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Chapter 1

Introduction

Large amounts of data is emerging as an important problem in chemistry.
The cost for extracting a large number of variables measured for each sample
is becoming lower. Instruments producing N-mode arrays are already be-
ginning to appear in chemistry laboratories. In e.g. NMR spectroscopy the
introduction of multipulse techniques such as n-dimensional versions COSY
and NOESY, has made it possible to perform proton and *C' assignments
more efficiently than provided by one-dimensional techniques [1]. Hyphen-
ated chromatography, e.g. with the acquisition of full UV and IR spectra at
different time intervals or temperatures is today an important technique for
the analytical chemist [2,3]. In addition to analytical instruments, different
theoretical methods can also give rise to a large amount of data. One par-
ticular example is the many conformations arising from molecular dynamics
simulations of proteins and polypeptides.

In order to extract information from data, techniques found in chemomet-
rics can provide the investigator with tools for understanding the underlying
structure of the data set. By using multivariate methods such as principal
components analysis (PCA) [4-6], principal component regression (PCR) [4]
and partial least squares regression (PLS) [7,8] it is possible to model the
data structure using latent variables. Even though the algorithms may be

efficient for interpretational purposes they can be unnecessarily computer
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demanding. One particular class of computer intensive methods are N-mode
techniques (e.g. N-mode principal component analysis).

Usually the data analytical process is interactive where the investigator
can very rapidly see the results of the treatment of the data set. When
the data set is very large this process will slow down and sometimes the
time spent in waiting for the results is prohibitively long. A simple but
expensive approach to the problem is to buy a larger computer or more
memory. For several cases this will be impractical and cannot be done each
time a too large data set shows up. In this thesis the compression approach
will be used for most of the problems. The basic idea is very simple: A cost
efficient pretreatment compresses the original data array into a smaller array
which is subsequently inserted into the chosen data analytical algorithm. The
approach is not without problems and ways of solving them are discussed.

Handling of large data sets can be divided into two major subproblems:
Storage and computation. There are several strategies for compression of
data, some of them are discussed in the next section. But there is a problem
that the compressed represention in general must be uncompressed in order
to be subjected to numerical analysis. Usually the compressed representation
itself cannot be used directly without transferring it back into the original
representation. When the large data array is uncompressed into the original
large representation again there is still a computational problem. This thesis
attempts to achieve the best of both worlds: An efficient storage of the
data and computation on the compressed representation only, without the
need to uncompress to the original array dimensions. It is assumed that
the compression is initially performed to store large amount of data and
that the compressed representation will be analyzed later several times by
different techniques. It is therefore not imposed strict requirements for the
computational efforts involved in the compression stage itself.

The computational problem can also be partly solved by writing more
efficient algorithms. In spite of the fact that this will not be the major focus

of the thesis, the last chapter deals with an example where rewriting of the
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fuzzy c-means clustering algorithm produced large savings in floating point
operations (FLOPS) when the number of variables is much larger than the

number of objects in the data matrix studied.

1.1 Examples of compression techniques

Several schemes have been constructed for compression of text, images and
sound-signals. A few common compression methods found in electrical engi-
neering and signal processing are described below. Not all of the compression

methods presented are suitable for chemical data.

1.1.1 Run length coding

This is a lossless' coding which is based on a very simple principle. It has
been successfully applied to compression of binary (black and white) images.
A naive implementation of this algorithm is best explained by an example.

Assume that the following binary sequence should be stored:

0000000000111111111111000000000000000

This sequence has 34 bits, but can be more efficiently stored by saying 9
zeros, 11 ones and 14 zeros. Using b bits it is possible to address 2® numbers.
Assuming a maximum of 256 repetitions of 1 and 0 we would need 18 bits
instead of 34. Of course, if the data set does not have this kind of structure

it will be less efficient than using the original uncompressed representation.

1.1.2 Huffman coding

This method represents each symbol by a binary code of length inversely

proportional to its probability. Assume a file of numbers where each number

'This means that the uncompressed representation is identical to the 6riginal large
representation. In lossy compression the uncompressed representation will be similar but
in most cases not equal to the original data.
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Figure 1.1: Demonstration of the how the Huffman algorithm gives the
largest bit patterns to symbols with low probabilities

initially is represented by e.g. 16 bits. It is not optimal to let symbols
(numbers) occurring with high frequency be represented by the same number
of bits as the symbols with low frequency. An analogous problem occurs in
everyday life. We don’t use the full name of people we meet every day or
are familiar with. Unique identification is often obtained by a small number
of letters and we have a tendency to shorten names of friends. For example,
“Robert” is called “Bob” and William is called “Bill”.

Huffman coding perform this systematically by first determining the oc-
currences (probabilities) of the different symbols in the sequence. A tree is
constructed where each node branches to a 0 or a 1. Each leaf represents
a symbol (a number or a character). Each symbol is sorted with respect to
their individual probabilities . Those with the highest probabilities are at
the top and those with the lowest are at the bottom. Those with higher
probabilities will have a shorter path from leaf to top node. An example for

a set of eight source symbols is presented in Figure 1L

1.1.3 Suband coding

A set of filters splitting the input signal into subbands in the frequency

domain is constructed. Each subband is downsampled by a factor equal to
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the number of subbands. An encoder is made that represents the subbands
signals in a bit efficient manner. Generally, low frequency subbands require
less bits than high frequency subbands. The highest frequency bands are
discarded with the assumption that they contain mostly noise. This method

is much used in video and image compression [9)].

1.1.4 Quadtrees

The term quadtree [10] is a class of hierarchical data structures whose common
property is that they are based on the principle of recursive decomposition of
space. One example of a quadtree approach is to divide subimages into four
rectangles recursively. A rectangle is decomposed further if a measure of a
rectangle is above a certain limit. Such a measure can be e.g. the standard
deviation of all pixels in that subrectangle. The principle that smooth areas
need less subdivision than more “rugged” ones is applied. The resulting
representation of the image is a tree which can be further subjected to lossless
compression schemes as Huffman or Lempel-Ziv. Quadtree segmentation

techniques are also used to find contours and edges of objects in images.

1.1.5 Vector quantization (VQ)

A common way to compress images is to divide an image into segments, often
of size [8 x 8| pixel blocks. Such a subimage or segment requires 64b bits to
store (b bits per pixel). The total number of possible subimages are 20
The main idea of VQ is to find a much smaller set of basis segments, called
code vectors, such that every segment in the original image is replaced by one
of the code vectors that closest resembles the original segment. The actual
storage of the image is now a set of index pointers to the code vectors. If 32
different code vectors is selected, a 5 bits pointer for each segment is needed,
instead of the 64b bits in the original representation.

The problem in VQ is to choose the best code vectors for a given image

or set of images. This problem is related to clustering and segmentation of
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a1 a2 a;3 Q4 Qs aie Pi

0.50 | 0.00 | 0.00 | 0.50 | 1.00 1.00 0.33
0.50 | 0.00 [ 0.00 | 0.50 | 1.00 | 50.00 | 0.33
0.50 | 0.00 | 0.00 | 0.50 | 50.00 | 50.00 | 0.34

Table 1.1: Table showing the IFS parameters for the Sierpinsky triangle .

the variable space.

1.1.6 Iterative maps/fractal coding

The main idea of using iterated maps (or fractal coding) in compression is to
let the parameters for an affine mapping? be the code for an image. These
parameters are called iterated function system (IFS) codes. Given the IFS
codes the mapping will iterate to the desired image after some time. If the
image is two dimensional, the image generation is performed by letting a
single 2D point trace out the image iteratively. The procedure can be very
slow for large images. In general we have the following type of mappings for

2D images:

wi([rl]):[al GQ][TI]Jr[aS}:AxwLa. (L.1)
T9 az Qa4 T2 ag
The affine map w; takes a point [v1,72] and generates another point

[/, 24]. This new point is inserted back into the w; and so on. An image is
thus described by

o : : : . .
2 An affine transformation consists of a linear transformation followed by a translation.
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% 0 2 m ) 8 100
Figure 1.2: The Sierpinsky triangle.

e A set of affine mappings w;(x), i € [1,2,---,m].

e Parameters a; for each w;(x).

e A set of probabilities p; associated with each w;(x).

When more than one w;(x) is used for each iteration step it is decided
which of the mappings is to be used on the current coordinate. Those w;(x)
with the larger probabilities are selected more frequently in the process of
image generation. In figure 1.2 the Sierpinsky triangle is generated by se-
lecting the values of a; for the three different mappings wy, w,, w3 as shown
in Table 1.1.






Chapter 2

The compression approach

The compression approach chosen for this thesis is based on projecting the
different spectra ! onto a selected basis set. PCA is such a method where
the basis set is generated from vectors corresponding to directions along the
maximum variance in the data structure. Fourier transform is another ex-
ample of a projection technique. In this case the basis set is sine and cosine
functions which are invariant with respect to the selected data set. Fourier
transform can be used to compress data when coefficients corresponding to
high frequencies are discarded. It is often assumed that the noise contain
mostly high frequency components. The same principle is used in PCA as a
compression technique where the eigenvectors corresponding to small eigen-
values are not used in the reconstruction. A reconstructed spectrum will in
general be smoother and have a smaller information content. One particu-
lar type of spectra which have been studied in this thesis is infrared spectra
which to some degree are smooth.

The type of basis set selected for solving the compression problem is the
B-spline basis [11].

'A spectrum can be itself be an N-mode array of data.

10
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2.1 Requirements and definitions
The following criteria has been used as guidelines in the present work:

1. For each spectrum the variables in the compressed representation must

be comparable.

This means that if a set of spectra is to be compressed, the same com-
pression strategy must be applied to every spectrum. The compressed
variable ¢;j, j,.jy for spectrum z, must contain the similar/comparable
information to the compressed variable ckj,j,..jy for spectrum k. In

some cases this is a suboptimal strategy from a storage viewpoint.

2. The compressed representations must retain all important features of

the spectrum.

In this thesis a lossy compression approach is used. This means that
the reconstructed spectra from the compressed representation are not
identical to the original data. For most practical purposes this is an
acceptable strategy. Of course, to decide upon what is an acceptable

reconstruction must be the responsibility of the investigator.

3. The compression must be reversible in the sense that it is possible to

obtain an approximation of the original spectrum.

There are some compression strategies that are in theory and/or prac-

tice irreversible.

4. The results from the analysis of the compressed data should be possible

to interpret in the same manner as the original spectrum.

It is possible to obtain compressed representations using nonlinear map-
pings from original to compressed space. Such a data set will often be
qualitatively different from the original representation and thus the in-
vestigator has less chance of using external knowledge in interpreting
the data.
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5. It should be be possible to obtain “back-estimates” of the data ana-
lytical results of the original data set based on the results from the
compressed representation only.

One example used in this thesis is how to obtain the scores and loadings
from PCA of the original data set using the scores and loadings of the

compressed representation and the compression bases only.

6. It should not be necessary to rewrite the standard data analytical al-
gorithms to make use of the compressed representation. This is not an
absolute requirement. It is very handy when the same type of methods

and programs can be used without needing to buy a new program.

Unfortunately, it is not possible to satisfy all these criteria simultaneously.
The author found especially item 5 difficult and this has been partly solved
by a method where it was necessary to rewrite the algorithms. This is of

course in conflict with requirement 6.

2.2 The chosen compression method

The method of fitting B-splines to spectra has been chosen for the following

reasons:
e B-spline fitting is a relatively simple method to understand.
e n’th degree continuity across knot points ? is ensured.

e There is a linear relation between coefficients and the original data.
This fact makes the theoretical treatment of the methods described in
the thesis possible.

o A recursive formula generates the B-spline basis set from the vector of

knot points (a knot vector).

2A curve is divided into segments defined by the knot points and a polynomial is defined
within each segment.
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e The basis matrices contain several zero elements which is useful for

sparse representations [15].

A non-linear compression method could have been chosen which in general
obtains much better compression rates than linear ones. When non-linear
methods work, they are often much better than linear ones in capturing
the essential features of the data. One such method could have been e.g.
fitting gaussian/lorenzian peaks to the observed spectra. This is illustrated
in Figure 2.1 where the one dimensional scores space of an X matrix of
gaussian non-linear coefficients is compared to the corresponding 2D scores
space of the actual gaussian curves. The one dimensional non-linear gaussian
coefficient representation explains 100% of the variance, but the model on
the gaussian curves themselves only explains 57.6% of the variance by two
factors. The construction of this data set was to let one gaussian peak shift
from left to right and increase the peak height.

A non-linear approach faces the following problems:

e The fitting procedure itself is slow (computer demanding).
e The iteration may not converge to an acceptable solution.

e The fitting procedure is sensitive to starting conditions.

2.2.1 Some details of B-splines

B-splines [11-13] or basis-splines represent curves as linear combinations of
basis functions [14](pp.163-176):

f(@) = L eiBiala) 2.1)

The basis functions Bj;x(z) are generated algorithmically from a much

smaller vector of knots. The knot vector is a nondecreasing sequence of
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PCA on gaussian coefs. PCA on gaussian curves
15 T T 50 T T

PC 2

o 1 5 1 1 A 1
0 200 400 600 .4-%0 0 50 100
Objects PC1

Figure 2.1: The left plot is 2D score plot from PCA on the gaussian coeffi-
cients alone. The right plot is the corresponding score plot from analysis of
the curves generated from the gaussian coefficients.

numbers 3:
hy Shy <+ < hoginn

where k is the maximum degree of any polynomial.

Thus the function f can be estimated from the coefficient and knot vector
alone. The actual set of basis functions is not stored, only the knot vector.

An example of a basis set based on a non-uniform knot distribution is

shown in Figure 2.2.

3t; is usually used in spline theory to indicate a knot point. This letter is not chosen
since in chemometrics it is usually associated with score values .
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B-spline bases for non-uniform knot vector
0.8 8 T

0.7
o.ef
0.6
0.4f
0.3
0.2t

0.1}

c0 6 10 16 20 25 30

Figure 2.2: The B-splines bases for a non-uniform knot distribution. The
knot sequence is: [1,3,8,12,13,16, 18,20, 21,21,22,23,25,27,28]. The inter-
val is from 1 to 30.

The coefficient c; associated with each basis function j may be interpreted
as the height of the basis function. The functions B;x(z) are constructed by

a recursive algorithm [14]. The zero’th degree B-spline is defined as :

o 1 ifh]'S:t<hj+1
Bjo = { 0 otherwise. (2.2)

B-splines belong to a broad class of functions called wavelets. Some of the
motivation for constructing wavelets may best be understood by comparing
with Fourier transform. The bases used in Fourier transform are sine and
cosine functions. These are localized in the frequency domain but not in the
time (or space) domain. Wavelet bases are chosen such that they are localized
in both the frequency and the time domain. Wavelets are constructed by
translation and dilation of a “mother-wavelet” function ¢(z). The basic
dilation equation 1is :

@

¢(z); = D cxdj-1(2z — k) (2.3)

k=1
where one example of ¢(z)o is equal to Bjo (the “box function”), see

equation 2.2 above. Different types of basis sets can be constructed by
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Hat function, c= [1/2 1 1/2]

1 o 1 2 3 4

Figure 2.3: The hat function generated by recursive dilation and translation.
c=101 2 1].
2

selecting the appropriate values for ¢, in equation 2.3. For ¢ = [% 1 %] the
hat function appears as j — co. The approximative hat function for j = 4
is shown in Figure 2.3.

The B-spline basis functions on a homogeneous knot distribution is gen-
erated by selecting ¢ = (1 4 6 4 1]. This is illustrated in Figure 2.4.

The B-spline basis is diagonally dominant, i.e., the row/column sum of
any row/column of the off-diagonal elements is smaller than, or equal to, the
absolute value of the corresponding diagonal element [14]:

| BiBi > 3 | B{B; | (2.4)
I#k

This structure is especially convenient for sparse representation [15] of the
basis matrices in computations. Sparseness means that the arrays contain
a large number of zero elements. There are now available packages which
takes this kind of structure into consideration when performing standard
matrix and vector operations. Multiplication of elements which are known
in beforehand to produce a zero element is a waste of computer resources
and therefore avoided. We have found that sparse representations speed up

several algorithms presented in this thesis considerably.
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B-spline basis, c= 1/8[1 4 6 4 1]

0.6 1 1.5 2 26 3 3.6

a

17

Figure 2.4: The B-spline function generated by recursive dilation and ¢ =

11 4 6 4 1).



Chapter 3

Two-mode arrays

3.1 Compression of 2D IR spectra

In paper II the application of B-splines in compressing a 2D IR spectrum is
presented. The steps in compressing a two-mode data set using B-splines is

as follows:

e Compute the mean or standard deviation vectors along the columns
and/or rows for the data matrix. Such vectors will hereafter be referred
to as representative vectors (RV) since they act as representatives for
all the other vectors along a particular mode. Of course, other types

of RV’s different from the mean and standard deviation are possible.

e Each RV is used to construct a knot vector. For this we have chosen to
use the maximum entropy method [16] (MEM). It was shown in paper
I that MEM is similar to a zero’th degree B-spline technique.

