero margin
has been removed), and that r≥2 and c≥2. Hence the number of degrees of freedom
will be (r − 1)(c − 1). Adding zero rows or columns does not affect the degrees of
freedom, nor the distribution of any statistic. In Fisher, and in Part III, we allow
zero rows and columns, as long as there are at least two non-zero rows, and at least
two non-zero columns.
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2.2 Scores or values of the categories

For the computation of η2 the categories of the row variable have to have numeric
values. One must the compute overall mean, group means, sums of squares etc.
Similarly, for R the categories of both variables have to have numeric values. Default
values are 1, 2, 3, . . .. These values can be inspected and changed with the commands
XVAL, YVAL, and DVAL. In this manual we call these numeric values ‘scores’ or ‘values’.

In Part I we assume that deletion of a row or column does not affect the scores
of the other rows or columns. In Fisher and in Part III, however, the default scores
are 1, 2, 3, . . .. Hence, if the default scores are used, removal of a row or column by
hand leads to a change in the scores of subsequent rows or columns. If, for example,
the second row is removed by hand, the scores of the remaining rows change from
1, 3, 4 . . . to 1, 2, 3, . . .. This affects only η2 (for row deletion) and R. Usually the
effects are very small.

On the other hand, if for example the second row is not removed by hand, but
by Fisher, because it contains only zero frequencies, the remaining rows keep the
scores they had: 1, 3, 4, . . ..

Deletion of rows or columns in which all frequencies are zero is only relevant if
Fisher is applied more or less mechanically to a series of tables. For if one enters
tables by hand, one will generally simply skip such rows and columns.

2.3 The isomarginal family

An important concept for exact testing is the family of all tables with the same
dimensions and the same margins as the observed table. This is called the isomar-
ginal family. Because we condition on the margins, the isomarginal family is our
sample space, that is, the set of possible outcomes.

3 Distributional assumptions

3.1 Sampling schemes

We consider four possible sampling schemes. These cover most practical cases in
which the usual asymptotic or exact tests are appropriate. Recall X and Y are the
row and column variable respectively.

- The n observations of the pair (X, Y ) are independently, identically distrib-
uted. Hence the frequencies in the X×Y table have a multinomial distribution.
This situation is typical for a survey, if the sample is a simple random sample
with replacement.

- For each value of X (that is, for each stratum) we have a different population
(that is a different distribution of Y ), and an independent random sample
from that population. Thus our frequencies have a product-multinomial dis-
tribution. An important special case is the comparison of two independent
multinomial or binomial samples, for example a treatment group and a con-
trol group, or a ‘case group’ and a control group.
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- Similarly to the situation above with the roles of X and Y interchanged.
- The frequency in each cell follows a Poisson distribution, and the frequencies in

different cells are independent. Hence we have a product-Poisson distribution
for our table. This situation is typical for an experiment where one observes
and cross-classified random ‘occurrences’ in a preset time interval.

For more complex sampling schemes, such as sampling without replacement from a
finite population, multi-stage sampling, and cluster sampling, it is quite difficult to
calculate the exact null distribution of almost any statistic. In general, if the above
assumptions about the sampling scheme are violated, the ‘exact methods’ discussed
here only provide an approximation. Unfortunately it is quite difficult to assess
the quality of this approximation. For complex sampling schemes it is not even
certain that ’exact methods’ always provide better approximations than asymptotic
methods.

3.2 The hypergeometric distribution as null hypothesis

All tests considered here will be conditional on the observed margins (see also Ap-
pendix B.2). The null hypothesis is either ‘independence of the row and column
variable’, or ‘homogeneity of independent samples’. These two notions differ a little
in meaning, and refer to different sampling schemes, but after conditioning on the
observed margins, both lead to the same null distribution, namely the (generalized)
hypergeometric distribution

Pr(T = t) =

∏c
j=1 t+j!

∏r
i=1 ti+!

n!
∏r

i=1

∏c
j=1 tij!

= constant/
∏

i,j tij! (2)

Here ‘constant’ means that this factor only depends on the margins. For details and
derivation see, for instance, Mood, Graybill & Boes (1974, section 5.4). One of the
major technical advantages of conditioning on the margins is that the conditional
null hypothesis consists of a single distribution.

Some authors reserve the name ‘hypergeometric’ for the case of 2×2 tables, and
use ‘generalized hypergeometric’ or something similar for general r×c tables. We
will call both ‘hypergeometric’, unless there is a special reason to emphasize the fact
that we are dealing with more than one degree of freedom.

Figure 1 shows two hypergeometric distributions. The first distribution is the
isomarginal family with 1 df, and with margins 20, 60, and 20, 60. In this table the
smallest expected value exp11 is 5, and the skewness is approximately 1/

√
5 = .45,

which is only just visible. It looks very much like a discretized normal distribution,
but the eye can not discriminate very well between normal and nonnormal distribu-
tions. The second distribution is the isomarginal family with 2 df and with margins
22, 22, and 22, 11, 11. It looks very much like a discretized binormal distribution.
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4 Sketch of the algorithm

4.1 Exact computation

It was mentioned that the distribution of the table under the null hypothesis is
the (generalized) hypergeometric distribution. The resulting exact tests are also
called permutation tests. Exact tests in r×c tables are a direct generalization of
Fisher’s exact test for the 2×2 table (which is also efficiently handled by Fisher).
Similarly as for 2×2 tables, we first have to determine the sample space, the set
of all possible outcomes. This is the isomarginal family, which was introduced in
section 2.3. For two-mini examples, see Tables 2 and 3, and Figure 2, in which the
isomarginal families contain only 6 and 16 tables.

Table 2: Example of one- and two-sided tests in a 2×2 table. This
table has a distribution virtually without a left tail. Hence, left-sided
and ‘really two-sided’ testing are impossible. Also note that G2 and X2

order A = 0 and A = 2 differently; according to G2 the exact significance
level (p-value) of A = 2 is 0.545, according to X2 it is 0.236.

The observed table

2 3 5
3 18 21
5 21 26

The isomarginal family

T11 5− T11 5
5− T11 16 + T11 21

5 21 26

The distribution of X2 and G2

t11 G2 X2 Pr(T11 = t11)
0 2.4 1.5 .309
1 .0 .0 .455
2 1.5 1.7 .202
3 5.5 6.7 .032
4 12.4 14.7 .0016
5 25.5 26.0 .000015
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Figure 1: Hypergeometric distributions with 1 and 2 degrees of
freedom. Generalization from Fisher’s exact test for 1 degree of
freedom to higher dimensions is what Fisher is all about. The top
shows the hypergeometric probabilities of a 2×2 table. The second
figure shows the generalized hypergeometric probabilities of a 2×3
table.
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Table 3: Example of exact testing in a 2×3 table.

The observed table The isomarginal family

treatment treatment
A B C A B C

survived 5 1 0 6 survived T11 T12 . 6
deceased 1 2 3 6 deceased . . . 6

6 3 3 12 6 3 3 12

Is treatment A really better? 0 ≤ T11 ≤ 6
X2 = 6 > 5.991 = χ2

2[.95] 0 ≤ T12 ≤ 3
Hence pasymp < .05 . . . 3 ≤ T11 + T12 ≤ 6

Table 4: The null distribution of X2 in the isomarginal family of
Table 3. Figure 2 gives the visual impression of the distribution.

X2 probability p-value Pr(χ2
2 > X2)

.67 .390 1 .717
1.33 .292 .610 .513
4 .195 .318 .135
6 .121 .123 .050

12 .002 .002 .002

The main problem in computing the exact significance level of a test statistic is
the efficient enumeration of the isomarginal family of the observed table. How this
is done, will not be discussed here; details and references are given in Verbeek and
Kroonenberg (1985). Let us just suppose that it can be done. Then, to obtain the
exact level of significance p of the statistic S we simply must do the following.

- Set p = 0.
- Compute the observed value of S: Sobs.
- Generate all members of the isomarginal family, and for each member:

. Compute the probability, pcurrent.

. Compute for the value of the test statistic S, Scurrent.

. Accumulate the probabilities of the tables more extreme than the ob-
served table:
IF (Scurrent ≥ Sobs), p = p + pcurrent

- Print p.

A more sophisticated and faster algorithm for computing exact significances is
given in Mehta & Patel (1983), and it is contained in their program StatXact. For
comparison with our algorithm see Verbeek & Kroonenberg (1985).
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Figure 2: 3D Plots of Pearson’s X2 and the hypergeometric prob-
abilities in the isomarginal family of Table 4.
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The exact size of the isomarginal family can only be calculated by a complete
enumeration. A simple, rough approximation is provided by Gail & Mantel (1977).
Fisher prints this apporximation before it embarks on the enumeration, so in in-
teractive use the user has some idea how long the computation will take.

4.2 Monte Carlo estimation

For ‘small’ tables and ‘small’ sample sizes, complete enumeration of the isomarginal
family can be done in a reasonable time. For ‘large’ sample sizes, asymptotic meth-
ods give good approximations. But for large sample sizes with a few small marginal
frequencies, and for large tables with sample that are not really very large, both
methods may fail. Monte Carlo estimation is a third possibility. One simply draws
m random tables from the generalized hypergeometric distribution; for each table
one computes the statistic, and one estimates the p-value by the fraction of tables
for which the statistic is equal to or larger than the observed value. The execution
time is proportional to the Monte Carlo sample size m, and about proportional to
the number of cells in the table, but it varies only little with the number of obser-
vations. The accuracy of the estimate is known and proportional to 1/

√
m. This is

a great advantage over the asymptotic methods, of which the accuracy is unknown.

Here is a sketch algorithm that uses Monte Carlo estimation of the p-value.

- Monte Carlo sample size := m (initial value: 2000)
- k := 0
- Repeat m times:

. Generate a random table from the hypergeometric distribution, with the
given margins (Patefield, 1981).

. Compute the statistic Scurrent for this table.

. Compute the number k of tables for which the value of the statistic is
greater than or equal to the observed value.

. IF (Scurrent ≥ Sobs), k = k + 1
- estimated p-value is k/m

The confidence interval for this estimate: k/m±1.96∗ the ‘asymptotic standard
error’, where the latter is defined as

|1− 2p|+
√

p(1− p)m

m + 4
.

There is one important refinement. Rather than drawing tables at random from
the null distribution, one may draw tables from any other distribution, and correct
the estimated p-value by weighting. One may choose another distribution to reduce
the variance of the estimator (‘importance sampling’) and/or to reduce the com-
putational complexity. In the current version of Fisher, however, we simply draw
from the hypergeometric distribution. A motivation for the asymptotic standard
error formula and some other technical details are presented in Appendix B.3.
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5 Test statistics

In this section we give the definition formulas and references for statistics incor-
porated in Fisher. In computations (by hand or machine) other, mathematically
equivalent formulas may be more convenient. Whenever possible, we will refer the
reader for details to some easily accessible textbooks, mostly in addition to the orig-
inal references. One may also consult the BMDP manual: Dixon & Brown (1977,
1981; Appendix A5), or the SPSS Algorithm Manual: Norušis (1979, p. 12). A very
nice unification of many χ2 statistics, including X2, G2, and a simplified version of
F − T is provided by Cressie & Read (1984), and in their book (Read & Cressie,
1988). They also give a very informative discussion of small sample properties.

In brackets we give the mnemonic used in the output of Fisher.

5.1 Pearson’s X2 (X2)

Pearson’s X2 is also known as ‘the chi-square statistic’. This name is less appropriate
however, because the null distribution of X2 is only asymptotically χ2. Moreover
also G2, F -T , and −2 ln(EPT ) + constant, which are mentioned below, and many
other statistics are asymptotically χ2 distributed.

X2 =
∑

all cells

(obs− exp)2

exp
=

∑

i,j

(Tij − ti+t+j/n)2

ti+t+j/n

References: Pearson (1900); Siegel (1956, pp. 104 – 111, 175 – 179); Fienberg (1980,
p.40); Hays (1988, sections 18.3 – 18.7).

5.2 The log likelihood ratio G2 (LR)

G2 = 2
∑

all cells
obs ln(obs/exp)

References: Wilks (1938); Fienberg (1980, p. 40).

5.3 The Freeman-Tukey test statistic F -T (F-T)

F -T =
∑

all cells

(√
obs +

√
obs + 1−

√
4 ∗ exp + 1

)2

Reference: Freeman & Tukey (1950).

5.4 The exact probability test statistic (EPT)

In the exact probability test, the hypergeometric probability of the observed table,
Pr from formula (2), is used as test statistic. Under the null hypothesis, the trans-
formation −2 ln Pr +constant is asymptotically χ2 distributed. Some authors tacitly
assume that this is the only generalization of Fisher’s exact test for a 2×2 table.
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This assumption is derived from the common use of the exact probability in the
computation of the exact significance in a 2×2 table. However, this is only done
for one-sided tests within the proper tail, and in that situation all test statistics are
equivalent. So the choice of the probability as test statistic is only a matter of con-
venience. In tables with more degrees of freedom, the various test statistics are in
general not equivalent, and each statistic has its own exact distribution. No statistic
can validly claim to be the unique, natural extension of Fisher’s exact test for 2×2
tables. We regard the exact distribution of any statistic as a valid generalization.
References: Borel (1924); Freeman & Halton (1951); Mood, Graybill, & Boes (1974,
section 9.5.4).

