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Between-Groups Comparison of Principal Components

W. J. KRZANOWSKI*

A method is given for comparing principal component analyses con-
ducted on the same variables in two different groups of individuals,
and an extension to the case of more than two groups is outlined. The
technique leads to a latent root and vector problem, which has also
arisen in the comparison of factor patterns in separate factor analy-
ses. Emphasis in the present article is on the underlying geometry
and interpretation of the results. An illustrative example is provided.

KEY WORDS: Analytical rotation; Congruence coefficient ; Latent
roots and vectors; Principal component analysis.

1. INTRODUCTION

Principal component analysis (PCA) is a widely used
technique in multivariate analysis (see Anderson 1958,
Kendall and Stuart 1968, Seal 1964). It may be used on
any data matrix in which p variables (responses) are
measured on each of 7 individuals (units). One of its
most useful aspects is that of multivariate description,
since it identifies those linear combinations of responses
(i.e., components) that have most variability in the
sample. Such components frequently carry biological or
other interpretations that provide valuable insight into
the mechanisms generating the data.

Suppose that several groups of individuals have the
same variables measured on them, and interest centers
on discovering how similar the groups are with respect
to their overall features. An intuitively appealing pro-
cedure is to describe each group in terms of a small
number (we hope) of principal components and assess
the similarity of the groups by comparing these com-
ponents. Unfortunately, visual inspection is not very
trustworthy, as two sets of components that are quite
different in appearance may in fact define the same sub-
space of the original multivariate space (defined in
Section 2). Thus, some reliable analytical technique is
required for the comparison.

A similar problem has bedeviled factor analysts over
the years, because of the rotational indeterminacy of a
factor analysis solution (Lawley and Maxwell 1971,
p.- 7). In order to test a hypothesized factor pattern,
first the matrix of factor loadings must be transformed
to maximum similarity with the target matrix (Horst
1956 ; Cliff 1962; Hurley and Cattell 1962). In order to
compare two factor patterns, first they must be trans-
formed to maximal agreement with each other (CIiff
1966 ; Schonemann and Carroll 1970; Evans 1971). The
main problem throughout is the choice of criterion for
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judging similarity. Various criteria have been proposed
(Korth 1973), but the congruence coefficient has found
some favor by virtue of its suitable properties (Korth
and Tucker 1976). This was the choice for Cliff’s (1966)
solution.

The geometrical interpretation of the congruence
coefficient between two p-component vectors is simply
as the cosine of the angle between them when they are
regarded as two lines in p-dimensional Euclidean space.
Therefore, the essentially geometrical nature of PCA
(Gower 1967) suggests that an analogous technique can
be developed for the comparison of principal components.
This is done in Section 2. Section 3 then proposes an
extension of the technique to the simultaneous compari-
son of g(>2) groups, and examples are given in Section
4. Similarities of the proposed techniques with other
established procedures are noted in Section 5.

2. ANALYSIS FOR TWO GROUPS

Consider two multivariate samples A and B of n, and
ny individuals, respectively, each individual having the
same p variables measured on it. Suppose each sample
has undergone PCA. Let the original variables be de-
noted by zi1, x2, ..., T, and denote the principal com-
ponents of A and B by y1, ..., yp and 21, 23, ..., 25
respectively. Then y; = X%, lyz; and 2z; = 2 5= myx;
(t=1,...,p), where lyand m;; ¢ =1, ...,p;7 =1,

.., p) are the principal component loadings in the
two groups. It will be assumed that the usual normaliza-
tions Y9, L2 = X9 ymi2=1(@{ =1,...,p)havebeen
adopted. If each of the original variables zi, ..., z, is
identified with an orthogonal axis in p-dimensional
Euclidean space, the two groups A and B are represented
by two swarms of points in this space. Principal com-
ponent analysis is simply a rotation of axes to new posi-
tions y1, ..., yp for group A and 2,, ..., 2, for group B.
These new axes are such that the orthogonal projections
of the sample points on them have decreasing spread.
In this interpretation, l;; is the direction cosine of the
ith component of A with the axis corresponding to z;,
and m.;; has a similar interpretation for group B. This
geometrical representation has been well documented
(e.g., Gower 1967).

