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Abstract

A new approach for estimating the chemical rank of the three-way array called the principal norm vector
orthogonal projection method has been proposed. The method is based on the fact that the chemical rank of the
three-way data array is equal to one of the column space of the unfolded matrix along the spectral or chromato-
graphic mode. A vector with maximum Frobenius norm is selected among all the column vectors of the unfolded
matrix as the principal norm vector (PNV). A transformation is conducted for the column vectors with an orthogonal
projection matrix formulated by PNV. The mathematical rank of the column space of the residual matrix thus
obtained should decrease by one. Such orthogonal projection is carried out repeatedly till the contribution of chemical
species to the signal data is all deleted. At this time the decrease of the mathematical rank would equal that of the
chemical rank, and the remaining residual subspace would entirely be due to the noise contribution. The chemical
rank can be estimated easily by using an F-test. The method has been used successfully to the simulated HPLC-DAD
type three-way data array and two real excitation—emission fluorescence data sets of amino acid mixtures and dye
mixtures. The simulation with added relatively high level noise shows that the method is robust in resisting the
heteroscedastic noise. The proposed algorithrn is simple and easy to program with quite light computational burden.
© 2002 Elsevier Science Ltd. All rights reserved.
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Based on the general concept of singular value de-
composition, the decomposition models of the three-

1. Introduction

With the development of the high-order hyphenated way array may be divided into three main groups, e.g.
analytical instrumentation, three-way data treatment Tucker3, PARAFAC and unfolded second-order data
has become an extensive research subject in analytical model. The first step in establishing a right model is the
chemistry. This kind of the data contains more infor- estimation of the component number of the model. The
mation than second-order ones with an outstanding physical meaning of the component number might be
advantage of the uniqueness of the trilinear different in different models. In PARAFAC model the
decomposition. component number is the chemical rank. A three-way

array can be formulated by a number of triads, each
being produced by a tensor product of three vectors
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the model is called the rank of the three-way array.
Since a three-way array contains more information
than the second-order data, its chemical rank has many
differences from that of the second-order data. Among
others, one such difference is that the maximal rank of
the three-way array may be larger than the maximal
dimension of the modes of the array (Kruskal, 1977),
while the rank of the second-order matrix can only be
less than or equal to the minimum dimension of the
columns or rows. Therefore, the method of estimating
the rank for a three-way array should be different from
that (Malinowski, 1991) for the second-order data.

Bro (1997) has pointed out the importance of the
research on the rank estimation methods for the trilin-
ear data. He divided these methods into three groups,
e.g. methods based on the split-half experiments, exam-
ining the residual variance and utilizing the field knowl-
edge concerning the data being modeled.

More recently, Louwerse et al. (1999) have proposed
two alternative generalizations of two-way cross-valida-
tion method for Tucker3 model, i.e. expectation maxi-
mization (EM) and leave-bar-out (LBO) approaches.
These methods seem to work well for the given exam-
ples, though the authors pointed out that possibly there
is no minimum for the predictive residuals in the higher
level of noise and the EM version which outperformed
the LBO requires rather long computation time.

We have proposed an alternative approach for esti-
mating the chemical rank of the three-way array based
on the orthogonal projection with the help of the vector
of the maximum Frobenius norm, which is called the
principal norm vector (PNV).

The proposed method seems to belong to the second
group of Bro’s classification (Bro, 1997), i.e. methods
based on examining the residual variance, though here
the residual refers to that obtained after the orthogonal
projection, rather than the residual in the ordinary
sense of a model fitness measure.