5.5 Kruskal-Wallis’ test statistic H (K-W)

One-way analysis of variance by ranks. Groups are determined by the column vari-
able Y .

H =
between sum of squares for midranks

total sum of squares for midranks
=

∑
j t+j(RX

j)− rX)2

∑
i ti+(rX

i − rX)2

where rX
i is the midrank of row i, RX

j is the average row midrank of the j-th column
=

∑
i TijR

X
i /t+j,, and rX is the overall average midrank =

∑
i ti+rX

i /n. For midranks
see section 5.13 below. Note that RX

j is stochastic (and hence denoted by capitals)
because it depends on Tij. The form given here is such that it is comparable to the
next statistic η2: if xi = rX

i for all i, the two are equal.
References: Kruskal & Wallis (1952a, 1952b, 1953); Siegel (1956, pp. 184 - 193);
Hays (1988, section 18.7).

5.6 The correlation ratio η2, (ETA2)

One-way analysis of variance. Groups are determined by the column variable Y.

η2 =
between sum of squares for scores

total sum of squares for scores
=

∑
j t+j(Xj)− x)2

∑
i ti+(xi − x)2

Where xi is the value (or score) for the i-th category of X, and Xj is average value
of X in the j-th column =

∑
i Tijxi/t+j, and x is the overall average value of X,

=
∑

i ti+xi/n.
Recall that random variables are denoted by capitals and constants (such as the

margins) by small letters.
References: Kendall & Stuart (1973, section 26.21); Hays (1988, section 10.17).

5.7 Kendall’s τb (TAU)

The three statistics τa, τb, and τc all have the same numerator. If

C = # of concordant pairs of observations, and
D = # of disconcordant pairs of observations,
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this numerator is C − D. Their denominators only depend on the (fixed) margins
of the tables. Hence these three statistics are equivalent as test statistics: they lead
to the same rejection regions with the same rejection probabilities, and hence to the
same p-values. We have chosen to print τb in the output.

The same holds for Kruskal-Goodman’s γ = (C − D)/(C + D). After all,
given the margins, both τb and γ are easily seen to be strictly increasing in C/D, and
hence in each other. Some programs use different (but asymptotically equivalent)
approximations to calculate their approximate p-values from the χ2 distribution,
and this may lead to (slightly) different outcomes! Some programs give a p-value
for only one of these four statistics (without telling why).

τb = C −D√
# of pairs not tied on X

√
# of pairs not tied on Y

=

∑

i<i′,j<j′
TijTi′j′ −

∑

i<i′,j>j′
TijTi′j′

√
1
2
n(n− 1)−∑

i
1
2
ti+(ti+ − 1)

√
1
2
n(n− 1)−∑

j
1
2
t+j(t+j − 1)

Here a ‘pair of observations’ is one of the 1
2
n(n− 1) unordered pairs of observations

{(X, Y ), (X ′, Y ′)}; such a pair is called concordant is (X −X ′) and (Y − Y ′) have
the same sign, discordant if these two signs differ, and tied if at least one of (X−X ′)
and (Y − Y ′) is zero.
References: Kendall (1948, 1975, section 3.4); Siegel (1956, pp. 213 – 223); Good-
man & Kruskal (1979); Hays (1988, sections 19.11 – 19.13).

5.8 Spearman’s rank correlation coefficient RS (RS)

RS =
cov(RX , RY )

σRXσRY

=

∑
ij Tij(r

X
i − rX)(rY

i − rY )√∑
i ti+(rX

i − rX)2
√∑

j t+j(rY
j − rY )2

,

where rX
i and rY

j are midranks (see section 5.13 below).
References: Hays (1988, sections 19.10); Kendall (1948, 1975, section 3.4); Siegel
(1956, pp. 213 – 223); Spearman (1902).

5.9 Pearson’s correlation coefficient R (R)

R =
covar(X, Y )

σXσY

=

∑
ij Tij(xi − x)(yi − y)√∑

i ti+(xi − x)2
√∑

j t+j(yj − y)2
.

where xi is the value (or score) for the i-th category of X, and x is the overall
average value of X, and similarly for yj and y. If xi = rX

i and yj = rY
j for all i, j,

RS = R.
References: Hays (1988, chapter 14); Kendall & Stuart (1973, Vol. II, section 31.19:
The permutation distribution of R); Pearson (1920).
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5.10 Tests for two columns = two groups

When c = 2, that is, the number of columns is two:
- Kruskal-Wallis’ H = Mann-Whitney-Wilcoxon (MWW), and is equivalent to

R2
S, (n − 1)H = z2, where z is the (asymptotically standard normal) z-score

of MWW.
- η2 = R2, and
- R is equivalent to the t-test for two independent samples.

5.11 Which test statistic?

Table 5: Choosing a statistic based on the alternative hypothesis.

Alternative hypothesis Statistic Mnemonic Comment
1. General, X and Y categorical X2 X2 Modelling with many degrees of

freedom lowers the power of the
test substantially.

2. X ordered; columns are
groups; one-way anova; groups
differ in means (of scores or
rankscores)

H
η2

K-W
ETA2

if values of X are midranks.
if values of X are scores at inter-
val level.

3. Both variables are at least or-
dered, and higher values on X
tend to go together with higher
values on Y (or with lower val-
ues of Y )

τb

RS

R

TAU
RS
R

ordinal association.
ordinal association.
linear association: X and Y at
interval level, and the alternative
assumes linear dependence.

The choice of a test statistic depends on the type of alternative hypothesis one has
in mind. Table 5 gives an overview of the relations between the statistics available
in Fisher and the corresponding alternative hypotheses. Lehmann (1957, Ch. 7.13,
p.306; 1986, Ch. 8.8, p. 480) stated

“It is both a strength and a weakness of the χ2 test . . . that its asymptotic
power depends only on the weighted sum of squared deviations, not on
the signs of these deviations and their distribution over [the cells]. This
is an advantage if no knowledge is available concerning the alternatives
since the test then provides equal protection against all alternatives that
are equally distant from [the null hypothesis]. However, frequently one
does know the type of deviations to be expected if the hypothesis is not
true, and in such cases the test can be modified so as to increase its
asymptotic power against the alternatives of interest by concentrating it
on these alternatives.”
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A lapse made frequently by many users of statistics is to give insufficient thought
to the proper choice of the alternative hypothesis. Strictly speaking, choosing an
alternative hypothesis that is unnecessarily general, is not incorrect, but it has a
high price: loss of power, and in many cases a very substantial loss!

In the social sciences there is a popular misunderstanding that for numerical
variables one must use R and η2, and one may not use the nonparametric coun-
terparts RS, τ , and H. This really is a choice between a little more power if the
distributional assumptions hold, and a lot more robustness if they fail. For R the
distributional assumption is binormality of the distribution of X and Y , and for η2

it is normality in each column plus the same variance in each column. As we are
dealing with tables, these assumptions are violated anyway. Little is known about
how much this affects the power.

Figure 3 gives a graphical display of the values X2, η2, τc, and R in the isomar-
ginal family of a 2×3 table. Note that X2 and η2 are second degree polynomials
in the observed values, while R is linear. In tables with 2 degrees of freedom also
Kendall’s τ is linear, but in larger tables τ is quadratic. We have not plotted H and
RS because they can be seen as special cases of η2 and R, respectively.
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5.12 Scores for numerical variables

Note that the correlation ratio η2 requires X to be a numerical variable, and the
correlation coefficient R requires both variables to be numerical. For these cases
the values (= scores) of X and Y may be supplied by the user. These values are
denoted by xi for the i-th row and yj for the j-th column. Their default values are
1, 2, 3, . . .. We assume that the values are strictly increasing:

x1 < x2 < . . . < xr, and y1 < y2 < . . . < yc

.

Fisher tests this assumption.

5.13 Midranks for ordinal variables

The nonparametric counterparts of η2 and R are Kruskal-Wallis’ H and Spearman’s
RS, respectively. These are based on ranks rather than on scores. Because we are
dealing with tables, many ranks are tied. To resolve the problem of ranking ties, we
use midranks.

The midrank rX
i is defined as the average of the ranks of the observations in

that row. Similarly we define the midranks rY
i of Y . See the Table 6 on page 18.

Table 6: The calculation of midranks.

row row
table marginal ranks midranks of X and Y
t11, t12, . . . , t1c t1+ 1, 2, . . . , t1+ rX

1 = 1
2
(1 + t1+)

t21, t22, . . . , t2c t2+ t1+ + 1, . . . , t1+ + t2+ rX
2 = 1

2
t1+ + (1 + t2+)

...
...

...
...

tr1, tr2, . . . , trc tr+ n− tr+ + 1, . . . , n rX
r = n− 1

2
tr+ + 1

2

t+1, t+2, . . . , t+c n rY
1 = 1

2
(1 + t+1)

. . .
rY
c = n− 1

2
t+c + 1

2

An example

row row
table marginal ranks midranks of X and Y
2 3 1 6 1,2,3,4,5,6 rX

1 = 31
2

1 4 0 5 7,8,9,10,11 rX
2 = 9

3 7 1 n = 11 rY
1 = 2, rY

2 = 7, rY
3 = 11
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Figure 3: 3D Plots of p, X2, η2, τ , and R in the isomarginal family
with margins 22, 22 and 22, 11, 11. Note the very different scales
on the vertical axes. Also note that τ and R are negative in the
left half of their graph.
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Note that Kruskal-Wallis coincides with the correlation ratio if xi = rX
i , and

that Spearman coincides with the correlation coefficient if xi = rX
i and yj = rY

j (cf.
their definitions). Hence generally it seems useful to compare Kruskal-Wallis with
the correlation ratio and to compare Kendall’s τb, Spearman’s rank correlation and
the ordinary correlation coefficient.

Finally, recall that Kendall’s τb only depends on the order of rows and columns.

6 Large sample tests

6.1 Limit distributions

If the expected values are not too small, asymptotic limit distributions can be used
to approximate the exact distributions. What is ‘small’, is still a matter of inves-
tigation. Some papers with results for X2 are Agresti & Wackerly (1977), Larntz
(1978), Agresti, Wackerly, & Boyett (1979), Koehler & Larntz (1980), Kroonenberg
& Verbeek (1980), Cressie & Read (1984), and Read & Cressie (1988). Klotz &
Teng (1977) present some results for Kruskal & Wallis’ H.

In 7 we present the asymptotic limit distributions under the null hypothesis of
the statistics calculated in Fisher. Some of the statistics have to be transformed
before the approximating distribution can be used.

Table 7: Asymptotic approximations to the null distributions of
suitable transformations of the statistics.

Trans- Limit Degrees of
Stat. Mnem. formation distr. freedom References
X2 X2 χ2 (r − 1)(c− 1) Mood et al. (1974).

H K-W (n− 1)H χ2 c− 1 Lehman (1975)
η2 ETA2 (n− 1)η2 χ2 c− 1 pag. 396 ex 3.

τb TAU τb/στb
standard — Kendall (1975)
normal sect. 5.6 & 4.9.

RS RS RS

√
n− 2

1−R2
S

Student’s t n− 2 Kendall & Stuart
(1973) sect. 31.19:

R R R

√
n− 2
1−R2 Student’s t n− 2 The permutation

distribution of R.
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6.2 Should most expected values be larger than about 1?

If one is testing against a general alternative (for example with X2, G2, F -T , or
EPT), it seems rather natural to require that almost all expected values are larger
than about 1. After all, cells with an expected value less than about 1 only give
information with respect to the null hypothesis, if the observed value is very large.
If most expected and observed values are around 1, there is hardly any information
with respect to the null hypothesis, and the power of any test will be very small.
In such a case, testing does not make much sense. Typically the mentioned test
statistics are not equivalent; remember that they are only asymptotically equivalent.
Here, they order the tables in different ways, see for example Table 2 on page 8.
Thus an arbitrary or unjustified choice of test statistic does influence the significance.
And we know of no way to justify any choice.

Another way to put this is the following. If an expected value is much smaller
than 1, the observed value is zero with a high probability (Pr(obs=0) ≈ exp(-
expected value)). Hence, we have hardly any (degree of) freedom in this cell. For
such a case, Cochran proposed to approximate the distribution by a product of a
multinormal distribution (for cells with sizeable expected values) and Poisson dis-
tributions (for cells with small expected values).

Of course, for tests against more specific alternatives, such restrictions are not
needed. Implemented in Fisher are Anova’s correlation ratio η2, Kruskal-Wallis’ H,
Kendall’s τs, and Spearman’s and Kendall’s correlation coefficients RS and R. These
can also be used for truly continuous variables. (For η2 and H the grouping variable,
Y, should be discrete, of course.) Suppose both X and Y are truly continuous,
and the observed values would be tabulated in a ‘contingency table’. Then every
marginal frequency would be 1 (almost surely), and every expected frequency is
1/n, which is very small indeed. Nevertheless such a test can be meaningful and
powerful.



