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Abstract

In this paper we develop a method for obtaining estimators of the correlation matrices from k groups
when these correlation matrices have the same set of eigenvectors. These estimators are obtained by
utilizing the spectral decomposition of a symmetric matrix; that is, we obtain an estimate, say P, of
the matrix P containing the common normalized eigenvectors along with estimates of the eigenvalues
for each of the & correlation matrices. It is shown that the rank of the Hadamard product, PoP isa
crucial factor in the estimation of these correlation matrices. Consequently, our procedure begins with
an initial estimate of P which is then used to obtain an estimate P such that P ® P has its rank less
than or equal to some specified value. Initial estimators of the eigenvalues of £;, the correlation matrix
for the ith group, are then used to obtain refined estimators which, when put in the diagonal matrix
D; as its diagonal elements, are such that PD,P’ has correlation-matrix structure. © 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Common principal components (CPC) in several covariance matrices is a topic that
has received much attention in recent years. Various aspects of the CPC problem have
been treated by Krzanowski (1979, 1982, 1984), Flury (1984, 1986, 1987, 1988),
Keramidas et al. (1987), Schott (1988, 1991), Chen and Robinson (1989) and Fujioka
(1993). One of the important applications of the CPC model is in the principal
components analysis of the covariance matrices of several groups. More generally,
in those situations in which group covariance matrices are not identical, the CPC
model offers one alternative model for covariance structure that allows for differing
covariance matrices while still retaining some common structure across groups.
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These applications of CPC models for covariance matrices extend as well to anal-
yses involving correlation matrices and, in particular, most practical applications of
principal components analysis utilize correlation matrices instead of covariance matri-
ces. However, much less work has been done in this area. Some inferential methods
have been developed by Schott (1991, 1997a) and Krzanowski (1993), but the more
important problem of estimating the correlation matrices under the restrictions of the
CPC model has yet to be solved.

2. The CPC model for correlation matrices

Suppose that the same m variables are being measured on subjects in &k different
groups, with the ith group having the m xm correlation matrix ;. These k correlation
matrices have common eigenvectors if there exists an m x m orthogonal matrix P such
that €, =PD;P’ for each i, where D;=diag(d;,...,d;n) is a diagonal matrix with
the eigenvalues of £, as its diagonal elements. No assumption is made regarding
the order of the diagonal elements of D, so that the ordering for one particular
group may differ from that of some of the other groups. The columns of P are
the normalized common eigenvectors and these will be uniquely defined, except
for sign, if for each j=1,...,m, there is at least one group, say the ith group,
such that d;; is a simple eigenvalue of €;. Since the normalized eigenvectors of a
covariance or correlation matrix are used to construct its principal components, the
model Q;=PD,P’ for i=1,...,k is sometimes referred to as the common principal
components model.

Due to the complexity of the distribution of a correlation matrix, some of the usual
methods of estimation, such as maximum likelihood estimation and minimum chi-
squared estimation, become too complicated to be of any practical use. Consequently,
an overriding concern in the development of estimators with common eigenvectors is
that the procedure be simple enough so that the estimates can actually be computed.
With this in mind, we develop a procedure which begins with initial estimators of P
and D;; these are then used to compute refined estimators which yield the required
correlation-matrix structure.

In estimating €;, we will first find an estimator of P and then find an estimator
for each D;. This process is much more difficult when Q; is a correlation matrix
instead of a covariance matrix because the choice of an estimator of D; may be
affected by our choice of an estimator of P. For a given orthogonal matrix P, we
will denote by p(P) the set of all m x 1 vectors a=(ay,...,a,) such that PD,P’
has correlation-matrix structure, where D, =diag(a,...,a,); that is, p(P)={a:a; >
0 and €/PD,P'e;=1, for i=1,...,m}, where e; is the ith column of the m x m
identity matrix. Thus, if we let d;=(d,,...,d:n), then for some orthogonal matrix
P, our CPC model implies that d; € p(P) for i=1,...,k.