Suppose that k components are considered adequate for
the purposes of representing each sample, and let L
and M be matrices with elements I;; and m;, respectively
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(¢=1,...,k;7=1, ..., p). Thus the swarm of points
from each sample can be considered as effectively em-
bedded in a k-dimensional subspace of the original
p-dimensional space, and these two subspaces are defined
by the orthogonal axes yi, ..., yx and 2y, ..., 2, respec-
tively. In order to compare the two sets of principal
components, it is necessary to compare the two k-di-
mensional subspaces that they generate. The following
theorems provide a means of doing this.

Theorem 1: The minimum angle between an arbitrary
vector in the space of the first k principal components of
A and the one most nearly parallel to it in the space of
the first k components of B is given by cos™'{ (A1)},
where )\, is the largest eigenvalue of S = LM'ML'.

Proof: Let a be an arbitrary (unit) vector with ele-
ments a1, ..., a; in the subspace generated by the k
principal components of A. Its coordinates referred to
the original p orthogonal axes are therefore the com-
ponents of b = L’a. The projection of this vector onto
the subspace generated by the first £ components of B
is M’Mb, so the angle §(0 < é < 7) between the two
satisfies cos? = b’M’'Mb = a’LM’ML’a.

Now, minimizing § is equivalent to maximizing cos? é.
It is well known that supjx-1X'Cx is given by the
largest eigenvalue A\; of C and is attained when x is the
eigenvector corresponding to A;. Thus the value of a
that minimizes § is given by the eigenvector correspond-
ing to the largest eigenvalue \; of S = LM'ML’, and
cos?s = \; for this value of a. It can be shown easily
that all eigenvalues N of S satisfy 0 < XA <1, so the
result follows directly.

Theorem 2: Let \; be the sth largest eigenvalue of S,
a; its associated eigenvector, and b, = L'a; ¢t =1, ...,
k). Then by, ..., b, form a set of mutually orthogonal
vectors embedded in subspace A and M'Mb,, ...,
M’Mb,;, a corresponding set of mutually orthogonal
vectors in subspace B into which the differences between
the subspaces can be partitioned. The angle between the
ith pair b;, M’Mb; is given by cos™! \)t (¢ = 1, ..., k).

PTOOf.' bi,bj = ai’LL'a,- = a/a,- and (MIsz)I(MIMb])
= b/MM'b; = a,/Sa; = \a;/a; (since LL’ = MM’ =1
and Sa; = \;a;). Orthogonality of the two sets of vectors
thus follows from orthogonality of the a;.

It has been shown in Theorem 1 that b, and M'Mb,
give the two closest vectors in the original space when
‘one is constrained to be in subspace A and the other in
subspace B. Continuing the eigenvalue and eigenvector
decomposition of S, it follows that b, and M'Mb, give
directions, orthogonal to the previous ones, along which
the next smallest angle between the subspaces is repre-
sented. An argument analogous to that of Theorem 1
gives the angle between these two vectors as cos™ (\g)%.
Completing the decomposition yields the required
result.

Let 6;; be the angle between the ¢th principal com-
ponent of group A and the jth principal component of
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group B. Then cos 6, is the (7, j)th element of T = LM’
so that

k k
i = trace S = trace TT' = X > cos?4,; .

1 =1 j=1

‘M-

K3

Thus the sum of the eigenvalues of S equals the sum of
squares of the cosines of the angles between each of the
k eigenvectors defining the principal components of A
and each one of B. This sum can be used as a measure of
total similarity between the two spaces. The value of the
sum is easily seen to lie between k (coincident spaces)
and 0 (orthogonal spaces). Theorems 1 and 2 then show
that the similarities between A and B can be exhibited
solely through the pairs b;, M'Mb,, \; measuring the
contribution of the <th pair to the total similarity.

Corollary 1: If the two subspaces defined by the
principal components of A and B intersect in an r-di-
mensional subspace of the original p-dimensional space,
then the first r eigenvalues of S have value 1, and by,
..., b, form a basis for this subspace.

Corollary 2: If A and B have been characterized by
k1 and k. components, respectively (k; # k,), then T is
a (ky X k) matrix of rank k = min(k;, k:). Hence
|k1 — ke| zero eigenvalues will always exist for the
larger of T'T and TT'.

Comparison between A and B can proceed on the basis
of the k& nonzero eigenvalues and corresponding eigen-
vectors in such a case.

