Exploratory Multivariate Data Analysis
with Applications in Food Technology

PhD Dissertation by
Claus A. Andersson, M.Sc., Chem. Eng.

Supervisor
Professor, Fil. Dr. Lars Munck
Chemometrics Group, Food Technology
The Department of Dairy and Food Science
The Royal Veterinary and Agricultural University
Rolighedsve 30, DK-1958 Frederiksberg, Denmark



Title: Exploratory Multivariate Data Analysis with Applications in Food
Technology

Author: Claus A. Andersson

Keywords: exploratory data analysis, multivariate data analysis, chemometrics,
multiway, multimode, PCA, PARAFAC, CANDECOMP, Tucker,
multivariate statistics

202 pages

ISBN 87-987937-0-5

July 1%, 2000

Printed by DSR Grafik, Frederiksberg, Denmark

Cover The words on the front and back cover pages have been ordered by
letting MATLAB® choose randomly and uniformly from a list of
selected keywords.



Preface

This PhD dissertation is based on a series of research projects conducted at The Royal
Veterinary and Agricultural University (KVL), in the Chemometrics Research Group of
Professor Lars Munck and colleagues during the period 1996-99. Parts of the theoretical
research were accomplished during a part-time position as guest researcher at Humbol dt
University of Berlin (HUB), Dept. of Analytical Chemistry, Germany, in the group of Prof.
G. Henrion during 1996-98.

| am grestly indebted to the many skilled and visionary peoplewith whom | have had the
great privilegeto collaborate. The very competent chemometrics and spectroscopic groups
at Food Technology are gratefully thanked for offering numerous interesting challenges.
First and foremost, my colleagues in the group of Food Technology and in particular Lars
Munck who through numerous discussions on the importance of context in relation to the
exploratory spirit elevated my scope to ook beyond the limits of the many isolated projects
to find the “principal components’ of successful solutions to problems based on data from
systems of high complexity. With regards to algorithms and models, much appreciated
professional and personal inspiration has come from Rasmus Bro and Lars Ngrgaard. Segren
B. Engel sen introduced meto the challenges of molecular modelling during ajoint research
project. Appreciation goes to Gilda Kischinovsky for proofreading of the text.

Dr. ReneHenrion, WeierstrassiInstitutefor Applied Analysisand Stochastics, Berlin, and
Prof. Gunther Henrion, Institute of Analytical Chemistry, Humboldt University, Berlin, are
thanked for avery educational stay in Berlin and for the close collaboration.

Danisco Sugar Development Center, Nakskov, is thanked for providing industrial
samples and datathat have allowed for exploratory application of multivariate dataanalysis
and, thus, many of the results reported in this dissertation.

Salaries, computers and travel s have been funded by The Nordic Industrial Fund and the
European Commission projects AFFLUENCE (CT 94-1416) and NWAY QUAL (GRD1-
1999-10337). The funds are much appreciated for the required financial support during the
period.



The thesisis based on work published in the following peer-reviewed papers which are
included as off-prints at the back of the thesis and are referred to throughout the text by
labels P1-P10:

P1

P2

P3

P4

PS5

P6

P7

P8

P9

P10

Direct orthogonalization, C. A. Andersson, Chemometrics and Intelligent
Laboratory Systems, 47, 51-63 (1999)

A new criterion for simple-structure transformations of core arrays in N-
way principal components analysis, R. Henrion and C. A. Andersson,
Chemometrics and Intelligent Laboratory Systems, 47, 189-204 (1999)

A general algorithm for obtaining simple structure of core arrays in N-way
PCA with application to fluorometric data, C. A. Andersson and R. Henrion,
Computational Statistics and Data Analysis, 31, 255-278 (1999)

Improving the speed of multiway algorithms. Part I: Tucker3, C. A.
Andersson and R. Bro, Chemometrics and Intelligent Laboratory Systems, 42,
93-103 (1998)

Improving the speed of multiway algorithms. Part Il: Compression, R. Bro
and C. A. Andersson, Chemometrics and Intelligent Laboratory Systems, 42,
105-113 (1998)

Further improvements of the speed of the three-way Tucker3 algorithm, P.
Paatero and C. A. Andersson, Chemometrics and Intelligent Laboratory
Systems, 47, 17-20 (1999)

Chemometrics in food science - a demonstration of the feasibility of a
highly exploratory, inductive evaluation strategy of fundamental scientific
significance, L. Munck, L. Ngrgaard, S. B. Engelsen, R. Bro and C. A.
Andersson, Chemometrics and Intelligent Laboratory Systems, 44, 31-60 (1998)

Multi-way chemometrics for mathematical separation of fluorescent
colorants and colour precursors from spectrofluorimetry of beet sugar and
beet sugar thick juice as validated by HPLC analysis, D. Baunsgaard, C. A.
Andersson, A. Arndal and L. Munck, Food Chemistry, 70, 113-121 (2000)

Analysis of N-dimensional data arrays from fluorescence spectroscopy of
an intermediate sugar product, C. A. Andersson, L. Munck, G. Henrion and R.
Henrion, Fresenius Journal of Analytical Chemistry, 359, 138-142 (1997)

PARAFAC?2 - Part Il. Modeling chromatographic data with retention time
shifts, R. Bro, C. A. Andersson and H. A. L. Kiers, Journal of Chemometrics, 13,
295-309 (1999)



Summary

The subject of this PhD dissertation concerns the use of multivariate models in the service of
exploratory data analysis in food technology. In this context the exploratory approach implies a
computer-based evaluation of data from multivariate observations in a dialogue with a priori
knowledge through an interactive hypothesis generating process. A review of principal component
analysis as part of exploratory and multivariate data analysis is conducted in the introductory part of
thethesis. Theexploratory multivariatetool sarecompared to the classical hypothesisdriven approach,
and the differences are discussed. It is clarified that the success of exploratory multivariate data
analysisisdueto the context-driven analysis of high quality data, constantly anchored in the realm of
the problem rather than in an abstract mathematical formulation.

The core of the dissertation consists of 10 peer-reviewed papers, proposing hew mathematical
models and a gorithms designed specifically to assist the analyst in situations where an exploratory
data analysisisto be preferred. The mathematical models and exploratory approaches are presented
as abackground to the research projects and to clarify on the applicability of thetools. Thefollowing
models are covered: Principal component analysis (PCA), principal component regression (PCR),
partial least squares regression (PLSR), parallel factors (PARAFAC) and canonical decomposition
(CANDECOMP), Tucker3 modelling, and multi-way factor analysis.

A novel preprocessingtool for bi- and multilinear model sispresented as Direct Orthogonalization
(DO) [P1] which separates systematic phenomenathat areindependent of the response variablesfrom
the systematic phenomena that are dependent. The reported work shows that the model provides
extended possibilities for exploratory analysis and outlier detection in diverse calibration problems.
Two papersaddresstheissuesof rotational indefinitenessin some classesof multi-way modelsby pro-
viding a new measure of model simplicity [P2] and a general mathematical algorithm [P3] that by
orthogonal transformations can optimizeany differentiablefunction. Simplification of complex multi-
way modelsthat suffer from rotational indeterminacy isrequired to allow for use asexploratory tools.

To reduce the computational requirementsfor conducting dataexperiments, three research papers
[P4, P5, P6] deal specifically with devel oping efficient implementations of algorithms for estimating
parameters of multi-way models. The following three publications [P7, P8, P9] exemplify how
exploratory multivariate data analysis could be performed in the sugar industry. The papers serveto
visualizethe advantagesof using multi-way exploratory dataanalysison real multivariatefluorescence
measurements on sugar and sugar production streams.

Finally, anovel model termed PARAFAC2[P10] for three-way dataanalysisisappliedtoreal data
from chromatography with similar spectral axes but dissimilar time axes. The results prove that
significant advantages are gained when PARAFAC2 is compared to the ordinary PARAFAC-
CANDECOM Presolution, sincethemodel error isreduced by not assuming trilinearity and thefactors
are thus valid as estimates of the pure contributors.

Thethesisconcludeshy focussing onthe potential of exploratory dataanalysisin science. Datasets
used in scientific publications should be made public on the Internet, allowing for an open dialogue
on how datashould betreated and interpreted in order to further stimul ate the advancement of science.



Sammenfatning

Emnet for denne ph.d. afhandling er, hvordan multivariate modeller kan anvendestil eksplorativ
dataanalyse i levnedsmiddelteknologi. | denne sammenhaang omfatter den eksplorative metode en
computerbaseret evaluering af multivariate respons gennem en interaktiv og hypotesegenererende
process. | den indledende del af afhandlingen er der foretaget en litteraturundersagel se af principal
komponent analyse som en del af eksplorativ og multivariat dataanalyse. De eksplorative multivariate
vagktgjer sammenlignes med den klassiske hypotesebaserede tilgang, og forskellene diskuteres. Det
understreges, at successen, hvormed multivariat og eksplorativ dataanalyse er blevet anvendt, skyldes
den kontekstdrevne dataanalyse, som konstant er forankret i opgavens virkelighed i stedet for en
abstrakt matematisk formulering.

Afhandlingensemneomréde udgeresaf 10 censorerede publikationer, der indeholder fordagtil nye
matemati ske modeller og algoritmer, som er specifikt designet for at hjad pe analytikereni situationer,
hvor eksplorativ dataanalyse kan anvendes. De matematiske modeller og explorative metoder
prassenteresi kort form som baggrund for forskningsprojekterne og for at anskueliggere vaarktgjernes
anvendelsesmuligheder. Fglgende modeller diskuteres. Principal komponent analyse, principal
komponent regression, delvis mindste kvadraters regression, parallelle profiler og kanonisk
dekomposition, Tucker3 modellering og multivejs faktoranalyse.

En ny metode til forbehandling af bi- og trilinesae modeller prassenteres som Direkte Orthogo-
nalisering (DO) [P1], som separerer systematiske faanomener, der er uafhaangige af responsvariablene
fra systematiske variationer, der er afhaangige. De rapporterede resultater viser, at modellen giver
udvidede muligheder for eksplorativ dataanalyse og identifikation af problematiske praver i diverse
kalibreringsopgaver. Toartikler omhandler rotationsmaessig ubestemthed i enkelteklasser af multivejs
modeller ved at tilbyde et mal for modellens simpelhed [P2] og en generel matematisk algoritme [P3],
som ved orthogonal e transformationer kan optimere alle differentiable funktioner. Simplificeringen
af komplekse multivejs modeller er pakraavet for anvendelsei eksplorative sammenhamnge.

Med henblik pa at reducere de beregningsmaessige krav for at kunne udfgre dataeksperimenter,
omhandler tre forskningspublikationer [P4, P5, P6] specifikt, hvorledes mere effektive implemen-
teringer af algorimer til estimering af parametre i multivejs modeller kan foretages. De tre
efterfaglgende publikationer [P7, P8, P9] viser ved eksempler, hvorledes eksplorativ multivariat
dataanalyse kan anvendesi sukkerindustrien. Publikationerneviser fordeleneved at anvendemultivejs
eksplorativ dataanalyse pa virkelige multivariate fluorescensmalinger af sukker og stremme fra
sukkerproduktion.

Endelig anvendes en ny model kaldet PARAFAC2 [P10] til analyse af virkelige trevejs data fra
kromatografi med ens spektral e akser, men med forskelligetidsakser. Resultaterneviser, at betydelige
fordele opnds n&r PARAFAC2 sammenlignes med den almindelige PARAFAC-CANDECOMP
resolvering, eftersom modelfejlen reduceres ved ikke at antage trilinearitet.

Afhandlingen fokuserer afslutningsvis pa potentialet af eksplorativ dataanalyse i videnskaben.
Datamateriale som brugesi videnskabelige publikationer ber garesfrit tilgaangeligt pa Internettet for
at muliggere en dben didlog om hvorledes data skal behandles og fortolkes for at stimulere
videnskabens videre udvikling.
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I. Exploratory multivariate data analysis

1. Introduction

What has modern multivariate dataanalysis, as performed in chemometrics, to offer that
is not already offered by established scientific data analytic disciplines, such as statistics?
What does multivariate data analysis bring to the market that makes it deserve special
attention, e.g. by this thesis? In attempting to answer these questions, first of al an
elucidation of theterm exploratory multivariatedataanalysisisrequired. Next, adistinction
between the mathematical models and their applicationsin chemometrics and statistics has
to be made.

Thedevel opment in sensors during the last decades provides academiaand industry with
more information than ever before. The new spectral sensors are characterized by high data
guality, good sensitivity, fast responses and wide measuring ranges for rapid fingerprinting
of vast amounts of samples. Furthermore, the complexity of a single measurement is
increasing from spectrato higher-order structures, e.g. spectral datafrom 2D electrophoresis,
hyphenated chromatography and fluorescence spectroscopy. Today, most chemists discard
much of this information by making problem reduction or non-intelligent data reduction,
selecting only the wavelength and fraction for analysis for which there is an a priori
established hypothesis and model. This leads to a dramatic loss of information, and
especially lossof important new information that would not initially be anticipated. Instead,
theincreased amount of complex datademands effective toolsfor datamining and reversed
engineering first to explore connections, correlations and groupings and afterwardsto help
the analyst to generate hypotheses.

Therealm of modern science and industry needs rapid solutionsto complex biologically
based problemsasfoundinthestrongly competitivefood industry, thusdemanding versatile,
robust and unbiased methodsfor successful handling of complex measuring conditions. The
focus has shifted from general and long-term fundamental research to solving specific here-
and-now problems with clearly formulated success criteria. It isthus necessary to trandate
the parameters from more or less abstract mathematical models to real world language
expressions of the functional factors for making decisions and for inducing new, more
adequate and precise hypotheses. Consequently, tools are required to facilitate optimal
exploitation of the vast amount of the often intercorrel ated information provided by the new
instruments. It is here that exploratory multivariate data analysis plays a key role by
combining multivariate mathematical tools and exploratory approaches for analysing data
sets with correlated variables.
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In looking through the literature, it becomes clear that anew exploratory technology has
emergedin parallel with new mathematical developments. Theversatility of themultivariate
tools and the few assumptions required by multivariate analysis (other than those inherent
in the models) makes this technology a cardinal and indispensable tool for exploratory
purposes required to efficiently solve R& D problems today.

In particular, it is the intention to discuss here two core features of multivariate data
analysis: First, the scientific process leading from multivariate observationsto information,
and secondly, the mathematical development with a description of how some of the most
versatile multivariate models can be used in chemometrics. The dissertation isdivided into
two sections. Section | isoutlined asfollows: The devel opment of modern multivariate data
analysis up to today is depicted in the context of principal component analysis, and the
exploratory multivariate scientific process going from observation to knowledgeispresented
and compared to the classical scientific approach. Furthermore, some fundamental and
general exploratory mathematical models are briefly presented. Section | ends with a
presentation of the applications and aconclusion on the use of exploratory multivariate data
analysisismade. Section || consists of off-prints of the peer-reviewed published papersthat
congtitute the thesis.

The concepts and tools for multivariate data analysis are collectively referred to as
chemometrics in the context of chemistry. Chemometrics, being a juxtaposition of chemo
(latin, chemistry) and metrics (greek, measure) is the common denominator of all possible
tools applied to make rational analysis of chemical measurements. Several publications
cover the history of chemometrics[Kowalski (1984), Anderson (1984), Beebe & Kowalski
(1987), Meuzaaar & lsenhour (1987), Geladi & Esbensen (1990), Esbensen & Geladi
(1990), Wold (1996)]. Using the term chemometrics serves an important purpose: It makes
clear that the whole of the problemisto be observed, analysed and interpreted in adirect or
indirect chemical context. The issue of proper context will later be shown to be consistent
with the success of biometrics, econometrics, psychometrics, andin our case, chemometrics.

For the engaged practitioner, chemometrics offers significant new possibilities in the
approach towards multivariate problems that perfectly complementsthe classical scientific
methodol ogy, thus providing atechnology in the sensethat it isaholistic pragmatic solution
combining strategies and toolsin the very centre of the application. It isimportant to stress
the difference between a technology and a discipline. Disciplines evolve by budding off,
thus establishing new borders by making subclasses of existing scientific disciplines. A
technology is comprised of a set of tools with interdisciplinary applicability and is defined
by its operational aims rather than by its formal scientific heritage. Exploratory data
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analysis, chemometrics and multivariate analysis are technol ogies rather than disciplines,
since they aretools that work in the context of different disciplines and are adapted to the
circumstances at hand, such as chemistry, biology or psychology.

The two chemometrics journals, Journal of Chemometrics (Wiley) and Chemometrics
and Intelligent Laboratory Systems (Elsevier) demonstrate an active international society
pursuing chemometricsasatechnology that isconstantly devel oping theory and applications
for the multivariate domains, including signal processing and image analysis. Now and then
there is a tendency also in chemometrics to form borders and to be self-sufficient as a
discipline, leaving out the flexibility of atechnological approach. To serve science in the
best way such tendencies should be combatted [Wold (1994)]. Asis apparent from the two
mentioned journals, chemometrics covers all types of models and data analysis approaches
applied to chemical and physical data. Soft multivariate data analysis makes up the major
part of chemometrics, but it is not solely about multivariate modelling, since many hard
models have found their way into chemometrics. Chemometricsisthus open for inspiration
from areas outside the natural sciences, i.e. getting inspiration from areas as different as
engineering, psychology and economics. This openness is particularly evident for the
establishment of multi-way mathematical toolswhich will be discussed in more detail at the
end of this section.
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2. Exploratory multivariate data analysis

Exploratory multivariate data analysis is the unification of exploratory data analysis
and multivariate data analysis. Henceforth, we will initiate the discussion by describing
what these two terms represent in order to have useful definitions in place. The effect of
combining the two historically different approachesismultiplicative rather than additivein
the sense that new possibilities and paths are offered to solve complex scientific and
industrial problems.

2.1 Exploratory data analysis

Theterm exploratory dataanalysis[Hoaglin et al. (1983), Weihs (1993), Minton & Rose
(1997)] wasfirst used in the psychological and behavioural sciences. In spite of extensive
literature searches, no formal definition of exploratory data analysis could be found, but
perhaps the closest and most direct is given by Hoaglin et a. (1983): “In brief, exploratory
data analysis emphasizes flexible searching for clues and evidence, whereas confirmatory
data analysis stresses evaluating the available evidence’. In the context of factor analysis
[Thurstone (1931), Anderson & Rubin (1956), Horst (1965)], which is central to all models
based on principal components, Harshman (1970), p. 5, proposes the following distinction
between descriptive and explanatory analysis: “While descriptive factor analysis seeks
merely to find a convenient, condensed representation of data relationships, explanatory
factor analysis seeks to discover good estimates of the structure of ‘true underlying’
influences that are responsible for the observed data relationships.”. Exploratory analysis
is concerned with both: The exploratory approach isfocussed on making the data analysis
in astepwise manner, evaluating at each step the appropriateness of the model and the data,
and if necessary, modifying the model and/or the data basis. At each step, new insight is
gained in termsof correlations between objects or variables, outlying samples or the effects
of preprocessing, or numerous other important conditions necessary to reach valid
conclusions. The exploratory approach lets the results from the iterative exploratory
procedure help the analyst to define and find the combinations of analysis conditions that
provide the optimal understanding of data. The comprehensive book on exploratory data
analysis by Tukey (1977), p. 3, has the following dictum “Exploratory data analysis can
never be the whole story, but nothing else can serve as the foundation stone - as the first
step.”, and in the same reference, the necessity for confirmatory analysisis also stressed.
Tukey compares the task of doing exploratory analysiswith that of a detective looking for
clues and hints to be able to find the truth.
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Dueto the ever accelerating improvement of the compuiter, it isnow possible to conduct
new exploratory analysis in pure electronic form by using digital representations of the
system under investigation in combination with an interactive graphical interface between
the observations and the model parameters. Having the data in the computer allows for
examinations of subsets of objects and variables, and for applying different preprocessing
methods among a host of possible mathematical treatments. Thus, once having data repre-
sented inthe computer allowsfor extensive data experimentation in the same senseaswhen
achemist conducts experimentsin thelaboratory. The high-performing and efficient mathe-
matical environmentsfor doing such experiments can run on every modern computer, thus
opening the way for scientiststo take responsibility for exploration of the structure of their
own data by not considering measured data as something static, but rather regarding them
assymbolsof dynamic systemsthat can be recombined and transformed into meaningful in-
formation by the use of exploratory multivariate chemometrics.

It is noteworthy that in several places in the statistics literature [Anderson (1984)] the
term descriptive data analysis is used as a synonym for exploratory data analysis. These
unfortunate choices of definitions are incompatible and do not fully conform to the reality
of exploratory analysis.

2.2 Multivariate data analysis

One multivariate tool has, in particular, formed the conceptua basis from which the
central part of multivariate tools of concurrent multivariate data analysis and chemometrics
has been derived. Thisisprincipal component analysis(PCA). PCA representsthe coreidea
of condensing large amounts of data to a few representative parameters (principal
components or latent factors) which capture the levels of, and differences between, objects
and variables in the data under investigation. Patterns and clusters in the parameters are
easily represented in the form of scatter plots in the Euclidian plane with an exploratory
choice of different principal components as axes. By nature, PCA impliesthat theworld is
under indirect observation as variations in data are caused by principal componentsin the
sensethat these are hidden and underlying instead of manifest and directly observable. After
estimation, these parameters can subsequently be treated in numerous ways to facilitate
optimal representationsof theoriginal dataand inthisregard visualization providesanindis-
pensable and very effective path for analysts to identify similarities and dissimilarities of
objects and variablesin large data sets. The latent factors may under favourable conditions
be interpreted as functional factors recognizable in real world terms. According to Joliffe
(1986), the approaches towards PCA taken by Pearson (1901), Hotelling (1933a) and
Hotelling (1933b) arethe earliest. But Fisher & MacKenzie (1923) also explicitly mention
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PCA and even include a simple algorithm for estimating principal components, similar to
the so-called non-linear iterative least squares (NIPALS) agorithm. Albeit, decades earlier
in arather compressed communication, Adcock (1878) formulated aleast squares problem
that resembl es the decompositional approach taken in PCA. According to Wold (2000), an
even earlier, yet non-verified, reference dates back to Cauchy (1829). Several reviews on
PCA have been published in different application areas [Kruskal (1978), Jackson (1980),
Joliffe (1986), Wold et a. (1987), Mardiaet a. (1992), Horst (1992), Wold (1996)].

A fundamental feature of PCA isthe minimization of sums of squared errors between
observations and the model predictions, i.e. the well-known least squares approach. L east
sguares approaches, which constitute asignificant part of multivariate dataanalysis, can be
traced back to 1795-1799. Several referencesascribethefirst publication of theleast squares
principle to Legendre (1805), but Gauss (1963) (written 1809) claimed to have used least
squares since 1795. More references on error functions in multivariate modelling can be
found elsewhere, e.g. [Goldstine (1977), Bjorck (1990)]. Markoff (1912) notes that Gauss
[Gauss (1821), Gauss (1823)] proved that least squares provides the least biased estimator
as optimal feature when the distribution is unknown.

Principal components can be estimated as eigenvectors because they represent the
phenomena that will grow out of data, if data is amplified with itself iteratively. See
references[Bauer (1957), Rutishauser (1969), Longley (1984)] for algorithmic descriptions
on finding eigenvectors, which in the simplest formsworks by growing eigenvectors out of
data by projecting data onto itself.

Multivariate statistics is established as a discipline under applied statistics [Afifi &
Elashoff (1966), Bryant & Atchley (1975), Gordon (1981), Anderson (1984), Krzanowski
(1988)], but multivariate statistical data analysis has since long been regarded as an
independent statistical discipline [Gordon (1981), Anderson (1984)]. However, due to the
complexity of dealing with multivariate distributionsthis mathemati cal-statistical treatment
has moved to the background of statistics. Since the introduction of the computer,
multivariate modelling has been conducted separately from theoretical statistics as applied
dataanalysisinvariousapplication areas, e.g. psychometrics, biometricsand chemometrics.
There appearsto be a paradox between the refined, and thusrarely used, statistical methods
which require the handcraft of aprofessional statistician to providevalid conclusionson the
one hand, and the easily applicable and interpretable multivariate models like PCA on the
other. In spiteof thefundamental significance of the computer, multivariate modelshave not
received enough attention from the statistical community due to lack of methods to
characterize distributions for multivariate responses with correlated parameters. In this
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respect, it is noteworthy that the idea of PCA was first conceived by scientists with high
mathematical capabilities working in the social sciences and psychology, outside the field
of pure statistics.

2.3 Exploratory multivariate data analysis revisited

Statistics dates back several hundreds of years to atime when theories of gambling and
insurance policy were developed, and when the numerical and computational tools were
extremely limited compared to today. Thus, the mathematical abstraction of any kind of
problem had to be represented by avery simple mathematical relation requiring estimation
of only afew parameters. Before the computer, i.e. up to around 1950, statisticians were
forced to transcribe their problemsinto forms that were solvable, thusimplicitly restricting
the viable domain to consist of uni- and oligovariate models. Since 1950 higher numbers of
parameters have been easy to estimate, and thus the more demanding multivariate models
now provideresourceful alternativesto the classical approaches, e.g. hypothesistesting and
analysis of variance.