The next result will illustrate that the estimation of each d; critically depends
upon the rank of the Hadamard product (see, for example, Schott 1997b, Section
7.6) P® P. Although P will always be nonsingular since it is an orthogonal matrix,
in general, under the CPC model the matrix P ® P will be singular.
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Theorem 1. Let P be an mxm orthogonal matrix and let p(P) be the set containing
all mx 1 vectors a for which PD, P is a correlation matrix. If POP is nonsingular,
then p(P) {1,}, where 1,, is the m x 1 vector of ones. On the other hand, if
rank(P @ PY=m — r<m, let the columns of the m x r matrix A be any set of
orthonormal eigenvectors of (P ® P) (P ® P) corresponding to its zero eigenvalue.
Then, in this case, p(]s):{a ca=1,+Ac,ceR,a;, >0 for i=1,...,m}.

Proof. Since (P®P)1,,=1,, 1, is a particular solution to the system of equations,
(P ®P)a=1,, and so the general solution will be given by 1,, + Bc, where is ¢ an
arbitrary » x 1 vector and B is any m X r matrix whose columns form a basis for
the null space of P ® P. The result then follows since the columns of 4 do form a
basis for the null space of PO P. O

It follows from Theorem 1 that the correlation matrices €2y,...,8; will satisfy
the CPC model with rank(P ® P)=m only if @ =-.-=Q,=1,. As a result, all
practical applications of the CPC model will have rank(P ® P) < m — 1. The lower
bound for rank(P © P) will be 1 or 2 depending upon the value of m. For instance,
rank(P @ P)=1 is possible only if there exist Hadamard matrices of size m x m (see
Hedayat and Wallis, 1978). If this is not the case, we can use Hadamard matrices
to easily illustrate that this lower bound is 2. Let my« <m be the largest integer
for which mx x mx Hadamard matrices exist and suppose that H is an mx X mx
normalized Hadamard matrix so that each element in its first row is +1. Define Hx
to be the (m — my) X m« submatrix of H consisting of the last (m — mx) rows of
H. Then it is easily verified that the matrix

o my 2 Hy (0)
Qms — m)\2my' 1,1, my " H],

is orthogonal and satisfies rank(P © P)=2.

3. Estimation of ; under the CPC model
3.1. Some simple initial estimators of P and D,

Suppose that we have available independent random samples from the & groups,
with a sample of size n; from the ith group, and these are used to compute the usual
sample correlation matrices, R;,...,R;. It will not be difficult to use these sample
data to construct individual estimators of P and D,.

An initial estimator of P can be obtained by using the F-G diagonalization al-
gorithm (Flury and Constantine, 1985; Flury and Gautschi, 1986). This procedure
finds the orthogonal matrix, which we will denote as Py, that transforms the matrices
Ri,...,R; simultaneously as close as possible to diagonal matrices. Specifically, P
is the orthogonal matrix that minimizes

k . 7 A n
B(Py)= H{M_g(_f’l%f’_)l} ,

i=1
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where diag(P,R:Px) is the diagonal matrix that has the same diagonal elements as
PLR.P«. The matrix Py can also be used to obtain an estimator for each d;. For
instance, d; can be estimated using d*, which has as its components, the diagonal
clements of the matrix PiR;Px.

While the estimators Px and dx; may be reasonable individual estimators of P
and d;, they have not been constructed under the constraints imposed by a correla-
tion matrix. Thus, in general, P*D P* will not have correlation-matrix structure.
However, these estimators will prove to be useful since our method, given in the
next section, for deriving estimators that do yield this correlation-matrix structure
will require some initial estimators of P and d;.

3.2. Refined estimators of P and D;

It follows from Theorem 1 that as the rank of P © P increases, we get a more
limited collection of vectors in the set p(P). Consequently, if the estimator, P, of P
is such that the rank of P ® P exceeds that of P ® P, we may be unable to obtain
reasonable estimators of the d; vectors even when P is a very good estimator of
P. Thus, our estimation process for P will first involve a method for obtaining an
estimator P, so that £, ® P, has rank no larger than m — r for a prespecified value of
r. We will then use some method for determining an appropriate choice for r, say
r«, and define P=P, , as our final estimator of P.

We will obtain an estimator P, satisfying rank(?, ® £.) < m — r by utilizing an
initial estimator of P such as the estimator Px discussed in the previous section. In
particular, we will define P. so that

vec(P, — Py ) vec(P, — Pyx)= min vec(Q Pi)Yvec(Q — Py), (3.1)

where S, ={0:Q is mxm, Q'Q=1,, rank(Q ®© Q) < m —r}; that is, P. could be
described as the closest orthogonal matrix to Px satisfying rank(P, ©P) < m —r.

