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An approach for the calibration of two-way diode-array
high-performance liquid chromatograms is described,
involving unfolding a three-way data matrix and
performing partial least-squares (PLS) calibration. The
properties of loadings summed over time and wavelength
are discussed. The influence of calibration design, noise
levels and peak separation are investigated, using
pseudosimulations, both by calculating prediction and test
errors and by graphical representation of the summed
loadings. The importance of using an independent test set
isemphasized. Calibration design is shown to have a
major effect both on the appearance of the loadings and
onthePLSerrors.
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Partial least squares (PLS) is commonly employed for the
quantification of components in mixtures. In chromatography,
this method is an important alternative to univariate approaches
such as the vertical divisor and triangulation. It can be
particularly crucial, for example, when a small peak is buried
within a large one. However, coupled chromatograms are
multivariate in nature, and each chromatogram could be
represented by amatrix with the columns representing different
wavelengths and the rows different points in time. Unlike
spectroscopy, a single vector of univariate parameters, such as
a set of concentrations, is calibrated to a tensor (or ‘box’)
consisting of absorbances as afunction of both elution time and
wavelength for the corresponding mixture chromatograms.
There are a number of methods— for overcoming this, one of
which involves unfolding the data matrix to a two-way matrix
for normal PLS calibration, as described in this paper. Careful
scaling and centring of the data are required for this procedure
to be successful. This paper describes one such approach. The
method proposed below is based on an approach first used for
the calibration of GC-MS data.*

In order toillustrate the method we use pseudosimulations, in
which the datasets are closely based on real data. Two-way
chromatograms are obtained in which real spectra of two
closely eluting compounds of pharmaceutical interest are used.
Noise distributions and pesk separations relate to those
experimentally obtained, but the approach in this paper allows
us to change these parameters systematically and examine the
influence on PL S predictions. The paper also demonstrates that
absolute quantification of co-eluting components can be
achieved with careful selection of calibration designs.

M ethods

PLS calibration

PLS calibration is one of the best known regression techniques
for multivariate data analysis.5-8 The main advantage over other

similar multivariate approaches, such as principal component
regression (PCR), is that it takes into consideration errors that
are likely to occur in both the main ‘X’ data (often a matrix of
absorbance values at successive time units and various
wavelengths) and the 'y’ data (often a concentration vector for
one of the compounds present in amixture).910 Over the past 10
years, numerous PLS algorithms have been developed and
present a great challenge, as they can be applied to various
different applications.11-18

Cadlibration can be performed on either univariate,1® two-
way11 or three-way data,20.21 asillustrated in Fig. 1. An example
of univariate calibration involves simply varying the concentra-
tion of acompound, y, and monitoring its absorbance at asingle
wavelength. From this, a linear model of absorbance versus
compound concentration can be constructed. In two-way PLS
calibration, many different applications are encountered.17.18
One such example of applications in HPLC is calibrating the
sum of the area of achromatographic peak at J wavelengths, a;,
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Fig.1 Schematic representationsof (a) univariate calibration, (b) two-way
PLS calibration and (c) three-way PLS calibration.
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or the elution profile of a chromatographic peak, summed over
all wavelengths, B; to compound concentration, y, where

I2 I

a; =2xij and f3; =inj

i=ly =y

In these cases, the X datamatrices would have dimensions M x
Jand M X |, respectively, where M is the number of samples,
I the number of pointsin time and J the number of wavelengths.
Three-way PL S calibration isamore elaborate technique, which
is based on atensor Z, with dimensions M x | X J. There are
several approaches to this, one of which involves unfolding the
tensor to a long two-way matrix, as described in the next
section. Inthispaper, wewill be exclusively concerned with this
form of threeeway PLS cdlibration, where y is a univariate
concentration block.

