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Abstract 

In this paper we develop a method for obtaining estimators of the correlation matrices from k groups 
when these correlation matrices have the same set of eigenvectors. These estimators are obtained by 
utilizing the spectral decomposition of a symmetric matrix; that is, we obtain an estimate, say P, of 
the matrix P containing the common normalized eigenvectors along with estimates of the eigenvalues 
for each of the k correlation matrices. It is shown that the rank of the Hadamard product,/5 Q/5, is a 
crucial factor in the estimation of these correlation matrices. Consequently, our procedure begins with 
an initial estimate of P which is then used to obtain an estimate/5 such that/5 ®/5 has its rank less 
than or equal to some specified value. Initial estimators of the eigenvalues of I2i, the correlation matrix 
for the ith group, are then used to obtain refined estimators which, when put in the diagonal matrix 
/)i as its diagonal elements, are such that/5/)i/5 t has correlation-matrix structure. (~ 1998 Elsevier 
Science B.V. All rights reserved. 

Keywords: Common principal components; Hadamard product; Principal components analysis 

1. Introduction 

C o m m o n  principal components  (CPC)  in several covarianee matrices is a topic that 
has received much  attention in recent years. Various aspects o f  the CPC problem have 
been treated by  Krzanowski  (1979, 1982, 1984), Flury (1984, 1986, 1987, 1988), 
Keramidas  et al. (1987),  Sehott (1988, 1991), Chen and Robinson (1989)  and Fujioka 
(1993). One o f  the important  applications o f  the CPC model  is in the principal 
components  analysis o f  the covariance matrices o f  several groups. More  generally, 
in those situations in which group covariance matrices are not identical, the CPC 
model  offers one alternative model  for covariance structure that al lows for differing 
covariance matrices while still retaining some c o m m o n  structure across groups. 
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These applications of  CPC models for covariance matrices extend as well to anal- 
yses involving correlation matrices and, in particular, most practical applications of  
principal components analysis utilize correlation matrices instead of  covariance matri- 
ces. However, much less work has been done in this area. Some inferential methods 
have been developed by Schott (1991, 1997a) and Krzanowski (1993), but the more 
important problem of  estimating the correlation matrices under the restrictions of  the 
CPC model has yet to be solved. 

2. The CPC model for correlation matrices 

Suppose that the same m variables are being measured on subjects in k different 
groups, with the ith group having the m x m correlation matrix f2i. These k correlation 
matrices have common eigenvectors if there exists an m x m orthogonal matrix P such 
that (2i=PDiP' for each i, where D/=diag(di l  . . . . .  dim) is a diagonal matrix with 
the eigenvalues of  f2i as its diagonal elements. No assumption is made regarding 
the order of  the diagonal elements of  Di so that the ordering for one particular 
group may differ from that of  some of  the other groups. The columns of  P are 
the normalized common eigenvectors and these will be uniquely defined, except 
for sign, if for each j = 1 . . . . .  m, there is at least one group, say the ith group, 
such that d/j is a simple eigenvalue of  I2~. Since the normalized eigenvectors of  a 
covariance or correlation matrix are used to construct its principal components, the 
model f2~ =PDiP' for i = 1 . . . . .  k is sometimes referred to as the common principal 
components model. 

Due to the complexity of  the distribution of  a correlation matrix, some of  the usual 
methods of  estimation, such as maximum likelihood estimation and minimum chi- 
squared estimation, become too complicated to be of  any practical use. Consequently, 
an overriding concern in the development of  estimators with common eigenvectors is 
that the procedure be simple enough so that the estimates can actually be computed. 
With this in mind, we develop a procedure which begins with initial estimators of  P 
and Di; these are then used to compute refined estimators which yield the required 
correlation-matrix structure. 

In estimating f2~, we will first find an estimator of  P and then find an estimator 
for each Dg. This process is much more difficult when f2~ is a correlation matrix 
instead of  a covariance matrix because the choice of  an estimator of  Di may be 
affected by our choice of  an estimator of  P. For a given orthogonal matrix P, we 
will denote by p(P) the set of  all m x 1 vectors a=(al . . . .  , a m )  I such that PDaP' 
has correlation-matrix structure, where Da = diag(al , . . . ,  am); that is, p(P)= {a:ai >_ 
0 and e~PDaP'ei = 1, for i----1 . . . .  ,m}, where ei is the ith column of the m x m 
identity matrix. Thus, if  we let d~ = (dgl,..., dim) ' ,  then for some orthogonal matrix 
P, our CPC model implies that di Ep(P) for i =  1, . , . ,k .  

The next result will illustrate that the estimation of  each d; critically depends 
upon the rank of  the Hadamard product (see, for example, Schott 1997b, Section 
7.6)/3 ®/3. Although/5 will always be nonsingular since it is an orthogonal matrix, 
in general, under the CPC model the matrix/5 ® i3 will be singular. 
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Theorem 1. Let /3  be an m × m orthogonal matrix and let p(/5) be the set containin9 
^ ^ ?  

all m x 1 vectors a for  which PDaP is a correlation matrix, l f /5®/3  is nonsingular, 
then p(/3)={lm}, where 1,n is the m x 1 vector o f  ones. On the other hand, i f  
rank(~5 @/5)- -m - r <m, let the columns o f  the m x r matrix A be any set o f  
orthonormal eigenvectors o f  (/3 63/3)'(/5 63/5) correspondin9 to its zero eigenvalue. 
Then, in this case, p(/5)= {a : a =  1,n + Ac, c E ~ r ,  ai > 0 for i =  1,. . . ,m}. 