Simplifying the notation in (3.1), we need to compute the orthogonal matrix ¥
which has rank(Y ® Y) < m — r and minimizes vec(Y — X )'vec(Y — X) for some
given orthogonal matrix X. This solution can be obtained by finding the choice of
Y, along with the choices of the m x (m — r) matrices F and H’, which minimize
the Lagrangian function

S, F,H)=vec(Y — X)vec(Y — X))+ tr{A(Y'Y — )}
+tr{A(Y @Y — FH)},

where the m x m symmetric matrix A and the m X m matrix A contain the Lagrange
multipliers. Differentiating with respect to Y, F, and H, and then equating to zero,
leads to the equations

Y-X+YA+40Y=(0), (3.2)
HA=(0), (3.3)
AF =(0), (3.4)
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which will be used, along with the constraints, Y'Y — 1, =(0) and Y ©Y — FH =(0),
to find the solution. Let E1D,G] be the singular-value decomposition of the matrix
Y©Y, where the m x m matrices E= (E; E,)and G= (G, ;) are orthogonal
and the (m — r) x (m — r) matrix D, is diagonal. In this case, in view of Egs. (3.3)
and (3.4), we find that (3.2) may be written as

Y —X + YA+ ECG,® Y =(0),

where C is some r X r matrix. Solving this equation for A and then equating that
expression to its transpose leads to

(G,CE,0Y —X')Y —Y'(E.CG,0Y —X)=(0).

If we denote the expression on the left-hand side of this equation by Z., it can be
easily shown that for fixed X, Y, E,, and G,, the minumum value of vec(Z¢ ) vec(Z¢)
is given by

AHY)=vec(Y'X —X'YY{I — L(L'LY L'}vec(Y'X - X'Y),

where L = (I —Kyum I QY )Dyee(r (G2 RF; ), K 15 a commutation matrix, and Dyey)
is the m? x m? diagonal matrix satisfying Dyeey)lnme = vec(Y). Thus, a matrix ¥ will
be a solution if it is an orthogonal matrix and f»(Y)= fi(¥)+ lpr 1 {(Y O YY(Y ©
Y)} =0, where 4, 1 {(YOY)Y(Y®Y)} denotes the (m—r+1)th largest eigenvalue of
(YOY)(Y®Y). The function f, can then be used to find ¥ numerically. For instance,
the solutions for the examples discussed in Section 5 were computed using the
downhill simplex method (see, for example, Press et al., 1992). In order to implement
this procedure the function f, was written in terms of %m(m + 1) variables, say the
nonzero elements in an m X m lower triangular matrix U. Each U matrix was used
to compute an orthogonal Y matrix by using the required orthogonality conditions
to fill in the zeroes in the upper triangular portion of U, and then the columns of
this matrix were normalized. This numerical method performed satisfactorily for our
examples. An alternative approach for obtaining a solution to (3.1), one suggested
by a referee, would apply sequential quadratic programming techniques (see, for
example, Fletcher, 1987).

As with the estimation of P, the estimation of the d; vectors will make use of
igitial estimators along with the refined estimator 13,. If we use the initial estimators
d«; described in Section 3.1, then for each i we define the refined estimator d,; so
that

(dri — dw)(dy — dxi)= min (u — ds) (u ~ dx).
u€p(f;)

In other words, ci,,- is the vector in p(ﬁ,) that is closest to dx;.

Let the columns of the m x r matrix A, be any set of orthonormal eigenvectors
of (B.oBY( oA corresponding to its zero eigenvalue, so that from Theorem 1
any a€ p(P.) can be expressed as a=1, + 4,c for some r x 1 vector ¢. Since
A,A] is the projection matrix for the space spanned by the r columns of 4,, for any
m x 1 vector y, A,Ay will be the vector in this space closest to y. From this and
the fact that 4/1, =0, it immediately follows that §=1,, + 4,4y is the vector in
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p(B,) closest to 7, as long as all of its components are nonnegative. If some of these
components are negative, we must use the following result. The proof of this and
all subsequent theorems can be found in the appendix.