22 PART I: STATISTICAL BACKGROUND

7 Small sample tests

In this section we discuss three issues. Firstly, the calculation of the probability of
the observed value itself, Pr(S = Sobs), can pose numerical problems if the statistic
S is real-valued rather than integer-valued. (Rescaling may solve this problem. For
example, τ can be transformed linearly into an integer valued statistic.) The next
two subsections are devoted to subtleties of one-sided and two-sided small sample
tests based on τb, RS, or R. The problem of conditioning or not is a small sample
problem as well. It fades when the sample size becomes large. However, we will not
discuss this problem here (see, however, Appendix B.2).

7.1 The calculation of the probability mass at the observed
value

As a test statistic RS is easily seen to be equivalent with
∑

ij 4(RX
i )(RY

j )Tij. Note
that 2RX

i , 2RY
j and Tij are integers, so the latter statistic is integer-valued. Simi-

larly τ can easily be transformed linearly into an integer-valued statistic. For the
other statistics however, a simple, monotonic transformation to an integer-valued
statistic (which must stay clear from integer overflow), is not easily available. For
a real-valued statistic S the problem to compute Pr(S = Sobs) is ill-conditioned.
Consider two tables T1 and T2, for which S has the values S1 and S2. Using approx-
imate, floating point arithmetic it is very difficult to ascertain whether S1 and S2

are exactly equal. In floating point arithmetic S is only approximated. There are
roundoff errors, and we may make type I errors as well as type II errors: We may
think that S1 and S2 are different when the difference is only due to roundoff errors,
or we may think they are mathematically equal while they are not.

For exact testing this has the following consequence. When we carry out the
algorithm sketched in Section 4, and we accumulate the hypergeometric probabilities
of all tables with S ≥ Sobs, we again may make both type of errors. We may
include terms in the sum that do not belong there, and we may omit terms that
do belong there. Note that we are not dealing with an error in the last few digits;
we are dealing with an error caused by summing over the wrong index set! That
is, a certain table from the isomarginal family is included in the critical region on
one machine but not on another, only due to very small differences in rounding.
Even with the same FORTRAN program, two different machines or two different
compilers on the same machine, or even different options of the same compiler may
occasionally classify tables differently with respect to the question: Is S ≥ Sobs?
Thus on different machines the same program may occasionally produce
rather widely different answers for the same significance!

Hence it is very hard to determine numerically the significance Pr(S ≥ Sobs)
and the size of the ‘probability mass’ Pr(S = Sobs) precisely. Also it is not easy
to estimate the possible error sharply. Fisher handles this problem as follows. It
computes

significance =def Pr(S ≥ Sobs − ε), and
probability mass =def Pr(Sobs − ε ≤ S < Sobs + ε).
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Here ‘S’ and ‘Sobs’ should be interpreted as their rounded machine representations.
The FORTRAN text contains expressions like:

IF (S.GE.(SOBS-EPS2)) ....

Commonly ε = .0005, except for input mode ‘DATA M’ (input of margins and statis-
tics). Then ε is determined by the number of digits specified in the entered observed
value of each statistic. If one enters X2=3.84, ε = .01. If one enters X2=3.8400,
ε = .0001. Now, different results produced by different machines do not
differ more than the probability mass. Actually they will differ less, but it is
hard to give an efficient algorithm for a better upper bound.

The implicit assumption is that two S values are likely to be equal if their
absolute difference is smaller than ε. If in reality two values are different, then the
significance indicated is too large (that is, too insignificant), but at most the size of
the probability mass. This algorithm may be conservative. If a borderline case with
a large probability mass occurs – and an extensive analysis is justified – one may
print the entire distribution to check the members with an S close to Sobs. However,
discriminating between ‘Sobs’ and, say, ’Sobs − ε’ almost invariably presupposes a
precision not available in the data.

We feel, that if one is careful enough to compute the exact distribution rather
than its asymptotic approximation, one should also pay tribute to the inherent
discreteness of the exact distribution by glancing at the probability mass.

Other approaches to this problem are:
- Ignore the problem altogether.
- Don’t mention it to the user, but subtract some small ε > 0 from the observed

value(s). This guarantees that the significance reported is not too small (that
is, not exaggerated).

- Apply exact, rational arithmetic (working with pairs of integers without integer
overflow) rather than real arithmetic.

Admittedly the first two approaches are more user friendly in the sense that they
arouse less discomfort, and in many situations they are quite sufficient. However, this
approach has the drawback, that one has no information about the possible
error in the computation of the significance. Occasionally, this can be serious,
because the computed significances can be wrong, in a machine dependent way, by
much more than just the last few digits.

In theory the third approach seems applicable to many statistics, since many
are rational, or can be transformed monotonically into a rational-valued statistic.
We have not seriously tried this, because the efficiency of such calculations seems
rather low, and the programming task rather involved. We do not think that today’s
machinery is fast enough to make this successful.

7.2 One-sided tests

Tests of independence based on τb, RS, or R can be against a two-sided alternative
or against a one-sided alternative. This also holds for tests of independence in 2×2
tables. In general, we can model this situation as follows. Let S be a statistic
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defined on r×c tables that can be positive and negative, and that is zero under
exact independence. Assume that S is the sample equivalent of a parameter ϑ,
and assume that independence implies ϑ = 0. In general there will be nuisance
parameters as well, and then ϑ = 0 does not imply independence. For example, zero
correlation includes more cases than independence, unless we restrict ourselves to
a suitable one-dimensional family of distributions. Note, that our null hypothesis
remains ‘independence’, and not ϑ = 0. In general, a critical region of size 5% under
independence has a much larger size under the set of distributions with ϑ = 0.

For a one-sided alternative there is little disagreement about the definition of
significance. For the right-sided alternative ϑ > 0:

significance = Pr(S≥Sobs),

and for a left-sided alternative ϑ < 0:

significance = Pr(S≤Sobs).

Note that these two probabilities add up to

1 + Pr(S = Sobs). (3)

As explained above in section 7.1, Pr(S = Sobs) is hard to determine for a real
valued statistic like R. In Fisher it is estimated by the ‘probability mass’, which
is guaranteed to be equal Pr(S = Sobs) or too large. Hence in Fisher the left and
right p-values add up to:

1 + probability mass.

7.3 Two-sided tests

For two-sided alternatives there are various methods to distribute the critical region
over both tails of the distribution of S. Table 2 on page 8 gives a typical example
of a 2×2 table in which the critical regions of X2 and G2 differ.

Each of the following three, heuristic methods leads to a nested family of critical
regions, but in general each method interlaces the left tail and right tail differently.
The significance or p-value of an observation is defined as the size of the smallest
critical region containing the observation. Now we are going to define a two-sided
critical region of size α. Due to discreteness one can only do this exactly for some
values of α.

- Tails of equal size: take a left-tail critical region and a right-tail critical re-
gion, each of size α/2. Due to discreteness, this usually can only be done
approximately. A ‘best’ approximation need not be defined uniquely.

- Take S2 as test statistic: make critical regions of the form ‘S≤−c or S≥ c’.
These regions are characterized by being symmetric. A problem with this
approach is that, for example, X2 and G2 are equivalent as one-sided test
statistics in a 2×2 table, but not as two-sided test statistics; they may interlace
both tails differently (as in Table 2).
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- Choose the critical values cL and cR in such a way that the critical region
‘S ≤ cL or S ≥ cR’ is unbiased, or at least locally unbiased. For discrete
distributions this usually requires randomization, but it is rather obvious (and
unique) how to define ‘nearest’ non-randomized tests.

As a consequence there is no unanimously accepted definition of the ‘two-sided p-
value’.

To avoid the ambiguity, Fisher only gives the left-sided and right-sided p-values
of τb, RS, and R. If one wants two-sided p-values, one can do the following.
Case (i) Just double the p-value. However, most likely there is no unrandomized

critical region exactly of this size. One can also study the distribution of S,
using the command DISTR.

Case (ii) Run the analysis twice, once with the observed table, and once with the
opposite value of the statistic of interest. To this end, use DATA M to reenter
the margins, and minus the observed value of the statistic.

Case (iii) If you know cL and cR, run the analysis twice, using DATA M, as for case
(ii) above. Otherwise, use DISTR and sort the file output by Fisher with the
values of S as sort key, to obtain the complete distribution of S. (For details
see subsection 11.3 in Part III.)

8 Criterion robustness versus inference robust-

ness

For a general discussion of criterion robustness and inference robustness see the
original paper of Box & Tiao (1964) or Chapter 3 of their book Box & Tiao (1973).

The program Fisher arose out of a concern for the accuracy of using the χ2 dis-
tribution for the null distribution of Pearson’s X2 and similar statistics, when testing
for independence against an arbitrary alternative. Fisher solves the question of in-
ference robustness by using the null distributions of the test statistics themselves,
and avoiding the use of an approximation.

The question of criterion robustness, however, is still open. That is:

Is the statistic used the proper one?

Let us confine ourselves to the general alternative: no independence. Then the
question is whether Pearson’s X2 is a proper test statistic when the samples are
small. Almost all justifications for Pearson’s X2 known to us rely on large sample
arguments. However, most alternatives of X2, like G2, Freeman-Tukey’s statistic
F -T , and the Ho probability of the observed table are asymptotically equivalent to
X2 as test statistics. Hence, all justifications for X2 apply to them just as well, and
they do not discriminate between them at all. A property that makes G2 desirable
in some cases, is its additivity, when three or more nested models are tested. This
possibility to decompose an overall G2 into components, just like a total sum of
squares in Anova, helps its interpretation.
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Note, furthermore, that authors proposing corrections to Pearson’s X2, for ex-
ample in the context of 2×2 tables seem to aim for inference robustness. However,
sometimes they create a non-equivalent test statistic, that interlaces the right and
left tail differently than X2. By modifying X2 so that its distribution agrees as
closely as possible to the χ2 distribution, these authors implicitly assume that the
χ2 distribution is the proper criterion. Remarkably, this assumption is often implicit.
We think that its only justification is an appeal to convenience.

9 More on Pearson’s X2

9.1 X2 terms and residuals

In most cases significance testing should be considered as a “matter of hygiene”,
performed without much ado to avoid the disgrace of discussing an effect that can
be attributed entirely to random fluctuations. This refreshing analogy is borrowed
from Ehrenberg (1975, p. 323). Once significance has been established, one proceeds
to the hart of the matter: An investigation and discussion of the structure and the
size of the effects (here: dependencies). Unfortunately many users of statistics stop
after significance testing. If dependency is established, one should look next at the
residuals. These (raw) residuals are defined as

residuals = obs− exp.

Examining the residuals is essential for building or refining any model. Fisher
offers three options for the residuals:

- Raw residuals (see above).

- X2 terms = (standardized residual)2 = residual2
exp =

(Tij − ti+t+j/n)2

ti+t+j/n

- Adjusted residuals = residual
est.st.dev. =

Tij − ti+t+j/n√
ti+t+j(1− ti+/n)(1− t+j/n)/n

The X2-term is the contribution of a cell to Pearson’s X2, and it is the square of
the standardized residual.

Note that the absolute value of a standardized residual of a cell will always be
smaller than its adjusted residual. The difference will be negligible when t+j/n and
ti+/n are small. The adjusted residuals have the advantage that under Ho they have
asymptotically standard normal distributions.

For a visual inspection, (re)arrange rows and columns so that the most likely
interaction would show a simple pattern. If you have no idea about the possible
pattern of interaction, and both X and Y are unordered, rearrange X and Y so that
the marginal frequencies are weakly increasing. Then the expected value increase
more or less smoothly from the smallest value in the cell (1, 1) to the largest value in
cell (r, c). When the original table is ordered this way, cells with exceptionally large
residuals stand out more clearly, and when the residuals are ordered this way, they
sometimes show a simple pattern, corresponding to Tukey’s ‘One degree of freedom
for non-additivity’.
References: Everitt (1977, section 3.4.3), Haberman (1973), Tukey(1949)
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9.2 Collapsing and grouping

By grouping a continuous variable we mean, recoding it into a discrete variable.
By collapsing a discrete variable we mean, recoding it into a variable with fewer
categories. By collapsing an r×c table we mean, getting a smaller table by collapsing
one or both variables. Hence ‘grouping’ is a kind of ‘collapsing continuous variables
into discrete ones’. In Table 8 we illustrate the old rule, that one may not collapse
a table in a way that is based on the data, and then test as if the collapsed table is
the only table we have seen. A fortiori this also holds for grouping. However, the
following result shows that this problem can be circumvented by comparing X2 to
the χ2 distribution with as many df as the original table.

Lemma. Collapsing a table cannot increase X2. Collapsing two columns or rows
leaves X2 (nearly) invariant, if and only if the conditional distributions in these
two columns or rows are (nearly) the same, that is, the frequencies are (nearly)
proportional.

Proof. This only has to be verified for collapsing two columns. For rows, the proof
is similar, and for arbitrary collapsing one simply repeats the argument.

First, we write X2 = −N +
∑

obs2/exp. Now suppose we collapse columns j and
j′. For brevity write o1 = obsij, o2 = obsij′ , e1 = expij, e2 = expij′ . Consider what
happens to the X2 terms of cells ij and ij′. By collapsing their joint contribution
changes by−o2

1/e1−o2
2/e2+(o1+o2)

2/(e1+e2), which equals−(o1/e2−o2/e1)
2/(1/e1+

1/e2). Hence this change is nonpositive. It is (nearly) zero if and only if o1/e1 is
(nearly) equal to o2/e2.

