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This article presents a simulation study that compares several methods for deriving empirical sub- 
groups from sociometric data. The Monte Carlo study was used to investigate how well the methods 
recovered the subgroup structure that had been built into the actors' and partners' modes. Forty- 
eight sociomatrices were generated using a 24 × 3 factorial design. The factors included the number 
of individuals in the network, the true number of subgroups into which the individuals were classi- 
fied, the proportion of individuals falling into each of the subgroups, the structure of the dyadic 
interactions, and the clarity of the subgroup structure. On the basis of the simulation study's results, 
subgroups were derived for two real data sets. The first data set described the relations in a monastery 
(Sampson, 1968). The second data set described the referral network of a service provider (Reingen 
& Kernan, 1986). 

Dyadic social interactions are measured on the set of interde- 
pendent behaviors that are observed between two individuals. 
There are numerous relations that may be observed between 
the members of a dyad. For example, one person might like, 
have respect for, or criticize another person. 

More generally, the set of relations may exist between any two 
"entities," where an entity might be an individual or a group of 
individuals. For example, relations might exist between corpo- 
rations (e.g., if one corporation receives payment from another) 
or relations might exist between nations (e.g., if one nation asks 
another for assistance in achieving some goal). 

If the relations are interpersonal, they may be referred to as 
sociometric data, or dyadic social interactions. Relations such 
as makes payment to might be referred to by a more general 
term, such as dyadic interactions. 

Dyadic interactions are of interest to researchers working in 
many substantive areas. For example, clinical psychologists in- 
terested in discriminating between behavioral patterns of dis- 
tressed and nondistressed marital dyads could model the cou- 
ple's sequence of interactions (Budescu, 1984; Dillon, Madden, 
& Kumar, 1983; Dumas, 1984; Feick & Novak, 1985; Gottman, 
1979; Gottman & Bakeman, 1979; Gottman & Notarius, 1978; 
Margolin & Wampold, 1981). Developmental psychologists in- 
terested in studying the sociometric friendship choices mea- 
sured in a classroom of children might model the pairs of 
friendships existent at a single point in time (Allison & Liker, 
1982; Kenny, 1981; Kenny & LaVoie, 1984; Mendoza & Grazi- 
ano, 1982). Dyadic interactions may also interest researchers 
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who work at a more "macro" level, such as a sociologist study- 
ing the transactions that exist between a set of corporations and 
nonprofit organizations (Galaskiewicz & Wasserman, 1987), a 
researcher in marketing studying distribution channel interac- 
tions, or referral networks in the service industry. 

In particular, Psychological Bulletin has published a series of 
articles in the field of dyadic interactions. Some of the articles 
that introduced this research include Iacobucci and Wasserman 
(1987), Kenny and Judd (1986), and Kraemer and Jacklin 
(1979). Some of the articles that address particular concerns for 
modeling social network data include Dumas (1986), Faraone 
and Dorfman (1987), Iacobucci and Wasserman (1988), and 
Mendoza and Graziano (1982). The article by Noma and Smith 
(1985) is especially relevant, because it addresses the issue of 
clustering individuals into groups on the basis of their patterns 
of interactions with others. 

Data representing dyadic interactions are usually tabulated 
as elements of a sociomatrix. A standard sociomatrix, X, is a 
square, two-way array with rows corresponding to actors and 
columns corresponding to partners. An entry in the socioma- 
trix (x~j) depicts a relation originating with actor, or row, "i, and 
going to partner, or column, j. For example, actor i nominates 
partner j as a friend, or department i communicates with de- 
partmentj.  

Many variations of this standard sociomatrix are possible. 
First, the matrix is two-dimensional to reflect the dyadic nature 
of the interactions. If instead one were interested in modeling 
triads (or larger groups), the matrices could be extended to three 
(or higher) dimensions. 

Second, the sociomatrix may be square or rectangular. In a 
square sociomatrix, the sets of actors and partners consist of 
the same individuals. (The term square is used to represent the 
characteristic of the set of actors being equal to the set of part- 
ners, rather than in a reference to the number of actors being 
equal to the number of partners. One might also refer to square 
matrices as "one-mode" matrices.) The diagonal of this matrix 
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represents the usually unobserved "reflexive" relation. In a rec- 
tangular sociomatrix, the set of  actors is different from the set 
of  partners (i.e., a two-mode matrix). One set (the actors or 
partners) might be a subset of  the other, or the two sets might 
consist of entirely different entities. 

Third, the relation the matrix describes may be unidirec- 
tional or bidirectional. For example, donations flow from cor- 
porations to nonprofit organizations, but information could 
flow both ways. 

Fourth, the dyads that interact may be constrained by some 
design. An example of a sparse social network is the set of inter- 
actions between married couples, because each husband inter- 
acts with only one wife, and vice versa. The dyadic design with 
the most possible interactions is the round-robin design, where 
each actor interacts with all partners. Round-robin designs and 
intermediate designs have been studied extensively by Kenny 
(e.g., Kenny & LaVoie, 1984). 

Finally; these data are usually discrete. In friendship nomina- 
tions, friends get scores of  one and those not nominated get 
scores of  zero, or friends could be ranked. However, it is easy to 
imagine network data that are continuous, such as donations 
measured in dollars. These data could be translated and de- 
scribed in qualitative terms such as high, medium, and low 
amounts. This article focuses on two-dimensional, square so- 
ciomatrices, where the relations are discrete and bidirectional 
and may exist between any dyad. However, many of  the meth- 
ods described later may be applied to other types of  socioma- 
trices. 

In studying these sociomatrices, one might focus on one of 
two things: First, one might be interested in estimating effects 
for the expansiveness of  actors (e.g., in friendship choices 
made), the popularity of partners (e.g., in friendship choices 
received), and the reciprocity unique to the particular dyadic 
relationship (e.g., mutual friendship choices). Second, one 
might be interested in discovering cliques, or clusters of  actors 
who interact with their partners in similar ways. A method for 
estimating actor, partner, and relationship effects is described, 
and then the issue of  subgroups is discussed. 

Simple Effects: Actor, Partner, Relat ionship 

Linear models for estimating actor, partner, and relationship 
effects for continuous network data have been proposed by 
Kraemer and Jacklin (1979) and Kenny (1981). The models 
used in the current study were designed especially for discrete 
network data. These log-linear models have been discussed in 
detail in several sources, so they are only briefly introduced here 
(for example, see Fienberg, Meyer, & Wasserman, 1985; Fien- 
berg & Wasserman, 1981; Holland & Lienhardt, 1981; Iaco- 
bucci & Wasserman, 1987; Wasserman, 1987; Wasserman & 
Galaskiewicz, 1984; Wasserman & Iacobucci, t 986). 

By way of  notation, actor i relates to partner j at level k, and 
j relates to i at level m, where k and m come from the set { 1, 2, 
3, . . .  C}. The dyad consisting of  individuals i and j, then, is 
described by the values (x,~ = k) and (x ,  = m). To allow log- 
linear model fitting by using the widely available statistical com- 
puting packages, Fienberg and Wasserman (1981) defined a Y 
array: 

Y, jkm = 1 if(x 0 = kand  xji = m), and 

= 0 otherwise. 

For g actors and partners, this Y array is g X g X C × C. The 
probability that the dyad takes on the values (x o = k) and (xji = 
m) is denoted rijkl, and may be modeled 

In 7Fijkm "~- )kij q- O k q- 0 m q- ai(k) q- Otj(m) q- ~j(k) q" fli(m) q- P(km). 

The k~;s are parameters that ensure the probabilities sum to one 
for each dyad, and the 0s are grand mean effects for the level of  
the relational variable. The parameters that are of greater inter- 
est are the alphas, betas, and rho. For the example of actors 
choosing partners as friends, the alphas may be interpreted as 
effects for the expansiveness of  actors, the betas represent effects 
for the popularity of partners, and rho represents an effect for 
the interaction, or reciprocity relationship within the dyads. 
These parameters may be useful in forming subgroups of  sim- 
ilar individuals and form the basis of  several of  the methods 
investigated in this article. 

The parameters in the model (as, fls, and p) are effects in the 
data. A model that is proposed to describe the data can contain 
any subset of these parameters. The parameters of  interest may 
be estimated by specifying the marginal totals of  the Y array 
that must be fit in a log-linear model. 

Frequently, researchers are not interested in the behavior of  
particular individuals or dyads, but in the general behavior of  
subgroups of  individuals. For example, clinical psychologists 
might be interested in comparing the relations that exist within 
distressed couples with those observed for nondistressed cou- 
ples. Developmental psychologists might be interested in com- 
paring the social behavior of  boys and girls or of  older and youn- 
ger children. Sociologists and economists might be interested in 
comparing the donations made by small corporations with 
those made by larger corporations. 

Subgroups based on these attributes can be formed using a 
priori, theoretical grounds. The attribute variables in these ex- 
amples were status of  distress, sex, age, and size. Alternatively, 
these subgroups could be empirically derived by post hoc meth- 
ods, which are described shortly. 

The grouping of individuals has been incorporated into the 
log-linear modeling approach by aggregating the Y array over 
individuals within identical subgroups to form a Warray. This 
aggregation is possible because the individuals within sub- 
groups are assumed to behave similarly; parameters for individ- 
uals within subgroups are equated by this aggregation. 

The Yarray then reflects the behavior of  individuals, and the 
W array reflects the grouped behavior of  the actors and part- 
ners, or the behavior of the subgroups. For example, in a class 
of  children, the Y array would describe the relations existing 
between all individual children, and the Warray would describe 
the relations between the subgroups defined by, say, sex. 

Researchers interested in individual differences would model 
the Y array, and researchers interested in group differences 
would model the W array. One of the methods that is used in 
deriving subgroups includes fitting models to the Yarray in or- 
der to estimate effects for individuals, and then clustering indi- 
viduals on the basis of  the similarities of these parameter esti- 
mates. 
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Before leaving the discussion of  the log-linear modeling of 
network data, it should also be briefly noted that, for users of 
the log-linear models, the W array has the advantage that as- 
ymptotic tests are achievable. That is, increasing sample size by 
adding a new individual or dyad necessarily extends the dimen- 
sions of the Y array and increases the number of  parameters 
one must estimate. However, when a fixed number of  subgroups 
are defined, adding a new individual or dyad does not increase 
the number of estimated parameters. 

Note, however, that although this is true for the use of a priori 
subgroups, such as those defined by a theoretically important 
variable like sex, this is not necessarily true of subgroups 
formed by the post hoc empirical methods. By these post hoc 
methods, the addition of  a new dyad certainly holds the possi- 
bility that a dyad is not similar to any existing group, requiring 
the formation of  a new group. 

The theoretical basis for forming subgroups is discussed next, 
followed by a description of the simulation study. In the presen- 
tation of  the simulation study, several empirical methods are 
described and evaluated. 

Der iv ing  Subgroups  

A second concern in the analysis of  sociometric data is to find 
homogeneous clusters of  individuals. Researchers have defined 
two individuals to be "structurally equivalent" if they relate to 
all others in the same way and in turn are related to by all others 
in the same way (Knoke & Kuklinski, 1983; Lorrain & White, 
1971). 