On three particular points the exploratory multivariate approaches, herein terms of the
essentially exploratory principal component analysis, offer significant and new possibilities
which are of fundamental importance to the way research is conducted. The first aspect is
the way naturally occurring correl ations between observations are exploited to improve the
understanding of complex systems by identifying thelatent factors of the observations. This
is done with a minimum of a priori assumptions and with models that are optimal when
applied to unknown distributions[Markoff (1912)]. Secondly, direct application of PCA in
screening setups helps the analyst to narrow in on the important factors and conditions of
the system under observation. Finally, the methods are well suited for application as close
to the context of the problem as possible by introducing mathematical metaphors which
correspond to real life factors, thereby diminishing the requirement for creating abstract
mathematical or chemical representations of the real problem. In the following, these three
aspectsand their premiseswill be advanced intermsof modern food technological problems
and chemometrics.

Since around 1950 science has had access to estimating soft, adaptive and yet still inter-
pretable models of observations. These novel soft data analysis tools are based on formal
mathematics not assuming any hard explicit model, as required by classical deductive
modelling. It is important to note that soft models, e.g. PCA, neural nets and genetic
algorithms, areintrinsically preconceived dueto the mathematical modelsonwhichthey are
based, i.e. linear relations, exponential functions and logical operators, and that their
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adaptability isdueto ahigh number of parametersinvolved in the many intrinsic repetitions
of thebasisfunctions. A normative approach, aslisted in Table 1, assumesthat dataconform
to an a priori defined mathematical relationship or distribution, thus requiring the analyst
to have a hypothesis on the structure of the data before doing the analysis. In contrast, the
novel exploratory multivariate tools are hypothesis generating, and require less a priori
knowledge at the outset of a new research project. Table 2 gives a schematic overview of
the exploratory multivariate strategy towards solving research problems. The table is
inspired by the sequence of exploratory events as explained in the concept of the selection
cycle by Munck [Munck (1991), Munck (2000)], and in thesis paper P7. In the textbook by
Massart et a. (1997), p. 1-2, abrief discussion of the Arch of Knowledgeby Oldroyd (1986)
isgivenintermsof inductive versus deductive analysisin the context of chemometrics. The
main conclusion by Oldroyd isthat the optimal conditionsfor scientific research are defined
by clever and rel evant experimentswith arational subsequent analysisof theresults, i.e., an
intensive dialogue between knowledge and experiment.

Both the normative and the exploratory approaches require a priori knowledge, but the
stagesin the processes at which it is used differ significantly. Asis apparent from Table 1,
the classical scientific approach impliesahigh risk of forming ahypothesisthat isbiased by
what is already known. Thus, the objective is formulated at the first step of the analysisin
arigid and abstract way, by which the real problem is reduced and simplified. Before and
after theintroduction of inductiveinference [Fischer (1935)] and formal significancetesting
[Fischer (1922)], statisticians Neyman & Pearson (1928) argued in favour of an informed
personal judgement. Informed judgement expresses an intention to respect that the systems
under observation are never identical and it depicts a consciousness of ensuing proper
context. Despite this very early realization by Neyman and Pearson, statistics has
continuously aimed at devel oping tool sthat worksfor all dataanalysissituations, asclaimed
for significance testing by Fischer (1925). It should be remembered that chemometrics
integrates mathematics and chemistry throughout the analysis due to the data analyst’s
understanding of the research context, while chemometrics without understanding of
chemistry is reduced to statistics.

An inherent limitation of the classical hypothesis-testing principle in Table 1 is the
problem of making ground-breaking discoveries, sincethe analyst can only test hypotheses
that can beimagined mentally, asit isonly possibleto formulate new ideasin terms of what
isaready known. At best, new possibilitiesmay berealized by considering interferencesto
the ruling hypotheses in experiments. By letting the datatalk through a more sophisticated
dialogue as suggested in exploratory multivariate dataanalysisin Table 2, new ideas can be
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formed inthemind of theinvestigator by akind of supervised intuition made possible by the
synergy with the computer through the graphical display.

Table 1: Simplified presentation of the classical scientific one-shot approach to data
analysis for a given data set.

1 Hypothesis based on problem reduction of prior knowledge

Mathematical tailoring of the hypothesis into a mechanistic model. Assumptions are
made on intersample/intergroup relations observed from experiments designed to test
the hypothesis. The problem of recognizing the effects is reformulated in a mathe-
matical abstraction of the original problem.

2 | Parameter estimation

A mathematical/statistical model that aims at capturing the essence of the scientific
problem is deduced from the mechanistic assumptions. The model parameters are
estimated.

3 | Hypothesis testing

The analysis ends by a statistical test of confidence of the parameters or the obser-
vables in the framework of assumptions required by the initial mechanistic model or
the statistical models applied during analysis.

4 | Hypothesis reformulation

If the hypothesis is rejected, a new fundamental mechanistic model needs to be
formulated, or the data material is discarded. The outcome is a simple yes/no to the
proposed hypothesis, depending on the significance test of the null hypothesis.

In multivariate analysis performed as experimental mathematics outlined in Table 2, no
initial hypothesis is necessitated prior to the analysis other than that implicit in the
experimental screening analyses and the mathematical tools. Thus, itisinitially datathat is
reduced and simplified rather than the problem. Looking at the data in terms of fewer
parameters as provided by the modelling tools will allow for an enhanced graphic and thus
more effective interfacing between the observed variations in the data set and the mind of
the researcher which again will initiate ideas for new connections and groupings. Thus, the
analyst will be inspired to form new hypotheses from the insight provided by the new
representations of the data. The a priori knowledge is used for validation after the PCA
model has been estimated and is used as an inspiration for generating new relevant
hypotheses and to ensure that the conclusions are valid in the context of the analysis. Thus,
the known features of the system under investigation are used in an interactive fashion that
ensures validity by constantly comparing with the known variations and groupings in data
aswell aswith external knowledge.

10
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Table 2: Typical application of iterative and interactive multivariate models to explore
problems, thereby performing data reduction in a stepwise manner for a given data set.

1 Estimation of a multivariate model in an inventory analysis
Exploits correlations of observables with a broad aim of establishing the character of
the underlying principal components. Often the first choice of model is principal
component analysis (PCA) for screening purposes. The aim is unbiased reduction of
the primary data with a minimum loss of information.

2 | Graphic representation Numerical representation
Exploits human cognition for interpretation | Figures of merits filter and simplify the
of plots of classes, outliers, correlations = estimated parameters. Provides tools for
and patterns in a close dialogue with the automated analysis.
context.

3 | Evaluation
Conclusions are induced from graphs and plots of patterns of objects and variables by
comparing to prior knowledge. The results are validated by contextual measures and
comparisons.

4 | Hypothesis generation by data management and/or model reformulation
New models are built on subclasses, outliers are removed, other preprocessing is
chosen or a different type of multivariate model may be applied. Depending on the
evaluation, a new measurement technology may be introduced, thus producing entirely
new data sets for the problem that can be used in combination with what is already
known.

5 | The gained knowledge is applied. A new iteration is made beginning with Step 1.

For different reasons, during thelast century the general demand for new knowledge has
changed from dealing with general, existentia and fundamental issues towards solving
concurrent specific problems. Political and commercia administrations have a preference
for evaluating and monitoring the effects of scientific, economic and social initiatives in
detail in order to design new solutions. The objectiveisformulation of effective and precise
indicatorsfor efficiency and success. In consequence, alargefraction of public and commer-
cial scientific research is aimed directly at mending current problems, e.g. improving
nutritional value of foods, identifying the mechanismsof virusesor finding acurefor cancer.
These complex, often biological, areas are difficult to address with a design strategy, like
that used for building cars, as there are no known simple mathematical and theoretical
relationships between the unknown factors and the effects. The objectives for addressing
these problems today are not so much curiosity about nature, nor the gain of fundamental
knowledge, but rather in the short perspectiveto solve the problemsthat are currently in the
eye of an increasingly critical society. To comply with this demand for obtaining afast fix
of the underlying, yet unknown, nature, inventories of problem areas using fast, sensitive,

11
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and reproducibl e holistic screening methods arerequired that, in short timeand at affordable
costs, can provide decision makers at al levels with high quality data which can be
evaluated by multivariate methodsto produce sufficient insight and knowledgeto allow for
managing and controlling the various kinds of problems.

The quality of data is an important aspect in improving the outcome of multivariate
investigations as pointed out by Wold (1994). As advocated in Step 1 of Table 2, afirst
screening step is introduced which will indicate whether there are systematic relations
between the objects in the sense that objects that are similar should be assigned the same
properties and objects that are dissimilar should be assigned different properties by the
chosen model. Accordingly, the analyst should be able to identify known intersample
patterns or groupings by comparing to his’her a priori knowledge of the samples from the
system under observation and furthermore to identify the physical/chemical character of the
underlying principal components selected by the multivariate model. Thus, this screening
stepisanintrinsic part of asuccessful application, since the screening step servesto test for
meaningful systematic variation before more elaborate examinations are conducted later in
the sequence.

12
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3. Exploratory multivariate models

In the preceding text historical references have been given for the PCA model and its
exploratory application in sciences. In the sequel the focus widens from PCA to
chemometric models that are relevant for the research conducted in relation to this thesis.
Giving a complete description of multivariate data analysis, or even just chemometrics, is
animpossibletask, since chemometricsisatechnol ogy in constant pragmatic devel opment.
Assuch, there-introduction of the modelsin the following does not aspire for compl eteness
or adequateness beyond the use in thiswork. However, exhaustive textbooks on chemome-
tricsareavailable[Kowalski (1984), Martens & Nass(1989), Nortvedt et al. (1996), Massart
et al. (1997)].

A significant part of the methods listed in the following require a conscious and preme-
ditated attitude towards the preprocessing of variables, e.g. mean-centering [Seasholtz &
Kowalski (1992), Pell et al. (1992), Faber (1998)], scaling [Torgerson (1958), Simeon &
Pavkovic (1992), Gulliksson (1994)], linearization [Box & Cox (1964), Geladi et a. (1985),
Klicka& Kubacek (1997)], warping [Kassidaset al. (1998a)] or scatter-correction [ saksson
& Naes(1988), Nasset al. (1990), Isaksson & Kowalski (1993), Helland et al. (1995)]. A new
preprocessing method has been devised [P1] for removing systematic, but irrelevant,
phenomena.

3.1 Principal component analysis (PCA)

Let thedatamatrix X (1,J) denote atable of | samples, each evaluated at J variables. The
R (R < min(l1,J)) component PCA model [Aitchison (1983), Wold et al. (1987), Wu et al.
(1997), Vairaet al. (1999)] is defined in (1) where the parameters in matrices A (1,R) and
B (J,R) arereferred to as scores and loadings, and residualsare contained in E (1,J). In PCA,
component matrix A is columnwise orthogonal and B is columnwise orthonormal, whereas
in multivariate curve resol ution the component matrices are either left unconstrained or are
assigned other types of constraints.

X =AB' +E
(1) =
% zzairbjr * €
r=1

The number of components, R, expresses the complexity of the observed variationsin
data and may to some extent be regarded as the number of independent phenomena that
cause the observed variations. The principa components are ordered according to their

13



I. Exploratory multivariate data analysis

significance, i.e. the amount by which the residual sum of squares of X is successively
reduced asmore componentsaremodelled. Thus, thefirst principal componentsaretheones
that capture the boldest patterns; however, more and more refined information may be
captured by later principal components. Given any dimensiondlity R, the PCA model fits X
as a minimization of the squared errors, i.e. in aleast squares sense. Several approaches
towards determining the correct dimensionality have been proposed [Horn (1965), Cattell
(1966), Malinowski (1977), Malinowski (1991), Faber & Kowalski (1997)]. These
references also propose methods for validating the model dimensionality as well as the
models themselves, but more suggestions may be found elsewhere [Scarponi et a. (1990),
Nass & Ellekjaa (1993), Krzanowski & Kline (1995), Biscay et al. (1997)].

As stated above, PCA has a wide application area. It is perhaps the most versatile
exploratory tool and it can be used from the first screening to the last classification. A full-
fledged application of PCA and other exploratory multivariate models to facilitate
understanding of the highly complex variations within a sugar process is given in thesis
paper P7.

PCA formsthe basis of many classification methods [Gordon (1981)], in particular soft
independent modelling of class analogies (SIMCA) [Wold (1976), Albano et a. (1978),
Frank & Lanteri (1989), Mertens et al. (1994), Dunn & Wold (1995)]. In many practical
chemical measuring setups the resulting data have missing observations for reasons that
may, or may not, be controlled. For PCA, methods for handling missing data have been
proposed in variousdisciplineswhich further stressesthereal -dataapplication of PCA [Afifi
& Elashoff (1966), Gleason & Staelin (1975), Frane (1976), Little & Rubin (1987), Grung
& Manne (1998)].

3.2 Principal component regression (PCR)

If K response values are known for the | samples defined in the previous chapter, an
additional matrix Y (I,K) isdefined, such that theith row of X correspondsto the same row
in'Y. The two matrices are respectively referred to as the independent and the dependent
observations, athough in the context of causal relationshipsit may actually be the reverse.
In PCA, these dependent observations are not used at all in the modelling part of the data
analysis. Turning to regression, thewell-known statistical multiplelinear regression (MLR)
model attempts to find regression coefficients p (J,K) that establish a connection between
X and Y, asdefined by (2).

2 Xp=Y
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As noted very early by Gauss, there is no solution to this model when there are more
variables than objects, i.e. (J > ). Furthermore, there is no solution if the X matrix is
singular, rendering aunique estimation of p impossible. In most spectroscopic applications,
the variables are correlated such that X does not have full rank, but merely consists of afew
pure spectral phenomena. Finding asufficient full-rank subspace of X, asisdonewith PCA,
will provide regressors that are independent due to orthogonality. Using the scores from a
PCA asabasisof MLR resultsinthe principal componentsregression (PCR) [Joliffe (1982),
Mason & Gunst (1985), Glenn et a. (1989), Vairaet a. (1999)] which haswell-conditioned
numerical properties allowing for agood estimation of the B parameters since the columns
of X (J<I) areindependent, and the rank isfull.

Thepurposeof regression can be multi-faceted. Anexploratory application of PCRisthat
of relating functional factors with a priori knowledge to allow for an interpretation of
functional or classrelationships. Using the PCR for calibration is perhapsthe most common
application seeking to estimate the parameters of amodel that will predict new sampleswith
the lowest possible future random error and bias. To achievethisgoal it isimportant to use
the correct dimensionality of the PCA model which can be found by various validation
schemes, as will be touched upon later.

3.3 Partial least squares regression (PLSR)

Sincethefactorsfrom the PCA are found by successively reducing the residual sums of
squares of X with no considerationto Y, thereis no predictive optimality connected to the
factors that will subsequently be used for regression onto Y. A method called partial least
squares regression (PLSR) [Joreskog & Wold (1982), Wold et al. (1984)] has evolved that
aimsto improvethe efficiency of the scoresas correlated estimators of Y. The PLSR model
isan algorithmic prescription aiming to improve the predictive efficiency of the regression
model by finding score vectorsfor X that are more likely to correlate to the columns of Y.
No direct closed form mathematical description can be made for PLSR [de Jong & Phatak
(1997)], but the algorithmisgiven below. In Algorithm 1, theinvolved variablesarey (1,1),
w(J,1),t(,1),p (J1) andq (1,1)
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Algorithm 1: The PLSR algorithm for modelling a univariate responsey.
For each component 1, 2, ..., R

w = X"y/|XTy]l

t=Xw

p=X"t/t"t

q=y't/t't

X=X-tp'

y=y-tq

Save the current intermediate factors and goto 1

N~ WDN R

For the sake of commenting on the PLSR algorithm and preparing for the subsequent
discussion of Direct Orthogonalization some remarks are necessary. From Algorithm 1, it
isseen that in some casesthe weight vector w, which isderived from X and Y, may be under
control of a strong eigenstructure in X, so that the obtained score t (step 3) is only
expressing variability in X and not in'Y, thereby reducing the predictive performance of that
particular component. The listed PL SR algorithm depicts a method that aims at providing
scores that are relevant for the explanation of both X and Y by means of optimizing the
covariance between the scores of the two structures. The PLSR algorithmisin all aspects
dependent on data and the treatment and a characterization of this method is rather limited
due to this fact, but from a pragmatic point of view, as undertaken by chemometrics, the
PLSR generally performs well. For the instances where the derived scores, t, are guided
solely by X, new preprocessing methods have been proposed that will be discussed briefly.

3.4 Direct orthogonalization (DO)

In order to eliminate the problem of having many PCR or PLS components that are
explaining significant, but irrelevant, phenomena in X, a novel method called direct
orthogonalization (DO) [P1] has been proposed. Rather than applying the PCR or PLS on
the data directly, a preprocessing step is suggested that ensures that principal components
that have no impact on the predictive performance with respect to Y are removed.
Conceptually, the DO procedure can be regarded as splitting the X array into two additive
parts: A first part that is systematic in terms of X, but irrelevant in terms of Y, and a second
part that is used for the core calibration problem, as depicted by (3).

3) X=X +X°
On page 53 in the publication P1, an algorithm is devised for the estimation of the

irrelevant part, X', and the relevant part that is used for calibration, X¢. The principleis as
follows: A PCA model is established to model the X' part upon orthogonalizing X
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columnwise with each column of Y. This provides an improved basis for calibration since
thelargebutirrelevant eigenstructuresof X areremoved. By separating the observationsinto
individual models, it is possible to interpret the systematic background variations that are
independent of Y, e.g. baseline drift, light-scatter in instruments, and so on.

A similar approach for dealing with significant background phenomenacalled orthogonal
scatter correction (OSC) has been proposed by Wold et al. (1998). Whereas OSC
orthogonalizes the principal components from the initial bilinear model, the DO does not
assume bilinearity until after the initial orthogonalization. Both models require that the
dependent responses are of high quality for the filtration to be successful, since reference
values with high levels of noise may introduce error in the subsequent calibration.

3.5 PARAFAC-CANDECOMP (PC)

Parallel factors (PARAFAC) by Harshman (1970) and canonical decomposition
(CANDECOMP) by Carrol & Chang (1970) designate amultilinear model that wasinitially
proposed in psychometrics, generally referred to as the PARAFAC-CANDECOMP (PC)
model. See Kiers (2000) for a proposal of a general multi-way notation. Recent papers on
applications in chemometrics hint that the data provided by spectrophotometers as often
encountered in chemical applications exploit the full potential of the PARAFAC-
CANDECOMP model as acurve resolution model, e.g. [P7, P8, P9, Bro (1999)]. Tutorials
on the use of PARAFAC can be found in Geladi (1989), Bro (1998a), Bro (1998b).

Given athree-way data array X (l,J,K), the R-dimensional PARAFAC-CANDECOMP
model defined by (4) is a multilinear PCA analog in the sense that PARAFAC-
CANDECOMP parametersarelatent factors describing the variationsin the observed three-
way array, as defined by (4).

R
(4) Xk :Zairbjrckr + €k
r=1

The PARAFAC-CANDECOMP model providesunique factor estimates and, except for
shift of signs and indeterminate scaling, the factors A (1,R), B (J,R) and C (K,R) cannot be
changed or rotated without changing the error of the model. The uniqueness of the
PARAFAC-CANDECOMP factors makes the model outstanding in curve resolution
applications, sincethe bilinear modelssuffer from the samerotational indeterminancy asthe
PCA model. In the multilinear case, the PARAFAC-CANDECOMP model explicitly
estimates the underlying curves with no need for subsequent rotation, provided that the
number of PARAFAC-CANDECOM P componentsdoesnot exceed therank. Themaximum
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number of PARAFAC-CANDECOMP components for any given array coincides with the
multilinear rank per definition, e.g. Kruskal (1989). To underline the difference between
bilinear and multilinear modelling, the maximum rank of a (2, 2, 2) array is three and the
maximum rank of a(3,3,3) array is5 [Kruskal (1977), Kruskal (1989)].

The use of multi-way models implies more structure (multilinearity) in the data which
reguires the analyst to validate this assumption, e.g. by comparison towards the bilinear
model. However, if the multilinear model-error is insignificant such that the multi-way
model can be deployed, the number of parametersinvolved inthemode can bedramatically
reduced compared to estimating simple bilinear models of the matricized data.

3.6 TUCKER

In 1963, Ledyard Tucker proposed a sophisticated multilinear model [Tucker (1963),
Tucker (1966)] which is referred to as the Tucker3 model. The reader is directed to
dedicated publications[Kroonenberg (1983), Henrion (1994)] for detailed presentations of
the class of Tucker models. The Tucker3 model isdefined in (5).

P Q R
(5) xijk zzzzaipquckrgpqr +ij

The Tucker model allows for individual numbers of parameters in each of the three
modes, thus, the complexity of the model is described by athree-tuple (P,Q,R) rather than
asimple scalar dimensionality. The factorsin the columns of matrices, A (1,P), B (J,Q) and
C (K,R) areinteracting through the el ements of thethree-way corearray G (P,Q,R) to allow
for interaction between factors. In case the factors are independent, i.e. columnwise
orthogonal matrices A, B and C, the squared elements of the core array expresstherelative
importance of each individual factor combination out of the PQR possible. Thus, in order
to find the most significant combinations of latent phenomenaeligiblefor interpretation, the
analyst hasto locate the largest absolute entries of the core array.

Incontrast tothe PARAFAC-CANDECOMP model, the Tucker model shaveaninherent
rotational freedom that can be exploited to simplify the representation. Reformulating the
summation expressionin (5) to matrix formyields(6), wherethethree-way array X hasbeen
matricized into atwo-way matrix form by right-appending the K frontal slicesof the (1,J,K)
cube to form matrix X® (1,JK). Likewise, the core array G (P,Q,R) is matricized into G®

(P.QR).
(6) X® =AG® (CT OB} E®
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The expressionsin (7) are obtained by multiplication by non-singular rotation matrices
L (P,P), M (Q,Q) and N (RR). Letting I designate the identity matrix of correct order, L*
designate the pseudo-inverse of L and e designate the right Kronecker product, the
rotational invariance of the model estimates can be described by (7).

AG®(CTOB)
= A1GY ((cr) O(B1)')

= ALL'GY ((CNN*)T 0 (BMM*)T)
7
) = ALL'G®((CN) O(BM)')(N'D M)

=AL(L'G® (N DM”))((CN)TD (BM)T)
=AY (¢ 0"

From (7) we derive that instead of the specific component matrices A, B and C, an
infinite manifold of component matrices connected by the non-singular rotation matricesL,
M and N exists with exactly the same model predictions. Thus, by controlling the rotation
matrices the analyst is able to obtain the same fit to data, but can optimize criteria
formulated in terms of the core array or component matricesto provide the simplest model
for interpretation. In particular, a simple core array is desirable with few but very large
elements and as many near-zero entries as possible, as this provides a smple model for
subsequent interpretation. For this purpose a novel simplicity measure has been proposed
and applied [P2, P9] and an algorithm for optimizing this measure, as well as other
continuous and differentiable measures, by orthogonal rotation matrices has been proposed
[P3].

3.7 A note on multi-way factor rotations

Inthe dissertation papers[ P2, P3] concerning rotation of Tucker models, only orthogonal
rotation matrices have been considered. However, orthogonality isan unwanted constraint,
and by using non-singular oblique transformation matrices the simplicity measures may be
improved further. Asasupplement to the papers on the subject, apractical illustration of the
effect of using oblique transformationsis given. Several authors have proposed a gorithms
for rotation by non-orthogonal rotation matrices [Kiers (1994), Kiers (1997)].

We consider 5fluorescencelandscapesof threeamino acids (tyrosine, phenyl-alanineand
tryptophane) in abuffered aqueous solution at pH 7.0. Samples 1-3 are the pure amino acids
and samples 4-5 are mixtures thereof. Asthe chemical multi-way rank isthree, anumber of
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three profiles are resolved by means of the PARAFAC-CANDECOMP model, yielding a
sum of squared residuals at 1.445143-10° out of a total sum of squares at 2.303227-10°,
explaining 99.93% of the variation. As explained above, the PARAFAC-CANDECOMP
model implies super-diagonality in the corresponding Tucker3 core array.