Corollary. If the X2 of a collapsed table is significant when compared to the χ2

distributed with the number of df of the uncollapsed table, the uncollapsed X2 is
significant as well.

Proof. By the lemma, the uncollapsed X2 is at least as large as the collapsed X2.

It is well known that significance of Pearson’s X2 in a collapsed table does not
imply significance in the larger table. The reason is that there are so many more df
in the larger table. If one looks at an uncollapsed table, and then collapses over a
few rows or columns where the conditional distribution is about the same, one looses
little in X2 and one kills a lot of df. Hence, the result gets more significant. But
this is a kind of data mining like ‘looking for the largest contrast (or: the largest
correlation coefficient in a correlation matrix; or: the most significant predictor in
the next step of stepwise regression) and then testing it, as if it were the only test’.
This activity is wrong, illegal, sinful, and abundant in statistics. If one bases the
choice of the test on the data, looking for big effects, and tests as if it were the only
test under consideration, one gets a p-value that is too small; often it is very much
too small.

Hence grouping or collapsing based on the observed values can be dangerous. It
is not dangerous if it is based on the interpretations of the categories, rather than on
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Table 8: Example of collapsing. In each table X2 = 8. Note how
much p varies. Collapsing may not be based on the data, only
on theory, i.e. on the formulation of the null hypothesis and the
alternative hypothesis

a b c d e f g h
I 1 1 1 1 0 0 0 0 4

II 0 0 0 0 1 1 1 1 4
1 1 1 1 1 1 1 1 8

pexact = 1
pasymp = .333
df = 7
isom.fam. = 70

X2 Pr
8 1

abcd e f e g
I 4 0 0 0 0 4

II 0 1 1 1 1 4
4 1 1 1 1 8

pexact = .029
pasymp = .092(!)
df = 5
isom.fam. = 8

X2 Pr
4 36/70
5 32/70
8 2/70

ab cd ef eg
I 2 2 0 0 4

II 0 0 2 2 4
2 2 2 2 8

pexact = .086
pasymp = .05
df = 3
isom.fam. = 19

X2 Pr
0 16/70
4 48/70
8 6/70

abcd efgh
I 4 0 4

II 0 4 4
4 4 8

pexact = .029
pasymp = .005
df = 1
isom.fam. = 5

X2 Pr
0 30/70
2 32/70
8 2/70

the observed frequencies. Of course, having fewer categories strongly increases the
power of the test, and avoiding categories with small numbers increases the chances
that Cochran’s rule applies. The classic paper by Cochran (1954) deals with both
aspects, and is still very much worthwhile reading.

Table 8 shows what can happen by collapsing. Each of the four tables has
X2 = 8; the df are 7, 5, 3, and 1, making X2 = 8 range from (asymptotically)
insignificant, to highly significant. Of course we also give the exact p-values, which
happen to vary somewhat less. Note that in each table X2 has its extreme value (=
8), so the probability masses are equal to the p-values. Also note that in 3 cases out
of 4, the asymptotic p-value lies nicely between the exact p-value Pr(X2 ≥ 8) and
0 = Pr(X2 > 8). For curiosity sake, the sizes of the isomarginal family have been
included as well.

In this case, collapsing changes the p-value very much. Which one is the right
one? If we have no theory before we look at the data, we should look at the
uncollapsed 2×8 table, from which there is little to be learned. If there is a theory
saying that the smallest, i.e. 2×2 table, contains the information of interest, then we
should only look at that table. Then we have much more power, and in this case we
find a significant result. We should not collapse a table on the basis of the data, but
on the basis of a subject matter theory and on the basis of the power available to
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test that theory. Such a theory should specify the relevant null hypothesis and the
relevant alternative. Considerations of power favour collapsing, if one can choose
between various alternatives.

In the 8×2 table pexact = 1 because all row marginals have the value 1. In
that case, all tables in the isomarginal family (here: 70) have exactly the same X2,
because they can be obtained from each other by permutations.

9.3 Quick methods

The 95-percentile of the χ2 distributions. In many cases X2 is so large, and
so obviously significant that a blind horse can see it. Then we don’t have to bring
in fine tools like asymptotic or exact testing. If one needs a rough comparison with
the 95-percentile of a χ2 distribution, one can approximate the latter by

χ2
df[.95] ≈ df + 3

√
df

This is an overestimate, Pr(χ2 > df + 3
√

df) is a decreasing function of df, starting
at .046 for df=1, and approaching .01 for df→∞.

Simplification. In many cases it is easy to establish significance when X2 is really
large. Accumulate a few large X2 terms, perhaps after simplifying the table by
collapsing columns and rows that are nearly proportional, or that do not contribute
much to X2 anyway. By the lemma above this gives an lower bound for X2. If this
lower bound is larger than the 95-percentile of the χ2 distribution with the number
of df before collapsing, we have a significant X2, at least according to asymptotic
methods. We guess, that if the collapsed table is a Cochran table, this conclusion is
justified. More formally, this conjecture can be formulated as follows.

Let ν be the number of df before collapsing, X2
0 and X2

1 the value
of Pearson’s X2 before and after collapsing, respectively. Suppose
that after collapsing, the table satisfies Cochran’s rule, and suppose
Pr(χ2

ν > X2
1 ) < .05. Then in the uncollapsed table, Pearson’s X2

0 is sig-
nificant at least at the .07 level that Cochran’s rule promises.

If, after collapsing, the table is significant compared to the χ2 distribution with the
new df, this gives little information about the uncollapsed table (see section 9.2).

Rearranging the table. For a quick inspection of the table, it can be useful to
reorder rows and columns so that marginal frequencies are nondecreasing. Then
the smallest expected values are in the upper left corner, and the largest are in the
lower right. Hence it is easier to pick out large X2. It is also easier to find the
smallest expected value (now in cell (1,1)), and to count the number of cells with an
expected value below 5. Finally, simple patterns in the residuals may show up after
rearranging the table suitably. In any case it is worthwhile to give some thought to
the ‘natural’ order of rows and columns in terms of the possible interaction effects.
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Example of a Fisher job
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10 Input

Below we give the input of a Fisher job in teletype font, interspersed with
comments in italics. Thereafter the output of this job, also in teletype font, is
discussed. Another example of a Fisher job can be executed by starting Fisher,
and typing in2 name=demo at the first prompt.

Fisher has online help available.

help

Next we enter the frequencies of a 2× 3 table.

data 2 3 4 10 10 12 6 6

The exact significance of Pearson’s X2 is requested as follows.

ana x2 exact

The row and column variable of the following 5× 5 table are ordinal.

data 5 5 3 2 5 10 11 11 8 16 35 19 28 13 23 33 6 27 11 13 12 5 63 10 9 4 0

With such a large table, obviously with rather strong interactions, one should not
embark automatically on an exact analysis. An approximate (=asymptotic) analysis
is requested as follows.

ana all approx

The keyword all means X2, eta2, K-W, tau, R, and RS. Next inspect the expected
values and the (adjusted) residuals.

exres adj

Finally, we demonstrate how the entire distribution (rather than a single signifi-
cance) can be obtained. This distribution is written to a file. This option is acti-
vated, and the file name is specified by the following command. (distr applies to
each subsequent anal ; it does not have to precede data.)

distr name=d replace data 2 3 5 1 0 1 2 3 ana exa nostat

With the nostat option, the analysis command writes the frequencies of each table
in the isomarginal family to file. For each table the values of all statistics, and the
hypergeometric probability are written to file by

ana exa all

Rather than the entire distribution, one may write only a Monte Carlo sample to
file. In this demonstration we choose a ridiculously small sample size.

mc 1 ana mc all distr off

This is how to stop writing distributions to file. Here, this is not really needed,
because we will end our Fisher session now

end

The keywords quit, bye, or stop will also work.
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11 The user interface

11.1 General points

+ There is a HELP command.
+ There is full input checking. Diagnostic messages are preceded by ‘!!!’, po-

tentially fatal errors by ‘∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗’.
+ There are internal consistency checks on exact significances.
+ All input is automatically echoed onto a log file. Thus it is easy to check what

has been done, and to rerun a session, perhaps after the correction of some
errors.

+ One may enter the table of observed frequencies or, alternatively, one may
enter the marginals and statistics of a table.

+ There are two input files: Fisher starts reading from the keyboard (= primary
input), but one can switch to read commands and data from a file (=secondary
input). When Fisher reaches an end-of-file, it returns to primary input.

+ Output has two possible formats: LONG which is suitable for printing, and
SHORT which usually gives all output of one analysis on a single screen.

+ There are five output channels; usually primary output is connected to the
screen, and the secondary output can be used to keep a record of all output or
a selection thereof. The output channels may have a SHORT or a LONG output
format, independent of another. If requested, the entire distribution is written
to the third output file. The fourth output file is the log file onto which all
input is echoed. The fifth output file is the dump file, that is only used in case
Fisher finds an internal inconsistency.

+ In batch mode the program prints the input table, its expected values and
its residuals, after successful entry of a table. In interactive mode these are
displayed upon request.

+ For residuals, one has a choice of raw residuals, Haberman adjusted residuals,
or X2 terms. In view of Cochran’s rule (see the Introduction) expected values
less than 5 are labeled with a ‘#’. Haberman’s adjusted residuals are labeled
similarly, if their absolute value exceeds 3.

+ Output is labeled by a time stamp on all output files, indicating the start of
the run, or of the last REINIT. So all analyses from one session get the same
time stamp. If you want to update the time stamp, start a new session with
REIN.

- For very large tables, several formats may overflow in a rather untidy manner.
Fisher has not been designed to handle such cases.

- There are no labels (for categories, tables, or data). Analyses are done so
easily, that labelling is hardly worthwhile.

- There is no internal editor. For commands this is hardly necessary. Keywords
are very short, and most keywords keep their values until redefined. Tables
cannot be edited either. Fortunately, they are small too.

- Fisher can only handle frequency data in the form of an r×c table. Data in
the form of a data matrix cannot be handled.
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11.2 Files

Fisher can read from or write to the following seven files.

On PC, Fisher accepts input from the keyboard, and writes output to the
screen. Of course, both files may be redirected, using the DOS mechanism for file
redirection (> and <). For an example, see Appendix A.4.

A more convenient way to read from or write to a file, however, is provided by
secondary input (the command IN2) and secondary output (the command OU2). On
the secondary output file, one can set the format (SHORT or LONG) and the inclusion of
messages (MESSAGE or NOMESSAGES) independently of what is displayed on screen (=
primary output). When on secondary input an end-of-file is reached, input returns
automatically to primary input (= keyboard).

When entire distributions are being written (the command DISTRIB), this is done
to a special file, whose name is specified by the user. Don’t forget to switch DIS

OFF when you want to proceed with analyses that should not be written to file.
Fisher automatically creates a log file or diary with all syntactically correct input
of a session. On PC this file is called LOG.FIS. It can be renamed by the DOS
command rename, but not within Fisher.

Finally, when Fisher detects an inconsistency (for example when the sum of all
probabilities is not near enough equal to one) it generates a dump file, and says so
on screen. If this should happen, please print this file, and send a copy to us. It
contains all the necessary information about the current input table, all parameter
settings, and the command that has caused the dump. On PC the dump file is
called DUMP.FIS.

11.3 Writing the entire distribution to file

Rather than giving only the p-values, Fisher can also write the entire distribution to
a file, or a Monte Carlo sample thereof. This option is activated with the command

DIS NAME = filename

and deactivated after one or more analyses with

DIS OFF

DIS is short for DISTRIBUTION. As with all parameters ‘NAME=filename’ is optional.
If omitted, Fisher takes the last file accessed by DIS, or if this is the first call,
‘NAME=DISTR.FIS’ is assumed.

Writing the entire distribution to a file is much slower than simple enumeration,
and hence it can be quite time consuming, and it can create a very big file. In
general, it is recommended to do the analysis first without writing to a file, in order
to learn what the size of the isomarginal family is. The file size in bytes is about
30–80 times the size of the isomarginal family.

Before the tables from the isomarginal family of an analysis are written to file,
first the margins, time stamp (of the beginning of the session), and the format used
are written in a header.
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Not all tables are written to file, but only those tables for which the output
values of the probability are positive, that is larger than .5E − 8. All analyses (X2,
X2+, ALL, NOSTAT) write the same set of tables in exactly the same order to file.

To obtain the frequencies of each table, rather than the values of certain statistics,
one must use ANAL NOSTAT, after DIS is activated.

The file written by Fisher after the DIS command is not a nicely polished
product intended for visual inspection. Because the file contains so much information
that can be used in so many different ways, we have provided a format that allows
for easy handling by other programs. In order to obtain the cumulative distribution
of a statistic this file must be edited (the header must be stripped off), sorted (for
example by the DOS command SORT), and probabilities of tables with the same
value of the statistic must be added (for example with a statistical package).

11.4 Numbers

Most numbers are input or output in the form of integers (like 12, 112, or 3013) or
fixed point reals (like 3.84 or .0031). On input one may also use the E notation, and
as Fisher is not case-sensitive ‘e’ may be used instead of ‘E’. For example, 1000000
= 1E6 = 1e6, and 1e-6 = 0.000001. This can be convenient for the commands ISOM
and MC. Some output may also use this E notation, especially to indicate the size of
a huge isomarginal family.