Structural equivalence is guided by the general observation 
that some groups of people behave similarly. The members of  
such a group might share an easily identifiable demographic 
characteristic, such as a common age or sex. The attribute these 
members share might not be easily identifiable; it might be a 
personality trait such as extraversion or a set of characteristics 
taken on with some role, such as "teacher." These attributes 
together may be hypothesized to create an implicit approach 
to viewing the world and to behaving with others that makes 
someone's behavior similar to that of the other members in the 
group. The particular attributes chosen to describe the actors 
and partners in the models would presumably be selected be- 
cause of their relevance to the relational behavior of  the group. 
These expectations about their relevance may then be tested 
empirically. 

If clusters of individuals are formed before further network 
analyses based on known attributes of  the network members, 
such as sex, subsequent analyses would model not the behavior 
of a particular dyad, but the aggregate behavior of many dyads. 
In this subsequent modeling, all women would be assumed to 
relate to, and be related to, in the same way; and the same is true 
of the men. For a priori groups, structural equivalence serves as 
an assumption for the relational behavior of the members with 
the same set of attributes. 

The vast majority of articles in this area focus on post hoc 
methods of grouping individuals on the basis of their observed 
relational data (Breiger, Boorman, & Arabic, 1975; Faust, t 985; 
Noma & Smith, 1985; Wasserman & Anderson, 1987; White, 
Boorman, & Breiger, 1976). For these post hoc groups, struc- 

tural equivalence serves as a guideline, or a goal, for a clustering 
algorithm. 

The clusters of individuals are commonly referred to as 
blocks', because sociomatrices consisting of  groups of  structur- 
ally equivalent individuals can be permuted to a blocked pattern 
of similar data. Most often these relational data are binary, and 
researchers refer to "zero" or "'one" blocks: blocks containing 
all zeros, indicating no choices were sent, or all ones, indicating 
all actors in the row block sent choices to all partners in the 
column block. It is generally recognized that true structural 
equivalence is probably too restrictive an assumption for real 
data. For example, a block of data might not contain only en- 
tries of  one, but the block may primarily consist of  entries 
of one. 

An assumption that may be more realistic than structural 
equivalence, at least for the purpose of modeling real data, 
might be that of stochastic equivalence (Wasserman & Weaver, 
1985). The behaviors of two stochastically equivalent individu- 
als are defined to be probabilisticaUy identical, and the individ- 
uals share a common set of model parameters. Predictions for 
stochastically equivalent individuals would be identical, but 
their observed data might differ. 

One method that attempts to derive block models that is pop- 
ular with network researchers is an algorithm called CONCOR 
(Breiger et al., 1975; Faust, 1985; Noma & Smith, 1985; White 
et al., 1976). CONCOR stal~s with the correlations between rows 
and columns of a sociomatrix and proceeds iteratively to com- 
pute the correlations among the columns of correlations, until 
the matrix converges to values of  plus or minus one. Research- 
ers usually use this algorithm with the goal that the resulting 
block models will contain roughly structurally equivalent indi- 
viduals. 

Because the definitions of equivalence require identical ties 
originating from and directed toward individuals, the transpose 
of  the sociomatrix is generally "stacked" on top of  the socioma- 
trix. The initial iteration of  correlations, then, is computed over 
the sociomatrix, stacked on top of its transpose. These corre- 
lations are effectively computed over both the rows of  the origi- 
nal sociomatrix, which describe the behavior of  the actors (and 
are included in the stack as the transpose), and the columns of 
the sociomatrix, which describe the behavior of  the partners. 

CONCOR has been criticized for its entirely empirical nature 
(cf. Faust, 1985; Schwartz, 1977). For example, although the 
iterated correlations generally converge to plus and minus one, 
there have been no proofs of  its convergence, and other mathe- 
matical properties are not clear. Iterated correlations have also 
been studied by McQuitty and Clark (Clark & McQuitty, 1970: 
McQuitty, 1968; McQuitty & Clark, 1968). 

Schwartz (1977) has shown that the block model that results 
from the first split into two groups by CONCOR is equivalent to 
grouping individuals on the basis of  the sign of their toadings 
on the first eigenvector of the sociomatrix. That is, the first ei- 
genvector associated with the covariance matrix of individuals 
would generate two blocks, one consisting of  people with posi- 
tive loadings and one consisting of people with negative load- 
ings. Presumably, individuals with loadings near zero are not 
central figures to their subgroups. Successive subgroup splits 
would follow similarly for subsequent eigenvectors. 

Given the body of theory and statistical knowledge support- 
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ing eigensolutions, it seems it would be more useful to compute 
the eigensolution than to use CONCOR. Furthermore, the load- 
ings on the eigenvectors are continuous and the information ob- 
tained by CONCOR is only dichotomous (i.e., correlations of 
plus or minus one). These continuous values might indicate the 
strength of  group membership. Finally, the second, third, and 
remaining eigenvectors may also be informative. Frequently in 
data, the information contained in the first eigenvector is not 
sufficient in describing the data. For the same reasons, one 
might expect that the formation of block models would also be 
improved by the use of additional eigenvectors. 

In the simulation study that follows, the subgrouping meth- 
ods include CONCOR, the eigenvector solutions, and approaches 
that make use of  log-linear model parameters. 

The factors used to define subgroup structure on the actors 
and partners are described, followed by a description of  the 
methods used to attempt to recover these structures. The results 
of  this study are then reported, and the article finishes with a 
description of  the derivation of  subgroups in two real data sets. 

S imula t ion  S t u d y - - S u b g r o u p  Recovery  

The first factor in the simulation study was whether the num- 
ber of  actors and partners was 8 or 16. One of  the real data sets 
consisted of  18 actors, so 16 is on the order that is realistic for 
data, and 8 is a simple fraction. A fraction of  16 was taken rather 
than a multiple because of  restrictions on one of  the subgroup 
recovery methods. Because of  the size of the resulting Yarrays, 
the log-linear model approach to a network of  16 individuals 
could not be taken, but these methods could be applied to a 
network of 8 individuals. 

A second factor in the generation of  these simulated data was 
whether there were two or four subgroups imposed on the 8 or 
16 individuals. Recovery was expected to be better when there 
were two subgroups, rather than four. In the same sense that a 
mean is better estimated when based on more observations, it 
was expected that having individuals divided into only two 
groups (i.e., 4 or 8 persons per group) would be better estimated, 
or recovered, than having those individuals divided into four 
groups (i.e., only 2 or 4 persons per group). The idea is that the 
more persons per group, the better any method should be able 
to identify that group. 

Similarly, it is widely recognized that in factor analysis, those 
factors that are overidentified (i.e., many variables load highly 
on those factors) are better recovered. I fa  factor is analogous to 
a contrast between two subgroups (i.e., those with positive vs. 
negative loadings on the eigenvector) and the variables are anal- 
ogous to the individuals, the subgroups should be recovered bet- 
ter if  they contain more individuals. 

A third factor that seemed important to understanding sub- 
group recovery was whether the number of individuals within 
the subgroups was equal or unequal. For 8 actors, the number 
of  individuals in two subgroups would be 4 and 4 or 2 and 6, 
and the number of  individuals in four subgroups would be 2, 2, 
2, and 2 or 1, 2, 2, and 3. For 16 actors, the number of  individu- 
als in two subgroups would be 8 and 8 or 4 and 12, and the 
number of  individuals in four subgroups would be 4, 4, 4, and 
4 or 2, 4, 4, and 6. The question here was whether those sub- 

groups with more individuals would dominate, in the sense that 
they would be recovered better. 

A fourth factor included in this study was whether the major- 
ity of  the relational ties were mutual or null (i.e., reciprocal), or 
whether the ties were mostly asymmetric. Symmetric means 
that a choice is reciprocated, or the dyad is null. Thus, the en- 
tries in the sociomatrix xij and xji would be equal (both equal 
zero or one), leading to a symmetric matrix. It was hoped that 
subgroup recovery would be indifferent to the structure of  the 
relational ties. That is, it would be ideal if there were some 
method that recovered subgroup structure very well, without 
regard to the overall distribution of  dyadic interactions. If  the 
methods were sensitive to whether the ties were mostly mutual 
and null, or asymmetric, then the researcher would have two 
preliminary steps in the analysis of  network data. First, it would 
be necessary to determine whether the given network was char- 
acterized mostly by mutual ties or asymmetric ties. Then, given 
that information, the researcher would choose a method that 
recovers subgroups well for that type of  relational structure. 

The final factor in this Monte Carlo study was the clarity of  
the subgroup structure in the given sociomatrix. This factor had 
three levels, dear, medium, and not clear, and was created as 
follows: The clearly defined subgrouped sociomatrices were cre- 
ated by hand to contain the structure defined by the factorial 
design on the other four factors. The medium and not-clear sub- 
grouped sociomatrices were created by perturbing the clear so- 
ciomatrices by error. An explanation of"error"  follows. 

The clear sociomatrix served as input, and for every entry of  
a l, the output, perturbed matrix also contained a 1 with some 
predetermined probability. Every entry of 0 was similarly 
treated, except that all elements down the main diagonal re- 
mained at zero. The sociomatrices were binary to start simply. 

The probability distribution was Bernoulli, and the probabil- 
ities used were .8 for the medium clarity subgroup structure 
and .6 for the not-clear subgroup structure (to be complete, the 
probability was 1.0 for the clear subgroup). ~ For example, for a 
probability of.8,  a one in the clear subgroup matrix was equal 
to one in the medium-clear matrix with a probability of.8, and 
equal to zero with a probability of .2. The zeros in the clear 
subgrouped matrix were equal to zero in the output matrix with 
a probability of.8, and equal to one with a probability of .2. 

These probabilities are conservative, in the sense that the 
noisiest data possible, or the toughest situation for recovery, are 
being set up. If  one of  the probabilities had been .5, the data 
would be totally random noise, with no subgroup structure. 
Probabilities less than .5 would merely be the reflections of the 
subgroups with probabilities greater than .5. For example, the 
subgroups disturbed by a probability of .  1 would be as clear as 
those disturbed by a probability of  .9, but the ones in the data 
would become zeros, and the zeros would become ones. One 

These values were derived from a uniformly distributed random 
variable that ranged from 0 to 1, generated by the RANF function in the 
CDC FORTRAN Common Library Mathematical Routines. The modu- 
lus for this function is 2**48, and the multiplier is octal 
20001207264271730565. The six digits comprising real time in hours, 
minutes, and seconds served as the input argument, or seed, to this func- 
tion. 
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"Fable 1 
True Subgroup Structure 

Subgroup membership Cells 

(1,2,3,4)(5,6,7,8) 
(1,2)(3, 4, 5, 6, 7, 8) 
(1,2)(3, 4)(5, 6)(7, 8) 
(1)(2, 3)(4, 5)(6, 7, 8) 
(1-8)(9-16) 
(1,2, 3,4)(5-16) 
( 1-4)(5-8)(9-12)( 13-16) 
( 1, 2)(3-6)(7-10)( l 1-16) 

a-8, b-8, c-8, d-8, e-8, f-8 
g-8, h-8, i-8, j-8, k-8, 1-8 
m-8, n-8, 0-8, p-8, q-8, r-8 
s-8, t-8, u-8, v-8, w-8, x-8 
a-16, b-16, c-16, d-16, e-t6, f-16 
g-16, h-16, i-16,j-16, k-16,1-16 
m-16, n-16, o-16, p-16, q-16, r-16 
s-16, t-16, u-16, v-16, w-16, x-16 

other study that was somewhat similar examined the effect of 
less noise; the probabilities were .9, .85, and .8 (Faust, 1985). 