Proof. Since (16 ®/5)lm = lm, lm is a particular solution to the system of  equations, 
(/3 ®/5)a =lm,  and so the general solution will be given by lm+  Bc, where is c an 
arbitrary r × 1 vector and B is any m × r matrix whose columns form a basis for 
the null space of /3  @/5. The result then follows since the columns of A do form a 
basis for the null space of /3  @ 16. [] 

It follows from Theorem 1 that the correlation matrices ~ 1 , . . . , ~ " ~  k will satisfy 
the CPC model with rank(P @ P ) = m  only if ff~l . . . . .  ~ ' - ~ k ~ l m  . As a result, all 
practical applications of the CPC model will have rank(P Q P)  _< m - 1. The lower 
bound for rank(P (9 P)  will be 1 or 2 depending upon the value of  m. For instance, 
rank(P @ P ) =  1 is possible only if there exist Hadamard matrices of  size m × m (see 
Hedayat and Wallis, 1978). If this is not the case, we can use Hadamard matrices 
to easily illustrate that this lower bound is 2. Let m,  < m  be the largest integer 
for which m,  x m,  Hadamard matrices exist and suppose that H is an m,  × m,  
normalized Hadamard matrix so that each element in its first row is + 1. Define H ,  
to be the (m - m , )  x m,  submatrix of  H consisting of  the last (m - m , )  rows of  
H. Then it is easily verified that the matrix 

p = (  m-.1/2H, ( 0 ) )  

(2m, - -  m)l/2m.l lm. l/m. m.1/2H~ 
is orthogonal and satisfies rank(P ® P ) =  2. 

3. Estimation of 12i under the CPC model 

3.1. Some simple initial estimators o f  P and D~ 

Suppose that we have available independent random samples from the k groups, 
with a sample of size ni from the ith group, and these are used to compute the usual 
sample correlation matrices, R1 . . . .  ,Rk. It will not be difficult to use these sample 
data to construct individual estimators of  P and Di. 

An initial estimator of  P can be obtained by using the F-G diagonalization al- 
gorithm (Flury and Constantine, 1985; Flury and Gautschi, 1986). This procedure 
finds the orthogonal matrix, which we will denote as/3.,  that transforms the matrices 
R1,... ,Rk simultaneously as close as possible to diagonal matrices. Specifically,/5. 
is the orthogonal matrix that minimizes 

k { ldiag(/5~Ri/3, )[ } n' 
q~(/3* ) =  H [Ril ' 

i = 1  
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where diag(/3~,Ri/3,) is the diagonal matrix that has the same diagonal elements as 
/3~,Ri/3,. The matrix 15, can also be used to obtain an estimator for each di. For 
instance, di can be estimated using d,i  which has as its components, the diagonal 
elements of  the matrix/3~Ri/3,. 

While the estimators /3, and d, i  may be reasonable individual estimators of P 
and di, they have not been constructed under the constraints imposed by a correla- 
tion matrix. Thus, in general, /3,Dd,/3 ~, will not have correlation-matrix structure. 
However, these estimators will prove to be useful since our method, given in the 
next section, for deriving estimators that do yield this correlation-matrix structure 
will require some initial estimators of P and di. 

3.2. Refined estimators o f  P and Di 

It follows from Theorem 1 that as the rank o f /3  ®/3 increases, we get a more 
limited collection of  vectors in the set p(/3). Consequently, if the estimator,/3, of  P 
is such that the rank of  t3 ® 15 exceeds that of  P ® P, we may be unable to obtain 
reasonable estimators of  the di vectors even when /3  is a very good estimator of 
P. Thus, our estimation process for P will first involve a method for obtaining an 
estimator/3r so that/3r ® Pr has rank no larger than m - r for a prespecified value of  
r. We will then use some method for determining an appropriate choice for r, say 
r , ,  and define/3 =/3r ,  as our final estimator of P. 

We will obtain an estimator/3r satisfying rank(/3~ ®/3~) < m - r by utilizing an 
initial estimator of P such as the estimator/3, discussed in the previous section. In 
particular, we will define/3~ so that 

vec(/3r - / 3 ,  )'vec(/3~ - / 3 ,  ) = min vec(O - / 3 , ) ' v ec (Q  - / 3 ,  ), (3.1) 
Qcsr 

where S r = { Q : Q  is m x m, Q'Q=I, , ,  rank(Q^ ® Q) < m - r } ;  that is,/3~ could be 
described as the closest orthogonal matrix to P .  satisfying rank(/3~ ® P~) _< m - r. 