These results thus furnish some descriptive tools for
the comparison of A and B. Of course, descriptive tools
are only as good as our ability to interpret and relate
them to quantities of interest. In the present analysis,
the minimum angles cos™ (\;)! between subspaces gener-
ated by sets of principal components will provide a
measure of the extent to which the subspaces differ. In
order to interpret the nature of the similarities or differ-
ences, we can then consider the pair of eigenvectors b,
and M'Mb; associated with each eigenvalue \;. These
vectors are defined with respect to the original p axes
and hence may be interpreted by reference to the p
coefficients in each vector. Thus inspection of the
coefficients may reveal, for example, some biological
explanation for the vectors that are most alike between
the two groups. Furthermore, a natural way of obtaining
the single vector in the original p-dimensional space that
is closest to both these vectors would be as the bisector
of the angle between them, in the plane in which they
lie. This bisector is given by

ci = {1/(1 + 3\)H T + M’M)b; .

The set ¢y, ..., c; then defines the overall k-dimensional
subspace that is closest to both subspaces A and B.
Finally, some comparison can be made between
this technique and Cliff’s (1966) for comparing factor
analysis solutions. The similarities result from the
equivalence of the congruence coefficient and the cosine
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of the angle between a pair of vectors in multidimensional
space. Cliff, however, was mainly concerned with an
algebraic transformation that produced sets of factor
loadings resembling one another as closely as possible,
and his sole aim was to produce these transformed factor
patterns. This development for PCA has led to a rather
more general comparison. Here the transformation itself
plays a more central role, the eigenvalues can be used to

assess the degree of resemblance between principal com--

ponent subspaces, and the eigenvectors can be used to
explore the nature of this resemblance.

3. ANALYSIS FOR MORE THAN TWO GROUPS

Suppose that g(>2) groups exist, with n; units in the
ith group (z =1, ..., ¢g), and the same p variables
measured on each unit. Also, each group has been
described by its first £ principal components. Write L,
as the matrix whose (z, j)th element is [;;¥, the loading
of the jth variable on the sth principal component for
thetthgroup ¢ =1, ..., k;7=1,...,p;t=1,...,¢9).
We now consider the problem of simultaneously com-
paring these g sets of components.

Theorem 3: Let b be an arbitrary vector in the original
p-dimensional data space, and let &, be the angle between
b and the vector most nearly parallel to it in the space
generated by the k principal components of group ¢
t=1, ..., g). Then the value of b that minimizes
V =37!_,cos?d, is given by the eigenvector b, cor-
responding to the largest eigenvalue u;of H = 3/, L,/L..

Proof: From the definition of 8, we see that cos?é,
= b’L,/L;b, so that V = X/_, cos? 6, = b’Hb, and the
theorem follows from the standard eigenvalue-eigen-
vector result given in the proof of Theorem 1.

Therefore, if we consider V to be a measure of close-
ness of b to all the k-dimensional subspaces, then the
average component that agrees most closely with all ¢
sets of k£ principal components is given by b;. A measure
of discrepancy between this component and the k-di-
mensional subspace for the tth group (¢t =1, ..., ¢) is
given by ,

8, = cos™! {(b/'L/Lby)¥} . (3.1)

Completing the latent root and vector analysis of H
will lead to the subspace of dimension & that resembles
all ¢ subspaces as closely as possible. The eigenvector
b. corresponding to the second-largest eigenvalue u, will
give the direction, orthogonal to by, in which the criterion
V has next largest value. The angle between b, and the
vector most nearly parallel to it in the subspace for the
tth group is found as in (3.1). This procedure can be
continued for all & latent roots and vectors, and these &k
vectors define the required subspace. If k; components
have been obtained for the ¢th group (z =1, ..., g) and
k = min(ky, ks ..., k;), then only a k-dimensional
comparison will be useful. Any further dimension will
be orthogonal to at least one of the group subspaces.

That this procedure reduces to the solution obtained
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in Section 2 when g = 2 can be demonstrated easily as
follows.

The solution of Section 2 required maximization of
a’LM’'ML’a subject to a’a = 1. This is equivalent to
maximizing a’L (L'L4+M’M)L’a subject to (a’L) (L'a) =1,
since LL’ = I. Setting b = L’a as in Section 2, it follows
that the quadratic form is maximized when b is the
eigenvector associated with the largest eigenvalue of
(L'L 4+ M'M). Hence pb = (L'L + M'M)b = I+ M'M)b
on using b = L’a. This establishes the equivalence of the
vector b in the two sections.

4. EXAMPLES

The following analyses are abstracted from a larger
investigation into the educational achievements of
Venezuelan students at colleges in the north of England.
The analyses are presented here as an illustration of the
foregoing techniques and are not intended to be repre-
sentative of any conclusions reached in the full
investigation.