Because the clarity manipulation was probabilistic, the ac- 
tual degree of disturbed structure varied around .6 and .8. A 
subsequent step in verifying the results that follow would be to 
generate several replicates in each cell of  the design, rather than 
just a single sociomatrix in each cell. Notice that for several 
cells, namely those with perfectly clear structure, replicates 
would be trivial and the within-cell variances would be zero. 
Because of  this complication, the analysis proceeded with only 
a single matrix per cell; there are no replications in the present 
study. 

This fwe-factor factorial design is summarized in the begin- 
ning of the appendix. The 48 sociomatrices that this design gen- 
erated follow: Note that in the matrices with clear structure, 
effects such as reciprocity are assumed to be perfect. This may 
not be a realistic portrayal of  real data, but for the purposes of  
the simulation study it serves as a clean baseline. Similarly, the 
subgroup structure is also, perhaps unrealistically, perfect, in 
the sense that within a given subgroup there are no differential 
actor or partner effects: The structural equivalence is exact. 

Finally, also note that error was added to the data in a tie-by- 
tie basis rather than a dyad-by-dyad basis. That is, in modifying 
a tie, a new relation could change to 0 or 1. If one were to modify 
a dyad, a pair of  relations could change to (0, 0), (0, t), (1, 0), 
or (1, 1). These two cases are identical, as the probabilities of 
the four dyadic states are uniform. However, one might refine 
the dyadic approach so that sociomatrices in the symmetric 
condition would take on only the values (0, 0) or (1, 1), preserv- 
ing the null and mutual symmetric structure. Similarly, the 
asymmetric sociomatrices might have been constrained to take 
on dyadic states of  (0, 1) or (1, 0) only. This type of  restriction 
seemed more complicated than a first simulation study war- 
ranted, so error was added in a tie-by-tie basis rather than at the 
dyad level. This choice effectively introduced greater asymme- 
try in the medium-clear and not-clear symmetric cells of the 
design (and in fact probably contributed to a slight--although 
insignificant--Clarity × Symmetry interaction that is de- 
scribed later). 

The subgroup structure that each of  several methods (which 
are described shortly) was attempting to recover was that struc- 
ture defined in the clear subgroup cells. For example, the indi- 
viduals were partitioned into two groups for cell a-8: The first 
group consisted of individuals 1, 2, 3, and 4, and the second 
group consisted of  individuals 5, 6, 7, and 8. (The subgroups for 

the actors were the same as for the partners in order to keep 
things simple.) This partition is denoted (1, 2, 3, 4), (5, 6, 7, 8) 
and was also the subgroup structure that should be recovered 
for cells b-8, c-8, d-8, e-8, and f-8. The subgroup structure that 
should be recovered for each cell is listed in Table 1. 

The criterion measure of  subgroup recovery was a regression- 
based measure of partition similarity discussed in (and im- 
proved on by) Hubert and Arabic (1985). Each of the observed 
partitions (from each of  the methods) was used to try to predict 
the true subgroup structure. 

The measure is computed as follows. The true partition wild 
form the columns ( j )  of  a matrix, and the observed partition 
will form the rows (i). For example, if the true partition had 
been (1, 2, 3, 4), (5, 6, 7, 8), there would be two columns, one 
for the group of individuals 1, 2, 3, and 4, and one column for 
the group of  individuals 5, 6, 7, and 8. If the observed partition 
had been (1), (2, 3, 4), (5, 6, 7, 8), there would be three rows, 
one for individual 1, one for individuals 2, 3, and 4, and one 
row for individuals 5, 6, 7, and 8, 

The entries in this matrix (no) would be the number of indi- 
viduals in the row subgroup that are common to the column 
subgroup. The matrix for this example is given in Table 2. The 
row sums (ni+), the column sums (n+j), and the overall total 
(n++) are computed. The regression coefficient is a function of 
the cell entries and these marginal totals. The equation follows 
and is demonstrated for the example in Table 2. 

btrue(j),obs(i) 

Y, {[ni+(ni+ - 1)]/2} * ~2 {[n+j(n+j- 1)]/2} 
[no(nij- 1)]/2- ~ J 

[n++(n+.- 1)]/2 

E {[ni+(ni+- 1)]/2} * Z {[ni+(ni+- 1)]/2 } 
2 {[ni+(n~+ - 1)]/2} - t 
i [n++(n++- 1)]/2 

This predictive measure was the criterion along which the 
methods of  deriving subgroups were compared. The statistic is 

Table 2 
An Example of Computing the Regression 
Measure of Partition Similarity 

The goal in this example is to predict the true partition ( 1, 2, 3, 4), (5, 
6, 7, 8) from the observed partition (1), (2, 3, 4), (5, 6, 7, 8). 

true 

observed ( 1,2, 3, 4) (5, 6, 7, 8) row sums 

( l )  1 0 
(2, 3, 4) 3 0 3 

(5,6,7,8) 0 4 4 

column sums 4 4 8 

b,=.ohs 
(0 +0  + 3 + 0 +0 + 6 ) -  [(0 + 3 + 6)(6 + 6)/281 

(0 + 3 + 6)[1 - (0 + 3 + 6)/28] 

9 - (9.12/28) 9 - 3.857 5.143 
911-(9/28)] 9(1-.321) 6 . t l l  

= .842. 
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bounded by one, but can be less than zero, when the cell counts 
are small. 

There were 16 methods used on each of  the 48 sociomatrices 
to try to recover the known subgroups. Before describing these 
16 methods, it should be noted that several subjective methods 
were included. They were included for comparison, but the pri- 
mary intent was to be able to recommend the best-performing 
objective methods, so that the subjectivity, which depends on 
the ability of  the particular researcher, would be minimized. It 
should also be noted that these subjective judgments were of  
course made "blind," in the sense that subgroups were deter- 
mined without the information of  which cell in the design the 
sociomatrix belonged to, which would have indicated the true 
subgroup structure. 

The first method is CONCOR. Despite the criticisms of  the 
method mentioned earlier, it is recognized that this method is 
extremely popular because it is so easy to use and is widely avail- 
able. For comparison, then, it is important to include this 
method. 

The partition that results from the finest split provided by 
CONCOR was the subgroup structure derived for this first 
method, "CONCOR full split." It is not the case that CONCOR 
took eight actors and divided them into two groups of  four, then 
four groups of  two, then eight groups of  one. In fact, in some of 
the clear subgroup cases, the algorithm split the eight individu- 
als into the two appropriate groups and then would not split the 
groups further. In other words, taking the most divisive split 
provided by CONCOR did not result in the trivial grouping of  
eight actors each in their own subgroup. 

The next three methods were based on fitting the log-linear 
model to the Y arrays. (These three methods were not applied 
to the 16 × 16 sociomatrices.) These methods used the set of 
alpha parameter estimates along with the set of  beta parameter 
estimates in order to find a subgroup structure that incorpo- 
rated both the actor and partner characteristics. Method 2 was 
a subjective method, and Methods 3 and 4 were objective. 

In Method 2, the alpha estimates were plotted against the beta 
estimates, and subgroups were determined by examining the 
plots. In Methods 3 and 4, the vectors of  alpha and beta esti- 
mates were used as coordinates in a two-dimensional space, and 
interpoint distances were computed. That is, each individual 
was associated with the coordinates consisting of  some alpha 
and some beta, and the interactor distances were computed over 
these two vectors. This matrix of  distances served as the input 
to a hierarchical clustering algorithm. Method 3 determined 
the subgroups on the basis of  the single-link procedure, and 
Method 4 determined the subgroups on the basis of  the com- 
plete-link procedure. 

For both Methods 3 and 4, the partition used was that mid- 
way between the two extreme sets of  clusters (i.e., the partition 
where all individuals are in separate groups, and the partition 
where all individuals are in the same group). The number of  
clusters to use in an analysis must be determined by the re- 
searchers for the data at hand. This can be even more problem- 
atic than the determination of  the number of factors in factor 
analysis, or the number of  dimensions in multidimensional 
scaling, because there is no counterpart to an eigenvalue plot. 
It was expected that the middle partition would be a good guess 
at the modal choice of  researchers. 

Both the single-link and complete-link hierarchical cluster- 
ing schemes were used. Either of  these algorithms might de- 
scribe the social psychology of  subgroup formation. In com- 
plete-link clustering, a new object, or individual, does not join 
an existing cluster, or subgroup, until that object is sufficiently 
close to all objects currently in the cluster. This algorithm might 
be descriptive of  behavior observed in close-knit groups; if  one 
member of  the existing group does not like the new member, 
the new member would not be accepted. 

In single-link clustering, a new object, or individual, can join 
an existing cluster, or subgroup, when that object is sufficiently 
close to at least one object currently in the cluster. This might 
also describe the behavior of  some groups accepting a new 
member. Perhaps that new member became friends with an ex- 
isting member, and the rest of  the group also accepted that per- 
son because they respected the opinion of  the current member. 

Most of  the remaining methods are based on information ob- 
tained through an eigensolution of  the (row-centered) socioma- 
trix. The decomposition o f X ~  = VPV' yielded eigenvectors as 
columns of V that described the partner mode, and the decom- 
position XX' = UAU' yielded eigenvectors as columns of  U that 
described the actor mode (VV' = V'V = UU' = U'U = I; E A, 
diagonal), z The row means were subtracted out of  the matrix 
before the decomposition, rather than the column means or 
both the row and column means. Sociometric data are often 
collected in such a way that the number of  choices per actor 
is constrained (e.g., "Pick your three best friends"). If such a 
constraint had been imposed by the data collection method, 
row centering should not disturb the structure of  the matrix to 
the extent that other centerings might. The unsealed eigenvec- 
tors were used rather than the principal components (eigenvec- 
tors multiplied by the square root of  the corresponding eigen- 
value). If subgroups are defined by splitting the actors according 
to whether their loadings are positive or negative, then the mag- 
nitudes of  the loadings (scaling the variance to equal one or the 
eigenvalue) should be irrelevant. The unsealed eigenvectors 
should contain the fundamental information on the structure 
of  the subgroups. 

Methods 5-7 proceeded with the eigensolution as if  the true 
number of eigenvectors to use were unknown, because this is 
the situation in which researchers would find themselves. Eigen- 
values for the actors' and partners' modes were plotted, and the 
relatively largest qi actor vectors and q~ partner vectors were re- 
tained. In Method 5, the pairs of  qi actor vectors were plotted 
and studied for a subjective judgment of subgroups. In Method 
6, the pairs of  qi partner vectors were plotted and studied, and 
in Method 7, the pairs ofq~ and qj actor and partner vectors were 
plotted together and studied. 

Methods 8-12 are the objective counterparts to Methods 5 -  
7. Method 8 takes the partition that results from using the plus 
and minus loadings rule on the q~ actor vectors. That is, the first 

2 This might have been approached as a singular value decomposition 
of X (X = USV'), but treating the modes separately and analogously 
allows for simpler generalization to more modes. For example, research- 
ers might observe a network on more than one relation and/or at more 
than one time, and these data might be modeled by way of three- or 
higher-mode eigensolution-based models (as in Kroonenberg, 1983; 
Lastovicka, 1981; Tucker, 1966). 
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split into two groups is formed by taking the first actor vector 
and putting those individuals with negative loadings into one 
group and those individuals with positive loadings into another. 
These splits were made finer by continuing to split by the posi- 
tive and negative loadings on vectors 2, 3 . . . . .  qi- Method 9 
takes the same plus or minus approach using the qj partner vec- 
tors, and Method 10 used the plus or minus rule using the first 
eigenvectors for the actors and for the partners modes. 