Simplifying the notation in (3.1), we need to compute the orthogonal matrix Y 
which has rank(Y ® Y) < m - r and minimizes vec(Y - X) 'vec(Y - X)  for some 
given orthogonal matrix X. This solution can be obtained by finding the choice of  
Y, along with the choices of the m x (m - r)  matrices F and H',  which minimize 
the Lagrangian function 

f ( Y , F , H )  = vec(Y - X) 'vec(Y - X )  + tr{ A ( Y ' Y  - Ira)} 

+tr{A(Y 63 Y - FH)},  

where the m x m symmetric matrix A and the m x m matrix A contain the Lagrange 
multipliers. Differentiating with respect to Y, F,  and H, and then equating to zero, 
leads to the equations 

Y - X + YA + A' ® Y = (0), (3.2) 

HA =(0) ,  (3.3) 

AF--- (0), (3.4) 
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which will be used, along with the constraints, Y'Y--Im = (0) and Y® Y - F H  = (0), 
to find the solution. Let E1DlG' 1 be the singular-value decomposition of  the matrix 
Y ® Y, where the m x m matrices E = (El E2 ) and G = ( G1 Gz ) are orthogonal 
and the (m - r)  x (m - r)  matrix D1 is diagonal. In this case, in view of  Eqs. (3.3) 
and (3.4), we find that (3.2) may be written as 

Y - X + YA + EzCG~ 63 Y = (0), 

where C is some r x r matrix. Solving this equation for A and then equating that 
expression to its transpose leads to 

(GzC'E~ 63 Y ' - X ' ) Y  - Y'(E2CG~ 63 Y - X ) =  (0). 

If  we denote the expression on the left-hand side of  this equation by Zc, it can be 
easily shown that for fixed X, Y, E2, and G2, the minumum value of  vec(Zc)'vec(Zc) 
is given by 

f l  (Y) =vec(  Y'X - X '  Y ) ' ( I  - L(L'L)+L' }vec(Y'X - X '  Y), 

where L = (I - K m m  )(I ® Y' )Dv~c(r ) ( G2 @ E2 ), Kmm is a commutation matrix, and Dv~c(r ) 
is the m e × m: diagonal matrix satisfying Dv~(r)lm2 =vec(Y).  Thus, a matrix Y will 
be a solution if it is an orthogonal matrix and f 2 ( Y ) = f l ( Y ) + 2 m - r + l { ( Y 6 3  Y)'(Y63 
Y)) = 0, where 2m-r+1{(Y63Y)'(Y63Y)) denotes the ( m - r +  1)th largest eigenvalue of  
(Y63Y)'(Y63Y). The function f2  can then be used to find Y numerically. For instance, 
the solutions for the examples discussed in Section 5 were computed using the 
downhill simplex method (see, for example, Press et al., 1992). In order to implement 
this procedure the function f2  was written in terms of  lm(m + 1) variables, say the 
nonzero elements in an m x m lower triangular matrix U. Each U matrix was used 
to compute an orthogonal Y matrix by using the required orthogonality conditions 
to fill in the zeroes in the upper triangular portion of  U, and then the columns of  
this matrix were normalized. This numerical method performed satisfactorily for our 
examples. An alternative approach for obtaining a solution to (3.1), one suggested 
by a referee, would apply sequential quadratic programming techniques (see, for 
example, Fletcher, 1987). 

As with the estimation of  P, the estimation of  the di vectors will make use of 
initial estimators along with the refined estimator Pr. If we use the initial estimators 
d. i  described in Section 3.1, then for each i we define the refined estimator d~ so 
that 

(dr~ - d.i)'(d,~ - d . i )  = min (u - d , i ) t ( u  - d , i  ). 
urp(Pr) 

In other words, d,~ is the vector in P(/~r) that is closest to d,; .  
Let the columns of  the m x r matrix Ar be any set of  orthonormal eigenvectors 

of  (fir 6)/~r)'(/~r 63 fir) corresponding to its zero eigenvalue, so that from Theorem 1 
any a E P(fir) can be expressed as a =  1,, + Arc for some r x 1 vector c. Since 
ArA' r is the projection matrix for the space spanned by the r columns of Ar, for any 
m x 1 vector 7, ArA'r7 will be the vector in this space closest to 7. From this and 
the fact that A'~lm=0, it immediately follows that 9 =  lm +A~A'ry is the vector in 
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p(/3~) closest to 7, as long as all of  its components are nonnegative. If some of these 
components are negative, we must use the following result. The proof of  this and 
all subsequent theorems can be found in the appendix. 

Theorem 2. Suppose that 7 is an m x 1 vector and denote by ~ the vector in 
P(/3r) closest to 7. Then ~= lm + A~A'r7 i f  all o f  the components o f  1 m + ArA'~7 are 
nonnegative. Otherwise ~ will be o f  the form 

= l m  - -ArB  + l s + Q'IBI (L + ' - B 2 B2)BI71, 

where Q is some m x m permutation matrix, ( Q'I Q'2 ) represents some partitioning 
o f  the matrix Q', and B1 = Q1Ar, B2 : Q2A~, and 71 = Q17. 