¢ One B-spline basis matrix B; for mode j is constructed from a single

knot vector h;.

e The compressed representation C is constructed as:

C=((BTB,))TBIX"By(BIB,)' (3.1

18
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In order to measure the real compression it was necessary to perform
scalar quantization. Intuitively one 1s lead to believe that the dimensions
of the C matrix should be enough for measuring the compression. This is,
however, not a safe method since the number of bits used in the representation
of real values is important. MATLAB, which was used in all calculations, uses
64 bits in representing a real number. The input data set from the Nicolet
800 spectrometer uses 16 bit to represent each number. The multiplication
of the original data set with the B-spline bases in MATLAB produced a C
matrix using all the 64 bits in representing the coefficients. In this case a
data “concentration” instead of compression could be in effect. A simple
example illustrate the concept of data concentration. Assume a matrix X
with dimensions Dim(X) = [28 x 28] with 2* bits per data element. If the data
matrix is concentrated to a matrix C with dimensions Dim(C) = [27 x 27]
with 26 bits per data element, it is realized that the total number of bits for
X and C is equal (282824 = 27272°). From a storage point of view this is
not an acceptable situation, but can influence the floating point operation
(FLOPS) consumption in algorithms. If the processor can manipulate on 64
word length vectors, it will not process any faster for a word length of 16.
The number of multiplications will depend on the dimensions of the matrix
which directly influences the number of FLOPS consumed by an algorithm.

In order to measure the compression rate, restrictions on the number of
bits per symbol is required. This enables us to determine the amount of bits
needed to obtain a satisfactory reconstruction. '

A two-dimensional temperature-infrared spectrum was recorded of pyrol-
ysis of kerogen in KBr. The data set is shown in Figure 3.1.

The standard deviation vectors along the two modes were used as RVs.
Two B-spline basis matrices were constructed, and the coeflicient matrix C
was computed. A frequency distribution of all the values in C was performed.
This distribution was used to partition the real line into intervals where more
intervals were added to regions with high frequency. This analysis resulted in

a set of J source symbols. Each value in C was then replaced with one of the
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Original data set

0 4000
Temperature Wavenumber

Figure 3.1: Original data set used in compression with quantization experi-
ment.

closest lying J source symbols, producing a new matrix C,. This constituted
the scalar quantization step. The new coefficient matrix C, was used in the
reconstruction (and storage) of the original array X. The [80 x 869] data
matrix X was compressed to a [14 x 115] data matrix C,, where the number
of bits per data element (with respect to X) was reduced from 16 to 0.16.
Very little qualitative information was lost in this compression (see paper 11
for details). The scores and loadings vectors of the compressed representation
C, were qualitatively similar to the the scores and loadings vectors of the
original data array X.

This experiment demonstrated that B-splines captures the main features
of smooth curves (here infrared spectra) and that the coefficients can be
stored in a bit-efficient manner. The scalar quantization approach can also
be used for data arrays having any number of modes.
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3.2 A solution to “back-estimation” in PCA

Let the compressed matrix of X be C. A PCA analysis of X produces a score
and a loading matrix T and PT. A PCA analysis of C produces a score and
a loading matrix T. and PCT. Since a compression has been employed, we
wish to avoid direct computation of T and PT. Given T., PT and the
basis matrices B;,i € {1,2}, is it possible to generate perfect estimates of
T and PT ? It is here assumed that the compression is perfect and thus
C reproduces X perfectly. Of course, this is not the case in most practical
situations, but simplifies the theoretical discussion. A suggested method for

calculating the back-estimates is:

P/ = P!B]
T, = B,T. (3.2)

where T, and PT are the scores and loadings matrices of the compressed
representation C. The T, and PT are the estimated scores and loadings
matrices of the original matrix X. Unfortunately the equations in 3.2 do
not in general produce the true scores and loadings of X. Neither T, nor P/
are orthogonal as required for the true scores and loadings.

Even if the equations in 3.2 do not produce the perfect results, they
will often give qualitatively the same results for certain compression matri-
ces B, and B, which satisfy the diagonally dominant criterion. For other
compression matrices the Ty and P! may not even be qualitatively similar
to T and PT. The method constructed to achieve perfect back-estimates
is called postponed basis matriz multiplication (PBM). This is a method for
rewriting algorithms. The basic idea is to postpone the large multiplications
between compression and kernel (compressed) matrices in the algorithms.
The method will not work for all kinds of algorithms. The following criteria
must be met for the different expressions in an iteration for the PBM method

to work:



CHAPTER 3. TWO-MODE ARRAYS 22

e An expression must be expandable in terms of the compression model.

e Each term in a sum must be pre- and/or postmultiplied by the same

basis matrices.

e Equations that cannot be written in terms of the compression model
can be included in the iteration unless they depend on the whole un-
compressed input matrix.

e There must be no non-linear operations on the uncompressed input
matrix X or the basis matrices.

When applying the PBM method to the NIPALS algorithm, the first step
1s to assume analysis on the whole data matrix X and substituting later for
the compression model X = BICBZ whenever X occurs in the equations.
In addition, it is assumed that all the loadings and scores vectors of X can
be written as linear combinations of the basis matrices in the compression.
Thus it is assumed that

p’ = v'B]

t = Blu. (34)

By substituting the new expressions for the scores and loadings in the
NIPALS algorithm, it is observed that the basis matrices B, and B, are
redundant in several of the steps in the iteration for each factor. Since this
can be computationally demanding multiplications, they are postponed until
the iteration has finished for all the factors. The new algorithm together
with the standard NIPALS is shown in paper IV.

Unfortunately, the algorithm is more FLOPS demanding than just apply-
ing NIPALS directly on the compressed representation C. This is due to the
fact that we have extra kernel matrices in the iteration originating from the
compression model: G; = BITBI and G, = B2TB2. It is dependent on the
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data structure and compression model whether the PBM-PCA algorithm will
be any faster than direct analysis of the large X. If B-spline basis is used,
it is often observed that the G;, G2 matrices are sparse which increase the
speed of the PBM algorithms considerably.

The output from the PBM algorithm is two matrices U (scores-like ma-
trix) and V (loadings-like matrix) which do not share the orthogonality prop-
erties of the traditional NIPALS algorithm. Thus UTU # D where D is a
diagonal matrix (eigenvalues along the diagonal) and VIV # 1. On the
other hand, however, we have that T, = B,U and PT = VTB! do have
these properties: TIT, = UTG,U = D and P{P; = VTG,V =L If the
compression is perfect we have that T = T, and P = Py,

3.2.1 Deducting the PBM-PCA equations from gen-
eralized eigenvalue decomposition 1

In the following subsection it is shown that the particular PBM-PCA al-
gorithm described in paper IV can be deducted from another theoretical
viewpoint. Instead of presenting PCA as an algorithm (NIPALS), it is possi-
ble to obtain the scores and loadings of the matrix X by solving the following

eigenvalue equations:

xxTUu = UrI (3.5)
XTXV = VI. (3.6)

As will be demonstrated, the same approach is also possible for the PBM-
PCA algorithm.

Hereafter, the equation for the scores will be treated in detail. The same

will apply for the loadings equation. Inserting the compression model :

1The material in the present subsection has not been published or submitted to an
international scientific journal. A short communication is under preparation.
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X = B,CB! (3.7)

into equation 3.5, we get

B,CBI!B,C’BTU=UT. (3.8)

In PBM a matrix Uy is found such that U = B,U,. By inserting this
into formula 3.8 and setting G; = BY By, i € {1,2} we get:

B;CG,CTG,U, = B, U,I. (3.9)

. . o T
Equation 3.9 is now premultiplied by Bj:

G;,CG,CTG Uy = G U,T. (3.10)

Note that the matrix dimensions in the equation have been reduced. Solv-
ing this equation gives the same Uy as found by the PBM method applied to
the NIPALS algorithm. This is a generalized eigenvalue equation. It should
be noted that Uy in general is not columnwise orthonormal. This equation
must be used if G, is not invertible. If it is invertible, pre-multiplication by
G7! is possible:

CG,CTG Uy = U,I. (3.11)

This is the asymmetric eigenvalue equation (CG,CTG; is a quadratic,
but not symmetric matrix). Again, the Up in general is not columnwise
orthonormal. Due to normalization differences in the generalized and normal
eigenvalue algorithms, Uy must be multiplied by a diagonal matrix D such
that

The following matrices are defined:
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U =B,UY" (3.13)
and
ul) =uPD (3.14)

where Ug” is the eigenvectors from solving equation 3.11.

UTU =1 =UW’G, Uy = DUPTG,U'D (3.15)
D = (UP G, uP)-12. (3.16)

Dropping the superscript, the total backtransformation for the orthonor-

mal score matrix U 1is:

U = B,Uy(UI'G,Ug) /2. (3.17)

The corresponding eigen equation for the loading matrix is:

G,CTG,CG, Vo = G, VoI (3.18)

or if the G, matrix is invertible:

CTG,CG,Vy = VoI . (3.19)

Taking into consideration the normalization differences the total back-

transformation equation for the loading matrix becomes:

P = B,Vo(VIG,Vo) V2. (3.20)



Chapter 4

N-mode arrays

4.1 The need for a new notation

The notation traditionally used for scalars, vectors and matrices is very pow-
erful. The typographic formulation has no problem with capturing the dif-
ferent ways to manipulate the data objects. Figuratively speaking, the typo-
graphical nature of scalars is zero dimensional, one dimensional for vectors
and two dimensional for matrices. We are suddenly faced with a typograph-
ical problem if the same logic is to be followed for N-mode arrays. Three
mode arrays can always be described on paper by 2-D drawings of boxes.
It is a cumbersome notation, but it has the advantage of rapidly conveying
the basic idea of the data structure. For four- mode or even higher mode
arrays the “drawing” approach quickly collapses. Useful notations therefore
do not employ such approaches. The following criteria should apply to any

notation:
e Unambiguous.
e Intuitive
e The notation should represent the underlying data structure in a logical

way

26
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e Unnecessary features introduced by notation should be kept at a min-

imum.

o Symmetries and patterns in the equations should be possible to dis-

Cover.

e Easy to use even for larger problems.

The ezxplicit summation notation is the only notation in addition to the di-
agram notation which will be mentioned here. The diagram notation is really
a visualization of the explicit summation notation. The following equation

is an example of the explicit summation notation:

szikyij- (41)

The operations between array elements are indicated. The array elements
are represented by an array name symbol where the indices for the different
modes are written as subscripts. Summation signs are used to signify which
indices are to be summed over. For large N-mode problems this notation
gets complicated and it is not easy to discover symmetries and patterns in
the index topology.

In order to make the explicit summation notation more convenient to
use for N-mode array equations, a diagram notation has been constructed.

Details of this notation are discussed below.

4.2 Properties and rules of the diagram no-
tation

The need for an intuitive and powerful notation for N-mode array equations
has also been present in physics (quantum mechanics) and group theory. The
famous physicist Richard P. Feynman constructed a diagram notation (so-

called Feynman diagrams) for manipulation of complex equations involved in
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Figure 4.1: Example of a Feynman diagram. This demonstrates the scatter-
ing of two photons into an electron and a positron.

N-body interactions. The Feynman diagrams became successful and is today
a powerful tool in high energy physics and group theory, see F igure 4.1 for
an example of a Feynman diagram. Here the scattering of two photons into
an electron and a positron is shown.

Since chemometrics and psychometrics have similar notational problems,
it is to be expected that the solution strategy employed by the high energy
physicists may also be of advantage for chemometricians and psychometri-
cians.

In the past few years, N-mode array problems in chemistry have been
more common and the need for understanding/manipulation of different N-
mode algorithms/theories has increased. The manipulation of diagrams in
general is not that strange to the chemist. This is the usual way of display-
ing molecular structures. It is therefore the author’s personal opinion that
chemists and chemometricians prefer a graphical and intuitive notation to
e.g. the Kronecker product notation (see paper VI).

The diagram notation is a graphical visualization of the index topology
in the explicit summation notation. The diagrams have the appearances of
graphs, and use of graph terminology is therefore appropriate [17]. A diagram
contains nodes and edges. Nodes signify array elements (e.g. zijk), and edges
signify indices. An edge is either connected or unconnected. An unconnected

edge is attached to one node only whereas a connected edge is attached to
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Connected edge =
summation over one
index

Figure 4.2: The essential idea of the diagram notation is illustrated. Lines
signify summation signs. The small lines perpendicular to the edges are first
index pointers (fips).

two nodes. A connected edge signifies summation over one index. When two
arrays share a common index which is to be summed over, an edge is drawn
between them. This is illustrated in Figure 4.2.

The total number of unconnected edges of an expression is the number
of modes (or the mode number) of the result. If two 3-arrays combine by
summing one common index, the mode number of the result is 3 + 3 -2 = 4.

In the center of the node the name of the array is placed. Lower case
characters are used since a node represents a single array element (scalar).
In the vicinity of the the edges the correct index names can be written in
order to clarify. The index names are written anti-clockwise from the first
index (this follows the convention in Feynman diagrams). Sometimes it is
necessary to indicate which edge signifies the first index. For this, a small bar
perpendicular to the edge is used; this mark is called the first index pointer



CHAPTER 4. N-MODE ARRAYS 30

Figure 4.3: Example use of diagram notation on arrays. See text for expla-
nation.

(the fip).

Figure 4.3 shows a few examples of array diagram equations, and
the corresponding summation formulas for the diagram equations pre-

sented are:

(A)
Z U;V;
This is the standard inner product.
(B)
Z LikYkj
k
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This is a standard matrix product.

(€)
YD iKWk
ko f
An array product between two three-mode arrays. The result is a
matrix because the number of free indices or unconnected edges is two.
(D)

z Zpkqlnkjielnm
ko1

Here the result is a fifth mode array since five free edges are seen.

Due to the imposed topological constraints by the notation, it is easy to
see that summing over an index shared by a number of nodes different from
two will cause problems. This is solved by introducing arrays containing just
zeros and ones. By connecting to such arrays new summations are introduced
such that summation over an index shared by more than two arrays can
be represented within the framework of the topological constraints. These
special arrays are N-mode Kronecker deltas &;,iy...iy- Two types are used in

the diagram notation:

o Typel:

This Kronecker delta is used in defining trace of an N-array and sum-
ming of an index involving N # 2 nodes; here symbolized as the array
_A_%) and is defined as

s :{1 i by =y = x e = By (4.2)

t1i2 N 0 otherwise.

This Kronecker delta is referred to as the sum nezus symbol and is

displayed in the diagram notation as a filled rectangle, see Figure 4.4.
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Figure 4.4: The filled rectangle is the sum nezus symbol. This is used when
more than two nodes share an index which is to be summed over. The
corresponding explicit summation notation equation is YN, hyjxtik;r;.

o Type II:

This Kronecker delta is used in N-mode array differentiation; here sym-
bolized as the array _A_%”. In the diagram notation, A_%” is depicted
as a filled circle of size smaller than the other array nodes. The general
definition of this Type II arrays is:

sUD _{ 1 ifij=o0;Vj€{1,2,--,n} (4.3)

”1'2...1'"0102“'071 - 0 OtherWiSe-

The properties of these Kronecker deltas are discussed in more detail

in paper VI.
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@ = AH-@)~

Figure 4.5: A diagram of a B-spline compression of a five mode array. Here
it is assumed that each mode is compressible by the B-spline basis. This may
not always be so. See text for explanation of the R; matrix.

4.3 Compression of N-mode arrays

The idea of N-mode compression by B-splines is very simple. For each mode
an associated B-spline basis matrix B; is used to compress mode 7; in practice
it is the matrix R; = Bj(BjTBj)‘1 which is multiplied with each mode. Some
modes may not be compressible by the B-spline basis and another basis may
be efficient. Alternatively, some modes can be left uncompressed. In Figure
4.5 the diagram notation is used to illustrate the compression of a five mode
data array. In this example all modes are assumed to be compressible.

The result, a smaller array C, is used instead of the original and much
larger array X. When a B-spline basis is used, the coefficients and the results

from the analysis are similar to the results obtained from analysis of the
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original data array (see paper V). One reason for this is again the diagonally
dominant structure of the basis matrices in B-splines. If back estimation
becomes a problem, the PBM approach described below can be used to solve

the problem.

4.4 Three-mode principal component anal-
ysis

Three mode PCA is an extension of standard PCA or singular value decom-
position (SVD). The SVD model is stated as

Tii =)D Uikshl vy (4.4)
kP

where u;; and v,; are obtained by solving eigenvalue equations involving

the following grammian matrices C1 and C2:

Cl,‘,’t = Z:E,'J'ij (45)
J

CQJ‘J'I = Z.’E,‘j.’l),‘ju. (46)

The three-mode Tucker 3 model is stated as follows:

Q R
Tijk = Z Zgipethkrcpqr (4.7)

g=1r=1
where ¢, is a core array. The Tucker 3 model formulated in diagram
notation is shown in Figure 4.6.

It is possible to construct corresponding grammian-like matrices:

J K -
cli =Y zijpzijk (4.8)

1=1k=1



CHAPTER 4. N-MODE ARRAYS 35

(DO

Figure 4.6: The Tucker 3 model. Note the arrows which signify that the
different loadings matrices G, E, H are columnwise orthonormal.

I K

2 = Z E TijkTijrk (4.9)
1=1 k=1
J

1
C3kkr = Z Z TijkTijk' - (4.10)
i=1 j=1

One should now expect that taking the eigenvalue decomposition of the
C1,C2,C2 matrices would produce the correct loading matrices for the
three-mode array X. If we extract all the eigenvectors of C1,C2,C2, this
would be true, but if a smaller number of factors is extracted, it can be shown
that the estimators of the core array are not longer least squares ones. This
rather unsuspected result emphasizes that going from two modes to higher
modes does not necessary involve a trivial extension of algorithms and theory.
In order to solve the problem, the Alternating Least Squares (ALS) algorithm
is employed. This algorithm iteratively estimates the different loading matri-
ces using estimates from previous iteration steps. A central part of the ALS

algorithm is shown in Figure 4.7 using the diagram notation.