Theorem 2. Suppose that y is an m x 1 vector and denote by § the vector in
p(P,) closest to y. Then 5=1,, + A,A.y if all of the components of 1, + A, ALy are
nonnegative. Otherwise § will be of the form

’)7: 1m - Ang—ls + Ql (1 - B+BZ)B1))1,

where Q is some mx m permutation matrix, (Q} () ) represents some partitioning
of the matrix Q', and B = QhA,, B, = Q,4,, and y, = Q7.

It is important to note that Theorem 2 does not indicate the sizes of the submatrices
0, and @, or even which m X m permutation matrix Q should be used. Clearly, §
will be calculated using choices of (; and O, which produce the smallest value of
(5 — yY(F —y) over all choices for Q; and Q,, but in most situations it will not be
necessary to evaluate this sum of squares for all choices of O and Q.

Now if P, is obtained from (3.1) and d,; is computed using Theorem 2, that
is, cf,izfz with yzci*i, then the estimators Q,i=13,DJn_I3,’, i=1,...,k, will have
correlation-matrix structure and satisfy the conditions of the CPC model. A mea-
sure of the closeness of these estimators to the corresponding sample correlation
matrices is given by

k
t,= Y tu{(Q: - R)}.
i=1
In estimating the Q; matrices, we will employ a procedure that begins with r =m —1
and then continually reduces » by one until 7, increases; that is, if 7,,_; > --- >1
and 17, <71,_, then we will use the estimators based on r« =s. We will denote the

final estimator of 2, as Q PD P so that P = Pr*, d d,*,, and Q,-zf), "
We end this section with the followmg important result which establishes the

consistency of the estimators, Ql, cees f)k when rank(P © P)=m — r.

Theorem 3. Suppose that Q,, ..., are positive-definite correlation matrices which
satisfy the CPC model and have normalized common eigenvectors that are umquelAy
defined except for sign. If rank(P ® P)=rank(P ® P)=m — r, then for each i, ©;
converges in probability to Q..

An implication of Theorem 3 and disadvantage of this estimation procedure is that
the consistent estimation of y,...,; depends on the correct identification of r.

4. Validity of the CPC model

Before using the estimators developed for the CPC model in the previous section,
we will need to be able to determine if the population correlation matrices satisfy
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this CPC model. The ideal approach here would be to make use of the estimators
themselves in assessing the validity of the CPC model. For instance, if the CPC
model holds with rank(P ®P)=m—s, then the asymptotic mean of each off-diagonal
element of the matrix 2’R;P would be zero as long as we have computed P with
rank(P © P) < m — r, where r < s. Consequently, we could use the off-diagonal
elements of 13r’R,»13, to construct Wald-type statistics to test sequentially the hypotheses

Hy, :Q:;=PD/P', i=1,....k; rank(POP)<m-—r.

We would first test the hypothesis with » =1, then with » =2, and continue until ei-
ther Hy, is rejected for some r or it is not rejected for either r =m—1 or m—2 depend-
ing on the value of m. Since we are assuming that the £ population correlation matri-
ces are not identical, the first test will determine whether or not the CPC model holds.
The subsequent testing will determine the appropriate value to use for rank(P © P),
and so this would offer an alternative method to the one described in Section 3.2
for determining the value of rx.

An asymptotically chi-squared Wald-type statistic could be constructed if we were
able to show that the asymptotic null distribution of n? vec(P,) is normal and obtain
its asymptotic covariance matrix, where n here is defined to be n=n, + - + n,.
We will not attempt to solve this difficult problem here. Instead, we propose a
fairly simple alternative test for the null hypothesis that the CPC model holds, that
is, for Hy;. The construction of our statistic is based on the property that (see,
for example, Schott, 1997b, Section 4.7) £2,,..., € satisfy the CPC model if and
only if £,Q; =8,Q; for every i#j. Our statistic utilizes the %m(m — 1) x 1 vectors
v; =V(R;R; — R;R;) containing the columns in the strictly lower triangular portion
of R.R; — R;R;, stacked one underneath the other. It also involves the basis matrix
for skew-symmetry, D,, (see Magnus, 1988), which is the m? x %m(m — 1) matrix
satisfying D,,¥(4) =vec(4) for every skew-symmetric m x m matrix A.