It is important to note that Theorem 2 does not indicate the sizes of  the submatrices 
Q1 and Q2 or even which m x m permutation matrix Q should be used. Clearly, 
will be calculated using choices of  Q1 and Q2 which produce the smallest value of  
(7 - 7)'(Y - 7) over all choices for QI and Q2, but in most situations it will not be 
necessary to evaluate this stun of  squares for all choices of  Q1 and Q2. 

Now if/3r is obtained from (3.1) and dri is computed using Theorem 2, that 
is, dri ~ w i t h  7~---d.i, then the estimators ^ ^ ^' = f2ri = PrDd, P', i = 1, . . . ,  k, will have 
correlation-matrix structure and satisfy the conditions of  the CPC model. A mea- 
sure of  the closeness of  these estimators to the corresponding sample correlation 
matrices is given by 

k 

"~r = ~ tr{(~-~ri - Ri)2}.  
i = l  

In estimating the f2~ matrices, we will employ a procedure that begins with r = m - 1 
and then continually reduces r by one until zr increases; that is, if Zm-1 > "'" >% 
and % < z~_l, then we will use the estimators based on r ,  = s. We will denote the 

final estimator of  f2i as  ~i  =/3Ddi/3', so tha t /3= /3 r . ,  di=d¢. i ,  a n d  ~-~i=~'~r,i . 
We end this section with the following important result which establishes the 

consistency of  the estimators, ~1 , . . . ,  ~k when rank(P 63 P )  : m - r . .  

Theorem 3. Suppose that f2b . . . ,  f2k are positive-definite correlation matrices which 
satisfy the CPC model and have normalized common eigenvectors that are unique~ 
defined except for  sign. I f  rank(P 63 P )  = rank(/3 63/3) = m - r, then for  each i, f2i 
converges in probability to f2i. 

An implication of  Theorem 3 and disadvantage of  this estimation procedure is that 
the consistent estimation of  f21,..., Ok depends on the correct identification of  r. 

4. Validity of  the C P C  model 

Before using the estimators developed for the CPC model in the previous section, 
we will need to be able to determine if the population correlation matrices satisfy 
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this CPC model. The ideal approach here would be to make use of  the estimators 
themselves in assessing the validity of  the CPC model. For instance, if the CPC 
model holds with r a n k ( P ® P ) - - m - s ,  then the asymptotic mean of  each off-diagonal 
element of  the matrix/3'R,-/3 would be zero as long as we have computed/3 with 
rank(/3 ®/3)  _< m -  r, where r < s. Consequently, we could use the off-diagonal 
elements of/3~'Ri/3~ to construct Wald-type statistics to test sequentially the hypotheses 

H0r" f2i =PDiP ' ,  i = 1 , . . . ,k ;  rank(P Q P)  < m - r. 

We would first test the hypothesis with r = 1, then with r = 2, and continue until ei- 
ther H0r is rejected for some r or it is not rejected for either r --- m -  1 or m - 2  depend- 
ing on the value of  m. Since we are assuming that the k population correlation matri- 
ces are not identical, the first test will determine whether or not the CPC model holds. 
The subsequent testing will determine the appropriate value to use for rank(P Q P),  
and so this would offer an altemative method to the one described in Section 3.2 
for determining the value of  r . .  

An asymptotically chi-squared Wald-type statistic could be constructed if we were 
able to show that the asymptotic null distribution of  n ½ vec(/3r) is normal and obtain 
its asymptotic covariance matrix, where n here is defined to be n = nl + - ' .  + nk. 
We will not attempt to solve this difficult problem here. Instead, we propose a 
fairly simple alternative test for the null hypothesis that the CPC model holds, that 
is, for H01. The construction of  our statistic is based on the property that (see, 
for example, Schott, 1997b, Section 4.7) f2~,..., f2k satisfy the CPC model if and 
only if t2if2j = f2jf2i for every i ~ j .  Our statistic utilizes the ½m(m - 1 ) × 1 vectors 
vii = ~(R~Rj -RjRg)  containing the columns in the strictly lower triangular portion 
of  R~Rj -R jR i ,  stacked one underneath the other. It also involves the basis matrix 
for skew-symmetry, /),n (see Magnus, 1988), which is the m 2 × ½m(m-  1) matrix 

sat isfying/) ,~(A) =vec(A)  for every skew-symmetric m x m matrix A. 
Let m,  = ½m(m-  1), k,  = ½ k ( k -  1) and define the m , k ,  × 1 vector v as 

p = h i / 2  ( / . ] 2  y] 1/)21 , '  . . . , ~mi]lVtml , ?]3q21)32,...,?]mY]21)tm2,...,y]mY]m_ll)mm_lt t ) t ,  

where rli =(n i / r l )  1/2. The asymptotic mean of  v is the 0 vector if and only if the 
CPC model holds. Further, it is not difficult to show that the asymptotic normality 
of  v follows from the fact that n]/2vec(Ri - I2i) is asymptotically normal for each i. 

