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Data may now be recorded concurrently from EEG and functional

MRI, using the Simultaneous Imaging for Tomographic Electrophys-

iology (SITE) method. As yet, there is no established means to integrate

the analysis of the combined data set. Recognizing that the

hemodynamically convolved time-varying EEG spectrum, S, is

intrinsically multidimensional in space, frequency, and time motivated

us to use multiway Partial Least-Squares (N-PLS) analysis to

decompose EEG (independent variable) and fMRI (dependent

variable) data uniquely as a sum of ‘‘atoms’’. Each EEG atom is the

outer product of spatial, spectral, and temporal signatures and each

fMRI atom the product of spatial and temporal signatures. The

decomposition was constrained to maximize the covariance between

corresponding temporal signatures of the EEG and fMRI. On all data

sets, three components whose spectral peaks were in the theta, alpha,

and gamma bands appeared; only the alpha atom had a significant

temporal correlation with the fMRI signal. The spatial distribution of

the alpha-band atom included parieto-occipital cortex, thalamus, and

insula, and corresponded closely to that reported by Goldman et al.

[NeuroReport 13(18) (2002) 2487] using a more conventional analysis.

The source reconstruction from EEG spatial signature showed only the

parieto-occipital sources. We interpret these results to indicate that

some electrical sources may be intrinsically invisible to scalp EEG, yet

may be revealed through conjoint analysis of EEG and fMRI data.

These results may also expose brain regions that participate in the

control of brain rhythms but may not themselves be generators. As of

yet, no single neuroimaging method offers the optimal combination of

spatial and temporal resolution; fusing fMRI and EEG meaningfully

extends the spatio-temporal resolution and sensitivity of each method.
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Introduction

The armamentarium of the neuroscientist now includes tools

with spatial resolution ranging from centimeters to microns and

temporal resolution from years to nanoseconds. Even so, no single

tool provides an optimal combination of spatial and temporal

resolution, and there generally exists a tradeoff in which improve-

ment in one dimension of resolution requires compromises in the

other (Churchland and Sejnowski, 1988). Extending our under-

standing of the functional architecture of the human brain necessar-

ily requires a rational combination of multiple methods. Particularly

attractive is the fusion of the superb temporal resolution of electro-

encephalography (EEG) or magnetoencepalography (MEG), with

the excellent contrast and spatial resolving power of functional MRI

(fMRI). Several methods of integration have been reported (Horwitz

and Poeppel, 2002), each with its own approaches to analysis.

Under the assumption that the response of the brain to a set of

stimuli or conditions is the same when acquired at different times,

several groups (Babiloni et al., 2001; Baillet et al., 2001; Singh et

al., 1998) have attempted the analysis of EEG and fMRI data,

gathered separately. While this approach is not without problems

(Gonzalez-Andino et al., 2001; Ioannides, 1999), there is increas-

ing evidence that adequate modeling of multimodal data will allow

the estimation of the underlying neural processes with simulta-

neously high spatial and temporal resolution (Trujillo et al., 2001).

More recently, methods have been described for the concurrent

collection of EEG and fMRI data (Goldman et al., 2000). These

methods make possible the study of dynamic relationship between

fluctuations in the blood oxygenation level dependent (BOLD)

signal and the properties of the electrical activity recorded on the

scalp. Here, the fMRI and EEG data each necessarily provide

evidence of the same underlying brain activity, although the extent

to which they are measuring the same signals, or even signals

from the same processes, is indeterminate.

In a method they have called Simultaneous Imaging for Tomo-

graphic Electrophysiology, or SITE, Goldman et al. (2002) created

tomograms of the brain regions whose fMRI signal changes were

associated with variations in alpha band power. In that work, 16

bipolar EEG channels were recorded under the eyes-closed resting

state that is well known to produce elevated alpha wave activity. To

match the EEG and the fMRI time courses, they then convolved the
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measured alpha power at each time point with an a priori hemo-

dynamic response model (Cohen, 1997) and calculated the corre-

lation between the fluctuations of alpha activity and the BOLD time

course at each voxel. Alpha activity was defined as the broad band

spectral power in the frequency range 8–12 Hz calculated over the

2.5-s period needed to acquire each MRI volume and averaged over

the occipital derivations (T6-O2, O2-P4, T5-O1, O1-P3). Positive

correlations were found in thalamic voxels as well as in the insula,

while negative correlations predominated in the parieto-occipital

cortex. Thus, these correlation maps showed extended thalamo-

cortical structures implicated in the generation of this EEG rhythm.

A deeper analysis of these results, however, leads to further

questions.

Traditionally, the EEG has been decomposed into a series of

fixed broad spectral bands (delta, theta, alpha, beta, gamma, . . .)
based more on history and discovery than on a theoretical

framework. This approach, although computationally convenient,

may obscure the fact that the sources of each of these character-

istic oscillations may or may not be unique (Szava et al., 1994). It

has been shown that the EEG can be analyzed as a partially

overlapping spectral components defined with high-frequency

resolution (Pascual-Marqui et al., 1988); each spectral component

being interpreted as reflecting the activity in a given oscillatory

network. We seek here to associate each of these components with

the BOLD-fMRI activity. In keeping with standard terminology in

time–frequency decompositions (Chen et al., 2001), these com-

ponents will be designated as ‘‘atoms’’.

While strong prior information suggests that the scalp locations

best associated with alpha power fluctuations may well be near the

occipital electrodes, other spectral components may have a more

subtle or distributed relationship to scalp topography. Under these

more general circumstances, it may be better to have a more data-

driven means to estimate the linear combination of EEG measure-

ments (or derivations) that correlate optimally with BOLD. Such

estimates are likely to result in greater statistical power for the

detection of EEG–fMRI relationships. Similarly, it might be

desirable to look at the correlation of the EEG with a calculated

optimum linear combination of all BOLD signals, rather than with

each voxel separately.