4.5 A PBM solution to the three-mode back-
estimate problem

When the PBM method was found to work with standard PCA it was be-
lieved that it should work for the three-mode PCA also. The diagram nota-
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Figure 4.7: These steps in the ALS algorithm are iterated several times.

tion was used to solve the problem theoretically. After some manipulations of
the diagram equations, the resulting equations for the PBM applied to three-
mode PCA were deducted. Later implementations in MATLAB confirmed
the theoretical results. The diagrams also provided important guidelines in
the actual programming of the algorithm.

By rewriting the diagram equations in Figure 4.7 in terms of the three-
mode B-splines model of the original array X, it was easy to see that the
different basis matrices were redundant in parts of the computations. Since
the estimate of each loading matrix involves an eigenvalue decomposition,
it was necessary to rewrite the eigenvalue decomposition method as a PBM
method also. The power method was used as the eigenvalue decomposition
algorithm.

Figure 4.8 and 4.9 demonstrate how the diagram notation was used to
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The following is assumed:

o
o

Substituting the compression basis in loading matrices:

__

+
?

1

El

©
< D6 OO )

(x)
o6 ()

Figure 4.8: This figure demonstrate how the diagram notation was used to
deduct the PBM equations for the three-mode PCA. Thick lines identify
large modes.

deduce the correct equations (see paper V and VI for details). Note in Figure
4.8 that it is assumed that every result in the algorithm can be written in
terms of the original compression model. The deduction is really a trivial
substitution of the compression model in each of the steps involving loading
matrices and the original array X. X is not yet replaced by the compression
model in Figure 4.8. Only one of the expressions for the loading matrices
are shown (G). The equations are analogous for the other loading matrices.

In Figure 4.9 the substitution of the X with the compression model
has been performed. Figure 4.9 shows the pre- and postmultiplication of

the basis matrix to the expression enclosed by dotted lines (“matrix used
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Now we substitute X with the compression model:

..................................................................................

EIG

Matrix used in PBM

Redundant basis matrix multiplication

Figure 4.9: This figure clearly shows why the basis matrices are redundant in
the ALS iteration steps. Here the compression model for X has been written
out explicitly.

in PBM”). It is evident from this figure that these matrix multiplications
are redundant and can be postponed to after the ALS iteration steps have
finished.

Note in the figure the grammians introduced by the basis matrices. These
extra matrices makes the PBM methods slower than just analyzing the com-
pressed representation C directly. In order to minimize the effects from these
grammians, the use of sparse matriz technology has been found efficient [15].
When B-spline bases are used, the grammians BYB; of these bases have
a structure suitable for sparse representations, and savings in FLOPS con-

sumption is achieved.






Chapter 5

Fast fuzzy c-means clustering

It is well known that PCA can be performed by extracting the largest eigen-
vectors of the kernel matrices XTX and XX7. For those problems when
the data matrix X is rectangular, i.e. more objects than variables, or more
variables than objects, the eigenvectors can easily be obtained by performing
the analysis on the kernel matrix with the smallest dimensions. A similar
approach is also possible for the PLS method. This has been demonstrated
by Lindgren et.al. [18] and Manne [19]. Lindgren et.al. rewrote the NI-
PALS algorithm, but Manne used the more efficient Lanzcos formulation of
PLS1.

The success of using kernel matrices for speeding up algorithms inspired
the present author to test if this approach could be of use for the fuzzy
c-means (FCM) algorithm also. The algorithm usually employed is unnec-
essary slow for data set with many variables compared to the number of
objects. In chemistry it is often the case that the number of variables are
much larger than the number of feature vectors and such data sets slow down

the computation in FCM considerably.

39
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features/variables —— — clusters =
| " .
& f lusteri &
g, X uzzy c-means clustering o 'g- U
17 172
b i | at
Original data matrix Membership matrix

Figure 5.1: An explanation of the word “object vector”and some of the data
matrices involved in FCM clustering.

5.1 General definitions

Let X = {x,--" ,Xn} be a finite set of feature vectors ! x; where z;; € R is
the j’th feature of each x;. The aim of any clustering method is to decide if
X can be divided naturally into a number of partitions. A hard K-partition
of X is a K-tuple P = {Sy,--+, Sk} of non-empty subsets of X such that

K

X =] 5 (5.1)

k=1
and

SiSi=0, ¥ k#I. (5.2)

K (the number of clusters) is an integer satisfying 2 < K < N. Let W
be the membership matriz for the objects. In a hard K-partition we have
that:

Wik = { ! if ¥ =0 (53)

0 otherwise.

The sum of the membership values for one object must be unity:

1 Also referred to as objects, see Figure 5.1 for an explanation.
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K
Z Wik = 1 , Y. (54)
k=1

In addition we have that the sum over all objects for one cluster k& must

be smaller than the number of objects in the data set:

N
0<>d wp <N, Vk. (5.5)
1=1
Each entry w;; of a hard clustering membership matrix has thus the value
0orl,ie wy e {0,1}.
A much used objective function for defining clusters in X is the within

sum of squares [20] or minimum variance payoff:

N K

J(V) =2 > willxi — vi|? (5.6)

i=1 k=1
where vy are the cluster centers of S and V is the matrix containing all
the cluster center vectors. A clustering program will try to minimize J(V).
For a fuzzy K-partition of X we have a membership matrix U which
satisfy the criteria described in equations 5.4 and 5.5, but the individual
elements u;; can be any number between (and including) zero and unity, i.e.

Uk € [O, l].

5.2 The standard FCM algorithm

The FCM algorithm is started by obtaining an initial estimate of the matrix
V containing the cluster centers as row vectors. The dimensions of the V
matrix are [\’ x M] where K is the number of clusters and M is the number
of features. The initial estimate of V can be produced by e.g. random
perturbations of the mean vector of all the feature vectors. The feature
vectors are stored as rows in the matrix X. The dimensions of X are [N x M],
where N is the number of objects. The following steps are iterated until

convergence:
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K d'k 2/(m-1) -1
j=1 1)

e g(uik)mxi (%(uik)m) ) (5.8)

1=1

where d; and d;; are the A-distances

dix = (1% — villa)? = ((xi = vi)TA(x: — vi )2, (5.9)

v is the k’th cluster center and x; is the i’th feature vector. A is a
positive definite matrix chosen to control the shape of the optimal clusters.
Mere it is assumed that A is the identity matrix, i.e. for hyperspherical

clusters. The iteration is stopped when the change in

n [+

JV) =3 3wl — vill? (5.10)

=1 k=1

is below a certain value e. Typical values for m are in the range 1 <m < 3

5.3 Matrix representation of distance calcu-
lation
The main idea of the new algorithm is based on a different way of formulating

distance matrices. The Buclidean distance can be computed using matrix

algebra as:

D}=M+M"' -2R (5.11)

where R = XXT and M = l[leldiag(R)T. The diag operator generates
a column vector of the diagonal of a square matrix. The M matrix is not

symmetric.
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In the FCM algorithm the distances between objects and cluster centers
are calculated, not between the objects themselves. This gives rise to an

asymmetric distance matrix:

Q’=A+BT -2L (5.12)

where A = 1yyqydiag(F)T)F = VVT| B = 1, diag(R)7, and L =
XVT, R,L and F are referred to as “kernel matrices”.

By updating the kernel matrices, the repeated distance calculations for
every iteration is avoided. Based on this, the new FCM-M algorithm is as

follows for every iteration step:

Q = (A+B"-21)"” (5.13)
U = ¢(Q)F (5.14)
P = U™ (5.15)
H = PTdiag(1./(17P7)) (5.16)
L = RH (5.17)
F = H'L (5.18)

./ is elementwise division where the dot follows the notation as used in
MATLAB. The equations L = RH and F = H”L constitute the updating
steps of the L and F kernel matrices. The grammian matrix R is computed
once and not updated. The function ¢ is formula 5.7 applied to the asym-
metric distance matrix Q; i.e. the matrix is transformed such that the sum

of the membership values for one object satisfy:

K
dux=1, Vi (5.19)

The most computer demanding part of the algorithm is calculation of the
different kernel matrices. In most analyses using FCM on a data set where the

optimal number of clusters is unknown, repeated clusterings are necessary. It
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is also common to delete different objects and perform subclustering. In such
a scheme it is easy to see that the R matrix can be computed once and used
repeatedly in new analyses of the same data set. The other kernel matrices,
however, need to be calculated again for new values of K. In paper VII, two
methods are suggested, called FCM-M2 and FCM-M3 which utilize this fact
when analyzing for several different K values. The FCM-M2 method is a
trivial expansion of FCM-M since it just stores the R matrix computed the
first time and uses it for the next K values. FCM-M3 is based on FCM-M2,
but requires that the operator starts the clustering with a K which is the
maximum number of clusters that is being tested for. The reason for this 1s
that the F and V matrices for all analyses i < Kmax can be generated from
Fmax and Vmax by just deleting the appropriate number of rows and/or
columns. It may not be feasible to use the FCM-M3 method for all kinds of
problems, but when it is possible, this is definitely the most FLOPS-efficient
method. Subclustering is achieved by deleting rows and columns in R, F

and rows in L.



Chapter 6

Conclusion

The following three separate conclusions of the thesis is presented:

e For relatively smooth spectra the B-splines compression approach is
efficient for both storage and computation. The methods developed
enables the investigator to work on the compressed representation in-

stead of the original representation.

* An intuitive and powerful new notation for manipulating N-mode array

equations has been constructed.

o A fast algorithm for fuzzy c-means clustering of data set with large

number of variables has been constructed.

6.1 Possible future prospects

e There are several possible extensions and new developments which can
be performed in connection with the compression approach. The al-
gorithm for selecting the positions of knot points can be made more
efficient. Other wavelet bases should be investigated for their efficiency

In compression.

45
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e Efforts should be made to construct a program that enables the inves-
tigator to program with the diagram notation. Such a program would

be an N-mode analogue to MATLAB.

e The way the fuzzy c-means clustering algorithm was reprogrammed
to be more efficient, should be applicable to other fuzzy clustering
algorithms as well. Those algorithms which have particular interest

are those where the clusters can be lines or planes (hyperplanes).
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COMPRESSION OF nth-ORDER DATA ARRAYS BY
B-SPLINES. PART 1: THEORY

BJORN K. ALSBERG® AND OLAV M. KVALHEIM
Department of Chemistry, University of Bergen, Allegt. 41, N-5007 Bergen, Norway

SUMMARY

For efficient handling of very large data arrays, pretreatment by compression is mandatory. In the present
paper B-spline methods are described as good candidates for such data array compression. The
mathematical relation between the maximum entropy method for compression of data tables and
the B-spline of zeroth degree is described together with the generalization of B-spline compression to
nth-order data array tables in matrix and tensor algebra.

KEY WORDS  Compression Multivariate analysis B-splines Maximum entropy

INTRODUCTION

Instruments producing higher-order arrays are becoming common in chemistry. In NMR
spectroscopy, for example, the introduction of multipulse techniques such as COSY and
NOESY has made it possible to identify molecular structure in more detail than provided by
one-dimensional techniques.! Hyphenated chromatography with the acquisition of full UV
and IR spectra is today an important technique for the analytical chemist.? By using
multivariate methods such as principal component analysis (PCA),>~* principal component
regression (PCR)? and partial least squares regression (PLS),%’ it is possible to compare and
relate the spectra to one or several external variables (e.g. concentration). Usually,
spectroscopic instruments produce large amounts of data which need to be processed. Since
there is data redundancy, compression techniques can be applied with success. Although data
arrays from one-dimensional spectroscopy (frequency versus transmittance) often need some
kind of compression, the situation is much more dramatic for higher-order data arrays. It is
possible to imagine objects of order we [1,2,3, ..., O] which are to be compared. Data objects
of order w > 3 or 4 are presently uncommon, but it is easy to imagine a relevant application,
€.g. a comparison of several 3D NMR spectra which produces a 4D data array.

For a 2D IR® or a GC-IR spectrum recorded at 3000 wavelengths and 500 retention times
the number of variables is the product of the number of elements along each order, i.e.
1500000. If data arrays of this size are to be handled, compression is necessary. For the
compression to be of use in chemistry it must satisfy some important criteria: (i) for each
spectrum the variables in the compressed representation must be comparable; (ii) the
compressed representations must retain all important features of the spectrum; (iii) the com-
pression must be reversible in the sense that it is possible to obtain an approximation of the
original spectrum.

* Author to whom correspondence should be addressed.

0886-9383/93/010061—-13$11.50 Received 21 May 1992
© 1993 by John Wiley & Sons, Ltd. Revised 1 October 1992
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Item (ii) is especially important for all studies of relations between IR spectra and molecular
structure/properties.

Even if the computer resources available today are powerful enough to analyse very large
data sets, efficient compression is still important. Chemometric data exploration often results
in several analyses of the same matrix or matrices. For very large data sets this is inefficient
and will be slow even for today’s moderate-size Unix workstations. Experience has shown that
a PCA algorithm (written in C) on large third-order data sets of dimensions [100 x 256 X 256)
requires several hours of CPU time on a Solbourne S600 computer (Unix operating system)
with 32 MB RAM, 2 GB hard disk, 30 MIPS and 3—4 Mflops. In addition to the computational
advantage of using reduced-size data arrays, the reduction in file size may also be significant.

BASIC IDEAS BEHIND COMPRESSION IN CHEMOMETRICS

The conditions for the sampling method

PLS, PCR and PCA are methods often used for analysis of spectra where each sample
spectrum is sampled at discrete wavelengths and represented as a vector. These vectors are used
to build up the X-matrix which contains the various spectra as row vectors and each variable
is designated a wavelength. This representation is very intuitive and is much used. The fact that
the ordering of the variables has significance may seem trivial but has consequences for our
thinking about compression. This ordering or index information contains information about
e.g. the smoothness of the curves. If e.g. a parabola is to be analysed, it is represented as a
vector of sampled points along the x-axis. This is why this representation of curves (or
surfaces) has been referred to as the sampling representation method.® A random permutation
of the vector containing the sampling points will disrupt the parabola form. The ordering of
variables in PLS, PCA or PCR, however, is of no concern to the algorithm or the
mathematics. A symmetry is involved where row and column permutation of the X-matrix is
invariant with respect to the eigenvector directions or their corresponding eigenvalues. If Gr,c
is a permutation operator either row-wise or column-wise, T is the score matrix and PT is the
transposed loading matrix, this can be written as®

X =TPT )
G,XG. = G,TP'G. )

Compression utilizes the fact that the vectors are indeed curves (or surfaces) with certain
properties (e.g. smooth and continuous). If random shuffling of variables was performed, these
properties would be lost and most compression methods which rely on interpolating curves
would fail to obtain good compression rates. On the other hand, more optimal permutations
of the data table columns may exist which enhance the compression rates.

Comparable objects

Compression of data tables cannot be done for each object separately. The reason for this is
that the comparability of the object vectors (it is always possible to speak of vectors. in this
matter, because any data array can be unfolded to a vector) must be preserved. Variable v in
object i must have the same meaning and describe the same phenomena as variable v in object
j. Since the spectral structure is determined by the ordering of indices in the data table, the
ordering for the whole data array must be the same. Any variable manipulation must be the
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spectrum 1
Each spectrum is compr2ssed
spectrum 2 5 .
using the interval vector
spectrum 3
Interval vector
spectrum n

I ]

Figure 1. Illustration of the principle behind maximum entropy (and B-splines in general) for

compression of a matrix of spectra. The same compression must be applied to every spectrum and the

basis for selection of the interval vector is the mean spectrum. This may not be the optimal curve for
interval vector selection with respect to compression

same for every object. This is of course not optimal from a compression rate viewpoint, since
better compression rates may be attained if the spectra are compressed individually. This may
be a logical solution if the only purpose of the compression is for storing of the data array.
If the compression aims at reduction of data array elements for use in numerical calculations,
the compression must retain the comparability for the data set as a whole. For this reason the
mean spectrum is used as a guide to the total compression. Other types of spectra can be used,
e.g. the variance spectrum or selected object vectors of importance, but this is a
problem-relevant choice.

The importance of comparability can be further emphasized by an example. If s is a vector
containing the uncompressed spectrum and F is some function which gives a molecular-
property-related value p (here assumed to be a scalar), a desirable situation is obtained when

F R~ R (3)
Fo R™"~ R 4)
m<n (5)
p=F(s)= Fe(sc) (6)

where s. is the compressed representation of s and F. is the analogous function to F which
maps a vector into a scalar. In other words, the compressed representation should give the
same p-value as the uncompressed representation.

The total compression description for data objects is contained in one or several interval
vectors h” and is applied to each object vector. An illustration of this is given in Figure 1. The
number of such interval vectors is related to the order of the data array. Interval vectors are
synonymous with knot vectors in spline theory, which is described later in this paper.

THE MAXIMUM ENTROPY METHOD

The term entropy as used here is not exactly the same as entropy in classical thermodynamics.
When compressing curves, the information content in the curves is of central interest.
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Therefore the entropy definition introduced by Shannon'® is used:

Q
= —lZl pi In(pi) @)

where the classical information theoretical interpretation of Q is the number of intervals
subdividing a curve and p; is the probability of an event occurring in the interval i.
Traditionally p; is calculated by dividing the frequency within that interval by the total
frequency count. The important task is to define the interval such that any single event has
equal probability of occurring in any interval. The word ‘event’ is replaced by the word
‘variables’ and the ‘probability’ is the sum of selected variables divided by the number of
variables for an interval. A new number p; (average or ‘probability’) is assigned to every
interval; p; is just given a different interpretation. By putting the different pi (i.e. the
compressed variables which now are used instead of several of the old variables) into formula
(7), the intervals are divided such that equation (7) is maximized. The effect of this is that the
overall curve profile has the maximum probability of being retained. The best number « of
compressed variables p; is chosen by selecting the right interval subdivision. The number «
must be provided by the investigator and determines how accurate the compressed
representation will be.

