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Abstract

Chemometricians have been formally employed at Dow Chemical since 1988. In that time, chemometric methods have
been applied in a number of analytical chemistry applications. These have resulted in making money for the company in a
variety of ways, and several recent case studies are presented. These applications have been positive for the company in

Ž . Ž . Ž .terms of 1 better process control, 2 faster verification of raw material identification and quality, and 3 faster analysis of
wastewater. The analytical methods used are NIR and NMR spectroscopy. The chemometric methods include pattern recog-
nition and multivariate calibration. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of chemometrics in analytical chemistry
has increased dramatically over the last 7 years at
Dow Chemical. The formal effort to incorporate this
technology began in 1988, with the hiring of Ken
Beebe into the process analysis group within the An-
alytical Sciences Laboratory. The growth continued
with the hiring of Randy Pell in 1990, and finally with
the hiring of the author in 1992. In 1993, Ken opted
for management rather than staying in the technical
arena, leaving two formally trained chemometricians.

A team approach is taken for problem solving in
order to take advantage of the expertise of various
people. Depending on the venue of application, the
team is obviously different. The approach taken in
process analytical chemistry is depicted in Fig. 1.
When a measurement need has been defined, the
chemometrician works in conjunction with an analyt-
ical chemist and experts in both process engineering
and process chemistry.

Other than the measurement itself, there are a
multitude of additional issues which are considered.
These include the hardware, software, communica-
tions, and the ease of cloning the technology. The
analytical equipment must be located in a safe envi-
ronment where it will not be damaged. Further, it

Žmust itself not be a danger to the surroundings such
.as providing a spark source . The software must be

developed so that the instrument can operate unat-
tended, as well as have error checking to signal when
the instrument is not performing correctly. Automati-
cally communicating the results from the instrument
to the process control instrument is also critical, and

Fig. 1. Problem solving in process analytical chemistry in a team
approach.

not always obvious to accomplish. Finally, Dow
Chemical has manufacturing facilities located around
the world. Therefore, when an application is success-
ful at one plant, it is implemented at all locations
which produce the same product. Therefore, the ease
of duplicating the technology is considered in the de-
velopment stage. The obvious issue here with respect
to chemometrics is the ease of transferring models
from one instrument to another.

This paper documents four applications involving
the use of chemometrics which have made money for
Dow Chemical within the past 3 years. Two of the
four are traditional on-line process analytical applica-
tions, while the other two are laboratory applications.
Three of the four involve the use of FTNIR spec-
troscopy, and the fourth uses 1H NMR spectroscopy.
Three examples are calibration applications, while a
fourth demonstrates the use of pattern recognition.
The descriptions given below outline the application,
discuss the chemometric aspect of the project, and
summarize how this is making money for the com-
pany.

2. Example 1: identification of raw materials us-
ing NIR spectroscopy

When raw materials are delivered to a manufac-
turing site, there are two options upon delivery. Ei-
ther the identification and quality of the material is
believed to be acceptable, or analyses can be made to
verify this before unloading begins. Traditional wet
chemical analyses can be time consuming, and so the
driver of the truck, train or boat may wait hours be-
fore unloading. For one particular plant, blind accep-
tance was not an option, but the wet chemical meth-
ods were laborious and too time consuming. There-
fore, an effort was undertaken to develop a faster
verification method.

The use of NIR spectroscopy has found a home in
industrial settings for a variety of reasons. In this
case, it was considered because of the ease of mak-
ing a measurement of liquid samples. The hand held
transmission probe is simply immersed into the liq-
uid while the spectrum is acquired. Further, it was
observed that the NIR spectra of the over 50 raw ma-
terials were visibly different to the eye. It was hy-
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pothesized that the identification could be automated
with a classification routine.