Moreover, frequencies are entered in free format (that is, separated by one or
more spaces), and on input a number may not take more than 10 positions.

12 Fisher command syntax

12.1 General rules

- Each command should be on one line of at most 80 characters.
- All keywords may be abbreviated to the first 3 characters. The remainder of

any keyword is ignored.
- Fisher is not case-sensitive.
- After ‘!’ any text on that line is treated as comment. That is, it is ignored.

Empty lines, and lines with only comments are allowed.
- One or more spaces and/or commas and/or ‘=’ serve as a single separator.
- All parameters are optional.
- All parameters are initialized.
- Almost all parameters retain their values until they are redefined. Hence, if

you want to resubmit a command with only one parameter changed, it suffices
to re-enter the command with only this single parameter. This property will
be referred to as ‘sticky parameters’.
The only exceptions are the file parameters <new?>, <off?>, <format>, and
<message>. In this case, you do not really want parameters that retain there
old values, when you specify a (new) file name. Hence, with a filename these
parameters have defaults and do not retain their previous values.
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If a command contains a syntax error, its parameter values are not retained
either.

- All parameters are order independent, with the obvious exception of those in
DATA <nr> <nc>, XVAL <x-values>, and YVAL <y-values>.

- This information, the syntax of all commands, and the file settings can be
inspected interactively with the HELP command.

- The values of all parameters can be inspected with the command PARAM.
- Entry of numbers is free format.
- Numbers may not be longer than 10 positions.

12.2 Command descriptions

In the command descriptions below
- <item> stands for a value that has to be supplied by the user, without ‘<’

and ‘>’.
- {item}. . . means that item may be repeated, without the { and }.
- There are two types of input lines:

- data lines (after DATA), and
- command lines.

Each command lines has the following format.
command {parameter}. . .

A command line starts with a command. Optionally, and depending on the
command, it may be followed by zero, one or more parameters. Each parame-
ter has one of the following forms:

keyword

value

or
keyword = value

Remember: each parameter is optional and each parameter that is not
(re)specified retains its previous value. Moreover, all parameters are initialized.
The input table, however, is not a prameter and is not initialized.

12.3 Data entry commands

DATA <nr> <nc> <input mode> <residuals>

<nr> is the number of rows. It must be the first parameter.

<nc> is the number of columns. It must be the second parameter.

<input mode> can be T, TM, or M.

<residuals> can be NORES, RES, ADJRES, or X2TERMS.

This command sets the stage for data entry. It should be followed by information of
the table (frequencies, and/or marginal frequencies and/or statistics), in a format
determined by <input mode>.

<input mode>:
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T table frequencies only

TM table frequencies plus marginals

M marginals plus one or more <statistics>

<residuals>:

NORES no residuals

RES raw residuals

ADJRES Haberman’s adjusted residuals

X2TERMS Terms of Pearson’s X2

For the definitions of the various residuals see section 9.1 ‘X2-terms and residuals’.
Initialization

DATA 2 2 T RES

Data entry
If <input mode>=T, the DATA command should be followed by nr lines, each

with nc observed frequencies:

<freq11 > · · · <freq1,nc >
<freq21 > · · · <freq2,nc >
...
<freqnr,1 > · · · <freqnr,nc >

If <input mode>=TM, the DATA command should be followed by nr lines, each
with nc observed frequencies and one row marginal, followed by a line with the
column marginals and the total number of observations:

<freq11 > · · · <freq1,nc > <row marg1 >
<freq21 > · · · <freq2,nc > <row marg2 >
...
<freqnr,1 > · · · <freqnr,nc > <row margnr >
<col marg1 > · · · <col margnc > <n>

If <input mode>=M, the DATA command should be followed by two lines with
observed marginal frequencies, and a third line with zero or more statistics:
<row marg1 > · · · <row margnr >
<col marg1 > · · · <col margnc >
{<statistic> = <value>} . . .

<statistic> can be X2, K-W, ETA2, TAU, RS, R, LR, F-T, or p.
One may specify all, some or no statistics in any order. Even if no statistics are
specified, there has to be an (empty) statistics line. For omitted statistics no output
will be given, but this does not reduce the execution time. After an empty statistics
line, the ANAL command is only legal with <statistics> = NOSTAT.

For the definitions of the various statistics see section 5 ‘Test statistics’.

In batch mode, successful entry of a table is automatically followed by a print-
out of the table, its expected values and its residuals. For input mode M the cell
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frequencies and residuals are not known. In this case, the statistics will be printed
instead.

In interactive mode, the entry of frequencies can be aborted by ‘∗’ in the first
position of a line.
Examples

DATA 2 3 TM

2 3 4 9

1 0 0 1

3 3 4 10

!Note both margins.

REIN

DAT

!After startup or REIN, ‘DAT’ is equivalent to ‘DATA 2 2 T RES’
1 2

3 4

dat 7 8 m

1 2 3 4 5 6 7

1 2 3 0 4 5 6 7

ETA2=.5, K-W=.8 r=-.4

!Note: There is no case-sensitivity.
! One or more spaces and/or commas serve as separator.

XVALUES <value1 > <value2 > · · · <valuenc >

YVALUES <value1 > <value2 > · · · <valuenr >

Reassign ‘values’ or ‘scores’ to the categories of the X-variable and the Y-variable,
respectively. A value may not consist of more than 10 characters. Values must be
strictly increasing, and only the characters 0-9, =, -, E, e are valid.

These values remain into effect until another XVAL, REIN, or DVAL command, or
until a table with different dimensions is given. In the latter case both X-values and
Y-values are re-initialized to 1, 2, 3, . . . .

DVALUES

Reset the values of the categories of the X-variable and the Y-variable to the defaults,
that is to 1, 2, 3, . . . .

XVALUES

Show the current values of the categories of the X-variable.

YVALUES

Show the current values of the categories of the Y-variable.
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12.4 Analysis commands

ANALYSIS <output mode> <statistics> <threshold>
<output mode> can be APPROX, EXACT, MC or EXMC

<statistics> can be NOSTAT, X2, X2+, X2PLUS, or ALL

<threshold> can be NOTHRESH, THRESH, or THRESH=<value>

This command computes statistics and approximate or exact significances, or Monte
Carlo estimates of the latter.

<output mode>:

APPROX Approximate significances. The output includes
- the statistics of the current table;
- the approximate significances of these statistics, obtained

by asymptotic approximations;
- an estimate of the size of the isomarginal family;
- the hypergeometric probability of the table (if <input

mode> = T or TM).

EXACT Exact significances. The output includes, in addition to the
above items, the exact significances obtained by enumerating
all members of the isomarginal family. However, if the es-
timated size of the isomarginal family exceeds a preset limit
(see command ISOM), the exact calculations will not be carried
out.

MC Monte Carlo estimates. In addition to the output produced
by APPROX, the output includes Monte Carlo estimates of the
significances.

EXMC Like EXA if the isomarginal family is sufficiently small, other-
wise like MC

<statistics>:

NOSTAT No statistics. This options provides a means to assess the exact
size of the isomarginal family much faster than with statistics.
This result is accurate, but much slower than the calculation
of the Gail-Mantel estimate obtained with APPROX.

X2 Pearson’s X2.

X2+ or X2PLUS Four χ2 statistics: Pearson’s X2, the –2 log likelihood ratio
G2, the Freeman-Tukey statistic F -T , and the hypergeometric
probability itself.

ALL Pearson’s X2, η2, Kruskal Wallis’ H, Kendall’s τ , and Pear-
son’s and Spearman’s correlation coefficient.

For the definitions of the statistics see section 5.

<threshold>:

When, during the enumeration of the isomarginal family, the significance of X2

exceeds a given threshold, one may decide that the table does not deviate much
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from independence, and one might wish to terminate the enumeration in order to
save time. The threshold value is set by this parameter. It is effective only in case
<statistics>=X2. A threshold less than .000001 is replaced by 2., and thus made
ineffective.

THRESH is equivalent to THRESH=.1, which is also the initial value.
Initialization

ANA EXMC X2 THRES=.1

Examples
ANAL X2 NOTHRESH EXACT

ana x2 not exa !(equivalent to the line above)
ANAL ALL THRESH

!(THRESH will be ineffective <statistics> is not X2)
ANAL APP NOSTAT

TABLE

Print the current table of observed values. This command has no parameters.

EXRES <residuals>

Print the tables of expected values and residuals. <residuals> can have the same
values as with the DATA command.

In batch mode (see BATCH and INTER), TABL and EXRE are generated automati-
cally after successful table entry.
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12.5 Control commands

STOP

BYE

QUIT

END

Any of these command terminates the execution of Fisher.

HELP <help option>

<help option> can be empty, ALL, TABLE, ANALYSE, VALUES, CONTROL, FILES,
or F0

This command provides a short explanation of all commands
<help option>:

empty gives a survey of the syntax and of all help options

ALL gives all help screens

TAB for DATA TABL EXRE

ANA for ANAL

VAL for XVAL YVAL DVAL

CON for QUIT STOP END REIN INTER BATCH ISOM MC SEED

PARAM

FIL for OUT OU2 IN2 DISTR

F0 for the initial file settings

Initialization
HELP

Examples
HEL

HELP ALL

help tab

.

INTERACTIVE

BATCH

These two commands switch between interactive mode and batch mode. In batch
mode all input is echoed to output, some output is generated automatically (namely
that of TAB and EXRE after DAT), and fatal errors terminate the execution. In interac-
tive mode all input is echoed to the log file, and all errors are dealt with interactively.
Initialization is interactive mode:

INT

ISOMARGINAL <limit>
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If the estimated size of the isomarginal family exceeds <limit>, no exact analysis
will be performed. This applies to <output mode>= EXA, or EXMC of ANAL.

If <limit> is omitted, the current value is shown.
Initialization

ISOM 100000

Examples
ISO

ISOM 1000000

ISOM 1E6

The last two lines are equivalent.

MC <n>

This command sets the size of the Monte Carlo sample to n. This applies to <output
mode>= MC, or EXMC of ANAL.

If <n> is omitted, the current value is shown.
Initialization

MC 2000

Examples
MC

MC 10000

SEED <n>

This command sets the seed of the random number generator for a Monte Carlo
analysis to n, which can be any integer. This applies to <output mode>= MC and
EXMC of ANAL.

If <n> is omitted, the current value is shown.

REINITIALIZE

Restart Fisher: discard all data, re-initialize all parameters, except INTER/BATCH

and except IN2 if secondary input is active, that is ON.

PARAMETERS
Show the current values of all parameters and all file names.
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12.6 File commands

The following file commands may reset certain output parameters and (de)activate
alternative input and output files. They share a number of parameters, and these
will be explained after the commands.

IN2 NAME=<filename> <new?> <off?>

This refers to secondary input. It can be used to enter a file of commands into
Fisher. After successfully finishing these commands, input returns to primary
input, that is the keyboard.

OUTPUT <format>

This command can be used to change the output format of the primary output
channel (=screen) from SHORT to LONG and back.

OU2 NAME=<filename> <new?> <off?> <format> <message>

This refers to secondary output. It can be used to write output to a file, parallel to
screen output (=primary output). Primary and secondary output formats need not
be the same.

DISTR NAME=<filename> <new?> <off?>

This refers to a file for writing the entire isomarginal family to, that is the entire
distribution of all statistics requested by ANAL. ANAL produces this output automat-
ically, if and only if DISTR is activated. Make sure that the isomarginal family is
small, otherwise ANAL will take very much time and produce a very big file. The
file size is about 30-80 times the size of the isomarginal family. See also sections C
(p. 60ff.) and 11.3 (p. 38).

Below is a description of the parameters common to all file commands.

<filename> is a DOS filename, optionally with path and/or drive

<new?> can be REPLACE, or NEW

<off?> can be ON, or OFF

<format> can be SHORT, or LONG

<message> can be MESSAGE, or NOMESSAGES

With NAME=<filename> each unspecified parameter resumes its DEFAULT value
(rather than the previously assigned value). Moreover, if the file exists and REPLACE

has been specified, the file will be overwritten, and the old information is lost.

Without NAME=<filename> the file must exist, and the file pointer is not moved.
For output, this means that new information is appended to the end of the file. (For
input, it has no meaning, because Fisher cannot stop reading in the middle of a
(secondary input) file.) Without NAME=<filename>, <new?> may not be specified.
The reason is that NEW is meaningless, while REPLACE would be dangerous, if you do
not specify the file name.

<new?>:
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NEW The file must not exist, and will be created. If it does exist,
this command is aborted with an error message. This is the
default.

REPLACE The file may exist. If it exists, it will be overwritten. If it
doesn’t, it will be created.

<off?>:

OFF This deactivates the file, but does not close it. Use the same
command with ON, but without NAME=<filename> to continue
at the same point.
A file is closed by using the same command with a different
NAME=<filename>

ON Re-activates the file is in use, but inactive. ON is the default.

<format>:

SHORT Results from one analysis usually fit on a single screen.

LONG More nicely formatted output, suitable for printing, but too
verbose for the screen

<message>:

MES Echo input and display error messages on this file.

NOM Do not echo input and do not display error messages on this
file. This is default.