Essentially, our goal has been to seek methods that best explain

the spatio-temporal relationships between fMRI and the oscillatory

components of the EEG without first forming a priori hypotheses

as to which characteristics of the EEG are likely be of most

interest. These considerations led us to search for methods of

atomic decomposition of the EEG and methods for correlating the

output of this decomposition with the fMRI data. There are a lot

of well-known methods for data reduction of the EEG. Among

them, Principal Components Analysis (PCA), Independent Com-

ponents Analysis (ICA), and dictionary-based decompositions

have been the most explored. They have been applied only to

two-dimensional data. As the time-varying EEG spectrum is, in

fact, a three-dimensional array (electrode pairs, frequencies, and

time), it cannot be expressed conveniently as a matrix. The

decomposition of such a multidimensional data has been better

accomplished by a generalization of the Singular Value Decom-

position known as Parallel Factor Analysis (PARAFAC) (Harsh-

man, 1970), a tool that has been used previously in the analysis of

evoked potentials (Field and Graupe, 1991) and pharmacological

studies using high-dimensionality EEG data (Estienne et al.,

2001). The most interesting advantage of the PARAFAC model

is that it provides a unique decomposition without imposing
orthogonality or independence constraints to the components. It

is also valued for being a parsimonious and ‘‘easily interpretable’’

model (Bro, 1998).

Several calibration methods (Principal Components Regres-

sion, ridge regression) can be used for correlating the EEG

decomposition and the fMRI data. Although some general guide-

lines have been given for establishing a hierarchy among them

(Kiers, 1991), there is not definitive calibration method that one

can stick to, since its correct application depends strongly on the

behavior of the data considered. In a straightforward application

of any of these methods (e.g., Principal Components Regression),

one could use the EEG spectral power estimates (principal

components of time-varying EEG spectrum), for different time

segments, as the independent variable to be correlated with the

fMRI. This procedure in two steps (decomposing and correlating)

does not ensure that we are finding the optimal relationship

between the EEG and the fMRI because decomposition is based

on nonphysiological assumptions (e.g., it is unreasonable to

expect that the activities of individual neural generators to be

mutually orthogonal). Therefore, we should search for a method

that is capable of simultaneously extracting EEG spectral com-

ponents or atoms (and their scalp landscapes) having maximal

temporal covariance with certain BOLD profiles. One possible

candidate for such a multimodal analysis is Partial Least-Squares

(PLS) regression, introduced in fMRI analysis by McIntosh et al.

(1996). In PLS, the fMRI data are treated as a matrix (voxels by

time). PLS identifies those linear combinations of fMRI voxels

that have maximal temporal covariance with linear combinations

of a second matrix of independent variables, measured at the

same time points. The method hinges on calculating the Singular

Value Decomposition (SVD) of the covariance matrix between

the fMRI and independent variables. This method has been used

for spatio-temporal analysis of event-related potentials (Lobaugh

et al., 2001) and simultaneous EEG and MEG data (Düzel et al.,

2003).

Fortunately, the PLS technique has been extended by Bro

(1996) to deal with multidimensional data, obtaining a new model

known as Multiway Partial Least Squares or just N-PLS. This

model consists essentially of decomposing the independent and

dependent data into multilinear models such that the score vectors

from these models have pairwise maximal covariance. The multi-

linear decomposition is made in the same way as PARAFAC, thus

inheriting both advantages and limitations of that model.

In this paper, the N-PLS model will be introduced for decom-

posing the EEG into a sum of atoms each with a specific spatial,

temporal, and spectral factors or ‘‘signatures’’. Simultaneously, the

fMRI data will be decomposed into the same number of atoms, each

the product of spatial and temporal signatures, in such a way that the

latter will have maximal covariance with the EEG temporal signa-

ture. The source localization of the EEG spatial signature (topogra-

phy) of each atom will be examined, allowing separate analysis of

the tomographic distribution of the EEG sources (what we will call

sources of the ‘‘EEG rhythm’’) and those tomographic sources

obtained as the fMRI tomograms that we interpret as the ‘‘brain

rhythm’’ generating system. It should be noted that we have limited

our consideration to oscillatory components of the EEG. While

important, they do not exhaust the list of interesting phenomena that

might possibly relate to the fMRI. Transient waveforms, for exam-

ple, are not optimally described in the time–frequency framework.

In principle, the methods developed here may be extended to

consider this situation.
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Methods

Consider a matrix, F(Ns � Nt)
, of the fMRI data (Ns voxels, Nt

time points) that is recorded simultaneously with the EEG time

series from Nd electrodes. Further, define the EEG signal recorded

during each TR (the period needed to collect an MRI volume) as a

‘‘segment.’’ In the present case, the time-varying EEG spectrum,

S(x)(Nd � Nt)
(x being the frequency), for Nt segments, was

estimated via the Thomson multitaper method (Thomson, 1982).

Let s be a reference EEG time signal, formed by selecting a linear

combination, a, of the EEG electrode power in a given band of

frequencies X, which was then filtered by the hemodynamic

response, H:

sð1�NtÞ ¼ aTð1�NdÞ
X
xaX

SðxÞðNd�NtÞHðNt�NtÞ ð1Þ

where the symbol, aT, represents the transpose of vector a. Then,

the correlations between the fMRI matrix and the reference EEG

signal: r(Ns � 1)= corr(F, s) are mapped.

In the analysis performed by Goldman et al. (2002), they

chose an ad hoc linear combination, a (an occipital electrode

set), and frequency band (8–12 Hz) for finding the reference

EEG time signal. We will extend this analysis to estimate the

optimal linear combination of electrodes, and a particular spectral

window defining an optimal frequency band
PPPP

xaX bðxÞSðxÞ .
Finally, we will estimate a suitable linear combination, u(1 � Ns

)T of

the elements of the fMRI matrix to be correlated with a particular

EEG time signal.

Parallel Factor Analysis

Recognizing that the time-varying EEG spectrum may be

expressed conveniently as a three-dimensional array makes possi-

ble the use of Parallel Factor Analysis (PARAFAC) (Carroll and

Chang, 1970; Harshman, 1970), a generalization of Principal

Component Analysis (PCA) for dealing with multidimensional

data. With PARAFAC, the time-varying EEG spectrum is decom-

posed (in a least-squares sense) into trilinear components, or atoms,

each being the product of a spatial, spectral and temporal factors, or

signatures.

Unlike PCA, PARAFAC has no rotational freedom; therefore,

the decomposition is unique, even without any orthogonality

constraints. It has been shown that if the data are approximately

trilinear, the correct number of components is used, and the signal-

to-noise ratio is adequate, then the PARAFAC algorithm will show

the true underlying phenomena (Kruskal, 1976, 1977). Moreover,

PARAFAC provides a unique data-determined linear combination,

i.e., a reference time signal, to correlate with the fMRI data. The

use of PARAFAC in analyzing three-dimensional EEG data,

(space, frequency, time) is described in a companion paper (Miwa-

keichi et al., 2004).