The PLS decomposition most often used in calibration is
called PLS1 and is applied to each compound separately.22 For
a typical two-way PLS cdlibration, PLS1 decomposes the X
matrix and y vector as follows:

X=TP+E
and
y =uq +f

where T and u are the scores of matrix X and vector y, P and q
their associate loadings and E and f the residual matrices.
Before starting any operation, both the X matrix and they vector
are normally mean centred. Then, PLS1 calculates the loadings
weights, w, the scores, t, and loadings, p, for the first PLS
component and the value of a contribution to the predicted
concentration vector, vy, for component n. New values of X and
y can then be estimated by subtracting the contribution of the
first PLS component to the X matrix, tp’, from the X matrix, and
v, from y. The algorithm can then be repeated for further PLS
components, so that the m predicted values, §, for N PLS
components are given by

N

9m,N =va,n +y

n=1

where §,n is the predicted concentration for sample m after N
PLS components have been extracted and y is the mean
concentration of the compound over the samples.

PLS2 isan extension to PLS1, and its main difference is that
several y vectors can be taken into consideration in the
calculation. In the work presented in this paper, the PLS1
algorithm developed by Wold et al.11 was used exclusively.

Unfolding

In threeway PLS calibration, M data matrices of (I X J)
dimensions give rise to atensor, Z, of M x | X J dimensions.
Before performing PLSL, it isusual to unfold this3-D, Z, tensor
into a 2-D matrix.22324 To achieve this, the rows of Z are
concatenated to give a row vector. After unfolding has taken
place, the 2-D X matrix would have dimensions M x (l.J),
where M is the number of samples, | the number of pointsin
time and J the number of wavelengths. A schematic representa-
tion of this procedure is shown in Fig. 2. The scores, t, and
loadings, p, of the resultant X matrix will have dimensions M
and 1.J, respectively.

Time dependent and wavelength dependent loadings

PLS calibration is performed for each compound separately. In
three-way PLS1, most of the information about a particular set

of datais hidden in the scores and loadings of the various PLS
components. Of particular interest is the information located in
the loadings. For example, if X contains information about a
mixture of two compounds, summing the loadings over time
would result in anew (I x N) matrix, |'N°p, according to the
equation

J

time Pin= Z Bijn
J:

where the PLS components are numbered 1...n...N. The
information given out by this (1.N) matrix would correspond to
the elution profile of the compound PLS is performed on. In
contrast, summing the loadings, | ;P over wavelengths would
result in a new (J x N) matrix, ;4P, according to the

equation
|
* Pjn= 2 Pijn
i=1

By plotting this new matrix versus wavelength, the spectrum of
the compound on which PLS is performed is estimated. A
schematic representation is given in Fig. 3.

Compounds

The two compounds whose spectrawere used in this study were
SKF-101468-A (ropinirole) (1) and its synthetically associated
impurity, SKF-96266-A (I1). The compounds were synthesised
in-house, at SmithKline Beecham (Tonbridge, Kent, UK)25 and
their structures are shown in Fig. 4. The normalised experi-
mental spectrum, 1 5%, of each compound was used, as depicted
in Fig. 5. The spectra were obtained from the chromatographic
analysis of the pure compounds, explained in detail in a
previous paper.26 In total, the number of wavelengths used was
31, ranging from 230 to 290 nm in 2 nm increments.
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Fig. 2 Schematic representation of unfolding a three-way Z tensor into a
two-way X matrix.
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Simulations

To generate elution profiles for the two compounds, symmetric
simulations were performed, based on the basic equation for
Gaussian peaks:

O (i-t,)20
Ci,k:AkeXpD'%[l
O Ok O

where A, is an absorbance value at the point of maximum
intensity, i isthe number of the data point in time, oy is afactor
relating to the width of the peak at half its height and ty is the
retention time at the maximum of the peak. In simulating
symmetric elution profiles, A was given a value of 1 for both
compounds, whereas o, had avalue of 6 for the two compounds.
For theinitial smulations, t; was set at 14 pointsin time and t,
a 26 (separation of 12 points in time). The total number of
points in time was 46, with a digital resolution of 1 s. The
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Fig. 3 Schematic representation of converting the loadings matrix; sn P
into amatrix of summed loadings over time, {'(°P and a matrix of summed
loadings over wavelength, ;5P.
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Fig. 4 Structures of the compounds whose spectra were used in this

study.
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Fig.5 Normalised experimental spectraof compounds SKF-101468-A (1)
and SKF-96266-A (I1).

simulated elution profile for each peak, given by | 1T, was
then multiplied by the true normalised experimental gpectrum of
each compound, |55 to generate data matrices | ;X; and X,
respectively, based on the following equation:

I,Jxk = I,lék 1,Jn:°k

Experimental design

A total of 25 simulated mixtures were used. The calibration
designs were based on five levels, which were coded between
—2 and +2 for each compound present in the mixture, in
increments of 1. The levelsrelate directly to the concentrations
of compounds, according to the following equation:

I+3

Yik = Ymaxk 5

wherey, i is the concentration of compound k at acoded level |,
and Ymax « 1S the maximum true chromatographic concentration
of compound k. Thetwo Ymax k Valueswere set at 0.6 and 0.4103
mm for compounds| and |1, respectively, so that the two peaks,
in the summed elution profiles over 230-290 nm (2 nm
increments), at the same coded level will have identical heights.
The values of concentrations at the different levels are givenin
Table 1.

The various designs can be represented by two vectorsd,; and
d,. The designs were selected so that a range of correlation
coefficients, r1», between d; and d, at values from 0 to 1 were
employed. To generate a design matrix with any desired
correlation coefficient, afirst level, a permuter and a difference
vector have to be carefully selected (Table 2). The construction
of multi-level, multi-factor calibration designs is described in
detail elsewhere.2”

A typica 25-experiment five-level design for two com-
pounds is shown in Table 3, each column representing vectors
d; and dy, respectively. Thisdesign hasavaueof r1, = 0, sothe
two concentration vectors are orthogonal282° to one another,
which implies that the predictions are even throughout the
mixture space. Whenry, = 1, thetwo concentration vectors are
confounded, so that it isimpossible to distinguish the effects of
the concentration of compound one increasing and of the
concentration of compound two increasing and vice versa.

For any given value of ri,, the design consists of 25
chromatograms, each of two closely eluting peaks in different

Table 1 Values of concentrations for compounds | and 11 at the five coded
levels

Coded level, | Via/mm Vi.2/mm
-2 0.1200 0.0820

-1 0.2400 0.1641

0 0.3200 0.2461

1 0.4800 0.3282

2 0.6000 0.4103

Table 2 Correlation coefficients, first levels, permuters and difference
vectors used in the calibration designs

Correlation First level of Difference

coefficient design Permuter vector
0.0 0,0 —-2,—-1, 2,1, -2 0231
0.2 0,0 2,-1, 2,1, -2 0,132
0.4 0,0 —-2,—-1,2,1, -2 0123
0.5 -2, -2 -1,0,2,1 -1 0132
0.6 0,0 -2-1,2,1, -2 0,312
0.8 0,0 2,1, -12-2 0,231
1.0 0,0 —-2,—-1,2,1, -2 0231
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proportions. For each PL S1 calculation, they vectorsfor thetwo
compounds consist of 25 concentrations, given by vectors v 1y1
and 1 1Y, and derived from d; and d», as described above. The
25 two-compound X matrices arise from multiplying each | ;X1
and | ;X matrices by the values of y; and y,, adding them up and
also adding noise to them. This gives rise to 3-D tensor Z,
according to the following equation:

miaZ = M1 ® |,J>~(1 +uiye ® I,J)~(2 +mia N

The noise tensor, .5 N, generated was based on a Gaussian
function with a mean of zero and a standard deviation relating
to the true chromatographic noise. The seed was non-
reproducible, so that the noise profile was different for each
chromatogram.

Simulation Parameters

The influence of the following parameters on the PLS
predictions was investigated: (a) correlation coefficient of
design (b) noise and (c) relative peak positions (chromato-
graphic resolution). Therange of valuesto which the parameters
were set is given in Table 4. A reference chromatogram was
chosen with values of 0.5 for the correlation coefficient of the
design, 3 X 10—4 AU for the standard deviation of the noise and
12 sfor the separation of the two peaks. The standard deviation
of the noise used was equivalent to the noise typicaly
encountered in aBeckman System Gold chromatograph (M odel

Table 3 A typical 25-experiment, five-level design matrix for two
compounds (vectors d; and dy)

0 0
0 -2
-2 -2
-2 2
2 -1
-1 2
2 0
0 -1
-1 -1
-1 1
1 2
2 1
1 0
0 2
2 2
2 -2
-2 1
1 -2
-2 0
0 1
1 1
1 -1
-1 -2
-2 -1
-1 0