Thus, if 8 + is a consistent estimator of  the Moore-Penrose generalized inverse of  

the asymptotic covariance matrix, O, of  v then we could use the Wald statistic v@)+v 
to test the null hypothesis H01. Unfortunately, it will not be possible, in general, to 

find such an estimator 8 + since the rank of  O depends on the matrices t2~ . . . .  f2k 
which are not completely specified by the null hypothesis. However, we can still 
construct a test based on v through its sum of  squares. Specifically, we will use the 
statistic 

T = 2v'v = ~ nrl2rl~ vec(RiRj - RjRi)' vec(RiRj - RjRi). 
i>j  
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It follows from the asymptotic normality of v that T will be asymptotically a 
quadratic form in normal variates. Consequently, its asymptotic distribution should 
be adequately approximated by a distribution of the form cZ 2. To obtain values for 
c and d, we will use the asymptotic mean and variance of T given in the next 
theorem. 

Theorem 4. Let 7Ji denote the asymptotic covariance matrix of  n]/2{vec(Ri)- 
vec(Qi)} and define Tijk ----/)'m(f2i ® Im)~(f2k ® Im)L)m. Then, asymptotically, 

k 

#T= 2 ~ ~ r/~ tr(Tij,), (4.1) 
j = l  i~j 

k{ } Vii n j  t r (  Tj i j  2"iji) • 
j = 1 is~j l#j  i#j  

(4.2) 

A general formula for the asymptotic covariance matrix, ~Pi, can be found in 
Magnus (1988). When sampling from a normal distribution, this covariance matrix 
simplifies to 

kv; = 1 ( I  m + K,,m) {f2, ® f2; - (Im®f2,)Am(~2iQQi) - (QiQQg)A,n(Im®f2,) 

+(Ira @ ~2i)Am(f2~ @ Qi)Am(Im ® Oi)} (Ira + Kmm), (4.3) 

where Am m I = ~i=l(eie i ® eie~). Thus, in this case, a simple consistent estimator of 
Tijt can be formed by replacing each Oh in Tijt by Rh. If these estimators are used 
in (4.1) and (4.2) to obtain the estimators/i r and ~2, then the values of c and d in 

1 ^ 2  ^ the c~( 2 approximation of T are given by c--- gar/Pr and d = 2/32/d 2. 

5. Some examples 

In this section, we illustrate the methods of this paper by looking at some examples 
that have appeared in the literature. 

Example 1. Here we consider the iris data first analyzed by Anderson (1935) and 
Fisher (1936). Random samples of 50 plants from each of the three species of iris, 
versicolor, virginica, and setosa were used. From each plant, the four measurements, 
sepal length, sepal width, petal length and petal width were obtained. Flury (1984) 
analyzed these data and found that the CPC model is not appropriate for the three 
covariance matrices corresponding to the three species. We will consider the CPC 
model applied to the correlation matrices instead of the covariance matrices. Before 
proceeding to this analysis, we first check to see if the three correlation matrices are 
identical. This can be done by using the Wald statistic developed in Schott (1996). 
The computed value of this statistic using the sample correlation matrices of this 
example, which are given in Table la, is W =  58.71, and this can be compared to 
the quantiles of the chi-squared distribution with 12 degrees of freedom. Thus, the 
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Table 1 
CPC correlation matrices for Iris data 

453 

(a) Sample correlation matrices: 

//1.00 0.53 0.75 0.55~ //1.00 0.46 0.86 0.28~ 
10"53 1.00 0.56 0.661 10.46 1.00 0.40 0 .54 |  

Rl= [0.75 0.56 1.00 0.79]' R2= [0.86 0.40 1.00 0.32]' R3= 
k0.55 0.66 0.79 1.00/ \0 .28 0.54 0.32 1.00/ 

(b) Initial estimates: 

~,= 
0.51 -0.53 -0.64 - 0 . 2 4 \  i'~ (2.92 0.51 0.18 0.39), 
0.49 0.52 0.21 -0.67 | d*l = 
0.52 --0.44 0.69 0.25 ] '  d~'2= (2.44 0.96 0.15 0.45), 
0.48 0.50 --0.28 0.66 / d ' 3 =  (2.01 0.46 0.57 0.96). 

(c) Refined estimates: 

is= 
0.50 -0.50 -0.50 -0.50"~ ^ 
0.50 0.50 0.50 - 0 . 5 0 |  d ] =  (2.92 0.51 0.18 0.39), 
0.50 -0.50 0.50 0.50 1 '  d'~= (2.44 0.96 0.15 0.45), 
0.50 0.50 -0.50 0.50 , /  d~= (2.01 0.46 0.57 0.96). 