It became obvious during the analyses that using the plus or 
minus rule for qi actor vectors or qj partner vectors (in Methods 
8 and 9) led to too many subgroups. That is, it was often nearly 
the case that all individuals were placed into separate sub- 
groups. Method 11, then, was the same as Method 8, except that 
the plus or minus rule was applied only to the first two actors' 
eigenvectors. (If qi was one, then Method 11 was applied only 
to the first eigenvector: the minimum of [2, q;].) Method 12 was 
the same as Method 9 except, again, the plus or minus rule was 
applied to only the first, or the first and second, partners' eigen- 
vectors (min [2, qj]). 

In Methods 13 and 14, the q~ actor vectors and the qj partner 
vectors were used as the coordinates in a q~ + qrdimensional 
space, and the interpoint distances were computed. This matrix 
of distances was input to hierarchical clustering. Method 13 
used the single-link algorithm, and Method 14 used the com- 
plete-link algorithm; and again, the partition taken was that in- 
termediate to the cluster that included all individuals, and to 
the partition where each individual was in a separate cluster. 3 

In Method 15, the actors' and partners' component scores 
were plotted, and these plots were judged subjectively for sub- 
groups. This method was investigated for the 8 × 8 socioma- 
trices, but not for the 16 × 16 sociomatrices, Because the eigen- 
vector-related approaches were sufficiently complex, it was de- 
cided that the eigenvectors should be well understood before 
any more functions of those eigenvectors were investigated. 
Also, the information provided by these component scores was 
very similar to the eigenvectors in the sense that the same sub- 
groups usually resulted. 

The final method was again CONCOR, but instead of taking 
the last, finest split, the partition retained for this method was 
the intermediate partition. This partition might be more com- 
parable to the partitions derived through the hierarchical clus- 
tering methods than the first method, which was the complete 
split on CONCOR. All 16 methods are listed in Table 3. 

One method that has been investigated by other researchers 
that has not been included here is multidimensional scaling 
(Breiger et al., 1975; Faust, 1985). A matrix of interperson dis- 
tances had been computed from the eigenvectors and from the 
log-linear model parameters, and it would be just as straightfor- 
ward to model these distances by a scaling solution as by the 
clustering solutions. However, the scaling solution would only 
provide a plot of individuals based on these distances, and the 
judgments of subgroup membership would still need to be sub- 
jective. This method could be made more objective if the scal- 
ing-model-derived distances were input to a clustering proce- 
dure, but then the scaling seems to be an extraneous step. 

This list of methods is not exhaustive; other methods that 
have not been incorporated into this study include those based 
on roles and positions or feedback cycles. Instead, the 16 meth- 
ods chosen are variants of block modeling and algorithms ex- 

pected to detect structural equivalence. Thus, the patterns ex- 
pected in the data are several. First, the relations are not reflex- 
ive (i.e., the diagonal of the sociomatrix is ignored or assumed to 
be zero). Second, although the patterns of cliques, or maximal 
complete subgraphs (where all subgroup members interact), are 
perceived by some researchers as ideal, the definitions of struc- 
tural equivalence and stochastic equivalence are not as restric- 
tive. The patterns of structure sought are simply described by 
similarities between subgroup members of ties made and re- 
ceived. This does not necessarily imply that all intrasubgroup 
relations exist, and it does not preclude the existence of inter- 
subgroup relations. Although the label partition might suggest 
the latter, in this article it is meant only to represent the classifi- 
cation of individuals into subgroups, such as a level of clusters 
in a hierarchical clustering solution. 

In summary, three primary types of group-detection algo- 
rithms were focused on. Two of these types of algorithms were 
statistical in nature: those methods using the parameter esti- 
mates from log-linear models and those methods based on an 
eigenvalue decomposition. The remaining methods were not 
statistical, but were based on CONCOR, a method popular 
among network researchers, and one expected to be related to 
the eigen-based procedures. 

3 There are three related issues: First, none of these eigensolution- 
based methods is exactly identical to that described in Schwartz ( 1977); 
however, the differences should be negligible. His pooling the actors' and 
partners' covariance matrices should be most analogous to the methods 
in this study that use both vectors of the actors' mode and vectors of the 
partners" mode. 

Second, Methods 5-14 rely on the eigenvectors associated with the 
first few large eigenvalues. After this Monte Carlo had been completed, 
Phipps Arabic brought an article by Chang (1983) to my attention as 
being potentially relevant. Very briefly, this article suggested that "'infor- 
mation" about the distance between two multivariate normal popula- 
tions might not be contained in only the earlier components, but that 
the later, usually discarded, components might also be informative. 

Several notes can be made. First, one does not have multivariate nor- 
mality in the current context. However, even if the findings in Chang 
(1983) were directly applicable, then retaining more (or all) vectors 
might provide better estimation (better subgroup recovery in this con- 
text) than that found using the present methods. If retaining more vec- 
tors would allow for better recovery, than the methods investigated here 
are simply more conservative. In addition, the usual argument holds 
that if all vectors had been kept, the dimensionality of the problem 
would not have been simplified. In fact, in the present application, using 
all vectors might simply have led to a too-finely divided partition where 
each individual was in his or her own subgroup. Finally, it should be 
noted that retaining only the first few vectors performed well, with re- 
spect to subgroup recovery, in this empirical investigation. Neverthe- 
less, the potential applicability of Chang is worth investigation. 

Third, in several of the methods, the eigenvectors were used to deter- 
mine distance and, considering ellipsoids in space, it might be expected 
that variances should affect measures of distance. This would suggest 
that only the first few vectors would be necessary, and would further 
suggest that the vectors be scaled to reflect the different standard devia- 
tions (i.e., compute principal components). Chang's (1983) result sug- 
gests it may be inappropriate to place greater emphasis on (or scale with 
greater weights) the earlier vectors, thus, perhaps, strengthening the de- 
cision to proceed with unscaled eigenvectors rather than with principal 
components. 
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Table 3 
List of Methods Used to Recover Subgroup Structure 

Method Description 

1. 

2.  a 

3? 

4? 

O 
S 

O 

O 

5. S 
6. S 
7. S 

8. 0 
9. 0 

10. 0 
11. 0 
12. 0 

13. O 

14. 0 

157 S 

16. O 

CONCOR full split 
Fit log linear model to Yarrays, plot alpha vs. 

beta, determine groups by eye 
Fit log linear model to Yarrays, use alpha 

and beta to compute distances, single-link 
clustering 

Fit log linear model to Yarrays, use alpha 
and beta to compute distances, complete- 
link clustering 

Eigensolution, q~ actors' plots by eye 
Eigensolution, qj partners' plots by eye 
Eigensolution, q~ x qj actor and partner plots 

eye 
Eigensolution, qi actors, + or - rule 
Eigensolution, qj partners, + or - rule 
Eigensolution, actoq x partnerb + or - rule 
Eigensolution, min(qi, 2) actors, + or - rule 
Eigensolution, min(qj, 2) partners, + or - 

rule 
Eigensolution, qi actors and qj partners 

eigenvectors used to compute distances, 
single-link clustering 

Eigensolution, q~ actors and q~ partners 
eigenvectors used to compute distances, 
complete-link clustering 

Eigensolution, actors and partners 
component scores, plotted, examined by 
eye 

CONCOR middle split 

Note. S = Subjective method, O = Objective method. Diagonal entries 
were skipped in the CONCOR algorithm (Methods I and 16) and treated 
as zeros in the remaining methods. 
a These methods were not fit to the 16 X 16 sociomatrices. 

S imu la t i on  S tudy  Resul ts  

These results were analyzed by using a simple analysis of vari- 
ance (ANOVA). The dependent variable was the measure of  par- 
tition similarity described earlier, predicting the true subgroup 
structure from the observed subgroup structure. This measure 
is bounded by one, so analyses that were conducted on the raw 
measure were repeated on the arcsin, square-root transformed 
measure. However, this transformation did not qualitatively al- 
ter the results, so the results reported here are those based on 
the raw measure. 

A second transformation was also used. The measure of  simi- 
larity is bounded above by one, but  it is not bounded below. 
Hubert and Arabie (1985) described negative measures as unin- 
terpretable. Examining the formula for the measure's computa- 
tion, it is clear that a negative score will result when the cell 
entries are all small. These entries will be small when the table 
is large (i.e., many subgroups are derived for a given number of  
individuals) and there is poor recovery, so the frequencies are 
scattered over the table instead of collected in only a few cells. 
So although negative scores are hard to interpret, they do occur. 
The second transformation, then, was to simply set all negative 
scores equal to zero. This transformation also did not apprecia- 
bly alter the results, so once again the results reported here are 
those based on the raw measure. 

There were six explanatory variables for the ANOVA. The first 
five factors were those used in generating the data: number of  
actors (8 or 16), number of  subgroups (2 or 4), equal or unequal 
number of individuals in each subgroup, the dyadic relation- 
ship structure (mostly mutual and null ties, or mostly asymmet- 
ric ties), and the clarity of  subgroup structure (clear, medium, 
not clear). The final factor was simply which method (1-16) 
was used in attempting to recover the true subgroups. This is a 
six factor 2 x 2 X 2 X 2 X 3 X 16 ANOVA, with one observation 
per cell. 

There were too many factors in this ANOVA to estimate all 
the interactions (a SAS constraint, not a theoretical constraint). 
When the methods were sorted into the 5 that were subjective 
and the 11 that were objective, all three-factor and lower-order 
interactions could be estimated. However, it was desirable to 
analyze all methods together. There was only 1 three-factor in- 
teraction that was significant in both of  the separate analyses. 
(There were no interactions that were significant in one analysis 
but not in the other, which would have been suggestive of  a high- 
er-order interaction.) 

The ANOVA reported here is based on all 16 methods, where 
the model includes main effects, all two-factor interactions, and 
the one large three-factor interaction. Table 4 lists the results 
for this ANOVA. 

Figures 1-4 include the plots of  all significant main effects 
and interactions. The significance level chosen was .05/22 = 
.002; the Bonferroni correction to alpha was .05 for the 22 tests 
listed in Table 4. Each significant effect is described. The first 
plot in Figure 1 is the plot of  the means for the 16 methods. 
Several observations can be made, keeping in mind there are 
qualifying interactions among these factors. First, it should be 
noted that overall, no method performs very well. A score of  1.0 
would represent perfect recovery, and these means are nearer .5. 
Note, however, that this is a main effect that aggregates over all 
levels of  clarity of  structure. 

Second, the performance of  both CONCOR methods (1 and 
16) is average. It is not the best method and it is not the worst. 
Third, most of the methods that best recovered the subgroups 
were the subjective methods (e.g., Methods 5, 6, 7, and 15). (The 
best method was significantly different from the worst method, 
but no other significant differences were found. These state- 
ments are meant to describe the results and plots in detail. They 
are not intended to be overinterpreted as if  some of  the methods 
performed quite well and some did quite poorly.) 