One of the simplest classification methods is K-
Ž . w xnearest neighbor KNN 1 . The identity of an un-

known sample is assigned to be the identity of the
samples from a library which are located close to it
in measurement space. From an implementation point
of view this is an attractive method. All that needs to
be maintained is the library of samples with known

Ž .identity. However, there is a serious and well known
drawback of KNN, demonstrated in Fig. 2. Here is a
simple example with two measurements and two
classes. The identification of unknown X as an A is
trivial. But, the identification of unknown Z as an A
is not satisfactory, because it is located far from its
nearest neighbors. With respect to the raw materials
identification, this means if a low quality or a com-
pletely unknown material is delivered, it is always
classified, with no warning that anything is wrong.

There are of course other classification methods
w xsuch as SIMCA 2 which do not have this drawback.

However, they are typically more difficult to imple-
ment in a manufacturing setting with personnel un-
trained in analytical chemistry, much less chemomet-
ics. For example, if samples are added to the library,
SIMCA models must be reconstructed. Not only does
this take time, but unsatisfactory results may be ob-
tained due to the users unfamiliarity with the
methodology. With KNN, no work needs to be done
if the library is expanded. Therefore, the decision was
made to implement the KNN algorithm, with an ad-
ditional calculation to verify the reliability of the
classification.

The ‘goodness criterion’, G, is calculated in the
form of a t-test. First, the distance from the unknown

Fig. 2. KNN classification with two measurements. Classes A and
B are in the library used to classify unknowns X and Z.

Žsample to the nearest neighbor ‘d’ in Fig. 2 for un-
.known Z is determined. Then, the nearest neighbor

distances for the library samples in the identified class
Ž .class A in Fig. 2 are calculated. Finally, the aver-

Ž . Ž .age m and standard deviation s of the library val-
ues are determined. The goodness criterion, G, is

Ž . Ž .calculated to be Gs dym r s . If the difference
between d and m is large relative to s, the goodness
criterion is large, and the classification of the un-
known is questionable. Before deploying the system,
an optimal cutoff for G is determined by R&D per-
sonnel using the initial installation of the library
Ž .typical values range from 4 to 10 .

In practice in the plant, if a large G is observed,
the probe is cleaned and the measurement is re-
peated. If it is still large, the wet chemical test is per-
formed to confirm the identification and quality of the
material. This information is then used to decide to
either accept or decline the delivery. If G is smaller
than the cutoff, the delivery is accepted with no de-
lay.

How do we make money? For this application,
money is made in several ways. First, the delivery
process is much faster. The driver does not wait until
a lengthy analysis is completed before transferring the
material into the Dow facilities. This saves money in
terms of time required to obtain the raw materials as
well as the cost of a vehicle idling on Dow property
Ž .e.g., mooring costs for ships . Further, the implica-
tions of using wrong or low quality raw materials are
huge. Low quality product might be produced which
will be disposed. Or, customers will be dissatisfied if
they receive the unacceptable product. And, unsatis-
fied customers are not typically repeat customers, so
there will be a loss in sales.

3. Example 2: caustic stream analysis by NIR

CausticrSalt systems are prevalent in the chemi-
Ž .cal industry. In incinerators, caustic NaOH and HCl

are used to convert components such as Cl and SO2 2

to salts, NaCl and Na SO , respectively. Evapora-2 4

tors reduce the water in a caustic stream to obtain
high concentrations of NaOH in the liquid phase and
precipitate the NaCl which are sold as products. Fi-
nally, process scrubbers use caustic streams to con-
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Fig. 3. NIR absorbance spectra of samples with varying amounts
of NaOH, salt in water, 50–708C.

vert H S in the presence of CO to Na CO and2 2 2 3

Na S.2

For a particular application at Dow involving a
caustic stream, there was a need for an on-line mea-
surement of the NaOH and salt concentrations in wa-
ter over a temperature range of 50–708C. Various
methods were considered, including physical mea-

Žsurements refractive index, speed of sound, conduc-
.tivity and density , titration, FIA, thermal neutronr

g-ray capture, NMR and NIR. Under consideration
was not only the applicability of the method for the
analysis, but also the cost of the instrumentation, the
calibration and the maintenance of the on-line ana-
lyzer over its many years of deployment.