Let my = 3m(m — 1), kx = 2k(k — 1) and define the mukx x 1 vector v as

172 / / Y / / /
v=n / ('72’71”21>"'9nmnlvml7n3n2v32""’”ngUmza'"’nmnm—lvmm——l ) >

where #; =(n;/n)"2. The asymptotic mean of v is the 0 vector if and only if the
CPC model holds. Further, it is not difficult to show that the asymptotic normality
of v follows from the fact that n/>vec(R; — Q;) is asymptotically normal for each i.
Thus, if &" is a consistent estimator of the Moore~Penrose generalized inverse of

. . . .. At
the asymptotic covariance matrix, @, of v then we could use the Wald statistic v'® v
to test the null hypothesis Hy,. Unfortunately, it will not be possible, in general, to

find such an estimator @ since the rank of @ depends on the matrices £2i,...€
which are not completely specified by the null hypothesis. However, we can still
construct a test based on v through its sum of squares. Specifically, we will use the
statistic

T=22'v= Z nin’ vec(RiR; — R;R;) vec(R:R; — R;R;).

i>j
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It follows from the asymptotic normality of v that T will be asymptotically a
quadratic form in normal variates. Consequently, its asymptotic distribution should
be adequately approximated by a distribution of the form cy3. To obtain values for
¢ and d, we will use the asymptotic mean and variance of T given in the next
theorem.

Theorem 4. Let ¥; denote the asymptotic covariance matrix of n}/z{vec(Ri) —
~f ~
vec(£;)} and define Ty =D, (2 @ I,)¥i(% Q I,)Dy.. Then, asymptotically,

k
ﬂTZZZZ”? tr( Typ), (4.1)
J=1id
k
o7 =8> > mm (T Xy + i) e Xy L) ¢ - (4.2)
FET ey i#

A general formula for the asymptotic covariance matrix, ¥;, can be found in
Magnus (1988). When sampling from a normal distribution, this covariance matrix
simplifies to

Vi = 3Un + Kom) { Qi ® Qi — (In @ Q) An( 2 ® ) ~ (% ® ) AU ® Q)
+(Um @ ) Am(2; ® Q)AL @ 2)} U + Kinm), (4.3)

where A, = Y.I_,(ei€! ® e;e}). Thus, in this case, a simple consistent estimator of
Ty can be formed by replacing each Q; in Tj; by R,. If these estimators are used
in (4.1) and (4.2) to obtain the estimators fi; and %, then the values of ¢ and d in
the ¢y} approximation of T are given by ¢ = 16%/; and d =2(%/82.

5. Some examples

In this section, we illustrate the methods of this paper by looking at some examples
that have appeared in the literature.

Example 1. Here we consider the iris data first analyzed by Anderson (1935) and
Fisher (1936). Random samples of 50 plants from each of the three species of iris,
versicolor, virginica, and setosa were used. From each plant, the four measurements,
sepal length, sepal width, petal length and petal width were obtained. Flury (1984)
analyzed these data and found that the CPC model is not appropriate for the three
covariance matrices corresponding to the three species. We will consider the CPC
model applied to the correlation matrices instead of the covariance matrices. Before
proceeding to this analysis, we first check to see if the three correlation matrices are
identical. This can be done by using the Wald statistic developed in Schott (1996).
The computed value of this statistic using the sample correlation matrices of this
example, which are given in Table la, is W =58.71, and this can be compared to
the quantiles of the chi-squared distribution with 12 degrees of freedom. Thus, the
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Table 1
CPC correlation matrices for Iris data

(a) Sample correlation matrices:

1.00 053 075 055 1.00 046 086 028 1.00 074 027 028
R [ 053 100 056 066 R, | 046 100 040 054 Re | 074 100 018 023
'= 1075 056 1.00 079 J° “27 | 08 040 1.00 032 ) "3~ | 027 018 1.00 033

0.55 066 079 1.00 028 054 032 1.00 028 023 033 1.00

(b) Initial estimates:

g-j; —0053 —002-614 :8-2‘7‘ djy= (292 051 018 039),
Pe=| 052 oas s ons |0 dke= (@44 096 015 045),

048 050 —028 066 d,;= (201 046 057 096).

(c) Refined estimates:

g?g ‘005'30 —005-30 ‘g?g d'= (292 051 018 039),
p=| - . - , di= (244 096 015 045),
050 —050 050 0.50 2" ( )
050 050 —050 0.50 t= (201 046 057 096).