Then, applied to the time-varying EEG spectrum, which is

expressed as a three-dimensional matrix S(Nd � Nw � Nt)
, PARAFAC

decomposition establishes an element-wise trilinear model for

these data:

Ŝdwt ¼
XNk

k¼1

adkbwkctk þ edwt ð2Þ

where d, w, and t designate electrode pairs, frequency, and time,

respectively, and the term edwt represents the error. The total
number of components is Nk, each of which is designated by

index k. Our problem is to find the so-called ‘‘loading matri-

ces’’, A, B, and C whose Nk columns are the loading vectors

ak(Nd � 1), bk(Nw � 1), and ck(Nt � 1) of elements adk, bwk, and ctk
respectively.

We can fit the model expressed in Eq. (2) by finding

min
adkbwk ctk

jjSdwt �
XNk

k¼1

adkbwkctk jj2:

The interpretation of the loading vectors is as follows: ak is the

spatial signature of the kth atom, which is a representative topo-

graphic map, or linear combination of electrodes; bk is the spectral

signature for the kth atom and ck is the temporal signature, or time

course, for atom k. The only indeterminacies in the least-square

solution are the order of components and the scaling of loading

vectors. Thus, centering and scaling of the data are needed before

decomposition, as is a convention for the signs and scale of the

loadings. For PARAFAC, the resulting spectral and spatial loadings

are normalized, while the non-normalized loading will be the

temporal factor, reflecting the scale of the data.

It is important to select the most appropriate number, Nk, of

components. The Core Consistency Diagnostic (Corcondia) is an

approach for so doing that applies especially to PARAFAC models,

and has been shown to be a powerful and simple tool for deter-

mining the appropriate number of components in multiway models

(Bro, 1998). In this work, we use not only Corcondia but also the

evaluation of the systematic variation left in the model’s residuals.

PARAFAC has been extensively used in chemometrics, psycho-

metrics, and econometrics. In the field of spatio-temporal analysis of

Event-Related Potentials, PARAFAC has been shown to be formally

equivalent to the Topographic Components Model (TCM) (Möcks,

1988a,b). Field and Graupe (1991) offered some general guidelines

for the correct exploration of EEG data with PARAFAC. The basic

pitfall of the application of PARAFAC is that the data are actually

not trilinear, and, hence, a careful preprocessing and analysis of the

results most be done for assessing the validity of the model.

Multiway Partial Least-Squares Regression

Despite being a useful tool for data explorations and to find a

unique reference EEG time signal, the PARAFAC analysis leaves

two important questions unanswered:

a) Which frequency components are related to the fMRI signal?

b) What is the optimal linear combination of EEG electrodes to

correlate with the fMRI?

Partial Least-Squares regression is an automatic procedure to

find the linear combination that maximizes the temporal correlation

between the EEG and fMRI data (de Jong and Phatak, 1997;

Martens and Naes, 1989). This method is similar to Principal

Components Regression (PCR), where the independent variable is

decomposed into a set of scores, and the dependent variable is

regressed on these scores instead of the original variable. The main

difference being that in PLS regression, both independent and

dependent variables are decomposed such that these scores have

maximal covariance; that is, the relevant variations of the inde-

pendent variable for predicting the dependent variable are empha-

sized. An extension of the PLS regression model to three-way data

was proposed by Ståhle (1989). Later, Bro (1996) developed a

general multiway PLS (N-PLS) regression model that was shown
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to be optimal according to the theory of PLS and had a particular

case numerically equivalent to that of Ståhle. N-PLS seeks in

accordance with the philosophy of PLS to describe the covariance

of the dependent and independent variables. This is achieved by

fitting multilinear models simultaneously for independent and

dependent variables and for a regression model relating the two

decomposition models. On the other hand, as covariance is the

product of the correlation and the variances, these three measures

actually are maximized collectively.

According to Bro (1996), the model is known as N-PLS or

Multilinear PLS in general, and the specific model to be used in

this work is called tri-PLS2. This follows from its having a three-

way decomposition for the independent variable (tri), which will

be the time-varying EEG spectrum, and a two-way or bilinear

decomposition for the dependent variable (2), corresponding to the

fMRI data. This can be considered as a form of PARAFAC

decomposition constrained by additional conditions of maximal

covariance with certain BOLD components. The structural model

can be expressed as:

Ŝdwt ¼
XNk

k¼1

adkbwkctk þ edwt

F̂st ¼
XNk

k¼1

uskvtk þ est

where est and edwt are elements of noise matrices and the index, s,

represents the voxels or grid points inside the brain. These

decomposition models are estimated iteratively, component-wise,

by finding a set of normalized vectors, ak, bk, and uk such that the

least-squares score vectors, ck and vk, have maximal covariance. It

is worth underscoring that the N-PLS model is unique, as it

consists of successively estimated one-atom models, each of which

is itself always unique. On the other hand, note that the EEG data
Fig. 1. Tri-PLS2 diagram. The time-varying EEG spectrum is represented as a three

fMRI matrix is indexed by time and voxels (s). Both data are decomposed into a su

and temporal (ck) signatures. fMRI atoms have a spatial (uk) and temporal (vk) sign

the temporal signatures to have maximal covariance. Joining all atoms for eac

corresponding matrices A, B, C, V, U.
must first be preprocessed, both by removing muscle and motion

artifacts, replacing them by linear interpolation of the data, and by

convolution of the EEG spectrum with the hemodynamic impulse

response function (Cohen, 1997). A graphical representation of the

tri-PLS2 method is shown in Fig. 1.

The interpretation of loading vectors is straightforward. The

spectral signature of the EEG for the k atom, bk, will allow the

identification of those brain rhythms whose time-varying enve-

lopes has maximal covariances with the BOLD signal. The spatial

signature of the fMRI for atom k, uk, is a tomographic map (which

is not a correlation map) showing those BOLD signals whose time

courses are correlated maximally with the EEG. Finally, the spatial

signature of the EEG, ak, is a representative topography of atom k,

extracted by asking for the maximal temporal correlation between

EEG and fMRI.