Fourth, the log-linear model approach did not recover sub- 
groups very well, overall (see Methods 2, 3, and 4). This is partly 
due to the fact that the model estimates effects for actors and 
partners, as well as rho, the reciprocity effect. For the socioma- 
trices with many mutual and null ties, these rho parameters 
were highly significant (in the log-linear modeling), and the al- 
pha and beta parameters were inconsequential. So the log-linear 
model is sensitive to the effects in the data, but  a plot of  alpha 
versus beta gives no information about rho, and recovery of sub- 
groups suffered. If reciprocity were allowed to differ across dy- 
ads or subgroups, in a slightly more complicated log-linear 
model, the set of  rho parameters could be plotted against alpha 
and beta; and then the log-linear methods would likely perform 
very well. 

The best objective method was Method 9, the use of the plus 
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Table 4 
Analysis of Variance Table--Dependent Variable Is Measure of 
Subgroup Recovery 

Source df SS(III)" MS F p 

method l 5 2.734 .182 4.3 t .000" 
subg24 l 2.591 2 .591  61 .27  .000" 
equaln 1 .008 .008 .19 .666 
mnora 1 .013 .013 .30 .586 
clarity 2 62.614 31.307 740.34 .000" 
nact 1 2.570 2 .570  60 .78  .000" 

method*subg24 15 1.662 .111 2.62 .000" 
method*equaln 15 .816 .054 1.29 .206 
method*mnora 15 2.115 .141 3.33 .000" 
method*clarity 30 5.169 .172 4.07 .000" 
subg24*equaln 1 .080 .080 1.89 .170 
subg24*mnora 1 .094 .094 2.21 .137 
subg24*clarity 2 .982 .491 11.61 .000" 
equatn*mnora l .000 .000 .00 .954 
equaln*clarity 2 .042 .021 .49 .612 
mnora,clarity 2 .294 .147 3.48 .031 
method*nact t 1 .263 .024 .56 .857 
subg24*nact l .042 .042 .99 .320 
equaln*nact 1 .048 .048 1.14 .286 
mnora*nact 1 .004 .004 .09 .769 
clarity*nact 2 1.314 .657 15.53 .000" 
method*subg24*mnora 15 2.418 .161 3.81 .000" 

(including 
pooled 

e r r o r  535 22.624 .042 interactions) 
corrected total 671 122.749 

Note. The variable names represent the following factors: method-- 
which of the 16 methods used to recover the subgroups; subg24-- 
whether there were two or four subgroups; equaln--whether subgroups 
had an equal or unequal number of individuals; mnora--whether the 
dyadic relations were mostly mutual and null or asymmetric; clarity-- 
the clarity of the subgroup structure; nact--whether there were 8 or 16 
individuals. 
*p < .05/22 = .002, 
The Type Ill sums of squares (from SAS) were used as there were data 

missing from a few of the cells. (Methods 2, 3, 4, and 15 were not applied 
to the sociomatrices with 16 actors.) All mean squares used mean 
squared error as the divisor in the F statistic. 

or minus rule on the qj partner vectors. The next best objective 
method was Method 12, the use of the plus or minus rule on the 
first two partner vectors. 

The partners' vectors were more helpful in subgroup recovery 
than the actor vectors. Compare, for example, Methods 9 and 
12 on the partners mode to the analogous methods on the actor 
modes (Methods 8 and 11), which were two of the methods with 
poorest recovery. This difference in recovery is due to the way 
the data were designed. For the sociomatrices with many mu- 
tual and null ties, the matrix is symmetric, so the actors' vectors 
will be (and should be) roughly the same as the partners' vectors. 

However, for the asymmetric sociomatrices in this study, the 
matrices differ mostly in the columns. If there is more variabil- 
ity among the partners, or columns, than among the actors, or 
rows, then it must be the case that the partner vectors would be 
more useful in recovering structure. The asymmetric ties would 
necessarily result in differences between the actor and partner 
vectors. If instead the sociomatrices had been designed to be 
asymmetric in the opposite way, then the actor vectors would 

have had to have been more informative than the partner vec- 
tors. 

The fact that the partners' vectors perform better than the 
actors' vectors is not particularly interesting. If the asymmetric 
sociomatrices had been transposed, then the actors' vectors 
would have been found to perform better than the partners' vec- 
tors. Ifa researcher was willing to determine which of the actor 
or partner modes was more variable, then he or she could pro- 
ceed to determine subgroups by using only the relevant set of 
eigenvectors. However, it should not be assumed that a re- 
searcher would make this extra effort, and the method that is 
suggested in summary (later) includes both actor and partner 
vectors. 

The next two best performing methods were Methods 12 and 
13. These were the methods that used q~ actor vectors and qj 
vectors to compute distances, which were then input to hierar- 
chical clustering. Method 12 was single link and Method 13 was 
complete link. These are the methods that are used in the analy- 
ses of the real data sets to derive empirical subgroups. 

There are three other significant main effects plotted in Fig- 
ure 1. Two subgroups are indeed recovered better than four. 
Clear subgroups were recovered better than medium-clear sub- 
groups, and not-clear subgroups were not recovered (i.e., the 
mean was near zero). Note that even the clear subgroups were 
not perfectly recovered. Perhaps this result is due to a "degener- 
acy" of the sort that there is little variability in these clear matri- 
ces. Finally, subgroups were recovered better for sociomatrices 
with 16 actors than for those with 8 actors. 

A brief description of the seven interactions follows. The plot 
of the Method × Subgroup interaction in Figure 2 shows that 
although two subgroups are generally recovered better than 
four, Methods 8 and 11 do not recover well for either. These 
two methods, once again, were based on actors' vectors, and it 
should be understood by now that for the particular socioma- 
trices generated in this study, the actor vectors must be used 
together with the partner vectors for good recovery on the sym- 
metric sociomatrices, and that the partner vectors should 
suffice for adequate recovery on the asymmetric sociomatrices. 

The plot of the Method X Dyadic relationship structure (mu- 
tual and null, or asymmetric) interactions in Figure 2 shows 
again that subgroups for these asymmetric relations cannot be 
recovered by using only information on the actors' modes 
(Methods 8 and 11). It also once again shows that the use of the 
log-linear model's alpha and beta parameters is most beneficial 
when there are asymmetric dyadic relationships. Other than 
these few sets of points, it is true that the methods do approxi- 
mately as well at recovering subgroups for asymmetric socioma- 
trices as for symmetric ones. That recovery is equally good 
without regard to the type of relational data is good news; a 
researcher does not need to first determine what type of rela- 
tional data characterize the sociomatrix before trying to choose 
a method to derive subgroups. 

The next interaction is plotted in Figure 3 and is the 
Method x Clarity of Subgroup Structure interaction. The most 
striking effects are these: First, even the clear subgroups were 
not perfectly recovered by many methods. Consistently, the 
methods that did not do well were Methods 8 and 11 (actor 
vectors) and Methods 3 and 4 (log-linear model-related 
methods). 
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Figure 1. Simulation study--subgroup recovery: Plots of means for significant main effects. 

Second, the not-clear subgroup structures were not recovered 
by any method. The profile for this level of the clarity factor 
vascillates around zero. What this says is that in the probabili- 
ties that defined the clarity factor (1.0, .8, .6), the .6 was too 
nois>: That is, .6 is only .  1 from totally random data, and evi- 
dently is still too noisy to hope for recovery of  subgroups. 

In the same spirit, most data will not show perfectly clear 
subgroup structure; if they did, the patterns would be discern- 
ible by eye, and these methods would not be necessary. The level 
of  error in real data must be somewhere between 1.0 (perfectly 
clear) and .5 (totally random), so the middle profile might de- 
scribe the real data situation most accurately. There are very 
few differences between this middle profile and the plot of  the 
method main effects, suggesting that the summary discussion 
about the methods that do best overall holds here and might 
also be relevant for application to real data. 

The interaction in Figure 3 is the Number of  Subgroups × 

Clarity of  Structure interaction. The effect is slight, but under- 
standable. The two-subgroups structure is recovered better than 
the four-subgroups structure when the subgroup structure is 
clear or medium clear. Not surprisingly, when there is no clear 
subgroup structure, methods cannot recover two groups any 
better than they can recover four. 

The last two-factor interaction is plotted in Figure 4 and is 
that between the number of actors and the clarity of  the sub- 
group structure. In this plot, one can see that the recovery for 
clear and not clear improve at the same rate when going from 8 
actors to 16 actors. The recovery for medium-clear structure is 
improved more with the additional actors, which is to say, with 
real data more observations make the effects clearer. 

The final interaction is the three-factor interaction at the bot- 
tom of Figure 4. This effect depends on whether there were two 
or four subgroups, whether the dyadic relations were mutual 
and null or asymmetric, and which of  the 16 methods were used 
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Figure 2. Simulation study--subgroup recovery: Plots of means for interactions, Part 1 of 3. 

in recovery. There are some patterns in these figures that make 
sense. The effects for both CONCOR methods (Methods t and 
16) appear similar to each other. The effects that use the actor 
vectors (Methods 8 and l 1) appear similar to each other. Several 
of the plots for the subjective methods appear similar (e.g., 
Methods 6, 7, and 15). The single-link and complete-link pairs 
of  log-linear-based methods (Methods 3 and 4) and the single- 
link and complete-link pairs of  four-mode vector methods 
(Methods 13 and 14) appear similar, within the pair. 

By way of summarizing these results, a practical recommen- 
dation of  a method for the derivation of subgroups is offered. 
The objective methods that performed best were those relying 
on the partners' eigenvectors using the plus or minus rule, and 
qj or min(2, qj) vectors. However, the researcher might not know 
whether there is greater variability among the partners, as is the 
case in the asymmetric sociomatrices in this study, or among 
the actors. 

Adding the actor vectors would at worst only be redundant 
with partner vectors, as in the case of a symmetric sociomatrix. 
In general, if the actors' vectors form the basis of  a qrdimen- 
sional space, and the partners'  vectors form the basis of  a qr  
dimensional space, the union of  the actors' and partners' vec- 
tors will describe a space with fewer than or equal to qi + qj 
dimensions. For these reasons, the subgroup structure should 

be more clearly defined by the inclusion of vectors from both 
the actors" and partners' modes. 

The methods that combined both sets of  vectors and per- 
formed best were Methods 13 and 14, which used the qi actor 
vectors and qj partner vectors to compute an interperson dis- 
tance matrix, which was then input to a single-link (Method 13) 
or complete-link (Method 14) hierarchical clustering proce- 
dure. Because the single-link procedure recovered slightly bet- 
ter than the complete-link procedure, the single-link algorithm 
is the one used to derive subgroups in the real data sets. 

Ana lyses  o f  Two Real  D a t a  Sets 

Sampson's Monastery 

Sampson collected data from monks on eight relations at five 
points in time (Sampson, 1968). The set of monks who inter- 
acted in these networks changed over the five time points, be- 
cause of philosophical changes in the church. In order to work 
with a set of individuals that was constant over time, Sampson's 
Times 2, 3, and 4 were chosen to be modeled. Each of  these 
networks describes the interactions among (the same) 18 
monks. The number of actors, and partners, then, is 18. 