(d) Estimated CPC correlation matrices:

1.00 0.66 072 055 1.00 045 0.70 030 1.00 049 024 029

b, = 0.66 1.00 055 0.72 8, = 045 100 029 0.70 On = 049 100 029 024
' 1072 055 100 065 | 2 070 029 1.00 045 3 024 029 1.00 049
055 072 0.65 1.00 030 070 045 1.00 029 024 049 1.00

Note: 1= Versicolor, 2 = Virginica, 3 = Setosa.

hypothesis of equal correlation matrices would be rejected at any reasonable signif-
icance level. Next, we will check the adequacy of the CPC model. Using Theorem
4 and the covariance structure given in (4.3), we find that the estimated mean and
variance of T are i, =12.01 and 6% =58.87 and these lead to ¢c=2.45 and d =35,
where d has been rounded to the nearest integer. Thus, 7/c = 14.11 will be compared
to the quantiles of the chi-squared distribution with 5 degrees of freedom. This yields
a p-value between .01 and 0.025, so that the CPC model does fit to some degree
although the fit is not particularly great.

The initial estimates of the common eigenvectors computed by the F-G algorithm,
along with the associated eigenvalue estimates, can be found in Table 1b. The CPC
model was fitted using » = 1,2, and 3, and this yielded the values 7, = 0.62, 7, =0.50,
and 13 = 0.47 for the measures of closeness of the resulting estimators to the original
sample correlation matrices. Thus, we will estimate the common correlation matrices
using P;. The matrix P =P, and the refined eigenvalues cfi computed from it, are
given in Table lc, while the corresponding estimated CPC correlation matrices can be
found in Table 1d. For this particular example, the common eigenvectors have very
simple structure, a consequence of the fact that rank(P®P) = 1. For all three species,
the first principal component corresponds to the average of the four standarized
variables, and so it is an overall measure of size. The remaining principal components
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Table 2
CPC correlation matrices for bankruptcy data

(a) Sample correlation matrices:

1.00 060 —0.13 012 033 1.00 050 0.11 033 0.15
0.60 1.00 045 005 -0.19 0.50 1.00 029 048 0.06
Ri= | —013 045 1.00 006 -078 |, Ry=| 011 029 1.00 036 027
0.12 005 006 1.00 0.03 033 048 036 1.00 -—0.08
033 -0.19 -0.78 003 1.00 015 0.06 027 -0.08 1.00

(b) Initial estimates:

054 065 —049 -0.14 -0.15

059 068 —010 —042 -0.07 “
By = 026 —028 054 —032 068 A/;” = (161020 1.74 126 0.18),
053 006 030 079 —005 ’ 2= (203 044 089 047 1.17).

-0.03 020 -061 0.29 0.71
(¢) Refined estimates:

054 —-071 -031 -0.17 -0.28

0.57 066 —024 —043 —0.04 ;
027 —022 059 —036 0.64 di= (154 064 183 063 036),
' , ' : : * dy= (204 042 088 050 1.15).

055 012 028 078 —0.01 T
001 —-0.04 —-0.65 024 072

b.U)
1l

(d) Estimated CPC correlation matrices:

100 036 -0.04 017 030 1.00 055 003 044 —0.05
0.36 1.00 —-0.02 021 0.20 055 100 0.18 046 005
Q=] -004 —002 100 033 —058 ]|, O= 003 0.8 100 029 0.16
017 021 0.33 1.00 —-0.21 044 046 029 100 -0.06
030 020 —0.58 -—-021 1.00 —-0.05 005 0.16 —-0.06 1.00

Note: 1 =Bankrupt, 2 = Solvent.

are simple contrasts in the four standardized variables; the associated eigenvalues
are ordered the same for the versicolor and virginica species but differently for
setosa. It should be noted that the refined eigenvalues are identical to the initial
eigenvalues, and this will be the case whenever rank(P ® P)=1 since we will then
have 4,14, =, — m~'1,1,), and consequently, 4,_,4,_,y=7 — 1, for any
vector y satisfying y'1,, =m.