The maximum entropy method described below is constructed to produce intervals which
maximize equation (7). The maximum entropy method as used in chemometrics was first
presented as an algorithm: '

1. Calculate the mean spectrum X' from the sample spectrum matrix X.

2. If min(XT) < 0, the negative values are eliminated by adding a constant to the spectrum
(e.g. | (min(XT) |). The reason for this is the step in the algorithm which adds variable
values together. The presence of both negative and positive values will create errors.

3. The & "-vector is used to generate an interval vector h'. The interval vector h” defines the
intervals of variables which are to be added together. if hT=[15 8 12 25], it is to be
interpreted as definition of four intervals: [1 5), [5 8), (8 12) and [12 25]. If an
interval is [a b)), all the variables from a up fo b are included but the bth variable itself
is excluded. The steps for making the hT-vector are as follows.

(@) I=(/a) £l %, where a is the maximum number of allowed variables in the
compressed representation.

(b) Starting at the first variable, add consecutive intensities in the average spectrum until
the partial sum is equal to or exceeds I. The position of the next variable to the last
variable added in the partial sum is included in the vector h™. If the last variable
added was 3, the number 4 is stored, i.e. the next variable number.

4. For each row vector (spectral profile) in X do: sum the variables defined in the h™-vector,
including the first but not the last variable, i.e. if hT(3) = § and h(4) = 10, the variables
5,6, 7, 8 and 9 are summed but nor 10. This variable will be summed in the next segment.
This is illustrated in Figure 2.

5. The new variable (sum over interval) is divided by the number of variables in the sum
to obtain an average value.

When the hT-vector is present, the algorithm can be formulated in matrix algebra. Let
%T=1[1-2,2-3,2:1,3-4,4:4,1-1,1-0,0-4] be the average vector of some data table X. An h"
is constructed for a = 3, i.e. the maximum allowed number of compressed variables must not
be larger than three. The threshold intensity is /= 15-9/3 = 5-3. By definition h'(1)=1 and
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hT-[ 1 3 6 9 J
| DD )]
e

C= [xl'-(xuxz)rz x2’ = (x3 + x4 + x5)3 xJ'-(xsox1¢xl+x9y4]

Figure 2. Detailed illustration of how the interval vector influences the summation of variables, i.e. the
generation of compressed variables

h™(last) = n, where n is the number of elements in &7 (in this example n = 8). Writing the
detailed calculation of the partial summing process will illustrate the process further:

1:2+2:342:1=56>53=h"(2)=3+1=4 8
34+4:4=7-8>5-3=hT3)=5+1=6 )

The sum of 11+ 1-0+ 0-4 is not included above, since here is the endpoint situation where
hT(4)=8. In the interval (1,4) there are three variables, the interval [4,6) contains two

variables and in the interval [6, 8] three variables are located. The total interval vector hT looks
like

hT=(1,4,6,8)] (10

The calculation of the three compressed variables will now be

(1:2+2:342:1)/3=5-6/3=1-87 a1
(3-4+4-4)2=7-8/2=3-90 (12)
(1°1+1:0+0-4)/3=2-5/3=0-83 (13)

This process can be formulated with matrix multiplication. The addition of the right variables
given h™ can be done by multiplying xT by a special matrix

L
(===}

COoOO0O = =00

C OO OO == =
—— OO

to give
x"B=1[5:6,7-8,2-5] (14)
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Dividing by the number of elements can be done by using the B-matrix:

-1
300 10

0
@) '=|0 2 of =]0 § O (15)
0 0 3 0 0 }

By combining equation (15) with equation (16), the following is obtained:
¢T=1[1-87,3-9,0-83) =x"B(B"B)"" (16)

The compressed variables ¢T will also be referred to as coefficients or the coefficient vector.
For a whole X-matrix this can be written as

C=XB@B'B)! a7

where C is the matrix containing the compressed variables. Given C, it is possible to calculate
back into the X-domain:

R =cCB’ (18)

SPLINE THEORY

Piecewise polynomial splines

In order to interpolate curves or surfaces, simple least squares optimization of the coefficients
in a polynomial of the form

n
P(x)=ao+ aix+ x4+ anx"= Z aix’
i=0
often generates oscillations and other undesired effects in real-world situations. The use of
splines solves this problem by dividing a curve into a set of segments or intervals. A
polynomial of some degree k is defined within the limits of the intervals. The intervals are
defined by a set of points called knots. Within each interval a polynomial is defined. The
polynomials are connected between neighbouring intervals such that continuity and
differentiability are preserved. This type of spline is the piecewise polynomial spline. Given
intervals s;, there exists a set of polynomial coefficients cjx associated with s;. All splines must
ensure that the function is continuous between knots. For splines of degree k the function has
k — 1 continuous derivatives on an interval I. Each interval s; is defined by two knots A, and
h, (beginning and end of interval).

B-splines

B-splines '>~'* or basis-splines represent curves as linear combinations of basis functions. Each
basis function is described by its knot sequence and often has a similar form to a Gaussian
curve; see Figure 3, where the knot distribution is uniform. When the knot distribution is not
uniform, the basis functions will differ in size and shape. The coefficient associated with each
basis function may be interpreted as the height of the basis function. The basis function form
and shape are defined by a recursive algorithm described below which uses the knot
distribution.

It is possible to construct a function f as a linear combination of basis functions (in the 1D
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Figure 3. Six B-spline basis functions depicted separately for k = 3 (cubic interpolation). It is important
to note that the shape of basis functions is determined by the positions of the knots. The coefficients
related to very basis function determine the height of the basis function in the function to be interpolated

case) (see Reference 15, pp. 163—176):

S(x)= 2 ciBik(x) (19)
i=1
where Bi,x(x) is the basis function. The function f is therefore described by its knot/interval
vector h” and coefficient vector c”. The knot vector is a non-decreasing sequence of numbers*
ho < hl S S hn+k

where & is the maximum degree of any polynomial.
Bi x is the basis and is defined by a recursive formula (see Reference 15, p. 164):

X —h;j Rivkser—x
B; =7 p.,_ _I*____B.+ _ k>1 20
ik (X) Py bj« |(X)+hj+“l_th i+ 1.k—-1(X) (20)
Jj=0,*1,+2 .. k=1,2,3,...

For Bio(x) we have
B o= 1 if hi < x < hiyy
“7 |0 otherwise
This function is depicted in Figure 4.

There can be several knots located at the same point along the x-axis. This is called
multiplicity and influences the smoothness.

21

The B-matrix

If hT is a knot sequence, B; x(x) can be represented as a matrix B and comp'uted for different
values of k.

* The notation ¢, is usually used in spline theory to designate the knot sequence. This letter is not chosen here since
it is usually associated with score values.
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B splines of degree 0
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Figure 4. Basis function for B-splines of degree zero

The same interval vector h¥ as in equation (10) is used to represent knots in B-spline bases
and equation (20) is used to generate the B-matrices for k=0, 1,2:

0 0]

1

o |
OO O OO m = =
OO O == OO0
—_—— O O O O

3333
6667

o - O O

B, = (22)

-5000

T
]o§§§OOOOI

1T © O O

0
0-0667
0-2667
0-6000
0-7750
0-5000
0-1250

0

The effect of enlarging the k-value is that the curve can be represented with fewer parameters.
This is only true if the fitted data have a smoothness corresponding to k. i.e. containing k — 1
derivatives (assuming no multiplicity).

A matrix formulation of equation (19) can be made. Let xT be the curve vector, ¢ the
coefficient vector and B the function B; x(x) represented as a matrix. Then

xT=c"™BT (24)

B; = (23)

which written in terms of ¢T is
¢c"=x"BB'B)"' (25)
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For several x"s we have
C=XBB'B)"! (26)

which is exactly the same equation as (17). This leads to the following conclusion: The B-spline

of zero degree is the same method as what has been called the maximum entropy method in

the chemometrics literature.'® This method is hereafter referred to as BO to indicate it is a

B-spline of zero degree. B-spline compression of degree n will be referred to as Bn methods.
Generally, when presented with a matrix C the estimated X can be written as

R =CB’ 27

2D method

When presented to higher-order data tables, it has been shown that unfolding®:!” is an efficient
method for representing higher-order data tables as matrices. Some would perhaps suggest the
1D compression should be applied to the unfolded vectors of the higher-order objects. This
is of course possible, but certainly a suboptimal strategy for compression, since the unfolding
process (a) introduces artefacts from the unfolding which require additional information for
representation and (b) destroys the spatial correlation between neighbouring points in the
higher-order data table. Compression for 2D, 3D and nD data tables is described below
without the use of unfolding.

Multivariate splines have been described'® and it is therefore natural to propose the use of
multivariate B-splines for compression of higher-order data arrays. It is now natural to apply
the multivariate extension to the BO method and Bn methods in general. For 2D methods two
knot/interval vectors h, and h; are needed (see Figure 5). For nD methods n such knot/interval
vectors must be used.

The methods presented are all formulated in matrix and tensor algebra. First the matrix
equation for Bn methods in the 2D case is formulated where the result in equation (26) is used
(the subscripts on the B;-matrices indicate different types of compression matrices for the

Interval vector 1 .
LLIT T T | ]
]
.
i e
2. —
Data matrix prior to compression

Fjgure 5. For 2D compression two (not necessary identical) interval vectors compress along the two
different orders of the data matrix. The rectangles in the data matrix defined by the Cartesian product
of the two interval vectors are represented by a single coefficient
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different orders; the same also applies for the C.-matrices):

C.=XB,(B/B,)"! (28)
C»=CJB:(BJBy)™! (29)
Cy»= [XB,(B{B,)"']"B:(B{B2) "' (30)
Co= [(BTB)) '1"B/X"B:(BJB2) "' @3N
R;=B:B/'B)"' (32)
C»=RTX'R; (33)

The subscripts a and b are used to discriminate between a matrix compressed along one
order only (a) and along two orders (b). It is easy to see that the Cp-matrix is the same whether
the compression is started along the first or second order. The compression matrices R, and
R; are associated with X and XT respectively. If X has dimensions [ix j], the dimensions of
R, are [j X ¢;] and R; has dimensions [i X c2]. It is easy to see that Cg has dimensions [i X ¢1]
if R, has been used first and Cp has dimensions [c1 X c2]. This can be further illustrated
by considering an example X-matrix with e.g. dimensions [6 x 8] and where the knot vectors
are hJ[ = [ho, i, h2,hs) and h] = [ho,h,h;]. The dimensions of R;= B,(B/B;)""
are [8x3)([3x8][8x3])=[8x3]. For Ry= B,(B/B;)"! the dimensions are
[6x2)([2x6)[6x2])=[6x2]. The dimensions of C,= XR, are [6x 8] [8x 3] = [6Xx3].
The dimensions of C» = CJR; are [3x 6] [6x2] = [3Xx2].

Starting with R; instead of R, gives (subscript 1 or 2 is added to a and b to indicate where
the calculation is started from)

C.2=X'R; 34)
Cs2=(Ca2)'R, (35)

Cr2 = RIXR, (36)

Co1 = RTX™R; = (RIXR))" = C}» (37

which proves that the same matrix is obtained whether R, or R; is used first. The conclusion
is that the different orders are independent of each other with respect to the order of
multiplication of the R;-matrices.

The subscripts of R indicate that the compression may be different (it usually is) along the
different orders. The process of compressing along two orders is depicted in Figure 5.
Generalizing this for a stack of 2D samples requires the introduction of tensors. ' If X* is a
third-order tensor (three-way data array) with order (i X j X f), it is possible to write

C(J)= R.Tx(”Rz (38)

where C® has dimensions (i X ¢; X c2), Ry has dimensions (j X ¢1) and R, has dimensions

(fXx ).

3D method

The 3D compression method can be formulated as an extension of equation (38). Here the
notation convention of Reference 19 is used (see Figure 6):

co-grr R g, 39
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—
L

Figure 6. This figure is similar to Figure 7 but the details of the R;,-matrices used in the compression are

shown. Each compression matrix R; (i.e. for order i) can be applied independently of the other

compression matrices. The placement of the compression matrices is an attempt to illustrate that each
matrix is associated with the respective order of the original tensor

\
1
Compressed third order
data table
Third order data table
peior to compression

Figure 7. Illustration of 3D compression which is analogous to Figure 5. Here open-headed arrows
emphasize along which data array order direction each interval vector performs

where R; has dimensions (i X C3). Equation (39) and its corresponding interval vectors are
illustrated in Figure 7.

Generalization to nth-order

A formula for nth-order compression cannot use the notation described in equation (39) for
typographical reasons. In general a compression matrix R; is associated with each order of the
tensor. If the subscript i of the R;-matrix is associated with the order of the data array (tensor)
X it is possible to suggest a general formula for compression of nth-order data arrays:

C™=R"...(R2(R;X™))...) (40)
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CONCLUSIONS

It has been demonstrated that the maximum entropy method is a zeroth-degree B-spline where
the construction of the knot sequence follows the maximum entropy criterion. This fact
suggests the use of higher-degree B-splines when presented with curves which are smooth,
which is determined by continuity of the kth derivative. Since the compression methods are
presented in matrix algebra, the generalization to nth-order data arrays (tensors) is logical.
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APPENDIX: NOTATION

All scalars are displayed in italic lowercase letters. All vectors are displayed in boldface
lowercase letters.

All matrices are displayed in boldface uppercase letters. When dealing with data arrays of
any order, it is necessary to distinguish these from data arrays of order two (ordinary
matrices). There are different uses of the term ‘tensor’. Here tensor is used as an extension of
the matrix in several orders. In physics, however, the tensor definition contains constraints
about invariance to rotations and translations.

X is a third-order data array (tensor of order three). If several data arrays are presented
which it is necessary to identify, this can be written as X{™ °* Xi.

Row vectors are denoted as transposed column vectors, €.g. vT. However, the matrix V
composed of the row vectors v does not contain the transpose sign.
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COMPRESSION OF nth-ORDER DATA ARRAYS BY
B-SPLINES. PART 2: APPLICATION TO SECOND-ORDER
FT-IR SPECTRA
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SUMMARY

In order to improve the storage and CPU time in the numerical analysis of large two-dimensional
(hyphenated, second-order) infrared spectra, a data-preprocessing technique (compression) is presented
which is based on B-splines. B-splines have been chosen as the compression method since they are well-
suited to model smooth curves. There are two primary goals of compression: a reduction of file size and
a reduction of computation when analyzing the compressed representation. The compressed
representation of the spectra is used as a substitute for the original representation. For the particular
example used here, approximately 0-16 bit per data element was required for the compressed
representation in contrast with 16 bits per data element in the uncompressed representation. The
compressed representation was further analysed using principal component analysis and compared with
a similar analysis on the original data set. The results shows that the principal compotent model of the
compressed representation is directly comparable with the principal component model of the original
data.

KEY WORDS ~ Compression Multivariate analysis B-splines FT-IR spectra Second-order
Two-dimensional Hyphenated methods

1. INTRODUCTION

New instruments produce huge amounts of data which put new demands on the storage and
processing time used in the analysis of spectra. Higher-order spectra often comprise large data
arrays and have become common in both NMR and IR spectroscopy. ' Such spectra provide
the basis for a better understanding of e.g. spin systems (COSY, 3D-COSY, etc.) or the
number of components in a solution®* than is possible using traditional one-dimensional
methods. There are at least two ways to solve the problem with large data sets:

(i) increase the computer resources (larger hard discs, more RAM, faster CPU, etc.)
(ii) use of compression.

In this paper compression is described as a practical solution to the large data array
problem. For compression to be of practical use in chemistry, the following requirements must
be fulfilled.

* Author to whom correspondence should be addressed.
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1. It must be possible to compress the spectra using the chosen method. Here the B-
spline®~7 method is chosen, which assume some degree of local smoothness in each
spectrum. Otherwise the number of bytes required to represent the spectra will be too
large. It is of course possible to compress other types of signals efficiently, but this is not
discussed here.

2. The compression method must not be too computer-demanding.

3. The discrepancy between the reconstructed (from the compressed representation) and
original data must not be too severe.

4. The compressed representation itself should be operational, i.e. common numerical
methods can be applied to the compressed representation in the same manner as for the
original uncompressed representation.

Item 1 is related to item 3. Algorithms for perfect reconstruction of the original data already
exist (e.g. Huffman, Ziv-Lempel®), but a higher degree of compression can be accomplished
if some discrepancy is allowed. Often spectra contain errors and there are no reasons for using
bits to store noise. Of course, this puts more demand on the investigator, who is responsible
for what kind of compression is admissible. Item 2 depends on whether the compressed
representation (C) is to be used one or several times. In this paper it is assumed that C will
be used several times and therefore more computing time in the compression step can be
allowed. Often the investigator wants to use several different techniques when analyzing C. If
the compression takes an excessive amount of time, it cannot be considered effective for
practical problems. The exact meaning of the term ‘excessive amount of time’ depends on the
local user’s computer resources and time available. Item 4 is important. In the experiments
described in this paper the original data (X) and C are comparable. This means that the
numerical algorithms used for analysis of the data can be used without modifications on both
the original and compressed representations. An example of a matrix representation which
requires special algorithms is that of sparse matrices.® Today this technology is so common
that several available packages can take care of this. It is possible to compress matrices using
e.g. run-length coding,® which produces non-comparable representations which in principle
can be used in numerical algorithms if they have been modified to handle the new data
structure. Thus the aim of this paper is to present a method which generates a compressed
representation C from an original large representation X and which satisfies the four
requirements presented above.