The data consisted of examination scores achieved in
eight subjects by 160 students. These students were
distributed among 10 different colleges, which meant
that sample sizes were quite small for each, lying between
10 and 20. One aim was to compare performance between
colleges, so principal component analyses were done
separately on the raw scores from each college in an
attempt to summarize descriptively the main sources of
variation between students in each. Three -colleges,
labeled A, B, and C, have been selected for present
illustration. The loadings on each of the first four principal
components for each college are displayed in Table 1.
The first component in each case made up about 60
percent of the trace and the second about 20 percent.

In order to demonstrate the technique of Section 2,
the principal components of colleges A and B were com-
pared, and the results are displayed in Table 2. The
first 7 principal components in the two groups are com-
pared sequentially for r = 1, 2, 3, and 4. Part (a) of
Table 2 gives the angles of separation of the two principal
component spaces. The values of the latent roots, A,
are quoted, as well as the corresponding angles, given by
cos! (\)% Part (b) of Table 2 then gives the vectors
(referred to the original axes) that are closest to both
spaces for each dimensionality of comparison.

A comparison of the principal components for colleges
A and B can now be made more readily than by inspect-
ing Table 1. We see that the first principal components
in each of the colleges do not compare very well, with an
angle of 34° between them (although an unreported
Monte Carlo study found that 34° is near the 95th
percentile for one common component with n = 20).
Similarly, when the first two components of each college
are compared, the nearest the two spaces come to coinci-
dence is 30°. Otherwise, they are almost orthogonal to
each other. When we proceed to component spaces of
dimensions 3 and 4, however, we see that a common
space of three dimensions is strongly indicated, with
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1. Loadings on First Four Principal Components for Each of Three Colleges

College A College B College C
Subject I 1 1 v ) 1 1 v I 1 mn v
Comprehension .227 458 .218 .804 .207 .655 .669 .016 402 .465 .181 .291
Essay 322 —-.191 .331 .063 .376 285 -.277 —.009 405  —.040 128 -.553
Cloze 1 .319 .004 -.525 .000 .250 —.098 .169 110 402 -.193 —.581 .225
Cloze 2 275 -.014 —.416 —.040 .184 .091 137 .023 321 -.209 -.505 .097
Structure 741 -.123 .385 -.312 .400 .070 -.211 —.839 403 .465 .181 .291
Dictation .343 152 —.455 116 .684  —.559 .220 .231 405  —.040 128 —.553
Spanish Cloze 1 014 -711 -.17 .398 .256 .337 —-.382 413 269 —.580 .383 .209
Spanish Cloze 2 -.019 —.458 .099 .284 161 .202 —.435 244 106  —.384 401 .339

angles as low as 4°, 6°, and 18°. These are well within
the 95 percent Monte Carlo points for three common
components and n = 20. This situation implies that the
prime sources of variation among students in the two
colleges are rather different, but most of the differences
disappear if we characterize each college by three or
more principal components. We see from the first two
principal components of each college (Table 1) that the
primary components for the two colleges load very dif-
ferently on the variables structure and dictation. The
compromise average subspace defined by the vectors in
Table 2(b) presents a rather different pattern. Indeed,
when component spaces of dimension four are compared,
the vector nearest to both spaces loads almost exclusively
on structure, with a secondary contribution from essay.
This, then, is the component with respect to which the
between-student scatter is most similar in.the two
colleges.

Now consider an overall comparison of all three
colleges, using the technique of Section 3. For brevity,
we will compare only the respective component spaces of
dimension four. The results are given in Table 3.

Part (a) of Table 3 presents the coefficients of each of
the four orthogonal directions closest to all three principal

component subspaces, in relation to the original variables.
Part (b) gives the angular separation between each group
and each direction. The eigenvalues are the sum of
squared cosines of these angles and are given at the foot
of each column.