The decomposition is made component-wise; that is, for each

component (atom), a rank-one model is built of both the

independent variable 3D matrix S, and the dependent variable

2D fMRI matrix, F. These models are then subtracted from the

original data, and a new atom of signatures is found from the

residuals. The calculation for one atom of the tri-PLS2 model is

developed in detail in Appendix A. As in PARAFAC, a conven-

tion about signs and scale is needed. In this case, the non-

normalized factors will be the temporal signatures of both the

EEG and the fMRI data, while the other signatures are normal-

ized. Signs were assigned to ensure that the correlation between

fMRI and EEG temporal signatures for the alpha atom were

positive. Moreover, in this work, it is important to obtain smooth

images as atoms of the spatial signature of the fMRI. For the sake

of simplicity, the raw data can be presmoothed and the same

smoothed signatures will be obtained from the decomposition

(Bro, personal communication). Therefore, the raw fMRI data are

presmoothed to obtain smoothed atoms for the spatial signature

of fMRI. Smoothing consisted of applying the nearest neighbor

moving average three times to the raw fMRI data.
-dimensional array indexed by time (t), frequency (w), and channel (d). The

m of atoms or components. Each EEG atom have spatial (ak), spectral (bk),

ature. The extraction of atoms is performed simultaneously by constraining

h signature allows them to be expressed in matricial notation, obtaining
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Assessment of N-PLS model

The advantages of N-PLS over bilinear methods are that it is

much more parsimonious, easier to interpret, and less prone to

noise. This advantages hold even over nonlinear calibration

models (e.g., feedforward neural networks) because they are

bilinear in the decomposition of the independent variable and

the nonlinearity is introduced only in the relation of this decom-

position with the dependent variable. Another advantage is that the

algorithm is faster than other multilinear decomposition methods

(e.g., PARAFAC) due to the relatively few parameters to estimate

and particularly, because the tri-PLS algorithm boils down to

eigenvalue problems.

However, this model has its own pitfalls. The basic problem is

the appropriateness of the trilinear model. As this is a data-

dependent question, there is not a general and straightforward

answer. If there is no any a priori knowledge about the three-way

nature of a given data, one could try different methods to see

which one describes the data best. In the case of several methods

fitting the data equally well, one should choose the simplest model

and in this regard multilinear models are preferred over bilinear

ones. On the other hand, although it has been shown that models

like N-PLS seldom fail to converge and offer degenerate solutions

(Bro, 1998), these are problems that can arise in multiway

methods and should be taken into account in the exploration of

the data.

In practice, it is convenient to apply a PARAFAC decomposi-

tion to the EEG data before applying tri-PLS2 model. This initial

exploration will allow to assessing the appropriateness of the

trilinear model for the time-varying EEG spectrum, to identify

possible outliers in the data, and the estimation of the number of

significant atoms present in the data. The implementation of

PARAFAC used in this work is contained in a Matlab Toolbox

developed by Bro and available on the web. It provides several

diagnostic tools, such as Corcondia, residuals plots, leverages

plots, convergence, and explained variance of the data, among

others.

As said above, the appropriate number of components was

obtained with the residual analysis and the Corcondia index. This

index was also used for assessing the trilinear structure of the data

as shown in Estienne et al. (2001). The analysis of leverages

allowed to detecting four outliers in the time mode. These four

time windows (or segments) were discarded from the data for

subsequent analysis. We also removed some constant signature

(nonphysiologically meaningful) in the frequency mode by an

adequate centering across this mode. Furthermore, comparison

between the loadings of the time-varying EEG spectrum decom-

position provided by PARAFAC and those provided by tri-PLS

will validate (at a preliminary level) the truthfulness of the results

obtained. A detailed explanation about the use of the diagnostic

tools for this exploratory analysis and discussion of the reliability

of PARAFAC model can be found in Bro (1998) and Miwakeichi

et al. (2004).

Source localization analysis

The spatial signature for the time-varying EEG spectrum, ak,

may be analyzed further by source reconstruction methods, such as

Low-Resolution Electromagnetic Tomography (LORETA) (Pasc-

ual-Marqui et al., 1994) to find those underlying electrical sources

that are correlated temporally with the BOLD signal. However,

E. Martı́nez-Montes et al. / N
LORETA cannot be applied directly since ak is not derived from

voltages but rather from the power spectra of voltages. Therefore,

in this case, we developed a procedure that allows the estimation of

the spectra of the EEG sources on the basis of the spectra of the

observed voltages. We shall call this type of source localization

‘‘Source Spectra Imaging’’ (SSI). This is based on the following

assumptions:

� There is no spatial correlation between scalp voltage measure-

ments.
� There is no spatial correlation between electric current densities

inside the brain.
� The source spectra (variances of current densities in frequency

domain) to be estimated will be the smoothest one in space.
� The source spectra is the same in the x, y, and z directions.

The detailed formulation for obtaining this inverse solution

can be found in a companion paper (Miwakeichi et al., 2004).

It must be emphasized that the assumptions behind this

inverse solution can classify it as a distributed inverse solu-

tion, whose pitfalls and drawbacks have been extensively

described in the literature (Fuchs et al., 1999; Pascual-Marqui,

1999).

Moreover, the EEG data analyzed in this work corresponds to

voltages measured in an array of 16 bipolar pairs; therefore, to find

the SSI solution, the problem of transforming these bipolar

measurements into unipolar voltages must be addressed. We must

thus construct the matrix M that transforms the spatial signatures

of the EEG, ak
uni, obtained (ideally) from a unipolar array, into

those measured from bipolar recordings (Eq. (3)). A partial

representation of matrix M is given in Eq. (4). Then, ak
uni is

estimated by multiplying Eq. (3) by the Moore-Penrose pseudo-

inverse of matrix M.

ak ¼ Maunik ð3Þ

M ¼

Fp2 . . .F7 F8 . . .O2 . . .T4 . . . T6

1 . . . 0 �1 . . . 0 . . . 0 . . . 0 Fp2� F8

0 . . . 0 1 . . . 0 . . . �1 . . . 0 F8� T4

] ] ] ] ] ] ]

0 . . . 0 0 . . . �1 . . . 0 . . . 1 T6� O2

. . . . . . . . . . . . . . . . . . ]

ð4Þ

Further, with this method, we can visualize the spatial signa-

tures of the EEG obtained by tri-PLS2 decomposition (which

would correspond to the bipolar topographies) as a topographic

map on the head. Finally, it is noteworthy that these topographic

maps, and their SSI solutions, are essentially dimensionless, as the

former is normalized as part of the scale convention for the tri-

PLS2 model.