Table 4 Vaues of parameters in the simulations whose effect in PLS
predictions was investigated (values in bold are those of the reference
chromatogram)

Correlation coefficient of Standard deviation

calibration design, r1>  Peak separation/s of noise (AU)

0.0 0 3x 10-6
0.2 4 3 x 10-5
0.4 8 3 x 104
0.5 12 3x 103
0.6 16 3 x 102
0.8

1.0

126 pump, Moded 507 autosampler), although this could be
influenced by a number of factors (equilibrating the system,
proper maintenance). A peak separation of 12 s (t; = 14, t, =
26) was very close to that found experimentally for the two
compounds,26 whereas for the calibration design, one with a
value of rq, at 0.5 was thought appropriate.

Generation of test sets and assessment of PLS predictions
Autopredictions

PLS predictions (autopredictions) were calculated for various
calibration training sets. For each design, 25 different predic-
tions were obtained for n PLS components, based on a root
mean square error (RMSE) which was calculated according to
the following equation:

[ m=25
| Y
“ (ylm,k - ym,n,k)

RMSE:\“‘ m=

25

where vk is the concentration for sample m of compound k
which is at level | and ¥ nk is the predicted concentration for
sample m and compound k, using n PLS components.

RMSE values (in mm) were calculated for both compounds |
and |l and for one, two and three PLS components.After two
PL S components were extracted, the RM SEswerefound to give
very low values (of the order of 10—6 mm). Hence they are not
reported in any table, as they were not deemed important.

Test sets

To see how well the various calibration training sets predict the
concentrations of the two compounds, independent test sets
were generated. All other training sets were then used to try and
predict the concentrations of the two compoundsin the test sets,
and the quality of the predictions was contrasted with that of the
autopredictions. When testing to see how well the calibration
models work, the following observations were taken into
consideration:

(i) The 3-D tensor 'ty Z generatedfor the test set was unfolded
on to a 2-D matrix 't X. This matrix was used exclusively
throughout testing of all training sets. The corresponding 2-D
matrix for each calibration training set "9 X (mean
centred along M to give a one column vector) was then
subtracted from it, according to the equation

test corrected — test: training -
MiaX = miaX — 13X

and "8 X was used as the ‘X’ data block during
testing.

(ii) For the PLS predictions, the values of p and w estimated for
each calibration training set were used and the same set of
concentrations, testy, ., (based on the calibration design for
the particular test set), were predicted by each training set.

To test each training set, a value of RM SEP was calcul ated,
according to the following equation:

| m=25

\“ Z (teﬁ ylm,k — S\/m,n,k)2
RMSEP = \“‘ M=

25

wheretesty, . isthe predicted concentration for sample mof the
test set, and compound k, using n PLS components for each
training set.

In total, 10 test sets were generated, as listed in Table 5.
Testing to see how well the models work is very crucid, as a
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model might predict itself with a sufficiently low error even
using cross-validation, but when it is used to predict the
concentrations of other unknown compounds the error might be
substantial.

Results
Changing correlation coefficient

In total, seven different calibration training sets were generated
with values of r, between 0.0 and 1.0, a standard deviation of
noiseof 3 X 10-4 AU and a peak separation of 12 s. TheRM SEs
of the autopredictions for one PLS component are shown in
Table 6. These appear to be low at the extreme values of r;, and
high in the middle. This trend could lead to misleading
conclusions about the ability of a model to predict concentra-
tions of unknown compounds. This is why testing the models
using independent test sets was thought appropriate.

The two independent test sets (3 and 4) had values of ry, at
0.0 and 0.8, respectively, a standard deviation of noise of 3 X
104 AU and the same peak separation as the corresponding
training sets discussed above. The results of testing how well
the calibration modelswork are also shownin Table 6. Both sets
of results show the same trend, in that RM SEP values increase
as the value of the correlation coefficient of the calibration
model increases. Thisis not difficult to comprehend, as a well
constructed design (e.g., one with ry, at 0.0) would give the
lowest errors, when predicting both test setswith ry, at 0.0 and
0.8, as opposed to a badly constructed model (e.g., onewithri,
at 1.0), whose errors are considerably higher. Additionaly, the
RM SEP val ues of thetraining sets predicting thetest set withr,
a 0.0 were significantly higher, than those obtained for
predicting the test set withry, at 0.8. Thisis because aless-well
constructed test set (r1» = 0.8) iseasier to predict by any model,
whereas a well constructed text set will be hard to predict.