When unfolding the three-way array along the mode
of spectral or chromatographic profiles, the column
space of the unfolded matrix is the combination of the
spectral or chromatographic mode spaces of all sample
matrix slices of the three-way array. All the base vec-
tors of this mode space of the three-way array are
contained in the column space of the unfolded matrix,
all information concerning the co-existing chemical spe-
cies is also embedded in the column space, and the
column space is a rank deficient space. As the orthogo-
nal projection transformation of the column space of
the unfolded matrix is carried out with the orthogonal
projection matrix formulated by the PNV as defined
above, a residual matrix of the unfolded matrix could
be obtained. Such a transformation makes the column
space decompose into two orthogonal complement sub-
spaces, e.g. the PNV and the column space of the
residual matrix. Therefore, the mathematical rank of

the column space of the residual matrix should decrease
by one. After such transformations are carried out n
cycles for the column space of unfolded matrix contain-
ing n chemical species, its mathematical rank should
decrease by n. At same time, its chemical rank should
also decrease by n, and its residual matrix would be-
come a noise matrix, that is, the column space of the
residual matrix would become a noise subspace. One
could distinguish the chemical signal vector and the
noise vector using the F-test for the residuals of the
PNVs, and estimate the chemical rank of the three-way
array.

2. Theory
2.1. Trilinear model

The chemical rank of a three-way array is based on
the trilinear model. As the three-way data for an (I x
J x K) array R, a trilinear model can be expressed (Bro,
1997) as

N
R/ ux= len®yn®zn+El><J><K (1)
where x,, y, and z, are the response profiles of the nth
response-active component along x, y and z axis, re-
spectively; N is the component number; ® is the tensor
product; E is the measuring error array. The matrices
of the response profiles are expressed as

Xy v =(X1,X0,..,Xp) 0)
YJXN:(ylay29-"ayN) (3)
Zy . n=(21,22,-.,Zn) 4

The goal of the trilinear resolution is to resolve the
response profiles X; .. v, Y, y and Zg . , for obtaining
the chemical information concerning the measured
processes.

Eq. (1) might be expressed as three matrices along
these axes:

R, =Xdiag)Y' +E.,  (k=12,...K) )
R, = Z diagy; )X +E, (j=12,...J) (6)
R, =Y diag(x, )ZT +E,.. (i=12....1) )

where R. is the kth matrix slice of R, ;. x along the
z axis, R, the jth matrix slice along the y axis, R,. the
ith matrix slice along the x axis, diag(z,) is the diago-
nal matrix whose diagonal elements are the correspond-
ing ones of the kth row vector Z,, of the response
profile matrix Zg, y, diag(y;,) corresponds to the jth
row vector y ;, of Y, y, diag(x,;,) corresponds to the
ith row vector x;, of X, 5. The superscript T denotes
the matrix transposition. Trilinear resolutions are car-
ried out for all components at the same time or one-by-
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one for each component according to Eqs. (5)—(7). The
proposed principal norm vector orthogonal projection
(PNVOP) approach is based on the forementioned tri-
linear model.

2.2. The chemical rank of the three-way array and its
unfolded matrices

The six different unfolded matrices (Westerhuis et al.,
1999) can be given out by unfolding a three-way array
R (I x J x K) along the three modes 7, J and K accord-
ing to Egs. (5), (7) and (6), respectively.

RA,. x=[R.1.Ro...R 4] (8)
RB, . ;= [RT.R%,,...RT] ©9)
RC, . ., =[R,..Rs.....R,.] (10)
RD, . ,=[RT.RL...R'] (11)
RE.. ,=[R,.R,....R,] (12)
RF,. o, =[RT.R3S....RT] (13)

where the row space of RA is identical with that of RF,
the vectors of their column spaces are linear combina-
tions of each other with a common base set. In view of
the linear space theory, the two unfolded matrices have
the same column and row ranks. Similarly, the matrices
RB and RD have identical ranks as RC and RE,
respectively.

Taking Eq. (8) as an example, one can understand
the relation between the chemical rank information
contained in the three-way data and that contained in
its unfolded matrix.

The column space of the unfolded matrix RA is
constructed by the combinations of all vectors of J-
mode space of R. The vectors involved in each sample
matrix might be independent or correlative ones. The
base vector number of the column space of each sample
matrix is less than or equal to J. The column space for
RA is also the space of J-mode and is spanned by these
base vectors. The number of the independent vectors of
the column space of RA must be less than or equal to
J. Among the vectors involved in this set (there are
altogether K x J vectors) there must be some correlative
ones. Consequently,

rank(RA),,, < K x J (14)

where rank(RA),, is the column rank of RA. Therefore,
the column space of RA is a rank deficient space.