2. METHODS

2.1. General description of method

The basic idea behind the compression used here is as follows: find a set of relatively smooth
basis functions and represent the original matrix as linear combinations of these basis
functions. Each spectrum is thus regarded as a function rather than a vector. 19 For second-
order (two-dimensional) data two basis sets are needed which will be referred to as B, and B,.
The generation and use of these two basis set matrices are described in detail in Section 2.2.
The coefficients found in the linear combinations are used instead of the original representation
(see Figure 1). Given a matrix X with dimensions [n,m], this is replaced in future
computations (and storage) by a smaller matrix C with dimensions [ci, c2], where ¢; < n and
¢ < m. We have chosen to use B-splines” for construction of the smooth basis functions, but
other basis functions could have been used as well. The discrete Fourier transform (DFT) is
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Time consuming computation

Cis used
Fast computatio instead of X

C needs few bytes for storage

Figure 1. Illustration of the basic idea behind the compression

such an example and the discrete cosine transform (DCT) another; both methods form the
backbone of several compression strategies in e.g. image and video compression. '2~'* Another
family of increasingly popular basis functions for compression is wavelets. '’

In this paper the numerical method used for analysing X and C will be principal component
analysis (PCA)'®~'® and thus hereafter PCA will be discussed in particular instead of just any
numerical method. In PCA the matrix under investigation is decomposed into the product of
two orthogonal matrices. For X we have

X=TP"+E (1)

where T is the score matrix, PT is the loading matrix and E is the error matrix. T corresponds
to the eigenvectors of the covariance matrix XX T and PT corresponds to the eigenvectors of
the covariance matrix XTX. A popular method for estimating the score and loading vectors
is the NIPALS (non-linear iterative partial least squares) algorithm,'® which calculates the
eigenvectors one at a time starting with those having the largest eigenvalues. Plotting such
eigenvectors (either scores or loadings) is a powerful tool for understanding underlying
tendencies in the data set.
PCA of the compressed matrix C gives correspondingly

C=T.P! +E. (2
One way of transforming T. = T and PJ — PT s

T =B,T. (3)
PT=pP/B C)
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Unfortunately, for non-orthonormal B, and B (which is the most common situation) the
estimated score and loading matrices are not orthogonal as they should be. Simple
orthonormalization of T and PT will not give the correct result. Since B-splines are used, this
effect is minimized by the fact that the B-spline basis matrix is diagonally dominant. For the
experiment in this paper it is shown that the major features of the original model of X are
present as more crude versions in the model of C.

The discrepancy between the results from analysis of C and X must always be kept in mind
when interpreting the data. For many situations the model from C will give the investigator
an adequate idea of the latent variable structure in the original data set.

2.2. B-splines

B-splines®~7 represent curves as linear combinations of basis functions. Each basis function
is fully described by a vector of real numbers which determines its size and shape. This vector
(hT) is referred to as a knot vector. The knots are values corresponding to positions along the
independent variable. The B-spline basis set (B;(x), j€[l,...,q— k — 1], where q is the
number of elements in the knot vector and k is the degree of the spline) is completely described
by the knot vector

hT = (Bi(x), Ba(x), ..., Bg-k-1(x)) (5

The formula for generating the B-spline basis from the knot vector is given in Appendix I.
A function f can thus be formulated as a linear combination of Bj(x):

n

f(x)= 2 ¢;Bj(x) (6)

J=1

Therefore f is described by its knot vector h" and coefficient vector ¢” only.

The extension to two dimensions is straightforward. Two knot vectors h; and h; are needed,
one for each order/dimension of the data set (see Figure 2). In Part 1 of this series'! the
following equation was used to obtain the coefficient matrix C:

C= [(BIB,) ']BIXB,(BiB)) "' )

2D surface knot vector 2

knot vector 1

Figure 2. For two-dimensional (or second-order) problems in B-splines two knot vectors h, and h; are
needed
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By introducing
Ri=Bi(B/B))"", i€[l1,2] (8)
C can be written more compactly as
C=RJXR, )

The subscripts on R indicate that the compression may be different (it usually is) along the two
orders. The reconstruction can be written as

X =B,CBT (10)

3. MEASURING AND EVALUATING COMPRESSION
3.1. Scalar quantization

In order to evaluate the number of bits required to represent the coefficients, quantization®®
is necessary. MATLAB (a program from MathWorks Inc.) uses 64 bit representation of its
numbers, which is much more than the original 16 bit representation of the data from the
Nicolet 800 instrument.

The basic idea behind scalar quantization (SQ) is to represent the data in terms of a finite
number of basis symbols (2¢). This set of symbols is referred to as the source alphabet. Even
if the input is continuous, only a few output values are allowed. A simple example will
illustrate the principle. Assume a measured signal with values between zero and unity. A simple
source alphabet o may look like

H=10,0-2,0-4,0-6,1-0) (11)
An incoming sequence of continuous signals is e.g.

v =10-2190,0-0470,0-6789,0-6793,0-9347, 0- 3835, 0- 5194} (12)

Example illustrating scalar quantizing (SQ)
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Figure 3. Result from an SQ of a set of 300 random numbers in the range zero to unity using the source
symbols described in the text
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For each element in v the value is checked against the values stored in .X and the current
element is assigned the value in ¢ to which it is closest to. The scalar-quantized vector v
obtained from v using the source alphabet J is

v, = [0-2000, 0, 0- 6000, 0- 6000, 10000, 0-4000, 0- 6000} (13)

In Figure 3 a sequence of 300 random symbols was converted using X to an output signal
v, and the characteristic stair-like structure is clearly visible. Appendix 11 treats quantization
in more detail.

3.2. Measuring information

Given a vector of size N, each element can be addressed using b = log2(N) bits. For the small
example (v,) above N =7 and thus b = log2(7) = 2- 8074, but on average the number of bits per
symbol required will in general be smaller. b bits are needed when the probability of each
symbol in the sequence is equal. This can be shown using the entropy?' formula

N
H= -2, pilog:(pi) bits/symbol (14)
i=1

where p; is the probability of a symbol occurring in a sequence. If pi=pj, i #j,and p, = 1[N
is assumed and used in equation (14), the maximum entropy is obtained as

Hmax = — Npi log2(pi) = —loga(pi) = —log2(1/N) = log2(N) (15)
The redundancy in information per symbol can now be defined as
r=log2(N)-H (16)

For the small example above the number of bits needed per data element in v, becomes
H =2-1281. Here it is the symbol 0-6 which makes the number of bits per data element
smaller since it occurs three times (all the others occur just once). For the example
r=2-8074 — 2-1281 = 0-6793.

There are several strategies for selecting the SQ source alphabet. Most strategies base the
selection on some assumption or knowledge of the probability density function (PDF), which
corresponds to the histogram distribution of discrete signals. For SQ of an unknown signal
evolving in time the source alphabet should be constructed on the basis of the most probable
PDF. In the experiment described here it was possible to select the source alphabet after
measuring the data distribution. The intuitive way of selecting source symbols is to have more
symbols where the frequency of values is high. The actual method used here is described in
detail in Section 4.

3.3. Compression evaluation

Since compression as used here cannot reproduce the original signal profiles perfectly,
deviations from the original representation are inevitable. One possible way of quantifying the
error would be to compute an error measure, €.g.

m

Zl _Zl (| Xij— Xij)Wij
i=1 j=

E=—"0" m 17)

2 2 X=X

i=1j=1
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Here W is a weighting matrix which weights down certain areas which are not regarded as
important for the evaluation of the compression. The reason for this is explained below.

Of course, if € is close to zero, the discrepancy between the original and reconstructed
representations is small and this will probably signify an excellent reconstruction. As the error
measure increases, the problem is to tell whether one compression is better than another. The
same problem occurs in image compression, where images with a very good error measure can
sometimes have a very low perceptual quality. The reason for this might be that critical but
small regions of the image can be far from the true value but large uninteresting areas are well
explained by the compression method. One can imagine a picture of a house in a desert: if the
house is poorly represented but the sand is well represented, this is not acceptable. In chemistry
and spectroscopy the same problem occurs. Some areas of the spectrum are much more
important than others. In such instances one may solve the problem by introducing the matrix
W which weights down unimportant areas. In addition, the overall quality of the spectrum
must be retained. It is also possible to imagine a spectrum with an acceptable error measure
which contains unnecessary local oscillations around the true spectrum profile. Another
requirement which was emphasized in Reference 11 is that physical quantities computed from
the spectrum profile should be as close as possible to the original value. Unfortunately, such
quantities cannot be used directly as ‘objective’ measurements of error, only as a guidance in
the evaluation of the compression performance. Owing to these problems, we have chosen not
to use exclusively ¢ as the final and only evaluation of our experiments. An alternative to using
€ is to use the distribution vector of error. Consider the two matrices X and X defining an error
matrix

E=|X-X|=|X-B,CB/| (18)

and let e be the vector containing the frequency distribution of values of E. Plotting this vector
gives the investigator a much better idea about the fit than the scalar e.

The reconstructed and original representations have also been compared visually, which we
believe is satisfactory for all practical purposes in this situation. Since it is the chemist who
will evaluate the results anyway, the use of error measures has no practical meaning if the
chemist decides that the reconstruction is not satisfactory.

3.4. CPU performance evaluation

What computational benefits are achieved by performing e.g. PCA on the compressed instead
of the original representation? One way of measuring this is to count the number of floating
point operations (FLOPS) needed for the analysis of X and C. Here the FLOPS counting
encountered in MATLAB was used as the basis for our results. Since the method of data
analysis used is PCA, a formula was found which accounts for the number of FLOPS required
using the NIPALS algorithm (not including the FLOPS required for calculating and
subtracting the mean vector):

Fnipars = A[d,(4nm + 2n + 6m) + 3nm] (19)

where n and m are the numbers of rows and columns respectively and d, is the number of
iterations required for each component a. d, is not a predefined number and the iteration
stops when there is little difference between the present estimate of the latent variables and the
previous one. A is the number of components. From the above formula it is easy to see that
the number of FLOPS for the power method is proportional to nmdm, where dn is the mean
number of iterations required for each component. By introducing the variables a = n/c, and
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B = m[c; and assuming d, is the same number of iterations for both representations, the ratio

4nm 2n Gm) 3nm]"
Zr=)+

Q= [d.(4nm + 2n + 6m) + 3nm] [d,, (—— + —E (20)

af o B
can be formulated which gives the number of times more FLOPS required for PCA of X
compared with PCA of C.

What about the FLOPS required for the compression itself? This part will become important
if e.g. PCA is to be used once on the compressed data set and no further analyses are to be
performed. In such situations there will be values of « and 8 which are too small to be of any
computational benefit. However, the situation is often that the experimenter wants to perform
several analyses on the same data set. Under such circumstances the compression very quickly
pays off in more rapid analyses. Our experience with the B-spline algorithm is that the use of
sparse matrix® technology significantly increases the computational efficiency.

4. EXPERIMENTS

4.1. Details of the SQ

All experiments were performed using MATLAB 4.0a on an HP 9000/730 Unix machine. The
SQ used Huffman coding® to obtain the measured number of bits per coefficient. The
maximum number of source symbols possible for the Huffman routine was 28 = 256.
Experiments showed that this was not a hindrance for reliable reproduction of the spectra. In
fact, it was found acceptable to use just 64 source symbols, i.e. log:(64) = 6 bits per symbol.

The construction of the source symbols is based on the method previously referred to as the
maximum entropy method.'"** This method uses a vector g’ to describe the histogram
distribution of the data set which contains J = 256 cells, i.e. a vector of 256 elements. The J-
number is arbitrarily chosen. Another number could have been used. The steps for determining
the source symbols are as follows.

1. I=(1/N) £7_, g, where N is the maximum number of allowed source symbols.

2. Starting at the first cell, consecutive intensities are added in g" until the partial sum is
equal to or exceeds I. The position of the next cell after the last cell added in the partial
sum is included in a vector which defines the new cells. If the last cell added is 3, the
number 4 is stored, i.e. the next cell member.

4.2. Data set

A Nicolet 800 spectrometer with a 680 DSP workstation and a diffuse reflectance unit with a
high-temperature—high-pressure chamber from Spectra Tech were used for the spectral
measurements. The sample was a 5 w/w% kerogen in KBr. The starting temperature was
200 °C and the system was then kept isothermally for 1 min to ensure that the pyrolysis started
at a known temperature. During the heating, adsorbed water was also removed from the
powdered sample. The pyrolysis was carried out using a heating rate of § °C min~' between
200 and 400 °C. A nitrogen purge gas rate of S0 ml min~' was employed to remove the gaseous
products and to provide an inert atmosphere in the sample chamber. A full spectrum
comprising 16 scans was collected, Fourier transformed and stored every 30s. A medium-band
MCT detector was used. After the termination of the pyrolysis the 80 sample spectra were first
background corrected with spectra of pure KBr taken under the same conditions and then
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Kubelka—Munk transformed. The spectral range was 4000-650cm™' and the optical
resolution was set to 8 cm~'. The data point resolution was 3-85 cm~'. On the basis of these
settings, a data set of size [80 x 869] was obtained.

5. RESULTS

The parameters for the compression experiment were set to ¢; = 115 (number of coefficients
for the wave number direction), ¢; = 14 (number of coefficients for the temperature direction),
k1 = 3 (local degree of spline for the wave number direction) and k; = 4 (local degree of spline
for the temperature direction). The consequence of selecting a high local degree and few knot
points for the temperature direction is that an increased smoothing is achieved. Figure 4
illustrates the effect of smoothing. The small-scale variations in the temperature variables
observed in the original representation are due to noise. The two-dimensional IR experiment
was set to a continuous and smooth change in temperature. The estimated B-spline coefficient
matrix C from equation (7) was inserted into the SQ routine and the returned C,-matrix was
the result from the quantization. Figures 5 and 6 show two selected rows in the coefficient
matrix. Figures 7 and 8 show the two same rows for the variables [70, 71, ...,90].* The SQ
approximation is satisfactory. From the C,-matrix the matrix X was constructed according to
equation (10). Figure 9 is a graphical representation of the distribution of the error vector
| X - X |. The error value ¢ derived from equation (17) is 0-0459 (W =1, i.e. no weighting).
Figures 10 and 11 shows two representative IR profiles for the original and reconstructed
representations. There are no major visual discrepancies between these two representations,

Temperatures at wavenumber 3232
0.31 v " - v r T
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o
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Temperature (Celsius)
Figure 4. This shows the smoothing effect of using few knots and high local degree of B-spline for the
temperature direction. Here the wave number 3232 in the original and reconstructed (smooth line)
matrices is compared

* It is not correct to use the actual wave numbers for the coefficient matrix, so the word ‘variables’ corresponds to
the wave number direction on the original representation.
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The eftect of quantization on coefficients
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Figure 5. The effect of quantization on the coefficient matrix is shown by plotting a row (no. 2) before
and after SQ with 64 source symbols in the source alphabet
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Figure 6. The effect of quantization on the coefficient matrix is shown by plotting a row (no. 6) before
and after SQ with 64 source symbols in the source alphabet

which is very encouraging. Figure 12 shows some additional selected IR profiles plotted versus
each other in the original and reconstructed representations.

For this experiment the total number of bits needed to represent the coefficient matrix C;
using Huffman coding was 9600. Since the number of data elements in the original data matrix
was 80 x 869 =69 520, the number of bits required per data element was
9600/69 520 = 0-1381 = 0-14. However, this does not include the number of bits required to
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The effect of quantization on coefficients. Detail.

0.55

0.5

0.45f

0.4t

0.35

0.3r

0.25

- 5 10 15 20

Figure 7. The effect of quantization on the coefficient matrix is shown by plotting a row (no. 2) before
and after SQ with 64 symbols in the source alphabet (region [70,71,...,90] is expanded)
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Figure 8. The effect of quantization on the coefficient matrix is shown by plotting a row (no. 6) before
and after SQ with 64 source symbols in the source alphabet (region (70,71, ...,90] is expanded)

store the knot vectors defining the two basis set matrices B, and B,. Here a high bit
representation can be afforded. The original representation contains 869 variables, so giving
each knot a 10 bit representation (2'°= 1024 possible symbols) should be enough. For
115+ ky + 1 =119 knots we need 10 x 119 = 1190 bits. For the temperature region there are 80
variables originally and so 7 bits per knot (27 = 128) should be enough for representation of
the knots. The number of bits required to store the knot vector (containing 14 + k; + 1 = 19
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knot elements) along the temperature is thus 19 x 7 =133 bits. A total of 1323 bits to
store the knot vectors is needed. If this figure is included, we get approximately
(9600 + 1323)/69 520 = 0-1571 = 0- 16 bits per data element. Analogously to equation (16), the
redundancy for this set of parameters with respect to the original bit representation from the
instrument can be computed as r = 16 — 0-16 = 15-84 bits per data element. For comparison,
the number of bits per data element when using lossless compression on the original data set

x 10* Distribution of error
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Figure 9. Bar plot of the distribution of error between reconstructed and original representations
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Figure 10. Comparison between temperature variable no. 12 for the original and reconstructed
representations (m =115, n =14, k; =3 and k; = 4)
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is 15-4, which is approximately 96 times larger than for the B-spline method with SQ. The
calculated entropy of the original data sequence was about 12-2 bits per data element.