On the same data, the more complex (3,3,3) Tucker3 model, with orthogonal component
matrices provides a sum of squared residuals at 1.378327-10° explaining 99.94% of the
variation. The super diagonal holds 64.47% of the sum of squaresintheinitial Tucker3 core
array. Since the PARAFAC-CANDECOMP parameters providing the optimal diagonality
are known, we can now examine to what extent the super-diagonality of the core can be
optimized by means of orthogonal rotation matrices asopposed to obligquerotation matrices.
Using the algorithm published as [P3] the following orthonormal rotation matrices provide
asuper-diagonality at 73.87%:

-0.19 -0.98 -0.06 0.22 -0.97 0.06 -0.22 -0.97 0.07
L’={-066 018 -0.73|,M°=/0.84 0.22 0.50|,N° =097 -0.22 0.09
-0.72 010 0.69 0.50 0.06 -0.86 -0.07 0.09 0.99

In order to estimate the optimal oblique rotation matrices we apply a simple Procrustes
rotation according to the following: We seek the oblique unconstrained rotation matrix, LY,
that in aleast squares sense maps the corresponding Tucker3 component matrix, S, into the
PARAFAC-CANDECOMP component matrix T by the formula T=SL", which isfound as
L“=S'T. The following unconstrained oblique matrices are found, providing a super
diagonality of 99.86% :

030 015 011 084 0.70 049 099 09 0.71
L' =10°| -0.15 0.13 0.12|,M"=| 054 -058 -0.75|,N"=/0.12 0.23 -0.70
0.03 -014 0.14 -0.07 041 -0.44 -0.10 0.18 0.00

To concludethediscussion of theuse of orthogonal vs. obliquerotation matrices, wefind
that this real data example clearly illustrates that significant gains in simplicity can be
expected by using the lesser constrained oblique methods. In the actual situation, again of
approx. 30% of diagonality was reached by using oblique rotation matrices. In exploratory
situationsthereisarisk that theanalyst will be unableto verify the presence of PC-structure
by asimplifying rotation of the Tucker3 model and thisform of validation should beavoided
unless obligue methods are used. Future work on how to derive optimal oblique rotation
matricesisrequired to improve the exploratory and validatory applicability of the Tucker3
model and optimization of simplicity measures.
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3.8 Validation

Validation is afundamental property of exploratory data analysis, allowing the analyst
to maintain focus on the real problem and to ensure that correct hypotheses are induced. A
general and elaborate discussion on validation of exploratory modelsis given by Harshman
(1984).

For the sake of a meaningful discussion on the issue of validity of results, it isrequired
that the sampling (see e.g. Gy (1998)) has been carried out carefully so that the data set
mirrors the realm of the problem, i.e. that the samples comprising the data collected for
exploration with reasonabl e certainty can be said to be representative of the manifold of the
types of samples upon which the model is supposed to work. Assuming that thisimportant
regquirement is met, two sources of potential problems need discussion. To avoid incorrect
inductions from the collected data, it is of utmost importance to have thorough validation
in placeto i) detect incorrect model estimates (e.g., numerical problems, outliers, incorrect
dimensionality, invalid model type, and so on), and ii) prevent invalid inductions from the
estimated model parameters, leading to erroneous conclusions.

Incorrect factor estimates may be due to numerical errors, invalid handling of data,
inappropriate model complexity or model error in the sense that data do not comply to the
assumptions, e.g. linearity, additivity, etc. Model errors can be detected by looking for
abnormalities in the estimated factors and systematic variations in the residuals, whereas
other types of errors can be detected by validation schemes like cross-validation, test-set
validation or more complicated forms thereof. As mentioned earlier, cross-validation and
test-set validation schemes are firmly integrated into chemometrics, e.g. [Efron & Gong
(1983), Osten (1988), Gemperline & Salt (1989), Feinberg & Bugner (1989), Martens &
Dardenne (1998), Rivals & Personnaz (1999), Esbensen & Huang (2000)]. The issue of
proposing one validation method over another is outside the scope of this thesis, but there
appearsto be no single general optimal solution to this question. Depending on the context,
e.g. calibration or classification, the objectives of the validation schemes are the same,
namely to provide the analyst with information such as indications of outliers, model
dimensionality, future prediction error, and bias. Thus, it is suggested to apply several
methods to ensure that a consensus between the different methods can be obtained. In case
thisis not possible, the analyst will know that an exceptional behaviour has occurred and
that special caution should be exercised.

The idea of cross-validation may be explained in the following way: The data set is
randomly, or ordered, divided into a number segments of one or more samples so that no
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overlap occurs between any segments. By excluding a segment and treating it as a new
(unknown) set of samples, thefutureerror of amodel with aparticular model dimensionality
can be estimated. In turn, included calibration segments are used to estimate the model
parameters, and the excluded test segments are kept out to assess the error measures. Thus,
models of several dimensionalitiesarefitted to theincluded data segments and the excluded
segments are predicted and thefutureerror isestimated. All samplesareleft out oncein each
model calculation. The overall model dimensionality that provides the optimal model as
evaluated on the left-out calibration data is the one that with highest probability performs
optimally on future samples as simulated by the successively excluded segments. Several
validation schemes have been proposed with different attention to various model ling aspects
[Scarponi et al. (1990), Naes & Ellekjaar (1993), Krzanowski & Kline (1995), Biscay et .
(1997)]. A recent approach by Martens & Martens (1999) is based on jackknife resampling
techniques and provides uncertainty estimates on the principal components and the
regression coefficients. It is likely that more such exhaustive resampling techniques will
emerge, heavily facilitated by the increase in computational capacity.

To ensureavalid inter pretation of the observations and the model, the focusturnsto the
context of the problem and external knowledge may be critically required. Preferably, the
analyst has proper knowledge about the system under observation but it is advisable to
interview experts in the field and interrogate external sources of information, as
demonstrated in the paper P7 of thisthesis. In exploratory procedures of dataevaluationin,
for instance, industry it may be difficult by virtue of their exploratory nature to provide
supplemental information. However, in many casesthere arelaboratory reports and process
information that describe deviations from normal conditions which can be used to explain
and to justify outlying or extreme samples. This type of external validation obtained by
communicating with laboratory and process engineers is important in keeping the
exploratory analysisin line with the problem in order to avoid an undesired shift of focus
or immersion into unnecessary or irrelevant details.
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4. Applications of the exploratory multivariate tools

The development of multivariate chemometricstool swithin the framework of thisthesis
has been driven by the need for rational analysis of the complex data provided by the
chemical applications to obtain optimal and unbiased information. In the following it will
be described how the new models and algorithms compare to the existing tools, and
differences and improvements on established methods are discussed. For elaborations and
detailsthereader isreferred to the publications P1-P6 on mathematical tools, and papers P7-
P10 on applications in the last section of this thesis. Here, the intention is to provide an
overview of the successive steps towards controlling and understanding the problem of
formation of colour in sugar production which is the main application area. The following
text is supported by Figure 1 that serves as the storyboard in which the development of
algorithms can be compared to the devel opments in the applications.

Turning to the applications of the exploratory technologiesin a broader context, publi-
cation P7 has been dedicated to illustrating a complex holistic approach and an in-depth
discussion of exploratory multivariate dataanalysisin aspecific context. For many yearsthe
formation of colour during the production of sugar has been an important issue to the sugar
producers, and the increasing demands regarding the purity of sugar require toolsfor moni-
toring and controlling the formation of colour during the process. Sugar, chemically termed
sucrose, is one of the purest food products with a typical purity above 99.99%, but till,
colour and purity are key parametersin an increasingly competitive and sensitive market.
By accident, in the Danish sugar factories around 1940 it was experienced that an early
indicative analytical assessment of the purity of crystalline sugar could be performed by the
use of aUV-lamp and afilter: The more blue light emitted by the sugar crystals, the lower
the purity. On this basis a collaboration with Danisco Sugar Development was initiated in
1993 with the aim of detecting and subsequently reducing the formation of colour in sugar
by meansof sensitivefluorescence measurementseval uated by exploratory multivariate data
analysis.

In the complex chemical reaction leading to formation of coloured substances, primarily
the Maillard reactions play a key role. According to the non-enzymatic Maillard reaction
schemes, interaction between small amounts of reducing sugars and amino acids in the
process streams forms the macromol ecul ar mel anoi dines, whereas other reaction pathswith
phenols lead to melanines, both having a polymer/macromolecular structure. These two
component classes are coloured.
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Mathematical development of tools Application of the mathematical tools in the sugar project
(Munck et al. 1998, P7)

Least Squares Problem: Reducing sugar + amino acids + phenols -

Gauss 1795 - .
( ) Melanoidines and Melanines = Colour

¢ Process: Analyzing production steps thick juice and crystalline

Vector Algebra . ducti
(Sylvester, Hamilton & Cayley in 1855) sugar in sugar production

\/

PCA PCA on fluorescence PCA on chemical analyses
/ (Adcock 187&\ \ /
Tucker PARAFAC-CANDECOMP PLSR
(Tucker 1963) (Harshman 1970; (Ngrgaard 1995)
Carrol & Chang 1970)
Variance-of-squares Speedup Tucker on fluorescence data
(Henrion & Andersson 1999, P2; (Andersson & Bro 1998, P4; " (Andersson et al. 1997, P9)
Andersson & Henrion 1999, P3) Bro & Andersson 1998, P5; Q
Paatero & Andersson, P6) <
M S
PARAFAC2 > PARAFAC-CANDECOMP on fluorescence data
(Harshman 1972; = (Bro 1999)
Bro et al. 1999, P10) = v
S
= PARAFAC-CANDECOMP on HPLC fluorescence
(Baunsgaard et al. 2000, P8)

Figure 1: The paths of development of the mathematical tools and their application in research for the sugar industry. The elements and the
publications used in the figure are discussed in the text.

sisAjeue eiep ajeLreAlnnw Aloyeodx3 ‘|



I. Exploratory multivariate data analysis

As depicted in Figure 2, the sugar process is very complex due to a large number of
composite unit operations. The sugar beets entering the process are washed, sliced and
boiled to extract the sugar into the water. After several filtrations and addition of lime to
raise pH and lower the amount of
reducing sugars, the thin juice iS s
boiled under vacuum to form thick
juice. During this process the
temperature rises to levels at which ..
caramelization (and thus undesired
colouring) may begin to take place.
After addition of a reductive
polymerization inhibitor (SO,) and
reboiling, the stream is mixed with
one or more refluxed streams to
form the standard liquor. Standard
liquor is spiked with icing sugar to e
initiate the crystallization. After cry-
stallization has begun, the juice iS w.
centrifuged to isolate the sugar cry-
stals from the syrup. The sugar cry-
stals from this process is typicaly

more than 99.99% pure.

. . . Figure 2: Schematic illustration of the sugar process
With a minimum of a priori as- i, 3 modern sugar factory. See the text for details.
sumptions a screening analysis was

conducted by Ngrgaard (1995), seealso P7. Thevery first 34 crystalline sugar sampleswere
provided by Danisco Sugar Development and an immediate PCA of the matricized fluore-
scence landscapes of the samples diluted in phosphate-buffered water revealed that three
clusters were present. By interviewing the sugar specialists we were informed that we had
received samples from three factories in accordance with the three clusters, as depicted on
Figure 1B (page 34, P7). Thisvalidation of fluorescence asarelevant source of information
motivated the requisition of more data. Thus, for the same samples Danisco Sugar provided
10 chemical reference measurements for each sample. A separate PCA of these chemical
reference values again indicated the presence of three clusters constituted by the same
samplesasthe model for the spectral measurements, asisshown in Figure 1D (page 35, P7).
By using the graphical tools of multivariate dataanalysis asin Figure 1E (page 36, P7), we
found that the samples differed in al chemica measurements except floculation (FLOC).

co,

co,

Ca(OH),
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I. Exploratory multivariate data analysis

The observation that the same clusters were observed in the model for fluorescence
measurements and the model sfor the 10 chemical measurementsindicated that the chemical
reference values could be predicted by the use of fluorescence. A PLSR mode gave a
correlation coefficient of 0.91 between the fluorescence measurements and the reference
value for ash. The ash content was systematically highest for samples with the highest
fluorescence intensities, but as ash is not fluorescent, the model is based on predicting the
amount of ash indirectly. Thisillustrates how the multivariate models allow for predicting
features that are not directly measurable by the spectroscopic technique in question. This
indirect modelling is possibly dueto fluorescence signalsfrom fluorophoreswhich, through
unknown complex chemical mechanisms, depend on the levels of ash. In contrast, the
prediction of colour and amino-N isbased on adirect chemical relation with the fluorescent
amino acidsand phenolsand provided regression coefficientsabove 0.94. It should be noted
that the fluorescent amino acids and phenols only represent a selection of the tota
concentration of the different amino acids and phenolsinvolvedinthe colour formation. The
ability of the model to predict total amino-N, is thus possible due to the natural correlation
between the various amino acids and other chemical compounds under the control of the
biological equilibria in the cells of the beets. As the applied models are not black-box
solutions, the parameters can be interpreted exploratively, in e.g. biplots, to alow for a
spectroscopist’ sinterpretation of the spectrathat covarieswith thereferencevaluesat hand,
thereby hel ping to induce hypotheses on the structure of the involved chemical species, and
thus, the underlying mechanisms.

Several different data sets from different years and factories have been explored by the
multivariate models and the results consistently confirm the first experiences regarding
fluorescence as a relevant spectroscopic measurement technique with respect to the
prediction of the chemical measurements. The sequence of successiveinductionsfrom PCA
and PL SR models of sample sets from 1993 and up to 1998 led to a deeper understanding
of the conditions that cause the formation of colour.

Tofurther scrutinizetheinformation present in fluorescence measurementsof thick juice,
acollection of 47 fluorescence landscapes taken from 5 factories over aperiod of 10 weeks
were explored by means of a Tucker3 model of a4-way data array [P9]. The 4-way array
consisted of 47 samples, two levels of dilution, 311 emission wavel engthsand 20 excitation
wavelengths, i.e. a 4-way array with dimensions (47, 2, 311, 20). The Tucker model
explained 96.16% of the variation and after rotation to optimal variance-of-squares by the
methods described in papers P2 and P3, score vectors number two and three revealed that
fluorescence measurements contain high-quality information about the temporal state of the
sample in the sugar campaign and the factory relationship, asillustrated in Figure 5 (page

26
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142, P9). However, two-way PCA of fluorescence measurements from different factories
showed that sugar samples could be classified only according to factory. To visualize the
temporal development throughout the sugar campaign local PCA models had to be made
individually for each factory, as depicted in Figure 2AB (page 38, P7). However, with the
4-way PCA model, each of the 47 samples were clustered both according to factory and to
sampling week, as seen in Figure 3C (page 41, P7). This surprising finding illustrates the
importance of respecting the structure of data in order to obtain the optimal yield of
information in the sense that the 4-way data required a 4-way model to allow for an
exploration on a detailed level. Thus, the fluorescence landscape is a fingerprint that
describesthe history and state of each sample. In this sense, each sampleisitsown bar code
with aunique identifier that can be read with a spectrofluorometre and interpreted by using
an optimal multi-way model.

At this stage it was evident that the increased amounts of multi-way data from fluore-
scence measurements required exploration by multi-way methods to reach the finer details
of thedata. Thelow efficiency of the existing algorithmsfor multi-way modelling gaverise
toinvestigationstowardsfaster and more efficient algorithmsfor estimation of PARAFAC-
CANDECOM Pand Tucker3 models. Multi-way modelslike PARAFAC-CANDECOMPand
Tucker3 are much moretime-consuming with regardsto computing time than their two-way
counterparts, i.e. PCA and PLSR. Although the two-way and multi-way algorithms are
different and thus difficult to compare, a properly validated PCA model may take perhaps
5 minutes, whereas the same task on the same amount of observations in atrue three-way
constellation may take 5-100 times longer due to the lack of direct methods for estimating
the parameters of the PARAFAC-CANDECOMP and Tucker3 models.

Thus, to reduce the analysis time for the iterative multi-way models, an efficient
algorithm for estimating Tucker3 parameters was sought [P4]. By combining different
schemesfor approximating eigenvectorsin new ways, significantimprovementswerefound.
The agorithms were kept in the aternating least squares (ALS) form, without assuming
specia structures like having one mode with many variables, as exploited in other works
[Kiers et a. (1992)]. The algorithm based on non-linear iterative partial least squares
(NIPALYS) required the least computations in order to reach convergence. However, issues
likenumerical stability and robustnesswere not touched uponinthe publication. Since 1996
the algorithms have been implemented in the N-way Toolbox for MATLAB [Bro &
Andersson (1999)]. A later publication [P6] led to an improved scheme that further reduced
the time by rearranging the order of the least squares regression problems. Thefast Tucker3
algorithm is exploited further in the following method proposed for fast and efficient
estimation of PARAFAC-CANDECOMP models [P5].
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In most casesthe PARAFA C-CANDECOM P model isestimated by using unconstrained
factors, and the ALS agorithm for estimating the PARAFAC-CANDECOMP factors is
proneto poor convergence propertiesdueto correl ated factors and near-singular component
matrices. However, a method is proposed [P5] for efficient calculation of unconstrained
PARAFAC-CANDECOMP factors by fitting the PARAFAC-CANDECOMP model to a
subspace of the original data represented by a core array from the Tucker3 model. Thus, it
is proposed to estimate a Tucker3 model which natively has better convergence properties
dueto the use of orthogonality constrained component matrices. Compared to the size of the
original data, the significantly reduced core array is then used to estimate PARAFAC-
CANDECOMP factors that are later expanded by the subspaces represented by the
component matrices of the Tucker3 model. A similar approach termed canonical
decomposition with linear constraints [Carroll et al. (1980)] has been proposed; however,
it is limited to orthogonality and has not been proposed for compression. In the
CANDECOMP paper by Carroll & Chang (1970) it issuggested to usetwo-way PCA tofind
the compression bases, whereas in P5, the core array of the Tucker3 model ensures that
multi-linearity is preserved. Significant reductions in computational requirements are
observed when applied to real data. In paper P5 considerations are al so made with respect
tothestringency of the convergence criteriaand missing values, and the methods are applied
to real data. The improved methods published as papers P4, P6 and P5 are prerequisite for
being able to make validation possible for the computationally intensive multi-way models
andtoallow forindustrial applicationswheretimeisadecisivefactor. Whereasweformerly
could use 5-7 days to reach an acceptable convergence criterion of the least squares
PARAFAC-CANDECOMPalgorithm, it became possibl eto conduct the same computations
in roughly 1-2 hours on the same data.

As the more efficient Tucker3 algorithm published in P4 has been used extensively in
complex exploratory problems, the interpretational ambiguity of the multi-way PCA dueto
the rotational indeterminancy required further elaboration. From a pragmatic multivariate
point of view, the rotational abilities of the model can be exploited to yield the simplest
possible model which in return requires less interpretation. Thus, a measure of model
simplicity was postulated [P2] aong with an algorithm for optimizing this and other
simplicity measures [P3]. The interdependent publications P2 and P3 present respectively
afigure of merit for the simplicity of agiven core array and agenera algorithm that can be
used to optimize any differentiable measure as afunction of orthonormal rotation matrices.

The simplicity measure for assessing the structure of core arraysis named variance-of-
squares, and haslater been found to be aspecial case of Orthomax [Kiers(1997)] inthecase
of orthogonal rotations. The value of the variance-of-squares merit is high in the desirable
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situationwheretherearefew, but very significant, core entriesand many near-zero elements.
This structure of the core array will allow the analyst to focus on a few significant
combinations of factors in the analysis and interpretation.

A novel agorithm has been proposed as a means of optimizing any differentiable
measure, e.g., variance-of-sgquares [P2]. This algorithm is based on the necessary and
sufficient criterion that acertain interim product of the rotation matrices must have diagonal
structure at stationary points of the objective function. In the published paper P3, the
derivativesfor threesimplicity measuresare devel oped: variance-of -sgquares, diagonality and
dice-wise diagonality.

The assumption of bilinearity of excitation-emission matrices from fluorometric
landscape measurements has been proposed for resolution of the underlying excitation and
emission profiles of the fluorophores by several authors [Warner et al. (1977), Lee et al.
(1991)]. Leurgans & Ross (1992) showed that, in theory, the mathematical relationship
between the concentrations of fluorophores and fluorescence intensities, using the ordinary
assumptions with respect to linearity and additivity, complies with the PARAFAC-
CANDECOMP model. Thus, a first justification for the use of the PARAFAC-
CANDECOMP for resolving the profiles of the pure underlying fluorophores was
established. By usingthe PARAFAC-CANDECOMP model, Bro (1999) resolved excitation
and emission spectra identical with the PARAFAC-CANDECOMP loadings of 4
fluorophoresfrom fluorescencelandscapes of 268 process sugar samplesdissolvedinwater.
These 4 components were later used as indicator substances and exhibited strong a
correlation to important quality and process parameters. The emission spectraare shownin
Figure 5BCD (page 44-45 in P7). Due to the mathematical uniqueness of the PARAFAC-
CANDECOMP model these pseudocomponents can be interpreted directly in terms of
spectroscopy which makes the PARAFAC-CANDECOMP maodel an efficient tool for
exploratory data analysis. Thus, with such profiles in almost-natural-language we could
immediately use our long term experience with spectra to understand the factors from the
PARAFAC-CANDECOMP model, and we directly identified the emission spectra of two
of the components to be the amino acids tyrosine and tryptophane. The other two
components resolved from the sugar samples exhibited emission in the visible spectral area
above 400 nm, and could thus be classified as possible direct contributors to colour in the
final product. The fact that the latter two unknown components have very wide emission
peaks makesit probabl e that the components are macromolecular or polymers, belonging to
the classes of melanoidines and melanines was subsequently confirmed. The results from
thisdirect spectroscopic exploration were checked by chemical identification through size-
exclusion high performance liquid chromatography (HPLC) [P8].
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Toensurethat theexpl oratory modelsareformulated inameaningful context, constraints
can be used in the dialogue between the observations and the model. As stressed in
Appendix A of P7 and elsewhere in the literature [Bro 19983, de Juan et al. (1997), Bro &
Sidiropoulos (1998)], constraints like non-negativity and unimodality can be used in the
| east-squares opti mi zation schemesto guaranteethat thefunctional factorscan beinterpreted
and provide knowledge from which new hypotheses can be made. For example, when
resolving the underlying profiles of the pure fluorophores from the complex fluorescence
landscapes, it is physically impossible to have negative excitation and emission profiles,
since this is in conflict with the quantum chemical models of electron systems of the
fluorophores. Since the use of constraints can be overly focussed on obtaining results that
areinaccordancewiththea priori assumptions, it isimportant to use an extensivevalidation
scheme that ensures that the obtained factors have a general validity. In most cases, it
suffices to compare the factors and the residuals obtained from unconstrained and
constrained models of the system under investigation. If deviations occur, they should be
explained to provide more information on the appropriateness of the exploratory model in
use. As an example, such deviations can be observed in PC models of fluorescence
landscapeswherenon-linear behaviour caused by quenching and light scattering viol atesthe
assumption of linearity and additivity of the PC model. Thus, frequently, the unconstrained
profiles may suffer from minor wavelength regions that are negative at the wavelengths
where the stronger absorbing fluorophores overlap and quench the signals of the other
fluorophores.

In order to explore the functional relevance of the 4 resolved pseudocomponents, they
were regressed upon reference measurements of colour and ash [Bro (1999), P7] obtaining
reasonabl e predictions. The most important components with respect to colour proved to be
the two macromolecular components, whereby we were inspired to introduce the concept
of potential colour as a measure of the amount of colourless substances (e.g., tyrosine and
tryptophane) present that could produce col oured substancesthrough reactionwith reducing
sugars. Further examinations in the direction of potential colour were deferred for later
investigations. Factory recordsaswell asinterviewswith the processengineersreveal ed that
sugar beets are stored longer during weekends which may produce heat due to
microbiological activity whichisreflected in higher fluorescence intensities, hence scores,
for al 4 resolved components. This is seen as correlated cyclic changes in intensities in
Figure 5E (page 46, P7). It isimportant to note that around sample number 200 an increasing
trend of Component 4 is depicted which coincides with the event of frozen sugar beets.
Further elaboration on this issue with the production engineers revealed that the variation
of the 4 indicator substances diminished through the campaign due to decreasing outdoor
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beet storage temperatures. The concept of using the PC loadings representing indicator
substances or functional factors to explain important process parameters and chemical
properties has a high potential as atool for monitoring and controlling complex processes.

At the time of the collection of sample 200 (November 15") the beets had been exposed
to temperatures far below 0 °C, causing Component 4 to increase in concentration. Thus, a
preliminary hypothesis was generated that in future campaigns it should be checked if
Component 4 could be used as an indicator for frozen beets. The increasing formation of
colour during the remaining time of the sampling was reflected by Component 4 which may
thus serve as an indicator substance of both colour and frozen beets. Even more, it was
shown in a process analysis [Bro (1999), P7] that it was possible to use the 4 indicator
substances to predict, retrospectively, important process parameters (pH and CaO) along
with chemical parameters (colour and ash) throughout the process. This experience should
be used in implementing the more difficult process control aspect.

To validate and provide additional information about the indicator substances just
described, extensive examinations by column chromatography were performed, aspublished
in P8 and P10. Here, the mathematical separation of the fluorophores was compared with
high performanceliquid chromatography (HPL C) on asize-exclusion column, separating the
high molecular coloured polymersfrom the potential colour, e.g. tyrosine and tryptophane.
Itisnoteworthy that research has been conducted in thefield of sugar production since 1869
[Scheibler (1869)], and that the functional importance of fluorescent constituents of the
sugar streams has not yet been characterized in any way by means of fluorescence. Withthe
mathematical resolution of the pure spectral profiles checked with HPLC, it is proven that
fluorescent indicator substances for the chemical parameters provide afeasible solution to
the complex problem of understanding the processes leading to formation of colour in the
sugar streams.