Suppose that the chemical rank of a three-way data
R is n, that is,

rank(R) =n (15)

Because the column vectors of the RA are the combi-
nations of all vectors of J-mode spaces in K sample
matrices of dimension (I x J), each having a chemical

rank up to n, the column space of RA must contain n
chemical component vectors contained in K samples,

c.g.
Rank(RA)colchem =n (16)

where Rank(RA) . chem 1S the chemical rank of the
column space for RA.
From Egs. (15) and (16), one has

rank(B) = rank(RA)C«')lchem =n. (1 7)

Or in words the chemical rank of R is equal to the one
of the column space of RA, that is, the chemical species
information contained in R should be the same as the
column space of RA. Therefore, we transform the esti-
mation of the chemical rank of the three-way array into
the estimation of the chemical rank of the unfolded
matrix.

2.3. The principal norm vector orthogonal projection
approach

Since the information of all the chemical species is
included in the matrix formulated by unfolding the
three-way array along a mode of spectral or chromato-
graphic profiles, the chemical rank of the three-way
array could be found if one could determine the rank of
the formulated matrix. The unfolded matrix is different
from an ordinary second-order data matrix. An ordi-
nary second-order data matrix is constructed by all
vectors of spectral or chromatographic mode of a sam-
ple, and the matrix unfolded with a three-way array is
formulated by juxtaposing side by side K sample ma-
trices along spectral or chromatographic mode. Species
number and concentration of the species contained in
each sample may be different for each sample matrix
and the species number is less than or equal to the
chemical rank n for each sample. Usually there exist
some samples containing the same species with different
relative concentrations, and the column vectors of these
sample matrices must be strongly correlated. Therefore,
the column space of the unfolded matrix must contain
a number of regions carrying strongly correlated
information.

Suppose that R, is an unfolded matrix of the three-
way array R with M column vectors along spectral or
chromatographic mode,

Ry(uy,.. s+ 5U ) (18)

where u,,, is PNV or the column vector with the
maximum Frobenius norm in the column space. The
vector must be the spectral or chromatographic vector
with the most chemical components involved or the
highest concentration among all samples. This vector is
actually the most information-rich vector among all
column ones involved in the unfolded matrix.
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The vector u,,,, in Eq. (18) is used to construct an
orthogonal projection matrix P,

P=I- umaxuaax (19)

where I is an identity matrix. When the column vectors
of R, project along u,,,, with P, the residual matrix R;
formulated will be expressed as

R,=PR, =P(u,,...,u, ... .83;)
= (Puy,...,.Pu,,,....Pu,,) (20)

Since the matrix P in Eq. (19) is an orthogonal projec-
tion matrix constructed by u,,,,, the column space of
the unfolded matrix produces the orthogonal decompo-
sition. There are two orthogonal complement sub-
spaces, e.g. the column space of R, is the orthogonal
complement subspace of u,,,. One has

R,=(Pu,,....Pu,,, ,,0,Pu SPuy,)

max + 1s°*
’ ’ ’ ’
:(ulﬁ"'aumax—lsoaulnax+la~-~auM) (21)

The mathematical rank of the column space of the
unfolded matrix is

I‘ank(I{u)col = rank(Rs)col + rank(umax) (22)

where rank(R,).,; and rank(R,)..; are the mathematical
ranks of the column spaces of R, and R, respectively.
Since u,,,, is a vector, one has

rank("max) = 1 (23)
From Eqgs. (22) and (23), one obtains
I‘ank(I{s)col = I‘ank(I{u)col —1 (24)