Table 5 List of independent test sets used in assessing how well the
calibration models predict the concentrations of compounds | and |1

Correlation Standard

coefficient deviation of Peak
Test set No. of design, ri2 noise (AU) Separation/s

1 0.0 3 x 104 16
2 0.8 3 x 104 16
3 0.0 3 x 104 12
4 0.8 3 x 104 12
5 0.0 3 x 104 8
6 0.8 3 x 104 8
7 0.0 3 x 104 4
8 0.8 3 x 104 4
9 0.0 3 x 104 0
10 0.8 3 x 104 0

Three graphs of time dependent loadings for compound | are
shown in Fig. 6 and represent calibration modelswithr,, values
at 1.0, 0.5 and 0.0. The corresponding graphs for compound 1|
are shown in Fig. 7. From these, it can be concluded that the
amount of information given out about the elution profile of a
compound varies for the different calibration designs.

For a calibration design with a value of ry, a 1.0 and
predictions for compound k, the superimposed elution profiles
of both compounds | and Il are obtained in the first PLS
component, in equal heights. In the second PL S component, the
valueswere very low (al of the order of 10-5> mm). For adesign
of medium r1, and predictions for compound k, the first PLS
component gives the superimposed elution profiles of both
compounds, but this time the ratio of relative heights of
compound k and the other compound increases as the value of
ri» decreases. A calibration design with avalue of rq, at 0.0 and
predictions for compound k correspondsto the elution profile of
purek (first PLS component), whereas the elution profile of the
other compound comes as a negative peak (second PLS
component).

The same principleistruefor aplot of wavel ength dependent
loadings. Fig. 8 showsthree such graphsfor compound | and r
values of 1.0, 0.5 and 0.0, whereas Fig. 9 shows the
corresponding graphs for compound 1. Choosing the correct
experimental design could be of particular importance in
calibration, as the information given out in the PLS predictions
is instantaneously maximised. Additionally, minor impurities
can be detected easily using the summed loadings over time
method and a suitable calibration design. For example, when we
are dealing with a hypothetically pure compound k and apply a
calibration design with a value of ri, a 0.0 on it, then the
slightest impurity in k would result in a substantial second peak
present in the plot of summed loadings versus time for the first
PLS component. For example, consider the case where
compound | is contaminated by 0.5% of compound Il. This
might be common in synthetic analysis, where the main
compound contains a small impurity of the second compound,
and completely pure samples are difficult to obtain, especialy
when developing new synthetic methods. Fig. 10 representsthe
difference between the time dependent loadings plot for
compound | (ry> = 0.0, standard deviation of noise of 3 x 10-4
AU, peak separation of 20 pointsin time) for a 0% and a 0.5%
impurity of compound 11 introduced to the compound I
chromatogram. This is equivalent to performing calibration
where one of the components is in itself contaminated with
small amounts of the other component, as often happens in
exploratory synthetic method development. It can be seen that
the first PLS component shows an obvious second pesk at high
time values, with the reverse for the second component.
Provided that peak separation and noise levels are sufficiently
low, the methods advocated in this paper are powerful
approaches for the detection of small amounts of impurities.

Table6 RMSEs (mm) for the prediction of the concentration vectors of compounds| and |1 (autoprediction and testing) by calibration training setswith seven
different correlation coefficients, a standard deviation of noise of 3 X 10—4 AU and a peak separation of 12 s (one PLS component only). Test set 3 hasr;,

= 0.0 and test set 4 hasr, =0.8

Compound | Compound |1

Correlation Test Test Test Test

coefficient Autoprediction set 3 set 4 Autoprediction set 3 set 4
0.0 0.024440 0.024440 0.021490 0.010472 0.010472 0.009691
0.2 0.064040 0.070566 0.038304 0.022608 0.024327 0.016389
0.4 0.079001 0.101726 0.046203 0.029785 0.037352 0.019477
0.5 0.079600 0.112527 0.050411 0.031216 0.043223 0.020925
0.6 0.076657 0.121206 0.054210 0.031142 0.048563 0.022515
0.8 0.060238 0.134594 0.060241 0.025885 0.057641 0.025883
1.0 0.000020 0.145118 0.064902 0.000010 0.064884 0.029014