Statistical inference

Our first inferential problem is to determine whether there is a

significant correlation between the time courses of the EEG and

fMRI. This can be tested readily by permutation of the time



Fig. 2. Spectral signatures of the EEG decomposition. (A) Spectral

signatures obtained from PARAFAC decomposition of the time-varying

EEG spectrum. Three atoms were extracted. The first has a spectral peak

around 10 Hz, corresponding to the well-known alpha rhythm. The second

has a spectral peak around 4 Hz, which is a value usually assigned to theta

activity. The third atom corresponds to a fast activity with spectral peaks

from 35 to 45 Hz, in the gamma range. (B) Spectral signatures of the time-

varying EEG spectrum, obtained from the tri-PLS2 model. Three atoms or

components were extracted. These spectra resemble strongly those obtained

from PARAFAC decomposition.
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segments in the time-varying EEG spectrum, which will destroy

any temporal correlation between the EEG and fMRI data (Galán et

al., 1997). This procedure is not appropriate, however, if there is

any autocorrelation in the time series of the EEG data. Using the

ARFIT toolbox for Matlab (Schneider and Neumaier, 2001), we

fitted an autoregressive model of order 2 (selected automatically by

Schwarz’s criterion) to the time course of time-varying EEG

spectrum. With this information, we applied a block bootstrap

method, which is adequate in the case of weak dependence of

observations (time points in this case). The method consists of

resampling with replacement, using blocks of consecutive time

points instead of individual time points. The length of the blocks

was chosen to be great enough to preserve the original dependence,

so that the empirical distribution of statistics for blocks will

resemble that for the original time points (Davison and Hinkley,

1997). On the other hand, it is also desirable to have as many

blocks as possible. In our case, we use nonoverlapping blocks of

length l = 2p+1; p = 2 being the order of the autoregressive model.

Thus, by applying the tri-PLS2 method for N resampled series, we

obtained N different decompositions into atoms of corresponding

signatures for each modality. The correlation coefficients between

the EEG and corresponding fMRI time courses for each atom were

then computed. From the 95th percentile of the empirical distri-

bution of these correlations, we established a significance level for

testing of the original correlation.

Our second inferential problem is to determine which voxels in

the spatial signature of the fMRI are significantly different from

zero. This is important for identifying brain regions that contribute

to a particular EEG-fMRI temporal correlation. Thus, for this

problem, we used a simple jackknife resampling procedure (Davi-

son and Hinkley, 1997) from which a pseudo t image was

constructed. In this specific case, the jackknifed estimate was

obtained as follows: the leave-one-out spatial signatures (ui ; i =

1 . . . Nt) of the fMRI were created by leaving out time points one at

a time and applying the tri-PLS2 model to the truncated data. The

jackknife pseudo observations were then computed as:

ui
*Ntu � ðNt � 1Þui; i ¼ 1 . . .Nt

where u is the fMRI spatial signature corresponding to the

complete data. This equation holds for all components although

we have eliminated the subscript k for simplicity. Using the

mean of the pseudo observations ðū* ¼ 1
Nt

PPPPPNt

i¼1 ui
*Þ and the

standard deviations ru	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

PPPPPNt

i¼1ðu
q

i

*� ū*Þ2
� �

, the pseudo t image

for each atom can be computed as timage ¼
ffiffiffiffiffi
Nt

p
ū*
ru	

:

Experimental data

The EEG was sampled at 200 Hz from an array of 16 bipolar

pairs, (Fp2-F8, F8-T4, T4-T6, T6-O2, O2-P4, P4-C4, C4-F4, F4-

Fp2; Fp1-F7, F7-T3, T3-T5, T5-O1, O1-P3, P3-C3, C3-F7, F7-

Fp1), with an additional channel for the EKG and scan trigger. The

fMRI time series was measured in six slice planes (4 mm, skip 1

mm) parallel to the AC–PC line, with the second from the bottom

slice through AC–PC. More details about this data set can be

found in Goldman et al. (2002). In the work presented here, we

have analyzed five simultaneous EEG/fMRI recordings from three

different subjects. Informed consent was obtained from all volun-

teers based on a protocol approved previously by the UCLA Office

for the Protection of Research Subjects.
Results

Both PARAFAC and N-PLS techniques were applied to the

recorded data sets, and yielded similar results for all subjects.

There was no statistical inference about differences among sub-

jects, so, for the purpose of this paper, we present representative

data from a single subject. As a first exploration of the data, a

PARAFAC model was fitted to the time-varying EEG spectrum.

The appropriate number of components for this model was chosen

using Corcondia (see above). The model was fitted using direct

trilinear decomposition for its initial values.

Three significant atoms or components, characterized by their

spectral signature, were extracted by PARAFAC (Fig. 2A). It is



Fig. 3. Scatter plot of fMRI temporal signature against EEG temporal signature. (a) Alpha atom. A nearly linear positive dependence can be seen. The Pearson

correlation value is 0.83, corresponding to P = 0.005. (b) Theta atom. The linear dependence between the EEG time course and fMRI time course has a positive

correlation value of 0.56. However, it is not significant, p = 0.07. (c) Gamma atom. There is no clear linear dependence.

E. Martı́nez-Montes et al. / NeuroImage 22 (2004) 1023–1034 1029
easy to recognize the alpha atom with its peak near 10 Hz. A

slower theta activity peak is also present with a maximum

around 4 Hz, as is a gamma peak in the range from 35 to 45

Hz. The Corcondia for this fit was around 93%, and the

explained variation of the data was 53.5%. Moreover, PAR-

AFAC allowed identification of outliers in the temporal signa-

ture, which were eliminated from the data for subsequent

PARAFAC and posterior analyses.

Using this information, the N-PLS model was applied for only

three atoms. In Fig. 2B, the spectral signatures for all atoms are

shown, and they resemble strongly the spectra found by PAR-
Fig. 4. fMRI spatial signatures for the three atoms. All images were plotted fol

different minimum and maximum values. Alpha and Gamma atoms have a maxim

value of 0.037 and a minimum of �0.066. The threshold was chosen convenient
AFAC decomposition. Fig. 3 shows scatter plots of the temporal

signatures of the fMRI vs. the EEG separately for each atom. The

alpha and theta activities seem to have clearly positive correlations,

but gamma activity does not. The Pearson correlation values are

shown for each activity band. Supporting the visual impression,

correlations were highest for the alpha atom. By using the 1000

samples of the block bootstrap test described previously, only the

alpha atom presents a correlation value with probability lower than

0.05. The theta atom has a non-negligible correlation value, whose

empirical probability is slightly higher than the predetermined

theoretical significance level of 0.05.
lowing a color scale from �0.05 to 0.05. However, the components have

um of 0.055 and a minimum value of �0.066. Theta atom has a maximum

ly to 0.016 for better visualization of the areas with higher values.