(d) Estimated CPC correlation matrices: 

1.00 0.74 0.27 0.28/  
0.74 1.00 0.18 0.23 
0.27 0.18 1.00 0.33 
0.28 0.23 0.33 1.00 

//1.00 0.66 0.72 0 .55\  //1.00 0.45 0.70 0.30~ //1.00 0.49 0.24 0 .29\  
[0 .66 1.00 0.55 0 .72/  |0 .45  1.00 0.29 0 .70 |  [0.49 1.00 0.29 0 .24 |  

ill= ~0.72 0.55 1.00 0.65]' t~2= ~0.70 0.29 1.00 0.45] ~3= ~0.24 0.29 1.00 0.49/ 
\0 .55 0.72 0.65 1.00/ \0 .30  0.70 0.45 1.00/ \0 .29  0.24 0.49 1.00] 

Note: 1 = Versicolor, 2 = Virginica, 3 = Setosa. 

hypothesis of  equal correlation matrices would be rejected at any reasonable signif- 
icance level. Next, we will check the adequacy of  the CPC model. Using Theorem 
4 and the covariance structure given in (4.3), we find that the estimated mean and 
variance of  T are / ) r =  12.01 and 6~-=58.87 and these lead to c = 2 . 4 5  and d = 5 ,  
where d has been rounded to the nearest integer. Thus, Tic = 14.11 will be compared 
to the quantiles of  the chi-squared distribution with 5 degrees of  freedom. This yields 
a p-value between .01 and 0.025, so that the CPC model does fit to some degree 
although the fit is not particularly great. 

The initial estimates of  the common eigenvectors computed by the F -G algorithm, 
along with the associated eigenvalue estimates, can be found in Table lb. The CPC 
model was fitted using r = 1,2, and 3, and this yielded the values Zl = 0.62, "c2 = 0.50, 
and z3 = 0.47 for the measures of  closeness of  the resulting estimators to the original 
sample correlation matrices. Thus, we will estimate the common correlation matrices 
using/33. The matrix/3 =/33 and the refined eigenvalues di computed from it, are 
given in Table 1 c, while the corresponding estimated CPC correlation matrices can be 
found in Table ld. For this particular example, the common eigenvectors have very 
simple structure, a consequence of  the fact that rank(/3®/3)= 1. For all three species, 
the first principal component corresponds to the average of  the four standarized 
variables, and so it is an overall measure of  size. The remaining principal components 



454 J.tZ Schott/ Computational Statistics & Data Analysis 27 (1998) 445-459 

Table 2 
CPC correlation matrices for bankruptcy data 

(a) Sample correlation matrices: 

[ 1.00 0.60 -0.13 0.12 0.33 ,~ [1.00 0.50 0.11 0.33 0.15 \ 
| 0.60 1.00 0.45 0.05 -0 .19 /  |0.50 1.00 0.29 0.48 0.06 | 

Rl= 1--0.13 0.45 1.00 0 .06-0 .78  / , R2--10.11 0.29 1.00 0.36 0.27 | .  
0.12 0.05 0.06 1.00 0.03 ] ~0.33 0.48 0.36 1.00 -0.08 / 

\ 0.33 -0.19 -0.78 0.03 1.00 / \0.15 0.06 0.27 -0.08 1.00 / 

(b) Initial estimates: 

[ 0.54 -0.65 -0.49 -0.14 -0.15~ 
! 059 068 - 0 1 0  - 0 4 2  -0.07 / . 

/5.= | 0.26 -0.28 0 .54  -0.32 0.68 | ,  d~l= (1.61 0.20 1.74 1.26 0.18), 
0.53 0.06 0.30 0.79 --0.05 / d~2= (2.03 0.44 0.89 0.47 1.17). 

\--0.03 0 .20  --0.61 0.29 0.71 ! 

(c) Refined estimates: 

[0.54 -0.71 -0.31 -0.17 -0.28 
|0.57 0 .66  -0.24 -0.43 -0 .04 |  ^ 

P =  /0.27 -0.22 0 .59  -0.36 0.64 ] ,  d~= (1.54 0.64 1.83 0.63 0.36), 
~0.55 0.12 0.28 0.78 -0.011 d~= (2.04 0.42 0.88 0.50 1.15). 
\0.01 -0.04 -0.65 0.24 0.72 ] 

(d) Estimated CPC correlation matrices: 

[ 1.00 0.36 -0.04 0.17 0.30 ,~ [ 1.00 0.55 0.03 0 .44  -0.05"~ 
| 0.36 1.00 -0.02 0.21 0.20 / / 0.55 1.00 0.18 0.46 0.05 / 

D1 =- 1-0.04 -0.02 1.00 0.33 - 0 . 5 8 ] ,  ~2= 0.03 0.18 1.00 0.29 0.16 | .  
0.17 0.21 0.33 1.00 -0 .21]  0.44 0.46 0.29 1.00 -0 .06]  

\ 0.30 0.20 -0.58 -0.21 1.00 / -0.05 0.05 0.16 -0.06 1.00 / 

Note: 1 -- Bankrupt, 2 -- Solvent. 

are simple contrasts in the four standardized variables; the associated eigenvalues 
are ordered the same for the versicolor and virginica species but differently for 
setosa. It should be noted that the refined eigenvalues are identical to the initial 
eigenvalues, and this will be the case whenever rank(/3 ®/3) __ 1 since we will then 
have Am_IA~m_I = ( I n -  m--llmltm), and consequently, A m _ l A t m _ l Y = y -  1,, for any 
vector 7 satisfying 7'1,, = m. 