1170 Analyst, June 1998, Vol. 123

Changing noise

The effect of changing the noise of the system to the PLS
predictions was also investigated. For avalue of rq, at 0.5, and
a peak separation of 12 s, five calibration training sets were
generated, in which the standard deviation of the noise ranged
from 3 x 10-2to 3 X 10-6 AU, asshownin Table 4. The results
of the autopredictions for compounds | and Il are shown in
Table 7. From these, it can be seen that increasing the noise of
the system increases the RMSE values in the autopredictions in

Summed loadings over time

1stPLS
< - « .2ndPLS
------- 3rd PLS

1stPLS
< - « .2ndPLS
------- 3rd PLS

1stPLS
« « = «2nd PLS
------- 3rd PLS

Time /s

Fig.6 Timedependent |loadingsfor amodel withry, = (&) 1.0, (b) 0.5and
(c) 0.0 and compound 1.
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....... 3rd PLS

1st PLS
- = = =2ndPLS
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------- 3rd PLS

Time/s

Fig.7 Timedependent |loadingsfor amodel withri, = (&) 1.0, (b) 0.5and
(c) 0.0 and compound I 1.

a linear relationship. This trend is observed using two PLS
components, as the first PLS component does not show any
obvious trend.

To test the five calibration training sets with the different
noise levels, the two independent test sets (3 and 4) described in
the section Changing correlation coefficient were used. The
results of seeing how well the five training sets predict the
concentrations of the two compoundsin test sets 3 and 4 arealso

Summed loadings over wavelength
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Fig.8 Wavelength dependent loadings for amodel withri, = (a) 1.0, (b)
0.5 and (c) 0.0 and compound 1.
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Fig.9 Wavelength dependent loadings for amodel withry, = (a) 1.0, (b)
0.5 and (c) 0.0 and compound 11.
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shown in Table 7. Exactly the sametrends are observed aswhen
using autopredictions, but this time the increase of errors
(RMSEP) with increasing noise is less linear (using two PLS
components). By comparing the errors in the first PLS
component (for both autoprediction and testing), it is seen that
using atraining set withr, at 0.5 would give higher errorswhen
predicting atest set with ry, at 0.0, whereas the errors would be
lower for the autopredictions (r 1, at 0.5) and significantly lower
for predicting a test set with ry, a 0.8.

Changing peak separation

Finaly, the effect of changing the separation of the two peaks
with respect to one another on the PLS predictions was
investigated. Five cdibration models were generated with
separations of 0, 4, 8, 12 and 16 s. All five training sets had a
standard deviation of noise at 3 X 104 AU and were based on
adesign with ri, at 0.5. The results of the autopredictions are

Time dependent loadings difference plot

0.04
0.03
0.02 | 1st PLS
001 | /f“'\“ - = = = 2nd PLS
# \
O ot S e S
00 L.N.2.2 8 5. .5.8.

Time Is

Fig. 10 Difference in summed loadings over time between calibration
experiments formed with a 0.5% impurity of Il in | and pure compound I,
for amodel with ri, = 0.0, a standard deviation of noise at 3 X 10—4 AU
and a peak separation of 20 pointsin time.

shown in Table 8. From thesg, it is evident that increasing peak
separation for the two compoundsresultsin adecreasein RM SE
values for the concentration predictions. This observation is
made for the first PLS component only, aswhen using two PLS
components the RMSEs were virtually zero in al designs
(approximately 105> mm).

The five calibration models were then tested against some
independent test sets to check on the validity of their
predictions. Each of the five calibration training sets was tested
against atest set with the same peak separation asitself, but with
avaue of ry, at 0.0 or 0.8, and a standard deviation of noise at
3 X 104 AU. In total, 10 different test sets were used (1-10),
so that the same peak separation is featured in each pair of test
and training sets. The results were as expected, namely that the
smaller the separation between the peaks, the higher were the
errors (RMSEP) in the predictions. Asbefore, the concentration
prediction errors of the models were high when predicting the
test sets with rq, at 0.0, moderate when predicting themselves
(r12 a 0.5) and low when predicting the test setswith ry, at 1.0.