The next step was to compare the PCA of the original uncompressed matrix with the PCA
of the compressed representation. The PCA of X and C, resulted in two significant
components (see Figure 13). The PCA of the original representation required approximately
40 times more FLOPS than the PCA of the compressed representation. This was also
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Figure 11. Comparison between temperature variable no. 56 for the original and reconstructed
representations (m =115, n =14, k; =3 and k; = 4)
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Figure 12. Nine different spectral profiles were selected. Each original spectrum was compared with the
corresponding reconstructed spectrum by plotting the two vectors versus each other. The parameters for
the compression are m =115, n=14, k; =3 and k2 =4. ky=4. K.M. stands for Kubelka—Munck
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Figure 13. Ten components were tested for and the results for the compressed and original
representations (the first five factors only are shown in the figure)

confirmed using equation (20). In the PCA model for the original representation the first two
components accounted for 99:5% of the variance. The corresponding value for the
compressed representation was 98-4%. Thus only the first two components for the different
representations were analysed. In Figure 14 the scores of the original (left) and compressed
(right) representations are shown. The model of C; contains fewer points but has a similar
shape to the left part of the figure. Corresponding similarities can also be observed for the
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Figure 14. Score 1 versus 2 for the original and compressed representations. The compressed
representation has similar main features to the original score plot
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Figure 15. Loading 1 versus 2 for the original and compressed representations. The compressed
representation has similar main features to the original loading plot

loading vectors of the two-component model (see Figure 15). The same tendencies are thus
observed in the compressed PCA model as in the original PCA model. This further emphasizes
that our compressed representations are comparable. The next step was to use the knowledge
of the basis functions to compute estimates of the original T and PT. The corresponding model
matrices for the compressed representation were T, and PJ. T and PT were computed
according to equations (3) and (4) respectively. Figure 16 shows the first two score vectors for
the T- and T-matrices. Figure 17 shows the first two loading vectors for the P'- and PT-
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Figure 16. Score plots for the original and reconstructed representations
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Figure 17. Loading plots for the original and reconstructed representations

matrices. Equations (3) and (4) are not correct for non-orthonormal basis matrices but can be
used as good approximations, since the B-spline basis set is diagonally dominant, i.e. the
row/column sum of any row/column of the off-diagonal element is smaller than or equal to
the absolute value of the corresponding diagonal element.'® Again it must be stressed that a
simple orthonormalization of PT and T will nor give the correct results. The fact that PTP = I
and TT is not diagonal will for many applications not be a serious problem. In some instances
it will, however, and we have therefore rewritten the PCA algorithm to compensate for this
effect. These results will be published in a future paper.

6. DISCUSSION

Large databases containing IR spectra with high resolution exist and a reduction of the size
of such databases is needed. The type of compression discussed here allows comparison
between compressed representations of different spectra. This would not have been easily
accomplished if e.g. a separate run-length coding or Huffman coding was applied to each
spectrum. The approach used here assumes that the compression codes must be comparable.
In large databases the problem of finding the matching spectrum for an unknown has a higher
cost for uncompressed data. Since the compression codes for each spectrum are comparable,
classification based on the compressed variables alone is theoretically possible. The
comparability of the compression codes has a large benefit also from a computational point
of view. The argument that computers are getting more powerful is in practice not a realistic
excuse for not doing compression. Even for medium sized workstations such as Sun, HP and
DEC the workload can be of such size that the computations may take hours instead of
minutes and the files require hundreds of megabytes instead of tens of megabytes.

For higher-order numerical methods such as third-order principal component analysis the
data size problem will easily get into the supercomputer realm if some type of compression is
not used.
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APPENDIX I: THE B-SPLINE BASIS
The coefficients may be interpreted as the importance of a particular basis function. The basis

functions are defined by the recursive algorithm??

X=hi g )+ DX B (x), k21 @1

B =
s (x) hjsx—h; hjvksr—hjsa

j=0,%1,%2,..., k=1,2,3,..., where h is the knot vector, which is a non-decreasing
sequence of numbers®
B <h < < hg 22)

and k governs the smoothness of the basis functions. If the data at hand are very smooth,
fewer coefficients are needed to represent them.

APPENDIX II: QUANTIZATION

An N-point one-dimensional quantizer Q (a scalar quantizer (SQ)) can be formulated as the
mapping

0 R A (23)
where & is the real line and ¢ is the source alphabet

XH=(y,y2,....9N) (24)
It is assumed that the output levels y; are real numbers such that

N<yr< --<ywn (25)

Associated with every element in the source alphabet is a partition of the real line 9 into
N cells. The ith cell is defined as

Ri= [x€R: Q(x) = yi (26)
Often the cells are defined such that
URi=R 27

but this is not used in this paper. The beginning and end cells are defined from the minimum
and maximum values observed in the data matrix. In addition, the cells are divided such that
there is no overlap:

RNR; =0, i#]j (28)

Every quantizer can be regarded as a combination of an encoding (&) and decoding (&)

* The notation ¢, is normally used in spline theory to designate the knot sequence. We have chosen not to use this
letter since it is usually associated with score values.
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operation/mapping. The encoder is the mapping
&R~ F (29)
where #=(1,2,3,..., N} and the decoder is the mapping
D I H (30)
If Q(x) = yi, then &(x)=i and D (i) = y;, which can also be written as
Q(x) = D(&(x)) 31

The encoder can be described in terms of a selector function S;(x) which is associated with
every cell in Q. Given a number x, the selector function for the partition cell i determines
whether x belongs to that cell or not:

1 if xeR;
i(x) = 32
Si(e) {0 otherwise G2
Using this, the quantizer can be written as
N
Q(x) = Z, yiSi(x) 33)
where
N
2 Si(x)=1 (34)

i
To separate explicitly the encoder and decoder operations of a quantizer, an address
generator must be specified as

A F I (35)
and the inverse as
A G- F (36)

where # denotes the set of N binary vectors associated with every source symbol in .x for a
specific input x. Each vector fe & consists of just zeros and one element of unity, i.e.
fi€10,1). Each element of the vector originates from the selector function:

f=(Si1(x),S2(x), ..., Sn(x)} 37
Thus a vector equation can be written from equation (33) as
Q(x) =1y (38)
Since A(f) =, this can be used to formulate the encoder operation as
€(x) = A(f) = A([S1(x), S2(x), ..., Sn(x)}) (39)

and the decoder is written
N
@)= 2 A (i)
k=1
An SQ will be used on the resulting B-spline coefficients. There are several ways to construct

the source alphabet and how the encoding/decoding should operate. The selector function used
here is based on finding the smallest element in the vector v; = | x - y;|. The position j which
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satisfies min(v) is the return value from the encoder function &(x). The next problem is to
select the best source alphabet. In this paper it is based on the probability density function over
the measured range of the B-spline coefficients. How this was done in the subsequent

ex
is

periments is described in more detail in Section 4. The simplest selection of partition cells
the uniform quantizer where each cell has equal size. Uniform quantizers have not been

adopted in this paper.

N —

w

REFERENCES

. L. Pelczer and S. Szalma, Chem. Rev. 91, 1507-1524 (1991).

- R. A. Nyquist, M. A. Leugers, M. L. McKelvy, R. R. Papenfuss, C. L. Putzig and L. Yurga, Anal.

Chem. 62, 223R-255R (1990).

O. M. Kvalheim and Y.-Z. Liang, Anal. Chem. 64, 937-946 (1992).

Y.-Z. Liang, O. M. Kvalheim, H. R. Keller, D. L. Massart, P. Kiechle, and F. Erni, Anal. Chem.

64, 947-953 (1992).

. C. de Boor, A Practical Guide to Splines, Springer, New York (1978).

- G. Farin, Curves and Surfaces for Computer Aided Geometric Design, a Practical Guide, 2nd edn,
Academic, New York, (1990).

. C. de Boor, Spline Toolbox for Use with MATLAB. User’s Gude, MathWorks Inc., South Natick,
MA (1990).

- J. A. Storer, Data Compression. Methods and Theory, Computer Science Press, Rockville, MD
(1988).

- S. Pissanetsky, Sparse Matrix Technology, Academic, London (1984).

. B. Alsberg, J. Chemometrics, 1, 177-193 (1993).

. B. Alsberg and O. M. Kvalheim, J. Chemometrics, 1, 61-73 (1993).

. R. C. Gonzales and P. Wintz, Digital Image Processing, 2nd edn, Addison—Wesley, Reading, MA
(1987).

- A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ (1989).

. W.-H. Chen and W. Pratt, /IEEE Trans. Communications, COM-32, 225-232 (1984).

- Y. Meyer, Wavelets. Algorithms and Applications, SIAM, Philadelphia, PA (1993).

. H. Martens and T. Naes, Multivariate Calibration, Wiley, New York (1989).

. I. Cowe and J. W. McNicol, Appl. Spectrosc. 39, 257266 (1985).

. S. Wold, K. Esbensen and P. Geladi, Chemometrics Intell. Lab. Syst. 2, 37-52 (1987).

. H. Wold, in Research Papers in Statistics, ed. by F. David, p. 411, Wiley, New York (1966).

- A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer, Norwell, MA
(1992).

. C. E. Shannon, Bell Syst. Tech. J. 319, 623 (1948).

. T. V. Karstang and R. J. Eastgate, Chemometics Intell. Lab. Syst. 2, 209-219 (1987).

. W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole, Monterey,
California (1980).






Paper III






ELSEVIER

Chemometrices and Intelligent Laboratory Systems 23 (1994) 2938

Chemometrics and
intelligent
laboratory systems

Compression of three-mode data arrays by B-splines
prior to three-mode principal component analysis

Bjorn K. Alsberg *, Olav M. Kvalheim

Department of Chemistry, University of Bergen, Allegt. 41, N-5007 Bergen, Norway

(Received 6 July 1993; accepted 14 January 1994)

Abstract

Three-mode PCA is very computer demanding. It requires a large amount of storage space and many floating
point operations (FLOPS). By using three-mode B-splinc compression of three-mode data arrays, the original data
array can be replaced by a smaller coefficient array. Three-mode principal component analysis (PCA) is then
performed on the much smaller coefficient array instead of on the original array. For the compression approach to
be efficient the three-mode data array is assumed to be well approximated by smooth functions. The smoothness
affects the dimensions of the coefficient array. It is always possible to approximate the data to any precision but the
reward in reduced computation time and storage is lost when the dimensions of the coefficient array approach the

dimensions of the original array.

1. Introduction

N-mode arrays represent extensions of two-
mode arrays, i.e., matrices. There are several
other names for these objects: tensors, N-way
arrays, N-arrays, and multilinear forms. We will
here refer to such data objects as N-mode arrays
or N-arrays.

Several analytical instruments produce data
sets of the N-array type. Such arrays can be very
useful for obtaining, e.g., information about con-
stituents in solutions [1,2] or atom assignment of

* Corresponding author. E-mail: alsberg@ kj.uib.no.

crosspeaks in multidimensional NMR [3). Unfor-
tunately, the N-arrays present serious storage
and computational problems. The number of data
elements increases rapidly and the need for some
reduction and improvement in the data handling
procedure is necessary. In previous papers [4-6]
we have suggested that compression by B-splines
or by means of another suitable basis may be an
efficient way of partially solving the increased
data size problem.

There are two main types of compressions:
lossless and lossy (7). Lossless compression re-
stores the data perfectly but does not attain large
compression ratios as in lossy compression. The
B-spline method used here is a lossy compres-

0169-7439,/94 /$07.00 © 1994 Elsevier Science B.V. All rights reserved

SSDI 0169-7439(94)00007-6
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sion. What is an acceptable error in the recon-
struction compared to the original array must be
decided by the investigator and must be consid-
ered to be problem dependent.

In this article we focus on three-mode princi-
pal component analysis (3MPCA) which is com-
puter demanding [8] for arrays of size larger than
[50 x 50 x 50). In such cases powerful worksta-
tions arc nccessary. If data from an instrument
should be analyzed directly, arrays of, e.g., di-
mensions [1000 X 500 X 500] are realistic. Exam-
ples of instruments giving rise to such data sets
are, e.g., three-dimensional NMR spectra or
two-dimensional IR versus time/temperature.
Inserting such an array without any compression
or pretreatment into a standard 3MPCA program
would require a very powerful computer. Fortu-
nately, the spectra from analytical instruments
often contain some smoothness which enables the
use of compression methodology. The compres-
sion part of course, must not be too computer
demanding in itself.

Before reading the next section the reader is
encouraged to read the appendix which explains
the different notations used in this article.

2. Three-mode PCA

In singular value decomposition (SVD) for 2-
arrays an X matrix can be decomposed as:
X=US"?vT (1)

where U and V are column-wise orthonormal
matrices and S'/? is a diagonal matrix containing
the square root of eigenvalues of the two covari-
ance matrices XX7 and XTX. The two associated
eigen-equations are:

XXTU =US (2)
XTXV =VS (3)

In SVD for 3-arrays an X array can be decom-
posed as:

X=GD(H"®E") (4)

where X and D are unfolded representations of
the 3-array (see Appendix) and G, H and E are
column-wise orthonormal loading matrices for

cach mode. Eq. 4 is the Tucker3 model [8,9]. It
should be stressed that the 3-arrays (represented
as matrices) in Eq. 4 must be unfolded in the
same way. D is the core matrix (or core array).
Eq. 4 written in explicit summation is:

r Q R

Xl}k= E Z Zgllrh;qckrdpqr (5)

p=lqg=1r=1

There are different methods for solving the
Tucker3 model. A method similar to the ap-
proach used for SVD of 2-arrays (see Egs. 2 and
3) is the Tucker Method I [8,9] which obtains
estimates for the loading matrices E, H and G by
extracting all eigenvectors corresponding to non-
zero roots of the three covariance matrices with
elements:

J K
lu" = 2 E xl/kxl';k (6)
j=1k=1
! K
m;. = Z > Xk Xijk (7)
i=1k=1
1 J
Ry = ): in;kxi;k’ (8)

i=1j=1

Using the estimated three loading matrices,
Eq. 5 shows the core array D can be expressed as:

I J K
dpqr= Z 2 Z glphjqeer:jk (9)
i=1j=1k=1

This equation is also shown in Fig. 1 using the
diagram notation.

In practice an investigator is often interested
in only the first largest eigenvectors of E, H and
G. Using the Tucker Method 1, however, the
estimators for d,,, will no longer be least-squares
ones. In order to achieve least squares estimates

Fig. 1. A diagram equation which shows how to obtain the
core array given the loading matrices G, H, E and the original
data array X.
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an alternating lecast squarcs (ALS) algorithm [8]
can be used. The ALS approach is a common
mcthod for solving the Tucker3 model. The algo-
rithm is initiated by first computing estimates of
the loading matrices G, E,, and H,, by the Tucker
Method I. G, E, and H, are subsequently in-
serted into the following iteration steps:

For i =1 to iterations

begin
A=X(H,_®E,_)) (10)
G, = eig(AAT) (11)
A=X,(E,_,®G,) (12)
H; = eig (AAT) (13)
A=X,(G,®H),) (14)
E, =eig(AA") (15)

end

Matrix A temporarily stores the results and is
overwritten when new values are assigned to its
matrix elements. The function eig returns the
first largest eigenvectors of AAT (this is a reduced
decomposition). This algorithm is also formulated
in the diagram notation in Fig. 2. X,, X, and X,
are unfolded representations of the original 3-
array with dimensions Dim(X,) =[N X (MK)],
Dim(X,) =[M X (NK)), Dim(X,)=[K X (NM)].
The number of iterations can be determined by
minimizing the error of fit of the model to the
observed data. This approach, however, is not
used in the present paper. The reason for this is
to ensure total control with respect to the num-
ber of iterations when investigating the FLOPS
usage of the ALS algorithm applied to different,
but comparable, data representations.

3. FLOPS estimations

The 3MPCA program is written in MATLAB
(10] which is very powerful for matrix computa-
tions. In order to obtain a measure of the effi-
ciency of the ALS algorithm on uncompressed
and compressed representations the flops com-
mand in MATLAB was employed. The FLOPS

i (‘./l—— = EIG

1 \'ﬂ)—— = EIG

Fig. 2. Illustration of the ALS algorithm using diagram formu-
lation.

equation and observed performance of the ALS
algorithm presented in this paper are based on
the results from this command. In Table 1 a few
examples are given where the FLOPS equations
for simple matrix expressions are presented. For
each matrix expression in an algorithm the FLOPS
formula is found and the total FLOPS consump-
tion is obtained by summing over the different
contributions. Only the most important parts of
an algorithm are investigated. All WHILE loops

Table 1 )
This table shows the number of FLOPS required for some
example matrix operations

Matrix operation FLOPS required Dimensions of matrices

XY 2nmk Dim(X)=[n x m),
Dim(Y)=[m x k]
Xy 2nm Dim(X) =[n X m),
Dim(y)=[m x1]
yTy 2m Dim(y)=[m x1)
X+X nm Dim(X) =[n x m)
X=X-tp" 3nm Dim(X) =[n x m]),
Dim(t)=[n x1]
Dim(p)=[m x 1),
(XY)Z 2nk(m +r) Dim(X) =[n x m]),

Dim(Y)=[m x k)
Dim(Z) =k x r]
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are changed to FOR loops to determine the
FLOPS consumption for such steps.

The detailed description of how a FLOPS for-
mula is constructed will not be presented.

Using the same approach to the ALS algo-
rithm the following equation is obtained:

F. = 1[2A(3NMK + NMA + NKA + MKA

+NA+MUA+KA)+N + M3+ K
(16)

where the last entries N*+M*+K?* stem from
the eigenvalue decomposition which is approxi-
mately a third degree increase in FLOPS. Here it
is assumed that the core array is symmetric, i.e.,
its dimensions are [ 4 X A X A]. This will also be
the case in the examples presented below. I is
the number of iterations. Note that this formula
slightly underestimates the number of FLOPS
required but is close to the true FLOPS count.