Example 2. The data for this example can be found in Morrison (1990) and origi- 
nates from a study by Altman (1968). Five financial ratios were obtained for each of  
33 bankrupt firms and 33 solvent firms. These variables were (working capital)/(total 
assets), (retained earnings)/(total assets), (earnings before interest and taxes)/(total 
assets), (market value equity)/(book value o f  total liabilities), and sales/(total assets). 
The two sample correlation matrices can be found in Table 2a. The test for equal 
correlation matrices yields W = 31.90, which exceeds the 99.5th quantile o f  the chi- 
squared distribution with 10 degrees of  freedom. The test for CPC structure produces 
the statistic T = 12.81, and the associated quantities/~r = 12.78, 6~. = 76.39, c---2.99, 
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and d = 4. Upon comparing TIc  = 4.29 to the quantiles of  the chi-squared distribu- 
tion with 4 degrees of  freedom, we find that the CPC model fits at any reasonable 
significance level. 

Since m = 5 ,  rank(P ® P )  must be either 4, 3, or 2, and these correspond to 1, 2, 
and 3 for values of  r. In estimating the correlation matrices, we will use /?' =/32 
since ~1 = 1.05, ~z =0.85,  while r3 = 1.19. Some of  the relevant computations can 
be found in the remaining parts of  Table 2. The common eigenvectors are not as 
easy to interpret as those of  the previous example. However, one of  the principal 
components, the one corresponding to the first refined eigenvector, could be roughly 
described as an overall measure of  the size of  the first four standardized variables. 
Note that this is the first principal component for the solvent group, but the second 
principal component for the bankrupt group. The principal components correspond- 
ing to the third and fifth refined eigenvectors may be useful in contrasting the two 
groups since the corresponding eigenvalues are quite different. The eigenvalue corre- 
sponding to the third refined eigenvector is much larger in the bankrupt group than 
the solvent group, while the opposite is true for the fifth refined eigenvector. 

Appendix: proofs 

Proof of Theorem 2. When at least one of  the components of  lm +ArA'r7  is negative, 
we can obtain the vector ~ that minimizes the distance to 7 by using the method of  
Lagrange multipliers. Since ~-- 1,, + A r c  for some r x 1 vector c, we will consider 
the function of  c and an m × 1 vector z 

f ( c , z )  =( lm + A r b  - 7)'(1" + A r c  - y )  + c ( { z  ® z  - (1 m +ARC)} , 

where ~ is the m x 1 vector of  Lagrange multipliers. Note that the introduction of  
the vector z is used to guarantee the nonnegativity of  lm + A r c .  Differentiation of  f 
with respect to c and with respect to z yields the two equations 

2(1,. + A r c  - ~,)'Ar - : ( A t  =0 ' ,  (A.1) 

® z = 0, (A.2) 

which will be used along with the constraint 

z Q Z  - -  ( l m  "q- A r C )  = 0 (A.3) 

to obtain the solution for c. It follows from (A.2) that for each i, ~ /=  0 or zi = O. 

Let Q -- ( Q'1 Q~ )' be any permutation matrix for which ~. = Q~ has the form 

(0) 
~ * =  QzccJ = ~2 ' 

where each component of  ~2 is nonzero. Similarly, define 

B2 z .  = Q z  = , y .  = Q7 = • 
' Y2 
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Now, since A ~ r = I r  and l 'mAr= l t m ( P Q [ ' ) t A r  = Ym(0)=0', we find by using (A.1) 
that 

c = A '  r ( ~  + ~) =B '  (1~, + 7,) ,  

and so it follows that 

lm+ Arc = lm + Q'BB' 1 1 t t = (~0~, -~- ]1,) = 1 m "~- ~Q BB2~ 2 + Q'BB'v,.  (A.4) 

Using (A.3) and the fact that z ,  has the form (z '  1 0' )', we find that 

1 ls + B2c = ls + ~B2B2o~2 + B 2 B ' T ,  = O, 

where s corresponds to the number of rows in B2. Solving this system of  linear 
equations for ~2, we obtain 

2(B2B )+(ls + + {L  ' + ' = - _ (B2B2) B2B2}u, 

where u is an arbitrary s x 1 vector. Consequently, 

B;¢*2 = - 2B+(ls + BzB'y,  ). 

Substituting this in (A.4) and then simplifying, we obtain 

1,, ArB+I~ + Q'la l ( I r  - + ' = - B 2 B2)BI~I, 

and so the result follows. 
Before proving Theorem 3, we will need to establish the consistency of  the esti- 

mator/3, .  

Lemma A.1. Suppose that the CPC model holds and that for  each j there is one 
o f  the correlation matrices, say ~ ,  such that d~j is a simple eioenvalue o f  ~ .  In 
addition, suppose that the columns o f [ ' ,  have been signed so that the first nonzero 
element in each o f  the columns o f  P has the same sign as the correspondin9 element 
in P,.  Then [', converges in probability to P. 