Conclusions

This paper has described a potentially useful approach for the
calibration and quantification of diode-array HPLC data, which
can easily be applied to real experimental situations.

A great ded is learnt about the effectiveness of PLS for
guantitative prediction which can be extended to more genera
situations. Above, it is shown that the size of the residual after
two PL S components have been computed isrelated to the noise
level, as expected, for the datain this paper, which arerelatively
easy to analyse. It isimportant to recognise that baseline effects,
and small underlying impurities could also influence the size of
the residual.

However, experimental design and the nature of the test set
are seen to be of major importance when assessing the quality of

Table 7 RMSEs for the prediction of the concentration vectors of compounds | and |1 (autoprediction and testing) by calibration training sets with five
different noise levels, an ri, value of 0.5 and a peak separation of 12 s (for one and two PIS components)

Standard Autoprediction Test set 3 Test set 4
deviation of
Compound noise (AU) N=1 N=2 N=1 N =2 N=1 N=2
| 3 x 102 0.079637 261 x 10-3 0.112547 3.45 x 10-3 0.050362 2.07 x 10-3
3x 103 0.079592 232 x 104 0.112516 9.52 x 10-5 0.050404 7.68 x 10-5
3 x 104 0.079600 3.19 x 10-5 0.112527 3.36 x 10-5 0.050411 3.08 x 10-5
3 x 105 0.079601 259 x 10-6 0.112526 2.78 x 10-5 0.050410 2.77 x10-5
3 x 106 0.079600 233 x 107 0.112526 2.76 x 10-5 0.050410 275 x 10-5
1 3% 102 0.030958 1.20 x 10-3 0.043223 1.70 x 103 0.020735 8.90 x 104
3x10-3 0.031212 1.30 x 104 0.043250 8.15 x 10-5 0.020950 6.90 x 10-5
3x 104 0.031216 1.74 x 10-5 0.043223 1.56 x 10-5 0.020925 1.46 x 10-5
3% 10-5 0.031214 1.34 x 10-6 0.043223 141 x 10-5 0.020924 1.39 x 10-5
3x10-6 0.031213 2.02 x 10-7 0.043222 1.38 x 10-5 0.020924 137 x 10-5

Table 8 RMSEs for the prediction of the concentration vectors of compounds | and |l (autoprediction and testing) by calibration training sets with five
different peak separations, an ry, value of 0.5 and a standard deviation of noise of 3 X 10—4 AU (one PLS component)

Compound | Compound |1
Separation of Test sets Test sets Test sets Test sets
peaks/s Autoprediction 97531 10, 8,6,4,2  Autoprediction 97,531 10, 8, 6, 4, 2

0 0.093174 0.131619 0.059123 0.048965 0.069071 0.031207

4 0.091180 0.128865 0.057777 0.046181 0.065031 0.029589

8 0.085691 0.121182 0.054197 0.038823 0.054299 0.025351

12 0.079600 0.112527 0.050411 0.031216 0.043223 0.020925

16 0.076409 0.107943 0.048485 0.027458 0.03779%4 0.018683
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models. Cross-validation often produces an over-optimistic
assessment of prediction quality. For example, if a caibration
data set is correlated, it may predict itself fairly well, but not a
general set of all possible uncorrelated correlograms. Note that
for a good uncorrelated design and five concentration levels
(which is the minimum recommended for calibration), 25
experiments should be performed for two components. Smaller
calibration sets (typical in most analytical laboratories) risk
correlation between components, and so a fase sense of
security. For more than two components in a mixture, good
design is mandatory.

Although the calibration and prediction errors were assessed
on only one PLS component, under-estimating the number of
significant components is fairly common in many situations.
For example, if there are several compoundsin amixture, inthe
presence of noise, it iscommon to be able to model the datawell
with less components than compounds. More significantly, if
there are correlations between the concentrations in the
calibration data set (which in practice happens in most rea
situations), this will reduce the apparent dimensionality. When
two compounds are completely correlated there appears to be
only one PLS component. For atypical correlation of 0.7-0.8,
in the presence of high noise levels, it would be common to
model the data satisfactorily using fewer components.