In order to address the identification and validation issues raised by the preceding
resolution of the 4 components from sugar, more chemically based investigations were
conducted. Because of the minute traces of these components in the crystalline suger it is
difficult to performthe chromatographic validation of thefluorometric resultson such apure
product. In the hope of identifying even more components in the sugar streams, the inter-
mediary unrefined product, thick juice, was subjected to high performance liquid
chromatography, asdescribed in P8. For the detailed chemical identification onethick juice
samplewasanalysed by HPL C. Toreducetherisk of model errors caused by quenching, the
thick juice sample was separated into 41 fractions according to a combined effect of
mol ecular sizeand affinity to the HPL C column material . Thefractions, thuscontaining only
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one or a few chemical components, were measured by spectrofluorometry, yielding a
landscape for each singlefraction, asillustrated in Figure 5 of P8. With the exploratory use
of the PARAFAC-CANDECOMP model, 7 fluorophores could be resolved from the
complex fluorescence landscapes of the fractions obtained by HPLC. Among them were
tyrosine and tryptophane, which were identified by spiking samples with solutions of the
pure amino acids, as shown in Figure 3 of P8. The application of HPL C to avoid quenching
and thereby to significantly reduce the model error is novel, and the awareness of the
modelling toolsat the chemist’ slevel hasfacilitated theresults. Theidentificationswere not
only based on the similarity of the resolved profilesfor excitation and emission, but also on
chromatographic retention time. Due to the elution order, the 7 fluorophores could be
assigned approximate molecular sizes and 4 large coloured macromolecules or polymers
werefoundwhich al displayed absorption inthevisiblerange. Three of the macromolecul ar
constituents exhibit absorptivity in a wide range of the ultraviolet spectrum, depicting
various complex molecular structures. Thisisin accordance with the understanding of the
Maillard reaction mechanismsthat suggest the formation of polymers by polymerization of
the amino acids present. Thus by fluorescence analysis we have been able to select 4
chemical components, or indicator substances, which were found to be representative in
modelling a wide range of different aspects of the sugar process.

Besidesconfirming the presence of tryptophane and tyrosinein thick juice and sugar, two
other observations are made from the chromatograms. The profiles of tryptophane are
preserved in the fluorescent molecular melanoidine fractions, while the fluorescence
signature of tyrosine is absent (Figure 6, P8). This is in accordance with the molecular
structure of the two amino acids, since tryptophaneisalarge, irregular and rigid molecule
compared to tyrosine which is less complex thus making it more likely to lose its
fluorescence signature when incorporated into polymer structures.

Thus, we have come the full circle. At this stage important chemical knowledge and
chemi cally based hypotheseshave beeninduced by the successive stepsof increasingly more
extensivemultivariateanalysesinitiatedin 1995 [Ngrgaard (1995)] asascreeningwith PCA.
The use of increasingly complex models has provided equally more detailed information on
the different organisatorial levels [Munck (2000)] with respect to the multivariate context
of the sugar production. These contextual levels may be defined as i) The biology of the
sugar beet including the effects of production and storage, ii) The parameters of the sugar
production process, and, iii) The characteristics of the raw materials, process streams and
sugar as evaluated by (a) spectroscopy and by (b) physical/chemical properties. The
utilization of continuous inventory analyses and validations in the stepwise exploratory
approach is described in Table 2.
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In chromatography, a fundamental problem has to be addressed when several chroma-
tograms are included in the same multivariate model. The problem occursiif the time axes
are different, corresponding to differing elution times for the same chemical components.
If thisis the situation, the assumption of trilinearity is violated, since there is no common
time-factor that can be exploited to find principal components, and attempts to do so will
introduce model errorsand bias. Thisproblemisgeneral in nature, since existing component
models assume that the variables have the same meaning for all samples, which is not the
caseif an axisis shifted from sampleto sample. A unique model that implicitly handlesthis
problem by the use of general cross-product matrices was proposed as PARAFAC2 by
Harshman (1972), and recently an algorithm was proposed for fitting it [Kierset al. (1999)].
In P10 the algorithmis applied for analysis of liquid chromatography data for resolution of
spectral profiles with significant success compared to the ordinary PARAFAC-
CANDECOMP model parameters. The approach differsfrom preprocessing techniqueslike
warping [Kassidas et al. (1998b)] in the implicit handling of the time axes by elegantly
replacing the problematic axis for each sample by the covariance matrix of time profiles
calculated across one of the other modes. In this particular application the covariances are
calculated acrossthe spectral modein order to treat each sample separately. A necessary but
rather unrestrictive constraint ensures that the PARAFAC2 factors maintain unigueness as
inthe PARAFAC-CANDECOMP model. Intheapplication paper P10, the profilesresolved
by PARAFAC2 and ordinary PARAFAC-CANDECOMP were compared in terms of
similarity and explained variation. The PARAFAC2 components were significantly closer
to the known spectra of the pure chemical components. Applying the PARAFAC-
CANDECOM P model to datawith non-aligned modesinvolvesarisk of obtaining erroneous
and miseading factorsintheresults. Thus, it isadvocated to apply both modelsand compare
residuals and estimated profilesin order to gain afundamental understanding of the data at
hand and to obtain the optimal model.

The common problem of having significant and systematic background signals that
guench the part of the analytical signal that correlates to the reference measurements has
been described earlier under direct orthogonalization. High background signals due to
scattered light or temperature differences are well-known causes of model deviations in
spectroscopy. Several methods address these problems by applying pre-transformations of
the signals by means of theoretically based models, e.g. multiplicative scatter correction
[Martens et al. (1983), Geladi et al. (1985)] or Kubelka-Munck theory [Law et al. (1996)].
However, in many cases the background signals do not conform to the underlying
mathematical expression of the assumed physical/chemical relationships and a more
adaptive dternative is appreciated. One soft model that aims at describing the significant,
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but uncorrelated, signals is Direct Orthogonalization (DO) [P1]. The method suggests
including a preregression step on the part of data that is independent of the reference
measurements. For the DO method to be effective it is a prerequisite that the reference
measurements have sufficiently low errorsin order for the preregression step not to remove
information that would otherwise stabilize the regression model. Some suggestions on how
to use DO for multi-way calibrations are made at the end of publication P1. Wold et al.
(1998) propose a somewhat similar approach termed orthogonal signal correction (OSC),
by which abilinear model of the data is orthogonalized with the reference measurements,
and not the data themselves. Both approaches offer some exciting possibilities for
exploratory aswell asindustrial and scientific uses. By inspecting the principal components
of what isindependent of the reference measurements, the analyst and the process engineer
have significantly improved means for identifying outlying observations. In essence, it is
possibleto definethe normal patternsin both the independent and the analytical parts of the
data, so that models can be established for the background signal as well as the analytical
signal.
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5. Conclusion

Working exploratively with complex composite problems requires continuous
involvement by specialists from the various implicated application fields, as has just been
illustrated by the applicationsof multivariate model sinthe sugar production. Asan example
(page 48, P7) of the efficiency and success of the exploratory multivariate approach we
could comparewiththestrategy of Madsen et al. (1978), using classical chromatography and
statistics in analysing the compounds in sugar responsible for the formation of colour. In
traditional chemical analysis, one starts by defining the hundreds of chemical substances
involved in a process, as was done for the sugar industry by Madsen et a. in order to
understand colour formation. If the target hypothesisisto find easily identifiable indicator
substances by which to model quality and process characteristics, it is suggested that the
exploratory method of introducing a multivariate screening method would be more
economical than a deductive strategy based only on a priori chemical knowledge,
chromatography and classical statistics as studied in the research laboratory. In contrast to
the deductive approach, the a priori knowledge in the exploratory method is used after the
primary data evaluation and then stepwise throughout a hypothesis generating process to
ensure that the obtained preliminary conclusions are on track with the problem at hand and
that theresultsare validated at each step. If thea priori knowledgeisused only to formulate
the model without the prior support by an exploratory screening analysis, the resulting
interpretations and conclusions may be unnecessarily biased to fulfill the assumptionsof the
analyst. It should be noted that a priori knowledge is of crucial importance also to the
exploratory strategy for validation and in order to navigate in the selection process.

For chemometrics to be successful, accessto afull chain of interdisciplinary resources
including, e.g. anaytical chemical analysis, spectroscopy, mathematics, computer
programming and I T isrequired by theresearcher. Every link in thischain hasto have basic
understanding of multivariate data analysisin order to contribute optimally to the solution
to the problem, since issues like repeatability, variation, validation and data quality are of
fundamental importance to the exploratory multivariate data analysis. For researchers
educated to have fundamental working knowledge of the multivariate tools it will be
possibleto take responsibility not only for the collection of data, but also for the analysis of
their own data. Otherwise, the researcher will just hand over datafor statistical analysis by
methods which have not been developed for that particular problem and its context and the
interactive part of exploratory analysisis lost.

The birth of exploratory multivariate data analysis occurred by breaking multivariate
models away from multivariate statistics to be placed in the core of the specific application
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fields as exemplified by Figure 1. There is a danger that multivariate analysis within
chemistry, i.e. chemometrics, will bedrawn back into unapplied and theoretical statisticsby
becoming overly sophisticated, general and not enough specific to be directly applicablefor
researchers from non-mathematical and non-statistical disciplines. It is vital to uphold a
balance between pragmatics and theory in the multivariate society. Bearing in mind that
chemometrics owes its success to its applicability in chemistry and that these multivariate
technologies are often applied more by researchers with experimental and modelling skills
rather than by statisticians with skillsin the application, it must be avoided that research in
multivariate data analysis goes solely in the direction of static generalized theory.

The modern spectral sensors offer data of high quality with regards to relevance and
signal-to-noise ratio, and the exploratory multivariate technologies offer a host of
possihilitiesto natural sciences, technology and human sciences. The speed and robustness
of the spectral sensors and the novel mathematical tools as provided by chemometrics
already now allow for implementation in high-sensitivity laboratory systemsand high-speed
process systems. The most important benefit from multivariate analysis is the much
overlooked possibility of making qualified estimations on the quality of a sample by
applying methods for outlier-identification utilizing the multivariate advantage as a
fingerprint. By comparing with the samples used during the calibration, it is possible to
assess the discrepancy between what is known by the model to be normal and any new
sample. Dueto the advantages of using spectroscopy over traditional wet chemistry, wewill
see spectrophotometers in more places in the coming years. It is aready possible to mount
spectral sensors on urinals and toilets to give indications of latent diabetes, blood alcohol
level and even some forms of cancer.

Thelnternet hasmadedistribution of dataand information possi bl ethroughout theworld.
Thenext paradigm shift may allow usersto formulatetheir owninformation analysesof data
directly from the original data bases to suit individual purposes rather than having only a
preformulated and prefabricated result offered with no possibilities for examining other
scenarios than those dictated by the data provider. Much liketheway it is possible to search
for literature in the library databasesviathe web, it will in the future hopefully be possible
to browse and screen larger amounts of data like the archives of the National Bureau of
Statistics to explore own hypotheses by making tailor-made models. This data mining task
could in many instances be that of exploring patternsin large tables comprised of datafrom
relevant observations. Herethe multivariate technol ogieswill providetheideal tools. Using
soft, adaptive and graphical tools, users will be able to verify the calculations and
interpretations of those responsible for the data, and furthermore, users will have the
possibility to formulate and explore their own individual problems and interpret these, e.g.

36



I. Exploratory multivariate data analysis

relations between production parametersin the agricultural and food industry with instances
of food poisoning or comparisons of the economical figures of merit between different
countries. Mediation by the intuitive and graphical tools for multivariate data analysis will
make it possible for every Internet surfer to investigate his or her own ideg, if the proper
sources of data are available.

Publication of original data sets and the conditions used during data collection together
with research papers should be compulsory in science to provide the most transparent
background for the drawn conclusions. This should also be mandatory for the more official
data gathered at nationa level, e.g. by the European Commission, and would thereby
contribute significantly to an improvement in the economical and political democracy.
Turning that kind and amount of information into useful knowledge would require the
involvement of exploratory multivariate data analysis for easy and efficient data mining
interpreted in dialogue with different experienced members of society.
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Abstract

A multivariate method called direct orthogonalization is proposed for removing factors that describe irrelevant phenom-
ena from data in calibration situations. The method is suggested for improving regression of data sets with systematic, but
irrelevant, variations. The method is applied to FT-IR spectral data measured on dry pectin powder samples with the purpose
of predicting the degree of esterification. Direct orthogonalization is compared with piecewise multiplicative scatter correc-
tion (PMSC) schemes and second order derivatives on the predictive performance of principal component regression (PCR)
and partial least squares regression (PLSR) models. When applying direct orthogonalization to the FT-IR spectral data under
investigation, the number of significant PLSR and PCR components was lowered significantly while facilitating a qualitative
discussion of the scatter phenomena, and at the same time providing a means to identify outliers prior to prediction. In terms
of root mean square error of prediction (RMSEP), the proposed method resulted in error measures at the same level as the
applied PMSC schemes. Application of second order derivatives to the same data resulted in significantly poorer models.
© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In some analytical situations, the measured data
are severely affected by shifts and trends in baseline.
Typical areas are spectroscopic applications (e.g., IR,
NIR and Raman) and process applications where the
data have low-frequency fluctuations that, in a sys-
tematic way, influence the level of signals. Mod-
elling becomes difficult because the relevant varia-
tion is quenched by irrelevant, but systematic, varia-
tion. In IR spectroscopy, it is a well-known problem
that light scattering causes a high background level
that may vary greatly between and within samples.
The level of light scatter is rarely useful in modelling
because it is related to physical rather than chemical
phenomena in the samples. The problem of varia-
tions in the background signal is often mended by
multiplicative scatter correction (MSC), see Refs.
[1-3], or second order derivatives (SOD), see Refs.
[4]. However, MSC and SOD may eliminate analyti-
cal information that is required to establish efficient
models. When reference values exist, they can be
used to guide the filtration /pretreatment, so that only
a minimum of relevant information is removed.

From the viewpoint of modelling, it is desirable to
use as few regression components as possible, since
this reflects that the phenomena described by the
model are the major sources of variation. This allows
for easy interpretation and for indetifying and ex-
plaining outlying observations. This is the motivation
for suggesting direct orthogonalization as a means of
reducing the number of regression components and
facilitating early detection of outliers. With direct or-
thogonalization, a separate model is established prior
to regression that extracts the systematic, but irrele-
vant, factors. The principle of direct orthogonaliza-
tion is (i) to establish an orthognal model with scores
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independent of the variable(s) being modelled, and
(ii) a conventional regression model on the data not
extracted by the orthogonal model.

To evaluate direct orthogonalization, we will
compare the predictive abilities of partial least
squares regression (PLSR) and principal components
regression (PCR) models where the data have been
pretreated according to direct orthogonalization (DO),
second order derivatives (SOD), multiplicative scat-
ter correction (MSC) and piecewise MSC (PMSC).
High-pass filtering methods like Fourier transforma-
tion and Savitsky—Golay smoothing are not in the
scope of the current work which is focused on the
domain of methods that are based on eigenanalysis or
least squares regression. For more complete reviews
on methods for standardization and pretreatment, the
reader is referred to Refs. [5,6].

2, Theory

The method of DO is presented and an algorithm
is devised. Subsequently, the applied approaches to
MSC and PMSC are described.

2.1. Nomenclature and notation

In the following, scalars will be represented by
italic typefaces, e.g., a, whereas column vectors are
written as bold lower case, e.g., y, and matrices are
written with bold uppercase letters, e.g., X. Transpo-
sition of matrix X will be expressed as X™. Let X de-
note the columnwise mean of X and let X be the
columnwise mean-centred X. In line with the com-
mon terminology, X denotes a matrix of independent
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measurements and y denotes dependent observations
between which we intend to establish a relation.

A common measure of model efficiency, namely
the root mean square error of prediction (RMSEP),
will be used as a basis for comparing the different
methods. For a number of / samples, this is defined

as RMSEP = \/— NG i y"'ed)z . Errors deter-
mined from cross validation segments are referred to
as RMSECV.

2.2. Direct orthogonalization

The DO ensures that information in X which cor-
relates perfectly to y is not removed during pretreat-
ment, since this will reduce the predictive abilities of
the model. The number of parameters (components)
of PCR and PLSR models increases when there are
sources of irrelevant variation. If the data under in-
vestigation has irrelevant and significant structures,
the first number of PLSR components will account for
these variations, rather than focusing on modelling y.
By removing irrelevant variation from X, the dimen-
sionality of the final regression model is lowered and,
in some cases, it may be determined with less ambi-
guity. Direct orthogonalization is a simple pretreat-
ment of data in such a way that the structures of X
that are insignificant to modelling of y may be re-
moved prior to regression. The proposed DO method
may be regarded either as a two-step procedure con-
sisting of a pretreatment step and a regression step,
or as a closed form method for regression.

A closed form algorithm for making a regression
based on DO is proposed. The algorithm is based on
eigendecomposition as done by, for example, non-
linear iterative partial least squares (NIPALS) or sin-
gular value decomposition (SVD). During prelimi-
nary studies bi-linear resolution was explored—con-
straining the resolved scores to be orthogonal to the
given y, while minimizing an ordinary least squares
error term. However, due to the low time consump-
tion, stable convergence and the good numerical sta-
bility, an eigenproblem-based algorithm is preferred
to a constrained resolution technique. The high po-
tential of constrained multi-linear resolution with re-
gard to pretreatment of data is discussed later.

In Algorithm (1), it is described how DO may be
applied by orthogonalizing the calibration data )~(c
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(i, X j) with the corresponding reference values, §,
(i, x 1). In step 1, the data matrices are centred. In
step 2, the vector w (j X 1) represents the column-
wise covariation between X, and §, used for deriv-
ing matrix X (i, X j) such that it is columnwise or-
thogonal to §,. In step 3, the columnwise orthogonal
matrix T (i, X a) and the columnwise orthonormal
matrix P, (j X a) are found by NIPALS or SVD as
an a d1mens1onal subspace of X that describes the
systematic part of X, being 1ndependent of §.. The
loadings in P descnbe the uncorrelated components
of the native data X Thus, in step 4, these compo-
nents are quantified as scores T by regression onto
X ., and are subtracted from X _ to yield a matrix X D°
(t X j) with a rank being a lower than the rank for
f(c. In the final step, the corrected data XP° are used
for regression, that typically being PLSR or PCR.

1. X_ and y, are centred to give X, and ¥,
2. X_ is orthogonalized w.r. to y.
w=X15.(57%.) "
X =X -gw"
3.PCA of )A(c using a components

(D
T,BT = X, s.t. TTT, diagonal and PTP, =1

4. The amount of independent phenomena is
extracted
TC = Xci\)c

X =% -1,

|

5. Regression of §, onto XP° using b regression
components

The term direct orthogonalization stems from the
single direct application of the orthogonalization with
y. In the case where the regressors are not univariate
but multivariate, i.e., Y, step 2 must be repeated for
every column in ?’c. Thereby, all significant informa-
tion that is linearly dependent on Y, is removed prior
to finding the orthogonal components in step 3.

When predicting new samples, the regression pa-
rameters, the means of X and y, and the compo-
nents in P (j X a)are used The samples to be pre-
dicted, denoted by X, (i, X j), are treated according
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to Algorithm (2). Matrix ’i‘p (i, X a) holds the scores
of the samples to be predicted and the corrected data
are represented by XEO.

1.X

» is centred as in Alg. (1), step 1, giving ip

2. The amount of independent phenomena

(2
is extracted

T, =

~ A

X, P
¢ DO _ ¥ T PT
X0 =% T B

3. Predict using X2°

In steps 3 and 5 of Algorithm (1), it is recognized
that the two parameters, a and b, must be chosen. It
is suggested to do this by simultaneous validation,
that is, for a range of combinations of a4 and b apply
Algorithm (1) using a calibration data set and subse-
quently apply Algorithm (2) using some test object(s).
The combination of a and b that yields the lowest
RMSEP will represent the optimum combination. As
an alternative to the time-consuming simultaneous
validation of @ and b, one could apply an individu-
ally automated approach, e.g., according to the pro-
posal by Malinovski [7] for finding a and a valida-
tion scheme for finding b. However, without simul-
taneous optimization of both parameters, one is not
guaranteed to obtain the optimal parameters.

The scores 'i‘p belonging to the samples being pre-
dicted can be used as a diagnostic tool in detecting
abnormal spectra, i.e., spectra with particularly low or
high levels of uncorrelated components. This feature
may have applications in process control and sys-
tems for automated data analysis. The principal com-
ponents of DO are adaptive in the sense that the scat-
ter is found from the data itself and no a priori
knowledge is required.

With DO, it is important to evaluate the quality of
the reference values, i.e., y, since the effect of or-
thogonalizing X with bad estimates on y may derail
subsequent modelling. The consequence of orthogo-
nalizing with inaccurate y values is that the inner
PCA, i.e., Algorithm (1) step 3, will remove relevant
systematic variation from X, thereby leaving only
weakly correlated information for the final regres-
sion step.

Another procedure for filtering data, Orthogonal
Signal Correction (OSC), has recently been proposed
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[8,9]. The first step of the OSC algorithm is to obtain
a bi-linear model of the initial data by an iterative
approach such that the scores in the model are or-
thogonal to y. Next, a so-called inverse PLSR model
is established between the initial data and the orthog-
onal score. The scores and loadings of this PLS model
are then subtracted from the initial data, whereby un-
correlated information is removed and the filtered
data is applicable for further modelling. The filtra-
tion stages of DO and OSC methods differ algorith-
mically since for DO it is data itself that is orthogo-
nalized with y prior to bi-linear modelling whereas
OSC makes use of a constrained bi-linear model and
the inverse PLSR model to remove uncorrelated in-
formation.

2.3. Multiplicative scatter correction

An approach to scatter correction that is often used
for pretreatment of NIR and IR spectra is multiplica-
tive scatter correction (MSC), see Refs. [1,2]. The
MSC approach is to some extent inspired by theoret-
ical considerations, i.e., Kubelka—-Munk theory [10],
dealing with optical phenomena that cause light scat-
tering. The principle behind MSC is as follows: From
the calibration samples an ideal spectrum is derived
as the mean spectrum, X. Subsequently, for the ith
sample (i = 1,2,...,I) a set of parameters a, and b,
is estimated by least squares regression of the sample
spectrum X; onto X:

X, =aq,+bX+e;

(1)
Using these parameters, the MSC spectrum is found
by backtransformation of the measured spectrum X,
according to Eq. (2).

poo = 22 (2)

t b‘
It should be noted that MSC does not aim at elimi-
nating the scatter but rather aims at reducing the in-
ter-sample variations of the scatter by applying an
additive and multiplicative transformation of the in-
dividual spectrum into the common idealized aver-
age spectrum. This may be derived from Eq. (1)
where an intercept and a slope, denoted by a and b,
are found that lines up the idealized spectrum with the
measured spectrum under minimization of a least
squares error term. Since all samples will be lined up

X
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against the same idealized spectrum, the differences
in background levels are minimized upon correction.
However, wavelength regions that are suitable for
finding a and b must be selected. Since there are
wavelengths where the variation is not solely due to
scatter effects (e.g., wavelengths correlated to the
reference values), it is generally advisable not to in-
clude the whole spectra for parameter estimation.
Thus, intervention is required to select wavelength
regions that carry scatter information solely to obtain
an efficient and robust MSC.

The MSC approach may be applied to data for
which there are no reference measurements. Further-
more, since only two parameters are estimated for
each sample, MSC uses relatively few degrees of
freedom. Since MSC does not take into account that
unique information may be removed by the correc-
tion, MSC cannot guarantee that subsequent mod-
elling will benefit from the transformation. Also,
cases exist in which the simple two-parameter MSC
does not align the spectra adequately, since the lin-
earity assumption in Eq. (1) does not hold. There may
even be cases where artificial variation is introduced
into the corrected data due to poorly estimated MSC
parameters. For example, if there are significant dif-
ferences in particle size distributions, one is likely to
observe different phenomena in the scattered light.
Such different backgrounds may be problematic for
the MSC based approaches, since only one idealized
spectrum applies for standardization. An important
and necessary assumption underlying MSC is that the
relation between the idealized spectrum and the indi-
vidual spectra is independent of wavelength, i.e., one
set of a; and b; parameters suffices for the ith sam-
ple in its full wavelength range. If this assumption
does not hold, local MSC may be performed on sub-
ranges of the spectra where it is more likely that a
linear relation between the idealized spectrum and the
individual spectra applies. Dividing the spectra into,
say K, different wavelength regions, K pairs of co-
efficients are obtained for each spectrum. Here, two
approaches to MSC have been implemented: Simple
PMSC (SPMSC) and the more advanced PMSC.