Example 2. The data for this example can be found in Morrison (1990) and origi-
nates from a study by Altman (1968). Five financial ratios were obtained for each of
33 bankrupt firms and 33 solvent firms. These variables were (working capital )/(total
assets), (retained earnings)/(total assets), (earnings before interest and taxes)/(total
assets), (market value equity)/(book value of total liabilities), and sales/(total assets).
The two sample correlation matrices can be found in Table 2a. The test for equal
correlation matrices yields W =31.90, which exceeds the 99.5th quantile of the chi-
squared distribution with 10 degrees of freedom. The test for CPC structure produces
the statistic T = 12.81, and the associated quantities 2, =12.78, 6% =76.39, ¢ =2.99,
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and d =4. Upon comparing 7/c =4.29 to the quantiles of the chi-squared distribu-
tion with 4 degrees of freedom, we find that the CPC model fits at any reasonable
significance level.

Since m =35, rank(P ® P) must be either 4, 3, or 2, and these correspond to 1, 2,
and 3 for values of r. In estimating the correlation matrices, we will use }3:}32
since 7, =1.05, 7, =0.85, while 73=1.19. Some of the relevant computations can
be found in the remaining parts of Table 2. The common eigenvectors are not as
easy to interpret as those of the previous example. However, one of the principal
components, the one corresponding to the first refined eigenvector, could be roughly
described as an overall measure of the size of the first four standardized variables.
Note that this is the first principal component for the solvent group, but the second
principal component for the bankrupt group. The principal components correspond-
ing to the third and fifth refined eigenvectors may be useful in contrasting the two
groups since the corresponding eigenvalues are quite different. The eigenvalue corre-
sponding to the third refined eigenvector is much larger in the bankrupt group than
the solvent group, while the opposite is true for the fifth refined eigenvector.

Appendix: proofs

Proof of Theorem 2. When at least one of the components of 1,,+4,4.y is negative,
we can obtain the vector § that minimizes the distance to y by using the method of
Lagrange multipliers. Since =1, + 4,c¢ for some r x 1 vector ¢, we will consider
the function of ¢ and an m x 1 vector z

f(C,Z)Z(lm +Arb - V)I(Im +4,c— })) + OC/{Z ©Oz— (lm +ArC)},

where « is the m x 1 vector of Lagrange multipliers. Note that the introduction of
the vector z is used to guarantee the nonnegativity of 1,, + 4,c. Differentiation of f
with respect to ¢ and with respect to z yields the two equations

21, + 4,c —yYA, — o4, =0, (A1)

a®z=0, (A.2)
which will be used along with the constraint

z@z—(1,+4,c)=0 (A3)

to obtain the solution for c¢. It follows from (A.2) that for each i, o; =0 or z;=0.
Let 0= (Q, @5) be any permutation matrix for which ax = Qa has the form

= (G) = (2):

where each component of a, is nonzero. Similarly, define

seon=(5) neo=(5). n=o=(3)
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Now, since 4’4, =1, and 1.4, =1"(P ® PY4,=1'(0)=0', we find by using (A.1)
that

e=4, (Yat7) =B (S +7),
and so it follows that

J=1ln+A4,c=1,+ QBB (Gox + px) =1, + %Q’BB;az + Q'BB'yx. (A4)
Using (A.3) and the fact that z4« has the form (z; 0'), we find that

1, + Bac=1,+ 3B,Bj0t; + ByB'y« =0,

where s corresponds to the number of rows in B,. Solving this system of linear
equations for o, we obtain

= —2(B:B;)* (1, + BoB'yx) + {I, — (B2B,)* ByB) }u,
where u is an arbitrary s x 1 vector. Consequently,
Bo, = — 2BF (1, + B2B'yx).
Substituting this in (A.4) and then simplifying, we obtain
=1, — A,B5 1, + O\Bi(I, — By B,)B{1,

and so the result follows.
Before proving Theorem 3, we will need to establish the consistency of the esti-
mator Pix.

Lemma A.1. Suppose that the CPC model holds and that for each j there is one
of the correlation matrices, say €;, such that d;; is a simple eigenvalue of Q. In
addition, suppose that the columns of Px have been signed so that the first nonzero
element in each of the columns of P has the same sign as the corresponding element
in Px. Then Py converges in probability to P.