The concentration levels modelled in this paper are fairly
high, resulting in maximum absorbances over all wavelengths
and times of around 1 AU. In addition, the relative average
concentrations of both compounds are approximately equal . For
impurity monitoring, one component may be present at much
lower relative concentrations. Nevertheless, the numbersin this
paper give some guidance as to the level of prediction errors
found. For example, in Table 7, the error of prediction of
compound | using test set 2, two PLS components, and at the
highest noiselevel isabout 1.09% (= 0.0035/0.32). Note that if
the level of this compound is low (e.g., a 0.1% impurity) the
prediction error would be correspondingly much higher. Note
also that percentage prediction error becomes much higher if
one component is recorded in low relative concentration.
Nevertheless, this paper provides guidelines on how to estimate
prediction errors as a function of noise level, peak separation
and calibration design.

Finally, the PL S loadings plots are seen to be very diagnostic
of the spectra and elution profiles of the pure compounds. The
appearance is influenced in addition by calibration design. If it
is desired to obtain the pure spectra by these means, it is
important to have as orthogonal a design as possible. If aseries
of chromatograms are not orthogonal, a possible approach
would be to remove a variable number of chromatograms from
the data set and perform PLS as described above, but to
calculate the loadings on different subsets of the data with
different correlation coefficients. The further the correlation
coefficients are from zero, the more mixed the loadings plots
are. By visually comparing a series of such graphs, it should be
possible to determine the features of each pure component in the
mixture.

Appendix
List of notations

X Matrix of absorbance values at successive time
points and various wavelengths

Vector of compound concentration

Total number of wavelengths

Total number of pointsin time

Sum of the area of a chromatographic peak at
wavelengths

L T e

t

Ok

1,18k

M,1Y1
M, 1Y2

M,1,J N

12
RMSE

Yimk

ym,n,k

Elution profile of a chromatographic peak,
summed over al wavelengths

Point in data matrix ;X at timei and wavelength
J

Number of experiments

Scores matrix after performing PLS1 on matrix X

Loadings matrix after performing PLS1 on
matrix X

Residual matrix after performing PLS1 on matrix
X

Scores vector for concentration vector y

Loadings vector for concentration vector y

Residual vector for concentration vector y.
Predicted concentration vector after performing
PLS calibration

Number of PLS components extracted

Contribution to the true concentration y for n
PLS components

Predicted concentration for sample m after N
PL S components are extracted

Mean compound concentration

Matrix of summed loadings over time

Point in {ieP matrix, at time i and PLS
component n

Matrix of summed |oadings over wavelength

Point in ;4P matrix at wavelength j and PLS
component n

True experimental normalised spectrum of pure
compound k at j wavelengths, and averaged
between points |; and I,

Absorbance value at point of maximum intensity
for symmetrically simulated elution profile of
compound k

Retention time at point of maximum intensity for
symmetrically simulated elution profile of
compound k

Factor relation to width of the peak at half its
height

Point of simulation elution profile for symmetric
peaks and compound k

Symmetrically simulated elution profile for pure
compounds k, based on a Gaussian peak shape

X matrix for compound k, obtained by
multiplying the ssimulated elution profile for
compound k with its true normalised
experimental spectrum

Concentration of compound k at a coded level |

Maximum true chromatographic concentration of
compound k

Cadlibration design with coded concentrations for
compound |

Calibration design with coded concentrations for
compound |1

Three-way tensor comprising of M two-way
matrices containing both compounds, mixed in
various proportions

True concentration vector for compound |
derived from yd;

True concentration vector for compound 11
derived from ypd,

Three-way tensor, comprising of M noise
matrices of dimensions| x J

Correlation coefficient of calibration design

Root-mean-square error between predicted and
true concentrations for autopredictions

Concentration for sample m of compound k at
level |

Predicted concentration of sample m and
compound k, using n PLS components
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RMSEP  Root-mean-square error between predicted and
true concentrations for testing the calibration
training sets using independent test sets

testy; Concentration of sample m of test set and
compound Kk at level |

ety .« Predicted concentration of sample m of test set
and compound k, using n PLS components and
acalibration training set
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