Defaults: NEW ON NOMESS. In interactive mode the default format is SHORT, in batch
mode it is LONG.
Initialization

IN2 NAME=IN2.FIS

OUTPUT SHORT !If INTERACTIVE
OUTPUT LONG !If BATCH
OU2 NAME=OU2.FIS SHORT NEW MESS !If INTERACTIVE
OU2 NAME=OU2.FIS LONG NEW MESS !If BATCH
DIS NAME=DISTR.FIS OFF NEW

Examples
IN2 NAM=A:\DEMO
OU2 NAM=C:\TMP\FISHER.LOG REPLACE
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A Installing and running Fisher on IBM PCs and

compatibles

A.1 System requirements

Fisher 3.0 required a mathematical coprocessor in your XT or AT. The new version
of Fisher, version 3.10, uses a coprocessor if it is present on your system. If not,
the program will run as well, but it will be much, much slower.

A.2 The distribution disk

The distribution disk contains the following files:
filename ext size purpose

(kB)
FISHER EXE 312 the program
DEMO2 1 demonstration input for batch usage
DEMO1 1 demonstration input for interactive usage
README 1 last minute information
DISPLAY EXE 21 utility for displaying
INSTALL BAT 1 installation file

Displaying and scrolling the output of Fisher (thus also that of the DEMO), and
the README file may be done by entering: DISPLAY <filename>, where filename
is the file to be displayed.

A.3 Installation

Make sure to make a back-up copy of the distribution disk (e.g. with the DOS
command diskcopy), and put this copy in a safe place.

Suppose you wish to install the software in a new directory C:\FISHER. To do so
you first create this directory by typing md C:\FISHER. Then move to this directory:
cd C:\FISHER - for details, please refer to the DOS manual. Now put the original
distribution disk in drive A: (or B:), and move to that drive by typing A: (or B:).
By typing install c and pressing the enter key, the installation of Fisher will be
carried out.

A.4 Running Fisher

The program Fisher consists of a single file FISHER.EXE. To run Fisher inter-
actively just type

FISHER

at the DOS prompt. After loading, which might take a little while, you should see
the header, ending with the Fisher prompt >>. You can exit the program with
BYE, END, QUIT, or STOP.
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To run Fisher interactively with input from the file IN, type

IN2 NAME=IN

to Fisher’s prompt (‘>>’). Here, the command IN2 activates secondary input,
from the file IN, see the sections 11.2 and 12.6 on files. When Fisher (successfully)
reaches end of file on IN, it returns to primary input, that is input from the keyboard.

To run Fisher in ‘batch mode’ with input from the file IN, use DOS redirection:

FISHER <IN

When Fisher reaches end of file on IN, execution terminates. In this case, the file
IN should start with the command BATCH.

A.5 Running the demo

For interactive usage, prepare running the demonstration input as follows.
- Move to the Fisher directory (by the DOS command CD).
- Start Fisher
- Type at the Fisher prompt: in2 name=demo1.

For batch usage, prepare running the demonstration input as follows.
- Move to the Fisher directory (by the DOS command CD).
- Type Fisher <demo2

You can inspect the demonstration input by typing

DISPLAY DEMO1

or

DISPLAY DEMO2

You can inspect the demonstration output by typing

DISPLAY DEMO1.OU1

or

DISPLAY DEMO2.OU2
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B Additional technical information

B.1 Marginal zeroes

Rows and/or columns that consist entirely of zeroes, may be entered, and are han-
dled smoothly, as long as there are at least two non-zero rows, and at least two
non-zero columns. Of course, the number of degrees of freedom (used for the as-
ymptotic approximations) is based on the number of non-zero rows and columns.
Zero rows and/or columns matter for the calculation of r, and zero rows matter for
η2, whenever the scores are the default ones, that is 1, 2, 3, . . . . In that case deletion
of a zero row or column by hand changes the scores, hence affects the values and
distribution of the statistic. For example, when the second row is deleted by hand,
the scores of the other rows change from 1, 3, 4, . . . to 1, 2, 3, . . . . Note, that only
r and η2 depend on scores, and that for the other statistics addition or deletion of
zero rows or columns makes no difference.

B.2 Conditioning

The question of conditioning on the marginal totals is rooted in controversial, philo-
sophical foundations of statistical inference. Half a century of lively debate has
failed to produce one dominating view. Moreover, the debate is rather technical,
much more technical than the main body of this text. To report the debate, we
need such notions as unbiased tests, conditional tests, and randomized tests, which
are for instance well explained in Lehmann (1959, pp. 11, 62, 130, 125).

A test is called unbiased if its power exceeds the significance level for all al-
ternative hypotheses. This is a special case of unbiasedness of decision rules (‘at
any incorrect decision the risk exceeds the risk at any correct decision’), of which
unbiasedness of statistics is another special case.

A test at level α is called conditional (Lehmann says: the test has a Neymann
structure) if the conditional level is≤α for every value of the conditioning statistic.

A test is called randomized if the decision to reject depends not only on the data,
but also on an independent random variable (‘flipping a coin’).

Let us consider how an exact, unconditional test based on the statistic S in a
2×2 table proceeds. Suppose we have 20 observations and the null distribution is
multinomial. More precisely, the null distribution is multinomial with n = 20 and
4 cells, and the four cell probabilities (p1, p2, p3, p4)) satisfy ‘homogeneity’, that is
p1/p2 = p3/p4. A multinomial with 20 observations and 4 cells has a sample space

of
(

23
3

)
= 1, 771 points. Given p = (p1, p2, p3, p4), to each point in the sample space

corresponds a multinomial probability and a value of S. Hence we can derive the
null distribution of S, and from this the p-value of Sobs, which depends on the vector
p. What we want, is the supremum over all vectors p satisfying p1/p2 = p3/p4.

Note how much conditioning simplifies the technical calculation of the p-value.
Firstly, the sample space is reduced considerably. Secondly, under conditioning the
null hypothesis is a single point, and we do not have to take a supremum to find the



B ADDITIONAL TECHNICAL INFORMATION 55

p-value. We get a different test, however, and this appendix is about the theoretical
advantages and disadvantages of both tests, and not only about ease of computation.

Let us return to our problem of conditioning. We first confine the problem as follows.
We are given the observed table and a specific statistic, and we are asked to report
the p-value. Now there are two problems. Firstly:

Should we report the conditional or the unconditional p-value?

Secondly, even the very definition of the p-value for a discrete distribution is not
uncontroversial. This second problem is not discussed in this Manual. At the
moment we will only discuss the first problem, and define p-values as the probability
(under the null hypothesis) of obtaining a result at least as extreme as the observed
result ‘in a similar situation’. The crux is: What is ‘a similar situation’? Is it a
situation where the margins are the same, or should the margins be taken as random,
keeping only the grand total the same.

Fisher (1935) introduced conditioning in 2×2 tables with the following argument.

Let us blot out the contents of the table, leaving only the marginal fre-
quencies. If it be admitted that these marginal frequencies by themselves
supply no information on the point of issue, namely, as to the propor-
tionality of the frequencies in the body of the table, we may recognize
the information they supply as wholly ancillary; and therefore recognize
that we are concerned only with the relative probabilities of occurrence
of the different ways in which the table can be filled in, subject to these
marginal frequencies.

This has an intuitive appeal, but it is also somewhat cryptic. Since 1935 Cox (1958),
Plackett (1977, 1981), Barndorff-Nielsen (1978) and others have tried to fill in the
details, while for example Barnard (1945a, 1945b, 1947), Boschloo (1970), Berkson
(1978a, 1978b), McDonald, Davis, & Milliken (1977) have provided counterargu-
ments. Summaries of more recent contributions to this discussion can be found in
Yates (1984) and Agresti (1990, section 3.5.5). First we discuss two problems with
Fisher’s argument.

Firstly, it is quite difficult to give a precise definition for ‘no information’. Tech-
nically it is called ‘ancillarity’. Barndorff-Nielsen (1978) discusses four variations.
Not only does each variation have its own disadvantages or paradoxes, but more
importantly, it turns out that according to three of the four definitions the mar-
gins of 2×2 tables contain some information about independence. Furthermore for
example Berkson (1978b) explicitly argues that these margins contain information
about independence. Hence the conclusion is that there is no single, widely accepted
definition of ‘ancillarity’, and that according to some definitions the margins contain
information with respect to independence.

Secondly, we want such a definition of ‘ancillarity’ that one can show that condi-
tioning on such a statistic is in some sense good. If this were true for some definition
of ancillarity, one should condition on all ancillary statistics. Unfortunately, Basu
(1964) discusses a situation, where there is no maximal ancillary statistic. Hence
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there can be no rule that one should always condition on every ancillary statistic.
In the example of Basu we are faced with the peculiar choice on which ancillary
statistic we ‘ought to’ condition. Why on one and not on the other?

Cox & Hinkley (1974, 2.3.iii on p.38) discuss a hypothetical situation where the
choice is clear. There, conditioning on ancillary information makes a big difference,
and it definitely seems the right thing to do. Hence, such situations do exist.

A mathematical argument in favour of conditioning is the following. For the
sampling schemes and the null hypothesis we discuss, any unbiased test is conditional
(Lehmann, 1959, Thm 4.3.2). This is a strong argument, but it is not conclusive.
Let us mention two counterarguments.

- Approximate unbiasedness is very attractive, but exact unbiasedness is not a
necessity. For example X2 and G2 are only asymptotically unbiased, even in
most 2×2 tables for conditional, randomized tests. Moreover, shouldn’t one
trade a little bias for a large gain in power, or in convenience, if this is possible?

- In our situation unbiased, conditional tests ‘almost certainly’ require random-
ization. This is not so much because only finitely many levels can be obtained,
but more seriously, because different values of the marginals correspond to dif-
ferent sets of attainable levels.

Hence one arrives at the question of appropriateness of randomized tests. Cer-
tainly there are situations where such tests are appropriate. As an example we
mention recurrent decision problems where the loss in one week can be compen-
sated by an expected gain in the next week. This means that one may optimize
the gains and losses over a long run of such actual repetitions. In other words, one
may optimize the expected outcome of the decision, and one knows precisely what
expectation to consider. To us this seems opposite to the situation where one wants
to say what we can learn from a single set of data. In the case of recurrent, compen-
sating decision problems the question of randomization in conditional tests does not
really arise. In such a situations the optimization problem is specified completely,
and in principle it is easy to solve.

In a single, stand-alone experiment however, randomization does not seem ap-
propriate to us. A client who has great interests in the correctness of our decision
will not be impressed if we first look at the data and then decide to flip a coin to
reach a decision. In a single, stand alone analysis, where we want ‘to say what we
can learn from the data’, randomization does not seem appropriate. If we condition,
we are left with an unrandomized conditional test.

The major disadvantage of unrandomized, conditional tests is the following. Sup-
pose we are testing at a preset level α. Due to the discreteness of the attainable
levels, we have to be satisfied with a test at a lower level. Hence one sacrifices
power, and often a substantial amount, at no gain whatsoever. By considering
unconditional tests, one may choose a critical region that has a different level for
different values of the margins, as long as the average level is α or less. Unrandom-
ized conditional tests should be of level α or less for each possible set of values of
the margins. Clearly this is much more restrictive, and unconditional tests have
(often much) more power (unconditionally), virtually ‘free of charge’. The question
remains, whether this fact is relevant to the particular situation at hand:
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- Is it allowed to compensate a higher conditional level of the test at one set of
margins with a lower level at another set?

- Is the unconditional power relevant?
- Are we testing at a preset level, or are we reporting p-values?
Our personal opinion can be summarized as follows. There are situations in

which conditioning definitely seems appropriate, and others in which it definitely
seems inappropriate. In single, stand-alone analyses where we want ‘to say what
we can learn from the data’, we go along with Cox (1958), and we would condition
on the margins. In our consultations this covers the majority of analyses. But the
border lines are not at all clear, and there remain many situations where the experts
strongly disagree.

The next question is: Is there a need for a program that computes the uncondi-
tional p-values? We think that the answer is negative, and that one can rely on as-
ymptotic approximations in the vast majority of applications. After all, asymptotic
approximations tend to be much better for unconditional tests than for conditional
ones. The reason is, that unconditional tests are averages of conditional ones. As-
ymptotic methods are already good for conditional tests for many remarkably small
samples. They fail only occasionally, in a rather small set of tables. Moreover, this
set seems to be rather ‘random’ with respect to the sets that unconditional tests
average over. Hence, averaging strongly reduces the errors. Fisher certainly has a
place, but not a big one. A program for unconditional p-values would have a very
much smaller place.

Moreover, such a program has to find the supremum of the p-values over all
points corresponding to independence, which makes the program computationally
much more complex then a program like Fisher for conditional tests.

Let us conclude with an example of a situation where we do not condition, at least
not strictly. On the basis of extensive calculations we have reached the conclusion
that Cochran’s rule applies (in a relevant population of tables) in more than 99.9%
of the cases. This argument is only reassuring if one is not a strict adherent of
conditioning.

B.3 Monte Carlo estimation

The random number generator built in in Fisher is from Rubinstein (1981). It uses
the following simple, linear congruential method.

randominteger = 16807 * randominteger MODULO 231 − 1

randomnumber = randominteger/231 − 1

The seed is taken from system date and time, producing a different seed at each
run. If the user provides a seed through the SEED command, a big number is added,
to avoid that the seed (and one or two successive random numbers) are exceedingly
small. Moreover, care is taken that the randominteger does not become 0 modulo
231 − 1, which would be disastrous.
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For generating random tables (= random drawings from the hypergeometric
distribution) we use the algorithm given in Patefield (1981).