The brothers ranked their top three choices on the following 
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Figure 3. Simulation study--subgroup recovery: Plots of means for interactions, Part 2 of 3. 

eight relations: like and dislike (affect), positive and negative 
esteem, positive and negative influence, and praise and blame 
(sanction). For the eight relations and three time points, the 
data take on the value 0 for the brothers not chosen, and the 
partner nominated as the most liked (for example) got a score 
of  3, the second most liked got a score of  2, and the third most 
liked got a score of 1. 

Sampson (1968) provided a detailed description of several of  
the monks, and these characteristics have been used by re- 
searchers to substantiate the block models they have derived 
from these data (Breiger et al., 1975; Faust, 1985; Wasserman 
& Anderson, 1987). However, there were no complete objective 
attribute data for these men. For example, there was no list of 
how old the men were or how long they had been in the semi- 
nary. Thus, it was not possible to form a priori subgroups on 
the basis of psychological characteristics or other theoretically 
interesting attributes. Clusters of  individuals were derived by 
using the methods that were recommended as a result of  the 
simulation study. 

Together, the eight relations and three time points resulted in 
24 sociomatrices of  the order 18 × 18. This 8 × 3 × 18 × 18 

"super-sociomatrix" was modeled by using a four-mode eigen- 
solution. In this study, the concern is not with the vectors de- 
scribing the time or relations modes; instead, the focus is on the 
actor and partner modes. For the purpose of  deriving sub- 
groups, the obtained eigenvectors on the actors and panner  
modes from the four-mode model can be thought of  as equiva- 
lent to aggregating over all eight relations and all three time 
points. An alternative would have been to choose to model one 
of  the relations at one of  the time points, to be closer in spirit 
to the simulated, single sociomatrices. However, it seemed more 
interesting and informative to obtain a more global (across re- 
lations and times) subgroup structure for these men. 

The number of actor vectors retained in the modeling was 
q~ = 2, and the number of  partner vectors retained in the model- 
ing was qj = 3, on the basis of  the relative sizes of the eigenvalues 
in their respective modes. (In the decomposition o f  a standard 
two-way matrix, the eigenvalues of  X'X equal thOse of  XX', but 
qi 4= qj here, as the analysis was conducted on a four-mode ma- 
trix. That is, the sscP matrix for the partners wa~ba~d  on  the 
rearranged four-mode matrix, not just a simple transposition 
of  the matrix for the actors.) The five actor and partner vectors 
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were used to derive subgroups on the individuals: lnterindivid- 
ual distances were computed over these five vectors, the distance 
matrix was analyzed using single-link clustering, and the parti- 
tion taken was that intermediate between the two extreme parti- 
tions (i.e., all individuals in one group and all individuals in 
their own group). The resulting partition of individuals was ( 1 ), 
(2),(3, 17, 18), (4), (5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16),(13). 

The obtained partition may be compared with the subgroups 
other researchers have derived. Breiger et al. (1975) listed sev- 
eral partitions. They used the CONCOR method to partition the 
individuals into groups as fine as the algorithm would continue 
to split. Because the partition given was not selected to be the 

finest split, it should be compared to a partition in the Breiger 
et al. article that was split to a comparable degree. 

In the set of  CONCOR partitions, the subgroups that have been 
split at the same intermediate point were groups consisting of  
the following individuals: (1,2, 7, 15), (12, 14, 16), (4, 6, 8), (10, 
1 l), (5, 9, 13), (3, 17, 18). The partitions resulting from the 
comparable split from single-link clustering and complete-link 
clustering (that Breiger et al., 1975, applied to the raw data) 
were, respectively, (5, 6, 8, 9, t0, 11, 4), (12), (7), (1, 14, 2, 15, 
16), (13), (3, 17, 18) and (6, 8, 10), (4, 5, 9, ll), (1, 2, 7, 15), 
( 12, 14), (16), ( 13, 3, 17, 18). Note at least the consistency with 
which the group of  individuals (3, 17, 18) is identified. These 
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three monks were those characterized by Sampson (1968) as 
"outcasts." 

The subgroups derived in this article seem to be of  three 
types. First, the group of  three isolates, or outcasts (3, 17, 18), 
form one group, because of  their similar relations to the others. 
Second, the subgroup containing 11 of  the 18 monks seems to 
suggest that most of the men behaved in a similar manner, or 
had high agreement in their choices. 

The third type of  subgroup is the set of four individuals who 
were in their own subgroups. They seem to relate to others in 
ways not common to any other monk. Monk 1 was identified as 
"arrogant" and Monk 2 was the first to leave the monastery 
(Reitz, 1982), so some of their atypical behaviors described in 
Sampson's (1968) observations are reflected in their being in 
separate subgroups. 

The subgroups derived in the current study were not identical 
to any of  the partitions obtained by Breiger et al. (1975). How- 
ever, different analytical methods were used, and each method 
casts a slightly different picture of  the interactions in the monas- 
tery. Furthermore, Breiger et al. analyzed only Time 4, whereas 
the analyses in this study were based on Times 2, 3, and 4, so the 
differences in the partitions might be in part  because of  subtle 
changes in the network over time. Finally, it should be noted 
that the three partitions Breiger et al. offered had little in com- 
mon among themselves. 

A final word with respect to comparing this partition to oth- 
ers' partitions is that the method used in this study was based 
on empirical work where there were known, true subgroup 
structures, and the method used here performed among the 
best. The "'true" subgroup structure of  the monastery cannot 
be known, but in this study, one is at least armed with a method 
that performed relatively well in discovering structure. The par- 
titions of Breiger et al. (1975) or others (e.g., Faust, 1985; Was- 
serman & Anderson, 1987) are standards for comparison in the 
sense that they are documented, previous attempts at finding 
interpretable subgroups, but  they are not standards in the sense 
that they are necessarily closer in truth to the monastery struc- 
ture. 

Referral Network of  a Piano Tuner 

This second example is included for three reasons. First, it is 
probably new to most network researchers. Second, it is a net- 
work in the everyday use of  the term (e.g., business referral 
network, social support network). Third, it is a large, sparse 
sociomatrix, and it would be informative to know how the 
eigensolution-based method of subgroup derivation performs. 
(Although, like the Sampson [ 1968] data, one cannot know the 
" t rue" structure, one can only infer the sensibility of  the sub- 
groups from other information.) 

The researchers collecting the data used in this example were 
trying to understand how persons in the service industries, such 
as piano tuners, get their business (Reingen & Kernan, 1986). 
The researchers contacted each of a piano tuner's recent clients 
and asked them how they had come to learn of  the piano tuner. 
Many of  the contacts were persons who were recommended the 
piano tuner after they had contacted a particular music store 
asking for a recommendation, or after they had purchased a 
piano from the store. Many of  these contacts went on to recom- 

mend the piano tuner to a friend of theirs. This part of  the net- 
work contained many ties that were two units long: the music 
store recommending the piano tuner to the first person, and the 
first person referring a second person to the piano tuner. The 
other part of  the network contained the piano tuner's personal 
network, including five music professionals (i.e., piano teachers) 
who referred more than one client to the tuner. 

The relational ties included in the sociomatrix are the busi- 
ness referrals only, not the friendship ties among some of the 
players. There were 89 actors and partners, and of  the 89(89 - 
1)/2 = 3,916 possible ties, there were 88 observed dyads. Note 
that the actors included such diverse nodes as persons (the cen- 
tral figure of the piano tuner, the key figures of  the music profes- 
sionals, and all the remaining clients) and an institution (the 
music store). Note also that the relation is unidirectional: Actor 
i refers the tuner to partner j ,  and it would not be sensible to 
think of  partner j then "mutually" referring the tuner to actor 
i, because presumably actor i has already heard of  the tuner. 

The referral ties are listed in Table 5. The data are not pre- 
sented in the form o f a  sociomatrix because the matrix is large 
(89 × 89), and the information can be compressed because the 
sociomatrix is sparse (i.e., there are few ties). The arrows in the 
table are in the direction of  the business referral. For example, 
the piano tuner contacted person 78 (one of  the music profes- 
sionals), who contacted three people: persons 179, 159, and 80. 
Of these contacts, person 80 made another referral, to person 
81. Note the importance of both the tuner and the music store 
in making referrals, in terms of the number of  ties originating 
from these nodes. The music professionals are also key players, 
because they generated more than one referral each. 

The majority of  the referrals originating from the tuner or 
the store are two steps (e.g., tuner to 40 to 25, or store to 39 to 
4). There are several exceptions. There are two cases where the 
music store's referral to person j ( j  = 46 and 189) led to two 
more consecutive ties. There are also two cases where the store 
referred the tuner to person j ( j  = 173 and 21), a n d j  directly 
referred the tuner to two other persons. A similar case originat- 
ing with the tuner is the referral flow from the tuner to 17 to 70 
and 47. There are also several cases where the referral made 
from the tuner or the store stops with person j ( j  = 181, 52, 
and 85). 

The subgroups for the 89 actors were derived by the same 
method described for Sampson (1968; i.e., eigensolution and 
clustering), and the resulting partition (with M = music store, 
PT = piano tuner, and MP = music professional) follows: (M), 
(PT), (MP5), (MP 1, MP2), (MP4), (17), (173, 21), (MP3), (181, 
40, 9, 44, 151,63, 167, 102, t55, 12), (46, 39, 37, 157, 66, t06, 
93, 133, 6, 176, 189, 131, 141,138, 34, 109, 175, 52, 85), and 
(all others). 

These subgroups are easily identified. The music store and 
the piano tuner are in their own groups, which is appropriate 
because their volume and pattern of referrals are unlike those 
of  other actors. The music professionals (MP5, MP4, and MP3) 
are also in isolated clusters. (However, in the next level in the 
hierarchical clustering, MP3 joins the group that contains "all 
others." Perhaps this is due to the fact that this MP makes fewer 
referrals than the other music professionals.) The first and sec- 
ond music professionals are in a group together; their patterns 
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Table 5 
The Referral Ties o f  a Piano Tuner 

Piano tuner (PT) --* 78 (MPI) --~ 
78 (MPI) --~ 

PT --~ 142 (MP2) --~ 
142 (MP2) --~ 

PT - ,  126 (MP4) --~ 
P T ~  40 --~ 
P T ~  9 -~ 
PT--~ 44 --~ 
PT--~ 151 --~ 
PT--~ 63 --~ 
PT --*- 167 --~ 
PT -~ 102 

PT--~ 155 --~ 
PT--~ 12 --~ 
PT ~ 17 -~  
PT--~ 181 

Music store (M) --~ 46 ~ 58 --~ 147 
M--~ 189 --~ 35 --~ 159 
M --~ 173 --~ 172, 89 
M--~ 21 --~ 103,50 
M--~ 39 --~ 4 
M --~ 37 --~ 158 
M--~ 157 --~ 161 
M --~ 66 --~ 156 
M--~ 106 --~ 180 
M--~ 93 --~ 115 
M--~ 133 --~ 98 
M--~ 6 --~ 2 
M-~ 176 --~ 132 
M--~ t31 --~ 105 
M--- 141 --~ 139 
M--~ 138 --~ 160 
M--~ 34 --~ 33 
M --~ 109 --~ 94 
M--~ 175 --,- 3 
M--~ 52 
M--,. 85 

179, 159 
80---~ 81 
99, 111 

177 (MP3)--~ 100, 154 
171,130, 18,82 
25 

8 
165 
75 
76 
92 

148 (MP5) --~ 48, 45 
148 (MP5)--~ 84 ~ 112 
148 (M P 5) -~  60---~ 32 
24 
71 
70, 47 

Note. To be consistent with Reingen and Kernan (1986), the actors are 
represented by the same nominal code as in their original network dia- 
gram. The seven special players have additional codes for easier refer- 
ence. The music store is M, and the five music professionals are denoted 
MPI through MP5. The piano tuner was called J in Reingen and Ker- 
nan, but in an Actors × Partners sociomatrix, j is often used to refer to 
the columns, or partners, so in this table the piano tuner is represented 
by PT. 

of referrals are fairly similar in that they both refer three per- 
sons, one of whom makes additional referrals. 