The SPMSC method divides the full spectral range
into non-overlapping subranges of equal width. Thus,
the one-segment SPMSC corresponds to the ordinary
MSC. In the reported studies, we will refer to MSC
as a special case of SPMSC.
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The PMSC method, as proposed in Ref. [3], uses
a fixed-width moving window designating the vari-
ables used for finding a and b. For the present appli-
cations, only symmetric windows have been used.

It should be noted that for SPMSC the number of
segments and for PMSC the width of the moving
windows can severely affect the subsequent predic-
tive abilities of the model. Thus, the parameters must
be included in the validation step to ensure the opti-
mal model. When increasing the number of segments
in SPMSC or when narrowing the window width in
PMSC, the corrected spectra may become too simi-
lar, ruling out significant differences between the
spectra and thereby making subsequent modelling
difficult. In order to make the SPMSC plausible, one
should consider building in a priori spectroscopic
knowledge, leaving significant wavelengths out when
estimating a and b coefficients. In the current appli-
cation of SPMSC, a simple non-supervised approach
has been taken, in which all variables of the seg-
ments are used for finding the coefficients.

2.4. Second order derivatives

A commonly used approach to spectral correction
is second order derivation. Second order derivation
removes not only simple additive offsets, but also first
order effects like drift in baseline. In Ref. [11], a list
of approximations for second order derivatives are
given for increasing number of neighbouring points.
The simplest approximation, i.e., using only two
neighbouring points, of the second order derivative in
the ith point of a spectrum with equidistant variables
is obtained as described in Eq. (3):

Eimx = 2x+x,,

(3)
If required, the approximation given in Eq. (3) may
be improved by application of extrapolation schemes.

Neither multiple neighboring points nor gaps have
been used in this investigation. Including more
neighboring points than the two in Eq. (3) will smooth
the derivatives to some extent. In addition, when us-
ing several neighboring points, it is common that a
gap is introduced around the ith element. The obser-
vations belonging to the gap are simply excluded
from the approximation of the derivative, and a mod-
ified form of Eq. (3) is used. By including several
neighboring points and gaps, the derived transform is
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no longer a second order derivative per se, as the
transformation approaches Savitsky—Golay convolu-
tion [12]. Nevertheless, these two modifications have
in some instances been justified as useful ap-
proaches, improving the predictive abilities of mod-
els, see for example Refs. [5,13].

3. Application to diffuse FT-IR on pectin powder
samples

Using PCR and PLSR, the focus of this investiga-
tion is on the effects of DO as compared to existing
approaches to spectral correction for inter-sample
variations. For this study, we will model the degree
of esterification (%DE) of dried pectin powders. The
reader is referred to Ref. [14] for a specific discus-
sion and interpretation of the spectral information.

3.1. Experimental

With the purpose of predicting the degree of ester-
ification (%DE), 97 pectin powder samples were

C.A. Andersson / Chemometrics and Intelligent Laboratory Systems 47 (1999) 51-63

measured as dried powder on a Perkin-Elmer System
2000. The 97 samples were randomly divided into
three segments with 33 or 34 objects. In turn, one
segment was left out and predicted from a model cal-
ibrated on objects in the two complementary seg-
ments. In one cycle, each object was predicted once.
Ten such cycles were performed as to re-sample the
three segments randomly in each cycle. The RM-
SECYV values are mean values of the 10 cycles. For
computations, a 200 MHz Pentium Pro running Win-
dows NT and MATLAB 5.1 was used. The values of
%DE ranges from 21.40% to 54.10% with a mean
value 31.87%. Neither accuracy nor precision of the
reference measurements have been examined. How-
ever, the absolute error is estimated to be less than
1.5% in the measured range, see Ref, [14].

3.2. Results and discussion

In Fig. 1, the raw FT-IR spectra are depicted. As
stated in Ref. [14], the absorbances at 1752, 1686,
1650 and 950 cm ™! are expected to correlate to some
extent with the degree of esterification. However, as

1 1

3500 3000

Fig. 1. The raw and untreated FT-IR spectra from the pectin powder samples. The wavelength axis is in cm™'.
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seen in Fig. 1, interpretation of the raw data is diffi-
cult due to the large differences in scatter. After ex-
tracting three DO components according to Algo-
rithm (1), the spectra are somewhat more equivalent
as seen from Fig. 2. In Fig. 2, the variation is not
significantly higher for the 4 expected wavelengths
which indicates that the information is more dis-
persed than what the hard molecular theory allows us
to assume. In other words, data requires a multivari-
ate approach to attain optimal results. This finding is
supported by the DO components in Fig. 3, since
there are no wavelength ranges with zero elements.
Such zero ranges describe wavelengths where the in-
formation is perfectly correlated to the reference
value and thus have been completely removed prior
to the inner PCA. The DO components are shown in
Fig. 3 as normalized vectors. The un-nuanced and
constant level of the first DO component (dashed line)
indicates that this factor models the offset of the
scatter. The second DO component (dash—dot line)

resembles the general curvatures of the measured
spectra. Hence, we conclude that this component ex-
plains the common scatter signal. The two first fac-
tors explain respectively approx. 45% and 23% of the
variance of the orthogonalized matrix, whereas the
third DO component (solid line) explains 9%. Only
minor patterns in the third component can be recog-
nized as stemming from the raw spectra. However, it
is important to remember that the interpretability is
obscured by the orthogonality of the PCA solutions.
In this light, the components cover to some extent a
behaviour that can be found to be present in the raw
spectra. It is noteworthy that the peak at 1752 cm™!
constitutes a major part of the third component.
Turning to second order derivatives, the spectra
move from the spectroscopist’s domain to an abstract
mathematical form where interpretation is rendered
difficult, as depicted in Fig. 4. Here, the SOD spectra
indicate that approx. 1752 cm™! is a region in which
major variations occur. Although SOD may be used

14k

1.2

0.6

04

3000

2500

1500 1000

Fig. 2. FT-IR spectra with three orthogonal components removed. The components are depicted in Fig. 3. The wavelength axis is in cm ™!,

Compare with Fig. 1.
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Fig. 3. Scatter components found and removed by direct orthogonalization in Fig. 2. The components explain 45% (dashed line), 23%
(dash—dot line) and 9% (solid line) of the variance of the FT-IR spectra. The wavelength axis is in cm . Compare with Fig. 1.

to locate wavelengths with high variations, pretreat-
ment of the spectra with SOD does not improve the
correlation between the spectra and the reference
values, as will be shown later.

The methods based on multiplicative scatter cor-
rection, SPMSC and PMSC, give spectra that can be
interpreted and evaluated in relation to the degree of
esterification. The effect of pretreating with PMSC
using a symmetric window width of 190 cm™! is
shown in Fig. 5. The similarity with SPMSC with
eight intervals is very high; thus, only the effect of
PMSC is illustrated. When applying the MSC ap-
proaches, as well as DO, the spectroscopist is al-
lowed to evaluate the relative responses and cou-
plings when interpreting the corrected spectra. Note,
that the variation around 1752 c¢cm™! is high, this
meaning that variability has been preserved through-
out correction. There is, however, no guarantee that
the variability qualifies for a better correlation to the
reference values. As will be seen, DO, SPMSC and
PMSC not only improve the qualitative information
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present in the spectra, but the quantitative part of the
analysis benefits from these methods of pretreatment
as well.

Now turning to modelling, the point of interest
becomes the modelling error in terms of the applied
cross validation, i.e., RMSECV. In Table 1, the RM-
SECV values for modelling the degree of esterifica-
tion are listed for using PL.SR. The four different ap-
proaches are listed in groups of rows, and each col-
umn represents the RMSECV from segmented cross
validation of PLSR models using from 1 to 10 com-
ponents. The optimal dimensionality of each model is
indicated by boldfacing the respective RMSECV
value. The chosen dimensionality has been deter-
mined (subjectively) in such a way that the simplic-
ity of the model is ensured while providing satisfac-
tory fit to data. Including too many components in the
regression step increases the risk of overfitting data
whereby future samples will be poorly predicted. The
first row, denoted as Raw, illustrates the develop-
ment in RMSECV when applying an increasing
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Fig. 4. Second order derivatives of the FT-IR spectra. The wavelength axis is in cm~!. Compare with Fig. 1.

number of PLSR components to the raw data. A
number of eight PLSR components offers the opti-
mal model dimensionality at a RMSECV of 1.84. The
estimated error of the reference method is 1.5%.
Thus, the obtained validation error is close to the op-
timal value.

When extracting one DO component, the same er-
ror in terms of RMSECV, i.e., 1.84, is achieved with
one less PLSR component. This behaviour is re-
peated when extracting successive numbers of DO
components. When removing six DO components,
the RMSECYV increases slightly to 1.90. This indi-
cates that, even upon orthogonalization, there is vari-
ation left in the data that is not perfectly correlated
with y, but sufficiently correlated to be significant and
have a stabilizing effect on the factors of the regres-
sion model. The proposed effect of DO, with respect
to removing information that is orthogonal to y, is
clearly recognized in the pattern of the optimal di-
mensionality of the subsequent PLSR models. The
argumentation is verified by the explained variance of
%DE, as depicted in Table 2. Table 2 lists the cumu-
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lated explained variance of all 97 FT-IR spectra from
calibration when extracting from 1 to 8 DO compo-
nents and using 1 to 10 PLSR components. While the
raw (untreated) spectra use eight PLSR components
to explain a total of 97.9% of the variance, the ex-
traction of one DO component reduces this number to
7. Removing one more DO component lowers the
number to six PLSR components. This behaviour
continues up the extraction of 4 DO components.
When removing the effect of five DO components,
vital information is removed from the spectra and the
optimal number of PLSR components stop to de-
crease. This observation is explained by the lack of
accuracy of the measurements in y, i.e., %DE. If the
reference values are not accurate, the effect of or-
thogonalization is diminished, since the orthogonal-
ization is dependent on the existence of a relation-
ship between y and X. Thus, from Table 2 we induce
that the sum of the two model dimensionalities a and
b is constant. Accordingly, Table 1 indicates the ex-
istence of a closed relation between the number of
PLSR and DO components to sum up to 8 for the data



I1. Algorithms, models and applications

60

C.A. Andersson / Chemometrics and Intelligent Laboratory Systems 47 (1999) 51-63

1 i L

¢
3500 3000

1
2500

2000 1500 1000

Fig. 5. Piecewise multiplicative scatter correction (PMSC) of the FT-IR spectra using symmetric windows 190 cm ™! wide. The visual effect
of SPMSC with eight intervals is similar to this case. The wavelength axis is in cm ™. See Fig. 1 for the raw spectra.

at hand. In general, we expect the dimensions of the
DO model and the PLSR model to add up to a con-
stant—close to the optimal dimensionality of a PLSR
model on the raw data.

The application of SOD yields the highest values
of RMSECYV as listed in Table 1. With an RMSECV
of 2.01, the optimal PLSR model uses only four

components but this error is approx. 10% higher than
the lowest overall RMSECYV at 1.83.

Models based on both MSC methods provide
RMSECY values comparable to PLSR models on the
raw data—the PMSC even slightly lower, see Table
1. For the PMSC approach, window widths between
15 cm™! and 500 cm™' have been tested, and the

Table 1
RMSECYV values for FT-IR spectra using from 1 to 10 PLSR components
1 2 3 4 5 6 7 8 9 10

Raw 6.29 5.78 4.01 2.65 229 2.06 1.96 1.84 1.99 211
DO, 1 comp 5.89 4.01 2.65 229 2.06 1.96 1.84 1.99 2.11 2.11
DO, 2 comp 4.12 2.66 2.30 2.06 1.96 1.84 1.99 2.11 2.11 2.09
DO, 3 comp 2.90 2.39 2.10 1.97 1.83 1.98 2.10 2.11 2.08 2.09
DO, 4 comp 2.81 2.24 2.02 1.84 1.96 2.09 2.11 2.08 2.09 2.09
DO, 5 comp 2.67 2.11 1.85 192 208 2.11 2.08 2.09 2.09 2.09
DO, 6 comp 2.52 1.90 1.89 2.06 2.12 2.08 2.09 2.09 2.09 212
SOD 3.77 2.51 2.16 2.01 2.09 2.10 2.08 2.08 2.08 2.1
PMSC, 190 cm~! width 491 2.44 2.03 1.89 1.83 1.84 1.90 1.92 1.88 1.83
SPMSC, eight intervals 3.79 2.10 1.94 1.89 1.86 1.94 2.16 2.15 233 221
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Table 2

61

Cumulated explained variance (%) for %DE for all 97 calibration FT-IR spectra when extracting 1 to 8 DO components of uncorrelated

information from X prior to PLSR with 1 to 10 components

1 2 3 4 5 6 7 8 9 10
Raw 132 29.8 74.3 91.7 96.2 97.1 97.9 98.2 99.0 99.3
1 29.6 74.4 91.7 96.2 971 97.9 98.3 99.0 99.3 99.5
2 71.5 91.6 96.1 97.0 97.9 98.3 99.0 99.3 99.5 99.7
3 90.5 95.0 96.8 97.8 98.3 98.9 99.3 99.5 99.7 99.9
4 90.5 96.2 97.5 98.2 98.9 99.3 99.5 99.7 99.9 99.9
5 90.6 96.4 98.0 98.7 99.3 99.5 99.7 99.9 99.9 100.0
6 922 97.3 98.3 99.2 99.4 99.7 99.9 99.9 100.0 100.0
7 94.0 977 99.1 99.3 99.6 99.8 99.9 100.0 100.0 100.0
8 96.8 98.4 99.2 99.6 99.8 99.9 100.0 100.0 100.0 100.0

Compare Table 1.

optimal window width found from full cross-valida-
tion was 190 cm ™. For SPMSC, all intervals from 1
(corresponding to ordinary MSC) up to 10 have been
tested, and the optimal number of intervals was found
to be 8. The PMSC approach, although very time-
consurming, provides good estimates providing an er-
ror of 1.83 when using five PLSR components. The
SPMSC approach yields an insignificantly less opti-
mal RMSECYV value at 1.86 for the same number of
PLSR components.

In Table 3, the RMSECV values from PCR are
listed. Comparing the values to Table 1, we find that
PCR can perform almost as well as PLSR on the data
under investigation, albeit generally requiring two
more regression components. When comparing DO
against raw spectra, the closure between the number
of regression components and DO components is
verified. The sum of the dimensionalities of the DO
and the PLSR models appears to be 11. For example,

it is possible to choose between a model with one DO
component and 10 PLSR components, or say, five
DO components and six PLSR components. The
RMSECYV values for SOD for both PCR and PLSR
models are the highest, and for the data at hand SOD
is the least feasible approach. For SPMSC and PMSC,
seven PCR components are required and yields an
RMSECV of 1.91—this is in the same range as
models based on PLSR. The optimal parameters for
SPMSC as well as PMSC prove to be independent of
the choice of regression model since the number of
intervals is found to be 8 and the window width to
be 190 cm™! as in the case of PLSR.

4, Further applications and improvements

There are several approaches and possible appli-
cations for using DO as a tool for pretreatment of

Table 3
RMSECYV values for FT-IR spectra using PCR with 1 to 11 components
1 2 3 4 5 6 7 8 9 10 1t

Raw 6.40 6.30 5.92 572 4.44 3.20 2.96 2.75 2.24 2.01 1.92
DO, 1 comp 6.20 5.87 5.67 4.39 3.18 294 274 2.23 2.00 1.92 1.92
DO, 2 comp 5.88 5.64 4.34 3.14 2.92 2.73 2.23 2.00 191 1.92 1.94
DO, 3 comp 5.33 4.13 3.07 2.85 2.69 2.20 1.98 1.90 1.91 1.93 1.94
DO, 4 comp 4.14 3.07 2.85 2.69 2.20 1.99 1.90 1.91 1.94 1.94 1.96
DO, 5 comp 3.04 2.83 2.67 220 1.98 1.90 1.91 1.94 1.95 1.96 1.98
DO, 6 comp 2.76 2.66 2.19 1.98 191 1.92 1.94 1.95 1.97 1.99 2.01
SOD 5.66 3.36 2.96 2.20 2.10 2.08 2.08 2.09 2.11 2.13 2.15
PMSC, 190 cm™! width 6.45 6.49 4.58 2.70 223 2.09 191 1.95 2.01 2.08 2.11
SPMSC, eight intervals 6.26 6.14 4.78 3.86 3.16 2.15 1.94 1.93 2.11 2.10 2.13
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data. In addition to the reported algorithm, a bi-linear
alternating least squares (ALS) resolution algorithm
was also implemented and applied to data. The im-
plemented resolution scheme constrains the scores to
be orthogonal to y while minimizing a least squares
error term. The effects were exactly the same as the
results derived from the proposed eigenproblem-
based algorithm. The possibility of implementing DO
in the form of bi- and multi-linear resolution schemes
brings new issues into perspective, e.g., in the form
of constrained PARAFAC models. If certain chemi-
cal /physical behaviours make some modes of the
data conform to e.g., unimodality, non-negativity
and /or monotonocity, such constraints may be ap-
plied during decomposition in addition to the orthog-
onality constraint. For multi-way data arrays, the
common multi-way alternating least squares (ALS)
resolution schemes can be modified to yield scores
that are independent of y, thus, allowing to filter the
arrays for systematic, but irrelevant information. The
ALS schemes give scatter components that need not
be orthogonal to each other, and may thus be easier
to interpret. Drawbacks are (i) the much higher time
consumption of the resolution schemes, and (ii) the
problem of rotation remains for the bi-linear case.

Process data is another field in which DO is be-
lieved to be feasible. Process data often have fluctua-
tions of different frequencies and since these fluctua-
tions will not depend on the reference parameter(s)
being modelled, drift in baseline will be extractable
as DO components. It has been proposed to use DO
for correlation studies between different kinds of
spectra where effects of scatter can be eliminated
prior to investigations.

§. Conclusions

In the present paper, a method is proposed for su-
pervised multivariate filtration and the method has
been applied to spectral data from FT-IR measure-
ments. For the spectral data under investigation, the
method of direct orthogonalization provides a viable
approach to pretreatment of spectra with high levels
of scatter. Compared to common approaches as sec-
ond order derivatives, simple interval piecewise scat-
ter correction and windowed piecewise scatter cor-
rection, the validation error in terms of RMSECYV are
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comparable. In contrast to the existing methods, the
proposed supervised method provides a means of
identifying possible outliers in the filtration step and
the phenomena constituting the background are de-
composed for possible interpretation. In addition, di-
rect orthogonalization is fast due to the one-step or-
thogonalization requiring only one low-dimensional
principal component analysis. Finally, a range of
possible applications of DO have been outlined.
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Abstract

Among the possible (orthogonal) transformations of core arrays in N-way principal components analysis (PCA), the con-
ventional approach of body diagonalization turns out not to provide the simplest structure (in the sense of minimizing the
number of significant entries). As an alternative, the maximization of the variance-of-squared core entries is proposed. Both
criteria are equivalent in a two-way constellation but may differ markedly for N = 3. Actually, using the variance criterion
may provide more insight into the rank structure of the given data, and it is also easily applied to general rectangular core
arrays. In order to clarify the relation between body diagonality and variance-of-squares, we prove the following main result
of the paper: If some cubic N-way core array can be transformed to exact body diagonality, then the same transformation
yields maximum variance-of-squared entries. This result implies the equivalence in the two-way case mentioned above. A
solution algorithm is formulated and illustrated with a small numerical example. The application to data examples from envi-
ronmental chemistry and chromatographic analysis is briefly discussed. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: N-way- principal components analysis; Tucker3 model; Core array; Simple-structure transformation; Body diagonality; Variance-
of-squares

1. Introduction

N-way data analysis has become an efficient tool for solving chemometric problems which are based on com-
plex (N-dimensional or N-way) data arrays as they arise, for instance, from hyphenated instrumentation. For
early papers in this direction, we refer to Refs. [1,2]. Since then, a lot of contributions mainly to three-way data
analysis have appeared. Chemometrically-oriented introductions to three-way analysis may be found in Refs.
[3,4]. Meanwhile, at least the case N = 4 must be considered practically relevant (e.g., emission /excitation data
from fluorescence measurements of different samples under changing conditions like pH [5]). Maybe the most
important methods involved are Parallel Factor Analysis (PARAFAC) [6], Canonical Decomposition
(CANDECOMP) [7] and the Tucker3 model of (three-way) Principal Components Analysis (PCA) [8], but also
some variants of three-way Partial Least Squares (PLS) [9-11].

* Corresponding author. Fax: +49-30-2044975; E-mail: henrion@wias-berlin.de

0169-7439 /99 /8 - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0169-7439(98)00209-3
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The present paper addresses a specific problem of N-way PCA (for an introduction see Ref. [12]). More pre-
cisely, a new approach of transforming core arrays to simple structure is proposed and compared to the conven-
tional diagonalization procedure.

2. Transformation of core arrays to simple structure

The general model of N-way PCA is (compare Ref. [13])
veeX=(A;® --- ®A,)vecC (1)

Here, X denotes an N-way data array of order (n,,...,n,), the A, are component matrices of orders (n;, s,),
where, usually, the s;’s are small numbers for the purpose of data reduction, and C is the so called N-way core
array of order (sy,...,sy). Furthermore, vec and ® denote the vectorization operator and the Kronecker prod-
uct, respectively. It is emphasized, that in the following vec will be understood as an operator unfolding the
given array in a way that the first index runs fast and the last index slowly. For matrices, this corresponds to the
usual stacking of columns (note that there is some inconsistency in the definition in Ref. [13], pages 30 and
363). Accordingly, we understand the Kronecker product in the sense
byA - b,A
AeB=|i .

byA -+ b A

The aim of N-way PCA is, given X, to find the component matrices (sometimes additionally required to be
column-wise orthonormal) and the core array such that the above approximation is optimal in the sense of least
squares deviations. The component matrices A ; allow to plot the basic factors in each of the N modes influenc-
ing the total variation iu the array X. The core array C, on the other hand, indicates how factor combinations
from different modes interact. For instance, in a three-way constellation (N = 3) with orthonormal component
matrices, the squared core element ¢, measures the amount of data variance covered by combining the first
factor of the first mode with the second factor of the second mode and the first factor of the third mode. Such
consideration of interactions is not necessary in conventional two-mode PCA since the core matrix can always
be diagonalized there. Hence, the information in data tables is exhausted efficiently by independent extraction of
successive factors for objects and variables. The explanatory effect of interactions (say by combining the first
factor of objects with the second factor of variables) can always be made zero. Things become different for data
arrays of dimensions larger than two. Of course, one might still suppress interactions by restricting the model of
decomposition, which is the case in the PARAFAC approach. However, such decomposition is no longer the
most efficient one. Indeed, using the Tucker3 model with possible interactions between different factors of dif-
ferent modes, the same amount of data variation as in a PARAFAC decomposition might be explained by a
smaller number of factors. On the other hand, interactions are more difficult to interpret. In particular, a general-
ization of the well-known bi-plots from two-way PCA to ‘tri-plots’ or ‘N-plots’ is not straightforward. There-
fore, a common strategy is to simplify the interaction structure among factors after a Tucker3 analysis as far as
possible. This is the aim of simple-structure transformations of core arrays. In the ideal case, one could remove
all the interactions and would arrive at the same result as with a direct PARAFAC approach. Unfortunately, this
is not possible in general, so one has to be satisfied with structures simplified according to suitable criteria which
will be discussed in the sequel. For an illustration of the PCA decomposition according to the Tucker3 model
(1) and for an interpretation of the core elements, we refer to the data example in Section 5.

While the optimal component matrices in (1) may be determined by an alternating least squares algorithm
(see Ref. [14D), the corresponding optimal core array results from them according to (compare Ref. [13])

vecC=(AT1® --- ® AT, JvecX
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On the other hand, neither the component matrices A ;, nor the core array C are uniquely determined in the de-
composition (1). Indeed, using nonsingular matrices P; of orders (s;, s,), this same decomposition transforms to
Gy PP =1 )

veeX=(A;® -+ ®A)vecC
=(A,® - @A), ® - @I JvecC
=(A,® - ®A)P,® - ®P)(P['® - ®P;')vecC
=(A;® - ®A)vecC,

where A'; = A P, are the transformed versions of the original component matrices A ;, and C' is the new core
array which relates to the old one through

vecC'=(P{'® - -+ ® Py ')vecC (2)

Along with the transformed core C', the A’; provide the same approximation of X as the original A; and C.
Actually, corresponding to the manifold of possible nonsingular matrices P,, there is an infinite number of equally
good approximations of the given data array. For simplicity and comparison to existing methods, we restrict the
further presentation mainly to orthogonal transformations. Then, the inverses P! in (2) simply become the
transposed matrices P}, Furthermore, in this case, the transformed component matrices A'; remain orthonormal
if so were the original ones A ; and, hence, the entries of the transformed core C' may be interpreted as variance
contributions of factor combinations from different (transformed) components A; as it held true for the original
core C and the original components A ; (see above).