NIR spectroscopy was chosen based on the
w xdemonstrations in the literature 3,4 and the avail-

ability of a NIR transmission probe such as the one
w xshown in Ref. 5 . NIR absorbance spectra collected

over 50–708C, spanning the caustic and salt concen-
tration ranges of interest are shown in Fig. 3. The
spectra are dominated by the overtones and combina-
tions of the OH bends and stretches of the water, with
perturbations due to the varying temperature, and the
presence of the caustic and salt. The PLS calibration
method was used to develop a predictive model for
the caustic and salt concentrations. A three factor
model was constructed using first derivative data. The
scores from this model are shown in Fig. 4, where
each point represents one spectrum. The points form
lines in the scores space. Close examination of the
data set reveals that each line contains the spectra
from an individual calibration sample, and the varia-
tion along the line is due to the varying temperature
of the sample. This is a good demonstration of the

Fig. 4. Scores plot from the PLS calibration of the causticr
saltrwater system.

ability of the PLS method to implicitly model a
source of variation other than the component of in-
terest.

This analyzer was the first on-line analytical tool
installed in this plant. As such, the chemical compo-
sitions in the plant had never been monitored in any

Žway other than periodic grab sample analyses 1 per
.8-h shift . Fig. 5 shows a portion of the data obtained

demonstrating a periodic change in concentration.
This decrease in concentration is counter-productive,
and, if eliminated could improve the output from the
plant significantly. However, until this analyzer was
installed, the plant personnel did not know the peri-
odic decrease took place.

How do we make money? The main advantage of
the NIR on-line determination of the caustic and salt
concentration is demonstrated in Fig. 6. The opti-
mum set point is to have the concentration as high as
possible. However, if the concentration is too high,
there will be process problems. For example, salt may

Fig. 5. On-line predicted concentrations from the NIR show peri-
odic behavior.
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Fig. 6. Comparison of process control via grab–sample analyses
and on-line NIR analysis for the causticrsaltrwater stream.

come out of solution in a vessel not designed to han-
dle solids, or an unwanted side reaction will begin to
dominate. In the past the process was monitored
based on the laboratory analysis of grab samples
which has large variability. Therefore, the set point
for the process was at a lower concentration to stay
away from the potential disasters. The on-line ana-

Žlyzer has much improved precision demonstrated by
.the narrower histogram in Fig. 6 and so it is possi-

ble to operate at a higher concentration while still
confidently staying out of trouble. Therefore, money
is made because of higher production rates, which
lead to a higher profit.

4. Example 3: compensating for temperature ef-
fects in multivariate calibration: PLS fails, CLS
shines for ONE application

The use of mid IR spectroscopy for process con-
trol in polyethylene processes via analysis of the feed

w xstream is discussed in reference 6 . The use of NIR
was investigated due to the advantage of being able
to use fiber optic probes, which would minimize
sampling difficulties as well as allow the analyzer to
be located remotely from the process. The goal of the
work discussed here was to calibrate the NIR to pre-
dict the concentrations of two a-olefins. One major
consideration for the calibration experiments is the
temperature of the process at the sampling point is
known to vary from 25 to 1408C. It is known that the
NIR spectra are sensitive to temperature variations,

Fig. 7. Experimental points for the calibration of the NIR for poly-
Ž . Ž . Ž . Ž . Ž .ethylene service. a 258C, b 608C, c 858C, d 1108C, e 1408C.

and so spectra of the calibration samples were col-
lected over various temperatures. The experimental
points for the calibration are shown in Fig. 7. The
letters represent the five different temperatures of the

Ž .samples. The spectra baseline corrected in the re-
gion of interest for the calibration spectra are shown
in Fig. 8. Thorough examination of the data show that
the temperature effect is quite significant. For exam-
ple, the top five bands represent samples of similar
concentrations with varying temperatures.