The asymptotic standard error of the Monte Carlo estimate of the exact sig-
nificance is defined as follows. In principle one can obtain exact, 95% confidence
intervals for the exact significance. Unfortunately this interval is in general not
symmetric. So to report them, we would have to report two numbers. Much rather
we report a single number. To this end, we define the asymptotic standard error as
(an approximation to) the longest half of this interval divided by 1.96. Hence, the
estimated p-value±1.96∗the asymptotic standard errors span a confidence interval
with at least 95% confidence.

Let us denote the exact significance by π (because here it is a parameter to be
estimated). Let N be the size of the Monte Carlo sample, and let p be the proportion
of tables from the sample that lie in the critical region. So p is our Monte Carlo
estimate of the exact significance, and Np is binomially distributed with parameters
(N, π). Hence p is approximately normally distributed with mean π and variance
π(1− π)/n.

Now we want to define the asymptotic standard error ε of p in such a way, that
p± 1.96ε defines a confidence interval for π with at least 95% confidence. First we
will construct a confidence interval (π1, π2) for π. In general this interval will not
be symmetric around p. If 1.96 is replaced by c, the endpoints π1,2 are the roots of
the quadratic equation

(p− π)2 = c2π(1− π)/N.

That is,

π1,2 =
2pN + c2 ±

√
4p(1− p)Nc2 + c4

2(n + c2)
.

The asymptotic standard error can now be defined as

ε =def max
i=1,2

|πi − p|
c

=
|1− 2p|+

√
1 + 4p(1− p)N/c2

2c + 2n/c.

Taking c = 2 we get

ε =
|1− 2p|+

√
1 + Np(1− p)

n + 4
.

This is the standard error provided by the program.

For 5
N

< p < .1 and N > 1000 this reduces to

ε ≈
√

p/N.
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Almost just as well, we might have estimated the standard error simply as√
p(1− p)/N . However, for example for N = 1000, p = .01 one has

ε = .0043,√
p/N = .0032,

√
p(1− p)/N = .0031,

while the 95% confidence interval based on the Poisson distribution is (.0053 < π <
.0176), resulting in a ‘standard error’ of .76/1.96 = .39.
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C Annotated output

X X2 FISHER EXACT SIGNIFICANCE TESTS
X (C) (1988, 1991) AV/PMK/NSK/WPB

X X VERSION 3.10 (c) ProGAMMA 87-91

DATE: 19 DEC ’92 TIME: 10:27

The time and date at the beginning of the run are used to label all output. So later
on, times refer to this time rather than the then current time

>> help

>> is the Fisher prompt. So help is entered by the user. Its output, given below,
should be self-explanatory. For help about data entry, type: help table, etc.

The following help options are available:
HELP ALL
HELP TABLE for: DATA TABLE EXRE
HELP ANALYSIS for: ANAL
HELP VALUES for: XVAL YVAL DVAL
HELP CONTROL for: QUIT STOP END INTER BATCH

ISOM MC SEED REIN PARAM
HELP FILES for: OUT OU2 IN2 DISTR
HELP F0 for initial file settings

General information on the syntax.
- Each command should be on one line of <= 80 chars.
- Key words may be abbreviated to the first 3 chars.
- Any text after ’!’ is treated as comment.
- One or more spaces and/or commas and/or ’=’ serve as separator.
- All parameters are optional.
- All parameters are order independent, with the obvious exception of those

in DATA <nr> <nc>, XVAL and YVAL.
- All parameters are initialized.
- All parameters retain their values until redefined (see PARAM), except

file command parameters.

More information can be found in the manual.

Next we are going to do some real work. First we enter the frequencies of a 2 × 3
table. Then we request the exact p-value of Pearson’s X2.

>> data 2 3
ENTER FREQUENCIES, ONE ROW PER LINE
4 10 10
12 6 6

>> ana x2 exact

=> ANAL X2 EXACT THRESHOLD = 0.10000
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The analyse command echoes the options specified, and shows which options are
selected by default. Recall that all options have an initial value, and almost all
options are ‘sticky’, i.e., they retain their last value, unless a new value is explicitly
specified.

The option threshold is initialised at the value 0.10. It works as follows. If the
p-value of only X2 is requested, and Fisher discovers that its p-value exceeds the
threshold, it stops the calculation of the exact p-value. When the p-value is larger
than say 0.10, it is generally not of interest to know its exact value. This option can
be deactivated with nothresh, or by assigning a value larger than 1 to thresh.

Below is the output of the analysis. It comes in two parts. The first half contains
all calculations that can be done almost instantaneously. The second half contains
the results that are obtained after enumerating the isomarginal family of all tables
with the same margins, or after the generation of a Monte Carlo sample thereof.

........................................................................
TABLE NUMBER 1 ANALYSIS NUMBER 1 10:27 19 DEC ’92

NR = 2 NC = 3 2 DEGREES OF FREEDOM N = 48
ROW MARGINALS: 24 24

COLUMN MARGINALS: 16 16 16
ESTIMATED SIZE OF THE ISOMARGINAL FAMILY . . . . . . . . 230
HYPERGEOMETRIC PROBABILITY OF THE TABLE. . . . . . . . . 0.003619

STATISTIC X2
OBS VAL 6.000
APPROXIMATE
SIGNIFICANCE 0.0498
RUNNING
EXACT
SIGNIFICANCE 0.0774
PROB. MASS 0.0217

PROB. MASS IS THE PROBABILITY THAT THE STATISTIC IS IN THE INTERVAL
OBSERVED VALUE +- 0.000050

NUMBER OF TABLES ENUMERATED. . . . . . . . . . . . . . . 132
TIME REQUIRED FOR EXACT ANALYSIS . . . . . . . . . . . . 0.17 SECONDS

Note that the Gail-Mantel estimate of the number of tables with the same margins
may deviate by a factor 2 or more from the number of tables enumerated. There
are two reasons. Most importantly, the ingenious approximation of Gail & Mantel
(1977) is not always very accurate. Secondly, Fisher may skip the enumeration of
certain tables as it is certain that their accumulated contribution to the p-value is
less than 10−6.

Next, we will reanalyse Table 10.3 in Maxwell (1977). The population consists
of 387 patients of a psychiatrist. Each patient is rated on two ordinal 5-point scales:
Tension (down), and Worry (across). This has produced the following 5× 5 table.

>> data 5 5

ENTER FREQUENCIES, ONE ROW PER LINE
3 2 5 10 11
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11 8 16 35 19
28 13 23 33 6
27 11 23 12 5
63 10 9 4 0

With such a large table, obviously with rather strong interaction, one should not
embark automatically on an exact analysis. An approximate (= asymptotic) analysis
is the obvious starting choice.

>> ana all approx

=> ANAL ALL APP THRESHOLD = 0.10000

........................................................................
TABLE NUMBER 2 ANALYSIS NUMBER 2 20:37 19 DEC ’92

NR = 5 NC = 5 16 DEGREES OF FREEDOM N = 387
ROW MARGINALS: 31 89 103 78 86

COLUMN MARGINALS: 132 44 76 94 41
X-VALUES: 1.000 2.000 3.000 4.000 5.000
Y-VALUES: 1.000 2.000 3.000 4.000 5.000
ESTIMATED SIZE OF THE ISOMARGINAL FAMILY . . . . . . . . 0.127E+23
HYPERGEOMETRIC PROBABILITY OF THE TABLE. . . . . . . . . 0.590E-41

Note that the isomarginal family is far too big for an exact analysis

STATISTIC X2 K-W ETA2 TAU RS R
OBS VAL 136.157 0.2807 0.2798 -0.4451 -0.5286 -0.5265
APPROXIMATE
SIGNIFICANCE 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
TIME REQUIRED FOR APPROXIMATE ANALYSIS . . . . . . . . . 0.16 SECONDS

For a table with so much structure (two ordinal variables, strong deviation from
independence) it is natural to inspect the residuals. Here we have chosen for Haber-
man’s adjusted residuals, because under the null hypothesis they have asymptotically
a standard normal distribution.

Note that all significances in Fisher are probabilities of exceeding the observed
value. The significances of 1.000 for τ , R, RS indicate that, given the marginals,
virtually all tables have values of the statistic larger than the negative value indi-
cated. Said differently, there are no tables with a smaller R than -.5265 which have
a nonnegligeable probability. So when we use a two-sided test, or test against neg-
ative association, as in this table, significances of 1.0000 for τ , R, RS are highly
significant.

For X2, K−W , η2, and other χ2 statistics, however, only small values indicate
significance.

>> exres adj

EXPECTED VALUES AND MARGINAL FREQUENCIES;
EXPECTED VALUES < 5.00 , IF ANY, ARE FLAGGED BY #.

10.6 3.5# 6.1 7.5 3.3# : 31
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30.4 10.1 17.5 21.6 9.4 : 89
35.1 11.7 20.2 25.0 10.9 : 103
26.6 8.9 15.3 18.9 8.3 : 78
29.3 9.8 16.9 20.9 9.1 : 86

................................................................
132 44 76 94 41 : 387

Note that only two expected values are below 5. As they are above 1, Cochran’s rule
allows the use of the χ2 distribution for Pearson’s X2.

HABERMAN’S ADJUSTED RESIDUALS
(OBS.FREQ.-EXP.FREQ.) / ESTIMATED ST.DEV.

ABSOLUTE VALUES LARGER THAN 3.00 ARE FLAGGED BY #.

-3.0 -0.9 -0.5 1.1 4.7#
-4.9# -0.8 -0.4 3.8# 3.8#
-1.7 0.5 0.8 2.1 -1.8
0.1 0.9 2.5 -2.1 -1.3
8.7# 0.1 -2.4 -4.8# -3.6#

Note how much the residuals tell you about the association in the table. They are
negative in the North-West and South East corners, and positive along the main di-
agonal of the table. Formal significance testing is not really needed with this example
size and such strong association.

Next, we will demonstrate how the entire distibution (rather than a single signif-
icance) can be obtained. This distribution is written to a file. The command distr

activates this option, and a file name should be specified. The option applies to each
subsequential anal until de-activated by distr off. It does not have to precede the
command data as it does here.

To save space, we have chosen for a table with a very small sample size and a
very small isomarginal family. It is the same table that is discussed in Table Table 3
on page 10, and several subsequent tables.

>> distr name=d replace

>> data 2 3

ENTER FREQUENCIES, ONE ROW PER LINE
5 1 0
1 2 3

>> ana exa nostat

With the nostat option, the analysis command writes the frequencies of each table
in the isomarginal family to file. With distr active, each call of anal will produce
the same subset of the isomarginal family in the same order, but skipping all tables
with a probability less than .5E-8.

=> ANAL NOSTAT EXACT THRESHOLD = 0.10000

........................................................................
TABLE NUMBER 3 ANALYSIS NUMBER 3 10:27 19 DEC ’92
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NR = 2 NC = 3 2 DEGREES OF FREEDOM N = 12
ROW MARGINALS: 6 6

COLUMN MARGINALS: 6 3 3
ESTIMATED SIZE OF THE ISOMARGINAL FAMILY . . . . . . . . 17
RUNNING
NUMBER OF TABLES ENUMERATED. . . . . . . . . . . . . . . 16
THE DISTRIBUTION HAS BEEN WRITTEN ONTO THE FILE. . . . . d
TABLES WITH VERY SMALL PROBABILITIES MAY HAVE BEEN IGNORED.
TIME REQUIRED FOR EXACT ANALYSIS . . . . . . . . . . . . 0.16 SECONDS

Note the slowness of writing each table to file. Below is the file d.

---------------------------------------------------------------------------
EXACT DISTRIBUTION OF ANALYSIS # 3 ON TABLE # 3 IN RUN 10:27 19 DEC ’92

ROW MARGINALS: 6 6
COLUMN MARGINALS: 6 3 3
FORMAT (I5,F11.8,I4,25(I4))

P -LOG P F11 F12 F13 F21 F22 F23
1 0.00108225 2 0 3 3 6 0 0
2 0.01948052 1 1 2 3 5 1 0
3 0.01948052 1 1 3 2 5 0 1
4 0.04870130 1 2 1 3 4 2 0
5 0.14610390 0 2 2 2 4 1 1
6 0.04870130 1 2 3 1 4 0 2
7 0.02164502 1 3 0 3 3 3 0
8 0.19480519 0 3 1 2 3 2 1
9 0.19480519 0 3 2 1 3 1 2

10 0.02164502 1 3 3 0 3 0 3
11 0.04870130 1 4 0 2 2 3 1
12 0.14610390 0 4 1 1 2 2 2
13 0.04870130 1 4 2 0 2 1 3
14 0.01948052 1 5 0 1 1 3 2
15 0.01948052 1 5 1 0 1 2 3
16 0.00108225 2 6 0 0 0 3 3

The value of ‘each’ statistic for each table with the same margins can be obtained on
file d by the following command.