The groups (17) and (173, 2 t) are those persons who referred 
the tuner to two others. They are not clustered together because 
the piano tuner had contacted person 17, whereas the music 
store made the referral for persons 173 and 21. 

The cluster starting with persons 181 and 40 contains all the 
contacts made directly by the piano tuner, with the exceptions 
of  the music professionals and person 17. The cluster starting 
with persons 46 and 39 contains all the contacts made directly 
by the music store, except persons 173 and 21. The remaining 
group contains the indirect contacts of  the tuner, the store, and 
the other players. 

Note that these methods were insensitive to the three-step 

referrals (M to 46 to 58 to 147, and M to 189 to 35 to 159), in 
that persons 46 and 189 did not form a unique subgroup. Per- 
haps these patterns of referrals were not identified because a 
decomposition of  the matrix had been taken at a second power 
(XX) and not some third power. The methods were also unable 
to identify the single-step referrals (PT to 181, M to 52, and M 
to 85). Perhaps these latter referrals were simply dominated by 
the longer, two-step ties and the fuller, multiple referral ties. 

However, the majority of  the data were well represented by 
the structure of  these subgroups. These results were a pleasant 
surprise given the sparseness of  the matrix. The key players were 
identified as being different from the other actors, and the larger 
subgroups were interpretable given the patterns in the relational 
data. 

S u m m a r y  

This article contained a simulation study that was an investi- 
gation of  several methods for deriving empirical subgroups for 
individuals in a network. In generating the sociomatrices, an 
attempt was made to include many of  the factors that might be 
relevant to network research. The results and discussion of  the 
study are, of  course, conditional on the factors chosen and on 
the particular levels at which each factor was evaluated. 

Sociomatrices were simulated to have known subgroup struc- 
tures, as well as other known properties. Each of  several meth- 
ods was used in attempting to recover the true subgroup parti- 
tion. 

On the basis of  the simulation study's results, the method that 
was used to derive subgroups in the real data sets can be sum- 
marized in the following steps. The eigensolutions for the ac- 
tors' and partners' modes are derived. The eigenvalues from 
these solutions are plotted to determine the number of vectors 
to retain for each mode. These qi actor vectors and qj partner 
vectors are used as axes in a q~ + qrdimensional space. The 
interindividual distances are computed over these dimensions. 
This distance matrix is input to a single-link hierarchical clus- 
tering algorithm. The partition retained was intermediate to 
(i.e., roughly one half to two thirds of  the way from) the parti- 
tion where all individuals are in their own cluster and the parti- 
tion where all individuals are in a single cluster. 

The subgroup recovery was also compared along the factors 
that generated the data. Two subgroups were recovered better 
than four. Subgroups were recovered better when there were 
more individuals ( 16 vs. 8). Subgroups were recovered roughly 
as well for networks characterized by symmetric or asymmetric 
relations. Subgroups that contained varying numbers of  indi- 
viduals were recovered roughly as well as subgroups that con- 
tained a constant number. Finally, subgroups were recovered 
more accurately when the data contained less error. 

Applying these methods to the Sampson (1968) data led to 
subgroups that were sensible, although not identical to parti- 
tions derived by previous researchers. Applying these methods 
to the piano tuner's referral network resulted in subgroups that 
seemed to accurately identify key players and patterns of inter- 
action. 
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Appendix 

Simulated Data for Monte Carlo Study 

Table I-A 
Design Used to Generate Simulated Sociomatrices 

Number of 
individuals 

per 
subgroup 

and level of 
clarity 

2 subgroups 4 subgroups 

m & n asym m & n asym 

8 actors 

Equal 
Clear a-8 d-8 m-8 p-8 
Medium b-8 e-8 n-8 q-8 
Not clear c-8 f-8 o-8 i=8 

Unequal 
Clear g-8 j-8 s-8 v-8 
Medium h-8 k-8 t-8 w-8 
Not clear i-8 1-8 u-8 x-8 

16 actors 

Equal 
Clear a-16 d-16 m-16 p-16 
Medium b-16 e-16 n-16 q-16 
Not clear c-16 f-16 o-16 r-16 

Unequal 
Clear g-16 j-16 s-16 v-16 
Medium h-16 k-16 t-t6 w-16 
Not clear i-16 1-16 u-16 x-16 

The design according to which these 48 sociomatrices were generated 
appears in Table 1-A. The entry in each cell is a letter a through x, 
followed by the number 8 or 16, indicating the number of actors and 
partners in the network. The sociomatrices that are listed after this de- 
sign summary are preceded by a header card that includes the letters a 
through x and the number 8 or 16 to indicate to which cell in the design 
the sociomatrix corresponds. 

The notation for the factors in the design is as follows: rn & n repre- 
sents mostly mutual and null dyadic relational ties, asym represents 
mostly asymmetric ties, equal (or unequal) represents an equal (or 
unequal) number of individuals per subgroup, and the levels for the 
clarity of subgroup structure factor are denoted as clear, medium, or 
not clear. 

The simulated sociomatrices follow. 

a-8) b-8) c-8) 
0 1 1 1 0 0 0 0  0 1 1 0 0 0 0 0  0 0 0 1 0 0 0 1  
1 0 1 1 0 0 0 0  l O l l O 0 0 0  O 0 0 1 0 1 0 1  
t t 0 t 0 0 0 0  O 0 0 1 0 0 1 1  1 1 0 1 1 0 1 0  
1 1 1 0 0 0 0 0  l l l O 0 0 1 0  O 0 1 0 0 1 0 0  
0 0 0 0 0 1 1 1  0 1 1 0 0 1 1 0  0 0 t 0 0 1 0 0  
0 0 0 0 1 0 |  t 0 0 0 1 0 0 0 1  0 0 1 1 1 0 t 0  
0 0 0 0 1 1 0 1  0 0 1 0 1 1 0 1  0 1 0 0 0 1 0 0  
0 0 0 0 1 1 1 0  0 0 0 0 1 1 1 0  1 0 1 1 0 1 0 0  

d-8) 
0 1 1 1 0 0 0 0  
1 0 1 1 0 0 0 0  
1 1 0 1 0 0 0 0  
1 1 1 0 0 0 0 0  
1 1 1 1 0 0 0 0  
1 1 1 1 0 0 0 0  
1 1 1 1 0 0 0 0  
1 t 1 1 0 0 0 0  

~8) 
0 1 0 0 0 0 0 0  
1 0 0 0 0 0 0 0  
O 0 0 1 1 1 1 1  
0 0 1 0 1 1 1 1  
0 0 1 1 0 1 1 1  
0 0 1 1 1 0 1 1  
0 0 1 1 1 1 0 1  
0 0 1 1 1 t 1 0  

j-s) 
0 1 0 0 0 0 0 0  
1 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0  
1 1 0 0 0 0 0 0  
1 1 0 0 0 0 0 0  
1 1 0 0 0 0 0 0  
1 1 0 0 0 0 0 0  
1 1 0 0 0 0 0 0  

m-8) 
0 0 1 1 0 0 0 0  
0 0 1 1 0 0 0 0  
i 1 0 0 t l 0 0  
1 1 0 0 1 1 0 0  
0 0 1 1 0 0 1 1  
0 0 1 1 0 0 1 1  
0 0 0 0 1 1 0 0  
0 0 0 0 1 1 0 0  

p-8) 
0 1 1 1 0 0 0 0  
1 0 1 1 0 0 0 0  

1 0 0 0 0 0 0  
1 0 0 0 0 0 0  
1 1 1 0 0 0 0  
l l l O 0 0 0  

0 0 1 1 1 1 0 1  
0 0 1 1 1 1 1 0  

~8) 
0 1 1 1 1 1 1 1  

0 1 0 0 0 0 0  
1 0 0 0 0 0 0  
0 0 0 0 1 1 1  
0 0 0 0 1 1 1  
0 0 1 1 0 1 t  
0 0 1 1 1 0 1  
0 0 1 1 1 1 0  

v-8) 
0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  
0 1 0 0 0 0 0 0  
0 0 0 0 0 1 1 1  
0 0 0 0 0 1 1 1  
0 1 1 0 0 0 0 0  
0 1 1 0 0 0 0 0  
0 1 1 0 0 0 0 0  

e-8) 
0 1 1 0 0 0 0 0  
1 0 1 1 0 0 0 0  
0 0 0 1 0 0 1 1  
1 1 1 0 0 0 1 0  
1 0 0 1 0 0 0 1  
1 1 1 0 1 0 1 0  
1 1 0 1 0 0 0 0  
1 1 1 1 0 0 0 0  

h-8) 
O l O l O 0 0 0  
l O 0 0 0 0 0 0  
l l O l l l O 0  
O O l O l l O 1  
O l O l O l t O  
O O l O 0 0 0 1  
O 0 0 1 1 1 0 1  
O 0 1 t l l l O  

k-8) 
O l O l O 0 0 0  
1 0 0 0 0 0 0 0  
O 0 0 0 0 0 1 1  
I 1 0 0 0 0 1 0  
l O l O 0 0 0 1  
l l O l l O l O  
1 1 1 0 0 0 0 0  
l l O 0 0 0 0 0  

n-8) 
0 0 1 0 0 0 0 0  
0 0 1 1 0 0 0 0  
0 0 0 0 l l l l  
1 1 0 0 1 1 1 0  
0 1 0 1 0 0 1 0  
0 0 1 0 1 0 0 1  
0 0 1 0 1 1 0 0  
0 0 0 0 1 1 0 0  

q-8) 
O l t O 0 0 0 0  
1 0 1 1 0 0 0 0  
0 0 0 0 0 0 1 1  
l l O 0 0 0 1 0  
l O O l O 0 0 1  
l l l O l O l O  
O 0 0 1 1 1 0 1  
O O l l l l l O  

t-8) 
0 1 t 0 1 1 1 1  
1 0 1 0 0 0 0 0  
0 0 0 0 0 0 1 1  
1 0 0 0 0 1 0 1  
l l l 0 0 1 1 0  
1 0 0 0 0 0 0 0  
1 0 1 1 1 t 0 1  
1 0 0 1 1 0 1 0  

w-8) 
0 0 0 1 0 0 0 0  
0 0 1 0 0 0 0 0  
1 0 0 0 0 0 1 1  
0 0 0 0 0 1 0 1  
0 1 1 0 0 1 1 0  
0 1 1 1 1 0 1 0  
0 1 0 0 0 0 0 0  
0 1 1 0 0 0 0 0  