Eq. (24) shows that the orthogonal projection trans-
formation of the column space of the unfolded matrix
of the three-way array along the PNV makes the math-
ematical rank of its residual matrix decrease by one.
Taking the residual matrix R, as the current unfolded
matrix R,, one can do the same as above, but the
Frobunius norm of the current PNV &, should be
smaller than that of the PNV u_,, of the previous cycle,
though the current PNV is again the most information-
rich one among all column vectors of the current
unfolded matrix R,. After these kinds of the transfor-
mations being carried out n cycles for the unfolded
matrix containing n chemical species, the mathematical
rank of its residual matrix would decrease by n. Since
these n PNVs are all most information-rich vectors in
the current cycle of transformation, the column space
of the residual matrix becomes a noise subspace. At this
time, its chemical rank decreases by n, too. Due to the
random character of the noise distribution, the decreas-
ing rate of Frobenius norm of the noise PNV with the
increase of the projection cycles would be substantially
reduced. An F-test is carried out for the residuals of the
PNVs of two successive cycles. When in these two
successive cycles the PNVs are all contributed by the

noise, the F values would be in the rejection domain. In
this way one can distinguish the PNV contributed by
chemical signal and that by the noise, and the chemical
rank of the three-way array can be estimated.

3. The algorithm

1. Unfold the three-way array R along the mode of
spectral or chromatographic profiles to formulate
the unfolded matrix R,.

2. Select the column vector u,,,
Frobenius norm or the PNV u
space of R,.

3. Construct an orthogonal projection matrix P with
u,,.. according to Eq. (19).

4. Project all the column vectors of R, along u,,,, with
P to obtain all the column vectors of the residual
matrix R, according to Eq. (20). Record the residual
sum of squares (rss) for u,,.. Make R, equal the
current R,.

5. The F-test is carried out for rss, that is,

of the maximum
for the column

max

F,=rss(i )/rss(i+ 1) (25)

The F; value is compared with the presented value
of threshold. The algorithm is returned to Step 2.

6. The chemical rank of unfolded matrix should be less
than or equal to the number of rows for the matrix.
When the number of cycles is equal to the number
of rows of the unfolded matrix, the calculation is
terminated.

There is an alternative way to locate the point of
terminating the calculation process, which can lighten
the computation burden. When five or more successive
cycles give F; values below the threshold, the calcula-
tion is terminated. The cycle number before these five
(or more) successive cycles is taken as the chemical rank
of the three-way data array.

4. The experiments

The proposed method was tested using three data
arrays, including one simulated HPLC-DAD type data
set with relatively high noise added and two experimen-
tally recorded excitation—emission fluorescence data
sets.

4.1. The simulated data

The HPLC-DAD type data of ten samples consisting
of four components have been simulated. The pure
spectra of the four components are simulated according
to the following expressions:
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Table 1

The component concentrations of the amino acid mixtures (mol1~1)

Sample #1 #2 #3 #4 #5 #6 #7
Tryptophan 0 9.6x1073 0 9.6x1073 9.6x1073 1.92 x10—# 1.92x 10~
Tryrosine 0 0 44x10~% 4.4%x10~% 8.8 x10~* 44x10~4 8.8 x10~*
Phenylalanine 44%x1073 22x1073 22x1073 22x1073 22x1073 22x1073 44%x1073

5, = 0.2 gs(4i — 3,30,30) + 0.5 gs(4i — 3,70,10)
(i=12....,50)

55 = 0.5 gs(di — 3,20,10) + 0.2 gs(di — 3,70,10)
(i=1.2....,50)

53 = 0.3 gs(4i — 3,40,10) + 0.4 gs(4i — 3,90,20)
(i=12,...,50)

5,=0.7 gs(4i —3,50,25) (i=1.2,....50)

where  gs(x,m,n) = exp[ — (x —m)?/(2n?)]. The pure
chromatograms of the four components are simulated
as

¢, =0.5gs(di—3,40,5) (i=12,...,20)
¢, =0.5gs(di—3,30,10) (i=12,...,20)
¢ =0.5 gs(di—3,50,10) (i=12,...,20)
s =0.5gs(d4i—320,9) (i=12,...20)

The concentrations of the components ¢; (j=1,...,4)
are taken as random numbers of uniform distribution
in the region [0,1]. Five samples contain all the four
components, and the remaining five contain only three
components ¢;, ¢, and ¢;. The matrices of spectral
mode X, the chromatographic mode Y and the concen-
tration mode Z are formulated according to Egs. (2)—
(4), respectively. The noise added includes the
homoscedastic one which is simulated by random num-
bers of normal distribution with zero mean and a
standard deviation of 0.005, and the heteroscedastic
noise with a relatively high intensity of 1.0% of the
signal. The response metrics R., (k= 1,2,...,10) of the
samples are formulated according to Eq. (5) and a
(50 x 20 x 10) three-way data array is obtained.