Proof of Lemma 1. We will prove the result by using the implicit function theorem 
to show that P ,  is a continuous function of Rl, . . .  ,Rk at R1 = ~1,. . .  ,Rk = ~k, where 
the matrices ~ . . . .  ,Ok satisfy the CPC model. The consistency o f / ~ ,  will then 
follow from the consistency of  the sample correlation matrices Rb . . .  ,Rk. Note that 

/3, can be found by minimizing the function 

f ( P ,  A) = log q~(P) + tr{A(P'P - Ira)}, 

where A is a symmetric matrix containing Lagrange multipliers. Thus, /~, can be 
found as the solution for P when solving the system of  equations 

Ul = Z ni(ejP'RiPei)-%ec(RiPej~') + vec(PA) = 0 (1.5) 
i = l j = l  
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-- +vec(P 'P- Im)=O for P and A; here Dm is the m 2 x ½m(m+l)  duplication and u2 - D m 
matrix (see Magnus, 1988, Section 4.3). Differentiation of  u = (U'l,U~)' with respect 
to (vec(P)' ,  {D~ + vec(A)}') '  yields the Jacobian matrix FJF', where 

( Jll ~0~) (Im ® e  ( 0 ) )  
J =  \ 2D+ , F =  \ (0) Im 

and 

Jll (A @ lm)-{- )_.£ ~_.£ ' ' = n~{(ejP R~Pej) (@ej ® P'R~P) 
i=1 j=l 

-2(ejP'R~P@ )-2(ejej ® P'R,P@ejP'RiP)}. 

When R~=f2i=PDiP' ,  we find from (A.5) that A =  - ( ~ n i ) l m  and 

k{ 
Jll = Y~ ni (D71 

i=1 

m } 
® Di) - (Ira ® Ira) - 2 ~__,(@ej ® e iej) • 

j=l 

This diagonal matrix Jll has its { ( i -  1 )m + i} th  diagonal element nonzero, and since 
the j th  diagonal element of D; is distinct for some i, it is easily shown by using 
the arithmetic-geometric mean inequality that for every j ~ l, the {(j - 1 )m + l}th 
and { ( l -  1 )m + j } t h  diagonal elements of Ju  cannot both be 0. This along with the 
structure of Dm guarantees that the first m 2 rows of  J are linearly independent. Since 
D + has full row rank it then follows that J is nonsingular when evaluated at the 
CPC f2i and, consequently, so is FJF'. Thus, the implicit function theorem applies 
and so the proof is complete. 

Proof of Theorem 3. The proof will be complete if we can show that /3 and di 
are consistent estimators of P and di since f2g is a continuous function of  these 
quantities. Now, since both P and/3 are in St, and/3 is the choice of  Q E S~ so that 
vec(Q - / 3 ,  )%ec(Q - t3, ) is minimized, it follows that 

vec(/3 - P)'vec(/3 - P )  _< vec(/3, - P)'vec(/3, - P )  + vec(/3 - / 3 , ) ' v e c ( P  - / 3 , )  

< 2vec(/3, - P)'vec(/3, - P).  

Thus, we see that/3 must converge in probability to P since/3,  converges in prob- 
ability to P. Due to the consistency of /3 ,  (/3 ®/3)'(/3 63/3) is also consistent for 
(P ® P) ' (P 63 P). If  the columns of  the m x r matrix Br are orthonormal eigenvec- 
tors of  (P 63 P)'(P 63 P) corresponding to its zero eigenvalue, and the columns of  
.dr are orthonormal eigenvectors of  (/3 63 P)'(P 63/3) corresponding to its r smallest 
eigenvalues, then it follows from the continuity of  eigenprojections (see Kato, 1982) 
that ArA'r is a consistent estimator of  BrB' r. In addition, the consistency of  d , i  fol- 
lows from that of /3 ,  and R;. Consequently, 1,, +A~A'~d,~ converges in probability to 
1,, + B~B'rdi = di, and this is sufficient to guarantee that d~ converges in probability 
to d,- since each component of  d~ is positive. This completes the proof. [] 
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Proof  of Theorem 4. Let Ai = R;-12i, so it follows that, asymptotically, n]/2vec(Ai) 
Nm2(O, ~) .  If the CPC model holds, then we find that 

R i g j  --  R j R i  = A i O j  -+- (2iAj - O jA i  - A j O i .  

Using this and the fact that vec(12jAi)=Kmmvec(Aif2j) and (Ira - g m m ) = D m D m ,  we 
also find that 

nl/21~il~j vec( RiR j -- RjRi ) = JDmL)tra { ?lj( ~'~j ~ lm )n]/2 vec(Ai) 

-qi(f2i ® lm)n~/2 vec(Aj)}. (A.6) 

Using (A.6), we can obtain the matrix H for which we have T=a'Ha, where 
a = (nl/2 vec(A1 )',..., n~/2 vec(Ak )' )'. Thus, using standard results on quadratic forms 
in normal variables, we have, asymptotically, /~r = t r ( H ~ )  and tr 2 ----2tr{(H~)2}, 
where ~ is the asymptotic covariance matrix of a, that is, the block diagonal matrix 
diag(tPl,. . . ,  ~k). The result then follows after some straightforward simplification. 
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