It is known that spectroscopy is fundamentally a
wrv measurement because of the fixed pathlength. In
these experiments the density of the solution is ex-
pected to vary significantly, and so it is not advisable
to model in wt.% units. In the discussion below, the

Fig. 8. All calibration spectra for the a-olefin calibration, baseline
corrected at 7650 cmy1.
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Fig. 9. PLS concentration residuals, heavy olefin, r s4, 99.98%
of the spectral variance described. For clarity, the temperatures for
only a portion of the samples are labeled.

modeling is performed in wrv units and then con-
verted to wt.% using the externally determined solu-
tion density.

The PLS concentration residuals for the light
olefin are acceptable relative to the known errors in

Ž .the reported concentrations "0.5 wt.% . The con-
centration residuals for the heavy olefin shown in Fig.
9 are not satisfying for two reasons. First, the errors
are significantly larger than the errors in the reported

Ž .concentrations "0.5 wt.% . Second, the residuals
are structured as a function of temperature. For ex-
ample, the Ts1408C residuals are negative at low
concentration, and positive at high concentration.
Similarly, the Ts258C residuals are positive at low
concentrations and negative at high concentration.
Five individual PLS models from the data collected
at the five discrete temperatures were then con-
structed. The concentration residuals are unstructured
and are consistent with the errors in the reported
concentrations. However, it is impossible to imple-
ment in practice, because the stream can be at any
temperature in between 25 and 1408C. The compari-
son of these two approaches suggests that the tradi-
tional PLS model is not able to account for the varia-
tion of the spectra with respect to temperature.
Therefore, the temperature was added as an addi-
tional measurement variable. It was scaled from 0
Ž . Ž .258C to 1 1408C so as to match the scale of the
spectra. However, this did not improve the model.
Through examination of the raw data, the tempera-

ture is known to have a large influence on the spec-
tra, and therefore adding it explicitly does not pro-
vide any additional information to the model. The
conclusion is that the PLS is not able to model the
heavy olefin while implicitly accounting for the light
olefin and temperature.

Another approach for this calibration is classical
Ž . w xleast squares CLS modeling, 7 which assumes the

Beer’s Law model. Using this model, pure spectra
were estimated at each of the five discrete tempera-

Ž .tures monitored in the calibration see Fig. 10 . The
light olefin has a higher absorptivity than the heavy
olefin. Further, the light olefin has much more sensi-
tivity to the temperature than the heavy one. As the
temperature increases, the peak decreases in intensity
and becomes broader, which is consistent with the
theory of increased rotational transitions at higher
temperatures for small molecules. The concentration
residuals for the heavy olefin using the CLS model
are shown in Fig. 11. They are within "0.5 wt.%,
indicating this model is adequate. To implement the
CLS approach generally, the temperature of the
stream must be known. Then, the pure spectra at a
given temperature are estimated by interpolation of
the pure spectra in Fig. 10.

This calibration problem is an interesting example
where the PLS was not able to implicitly model the

Ž .effect of one component temperature . The CLS
method on the other hand, explicitly removes the
temperature variance before predicting the concentra-

Ž .Fig. 10. Estimated pure spectra of the light olefin top group and
Ž .the heavy olefin bottom group .
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Fig. 11. CLS concentration residuals, heavy olefin. For clarity, the
temperatures for only a portion of the samples are labeled.

tion. The reason this was a problem for only the heavy
olefin is that it has a relatively small absorptivity and
changes in this component are overshadowed by the
temperature effect on the light olefin.

How do we make money? The NIR analyzer is
used on-line for process control. The real time analy-
sis and excellent precision of the instrument helps the
plant make consistent product. The accuracy of the
NIR helps the plant more quickly and accurately
transition from one product to another. Both features
reduce the amount of offgrade produced. Offgrade is
either sold at a lower price or is disposed, both of
which cost money as compared to selling prime
product.