4. B-splines

B-splines [11,12] can be used to fit almost any
type of function. Significant compression, how-
ever, is obtained if the data at hand have some
smoothness. A one-dimensional B-spline is a lin-
ear combination of basis functions b;:

u—a-1

Y cb(x) (17)

j=1

f(x)=

where f(x) is the function to be approximated, c;
the B-spline coefficients, u is the number of knot
points and a the local polynomial degree. The
basis functions b,(x) (which for discrete repre-
sentations are located in a matrix called B) are
defined by the knot vector h. Knots are points
located along the independent axis which define
the shape and location of the B-spline basis func-
tions. The basis can be constructed by a recursive
formula [12,13] using the information in the vec-
tor h. The knot vector h is therefore stored
instead of the much larger B-spline basis matrix
B.

For compression of N-mode arrays N B-spline
basis matrices (or N h vectors) are needed.

K_—
M =~
X
N
\ -
/’/ i | ~
A UNFOIiDING
7 ~
_ < ] N
i N l M| K
‘
| ‘
MK ’ NK NM

¥ y ¥

( std vector | ! [ sdvecwor2 ) dvector 3

max. ent max. ent max. ent
[ knot vector | 1 knot vector 2 [_knot vector 3

Fig. 3. llustration of the steps for finding the knot vectors for
the three different modes. For each unfolding we find a
representative vector (RV) which is said to represent the
current mode. In this case the RV is the standard deviation
vector (indicated as ‘std. vector’ in the figure). The maximum
entropy method as described in ref. [4) is applied to the
standard deviation vector and a knot vector is obtained.

The steps for obtaining the knot vectors for
each mode are:

(i) The original data array is unfolded to a
matrix. One mode of this matrix corresponds to
the current mode of the original data array for
which the knot vector is to be found.

(i) A representative vector (RV) is obtained
for the current mode. An RV can be, e.g., the
mean or the standard deviation vector of the
unfolded matrix along the current mode. In this
paper the standard deviation vector is used as the
RV.

(i) The so-called maximum entropy method
[4,14] is applied to the RV and the interval vector
from this procedure is used as the knot vector for
the current mode.

See Fig. 3 for a graphical illustration of the
method.

Given three knot vectors named h,, h,, and
h, three corresponding basis matrices B,,, B,, and
B, can be generated (by using a recursive for-
mula [12,13)). The three different modes were
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|

( Bm)

Fig. 4. Diagram of the three mode B-spline model. lustration
of how the three knot vectors for three-mode B-spline com-
pression divide the data array into segments.

thus labeled n, m and k. If the three-mode data
matrix X has dimensions [N X M X K] then the
dimensions of the basis matrices are [N X n_] for
B,, [Mxm_] for B, and [KXxk_] for B,. Let
{a,,a,,a,} be the local degree of polynomial for
the spline and Dim(h;) be the number of ele-
ments in a knot vector, then we have that n_=
Dim(h,) —a,—1, m_ =Dim(h,)—a, —1 and
k.= Dim(h,) —a, — 1. It is desirable to have
small values of n_, m_and k_ without too much
error. The coefficient array C has thus dimen-
sions [n. X m_ X k_]. The model assumption for
the three-mode B-spline model is shown in Fig. 4
which has the same index topology as the Tucker3
model. The equation for the generation of the
core array C is shown in Fig. 5.

4.1. Compression of a subset of modes

As mentioned earlier an efficient compression
ratio is achieved if the data array can be well
represented by smooth basis functions. It is a
problem when some of the modes are not smooth.
B-spline compression may still be of benefit if
applied to the smooth modes only. In spectral
problems it is realistic to encounter, e.g., three-
mode arrays where only two of the modes are

smooth. The third mode may also be much smaller
than the smooth modes.

In refs. [15.16] Kiers et al. presented two cffi-
cient algorithms for the PARAFAC and TUCK-
ALS3 algorithms for cases when the size of one
of the modes is much larger than the other two.
These algorithms do not cover the case discussed
in this article when all modes are large, but it is
possible to imagine that two large modes are
compressed and the third is handled by the algo-
rithms developed by Kiers et al.

5. Experiments
5.1. Data set

The data used for this example are the three-
dimensional electron density distribution of the
inhibitory neurotransmitter y-aminobutyric acid
(GABA). This distribution was calculated for the
molecule using the AM1 quantum mechanical
model [17]. The electron density surface was com-
puted on a grid of size [71 X 38 X 44].

5.2. Results

The h, knot vector was generated by using the
maximum-entropy method [4,14] on the standard
deviation vector obtained from the unfolded ma-
trix of size [(38-44) X 71]. Correspondingly the
h,, vector was generated from the unfolded ma-
trix of size [(71-44) x 38] and h, from the un-
folded matrix of size [(71 - 38) X 44]. The MAT-
LAB B-spline toolbox [18] was used to produce
the basis matrices. The sizes of the knot vectors
after assuming third degree polynomial B-splines
for the n and k mode and second degree polyno-

Fig. 5. Diagram of how to find the coefficient core matrix in three-mode B-spline compression. This diagram is obtained by solving
for C in Fig. 4.
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Dimensions of matrices involved in the experiment

Matrix

Dimensions

G
H

~

-

mzQam

[71 %3]
[38 % 3)
44 x 3]
[30x 3]
[13x3]
[17x3)

~

mial for the m mode were [1 X 34] for h,, [1 X 16]
for h,, and [1 X 21] for h,. The basis matrix B,
had size (71 X 30], B,, had size [38 X 13] and B,
had size [44 X 17). The resulting C 3-array from
the B-spline compression had consequently di-
mensions [30 X 13 X 17] which is a compression
ratio of ca.
71-38-44
30-13-17
The 3MPCA program was used on both the origi-
nal representation X and the compressed repre-
sentation C. -

Two sets of loading matrices were produced:
{G, H, E) for the original uncompressed represen-
tation and {G_, H_, E_} for the compressed repre-
sentation. Three factors were extracted for both

17.9

80
80
odf S
02
0
.02 A - "
0 10 20 30 40 S50 60 70 80

Fig. 6. Comparison between estimated and original represen-
tation of the G matrix. The dotted line indicates the estimated
G matrix. The upper figure is the first factor, the middle
figure is the second factor and the bottom figure is the third
factor.

0 5 10 15 20 25 30 35 40 45

Fig. 7. Comparison between estimated and original represen-
tation of the E matrix. The dotted line indicates the estimated
E matrix. The upper figure is the first factor, the middle
figure is the second factor and the bottom figure is the third
factor.

representations. The sizes of the different loading
matrices are shown in Table 2.

The total number of FLOPS consumed for the
original data array was F = 75677508. The corre-
sponding number of FLOPS using the com-
pressed representation was F, = 4799174. The ra-

04

0.2

0.2 7

0.4 =, =~ ]

0.4
0.2t

o.
0.2
0.4p R . . . .
0 5 10 15 20 25 30 35 40

Fig. 8. Comparison between estimated and original represen-
tation of the H matrix. The dotted line indicates the estimated
H matrix. The upper figure is the first factor, the middle
figure is the second factor and the bottom figure is the third
factor.
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tio F/F.= 158 is in the same range as the com-
pression ratio. Using the derived formula 16 for
the number of FLOPS consumed by the ALS
algorithm the estimated ratio was approximately
14.7 which is in close agrecment with the ob-
served values. A comparison between the original
loading matrices G, HAand E and the estimated
loading matrices G, H and E from the com-
pressed representation was made. The following
equations were used:

A~

G=B,G, (18)
H=B_H, (19)
E=B,E, (20)

It must be stressed that these estimates are not
strictly correct, i.e., they do not provide true
estimates which should be column-wise orthonor-
mal. Orthogonalization of the loading matrix does
not produce the correct result. At the present this
is the only way of obtaining such estimates with-
out rewriting 3MPCA to compensate for distor-
tion effects in backestimates. It is possible to
construct a 3MPCA program which compensates
for these effects. A detailed presentation of a
solution to the problem is presented in two forth-
coming papers [19,20]. .

The comparison between G and G can be seen
in Fig. 6, between E and E in Fig. 7 and between
H and H in Fig. 8. The results for this data set
must be characterized as satisfactory.

6. Discussion

B-splines are not necessarily the optimal choice
of basis functions for compression. B-splines can
be viewed as a subset of the much broader class
of wavelets [21] which has been used in several
problems in physics, chemistry and image com-
pression. The problem with compression as used
in 3MPCA is that the estimates of later factors
increasingly deviate from the true factors of the
uncompressed array. The compression stage does
remove information so there is a trade-off be-
tween faster computations and accuracy. In addi-
tion it has been stressed that the data must be

smooth which is not always the casc. For the case
of non-smooth N-arrays when all the modes are
large, no solution to the increased computational
problem has yet been found. The use of coeffi-
cients instead of the original data has similarities
to the sparse matrix technology [22). Both meth-
ods utilize the special structure in data arrays to
achieve compression and faster computation.
Sparse algorithms can be constructed based on
the fact that the matrix contains a large amount
of zeros. These algorithms give the exact answer
and therefore no errors are introduced because
of the compressed representation. B-splines could
have been fitted to the data such that it was
perfect, but for real world data no compression
or improvement in speed or storage would have
been obtained. Still the development of more
efficient higher mode algorithms is very impor-
tant and should be used in combination with new
ways of compressing/ representing the array
structure.
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Appendix A. Definitions and terminology
A.l. Names of data objects

The data objects discussed in the article are
referred to by many different names. Some of the
most common ones are tensor, N-order array,
higher order array/ matrix, N-way array, N-array,
N-mode array or N-dimensional array. Thus the
names mode, order, way and dimension are used
to designate the different indices in the array. In
this article we have chosen to use the word ‘mode’
when discussing the different indices in the ar-
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rays. A matrix has two indices and thus two
modes. A 3-array has three indices and thus three
modes and so on.

A.2. Typographical notes

All scalars are written as lowercase letters,
c.g., k. All vectors are written as bold italic
lowercase letters, e.g., u. All matrices are written
as bold uppercase letters, e.g. P. We usc under-
lined, boldface uppercase letters to indicate an
array with three modes, e.g. X. Transpose is indi-
cated by a superscript T. N

A.3. Definition of unfolding

The word ‘unfolding’ is defined to be the
reorganization of an N-mode array into a vector
or a matrix. A more detailed description of un-
folding can be found in refs. [23,24].

Appendix B. Notations for N-mode equations
B.1. The Kronecker notation

The ® symbol signifies the Kronecker product
[23]. The right-oriented Kronecker product of two
matrices A and B of dimensions [n Xm] and
[k xj]is

ayB ... a,B
M=A®B=|: (21)
a,B ... a,B

nm

where M has dimensions [nk X mj].

If a 3-array X has dimensions [I1xJxK]itcan
be rearranged into three essential matrices: [ K X
IJ), [ xKJ) and [J X KI] (or [KxJI}, [IXJK]
and [J X IK]). There are in general N! possible
unfoldings or permutation of indices. The Kro-
necker notation thus represents all N-arrays as
ordinary matrices by unfolding.

B.2. The diagram notation

The diagram notation is fully described in ref.
[25] and only a short summary will be given here.

The diagram notation is a graphical visualization
of the index topology in explicit summation nota-
tion. The diagrams have the appcarances of
graphs and use of graph terminology is thercfore
appropriate (26). A diagram contains nodes and
cdges. Nodes signify array clements (e.g.. x,,)
and onec edge can signify either summation over
one index or an index which is not involved in
summation. An edge can bc attached to one or
several nodes. An edge connected to one node
only is called unconnected. An edge connected to
more than one node is called connected. It is
possible to enable connection between more than
two nodes by introducing a special sum nexus
symbol, but this is not presented in this article.
For more details see ref. [25]. A node with N
unconnected edges will be the diagram represen-
tation of a single array element not connected to
any other. A connected edge signifies summation
of one index. When two arrays share a common
index a connected edge is drawn between them.
The total number of unconnected edges of the
expression is the number of modes (or the mode
number) of the result. If, e.g., two 3-arrays com-
bine by summing one common index the mode
number of the result will be 3+ 3 — 2 =4. In the
center of the node the name of the array is
placed. In the vicinity of the edges the correct
index names can be written in order to clarify.
The index names are written anti-clockwise from
the first index. Sometimes it is necessary to indi-
cate which edge signifies the first index. For this
a small bar perpendicular to the edge is used; this
mark is called the first index pointer or just the
fip.

Fig. 9 shows a few examples of array diagram
equations. The corresponding summation formu-
las for the diagram equations presented are:

Yur, (A)

This is the standard inner product.

lekyk; (B)
k

This is a standard matrix product.

Z qu[kwk/'j (©)
ko f
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(e o) R

._( X\ ‘_k Y AE B
W ¢
i

Fig. 9. Examples of diagrams. (A) is an inner product of two

vectors. (B) is a matrix product. (C) and (D) are examples of
products between three-mode arrays.

An array product between two three-mode ar-
rays. The result is a matrix because the number
of free or unconnected indices is two.

Z quklnkijelnm (D)
k 1

Here the result is a five mode array since five
free indices are seen.

Instead of using index names and fips for
indicating the different modes of the arrays a
shorthand notation has been constructed. There
are especially two cases where a shorthand nota-
tion has been found useful: (i) matrices with
orthonormal column vectors; (ii) modes of large
size.

If W is a matrix with orthonormal column
vectors we have that WTW =1 where I is the
identity matrix. If W is not square we have that
WWT « I. Thus we need to discriminate between
the two different modes of the matrix. Arrows

—(O—— - —O—-—

Fig. 10. A diagram with arrows is used to mark the two
different indices on orthogonal matrices. Here we have cho-
sen the convention to let two arrows heading versus each
other signify an identity.

) ( , 1
v Large mode indicated by thick line

i % / [
'_JQ( .'—(x/\_’... —(\X,‘——J X/)——-

Desirable situation Undesirable situation

Fig. 11. For a SVD of a matrix of size [10x 10000] it is
desirable to avoid the large mode. The large mode is indi-
cated by a thick line.

have been chosen to distinguish between the
modes. When two arrows meet head to head we
have the case WTW = L. Fig. 10 illustrates the
idea. The identity matrix is for convenience drawn
as a connected or as an unconnected edge with
no matrix element attached.

In some problems it is necessary to avoid that
large modes become unconnected edges. A sim-
ple example from SVD illustrates the main idea.
If the dimension of X is [10 X 10000] and the
object is to find the eigenvalues the fastest method
is to calculate the eigenvalues of the covariance
matrix XXT which has a dimension of [10 X 10].
The rank of X cannot be larger than 10 which
means that eigenvalue decomposition of XX (di-
mension [10000 X 10000]) would be a waste of
resources; see Fig. 11 for illustration.
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Abstract

Compression is one way of making analysis of large data matrices faster. Compression is here dcfined as the casc
when a large matrix X is replaced by a smaller coefficient matrix C. The coefficients are obtained by least squares
fitting to some compression basis. When performing, e.g., principal component analysis (PCA) of C, the results are
comparable but not equal to the results from analyzing X. In this paper we suggest a solution to this problem by
rewriting the PCA algorithm in terms of C and the compression basis matrices. This has been accomplished by
applying a method where speed improvement is achieved by postponing basis matrix calculations in key steps of the
PCA algorithm. The method suggested can also be applied to other (but not all kinds of) multivariate algorithms.

1. Introduction

The analysis of large data arrays is emerging as
a problem in analytical chemistry. New instru-
ments produce huge quantities of data which
need some kind of reduction in order to be
practical to analyze. One approach to this prob-
lem is compression. In the scheme suggested by
our laboratory [1,2] the original data table X
(which may be an N-mode data table) is com-
pressed to produce a matrix C using B-splines
[3,4] or any other suitable compression basis. C
has a much lower number of elements than X and

* Corresponding author. e-mail: alsberg(@ kj.uib.no.

is used instead of the original representation in
numerical analyses. Of course, the compression
must be such that the loss of significant informa-
tion is minimized. So far principal component
analysis (PCA) [5-7] has been studied and will be
the subject of this study also. A drawback of
using the C matrix instead of X is that scores and
loading vectors cannot be perfectly transferred to
the original domain. This problem can be demon-
strated by observing that X is assumed to be well
described by the smaller coefficient matrix C and
two B-spline basis sets B, and B,:

X = B,CB! (1)

In practice we have that X # X, but it is as-
sumed that X retains the important aspects of the

0169-7439 /94 /$07.00 © 1994 Elsevier Science B.V. All rights reserved

SSDI 0169-7439(94)00013-9
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structure in X. The estimation of C can be formu-
lated using least squares approximation as:

C=(B!B,) 'BIXB,(B!B,) (2)
By decomposing C with PCA the following is
obtained (the subscript ¢ is used to designate

matrices and vectors associated with the com-
pressed representation C):

C=T.P'+E, (3)
which is comparable to:
X=TPT+E (4)

The dimensions of the matrices are: Dim(X) =
[NxM]), DIim(C)=[nXxm], Dim(T)= [N xA),
Dim(P) = [M x 4], Dim(T,) =[n x 4], Dim(P,)
=[m x A), Dim(B,)=[NXn] and Dim(B,) =
[Mxm],n <N, m<M and A is the total num-
ber of extracted PCA factors. It is tempting to
use the basis sets B, and B, to get estimates of

the scores and loading matrices in the original
domain as follows:

Py =PB; (5)
and
T, =BT, (6)

Fig. 1 gives an illustration of the compression
process and the different matrices involved.