4.2. The fluorescence excitation—emission spectra of
amino acid and dye mixtures

Seven mixture samples of tryrosine, tryptophan and
phenylalanine are prepared in phosphate buffer of pH
7.2 with 0.0028 M KH,PO, (Table 1). The fluorescence
dyes co-existing in the liquid laser, i.e. acridine, fluores-
cein and rhodamine B, are taken to prepare six samples
(Table 2).

The fluorescence spectra were recorded using a Hi-
tachi 850 fluorescence spectrophotometer with a wave-

length scan speed of 240 nm/min and wavelength
intervals of 5 nm. The range of excitation wavelength
for the amino acid mixtures was 205-280 nm, while
that for the dye mixtures was 450—600 nm. The ranges
of emission wavelength for the amino acid and dye
samples were 270-385 and 480-620 nm, respectively.
The effect of Rayleigh scattering was corrected by
background subtraction using a blank sample. For the
amino acid samples, a (16 x 24 x 7) data array was
obtained, while the dimension of the dye mixture data
array was (31 x 29 x 6).

5. Results and discussion

5.1. The simulated data array

The estimation of the chemical rank of the (50 x
20 x 10) three-way array is first solved by estimating
the chemical rank of the column space of the 7 x JK
(50 x 200) unfolded matrix formulated by unfolding the
original three-way array along the spectral mode. The
F-test with significance level of 0.005 is shown in Fig. 1.
One notices from Fig. 1 that starting from the fifth
cycle all F values are in the rejection domain and their
variation rate is much smaller than that for the cycles
1-4. It is evident that in the first four cycles the
orthogonal projection deletes four chemical compo-
nents contributing the spectral signal while the remain-
ing cycles deal with the noise terms. Therefore, the
chemical rank of the data should be 4. Fig. 2 shows the
plot of the rss. One observes that the rss decreases
rapidly for the first four cycles due to the successive
deletion of chemical species contributed spectral infor-
mation, while the decreasing rate obviously slows down
after the fourth cycle.

Table 2
The component concentrations of the fluorescence dye samples
(10-%g1°Y)

Sample #1 #2  #3  #4  #5  #6

Acridine 0.00 0.00 0.00 0.00 024 0.12
Fluorescein 0.12  0.00 0.12 0.24 0.12 024
Rhodamine B 0.00 0.11 022 0.11 022 0.22
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Fig. 1. F-test for the simulated system along the spectral
mode.
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Fig. 2. The rss for the simulated system along the spectral
mode.

In order to validate the conclusion obtained along
the spectral mode, we have unfolded the three-way
array along the chromatographic mode according to
Eq. (9) to obtain a J x IK (20 x 500) unfolded matrix.
The chemical rank can also be estimated for this matrix
using the PNVOP method. The result is shown in Fig.
3, and the corresponding plot for logarithms of the rss
is shown in Fig. 4. From Fig. 3 one can identify the
chemical component number of 4. The variation of the
F values after the fourth cycle is slightly greater as
compared to Fig. 1. Comparing Fig. 4 with Fig. 2, one
notices that the rss for the chromatographic mode
decreases faster than that of the spectral mode for the
cycles associated with noise contribution. These phe-

nomena are evidently due to the heteroscedastic noise
of relatively high intensity introduced in the chromato-
graphic mode during the simulation. These results indi-
cate at the same time that the proposed PNVOP
method is robust in resisting the effect of heteroscedas-
tic noise. In Fig. 3 the F values obtained for the first
two cycles fall into the rejection domain. The rss values
for the first two cycles are close to each other. That is
why in step 6 of the proposed algorithm an alternative
approach is used to terminate the calculation only when
five or more successive cycles give F values below the
limit threshold to avoid random falling of the F into the
rejection domain. This requirement might be circum-
vented by using a significance level higher than 0.005.