Fig. 5. Jackknifed pseudo t image for the fMRI spatial signature of the alpha rhythm atom. The jackknife procedure consisted of leaving out temporal points

one at a time and applying the tri-PLS2 model to the truncated data. Then, a t value was calculated for each voxel and the resulting image was thresholded to a

significance value of F3.5. Blue regions (anterior median occipital, lateral occipital, occipital pole, and left and right temporal superior) represent those areas

with significantly negative temporal correlation with EEG. Thalamus and insula are red representing a significant positive correlation between EEG and fMRI

time courses.

E. Martı́nez-Montes et al. / NeuroImage 22 (2004) 1023–10341030
Fig. 4 shows the spatial signature of the fMRI decomposition:

the uk vectors. These are shown as tomograms in which those

regions that have negative temporal correlation between EEG and

fMRI are blue and those that have positive temporal correlation

appear in red. For the alpha atom, the fMRI spatial signature shows

positive activation of thalamus and insula, while occipital and

superior temporal regions are activated negatively. The theta atom

showed predominantly negative activation of anterior cingulate and
Fig. 6. Spatial signatures of the EEG and its SSI solutions. The topographical repre

was calculated by pseudo-inverting the matrix that transforms topographies from

atom shows higher values at posterior regions, the theta topography has higher val

in the left parieto-temporal area. The corresponding SSI solutions are to the right. M

with higher activation in the left hemisphere. Theta sources are in the anterior cing

parieto-temporal area. Units for inverse solutions are ignored because energy value

PLS algorithm.
occipital regions, while the gamma atom resembles the alpha

component. For testing the robustness of this type of image, a

pseudo t image of the alpha atom was calculated, it being the only

atom having a significant temporal correlation with the EEG. This

image is shown in Fig. 5, and was achieved by the jackknife

procedure described above. In this figure, blue regions, (anterior

median occipital, lateral occipital, occipital pole, and left and right

temporal superior) represent those areas with significant negative
sentation of spatial signatures of the EEG is shown at the far left. This map

unipolar recordings into those obtained with bipolar derivations. The alpha

ues located in frontal regions, and the gamma atom shows maximum values

aximum activation for the alpha component is located in the occipital area,

ulate region, and the activated region for the gamma atom is located in the

s for the topographies are plotted and have been normalized as part of the N-
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temporal correlation with the EEG. The areas corresponding to

thalamus and insula are red, representing a significant positive

correlation between EEG and fMRI time courses.

From the spatial signature, ak, of the time-varying EEG

spectrum, we estimated those regions inside the brain that contrib-

ute to the EEG and that are correlated temporally with fMRI. Fig. 6

shows the topographies or EEG spatial signatures, and their

corresponding SSI solutions (current density spectra) for each

atom. The topography of the alpha atom shows higher values at

posterior regions; the theta topography has higher values in frontal

regions, and the gamma atom shows maximum topographic values

in the left parieto-temporal area. The Source Spectra Imaging

solution for the alpha component showed its maximum activation

in the occipital area, with higher activation in the left hemisphere.

Sources for theta atom are in the anterior cingulate region, and the

activated region for the gamma atom is in the parieto-temporal

area.
Discussion

This paper introduces a new method, trilinear Partial Least

Squares (tri-PLS2), for the analysis of concurrent EEG/fMRI

recordings. This is the first use of Partial Least-Squares techniques

to carry out multimodal neuroimaging fusion. Our objective is to

identify the coherent systems of neural oscillators that contribute to

the spontaneous EEG. Doing so requires the solution of three

related problems: (i) decomposing the EEG, in the space–frequen-

cy–time domain, into a set of components or atoms, (ii) establish-

ing the relation of these EEG components to concurrent BOLD

fluctuations, and (iii) analyzing the sources of the EEG atoms. We

shall consider each of these problems in turn. At the outset it

should be stressed that the two phenomena—EEG and BOLD—

evolve over very different time scales. In fact, we shall be

analyzing the evolutionary spectrum (Priestley, 1965) of the

EEG, a concept based on a locally stationary modeling of the

electroencephalogram (Dahlhaus, 1997). It is only the envelope of

the waves usually analyzed by electroencephalography that will be

matched to BOLD.

Atomic decomposition of the EEG

The analysis of the evolutionary spectrum of the EEG produces

a three-dimensional data array (space–frequency–time). The first

choices that come to mind for the decomposition of this array are

either Principal Components Analysis (PCA) or Independent

Components Analysis (ICA), a set of techniques that have received

much recent attention. We decided to avoid these methods,

however, for two reasons: First, they achieve a unique decompo-

sition into atoms only by imposing arbitrary mathematical con-

straints (orthogonality and independence, respectively), and

second, these methods are targeted toward two-dimensional arrays

(matrices). In our situation, this means ‘‘unfolding’’ the data,

stacking the time and frequency components along one dimension,

and thereby destroying their distinction; keeping these different

dimensions separate seems a much better alternative. A first

attempt at a space–frequency–time atomic decomposition was

reported in a paper by Koenig et al. (2001). In their method, the

decomposition is carried out in several stages; first by the identi-

fication of time–frequency atoms, and then by the estimation of

distinct topographies that are stable over time. This separation into
two stages of analysis is not conceptually necessary, and in fact is

not optimal.

Our trilinear method based on Parallel Factor Analysis,

introduced in the present paper, allows space–frequency–time

estimation in a single step, by minimization of an explicit

objective function. The resulting decomposition is intrinsically

unique and specifies atoms that are defined as spectral compo-

nents that vary over time and have a specific topography. A

more detailed description of the combined use of PARAFAC,

and distributed inverse solutions for in vivo imaging of neural

oscillatory systems, is the subject of a companion paper (Miwa-

keichi et al., 2004). A consistent finding in all data sets

analyzed was the appearance of three components whose peaks

were within the traditional theta, alpha, and gamma bands. Thus,

when looking at the relations of the EEG with BOLD, it is

potentially important not to constrain the analysis to a single

frequency band, as was done by Goldman et al. (2002),

although the present data do not show strong fMRI correlation

with the EEG signal in the other bands.

It is remarkable that the restriction of maximal correlation with

the BOLD signal produces spectra that are practically the same as

those obtained by the PARAFAC decomposition. Based on the

diagnostic tools, the physiological interpretability, and the replica-

bility among several data sets, we can say that these are meaningful

results, although we cannot ensure that they correspond with the

real underlying physical phenomena. Therefore, it can be conclud-

ed that we have obtained robust and physiologically meaningful

results with the use of tri-PLS algorithm.