>> ana exa all
=> ANAL ALL EXACT THRESHOLD = 0.10000

........................................................................
TABLE NUMBER 3 ANALYSIS NUMBER 4 10:27 19 DEC ’92

NR = 2 NC = 3 2 DEGREES OF FREEDOM N = 12
ROW MARGINALS: 6 6

COLUMN MARGINALS: 6 3 3
X-VALUES: 1.000 2.000
Y-VALUES: 1.000 2.000 3.000
ESTIMATED SIZE OF THE ISOMARGINAL FAMILY . . . . . . . . 17
HYPERGEOMETRIC PROBABILITY OF THE TABLE. . . . . . . . . 0.019481

STATISTIC X2 K-W ETA2 TAU RS R
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OBS VAL 6.000 0.5000 0.5000 0.6708 0.7071 0.7035
APPROXIMATE
SIGNIFICANCE 0.0498 0.0639 0.0639 0.0095 0.0051 0.0053
RUNNING
EXACT
SIGNIFICANCE 0.1234 0.1234 0.1234 0.0206 0.0206 0.0206
PROB. MASS 0.1212 0.1212 0.1212 0.0195 0.0195 0.0195

PROB. MASS IS THE PROBABILITY THAT THE STATISTIC IS IN THE INTERVAL
OBSERVED VALUE +- 0.000050

FOR TAU AND RS, HOWEVER, PROB. MASS = P (OBSERVED STATISTIC).
NUMBER OF TABLES ENUMERATED. . . . . . . . . . . . . . . 16
THE DISTRIBUTION HAS BEEN WRITTEN ONTO THE FILE. . . . . d
TABLES WITH VERY SMALL PROBABILITIES MAY HAVE BEEN IGNORED.
TIME REQUIRED FOR EXACT ANALYSIS . . . . . . . . . . . . 0.22 SECONDS

Below is the second part of file d.

---------------------------------------------------------------------------
EXACT DISTRIBUTION OF ANALYSIS # 4 ON TABLE # 3 IN RUN 10:27 19 DEC ’92

ROW MARGINALS: 6 6
COLUMN MARGINALS: 6 3 3
FORMAT (I5,F11.8,I4,F10.4,5F10.6)

P -LOG P X2 ETA2 K-W TAU RS R
1 0.00108225 2 12.0000 1.000000 1.000000 -0.894427 -0.942809 -0.904534
2 0.01948052 1 6.0000 0.500000 0.500000 -0.670820 -0.707107 -0.703526
3 0.01948052 1 6.0000 0.500000 0.500000 -0.521749 -0.549972 -0.502519
4 0.04870130 1 4.0000 0.333333 0.333333 -0.447214 -0.471405 -0.502519
5 0.14610390 0 1.3333 0.111111 0.111111 -0.298142 -0.314270 -0.301511
6 0.04870130 1 4.0000 0.333333 0.333333 -0.149071 -0.157135 -0.100504
7 0.02164502 1 6.0000 0.500000 0.500000 -0.223607 -0.235702 -0.301511
8 0.19480519 0 0.6667 0.055556 0.055556 -0.074536 -0.078567 -0.100504
9 0.19480519 0 0.6667 0.055556 0.055556 0.074536 0.078567 0.100504

10 0.02164502 1 6.0000 0.500000 0.500000 0.223607 0.235702 0.301511
11 0.04870130 1 4.0000 0.333333 0.333333 0.149071 0.157135 0.100504
12 0.14610390 0 1.3333 0.111111 0.111111 0.298142 0.314270 0.301511
13 0.04870130 1 4.0000 0.333333 0.333333 0.447214 0.471405 0.502519
14 0.01948052 1 6.0000 0.500000 0.500000 0.521749 0.549972 0.502519
15 0.01948052 1 6.0000 0.500000 0.500000 0.670820 0.707107 0.703526
16 0.00108225 2 12.0000 1.000000 1.000000 0.894427 0.942809 0.904534

Rather than the entire distribution, one may write only a Monte Carlo sample to
file. In this demonstration we chose a ridiculously small sample size.

>> mc 1

THE SAMPLE SIZE OF A MONTE CARLO ANALYSIS IS SET TO 10 TABLES.

Fisher has a minimum sample size of 10 for Monte Carlo sampling. Requests to
set the sample size to a smaller number results in this minimum size.

>> anal mc all
=> ANAL ALL MC THRESHOLD = 0.10000
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........................................................................
TABLE NUMBER 3 ANALYSIS NUMBER 5 10:27 19 DEC ’92

NR = 2 NC = 3 2 DEGREES OF FREEDOM N = 12
ROW MARGINALS: 6 6

COLUMN MARGINALS: 6 3 3
X-VALUES: 1.000 2.000
Y-VALUES: 1.000 2.000 3.000
ESTIMATED SIZE OF THE ISOMARGINAL FAMILY . . . . . . . . 17
HYPERGEOMETRIC PROBABILITY OF THE TABLE. . . . . . . . . 0.019481

STATISTIC X2 K-W ETA2 TAU RS R
OBS VAL 6.000 0.5000 0.5000 0.6708 0.7071 0.7035
APPROXIMATE
SIGNIFICANCE 0.0498 0.0639 0.0639 0.0095 0.0051 0.0053
RUNNING
MONTE CARLO
SIGNIFICANCE 0.1000 0.1000 0.1000 0.0000 0.0000 0.0000
M.C.ST.ERROR +-0.1556 +-0.1556 +-0.1556 +-0.1429 +-0.1429 +-0.1429
PROB. MASS 0.1000 0.1000 0.1000 0.0000 0.0000 0.0000
M.C.ST.ERROR +-0.1556 +-0.1556 +-0.1556 +-0.1429 +-0.1429 +-0.1429

Note that the exact p-values (on the previous page) are well inside the MC confidence
intervals. We have chosen to report the standard error as ± for emphasis. Here,
with an estimate of 0, this may appear a little odd.

PROB. MASS IS THE PROBABILITY THAT THE STATISTIC IS IN THE INTERVAL
OBSERVED VALUE +- 0.000050

FOR TAU AND RS, HOWEVER, PROB. MASS = P (OBSERVED STATISTIC).
SEED WAS . . . . . . . . . . . . . . . . . . . . . . . . 9999984
M.C. SAMPLE SIZE . . . . . . . . . . . . . . . . . . . . 10
THE DISTRIBUTION HAS BEEN WRITTEN ONTO THE FILE. . . . . d
TABLES WITH VERY SMALL PROBABILITIES MAY HAVE BEEN IGNORED.
TIME REQUIRED FOR MONTE CARLO ANALYSIS . . . . . . . . . 0.33 SECONDS

Finally, the last part written to file d. If we want to see which tables have been
generated, we should reset the seed to the value indicated above, and request ana
nostat mc.

---------------------------------------------------------------------------
MC DISTRIBUTION OF ANALYSIS # 5 ON TABLE # 3 IN RUN 10:27 19 DEC ’92
ROW MARGINALS: 6 6

COLUMN MARGINALS: 6 3 3
FORMAT (I5,T21,F10.4,5F10.6)

X2 ETA2 K-W TAU RS R
1 0.6667 0.055556 0.055556 -0.074536 -0.078567 -0.100504
2 6.0000 0.500000 0.500000 -0.223607 -0.235702 -0.301511
3 1.3333 0.111111 0.111111 0.298142 0.314270 0.301511
4 0.6667 0.055556 0.055556 0.074536 0.078567 0.100504
5 0.6667 0.055556 0.055556 0.074536 0.078567 0.100504
6 1.3333 0.111111 0.111111 -0.298142 -0.314270 -0.301511
7 0.6667 0.055556 0.055556 -0.074536 -0.078567 -0.100504
8 1.3333 0.111111 0.111111 -0.298142 -0.314270 -0.301511
9 0.6667 0.055556 0.055556 -0.074536 -0.078567 -0.100504

10 0.6667 0.055556 0.055556 0.074536 0.078567 0.100504
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Writing to d is discontinued by the following request. It is not really needed here,
because we end the Fisher session. It would be needed if we were to proceed with
other analyses for which we did not want to write out the entire distribution.

>> distr off

>> end

END OF RUN 10:27 19 DEC ’92
DID 5 ANALYSES ON 3 TABLES.
THIS RUN REQUIRED 2 SEC.
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Norušis, M.J. (1979). SPSS, Statistical Algorithms. Chicago, IL: SPSS Inc.

Patefield, W.M. (1981). Algorithm AS 159. An efficient method of generating random
R×C tables with given row and column totals. Applied Statistics, 30, 91-97.

Pearson, K. (1900). On a criterion that a system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably supposed
to have arisen in random sampling. Philosophical Magazine, Series 5, 50, 157-175

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13, 25-45.

Plackett, R.L. (1977, 19812). The analysis of categorical data. Griffin’s Statistical Mono-
graphs and Courses, No. 35. London: Griffin.

Read, T.R.C., & N.A.C. Cressie (1988).Goodness-of-fit statistics for discrete multi-
variate data. Springer Series in Statistics. Berlin: Springer.

Rubinstein, R.Y. (1981). Simulation and the Monte Carlo method. New York: Wiley.

Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. Tokyo: McGraw-
Hill Kogakusha.

Spearman, C. (1904). The proof and measurement of association between two things.
American Journal of Psychology, 15, 72-101.

Tukey, J.W. (1949). One degree of freedom for non-additivity. Biometrics, 5 , 232-242.

Verbeek, A., & P.M. Kroonenberg (1985). A survey of algorithms for exact distribu-
tions of test statistics in r×c contingency tables with fixed margins. Computational
Statistics & Data Analysis, 3 , 159-185.

Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio for testing com-
posite hypotheses. Annals of Mathematical Statistics, 26, 64-68.

Yates, F. (1984). Tests of significance for 2× 2 contingency tables (with discussion).
Journal Royal Statistical Society, Series A, 147, 426-463.



FISHER COMMAND SUMMARY

General

• For most commands, parameters keep their values until redefined.
Exception: most file command parameters; commands with syntax errors.

• All parameters are optional.
• Almost all parameters are order independent.

Exceptions: XVAL, YVAL, and DATA <nr> <nc>.
• Keywords may be abbreviated to the first 3 characters.
• Consecutive blanks and commas form one separator.
• After ‘!’ any text on that line is treated is comment.
• REINITIALIZE does not re-initialize BATCH or INTERACTIVE, and also not IN2 if this is active.

Limitations

• Each command and each row of observed frequencies should be on one line of at most 80
characters.

• Maximum size of numerical input: 10 positions.
• The size of the work space is installation dependent.
• Maximum frequency: 100 000. (But most likely the work space will be exceeded for much

lower values.)

Initializations

(See PARAM after begin or after REIN).

INTERACTIVE
DATA 2 2 T RES
EXRES RES
XVAL 1 2 3 etc.
YVAL 1 2 3 etc.
HELP
ISOM 100000
MC 2000
ANAL X2 EXMC THRESH=.1
SEED different for each run

primary input CON connected active
secondary input IN2.FIS non-existent/not-connected
primary output CON connected active SHORT MESSAG
secondary output OU2.FIS non-existent/not-connected
distribution file DISTR.FIS non-existent/not-connected
log file LOG.FIS connected active



Data entry commands

DATA <nr> <nc> <input mode> <residuals>
<nr> is the number of rows. It must be the first parameter.
<nc> is the number of columns. It must be the second parameter.
<input mode> is T, TM, or M.

<residuals> is NORES, RES, ADJRES, or X2TERMS.
With input mode T or TM, DATA must be followed by the observed frequency table without
or with marginals respectively. With input mode M, DATA must be followed by two lines with
marginal frequencies, and by a third line with zero or more <statistics> = <value>, where

<statistic> is X2, K-W, ETA2, TAU, RS, R, LR, F-T, or p.

XVALUES <value1 > · · · <valuenc > Change or show category scores,
YVALUES <value1 > · · · <valuenr > to be used for η2 and R.
DVALUES Reset scores to 1 2 3 . . .

Analysis commands

ANALYSIS <output mode> <statistics> <threshold>
<output mode> is APPROX, EXACT, MC, or EXMC

<statistics> is NOSTAT, X2, or ALL

<threshold> is NOTHRESH, THRESH, or THRESH=<value>
TABLE Show the table of observed frequencies
EXRES <residuals> Show the expected values and residuals

Control commands

STOP, BYE , QUIT, or END Terminate execution
HELP <help option> Show command syntax

<help option> is empty, ALL, TABLE, ANAL, VAL, CONTROL, FILES, or F0

INTERACTIVE Change to interactive mode
BATCH Change to batch mode
ISOMARGINAL <limit> Set or show limit to isomarginal family
MC <n> Set or show MC sample size
SEED <n> Set or show seed for MC analysis
REINITIALIZE Reset all parameters, except IN2 and INT/BAT

PARAMETERS Show all current values

File handling commands

IN2 NAME=<file> <new?> <off?> Secondary input
OUTPUT <fmt> Primary output format
OU2 NAME=<file> <new?> <off?> <fmt> <msg> Secondary output
DISTR NAME=<file> <new?> <off?> Write isomarginal family or MC sample to file

<file> is a DOS filename, optionally with path and/or drive
<new?> is REPLACE or NEW Default is NEW
<off?> is ON or OFF Default is ON
<fmt> is SHORT or LONG Default depends on BAT/INT

<msg> is MESSAGE or NOMESS Default is NOMESS