5.2. The fluorescence data of the amino acid mixtures

Since the three-way fluorescence data set has two
spectral modes, that is, the excitation and the emission
ones, the chemical ranks of the unfolded matrices for-
mulated by unfolding the three-way array along these

F value
N
1

0 T T T T T T T T T
0 4 8 12 16 20
cycle number

Fig. 3. F-test for the simulated system along the chromato-
graphic mode.

-2 -

log(rss)

-3

'4 T T T T T
0 4 8 12 16 20
cycle number

Fig. 4. The rss for the simulated system along the chromato-
graphic mode.
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25 folding the (16 x 24 x 7) three-way array of amino acid
mixtures along the excitation spectral mode according
20 1 to Eq. (8). The chemical rank has been estimated using
the PNVOP method with the results shown in Figs. 5
15 1
g
g
w 10 1
6 .
| \\/M’\/\/\
0 T T T - 4 -
0 4 8 12 16 g
cycle number 2
2 -
Fig. 5. F-test for the amino acid system along the excitation
spectral mode.
0 T T T T T T
6 0 8 16 24
cycle number
Fig. 8. The rss for the amino acid system along the emission
o 4 spectral mode.
£
<3
o
100
2 -
80
0 T T T T 2 60 A
0 4 8 12 16 §
cycle number L 40 1
Fig. 6. The rss for the amino acid system along the excitation 20 A
spectral mode.
0 T T T T
0 4 8 12 16 20
100 cycle number
80 - Fig. 9. F-test for the fluorescence dye system along the emis-
sion spectral mode.
$ 60 A
© 7
>
w 4
40 6
20 5 -
A
o4~ PR £ 4
iy T T T v T v D
ie]
0 6 12 18 24 37
cycle number 2 4
Fig. 7. F-test for the amino acid system along the emission 1 L— T T T
spectral mode. 0 4 8 12 16 20

cycle number
two modes must be equal to each other, and they

represent the number of the chemical species involved. Fig. 10. The rss for the fluorescence dye system along the
A (16 x 168) unfolded matrix was obtained by un- emission spectral mode.
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0 4 8 12 16 20
cycle number

Fig. 11. F-test for the fluorescence dye system along the
excitation spectral mode.

1 T T T T T T T T T T
0 4 8 12 16 20
cycle number

Fig. 12. The rss for the fluorescence dye system along the
excitation spectral mode.

and 6. One can quite easily estimate the chemical rank
of three for this system. The results calculated for the
emission spectral mode are shown in Figs. 7 and 8. A
comparison of Figs. 6 and 8 indicates that for the
excitation spectral model a relatively high heteroscedas-
tic noise is existing, though this does not affect the
application of the proposed method for obtaining the
correct results.

5.3. The fluorescence data for the dye mixtures

Unfolding the (31 x 29 x 6) three-way data array of
dye mixtures along the emission spectral mode gives a

(29 x 186) matrix and along the excitation spectral
mode a (31 x 174) matrix.

The PNVOP treatment results are shown in Figs.
9—12. The correct chemical rank of three is obtained
from these figures.

6. Conclusions

The column space of the unfolded matrix formulated
by unfolding the three-way array along its spectral or
chromatographic mode is a rank deficient one, and the
chemical rank of this column space is equal to that of
the three-way array. The orthogonal projection of the
column vectors of the unfolded matrix performed with
the aid of PNV would decompose the column space
into two orthogonal complement subspaces. The math-
ematical rank of the residual subspace would decrease
by one. By using the proposed algorithm the orthogo-
nal projection transformation is repeated until all the
information contributed by the chemical species is
deleted. An F-test can easily locate this point when the
decrease of the mathematical rank by the projection is
equal to that of chemical rank. An outstanding feature
of the proposed method is the robustness toward the
heteroscedastic noise which might cause problems when
one uses the traditional cross-validation type methodol-
ogy. The algorithm can easily be programmed, which
runs very fast.
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