Relating EEG atoms to the BOLD signal

As shown here, it is possible to constrain the trilinear EEG

atomic decomposition further by requiring maximal temporal

correlation with the BOLD signal, a procedure that extends the

classical Partial Least-Squares technique. It is important to say that

the correlation found between both temporal signatures was

assessed by a block bootstrap method, which is a strong diagnostic

tool for obtaining reliable results. Furthermore, the spatial signature

of the fMRI was also statistically validated with the use of a

jackknife procedure. These kind of diagnostic tools provide addi-

tional evidence on the robustness of the model assumed, i.e., about

how well the properties of the data fit the assumptions of the

model.

The alpha component has a temporal relation to the BOLD

signal that is significant. The regional distribution of the fMRI

spatial factor corresponds closely to that described by Goldman et

al. (2002), for alpha activity, thus confirming their conclusions.

Since the correlation between the EEG and BOLD temporal factors

are positive, it becomes clear that the image shown in Fig. 5 is

equivalent to the correlation map presented by that group. In

particular, there is a positive relation between thalamic and insular

BOLD activity and the EEG time course for alpha component. On

the other hand, the BOLD signals within parieto-occipital and

somatosensory cortices are related inversely to EEG. This latter

negative correlation is probably due to a decrease in the amplitude

of the EEG in activated cortex in this band, resulting from the

temporal resynchronization of the postsynaptic potentials of the

involved neural circuits.

The extracted theta component showed moderate temporal

correlations that did not reach the pre-established 0.05 level of

statistical significance. An examination of the spatial distribution
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of the fMRI spatial signature for this atom shows a frontal

activation. It is tempting to speculate that this component corre-

sponds to a frontal midline theta rhythm that has not been

adequately resolved due to the limited spatial coverage of the

brain by the fMRI protocol used. The gamma component was not

correlated with the recorded BOLD signal. Once again, we cannot

exclude the possibility that better spatial coverage of the brain

might reveal such correlations. Further, we can speculate that

gamma fluctuations might relate to dynamic and transient assem-

blies of systems of brain activation (Tallon-Baudry and Bertrand,

1999) that are not stable throughout the recording period.

Analyzing the sources of the EEG atoms

A strength of both PARAFAC and tri-PLS2 is that they identify

definite topographic patterns that can be subjected to source

localization. These inverse solutions interpreted together with the

fMRI spatial factors provide new information on the sources of

EEG rhythms.

The Source Spectra Imaging solution for the alpha compo-

nent reveals activation predominantly in the parieto-occipital

region. This corresponds with results on the origins of alpha

rhythm that have been reported previously, both using a fre-

quency domain dipole solution (Valdés-Sosa et al., 1998) as well

as frequency domain distributed solutions (Casanova et al.,

2000). An interesting fact is that the thalamus shows very little

activation, in contrast to the high positive correlation found by

Goldman et al. (2002), and confirmed by the tri-PLS2 fMRI

spatial signature.

This dissociation between the sources of the spatial signature of

the EEG atoms and the spatial signature of the fMRI of the alpha

atom is likely due to the negligible contribution of the primary

current sources of thalamic neurons to the scalp EEG. In this case,

the observed correlations between thalamic BOLD and EEG must

be indirect. For example, the thalamus is probably correlated

negatively with the parieto-occipital cortex, which seems to be

the location of the generators of the ‘‘EEG alpha rhythm’’. Because

the BOLD signal in this region is also correlated negatively with

the alpha EEG spectrum, this would explain a positive correlation

between alpha power and thalamic metabolic activity as an indirect

effect through parieto-occipital cortex. In the terminology of

Friston et al. (1996), there is a functional connectivity between

the EEG and thalamus, but the effective connectivity path would

not be direct, being mediated instead by the parieto-occipital

cortex. Thus, according to the definitions given here, insula,

thalamus, and parieto-occipital cortex are generators of the ‘‘alpha

brain rhythm’’ while only parieto-occipital cortex contribute to the

‘‘EEG alpha rhythm’’. We note that the analyses presented in this

paper do not allow the distinction of whether a structure belonging

to a rhythm generating system oscillates in that frequency range. It

seems unlikely that joint EEG/fMRI recordings can resolve the

extent of phasic, versus tonic, participation in a brain rhythm of a

structure that does not produce a measurable EEG. In other words,

there is still invisible information for an EEG/fMRI fusion analysis,

namely, the fine temporal characteristics of those areas that are

invisible in the scalp EEG. In future planned experiments, it may

be possible to resolve this issue through conjoint fMRI and depth

electrode studies.

The tri-PLS2 method introduced in this paper is an example of

multimodal image fusion, which takes advantage of the spatial

resolution of the fMRI, as well as the temporal resolution of the
EEG. This data analytic approach is capable of parsimoniously

determining which EEG components are significant in the final

analyses, and of revealing new features of the data by differenti-

ating regions exposed within the fMRI data from those indicated

solely through inverse solutions using the EEG. We are pursuing a

number of improvements to enhance the integration of both types

of data modalities by this method. In the first, we are developing a

variant of tri-PLS2 that will estimate the spatial components, not

on the scalp topography, as is done now, but instead directly in the

source space. This would integrate source localization into the

procedure rather than applying it as a postprocessing step for the

topographies of the EEG atoms. Additionally, the autocorrelation

of both the EEG and BOLD time series will be taken into account,

whereas the model presented here ignores this information. Final-

ly, it may well be that there are interactions between time,

topography, and frequency spectrum that the current algorithm

cannot account for.
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Appendix A. Tri-PLS2 algorithm

To calculate an atom of the tri-PLS2 model, we rewrite the

model for dependent and independent variables taking only one

atom, k, into account. Here the independent variable is the time-

varying EEG spectrum, convolved previously with the hemody-

namic response function, which is a three-way array S. The

dependent variable is the fMRI 2D matrix F. The structural models

then are

Ŝdwt ¼ adkbwkctk ðA:1Þ

and

F̂st ¼ uskvtk : ðA:2Þ

The score vectors are those dependent on time (temporal signa-

tures), i.e., ck = (c1k,. . .,ctk,. . .,cNtk)
T and vk = (v1k,. . .,vtk,. . .,vNtk)