Eqgs. 5 and 6 do not, however, produce the
true scores and loadings. Neither T, nor P, are
orthogonal as required for the true scores and
loadings. This can be demonstrated by writing:

JT'—'TtTTh:TcT(BlTBl)Tc (7
Jo=P{P, =P (BIB,)P. (8)

J; will be a diagonal matrix containing the
eigenvalues if BTB, is the identity matrix. Jp will
similarly be the identity matrix if B}B2 is the

T

o] =[]

o]

|

Fig. 1. The various matrices used in the compression and PCA analysis. By utilizing the fact that X can be represented by linear
combinations of compression bases, C can be used instead. It is a problem, however, that the scores and loadings vectors from
analysis of C, T, and P cannot be the true estimates of T and PT of X. This is the reason for using PBM-PCA which compensates

for this and yet reduces the number of FLOPS.
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identity matrix. This is almost never the case. It
must be emphasized that orthogonalization /
orthonormalization of T,, and P! do not produce
the correct results. Visual comparison of both T,
with T and T, with T often reveals similar trends
albeit somewhat distorted. The same obscrvation
applies for the loading matrices. For many prob-
lems this is satisfactory but it is possible to imag-
ine situations where it is not, i.e., where the
quantitative information is more important than
the qualitative information. The aim of this arti-
cle is to present a method which can be applied
to rewrite algorithms to compensate for the dis-
tortion effects observed when using a coefficient
matrix C instead of the original matrix X. In
addition, we wish to minimize the number of
floating point operations (FLOPS) needed for the
analysis. It should be kept in mind that the
method of postponed basis matrix multiplication
(PBM) cannot be applied to any multivariate
algorithm. The basic idea of PBM is to separate
the basis matrix multiplication parts from expres-
sions included in time consuming iterations. The
following criteria must be met for the different
expressions in an iteration for the PBM method
to work:

- An expression must be expandable in terms of
the compression model.

- Each term in a sum must be pre- or/and
postmultiplied by the same basis matrices.

- Equations that cannot be written in terms of
the compression model can be included in the
iteration unless they depend on the whole un-
compressed input matrix.

- There must be no non-linear operations on the
uncompressed input matrix X or the basis matri-
ces.

2. The method of postponed basis matrix multi-
plication

The steps of the PBM method are:

1. The data matrix X at hand is modeled by one
or two basis matrices: {B,, B,} and a coeffi-
cient matrix C. This means that one of the
three possible compression models is possible:

X =B,C (9)

X = CB! (10)
X = B,CB! (11)

The choice of compression model depends on
whether it is possible or necessary to compress
along a mode.

For N-mode arrays the number of basis matri-
ces may be equal to N and there are in gen-
eral 2V — | different compression models.

2. Results (e.g., scores and loading vectors from
PCA) in the algorithm are assumed to be
linear combinations of one or both of the basis
matrices (here B, or B,).

3. When corresponding basis matrices can be
found at both sides of the equation sign as
pre- and/or postmultiplication this multiplica-
tion is postponed until the end of an iteration.
This is the case for PCA where an iteration
must converge for each factor.

4. The new algorithm produces vectors and ma-
trices which are comparable to the C matrix in
size. The basis matrices are pre-or post-multi-
plied with the result vectors/matrices to ob-
tain the correct results.

2.1. The PBM method applied to the NIPALS
algorithm

The main idea of this paper is to utilize the
compressed description of the data matrix X in
the nonlinear iterative partial least squares
(NIPALS) algorithm such that most of the time
consuming steps in the algorithm are performed
effectively on the coefficients and at the same
time avoiding the undesirable transformations of
the scores and loadings.

The standard NIPALS algorithm is here in-
cluded because it will clarify how each step is
transformed by the PBM method. The following
steps are repeated until convergence for each
factor:

po=13X (12)
T
Py
T
P\=—"x (13)
(Po o)l/

t,=Xp, (14)
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Here subscripts 0 and 1 are used to distinguish
between current (1) and previous (0) iteration
steps of the two estimates of the scores and
loading vectors.

The norm |l¢, —t, |l is used to decide on the
termination of the iteration for a given factor.
Subscquently the obtained score and loading vec-
tors are subtracted from the X matrix:

X=X-t,p] (15)
It is assumed that

X =B,CB} (16)

p'=v"B] (17)

t=Bu (18)

where ¢ is the score vector and p' the loading
vector of a factor. Hereafter it will be assumed
that X = X. The vectors u and v" are the corre-
sponding compressed representations. It is im-
portant to emphasize here that u and v7 are not
in general equal to ¢, and pl described in the
introduction. That is the reason for not adopting
those names for the vectors.

Note that score and loading vectors without a
numerical subscript are assumed to have con-
verged for the current factor.

The first step to be investigated is Eq. (12).
The first estimate of the vector u can, e.g., be a
column in C. In the following we rewrite step by
step each expression in the traditional NIPALS
algorithm presented in Eqgs. (12)-(14) in terms of
the compression model matrices and vectors
(B,, B,, C, u, v). The equations are formulated
such that the B, matrix is always premultiplied
and the B, matrix is always postmultiplied in an
expression. This is to follow the compression
model for the X matrix in Eq. (16).

The first estimate of p for factor a (see Eq.
(12)) is:

po =u;(B]B,)CB; (19)
where 7 =u]B] and X = B/CB] have been in-
serted into the formula p} =g X. It is nothing

more than a reformulation of the existing equa-
tion. Eq. (19) is equal to

ps =voB] (20)

where

vl =u}(B/B,)C (21)
The scaling of the loading function is (refor-

mulation of Eq. (13)):

T

- 8] (22)

- T 172 02 <
["(1)(8; Bz)"n]

This is equal to

Pl

pl =viB; (23)
where
vy
T (]
e ————— (24)
[”g(B;Bz)"OI

The new estimate of the score vector can be
written as (reformulation of Eq. (14)):

t, = B,C(BIB,)r, (25)
This is equal to

t,=Bu, (26)

where u, is:

u, = C(BIB,)r, (27

By observing closely the steps in the NIPALS
algorithm it is observed that the large matrices B,
and B, do not participate in the key steps of the
equations. All the equations have one of the
following forms:

B,array, = B,array, (28)
array, B} = array, B} (29)
B,array,B] = B,array,B] (30)

where ‘array’ means either a vector or a matrix.
When such equations are involved in an iteration
the pre- and/or postmultiplications of the basis
matrix are redundant and thus the total consump-
tion of FLOPS is reduced by postponing the
multiplication to after the iteration has termi-
nated. Figuratively speaking they have a property
similar to enzymes: necessary for the reaction but
not taking part in the reaction itself. The steps
containing the BT B, and B] B, matrices will of
course require more FLOPS than using the coef-
ficients alone. This is the price which must be
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Table |

Central steps in the PBM method applied to the NIPALS algorithm. Here Ty, = BB, and I', = B! B,

Traditional NIPALS

NIPALS with compression model

Necessary kernel (PBM)

Py =t1X v BY =ul,CBT ey =uilC

T = P vTBT=—L— 3 r =——IL-—
P (e b (eltw,)
t,=Xpl Bu, =B Iy, uy =Crlu,
lo=1t, Buy=Bu, uy=u
X=X-t,p] B,CB] = B,CB] - B,u,+|BY C=C-upf

paid in order to get the correct estimates of the
reconstructed models.

Table 1 presents the effects of applying the
PBM method to the NIPALS algorithm. In the
table the traditional NIPALS algorithm is located
at the left side, the algorithm rewritten in terms
of its basis matrices and coefficient matrix in the
middle and to the right side the necessary kernel
when the multiplication of the basis matrices is
postponed to after all the factor iterations have
finished. In the Appendix 6, a MATLAB pro-
gram is presented which shows an implementa-
tion of the PBM-PCA algorithm.

The output from the PBM algorithm is two
matrices U (scores like matrix) and V (loadings
like matrix) which do not share the orthogonality
properties of the traditional NIPALS algorithm.
Thus UTU#D where D is a diagonal matrix
(eigenvalues along the diagonal) and VTV # L.
On the other hand, however, we have that T, =
B,U and P] = VTBI do have these properties:
TyT,=U'T,U=D and PJP, = VI,V =1,

Table 2

Number of FLOPS required for some example matrix operations

where T,=BB, i€ (1, 2}). The last projections
are much less time consuming than using a lot of
computer resources to find the eigenvectors of
very large covariance matrices.

2.2. FLOPS estimations

The equations giving the estimate of required
FLOPS have been developed to be in concor-
dance with the results obtained by using the flops
command in MATLAB. Table 2 describes the
FLOPS equations for some simple linear algebra
operations.

By analyzing the PCA algorithm it was found
that the approximate number of FLOPS con-
sumed can be expressed by the following equa-
tion:

F,=A[q,(4NM + 5M) + 3NM] (31)

where Dim(X) =[N X M], A4 is the total number
of factors extracted and gq, is the number of
iterations per factor.

Matrix operation FLOPS required

‘Dimensions of matrices

XY 2nmk

Xy 2nm

yTy 2m

X+X nm
X=X-pT 3nm

(XY)Z 2nk(m +r)

X(YZ) 2mr(k + n)

Dim(X) = [n X m], Dim(Y) = [m X k)
Dim(X) =[n X m], Dim(y) =[m x 1]
Dim(y) =[m x 1]

Dim(X) =[n X m]

Dim(X) = [n X m], Dim(¢) = [n X 1]

Dim(p) =[m x 1),

Dim(X) = [n X m], Dim(Y) = [m X k]
Dim(Z) = [k xr]
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The approximate FLOPS consumption for the
PBM-PCA algorithm is expressed as

sz =.4[qu(4nm +2m*+3m+2)
+3nm +2n0°m + 2mnz]

+ 213N + 2m*M + 2n*m + 2nm* (32)

where Dim(C) =[n X m). As can be seen the
dimensions of the coefficient matrix must be much
smaller than the original matrix dimensions in
order to obtain significant FLOPS ratios (the
number of FLOPS required for standard NI-
PALS algorithm divided by the number of FLOPS
required for the PBM algorithm). Based on these
equations it is possible to get an approximate
FLOPS ratio given the n, m, N, M, A, q, vari-
ables. If the following simplifications are made
that n=m, N=M, A=5and g, = 10 it is possi-
ble to investigate the properties of the PBM-PCA
algorithm by selecting ranges for N and n. Here
the additional simplification has been made that
n = N/r where r signifies the compression and is
assumed to be the same for both modes. The
following ranges were selected: N €[200, 1000],
r € (2, 30). The results are presented in Fig. 2.

2.3. Sparse representations

Significant reductions in the FLOPS require-
ments for PBM algorithms can be accomplished
by using sparse technology [8]. This is a standard
way of speeding up algorithms which operate on
matrices containing a large number of zero ele-
ments. The main idea behind sparse technology is
to efficiently perform matrix operations on the
nonzero elements only. The storage of the matri-
ces are not in arrays but in lists of nonzero
elements with information about their values and
positions in the array. B-spline compression basis
matrices are to some extent sparse in their struc-
ture and this can be utilized to make the PBM
algorithms run faster. The multiplication of the T
matrices in the PBM methods will be the largest
contributor to the increase in FLOPS compared
to just using the coefficient matrix on standard
methods.

The density d, of an array can be defined as

FLOPS ratio PCA/PBM-PCA. Not sparse

1 GO

140
N denotes the size of an [N x N} matrix

z
N
8
o O\

AN

g
e
<\

80

FLOPS ratio

60| /

NN

40|

\

20

00 5 10 15 20 25 30
Compression factor r

Fig. 2. FLOPS ratio between PCA and PBM-PCA algorithms
when using various values for N and r. N denotes the size of
a matrix X of dimensions [N X N, r is the compression along
each mode. The compressed C has dimensions [N /r X N/rl
No sparse representation is assumed here and thus the FLOPS
ratios are smaller.

the number of nonzero elements divided by the
total number of elements in the array. It will
always be such that d, € [0,1] where d, = 1 repre-
sents a full matrix with no zeros and the sparse
representation will not reduce the required num-
ber of FLOPS for such cases. In the equations for
the PBM algorithm, densities of two different
matrix types will be considered: (i) d; which is the
density of the compression matrix B;; (ii) g; which
is the density of the Grammian matrix B/ B,.

It was found that the FLOPS requirements for
different matrix operations of sparse matrices
were dependent on the density of the matrices
involved. If we take the first example in Table 2 it
would look like

2nmkd . d, (33)

where d, is the density of X and 4, is the density
of Y.

2.4. FLOPS estimations of PBM with sparse repre-
sentation

For B-spline bases their Grammian matrices
are diagonally dominant which results in several
matrix elements of zero value. An example illus-
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trates the saving in FLOPS using sparse repre-
sentation. A B-spline basis sct with dimensions
Dim(B) = [991 x 36) was constructed from a ho-
mogeneous knot vector with polynomial degree 3.
The number of FLOPS consumed for the T' =
B"B operation without sparse technique was
2568672. The number of FLOPS with sparse
representation was 31204, i.e., the sparse opera-
tions required 82.3 times less FLOPS! In the
PBM method the I' matrix is a part of the projec-
tion of vectors. A vector projection v"T required
2592 FLOPS for non-sparse and 480 for the sparse
representation, which is 5.4 times faster.
The FLOPS Egq. (32) including sparsity is

Fy=Ala,(4nm + 2m?g, + 3m + 2)
+3nm + 2n’mg, + 2nm?g, |
+2n’Nd] + 2m>Md? + 2n’mg, + 2nm’g,
(34)
Where d, is the density of basis matrix B,, d,
is the density of basis matrix B,, g, the density of
matrix B{ B, and g, the density of matrix BIB,.
It was found that g, = 2d,. It is now possible to

repeat the simulation above with selected values
for {d;, g,}. Of course, small enough densities will

FLOPS ratio PCA/PBM-PCA. Sparse

N denotes the size of an [N x N] matrix

FLOPS ratio

0 5 10 15 20 25 30
Compression factor r

Fig. 3. FLOPS ratio between PCA and PBM-PCA algorithms
when using various values for N and r. Here sparse represen-
tation is assumed. N denotes the size of a matrix X of
dimensions [N x N, r is the compression along each mode.
The compressed C has dimensions [N /r X N /r). The follow-
ing densities d; =d, =0.1 and g, = g, = 0.2 are assumed.

Table 3

Parameter settings for the two basis matrices used in data set
I. The parameters a, b, ¢ are included in the formula for
Gaussian curves

a b (range) € No. of curves
0.5 [-0.8,1.0] 0.2 7
0.2 [-0.5.0.6] 0.1 12

give rise to enormous FLOPS ratios but it is more
interesting to investigate the case when the den-
sity is not too small, e.g., d, =d,=0.1. Fig. 3 is
the same simulation as in Fig. 2 with sparse
representation. The results are approximately ten
times better, i.e., PBM-PCA for this particular
choice of densities of the basis matrices will run
ten times faster than PBM-PCA without sparse
matrix representation.

3. Results
3.1. Data set 1

This is a data set where the basis set perfectly
describes the data, i.e., X = X. Two basis matrices
were constructed using Gaussian curves. A
Gaussian curve can be described by the formula
flx)=ae~*~b"/< The different parameter set-
tings for the two Gaussian basis sets are pre-
sented in Table 3. Both basis sets are constructed

Data Set 1

40

” ~__——

20 40 60 80 100 120 140 160 180 200

Fig. 4. Data set 1, Dim(X) = [200 x 200).
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by shifting a single Gaussian curve along the x
axis and this explains the range of b values in the
table.

Dim(X) = [200 X 200] and the dimensions of
the coefficient matrix is Dim(C) = [7 X 12]. Here
the basis sct has such a structure that sparse
representation will not give any reduction in
FLOPS. The original data are depicted in Fig. 4.
The number of MFLOPS used for the PCA on
the original data set was ca. 5. The corresponding
number of MFLOPS consumed using the PBM-
PCA was ca. 0.11. The same number of iterations
in both algorithms was used to get comparable
results. The PBM algorithm is approximately 45
times faster than the original algorithm on this
data set. Three sets of matrices were computed.
The first set is the scores and loading matrices
based on Egs. 5 and 6, T, and Pg. The second set
of matrices are the estimated scores and loading
matrices using the PBM method, T, = B,U and
Pl = VTB]. The third set of matrices are the
scores and loading matrices from the PCA of the
uncompressed matrix, T and PT. The first and the

/
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Fig. 5. Results from analysis of data set 1. Upper row shows
the comparison between true score vectors (T is printed as
TCi) in the figure where i is the ith factor) for the first five
components versus the estimated score vectors based on stan-
dard PCA on the coefficient matrix alone and multiplied by
the respective basis matrix (T, is printed as Tb(i) in the
figure). The lower part shows the comparison between true
score vectors versus PBM-estimated score vectors (T, is
printed as Th (i) in the figure).
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Fig. 6. Results from analysis of data set 1. Upper row shows
the comparison between true loading vectors (PT is printed as
P (i) in the figure where i is the ith factor) for the first five
components versus the estimated loading vectors based on
standard PCA on the coefficient matrix alone and multiplied
by the respective basis matrix (P,T is printed as Pb (i) in the
figure). The lower part shows the comparison between true
loading vectors versus PBM-estimated loading vectors (P is
printed as Ph (i) in the figure).

second set of matrices were each compared with
the third set. This is illustrated in Figs. 5 and 6.
The upper part of Fig. 5 shows T versus T, for
each of the five factors. The lower part of Fig. 5
shows T versus T,, for each of the five factors. As

Uncompressed FT-IR data
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Fig. 7. The temperature-IR data set. 