Proof of Lemma 1. We will prove the result by using the implicit function theorem

to show that Py is a continuous function of Ry,...,R; at Ry =Q,,...,R, = ,, where
the matrices ,,...,2; satisfy the CPC model. The consistency of Px will then
follow from the consistency of the sample correlation matrices Ry,...,R;. Note that

Py can be found by minimizing the function

f(P,4)=log &(P) + tr{A(P'P — I,)},
where 4 is a symmetric matrix containing Lagrange multipliers. Thus, Px can be
found as the solution for P when solving the system of equations

k m
uy= ) Y ni{e/P'RiPe) 'vec(R;Pee]) + vec(PA) =0 (A-5)

i=1j=1
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and u, = D} vec(P'P—1,) =0 for P and 4, here D,, is the m? x %m(m+ 1) duplication
matrix (see Magnus, 1988, Section 4.3). Differentiation of u = (u{,u}) with respect
to (vec(P),{D; vec(4)}') yields the Jacobian matrix I'JI"’, where

/= (2%;; gﬁ)’ I'= (Im(?)P (1(,),,))

and

k m
Jn=(A®I)+Y Y n{(eP'RPe) (€ ® P'RP)

i=1 j=1
—2(e/P'R;Pe;) *(eje] ® P'R;Pe;e,P'R,P)}.
When R; = Q; =PD,P’, we find from (A.5) that A= — (3_n;)I,, and

k m
Jii= Zni {(Di—l D)—U,®1,)— 2Z(ejejf ® ejej{)} )

i=1 j=1

This diagonal matrix J;; has its {(i — 1)m+i}th diagonal element nonzero, and since
the jth diagonal element of D; is distinct for some i, it is easily shown by using
the arithmetic—geometric mean inequality that for every j # /, the {(j — 1)m + [}th
and {(/ — 1)m+ j}th diagonal elements of J;; cannot both be 0. This along with the
structure of D,, guarantees that the first m? rows of J are linearly independent. Since
Dj; has full row rank it then follows that J is nonsingular when evaluated at the
CPC Q; and, consequently, so is I'JI'. Thus, the implicit function theorem applies
and so the proof is complete.

Proof of Theorem 3. The proof will be complete if we can show that P and d,
are consistent estimators of P and d; since £2; is a continuous function of these
quantities. Now, since both P and P are in S,, and P is the choice of Q< S, so that
vec(Q — Px)'vec(Q — Pyx) is minimized, it follows that

vec(P — PYvec(P — P) <vec(Px — P)vec(Px — P) + vec(P — Px)Yvec(P — Py)
< 2vec(Px — P)vec(Px — P).

Thus, we see that P must converge in probability to P since P« converges in prob-
ability to P. Due to the consistency of P, (P ® P)Y(P ® P) is also consistent for
(P ® PY(P © P). If the columns of the m X r matrix B, are orthonormal eigenvec-
tors of (P ® P)(P ® P) corresponding to its zero eigenvalue, and the columns of
A, are orthonormal eigenvectors of (P ® PY (P ® P) corresponding to its » smallest
eigenvalues, then it follows from the continuity of eigenprojections (see Kato, 1982)
that 4,4, is a consistent estimator of B,B,. In addition, the consistency of cf*i fol-
lows from that of Px and R;. Consequently, 1, +A,A;a9 *; converges in probability to
1, + B.B.d;=d;, and this is sufficient to guarantee that d; converges in probability
to d; since each component of d; is positive. This completes the proof. O
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Proof of Theorem 4. Let 4, = R;—£2,, so it follows that, asymptotically, n,-l/ 2Vec(A,-) ~
N,2(0,%¥;). If the CPC model holds, then we find that

Using this and the fact that vec(Q,4;) = Kpmvec(4,Q,) and (I, — Kpm) = DD, we
also find that

n'?ym; vec(R:R; — R;R;) =15,,,D~:n{nj(£2j ® L)n)"? vec(4;)
1 Qi ® In)n}* vee(4,)}. (A.6)

Using (A.6), we can obtain the matrix H for which we have T =a’Ha, where
a::(ni/ vec(d,) ,...,n,lc/ ?vec(4x)' ). Thus, using standard results on quadratic forms
in normal variables, we have, asymptotically, ur =tr(HY) and o2 =2tr{(H¥)*},
where ¥ is the asymptotic covariance matrix of a, that is, the block diagonal matrix
diag(¥,,..., ¥,). The result then follows after some straightforward simplification.
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