T;

the others are also called the weights (spatial and spectral

signatures of the EEG, spatial signature of the fMRI). The indices

t = 1,. . ., Nt, w = 1,. . ., Nw, d = 1,. . ., Nd and s = 1,. . ., Ns represent

time, frequency, channels, and voxels, respectively. For given

weight vectors, the least-squares solution for determining the

score vectors are:

ctk ¼
XNw

w¼1

XNd

d¼1

Sdwtadkbwk ðA:3Þ
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and

vtk ¼
XNs
s¼1

Fstusk : ðA:4Þ

Our problem is to find a set of normalized weight vectors, ak, bk,

and uk, which produce score vectors, ck and vk, having maximal

covariance. The objective function to be maximized is:

max
a
k
;b

k
;u

k

XNt

t¼1

ctkvtk ctk ¼
XNw

w¼1

XNd

d¼1

Sdwtadkbwk ^ vtk ¼
XXXXXXNs

s¼1

Fstusk

�����
#"

ðA:5Þ

For simplicity, the restriction of normalization on the weight

vectors is not made explicit. Eq. (A.5) is not strictly correct

because there is no correction for degrees of freedom, but as this

correction is constant for a given atom, it will not affect the

maximization. Eq. (A.5) also does not express the covariance if S

and F have not been centered.

The next procedure is performed in two ways. First, Eq. (A.5)

could be taken to:

max
a
k
;b

k

XNt

t¼1

XNw

w¼1

XNd

d¼1

Sdwtvtkadkbwk

" #
¼ max

ak ;bk

XNw

w¼1

XNd

d¼1

zdwtadkbwk

" #
; ðA:6Þ

where zdwk ¼
P

t¼1
Nt Sdwtvtk are the elements of an auxiliary matrix,

Zk. If one writes Eq. (A.6) in matrix notation, the equation will

become:

max
a
k
;b

k

½bT
k Zkak Z ðbk ; kk ; akÞ ¼ SVDðZk ; 1Þ: ðA:7Þ

In other words, the weight vectors, ak and bk can be computed

from the first component of a singular value decomposition of Zk

[SVD(Zk, 1)]. This follows directly from the properties of SVD.

Second, substituting in Eq. (A.5) the corresponding score

vector for the dependent variable:

max
uk

XNt

t¼1

XNs

s¼1

Fstctkusk

" #
¼ max

uk

XNs

s¼1

yskusk

" #
; ðA:8Þ

where ysk ¼
P

t¼1
Nt Fstctk are the elements of an auxiliary vector yk.

Since uk is restricted to be normalized, the maximum value of the

expression (A.8) is reached when uk is a unit vector in the same

direction as yk. Therefore, the solution is:

uk ¼
yk

NykN
¼ FTck

NFTckN
ðA:9Þ

On the other hand, through the models of the data sets given in

Eqs. (A.1) and (A.2), the prediction model between S and F is

found by using a regression model for the so-called inner relation

(established for the loadings matrices, i.e., for all atoms at the same

time):

V ¼ CX þ Ev:

This expression ensures that the maximum covariance restriction

holds, and allows prediction of new samples of dependent varia-

bles. As the different atoms for score vectors are not always
orthogonal, all of these atoms must be taken into account in

calculating regression coefficients. The regression thus leads to:

xk ¼ ðCTCÞ�1CTvk : ðA:10Þ

Finally, we can summarize the algorithm as follows:
1. Center S and F.

2. Let vk equal a column in F.

3. Atom k = 1.

4. Compute matrix Zk using S and vk.

5. Determine ak and bk from Eq. (A.7).

6. Calculate ck from Eq. (A.3).

7. Compute uk from Eq. (A.9).

8. Compute vk from Eq. (A.4).

9. If the results converge, continue. Otherwise go to step 4.

10. Do the regression, finding xk from Eq. (A.10).

11. St = St � ctkbkak
T (for all t) and F = F � Cxku

T
k .

12. k = k + 1. Repeat from 4 until F is properly described.
References

Babiloni, F., Babiloni, C., Carducci, F., Angelone, L., Del Gratta, C.,

Romani, G.L., Rossini, P.M., Cincotti, F., 2001. Linear inverse estima-

tion of cortical sources by using high resolution EEG and fMRI priors.

IJBEM 3, 1.

Baillet, S., Leahy, R.M., Singh, M., Shattuck, D.W., Mosher, J.C., 2001.

Supplementary motor area activation preceding voluntary finger

movements as evidenced by magnetoencephalography and fMRI.

IJBEM 3, 1.

Bro, R., 1996. Multi-way calibration. Multi-linear PLS. J. Chemom. 10,

47–61.

Bro, R., 1998. Multi-way Analysis in the Food Industry: Models,

Algorithms and Applications. PhD Thesis. University of Amsterdam

(NL) and Royal Veterinary and Agricultural University (DK).

Carroll, J.D., Chang, J., 1970. Analysis of individual differences in

multidimensional scaling via an N-way generalization of ‘Eckart–

Young’ decomposition. Psychometrika 35, 283–319.

Casanova, R., Valdés-Sosa, P.A., Garcı́a, F., Aubert, E., Riera, J., Korin,

W., Lins, O., 2000. Frequency domain distributed inverse solutions. In:

Aine, C.J., Okada, Y., Stroink, G., Swithenby, S.J., Wood, C.C. (Eds.),

Biomag 96, Proceedings of the 10th International Conference on Bio-

magentism. Springer-Verlag, New York (ISBN:0387989153).

Chen, S., Donoho, D., Saunders, M., 2001. Atomic decomposition by basis

pursuit. SIAM Rev. 43 (1), 129–159.

Churchland, P.S., Sejnowski, T.J., 1988. Perspectives on cognitive neuro-

science. Science 242 (4879), 741–745.

Cohen, M.S., 1997. Parametric analysis of fMRI data using linear systems

methods. NeuroImage 6 (2), 93–103.

Dahlhaus, R., 1997. Fitting time series models to non-stationary processes.

Ann. Stat. 25, 1–37.

Davison, A.C., Hinkley, D.V., 1997. In: Gill, R., Ripley, B.D., Ross,

S., Stein, M., Williams, D. (Eds.), Bootstrap Methods and Their

Application. Cambridge Univ. Press, UK.

de Jong, S., Phatak, A., 1997. Partial least squares regression. Recent

advances in total least squares techniques and errors—in variables

modeling. In: Van Huffel, E. (Ed.), SIAM, Philadelphia.
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