All three groups are close together along the first two
axes, but begin to diverge after this. Inspection of the
vector loadings gives an indication of the component
with respect to which the between-student scatter is
most similar in all three colleges. The first direction is
loaded most heavily on structure (as in the comparison
of colleges A and B) and on comprehension. This latter
item was absent in the previous comparison, and it
reflects the higher weighting given to this variable in the
first two principal components of college C. The fact that
it comes out as important when all colleges are considered
together implies that it was hidden but not negligible in
colleges A and B. The second direction in the present
comparison is weighted almost exclusively on the Spanish
Cloze tests (i.e., selection of a word from a list to com-
plete a sentence) and corresponds to the third-most-
important vector in Table 2. This indicates that only two
dimensions are really common between the first four
principal components of the three colleges. Structure and

2. Comparison of Principal Component Spaces of Colleges A and B

(a) Eigenvalue Analysis

Corresponding Angles

Eigenvalues in Degrees
Component spaces of dimension 1 .689 33.9
Component spaces of dimension 2 .024 .739 81.1 30.7
Component spaces of dimension 3 173 .764 977 65.5 29.1 8.7
Component spaces of dimension 4 .521 .910 .989 .996 43.9 17.5 6.0 3.6
(b) Vectors Closest to Both Spaces
Dimension of comparison 1 2 3 4
Vector 1 1 2 1 2 3 1 2 3 4
Comprehension 227 217 —.076 -.325 194 .776 181 —.753 .268 —.558
Essay .365 402 -.217 .382 .254 .288 47 .075 151 —-.057
Cloze 1 .297 .280 143 —-.155 .394 -.217 .049 —.276 .030 .401
Cloze 2 .240 242 —.006 —.085 .308 —-.078 .092 -.210 .030 .248
Structure .596 .599 .034 .318 474 .310 797 .094 —.468 —.016
Dictation 537 .458 .586 —.278 .637 -.378 .077 —.449 -.013 .656
Spanish Cloze 1 A41 .254 —.644 557 1130 —.146 .226 .193 .694 .180
Spanish Cloze 2 .074 146 -.410 .480 .016 —.044 .206 .244 451 .034
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3. Comparison of Principal Component Spaces
of Colleges A, B, and C

Dimension 1 2 3 4

(a) Directions Closest to Each Subspace

Comprehension .586 —.138 .247 —.756
Essay .334 .223 .075 .246
Cloze 1 .219 .052 —.497 —.047
Cloze 2 .188 .048 -.375 -.029
Structure .587 -.172 - .350 .589
Dictation .336 .076 —.608 .108
Spanish Cloze 1 .069 .769 .059 -.077
Spanish Cloze 2 .016 .547 .223 —.006
(b) Angles Formed by Each Group With Each Direction
College A 1.99 9.38 17.48 15.01
College B 3.06 11.18 27.73 10.74
College C 1.57 6.33 29.71 73.75
Sum of Squared Cosines ~ 2.995 2.924 2.448 1.977

comprehension form the major common cause of dif-
ferences between students, followed by their perfor-
mance on the Spanish tests. Differences among the
colleges are highlighted by the fourth component, on
which C diverges markedly from A and B. The difference
is attributable to the contrast between structure and
comprehension.

5. DISCUSSION

We conclude by noting a few characteristics of the
methods given in this article and their similarities to
other established techniques. A certain pattern in the
eigenvalues is always obtained when different dimen-
sionalities are successively compared. Clearly, if 6 is the
minimum angle between two spaces of dimension k,
then the minimum angle between spaces of dimension
greater than k for the same groups must be less than or
equal to 6. An analogous argument will hold for the
second-lowest angle and so on. Thus, in all tables having
the form of 2(a), the diagonal and all subdiagonals of the
triangular array of eigenvalues will be nondecreasing
when going from left to right.

The geometrical connection between correlations and
cosines of angles implies that there are close affinities
between the techniques given earlier and canonical cor-
relation analysis. In the latter case it is the variables
rather than the units of the sample that are partitioned
into two groups, and successive linear combinations
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(orthogonal within each group of variables) are produced
to partition the overall correlations existing between the
two groups. The basic geometrical argument underlying
this, and hence the formal algebraic solution, has much
in common with PCA comparison, although the emphasis
has passed from units to variables. Canonical correla-
tion analysis can also be extended to allow more than two
sets of variables in the partition, and this area has been
reviewed by Kettenring (1971). Unfortunately, there is no
longer a unique model underlying the analysis, and
Kettenring discussed a number of possibilities. The
method given in Section 3 corresponds to Kettenring’s
sum of squared correlations model.

Finally, the concept of critical angles between sub-
spaces, and allied geometry, has been used to advantage
in the context of analysis of variance by James and
Wilkinson (1971). It enables their factorization of the
residual operator for nonorthogonal analysis of variance
to be interpreted geometrically.
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