5. Example 4: analysis of organics in industrial
wastewater using 1H NMR

Industrial wastewater has significantly more vari-
ability than municipal wastewater due to the chemi-
cally diverse waste streams that must be treated. Fur-
ther, relatively quick intervention must be taken be-
fore the biomass is destroyed from an undesirable
component. If the biomass is damaged, it can take
days to weeks for it to recover, requiring reduced
production schedules throughout the site.

The 5-day biological oxygen demand, BOD , is5

one important measure of the condition of the
wastewater. It is an empirical test to determine the
relative oxygen requirements of wastewater. The test

measures in part the molecular oxygen utilized dur-
Ž .ing a specified period 5 days for the biochemical

w xdegradation of organic material 8 . However, be-
cause it takes 5 days for a result to be obtained, the
goal was to develop an analytical method which can
predict the BOD value in substantially less than 55

days.
1H NMR spectroscopy can be used to analyze low

Ž .level ppm organics in water. It has a 15-min re-
sponse time for most samples and requires no sample
preparation. The NMR spectrum of the low level or-
ganics is obtained using water suppression tech-
niques to suppress the large water peak. The NMR
fingerprints of various chemical plants are substan-
tially different, demonstrating the sensitivity of this
technique to varying components in the wastewater.
Therefore, it is an ideal candidate for modeling the
BOD .5

A calibration set of 24 months of data was assem-
bled for determining the model. Due to the seasonal
nature of the manufacturing as well as the biomass
behavior, it was important to have data over a long
period of time. The calibration spectra are shown in
Fig. 12. Cross validation was used to select the PLS

Ž .model. The standard error of prediction SEP as a
function of the number of factors is not ideal, with a
minimum at one factor. Evaluating the magnitude of
the SEP revealed that the one factor PLS model was
not better than predicting all samples to be equal to
the average BOD ! Clearly, there was a problem with5

this model. Closer inspection of the data reveal that
the NMR peaks vary in location. This variation is not
due to instrumental instabilities, but rather from the
chemical makeup of the sample. This is demon-
strated by examining the propionate signal spiked into

Ž .clean water and wastewater see Fig. 13 . The peaks
at 2.4 ppm are significantly shifted.

There has been discussion in the literature about
how the multivariate methods such as PLS and PCR
are unequipped to model data with shifts such as this,

w xand some solutions have been proposed 9 . One ap-
proach is to reduce the resolution of the analysis, so
as to minimize the peak shift. An extreme case of that
idea was employed here. The integrals of seven peaks
were calculated and used for modeling. These seven
peaks were thought to be important for BOD based5

on the knowledge of the NMR spectra of wastewater.
Using variable selection to choose from the linear,
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Fig. 12. NMR calibration data for BOD modeling.5

squared and 2-variable cross terms, a two variable
model was developed. In contrast to the PLS model
of the full spectra, this model is a good model for
BOD . This model was used to predict subsequent5

samples over a 1-month period. The favorable com-

parison of the NMR predictions to the laboratory
BOD values is shown in Fig. 14.5

How do we make money? Using the NMR for
evaluating the wastewater, faster intervention can be

Ž .taken if a problem arises 15 min vs. 5 days . And,

1 Ž . Ž .Fig. 13. H NMR spectra. a Wastewater spiked with propionate and b clean water spiked with propionate.
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Ž .Fig. 14. Comparison of BOD5 —— Ø —— to the NMR model
Ž .——l—— .

making sure our wastewater is clean is the responsi-
ble thing to do.

6. Conclusions

In general, standard chemometric methods have
been found to be extremely useful in industry. How-
ever, the selection of chemometric technology must
match the need. And, the need is defined by the ap-
plication as a whole, not just the data analysis chal-
lenges. One technical conclusion is that while PLS is
a powerful method, it does not solve every calibra-
tion problem. Two of the three calibration examples
discussed here required and alternate analysis
method.
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