A reasonable choice of a particular solution in (1) would require the core array to have as few significant
entries as possible in order to arrive at a model with a minimum number of describing factors. Doing so, the
interpretational effort of the results obtained may be considerably reduced. For the purpose of illustration, con-
sider the following three-mode core arrays of order (2,2,2), in unfolded form (i.e., the third index refers to the
slice left or right to the separation line while the first two indices are read in the slices as for usual matrices):

11 11
2 V2 (V2 V2 | (1 o]t o). (V2 0 o o 3)
1 1|1 1P lo 1o 1) o yzlo o

2 V2 V2 V2

All these cores can be transformed into each other by using appropriate orthogonal matrices in (2). It is clear
that the structure simplifies from the left to the right: in the situation of the very left core one would have to
interpret eight equally important factor combinations of the N-way PCA model. This number reduces to four in
the second and to two in the third core. Sometimes, additional knowledge about the model allows to fix specific
core elements as zero and to consider restricted core arrays from the very beginning of analysis. This approach
is discussed in Ref. [15] and it has been applied to a selected calibration problem of analytical chemistry in Ref.
[16]. In general, however, the insight into the problem structure is rather limited, so premature restrictions of the
core might not be advisable. Instead, one can admit a completely loaded core as the output of any N-way PCA
algorithm and afterwards use the degree of freedom in the decomposition (1) discussed above, in order to find
transformation matrices P, such that the new core resulting from Eq. (2) has a simple structure. In the follow-
ing, we restrict considerations to cubic core arrays of order (s,...,s). This restriction is not necessary for the
approach to be described here, but it allows comparison with existing methods. In the sense of the discussion
above, one may imagine several criteria for measuring ‘simple structure’. In Ref. [17], the simple structure was
formulated as a slice-wise diagonality of the (three-way) core array. The theoretical argument behind this is, that
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in case of a possible exact slice-wise diagonalization, the Tucker3 model reduces to a PARAFAC model as soon
as one renounces the orthogonality of the components. For instance, both, the second and third core in (3) are
slice-wise diagonal.

On the other hand, with orthogonality constraints imposed on the components—and this may have certain
advantages—Tucker3 reduces to PARAFAC (also with orthogonal components) only in case that the core has
so-called body diagonal shape. By this, it is meant that the entries of C satisfy C iy =0ifnot iy = -+ =iy
None of the cores in (3) are body diagonal, since, in all cases there are nonzero entries outside the left upper and
right lower corners of the unfolded arrays. Indeed, in this data example, there does not exist any orthogonal
transformation of the given cores to exact body diagonality. Body diagonality is a desirable property of the core
in that it avoids interaction between unequal components from different modes. From a more practical stand-
point, body diagonality allows superposition and joint interpretation of component plots. As in the example, ex-
act body diagonalization of core arrays fails in most cases. At least, one can try to fit body diagonality as close
as possible, which amounts to maximize the sum of squared body diagonal entries diag = X5..,C? . The total
sum of squared core entries being invariant under the transformation (2) with orthogonal P;, this means to mini-
mize the squared off-diagonal entries, hence, a body diagonal shape of the core is approached.

In (3), one computes the values diag, = 1, diag, = 2, diag, = 2 for the succeeding cores. Actually, the value
2 represents the maximum of diag among all possible transformations (2) with orthogonal P,, so the second and
third core are not only slice-wise diagonal, but they have maximum body diagonal shape at the same time. If
exact body diagonality was possible here, then one should obtain diag = 4, a value which is equal to the total
sum of squares in the cores. An algorithm for (maximum) body diagonalization of three-way core arrays was
suggested in Ref. [18]. In Ref. [19], theoretical bounds for the success of body diagonalization of three-way core
arrays were derived. For the special case of cores of order (2,2,2)—which is important in exploratory diagram
analysis of components—a degree of 80-90% of body diagonality (= diag divided by the total sum of squared
entries) may be expected on the average. This makes diagonalization a useful approach for obtaining simple
structure of cores.

Simple structure of the core can be understood, however, in a sense different from diagonality. It seems natu-
ral to look for transformations providing the smallest number of significant core entries, or equivalently, the
largest number of negligible (if not zero) entries. This is a direct formulation of minimizing the effort of inter-
pretation of components. It is intuitively clear, that this aim is not automatically realized by body diagonaliza-
tion since the latter restricts not only the number of significant elements but simultaneously the shape of the
core. Renouncing the diagonality shape, one has hope to find cores with fewer significant entries although not
necessarily located on the diagonal. Although, due to its simplicity, the example (3) is not capable of completely
highlighting this aspect, it suffices to demonstrate that maximum body diagonality is not directly related with
simple structure. As already stated above, both the second and third core in (3) have the same degree of body
diagonality while the structure of the third core is much simpler with only two significant entries as compared to
the second core. Much more evident examples will be provided in the following sections.

3. Variance-of-squares
3.1. Definition of the criterion

As a quantitative criterion directly oriented towards maximizing the number of negligible entries in the core,
we propose to use the variance of the squared entries of the core. More precisely, we define

5
var= Y
i

1=1

. i_l(cgmm-é)z (4)
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where
p~ T
C= Z Z c?. ./s"=[vecC] [vecC]/s" 5)
ip=1 iy=1

is the mean of squared entries.

Eq. (4), as a numerical entity, is identical with the quartimax criterion defined for simple structure transfor-
mations of loading matrices in factor analysis [20], but it must not be confused with these. Optimizing the two-
way quartimax measure, which relates to loading matrices rather than core matrices, does not necessarily pro-
duce simple core atrays which is the aim of the current discussion. Therefore, we keep the name *variance-of-
squares’ criterion in order to avoid any confusion with concepts from factor analysis.

The justification of the variance-of-squares criterion relies on the following simple observatlon If a set of
vectors (x,...,x,) is restricted to have non-negative components x; which sum up to a constant value, then
the variance of the components attains its maximum at those vectors having exactly one component different
from zero. In order to translate this result to the context of core arrays, consider now the set of vectors (x,,...,x,)
which are vectorizations of squared entries of core arrays related by transformations of type (2). Obviously, the
components x; are non-negative, and they sum up to a constant value, since the sum of squares in a core array
does not change under the considered transformation (2) with orthogonal P, (compare also the first statement in
the proof of the Theorem in Section 3.3). Therefore, maximum variance of the x,, which is the maximum vari-
ance of the squared core entries, aims at reducing the number of nonzero core elements to one. In Eq. (3), the
third core has maximum variance-of-squares among all possible transformations. The concrete values var, = 0,
var, = 2, var, = 6 for the three cores reflect quite well the increasing simplicity of their structure.

Note that, although the justification given above relates to orthogonal transformation matrices P, in (2), the
variance-of-squares criterion itself may be applied to general nonsingular transformation matrices P,. In the spe-
cial case of orthogonal transformations which we focus on in this paper, the objective of maximizing the vari-
ance-of-squares measure becomes similar to a special case of the three-mode Orthomax criterion proposed by
Kiers [21]. The three-mode Orthomax measure is optimized successively for each of the three modes by maxi-
mizing the ORMAX matrix operator

ORMAX( A ,y) = i .iA?, (ZA ) (6)

I=1\i=1 i=1

with A, denoting the element in the ith row and the jth column of the matrix A. A scalar y weighs the squared
mean of the squared column entries of A. In the three-mode Orthomax approach, ORMAX is applied alternat-
ingly to the three unfoldings of the core to yield an overall optimization. Setting -y = O for all three modes, the
criterion simplifies to the three-mode Quartimax measure. This situation entails that the squared mean values of
the squared entries are neglected, causing the sum of the fourth powers of the core elements to be maximized.
Similarly, for orthogonal transformation matrices the variance-of-squares measure (4) will have an invariant mean
value of the squares, implicitly resulting in maximization of the fourth powers of the core elements (compare
(7)). Whereas, the three-mode Quartimax procedure operates on the unfoldings of the core, the variance-of-
squares procedure addresses the problem by optimizing the core directly. Also, both approaches differ when
general nonsingular (not just orthogonal) transformations are allowed, since the mean of squares is no longer
invariant and, hence, the maximization of the variance-of-squares is no longer equivalent to the maximization of
fourth powers then. In terms of understanding the effects of core transformations, we prefer the variance-of-
squares measure since variance has an intuitive meaning for analysts while the Quartimax measure is somewhat
abstract. Recently, an approach for simultaneous optimization of the orthogonality of the core and the compo-
nent matrices has been proposed, see Ref. [22].

72



I1. Algorithms, models and applications

194 R. Henrion, C.A. Andersson / Chemometrics and Intelligent Laboratory Systems 47 (1999) 189-204

3.2. On the relations between body diagonality and variance-of-squares

Let us now check the relations between the body diagonality and variance-of-squares criteria. The second and
the third core in (3) show that maximum body diagonality does not automatically provide maximum variance-
of-squares. The example was for three-way cores, but what about the simpler two-way case (N = 2), where body
diagonality reduces to conventional diagonalization of square matrices? The answer is given by the Corollary to
the Theorem in Section 3.3: In the two-way case, the maximization of ‘body diagonality’ implies the maximiza-
tion of the variance-of-squares of a quadratic core matrix. In other terms: For N = 2, there is no gain by intro-
ducing the variance criterion, and the core simplification is completely achieved by singular value decomposi-
tion, which is an admissible transformation in the sense of (2). This equivalence in the two-way case might ex-
plain why the consideration of the quite natural variance-of-squares criterion has been ignored so far in favour
of different diagonality criteria.

A misleading feature of the example in (3) is that the core with maximum variance-of-squares (third core) is
contained in—although not identical with—the set of cores having maximum body diagonality. This is not true
in general. In order to obtain a more general impression, consider Fig. 1 where variance vs. diagonality plots for
three different cores each subject to 5000 random orthogonal transformations are given. Here, the plots (a), (b),
and (c) refer to transformations of the cores

where a=B=01in (a), a=B= —0.1in (b), and a= —0.1, B=0.1 in (c). Obviously, Fig. 1(a) relates to
transformations of the cores in (3) since, for a = 8 =0, C is equal to the second core there. As a consequence,
the three cores of (3) are contained in the plot of Fig. 1(a) as points with the coordinates (diag, var) = (1,0),
(2,2), and (2,6), respectively. Note that the vertical line, joining the last two of these points, represents an infi-
nite number of transformed cores with maximum body diagonality but with varying values for the variance-of-
squares. Such a phenomenon is not stable since an arbitrarily small perturbation of the core entries (e.g., the
parameters «, ) will destroy this vertical line, and a constellation as in Fig. 1(b) and (c) is likely to occur.
Here, the qualitative relationship between the diagonality and variance critetia is quite different: In Fig. 1(b),
maximum body diagonality implies maximum variance-of-squares (which was not true in Fig. 1(a)), while in
Fig. 1(c), the maxima of diag and var are completely unrelated: indeed, the maximum of diag leads only to a
value of var, which is less than half the maximum of var. In contrast to Fig. 1(a), both situations are stable with
respect to small perturbations of the core entries (due to the fact that var and diag are continuous functions of
the core), hence, both of them are typically observed.

Now, the question arises, under which conditions does the one or the other situation occur. As the main result
in this direction the following statement, which even relates to general (cubic) N-way cores, is proved in the
Theorem of Section 3.3: If the given core array may be transformed according to (2) to exact (!) body diagonal-
ity, then the resulting diagonal core array has maximum variance-of-squares at the same time. This result is
mainly of theoretical interest in that it connects the relation between both criteria with the structure of the core
array. By contraposition, one concludes that neither the cores in Fig. 1(a) nor those in Fig. 1(c) can be trans-
formed to exact body diagonality (since there are transformations providing maximum diagonality but not maxi-
mum variance-of-squares). From the practical point of view, one has to take into account of course that a trans-
formation of cubic N-way cores to exact body diagonality is possible for N > 3 in exceptional cases only.

By the way, Fig. 1 also shows, that even minimum diagonality can lead to maximum variance-of-squares. At
least for two-way matrices of order (2,2), this is not surprising since the diagonal elements may be placed as
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var a)

Fig. 1. Plot of variance-of-squared entries vs. body diagonality for 5000 random orthogonal transformations of three different core arrays.

well on the anti-diagonal without changing the variance. For higher order, this is no longer true as can be seen
from the simple two-way example:

0 1 1
1 0 1
1 1 0

This matrix has evidently minimum diagonality with variance-of-squares equal to 2, whereas maximum diago-
nality is attained (after a similarity transformation) when the eigenvalues 2, —1, —1 are placed on the diagonal.
This gives a variance-of-squares equal to 14, which must be the maximum according to the Corollary proved in
Section 3.3. Consequently, in this example, minimum diagonality yields a variance-of-squares value which is far
from the maximum.
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3.3. Theoretical results

Now, we prove the statements referred to above. To this aim, let C denote a cubic N-way core array of order
(s,...,s). Given any N-tuple of orthogonal matrices P,, ..., P, of common order (s,s), the following functions
are introduced:

T(P, - Py)=vec! [(P1T® .- ®PAT,)vecC]

§ 5

var(P, - Py) = 3 - B (TilzwiN(Pl"”’PN)_T(PI"”?PN))Z

i=1 iy=1

Here, vec ™! refers to the operator which assigns to each vector with s¥ components the uniquely defined N-way
array of order (s,...,s) the vectorization of which gives this vector. Obviously, T(P,,...,P,) is exactly the

transformed core array C' from (2). In the second definition, T(P,, ...,P,) denotes the mean of squares of the
transformed core array (compare (5)), so var (P,,...,P,) is the variance of squared entries in the transformed
core array.

Theorem 3.1. If there exist orthogonal matrices P* (i=1,...,N) of common order (s,s) such that
T(P’,...,Py) is body diagonal, then var(P",... Py ) maximizes the expression var (P,,...,P,) among all
N-tuples of orthogonal matrices Py,... Py of common order (s,s).

Proof. We start with the obvious observation that the mean of squares of a core array is invariant under the
transformation 7. In fact, due to the orthogonality of the P, one has

T(P, - By) =[vecT(Py, -+ By)] [vec T(Py, -~ By)] /¥
=[(PT® - ®PI)vecC][(PT ® - -- ® P} )vecC] /5"
= [vecC"((P,P]) ® - - - ® (P, PT))[vecC] /5"
= [vecC]"[vecC]/s"
-G,

where C refers to the mean of squares of C (see (5)). Therefore, the variance criterion, as a function of the
chosen transformation, written as

s s

var(Py, - By)= 3 o0 1 (Ti?mi,v(PI"“’PN)_E)Z

i=1 iy=1

5 s
Yo X 7}?-<»i,,(P1v""PN)+SNE2

=1 iv=1

s s
—ZCE Z Tif---iN(Pl""’PN)

i=1 iy=1

I
ag

s
SR T: ‘N(Pu""PN) -shc? (7N
- i1

= iy=
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In the following, we shall make use of the known or easy to verify relations
(Q ® R)vecS = vec(QSRT) (8)

Qi s ufQrQr’ (9)

between Kronecker product, matrix product, vectorization and trace of matrices Q, R, S with suitable orders.
Now, for a cubic N-way array M of order (s,...,s), define its unfolding u(M) to be the uniquely determined
matrix of order (5,5”~!) such that vec M = vec «(M). Then, using (8), one gets

vec u(T(P, - - Py)) =vecT(P,, - Py)=(P[® --- ® P))vec u(C)
= vec[PJu(C)(P,® - - ® Py)]
Consequently, (TP, ..., Py)) =PTu(C)P, ® - - - ® P,) which implies

a|u(T(®,, - B (TR, B =[BT e - @ BI)u(C) () (P, @ - @B’
=Pl - @ P])[w(C)"u(C)]' (B, --- & Py)

= [ w(©)"u(0)]" (10)

On the other hand, for the particular choice of transformation matrices providing body diagonality (see state-
ment of the theorem), one has

* L] T * * 2 o o * *
“[“(T(Pl ""’PN)) ”(T(P ’”"PN))] = Z Z Ti‘:»--iN(Pl ""sPN) (11)
i=1 iy=1
This follows from the fact that body diagonality of T(P,",... Py ) implies its unfolded copy w(T(P},...,Py))

to have in each column and each row at most one entry different from zero. Combining (7), (9), (10) (which in
particular holds for the transformation matrices P,*) and (11), one arrives at

var(Py, - By) <t| u(T(P,, - ) (T (B, -+ ,PN))]2 — sNE?
. =tr[u(C)Tu(C)]2—sNE2

2 -

= u[W(T (B, B (T (R B))] - sE

s $
=3y - n?}A‘iN(p*,...pA;)_SNE2
ij=1 iy=1

=var(P1*, - ’PI\;)
Since the P;’s were chosen arbitrarily among all orthogonal matrices of common order (s,s), this last inequality
proves that var (P,,... Py) is maximized by the transformation matrices P, *. O

Corollary 3.2. In the two-way case (N = 2), maximization of diagonality implies maximization of the variance-
of-squares of a quadratic core matrix.

Proof. Since any (square) matrix C may be transformed to diagonal shape via a singular value decomposition
PTCQ with orthogonal P and Q, and since this is an admissible transformation in the sense of (2) (recall that
vec(PTCQ) = (PT ® Q")vec C), the same transformation yields maximum variance-of-squares according to the
Theorem. O
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4. A transformation algorithm

In this section, we formulate an algorithm in order to find the optimal orthogonal matrices P, in (2) trans-
forming the given core array C, which is the output of any N-way PCA algorithm, into one with a maximum
variance-of-squares value. We omit the theoretical derivation of the algorithm and refer to Ref. [23].

1. Set C** = C (= original core array) and P :=1, (i=1,...,N)

2. Set j=0

3. Set j=j+1, C%%:=C"¥, P*:=P"" and compute an orthogonal matrix P such that P'A becomes a
symmetric matrix, where the general entry of A is (1 <k <s;1<1<5)

©

51

i~ Sitt 8,

k3

- . 2 0ld _ Ao old
Ay= iZ_‘.l LR (Ci,-»- folipey iy C)Cil bl iwCi O T TR
1= j-1=1 =1 iy=
Define C™" by vec C™":==(I; ® ... ® I, ePoI, @ IxN)vec C° and PV = Pj"'dP. If j <N, then
goto 3.
4, If var(C™") differs significantly from var(C°¢), then goto 2.
5. Stop.

The final C™" is the optimally transformed core array and the final P; are the corresponding‘ transformation
matrices for the transition from C to C™" via (2). The decisive step in this algorithm is the symmetrification of
PTA in 3. This can be realized by a singular value decomposition of A by means of orthogonal matrices U, V of

order s;, which yields UAV = D with diagonal D. Then, setting P =UT V7, one gets
P'A =VUA =VUUTDVT =VDVT,

which is the desired symmetric matrix. A numerical example shall serve as an illustration of the algorithm. Con-
sider the maximization of the variance-of-squares criterion var for the three-dimensional core array of order

(2,2,2) given by
_{o 1|1 2
1 1|10 1

C C

C - 111 121
Cur Cyy

The mean of squared entries is C = 1.125 and the variance-of-squares criterion for the initial core is var(C) =

10.875. In the first step of the algorithm, one has to compute the matrix A with general element

Cl 12 Cl 22
CZ 12 C222

2 2
Ay= Y ¥ (C12i1i3 - C)Clizi3ckizi3 (k=12;1=12)

ip=1iy=1
For instance, A;; =0 —0.125 —0.125 + 11.5 = 11.25. For the whole matrix, one has

aA_[1125 —0375
5625 —0.375

From singular value decomposition of this matrix, one finds that PTA becomes symmetric for

P= 0911 0412
0412 -0911

Applying the transformation (P ® I, ® I,) vec C to the original core array yields the new core array

Cnew=(0.412 1.323 k0.911 2.234

—-0911 -0.500(0.412 —0.088
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with a significantly increased variance-of-squares value of var(C™") = 19.36. In the next iteration, the matrix A
has to be considered with j = 2. Accordingly, its general element is

2 2
Ay = Z Z (Ci211i3 - C)Cilli3ci1ki3 (k,01=12)
=1 i=1
where C refers to the previously obtained C™¥. Proceeding as before, one finds a transformation matrix P sym-
metrifying PTA and a new core via vec C™* = (I,,P,I,)vec C. The new variance-of-squares value then be-
comes var(C™") = 27.64. Finally, after three main iterations (i.e., 3 X 3 =9 single iterations), the var-value
reaches a relative precision of 0.001 at var = 48.6. The resulting core is

C= —-0.12 029|-0.15 276
—0.83 0.63| 0.08 —-041

Although the sum of squares is the same as in the original core, there is practically only one significant entry
left now (after squaring in mind all contributions).

5. Applications

Two applications shall illustrate the ideas discussed so far. The first application is a data example considered
in more detail in Ref. [12]. It relates to a water quality study carried out in the course of 1 year in the Niger delta
area. More precisely, 13 physicochemical parameters were measured 22 times at 10 sampling stations, thus,
yielding a three-way data array of order (10, 13, 22). The data were scaled in a way to give all physicochemical
parameters zero mean and unit variance (over all sampling stations and sampling times). The first column of
diagrams in Fig. 2 provides the loading plots resulting from a Tucker3 decomposition of the array with two
components considered for each mode. Thus, the diagrams correspond to the component matrices A ; in (1). The
first diagram reveals a strong grouping among sampling stations (‘a’ and *b’) in accordance with their known
degree of pollution. The second diagram refers to the physicochemical parameters among which a salinity-re-
lated group (conductivity ‘co’, chloride concentration ‘Cl’ and hardness ‘hr’) shows high loadings on the first
factor and the chemical oxygen demand ‘cO,’ has a high loading on the second factor. In the third diagram,
successive sampling times (1,2 = February, ...,21,22 = December) have a strong temporal trend along the first
factor. For better visualization the loadings of this first factor are plotted vs. time in the diagram at the very
bottom. The resulting curve indicates a clear temporal factor in the data. In order to detect how these factors of
different modes relate to each other, one has to study the core array, which in unfolded form, is given by

c—[ 136 048 |035 —0.35)

"1 -037 -0.11]1.02 -0.57

Accordingly, two major entries seem to be present, namely c,;; = 1.36 and c,;, = 1.02. The first one relates to
the joint effect of all first factors in the three modes. Re-inspecting the diagrams one recognizes this factor as a
seasonal change of salinity which is almost uniform for all stations (similar loadings of stations on the first fac-
tor). Indeed, the time curve reflects quite well the rainfall period (September to November) with low salinity.
The second contribution relates to the combination of the second factors of sampling stations and times with the
first factor of physicochemical parameters. Hence, again salinity is involved, but now with a geographical rather
than seasonal meaning: the vertical arrangement of sampling stations corresponds quite well to their geographi-
cal positions with increasing distance to the shore resulting in decreasing salinity, while there is no systematic
variation of the loadings of sampling times on the second factor.

Among the remaining entries of the core array there are five with comparable contributions, and it seems
hard to decide whether all or which of these have additional importance in the explanation of data structure. To
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Fig. 2. Original (first column) and rotated (second column) loading plots for sampling stations, physicochemical parameters and sampling
times in the water chemistry example. The loadings with respect to the first factor of sampling times are plotted as a curve over time (the
same curve refers to both original and rotated loading plots for sampling times).

answer this question, a simple-structure transformation was realized according to the variance-of-squares crite-
rion. The optimally transformed core array turns out to be

C= 1.48 0.11;0.05 -0.04
0.00 0.16/0.72 1.02

In contrast to the original core array, a distinction between significant and nonsignificant contributions is much
more evident now. This fact is also supported by the increase of the variance-of-squares criterion from 2.83 to
4.41. Obviously, three relevant factor combinations have to be taken into account. The corresponding rotated

79



I1. Algorithms, models and applications

R. Henrion, C.A. Andersson / Chemomerrics and Intelligent Laboratory Systems 47 (1999) 189-204 201

loading diagrams leading to this core array are plotted in the second column of Fig. 2. It is remarkable that only
a slight change takes place in the component matrices, nevertheless providing a much clearer core structure. In
particular, all sampling stations get even more equal weights on the first factor. Minor changes take place for the
parameters, too, whereas the loadings of sampling times remain practically unchanged (in particular the seasonal
curve is the same as before). Apart from the two factor combinations ¢,,;, ¢,;, already discussed before (but
now with changed importance), a third combination c,,, = 1.02—namely the one of all second factors—is found
to be significant. According to the vertical axes in the diagrams, this relates to a distinction of sampling stations
into groups ‘a’ and ‘b’ mainly due to differing values of chemical oxygen demand uniformly over time. Some
effect of pollution is likely to be hidden in this factor combination. However, we do not go into further details of
possible interpretations since the main objective of the example is to illustrate the Tucker3 model and the effect
of core simplifications.

In order to emphasize the benefits of core rotation, we shall give another example dealing with the differ-
ences between cores with optimum variance-of-squares and optimum diagonality. To keep the discussion fo-
cused and aimed at core rotation, no explicit chemical interpretation of the factors will be given. The data to be
analyzed are derived from fluorescence intensity measurements of 13 thick juice samples. Thick juice is an in-
termediary product in the production of sugar and ongoing projects aim at obtaining means to control and de-
crease the unwanted formation of colour during the process, see Refs. [5,24].