~8) 
0 0 0 1 0 0 0 t  
0 0 0 1 0 1 0 1  
1 1 0 1 1 0 1 0  
0 0 1 0 0 1 0 0  
1 1 0 1 0 0 1 1  
1 1 0 0 0 0 0 1  
1 0 I l l 0 0 1  
0 1 0 0 1 0 1 0  

i-8) 
0 0 1 0 0 0 0 1  
0 0 1 0 0 1 0 1  
0 0 0 1 0 1 0 1  
1 1 1 0 1 0 1 1  
0 0 0 1 0 1 0 0  
0 0 0 0 1 0 1 0  
0 1 1 1 0 1 0 0  
t 0 0 0 0 1 0 0  

1-8) 
0 0 1 0 0 0 0 1  
0 0 1 0 0 1 0 1  
1 1 0 0 1 0 1 0  
OOOO010O 
1 1 1 0 0 0 1 1  
1 1 1 1 0 0 0 1  
1 0 0 0 1 0 0 1  
0 1 1 1 1 0 1 0  

o-8) 
0 1 0 1 0 0 0 1  
t 0 0 1 0 1 0 1  
t i 0 0 0 1 1 0  
0 0 0 0 1 0 0 0  
0 0 0 1 0 0 0 0  
0 0 0 0 0 0 1 0  
0 1 0 0 0 1 0 1  
1 0 1 1 0 1 1 0  

~8) 
0 0 0 1 0 0 0 1  
0 0 0 1 0 1 0 1  
1 1 0 0 1 0 1 0  
0 0 0 0 0 1 0 0  
1 1 0 1 0 0 1 1  
1 1 0 0 0 0 0 1  
0 1 1 1 0 1 0 0  
1 0 0 0 0 1 0 0  

u-8) 
0 0 0 1 1 1 1 0  
0 0 0 0 0 1 0 1  
1 1 0 0 1 0 1 0  
0 1 0 0 0 0 1 1  
1 0 1 0 0 1 0 0  
1 0 1 0 1 0 1 1  
1 1 0 1 0 1 0 0  
0 0 1 0 0 0 0 0  

x-8) 
0 1 1 0 0 0 0 1  
1 0 0 0 0 1 0 1  
0 1 0 0 1 0 1 0  
I 1 0 0 0 0 1 t  
0 0 1 0 0 1 0 0  
0 1 0 1 0 0 0 1  
0 0 1 0 1 0 0 1  
1 1 0 1 1 0 1 0  
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A-16) 
0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 0 1  1 1 1 0 0 0 0 0 0 0 0  
1 11 101 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 0 1  1 0 0 0 0 0 0 0 0  
1 11 1 1 1 0 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1  1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 0 1  1 1 11  1 
0 0 0 0 0 0 0 0 1  1 0 1  1 1 1 1 
0 0 0 0 0 0 0 0 1  l 1 0 1  1 1 1 
0 0 0 0 0 0 0 0 1  1 1 101 1 1 
0 0 0 0 0 0 0 0 1  1 1 1 1 0 1  1 
0 0 0 0 0 0 0 0 1 1  l t 1 1 0 1  
0 0 0 0 0 0 0 0 1  1 1 1 1 1 1 0  

B-16) 
0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1  
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0  
1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0  
1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0  
1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1  
1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0  
1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0  
0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1  
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1  
0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1  
0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1  
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1  
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1  
0 0 1 1 0 0 0 0 1 1 0 1  t 101 
0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0  

1-16) 
Ol l O l l O l l  l O l O l O l  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0  
l O O O l O l O l O l O O O l O  
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1  
0010100011110110 
o l o l o t o o l l O O l l O l  
0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1  
1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1  
l O 0 1 1 0 1 0 1 0 1 1 1 0 0 1  
l O 0 0 0 0 0 1 0 0 0 1 0 1 0 1  
0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1  
0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1  
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1  
0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1  
1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0  

J-16) 
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1011000000000000 
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
III0000000000000 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1111oooooooooooo 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1111oooooooooooo 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1111000000000000 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1111000000000000 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  

C-16) 
0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1  
1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1  
0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0  
110010001 I001 I00 
O1 l O 0 1 1  l O l O l  l O l l  
1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1  
0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0  
0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1  
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
1 o 1 o 1 1 1 1 1 o 1 o o 1 o 0  
010000001 l O l  1OlO 
OOOlOOOOlOOO 1 1 o  1 
0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1  
1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1  
I00100101 II01100 
1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0  

D-16) 
01 l II I 1 I00000000 
I011111100000000 
1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0  
111 
111 
111 
111 
111 
111 
111 
111 
111 
111 
111 
111 

0 1 1 1 0 0 0 0 0 0 0 0  
1 0 1 1 0 0 0 0 0 0 0 0  
1 1 0 1 0 0 0 0 0 0 0 0  
1 1 1 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0  

K-16) 
0110000010101010 
1011101000000011 
1001101000001000 
0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0  
O l 1 1 0 1 0 0 0 0 0 0 1 1 0 1  
011  I 0 0 0 0 1 0 0 0 0 1 0 0  
o 1 1 1 o o o o o o o ~ o o o o  
1010001000001100 
1010000001000001 
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1111000100100000 
1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 I  
1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0  

~16)  
O 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0  
1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0  
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0  
1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0  
1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1  
1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0  
1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0  
0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0  
0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0  
0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0  
1 t 0 1 1 1 1 0 t 0 0 0 0 0 0 0  
1 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0  
0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0  
1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0  
0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0  

E-16) 
0110111110101010 
1011010100000011 
I001010100001000 
0100111000100010 
0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1  
0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0  
O111  l l O l O 0 0 t O 0 0 0  
1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0  
1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1  
1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0  
1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0  
1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0  
1 1 1 1 1 1 1 1 O 0 0 1 0 0 0 0  
0011111000100001 
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0  

~16)  
0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1  
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0  
1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0  
1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0  
1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1  
1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0  
1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0  
0 1 1 1 1 0 1 1 0 0 0 1 0 1 0 0  
0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0  
0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0  
1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0  
1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0  
0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0  
1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0  
0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0  

M-16) 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0  
o o o o : 1 1 1 o 0 0 o o o o 0  
o o o o 1 1 1 1 o o o o o o o o  
0000111100000000 
l 11 l O 0 0 0 1 1 1  l O 0 0 0  
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0  
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0  
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0  
0000111 I00001111 
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  
0000111100001111 
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0  
0000000011110000 
0000000011110000 
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0  

N-16) 
0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0  
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1  
0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0  
1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0  
O 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1  
0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0  
0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0  
1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0  
0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0  
0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1  
0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1  
0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1  
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0  
1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1  
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0  

G-16) 
0 1 1 1 0 0 0 0 0 o 0 0 0 0 0 0  
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
o o o o o 1 1 1 1 1 1 1 1 1 1 1  
0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1  
0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1  
0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1  
O 0 0 0 1  i l l O l l l l l  1 l 
0 0 0 o 1 1 1 1  0 1 1 1 1 1 1  
O 0 0 0 1 1 1 1  101 t 111 
0 0 0 0 1  111 1 1 0 1  111 
O 0 0 0 1 1 1 1  1 1 1 0 1 1 1  
0 0 0 0 1 1 1 1  1 1 1 1 0 1 1  
O 0 0 0 1 1  l 1 l 11 l l O 1  
0 0 0 0 1 1 1 1  l 1 1 1 1 1 0  

H-16) 
0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0  
1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1  
1 o 0 1 1 o 1 o o o o 0 1 o o o  
0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0  
1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0  
1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1  
1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1  
0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1  
0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0  
0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1  
0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1  
0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1  
0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1  
0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1  
1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0  
0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0  

0-16) 
0 0 0 1 0 0 1 0 1 t 0 1 0 1 0 1  
1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0  
0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0  
0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0  
1 1 1 1 0 1 0 o o 1 0 1 1 o o 0  
1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1  
1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0  
1 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0  
1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1  
1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1  
1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1  
0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1  
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0  
1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0  
0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0  
1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0  

P-16) 
0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1  
0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1  
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1  
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0  



132 DAWN IACOBUCCI 

Q-16) 
0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0  
1 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1  
1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0  
0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0  
0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1  
0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0  
01 t 1 0 0 0 0 0 0 0 1 0 0 0 0  
1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0  
1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1  
1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0  
I t 0 0 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0  
0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1  
0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1  
1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0  
0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0  

S-16) 
0 1 1 1 I l l 1 1 1 1 1 1 1 1 1  
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 o  
1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0 0 0 t  1 11 
t 1 0 0 0 0 0 0 0 0 1 t  11 
1 t 0 0 0 0 0 0 0 0 1 1  11 
t 1 0 0 0 0 0 0 0 0 1 1  t t 
1 1 0 0 0 0 1 1 1  I 0 1  11 
1 1 0 0 0 0 1 1 1 1 1 0  11 
1 1 0 0 0 0 1 1 1 1 1 1 0 1 1  
1 1 0 0 0 0 1 1 1 1 1 1 1 0 1  
1 1 0 0 0 0 1 1 1 1 1 1 1 1 0  
1 1 0 0 0 0 1 1 1 1 1 1 1 1 1  

R-16) 
0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1  
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0  
l O l O 0 1 0 1 0 0 0 0 1 0 0 0  
l l 1 l O l O 0 1 0 1 0 1 0 0 0  
1 1 0 1 0 0 1 1 0 0 0 0 1 O 0 1  
1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0  
1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0  
0 1 1 1 1 0 1 1 0 0 0 1 0 1 0 0  
0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0  
0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0  
1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0  
0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1  
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1  
0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1  
1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0  

U-16) 
0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0  
0 0 0 0 0 1 1 0 1 1  l 1 1 1 1 1  

0 0 0 0 1 1 0 1 0 1 0 0 0 1 0  
0 1 0 0 1 1 0 0 0 0 0 1 0 0 0  
1 1 1 0 0 0 0 1 0 1 0 1 0 0 0  
1 0 1 1 0 1 1 0 0 0 0 1 0 0 1  
0 0 1 1 0 0 1 0 0 0 0 1 1 0 1  
0 0 0 0 1 0 0 1 0 1 0 1 0 1 1  

O l O O O l O O O O l O l O l 1  
0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1  
0 | 0 0 1 1 0 1 0 0 0 1 0 1 0 1  
I l l 0 1 1 0 1 0 1 1 0 1  t t l 
1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 1  
0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1  
11 l 1 1 0 0 1 1 1 0 1 1 1 0 1  
0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0  

~16)  
O 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1  
1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0  
1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0  
0 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0  
0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1  
0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0  
0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1  
1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1  
1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0  
1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1  
1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1  
1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1  
1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1  
1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1  
0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0  
1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0  

W-16) 
0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0  
0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1  
0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0  
1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0  
1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1  
1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0  
1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1  
0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1  
0 1 0 1 0 0 0 0 0 1 1  t 1 1 1 0  
0 0 1 1 0 1 0 0 0 0 1  t 1111  
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0  
1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1  
0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0  

~16)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0  

X-16) 
0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1  
1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0  
0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0  
0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0  
0 0 t t 0 0 0 0 1 0 1 0 1 0 0 0  
0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1  
0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 1  
0 1 0 0 0 1 0 0 1 0 1 0 1 0 t  t 
1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1  
1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1  
1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0  
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0  
o o 1 0 0 1 0 0 1 0 1 1 O O l O  
l O l  1 0 1 1 0 1 0 1 1 1 o o o  
o o o o 0 1 1 0 0 0 1 0 o o o o  
1 l O l l  1 1 0 0 1 O l l O l O  
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