The 13 thick juice samples have been separated into 28 fractions (each of 700 wl) on a 200 mm Sephadex
G25M column that separates components according to molecular size in the approximate range of 1000 to 5000
MW. A sample volume of 300 w1 was introduced into the isocratic and aqueous 0.01 w/w% NaCl carrier run-
ning with a flow of 0.8 ml/min. For each fraction, six preselected combinations of excitation and emission
wavelengths have been measured using spectrofluorometry. The filter combinations were found in earlier inves-
tigations [25]. The six combinations of excitation and emission wavelengths cover the range 270 nm to 390 nm
of the excitation range and 280 to 420 nm of the emission wavelength range. The collected three-way data array
has dimensions (13,28,6) where the respective modes refer to sample number, fraction number and combination
of excitation—emission wavelengths.

For exploration of the data, we have chosen to analyze the data by N-way PCA, whereby the significant vari-
ation of the data is condensed into a few factors allowing for easy interpretation. In order to illustrate the bene-
fits of core rotation, we will compare two cores derived from rotation of the initial core according to the maxi-
mum variance-of-squares measure and the maximum diagonality measure. From the cores discussed in the se-
quel, it will appear that the PARAFAC model is inadequate of handling the data in question due to severe non-
diagonality of the core.

Prior to analysis, the data were mean-centred across the third mode since the filter combinations of the appa-
ratus result in quite different levels of signals. This pretreatment ensures that the arbitrary differences between
the response levels are removed from the modelling step in accordance with the aim of the investigation.

A three-way model with three factors in each mode was chosen as a compromise between having a small
number of factors and a close fit to the data. The SVD-based algorithm used to calculate the PCA model is de-
scribed in Ref. [26]. The model explains 71.7% of the variation of data (i.e., sum of squares) and the initial core
was found to be

3383 2805 493 12600 -—2300 —215-220 -—-477 110
C=| -2037 2116 124 1096 888 —1484| 16 530 213
—284 526 —1208] 246 4 1353 | —251 554 —454

where the elements have been rounded to the nearest integer to provide a clear view of the significant elements.
The variance-of-squares of C is 2.26 X 10'* and the degree of diagonality is 25.2%. Apparently, there are up to
six significant elements in the unrotated core. The sum of squares of the three largest squared elements explains
52.8% of the total sum of squares in C.
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Upon maximization of the variance-of-squares, the core takes the form of

. 4516 87 4 122 -3377 -152|—-114 94 167
C=|-194 2837 —229|1388 —441 —1495| 112 744 318
—33 320 —912|263 —78 1546 | —19 607 -744

where the variance-of-squares measure increases to 5.37 X 10'* and the degree of diagonality is 42.8%. Now,
the three largest squared elements are responsible for 80.7% of the total sum of squares. As seen directly from
C, the interpretation has become easier since much variation accounted for by several less significant factor
combinations has been condensed into a lower number of more significant ones.

When optimizing the diagonality of C instead, the core transforms into

. 4424 484 12 | =407 —1156 2857| 444 —285 562
C=|-705 —-667 1747 [—794 2700 —67|—322 —-396 87
—-139 225 —1796| 1285 -35 978 | —48 165 —1093

with a degree of diagonality at 56.8%. The variance-of-squares measure becomes 4.40 X 10'*, For comparison
with the core shown above, the three largest elements account for 70.9% of the total variation in the model, this
is approximately 10%—points less than the core that is optimal in the variance-of-squares sense. This means
that the analyst, by using the variance-of-squares optimized core € rather than the diagonalized core €, will
include what corresponds to 10%-points more variation of data in his interpretation, It is noteworthy that the
structure in the data does not conform with the PARAFAC model, since diagonality of the core € cannot be
obtained.

In Fig. 3, the 15 largest squared elements from the cores C, C and € are plotted. The line denoted by (a)
represents the largest squared elements from C. The differences between successive squared core elements are
small, leading to a rather flat line that indicates the low variance of the core elements. Without core rotation, the
analyst has to interpret, perhaps, five factor combinations in order to give a detailed picture of data. Line (b)
describing € depicts a much higher variation in the core elements. We see that the three largest elements are all
much higher than the fourth. This allows the analyst to focus on three factor combinations. Note, that the three
largest elements from the rotated core explain the same amount of variation (80.7%) as the five largest elements
from the initial core (80.9%). Line (c) describes the elements in the core with optimal diagonality, i.e., C. The
indication of the presence of three significant factor combinations is more clear than with the unrotated core, but

e
-
e

Squared valus of core elemaent
—

......

e

Fig. 3. The 15 largest squared core elements of the three cores are sorted and plotted. Line (a) represents the 15 largest squared core ele-
ments of the untreated core. Line (b) are the 15 largest squared elements of the core with optimal variance-of-squares measure, and (c)
shows the 15 largest squared elements of the core with optimal diagonality.
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a b c

el ‘ L ' .
Fig. 4. Symbolic plots of core arrays of order (5,5,5) unfolded to matrices of order (25,5). The left array refers to the original core, the

medium one to the transformed core with maximum body diagonality and the right one to the transformed core with maximum variance-of-
squares. The squared entries of the cores are translated to diameters of filled circles.

not as clear as with the core with optimal variance-of-squares. The core C suffers from the fact that the core
could not be diagonalized, since this structure is not present in data. Furthermore, we see that the levels of the
remaining squared core elements remain high for C and C. This is sub- -optimal, because the size of the elements
reflects what is not included in the interpretation of the model. The low level of all elements but the significant
ones for the line (b) is a direct consequence of maximizing the variance-of-squares measure in C.

Finally, we want to indicate the potentials of maximizing the variance-of-squares criterion in a higher-dimen-
sional setting. To this aim, a random three-way core array of order (5,5,5) was created with entries uniformly
distributed between — 1 and 1. This original core was transformed both to maximum body diagonality and max-
imum variance-of-squares. The results for the unfolded cores (= matrices of order (25,5)) are shown in Fig. 4.
For better visualization, the squared values of the entries are translated into diameters of filled circles. Due to
the random nature of the original core, there are many positions of medium relevance in the first array (a). In
contrast, the two transformed cores show a clear distinction between significant and nonsignificant elements. Not
surprisingly, in the core with maximum body diagonality (b), the five major entries are distributed along the
diagonal of the unfolded core. Such diagonal structure is lost in the array with maximum variance-of-squares
(c), but this loss is in favour of a yet smaller number of significant elements. Comparing (c) with (b) on a rough
scale, two rather than three entries are found to be significant. On a finer level, three rather than five entries are
clearly distinguished from the rest.

6. Conclusion
The proposed variance-of-squares criterion has a great potential for simplifying the structure of core arrays in
N-way PCA and, hence, for facilitating the interpretation of solutions obtained. Its main advantage over the

well-established method of body diagonalization is directly to aim at a reduction of the number of significant
entries. Moreover, its application is not restricted to cubic cores. The maximization of the criterion can be car-
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ried out by an iterative solution algorithm providing reliable results in a short period of time, thus, higher di-
mensional arrays (e.g., N=7) may be easily treated as well. Some theoretical results giving insight into the
relations between the variance-of-squares and body diagonality criteria have been derived. A convergence proof
for the algorithm is given in Ref. [23].
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Abstract

Simplifying the structure of core arrays from N-way PCA or Tucker3 models is desirable to allow
for easy interpretation of the factor estimates. In the present paper, first a general algorithm for maxi-
mizing a differentiable goal function depending on a set of orthogonal matrices is formulated and then
specified to the problem of estimating orthonormal transformation matrices for rotating core arrays to
simpler structure. The generality of the chosen approach allows to cope with all possible transforma-
tion criteria by just changing one command in the implementation. In particular, the classical body-
and slice-wise diagonalization of core arrays as well as the recently proposed maximization of the
variance of squared entries are covered. The stability of the algorithm is addressed by a simulation
study using 120 three-way core arrays of dimension (4,4,4). Each core array instantiates a class of
50 equivalent cores by random orthonormal transformations. Theoretically, each core within a given
class has the same optimum with respect to the chosen criterion, and the ability of the algorithm to
provide that result has been investigated. The algorithm proves to work with a high degree of stability
and consistency in optimizing the three discussed goal functions. In addition, theoretical convergence
results of the algorithm are provided. In particular, monotonic convergence of functional values and
convergence of iterates towards a stationary solution are proven. To illustrate the effect of maximiz-
ing the variance-of-squares and the functionality of the algorithm, the proposed method is applied
to a three-way data array from fluorometric analysis of fractions obtained from low-pressure chro-
matographic separation of a preliminary sugar product, thick juice. A significant gain in simplicity is
achieved, and in particular optimizing variance-of-squares provides a simple core structure for the data
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under investigation. The proposed algorithms for maximizing variance-of-squares, body diagonality and
slice-wise diagonality have been implemented in MATLAB and are available by contact to the authors.
© 1999 Elsevier Science B.V. All rights reserved.

Keywords: N-way principal component analysis; N-mode factor analysis; Multi-linear modelling;
Tucker3 model; Core array; Body diagonality; Variance-of-squares; Factor rotation; Orthogonal
transformation; Exploratory modelling; PCA

1. Introduction

Having its roots in the field of psychometrics, the Tucker3 model of N-way prin-
cipal component analysis (PCA), see Tucker (1966) and Kapteyn et al. (1986), is
applied more and more often within chemometrics in the context of multivariate cali-
bration or explanatory data analysis, see e.g. De Ligny et al. (1984), Zeng and Hopke
(1990), Smilde (1992), Henrion et al. (1997) and Andersson et al. (1997). In both
cases, a huge amount of data, arranged in higher-dimensional arrays, is produced by
modern analytical devices. N-way PCA serves as one possible tool for subsequent
data reduction. The corresponding model reads as (see Magnus and Neudecker, 1988
for details):

vecX =~ (A|® - - Ay )vec C. (1)

Here, X represents the N-way data array of order (#1,...,ny) and A; of order (n;,s;)
is the orthonormal component matrix belonging to the ith way. The array C of order
(s1,...,8y) designates the core array, while vec and ® refer to vectorization and
Kronecker product, respectively.

A specific aspect of the N-way PCA model is its non-uniqueness in the sense
that the factors, together with the core array, can be rotated without loss of fit:
Transforming each of the component matrices A; in (1) to A;P; by means of or-
thonormal matrices P; of order (s;,s;), the same approximation to the data array in
(1) is obtained when transforming the original core array C to

vecC=(PT® ---@PT)vecC. (2)

The resulting core, designated by C, is of equal order as C. For later argumentation,
it is important to note that the sum of squared elements of core arrays is invariant
under the above transformation.

The core array provides a way to interpret the solutions since its squared entries
represent the relative importance of the factor combinations from different (orthonor-
mal) component matrices in terms of explained variability. Therefore, it is desirable
to have a few significant entries in the core array allowing for easy identification of
the significant factor combinations. Such factor combinations will reflect the latent
behaviour or pattern in the data. But, often the core array does not facilitate direct
interpretation because the squared entries are of equal magnitude giving no direct
pointer to major trends and systematics in data. Then, the rotational degree of free-
dom described by (2) may be used to accommodate for this situation. A common
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feature of different approaches in this direction is the aim of giving the core a simple
structure by optimizing a well-defined goal function that quantifies the simplicity of
the core.

Much of the work devoted to increasing the interpretability of the N-way PCA
model has been concerned with estimating orthogonal rotation matrices that could
transform the solution to give a more unambiguous interpretation, see Kiers (1992).
The present work will focus on the common algorithmic aspect of applying or-
thonormal core transformations (2) for optimizing any differentiable criterion of
core simplicity (for the latest work on oblique rotations the reader is referred to
Kiers, 1999). Special attention will be paid to the variance-of-squares criterion as a
recently proposed goal function, see Henrion and Andersson (1999), as well as to
some more classical diagonalization criteria. The potential of the presented approach
lies in its generality, so for a new criterion of core simplicity, no specific algorithm
has to be re-designed. The stability of the algorithm is illustrated by application
to a large amount of synthesized, well-characterized, cores. Furthermore, theoretical
convergence properties are studied. The discussion concludes with an application to
data collected at-line in industrial production of sugar.

2. Criteria for simple-structure transformations

The squared core entries reflect the significance of the factor combinations in the
model. In order to allow for easy and correct interpretation, it is desirable to obtain
as simple a core structure as possible. If the core can be brought to a simple structure
where only a few but very large elements are present, the analyst may focus on these
respective factor combinations. The worst case is the situation where all elements in
the core are equal, thereby indicating that no significant single factor combination
could be found. The concept of rotating core arrays from three-way PCA originates
from Tucker (1966) and the field of multidimensional scaling, e.g. De Leeuw and
Pruzansky (1978) and Carroll and Wish (1974). For the moment we will leave out
of discussion sow the measures are maximized and focus on the goal functions.

Classical criteria of core simplicity refer to diagonal shapes. Understanding di-
agonality of a square N-way core array of order (s,...,s) in a strict sense means
that all non-zero elements should be located on the so-called body diagonal of the
be transformed via (2) to exact body diagonality. All one can do is to maximize the
sum of the squared entries on the body diagonal:

max Z C,z, 3)
i=1

Since the total sum is invariant under the transformation (2), this will simultane-
ously minimize the off-diagonal sum of squares, hence body diagonal shape is ap-
proached as close as possible. An algorithm for maximizing the body diagonality
of three-way cores has been proposed by Kiers (1992). The whole approach ap-
plies to square N-way cores of order (s,...,s) only. An N-way PCA model with all
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off-diagonal core elements being zero corresponds to the N-way PARAIllel FACtors
(PARAFAC) model (Harshman, 1970) and the CANonical DECOMPosition (CAN-
DECOMP) model (Carroll and Chang, 1970), with the factors being constrained to
orthogonality. The term degree of diagonality refers to the ratio between the sum
of squares of the diagonal elements and the total sum of squares of the core array.
According to the statements above, this degree has values between zero and one
(exact body diagonality), and it may serve to compare the diagonality structure of
cores with different total sum of squares.

A weaker concept of diagonality refers to slices of the core array along one fixed,
say the Nth, mode. In order to give sense to the concept of slice diagonality, the
(N — 1)-dimensional slices of the core have to be square arrays, i.e. the core has to
have the order (s,...,s,s5). For N =3, the slices are square matrices then, but the
entire array need not be square. For slice-wise diagonal cores, the N-way PCA model
reduces to a PARAFAC model again, but now with factors that are not necessarily
independent. An algorithm for slice-wise diagonalization of 3-way arrays has been
proposed by Kroonenberg (1983). The goal function to be maximized now becomes

SN§
max Y Y CI . 4)
j=1 i=1
In analogy with diagonality, the degree of slice-wise diagonality refers to the ratio
between the sum of squared slice-wise diagonal elements and the total sum of squared
core elements.

Both of the diagonalization approaches focus on optimizing pre-defined elements
in the core array, hence, it is implicitly assumed that the data are well described
by these respective factor combinations. Possibly significant off-diagonal entries are
not maximized. The variance-of-squares measure, recently introduced in Henrion and
Andersson (1999), allows to detect significant factor combinations without using any
a priori assumption on the structure like diagonality. This more flexible approach to
core simplification usually leads to a smaller number of significant core entries than
with diagonalization procedures. Of course, an interpretation in terms of PARAFAC,
as given above, fails then, since the significant elements can be located anywhere in
the core. The criterion to be maximized measures the variance of the squared core
entries:

max 3 SC, O )

i1=1 in=1

_ N 851 SN
C=IIs"'>_ D G (6)
i=1 =1 iv=1

In contrast to any measures of diagonality the variance-of-squares is defined for cores
that are non-square. To summarize, Fig. 1 depicts what elements are used during op-
timization of the three goal functions. Fig. la illustrates two elements on a body
diagonal of an array of order (2,2,2). Accordingly, Fig. 1b shows the diagonal ele-
ments taken slice-wise in the third way. In Fig. 1c the variance-of-squares expression
is indicated by letting all entries in the core array contribute to the goal function.
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.« e . Xk % 3K

(a) (b ()

Fig. 1. The differences between the three discussed goal functions for a core array of order (2,2,2) are

depicted (a) Maximizing sum of squares of the body diagonal elements, (b) maximizing sum of squares

of the slice-wise diagonal elements and (c) maximizing the variance-of-squares using all elements in
the core.

In accordance with the diagonality criteria, it would be desirable to define a de-
gree for the variance-of-squares criterion in order to compare different cores. For
the diagonality criteria, the maximum possible value which could be obtained within
a class of cores of common order and having equal sum of squares is the total
sum of squares. Since this value and, hence, the mean value in (6), are invariant
under the transformation (2), it is easy to show that the theoretical maximum of
the variance-of-squares criterion is attained in the situation where all core elements
but one are zero. Then, the non-zero element has to account for the total sum of
squares of the core, which is the constant pC, where p = Hf’: 1 8; refers to the total
number of elements (cf. (6)). Therefore, the variance of squares for such a core
equals (pC — C)? (deviation from mean of the non-zero element) plus (p — 1)(0 -
C)? (deviation from mean of the p — 1 zero elements) which gives p(p — 1)C%.
In general, a given core cannot be transformed into one with a single non-zero
element only, hence this situation is the theoretical limit which the actual transfor-
mation may be related to. Due to the invariance of the mean value C, this limit can
be calculated from any given core. Now, the degree of variance-of-squares is de-
fined as the ratio between the actual variance-of-squares and the theoretical maximum

p(p—1)C

3. An algorithm for optimal orthogonal core transformations

In this section, we develop a general algorithm for finding an optimal orthonor-
mal N-way core transformation according to a specific criterion. In particular, the
above-described variance-of-squares maximization, and also the classical body and
slicewise diagonalization are included. Since all these transformations can be si-
multaneously realized by a procedure with common basic structure, we establish
a general-purpose algorithm first, which applies to the optimization of any (differ-
entiable) criterion of orthonormal matrices and not just to the three special cases
mentioned above in the context of core transformations.
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3.1. Proposal for a general-purpose algorithm

Denote by @(n) the manifold of orthogonal matrices of order (n,7) and consider
the optimization problem

(P) max{v(P,....P)|Belm), i=1,...,N},

where v:.#4(n ) x --- X M(ny) — R is a differentiable function and .#(n) refers
to the space of matrices of order (n,n). The orthogonality constraints above may
be written as PP, =1, (i=1,...,N). Denoting by 4, (i = 1,...,N) any multiplier
matrix, we define the Lagrangian function
fol(n)x - xMMny) x M) x - X Mny) — R
via
N
SPr. Py, Ay) = 0(Py,... Py) = Y r [A(PTP — 1,)].
i=1
Now, since the orthogonality constraints define a regular surface in #(n;) X --- X
M(ny), it follows that, if (P,,...,Py) is a solution of the Problem (P), then there
exist symmetric multiplier matrices A; (i = 1,...,N) (see Magnus and Neudecker,
1988), such that (P,,...,PN,Al,...,AN) is a stationary point of f (i.e. the derivative
of f vanishes at that point).
Writing down the stationary conditions gives

%(}315713]‘/)72131/11:0 (121,,N), (7)

P'B—1,=0 (i=1,...,N). (8)

Here, we made use of the convention that dv/0P; is a matrix of same order as P, with
general entry (0v/0F, )y = 0v/0 py;, where the last expression refers to the usual partial
derivative of v with respect to the general entry py of P. This special arrangement
of partial derivatives is useful in the context of matrix calculus. Later, we shall also
work with the conventional definition of the partial gradient Vpv considered as a
linear function assigning to each O € O(n;) the scalar

(Vpv,0) Z —CIkt
From here, the followmg relation between the two notions is obvious:
ov ¢
(Wn0.0) =t 07 ©)
Of course, (8) means nothing else than the required orthogonality of P,,...,Py, so

the interesting part is contained in (7). Multiplying the ith condition of this set from
the left by P', provides (by orthogonality)

TaU(Plv PN):zA; (lzl,,N)
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From these equations it follows that for any stationary solution (2,...,Py) of the
problem (P) the matrices on the left-hand side have to be symmetric. Conversely, if
we find orthogonal 2, such that the mentioned matrices are symmetric, then we have
obtained a stationary solution of problem (P). This follows after left-multiplication
of the above relation by P; leading back to (7) and (8) due to orthogonality of the
P.. Summarizing, (P,...,Py) is a stationary solution of problem (P) if and only if
the matrices

_T Ov
P,
i 6P,

are symmetric for i=1,...,N. Therefore, it is desirable to have an algorithm iterating
on orthogonal P, thereby ‘symmetrifying’ the above matrices. This is realized by the
following algorithm:

P,....Py) (10)

Algorithm 1.
1. Set P%:=I, (i=1,...,N) and k:=0
2. Set k:=k 41 and i:=0
3. Set i:=i + 1 and compute an orthogonal matrix P¥:=UTV", such that

v
OP,;
where U,V € O(n;), dy > --- > d,, >0 (i.e. U and V provide a singular value
decomposition of the derivative matrix). If i < N, then goto 3.

4. If v(Pf, ..., P¥) significantly differs from v(P}~",...,Pf~"), then goto 2.
5. Stop

U |- (P,....P",PF, . PEY| V = diag[d,,...,d,,],

The motivation behind step 3 is that it provides a symmetrification in the sense
of (10). Indeed, one has

v
PkT
i aR

where § is a symmetric matrix.

Note that the proposed method does not depend on the concrete structure of the
function v to be maximized in problem (P), therefore it applies as a general-purpose
algorithm for maximizing (or minimizing after passing to —v) a differentiable func-
tion of N orthogonal matrices of possibly differing orders.

(PF,...,PE PF!, L PFY| =V diag[d,,....d, VT =S

3.2. Application to core transformations

Now, we are going to specialize the developed general algorithm to the case of
core transformations. All one has to do, according to the preceding section, is to
calculate the partial derivatives dv/0F; of the corresponding criteria v with respect
to the transformation matrices F,. This turns out to be rather difficult, however,
when evaluating at general current iterates whereas it is quite easy to compute at
identity matrices. In the following, we shall develop an appropriate modification
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of the algorithm described above taking into account the specific structure of core
transformations.

It is important to note that, in the context of core transformation, the criteria
depend on the transformation matrices in a composite way: the criterion is a function
of the core array which in turn depends on the transformation matrices. Given a core
array C and orthonormal matrices P,..., Py, we denote the core array transformed
according to (2) by

T(P,...,Py;C)= (P @---@ P} )vec C. an
Now, the criterion as a function of transformation matrices writes as a composition
U(Pl""’PN) = 5(T(1)139PN5 CO))’

where C° is the original core array and & denotes the criterion as a function of the
core array. For the three transformations to be considered here, one has

variance of squares 0;(C)= Z e Z(Cﬁ,‘_,’m — é)z, (12)
=l in=1
body diagonality #(C)=>_C7 (13)
i=1
slice diagonality (C)=>"3"¢2 . (14)

j=1 i=1

Let us consider the very first step (k= 1,i = 1) of the algorithm above: The initial
transformation matrices are identity matrices and in step 3 one has to compute the
partial derivative

o or
oP, P

according to the chain rule. The right-hand side matrices are easily calculated as will
be seen later on. First note, however, that in the following iteration (k=1,i=2) of
the algorithm, the partial derivative is no longer taken at a complete set of identity
matrices but at (Pl,1,,...,I, ), where P! is the current iterate obtained in step 3
of the previous iteration. So, in the course of iterations, the convenient possibility
of evaluating the partial derivatives at identity matrices gets lost. Yet, by a simple
modification, this difficulty may be overcome. Let us illustrate this for the second
iteration: Define a function

U*(P,..., Py )=0(PP,Py,...,Py).

o0
(Isla--wIsN):%(CO) (Isn'"als}v;co) (15)

Obviously, the maximization of v* is equivalent to the maximization of v, since any
solution of the one criterion is immediately transformed into a solution of the other.

Therefore, instead of continuing the maximization of v as proposed in the original
algorithm (with £ = 1,i =2), one may restart the whole algorithm at the beginning,
but now maximizing v* and iterating on P, instead. Starting again with identity
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matrices means to keep the current value of the old criterion, since v*(,,...,I,)=
(P, 1,,...,1,). From the definitions, one gets

v'(P,...,Py)=T(PP,...,Py; C")) = &(T(P,...,Py; C")),

where C, = T(P},1,,,...,1,; C®) is the updated core array after applying the trans-
formation matrices P, 1L,,...,1, to the original core C°. In order to apply step 3 of
the algorithm, one has to calculate now the partial derivative dv* /0P, at the identity

matrices, so — again by the chain rule — it results
ov*
0P,
Now it is clear how to proceed: calculate the second transformation matrix P? as to
symmetrize the matrix PT(dv*/0R)(L,,,...,1;,) {(compare step 3 of the algorithm),
update the core array by C?> = T(l,,P},1,,...,1,;C"), and, in the next iteration
evaluate the partial derivative according to
or
op;
(without explicit reference to a newly defined v**). In this way, one gets a sequence
of core arrays maximizing the considered criterion.

Summarizing, the following algorithm for optimal core transformation with respect
to one of the three criteria ¢ introduced above is proposed:

o oT
L,....[.)=—(C)—(,,...,L.;Ch.
s, y) ac( )apz(l i C)

o5, P
6C(C) sy -5 Ly; C7)

Algorithm 2.
1. Set C™:=C" (=original core array), p=l, (j=1,...,N) and k:=0
2. Set k:=k +1 and j:=0
3. Set ji=j + 1, CM:=C"¥, P":=P*" and compute an orthonormal matrix P:=
UTVT such that

v old oT . gold N
U |56 (€™ g s Loi C)| V = it [d,....d),

where U,V € O(ny), dy > -+ > dy, > 0.
Set C™:=T(Iy,,...,L;_,P,1,,,...,1,;C") and PP*™:=PPP. If j <N, then
goto 3.

4, If §(C™™) significantly differs from &(C%?), then goto 2.

5. Stop

The transformation matrices, leading from the original core array C° to the final
core array C"™" are given by P, i.e. C"V = T(F",..., P, C®). Step 3 is per-
formed by singular-value decomposition as in Algorithm 1, so it remains to compute
the matrix in brackets. The general element of the second factor in (15), which is
common to all procedures, is obtained as

aTt in 1d Cf’ld P ki . =1,
A A e L R Ay
an il 0 / # 1.

94



I1. Algorithms, models and applications

264 C.A. Andersson, R. Henrion/ Computational Statistics & Data Analysis 31 (1999) 255-278

The general element of the first factor calculates for the three criteria according to

6U1 (Cold) _ 4(C,21 OI?N C) C::ld v

51}2 old 2C°lfi“ il —.. = iN’

_0C(C ) . ,N_{O else

6U3 old ZC::ld i = =iy_1,
(C ) v { 0 else

Now, the expressions in brackets in step 3 become (by multiplication of the corre-
sponding factors) for the three different methods

Sj—1 Sj+1 SN

201d old old
[]k1—4§ : E § : E ( oondjm bl Ly C) C11 I PEN A TTOTN i,vCil,.“,i,-_l,k,i,+1 ..... in?

i1=1 ii—1=1lip1=liy=1

[ ]kl =2C, - C;:.lil,k,l,m,l (k at position ),

~~~~~

SN . . . .
- 2ZiN:1 Cl - G, (K at position ) if j <N,
[ s
23 e, if j=N.

It is interesting to note that the matrix [ ]i’l is automatically symmetric for j = N.
Henceforth, the slice-wise diagonality remains unaffected by rotation for j =N, and
with regard to algorithmic efficiency this last inner iteration should be omitted from
the optimization scheme.

4. Validation of the algorithm

A large quantity of well-characterized core arrays have been simulated for the pur-
pose of assessing the robustness of the proposed algorithm with respect to finding
global, rather than local, optima. The core arrays have been synthesized especially
for investigating the ability of the algorithm to find the global optima of the three
discussed goal functions; variance-of-squares, diagonality and slice-wise diagonality.
The amount and features of cores required for such an analysis can only be provided
by synthesis.

4.1. Experimental

A number of 120 core arrays of dimensions (4,4,4) with random elements in the
range —100 to +100 were synthesized. Each of the 120 synthesized cores were used
to establish a class containing 50 core arrays by random orthonormal transformations
of the same synthesized core array as described by (2). This ensures that all 50
core atrays within one class can be obtained from each other by an orthonormal
transformation, and they are equal in this sense. By comparing the values of the 50
optimized measures within each class, an estimate can be made towards the ability
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of the algorithm to locate the global optimum. Rotated cores within each class have
the same optimal value with regard to the three investigated measures. However,
preliminary calculations on 80 simulated cores showed that for 11 core arrays the
optimal value of the goal function was not found in approx. 10% of the cases.
Thus, to enhance the probability of locating the global optimum, the algorithm was
restarted 5 times with each core using random initial orthonormal rotation matrices.
Additional restarts were performed until the two largest values of the goal function
differed less than 1%. This scheme was used throughout the calculations and appears
to be a feasible approach to the problem of non-global optima.

Computations were performed on a DELL 200 MHz Pentium Pro running MAT-
LAB 5.1.0.421 under Windows NT 4.0. The MATLAB built-in function rand() was
used for the purpose of generating random numbers.

4.2. Results

The results from applying the proposed algorithm to the synthesized cores are
depicted in Fig. 2a—c. For each class two groups of core arrays are available; the

22_ ....... ....... ...... ...... ..... S ........ ...... _

20F ot P L L I S P P

oo

Degree of variance-of-squares [%)
o
T
il

o

GWIHHZ H}H ”HH ,,,,, Hl ,,,,,, .H ........... HH 0

(a) Class

n

Fig. 2. Summary of the 120 classes each containing 50 cores derived from the same synthesized core
array by random orthonormal transformations. The figure depicts the distribution of un-optimized and
optimized goal function values for (a) variance-of-squares, (b) body diagonality and (c) slice-wise
diagonality. The vertical line indicates the range from the minimum value to the highest value of the
goal function. The dots indicate the medians of the two sets. See Section 4.2 for a detailed discussion.
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50 un-optimized core arrays and their optimized equivalents. The differences in the
goal function values of the two groups are illustrated in Fig. 2a—c. For each distri-
bution a vertical line connects the lowest observed value with the highest observed
value and serves to illustrate the range of observations. The dot on each verti-
cal line depicts the median of the observations. The goal function values for the
un-optimized core arrays are, as expected, lower than the values of the same opti-
mized core arrays. This is seen as a clear-cut separation between the two groups;
the goal function values of the un-optimized core atrrays are clearly lower and more
spread than the goal function values of the core upon maximization. The function
values upon optimization are in most cases so similar that there is no difference
between the lowest and the highest of the returned goal function values. The gain
of optimization is illustrated by the large differences between the respective mea-
sures before and after applying the algorithm. In addition, there is no overlap of
the highest values of un-optimized cores with the lowest values of optimized cores,
thus, all cores have gained in goal function value. Fig. 2a illustrates the degree of
variance-of-squares before and after optimization. There generally is a tri-fold gain
for this measure, providing a significant gain in simplicity for all classes. Within
some classes, the optimal variance-of-squares core arrays obtained by the algorithm
differ significantly in function values. E.g., for class no. 11 at least one of the
returned cores have a suboptimal function value at approx. 11%, whereas the me-
dian clearly shows that the large part of the estimated optima are equal in value
at approx. 12.5%. An important observation is that for all classes the median is
similar to the highest value, this indicating, that by applying the algorithm several
times a good estimate on the global optimum is found as the highest value. Fig.
2b represents the parameters for the optimization of the body diagonality. For the
body diagonality version of the algorithm, the ranges within classes of the calcu-
lated optima are quite small. This observation confirms what was apparent during
iterations; the optimal degrees of body diagonality within classes were more similar
than for the values for variance-of-squares. The median of the distributions typically
increase 8 times by optimization. Fig. 2c¢ depicts the parameters for the optimiza-
tion of slice-wise diagonality. The calculated optima are very close within classes,
hence the algorithm for slice-wise diagonalization is slightly more stable in provid-
ing the global optima. This behaviour may be explained as follows: since there is
no transformation matrix for the last mode, there is one less derivative matrix to
return a non-global optimum and the algorithm is less prone to obtain a suboptimal
rotation.

5. A three-way PCA of fluorometric measurements of thick juice

To exemplify the principle of maximizing the variance-of-squares and the use of
the algorithm described in Section 3, we will apply the method to a core array
derived from fluorometric measurements. To keep the focus on the proposed method
we will restrict ourselves to discuss solely the core array and leave out detailed
chemical interpretation.
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In northern Europe white crystalline suger is produced from sugar beets, i.e. Beta
Vulgaris. The process is extremely complex and many of the unit processes involve
recycled streams, see Larsson (1989). At different stages in the production, colour is
formed due to combined effects of pH, temperature and the natural presence of colour
precursors, polyphenolic oxidases, phenolic amino acids, carbonylic components and
amino-N. The colour is a quality parameter which, in part, has influence on the
classification of the final crystalline sugar product. From an economical standpoint
it is therefore of great importance to be able to automatically control the operating
conditions to give the whitest possible sugar and the most uniform product. Among
the many possible intermediary products thick juice was chosen as a potential in-
dicator of the degree of colouration in the final sugar. Thick juice is comparable
in colour and viscosity to syrup. Spectrofluorometry has been selected for screening
due to its sensitivity towards phenolic compounds and, to some extent, amino acids.
See Nergaard (1995) for a discussion of the suitability of spectrofluorometry as a
screening method in the sugar process.

5.1. Experimental

From the 1994 production period, 15 thick juice samples were chosen. Each sample
was separated into 28 fractions in a low-pressure liquid chromatography (LPLC)
system. For each fraction, the fluorescence intensity for six combinations of excitation
and emission wavelengths have been measured, thereby yielding a three-way array
of order (15,28,6) corresponding to (samples, fraction, filter combination). Since
the sensitivity and noise levels are equal for the measured filter combinations, it
was chosen not to scale the data prior to modelling. However, due to the significant
differences in levels of the intensities measured over the filter combinations data were
centred over the latter mode.

5.2. Results

To determine the correct dimensionality of the model, a number of three-way PCA
models were calculated and the fit to the data was evaluated for each model. The
dimensions ranged from one to four factors in all modes, thus, a total of 37 valid
models were calculated. It applies that not all combinations of 1-4 factors are valid
since the product of the two smallest dimensions of the core must be equal to, or
greater than, the largest dimension. E.g., valid dimensions are (1,2,2) and (2,4,2),
whereas (1,1,2) and (1, 1,4) are not. The dimensionality of the model is found under
consideration of parsimony, and the chosen model must describe data well with as
little complexity as possible since this minimizes the risk of overfit. In order to
identify the model that is optimal in this sense, the 37 models were arranged in 13
groups according to the number of parameters in the core. For each group of cores
with equal number of elements, the model explaining the highest amount of variation
in the data was identified. The number of core elements is of direct interest for the
analyst, since the higher the number of core elements, the more factor combinations
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Fig. 3. A total of 37 three-way Tucker models of specified dimensions are calculated and each model

is grouped according to the number of elements in the core. For each group the maximum degree of

fit is plotted as a function of the number of core elements in the group. From the plot it is seen that
the best model with 32 core elements explains 79.0% of the variation, see Section 5.2.

must be included in analysis and interpretation. One could undertake a view of model
complexity in terms of the total number of parameters rather than just the number
of parameters in the core. However, the complexity of the systematic behaviour of
data is reflected by the dimensions of the core since the dimensions directly relate
to the number of latent phenomenon in data. Thus, it is chosen to weigh the fit of
the model against the complexity in terms of number of factors.

In Fig. 3 the highest explained variation in each of the 13 groups is plotted as
a function of the number of core elements in the group. As indicated by the em-
phasized points, two groups are interesting; models having 32 and 48 core elements.
Both these models provide a close fit to the data with a relatively low number of
parameters in the core. When going from 32 core elements to 48, the explained
variation increases merely from 79.0% to 81.1%. Thus, in order to make the inter-
pretation manageable, the array with 32 elements is chosen for further analysis. The
model with the highest explained variation in this group of models was found to
have dimensions (4,4,2) indicating that four principal patterns prevail in the sample
and fraction modes whereas two principal trends suffice to describe the variation
of the filter combinations. The core array of the initial (i.e., un-rotated) model is
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depicted by C™:

3256 —2901 620 183 | 2702 2270 277 —869
1986 1921 16 1601 | —1025 951 1632 152
742 735 949 940 | -329 67 —1130 315
—609 184 1168 548 232 249 30 580

C'l'aW —

Bearing in mind that the squared value of any core element is proportional to the
variation explained by the respective factor combination, inspection of C™" reveals
that there is no clear threshold allowing for a simple distinction between significant
and insignificant core elements. This is a common problem when interpreting larger
core arrays. Because the analyst cannot pin-point a few significant combinations of
factors, interpretation may be rendered impossible. The variance-of-squares of C™%
is 2.22 x 10" and the degree of variance-of-squares is 7.73%. Application of the
algorithm described in Section 3 for optimizing variance-of-squares rotates C™" into
C"* by orthonormal transformations.

4486 110 -—-16 -9 129 3509 -—-198 373
301 2644 496 —1215|—1319 —-605 833 252
222 =75 —1249 662 37 =537 -3 —609
39 —414 569 1649 | 274 —45 —-2009 -324

CVOS —

The variance-of-squares of C*** is found to be 5.45 x 10'* which is 2.5 times higher
than before rotation. With a sum of squared residuals at 1.443820401 x 107 the fit of
the two models is verified to remain unaffected by the orthonormal transformation.
In contrast to C™", the rotated core, C'*, directs the analyst to a few significant
combinations of factors. This is clearly illustrated in Fig. 4 where the squared value
of each of the 32 elements is plotted against the respective ranking (solid lines).
The squares of the elements level out slightly below 2 x 10° after the fifth ele-
ment for the rotated core. Thus, the significant variation in data is accounted for by
interpreting the factors represented by the five largest squared core elements. The
sum of squares of these five squared elements is 4.62 x 107, whereas the sum of
squares of the five largest elements of the un-rotated core amounts to 3.54 x 107 as
seen from the curves representing the cumulated values (dashed lines). The largest
squared core element of the rotated core (= 2 x 107) is approx. twice as high as
the largest squared element of the unrotated core (= 1 x 107), thus explaining twice
the variation in the data. For comparison, a number of 9 core elements would have
to be included in the interpretation of the un-rotated core to account for the same
amount of variation.

As no body diagonal is defined for the (4,4,2) core array under investigation, the
core cannot be optimized with respect to diagonality. For the sake of comparison
and for proving the functionality of the algorithm, the core array has been optimized
with respect to slice-wise diagonality over the last mode. The resulting core, C*¥die,
is found to have a sum of squared slice diagonals of 3.80 x 107 corresponding to
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Fig. 4. Squared valucs of the 32 clements in the unrotated core and the rotated core arc plotted against

their ranking (solid lines). As expected, the rotated core has fewer and more significant core elements

than does the unrotated core array. By following the course of the cummulated curves (dashed lines) it

is concluded that for any given number of factor combinations the rotated core captures a significantly
higher amount of variation of the data.

a degree of 69.8%:

4252 —762 -8 554 | 1362 2213 —356 —1751
Cwan_ | 59 3179 —191 —224|-1618 132 1217 773
—42 —628 1619 —561| 321 —303 —1533 —489

283 —54 363 1365| 697 622 671 —1049

According to C**¥ the core can be diagonalized to some extent, albeit, not yielding
few significant elements, although the diagonalization has provided the analyst with
a core that is a little simpler than the initial core array, but not as simple as the core
array that is optimal in a variance-of-squares sense.

6. Convergence properties of the algorithm

In this section, we study convergence properties of Algorithm 1 presented in
Section 3.1. First, we are going to show that the sequence of iterates generated
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by this algorithm has monotonically nondecreasing values of the criterion to be
maximized. As a preparatory step, we need the following lemma:

Lemma 1. With a matrix A of order (n,n) associate the optimization problem
max{tr PA| P € O(n)}. (16)
Then, the set of (global) solutions to (16) is given by
GS={P e O(n)|P=VU, (UV)ecSV(4)},
where
SV(4)={(U,V) € O(n) x O(n)|UAV =D, D is diagonal and nonnegative}

is the set of pairs of orthogonal matrices yielding an ‘unordered’ singular-
value decomposition of A.

Proof. First note that SV (A4) consists of all pairs of orthogonal matrices providing
a singular-value decomposition (in arbitrary order of singular values) of 4. Now,
writing down the first-order optimality conditions of (16), one verifies (similar to
Section 3.1) the set of stationary solutions of this problem as being

SS = {P € O(n)| PAis symmetric}.

Denote by SEV(B) and SSV(B) the sum of eigenvalues and singular-values, respec-
tively, of a symmetric matrix B. Then,

tr PA = SEV(PA)<SSV(PA) =SSV (4)=tr Q4 Y(P,0) €SS x GS  (17)

holds. Here, the first and second equality are obvious (recall the orthogonality of
P), the inequality follows from the fact that the singular values of a symmetric
matrix coincide with their absolute eigenvalues, and the last equality comes from the
definition of GS:

tr QA =t VUAVYT =t VDV' = tr D = SSV(4),

due to the orthogonality of ¥ and to D being a diagonal matrix of all singular values
of 4. Hence, the elements of GS realize a value of goal function which is not less
than the value of the goal function of any element in SS, which in turn, being the set
of stationary solutions to (16), contains the global solutions to (16). In conclusion,
all elements of GS are global solutions. If, on the other hand, P is a global solution
to (16), then tr PA=tr QA4, where O € GS is selected arbitrarily (a singular value
decomposition of 4 always exists). As a global solution, P is a stationary solution as
well, hence, P € SS and SEV(PA)=SSV(PA) due to (17). Now, for the symmetric
(due to P € SS) matrix PA, there exists some V € O(n) such that VTPAV = D,
where D is a nonnegative (by SEV(PA)=SSV(PA)) diagonal matrix. Consequently,
D contains the singular values of P4 and, hence, those of 4. Defining U:=V"P, it
follows that P = VU and (U,V) € SV(4). This means P € GS, hence the set of
global solutions to (16) coincides with GS as was to be shown. [

Corollary 1. The choice of P in step 3 of Algorithm 1 corresponds to a selection
P* € argmax{{Vpu(Pf,...,PE ,PF .., Py 1), 0) |0 € O(ny)}.
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Proof. By definition of step 3 of Algorithm 1 and according to Lemma 1, one has

0
P € argmax {107 | 2B BB BED] 10 € €.
Now the assertion follows from (9). O

Now, we are able to prove our first result on monotone convergence of func-
tional values in Algorithm 1. To this aim, we refer to the criterion v as being par-
tially convex, if it is convex in each variable P, while the remaining ones are kept
fixed. Of course, each convex v is partially convex, but the converse is not true.
For instance, the function f(x,y)=xy is partially convex (actually linear in both
variables separately) but fails to be convex. We also recall that convexity of a dif-
ferentiable function f implies the relation f(y) — f(x)= (Vf(x),y —x) for all x
and y.

Lemma 2. If the criterion v is partially convex, then the sequence v(P,...,P¥) is
nondecreasing with k.

Proof. One has
WP, P — P PE

N
ZZU(])IIC"",F;IilaEk’Pk*I ',P]érﬁl)
i=1

1 s
k ¥ pk—1 pk—1 k-1
—o(PY,...,P* P PR, PETY
N
k k k— k—1 k— k k—
2 Z<VEU(P1 EARRS] i—lnpi l’Pi-H ""’PN 1)’PI, _F:' 1> 2 0.
i=1

Here, the first inequality relies on v being differentiable and partially convex, while
the second inequality results from Corollary 1 due to P¥~' € O(n;). O

For the three criteria vy, v, v; of core simplicity, introduced in Section 2, one has
v; =0; 0T, where T and the &; are defined by (11) and (12)(14), respectively.
Obviously, the ; are convex functions (for #;, this follows from the invariance of
the mean C in (6) under arbitrary orthogonal transformation 7). On the other hand,
the transformation T is multilinear, i.e. linear in each variable while the remaining
ones are kept fixed. Consequently, the v; are partially convex as compositions of a
convex with a multilinear function. Furthermore, they are, of course, differentiable.
Then, Lemma 2 allows to formulate the following result:

Corollary 2. For the three criteria of core simplicity defined in Section 2,
Algorithm 1 generates a sequence of iterates with monotonically nondecreasing
values.
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Now, we turn to the convergence of iterates themselves. For the purpose of abbre-
viation, we put bold face characters for N-tuples of matrices, i.e., P =(P,...,Py).
As a first immediate result, we have:

Lemma 3. If the sequence P* of iterates generated by Algorithm 1 converges to-
wards some P*, and if the criterion v is continuously differentiable, then P* is a
stationary solution of Problem (P) introduced in Section 3.1.

Proof. Let i < N be arbitrarily given. By the remarks following the definition of
Algorithm 1, one has that

(P L RELRL BT

is a symmetric matrix. Passing to the limit £ — oo, the above expression converges
by the assumed continuous differentiability of v towards

ov
[)i*T [ﬁ(P* ):| ,

which, as a limit of symmetric matrices, is symmetric itself and, according to (10)
implies P* to be a stationary solution of Problem (P). O

Hence, if the iterates converge, then their limit is a stationary point, as desired.
However, there is no guarantee for the sequence P* to converge at all. On the
other hand, since the P* belong to the compact set S:=0(n,) x --- x O(ny), there
must exist some convergent subsequence P% —; P* € S. Unfortunately, Lemma 3
does not apply to this subsequence and one may not derive the usual convergence
result, stating that all accumulation points of the sequence of iterates are stationary
solutions. This will be possible after excluding some degeneracy: we shall call P € S
a nondegenerate point of v, if the singular values of (dv/0F,)(P) are pairwise distinct
and strictly positive for all i < N. Then, we have:

Theorem 1. Let v be continuously differentiable and partially convex (as it holds
true for the three criteria of core simplicity defined in Section 2). Then each
nondegenerate accumulation point of the sequence P* generated by Algorithm 1 is
a stationary solution of problem (P) introduced in Section 3.1.

Proof. Denote by P* € S any nondegenerate accumulation point of P*, The realiza-

tion of step 3 in Algorithm 1 means that P**! is defined by P/ =(UHH)T(F )T,
where Ut V¥*1 € @(n;) provide a singular-value decomposition

IR in;

0
ljik+l a_ll;(Plk+la""I)i]qulsI)ik9'">P]§) Vik+1 dlag [dk+l dk+1],

with d; kL > L > d; "“ >0 fori=1,...,N. Since v was assumed to be continuously
dlﬁ"erentlable the derlvatwe Ov/0P; is bounded on the compact set S for all i, hence
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so are its singular values. As a consequence, there exists a subsequence with
Pkl —, P*’ (Uk1+1 Vk1+1 dlag[der . d!fl+l])
— (U, V™ diagld]T, ..., dy]).

By definition of P**! and by continuity of dv/0P, it follows that PX+! —; P**,
where P;* = (U)T(V*)T and

0
U:*—”(R**,...,E’:*DP,-* LBV = diagldig,. . din] (13)

with di} > --- > d}; > 0 fori=1,...,N. Furthermore, Lemma 2 along with the fact
that k,H > k, +1 prov1de v(Ph+) > > U(Pk‘“) > v(P*) and o(P*) > o(P**) > v(P*),
after passing to the limit / — oo. It results that v(P*) = o(P**).

Next we define the index set I to consist of those i < N such that P* = UTV],
where U, V; € O(n;) provide any ‘unordered’ singular value decomposition

0
u%(ﬂ**,apltklapl*a’PI\);)Vl = diag[di,lﬁ-'-adi,n,‘L

with the d;; > 0 in arbitrary order. Suppose that {1,...,i} CI for some i/ < N.
Then, by definition of I, one gets P’ = UIVI, where Uy, ¥, € O(n)) provide an
unordered singular value decomposition

Ul_(Pl*a P]\:/k)Vl :diag[dl,lau'?dl,nl]:

which after using some permutation matrix II € @(n;) turns into a conventional sin-
gular value decomposition

HUl—(Pl*, P]\?)VlHT:diag[dl,l,...,dl,m],

with dy, > -+ > d,,,. From (18) it follows that P** = (U;*)T(V;*)T, where
v
op
provides another singular-value decomposition of the same derivative matrix. Now,
the assumption of nondegeneracy of the accumulation point P* yields the uniqueness
of the singular-value decomposition of (dv/0P,)(P*) (cf. Horn and Johnson, 1991,
pp. 147-148). In particular, U;*=IIU, and V;*=V,II" and, hence, P;*=U "IV =
UMV = Pr. In case that i’ > 2, we proceed with the index 2 as before with the
index 1 in order to see that P = UV, with some Us,, Vs € (O(n,) which provide a
singular-value decomposition

U (B Py)V™ = diagldy,....dy, ]

HUZ—(P{‘*,PZ*, S POVLITT =diagld, 1, ..., da ]

ov . X
:HUza_}jz(Pl ,...,PN)VZHT,

where again IT is some permutation matrix, and the last equation comes from the
first one by using the identity P = P;* proved before. Noting that, by (18),
ov v

U S B By BV = dingld ) = U3 S (B VS
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yields another singular value decomposition of the same derivative matrix on the
right-hand side, the nondegeneracy of P* implies P* = P with the same argumen-
tation as given before for the index 1. Proceeding like that for all indices i < 7/,
thereby consecutively exploiting the previously obtained relations P =P for j < i,
one ends up at the following statement:

{1,...i"}CI=>P*=P" Vi<i. (19)

Now suppose that 7 # {1,...,N}. Denote by i* < N the smallest index such that
i* € I. By definition of 7, one has that Pt # UTVT where U,V are arbitrary orthog-
onal matrices providing an ‘unordered’ singular-value decomposition of

av kK EE k %
ap B BB B,

Then, Lemma 1 and (9) give (similar to the proof of Corollary 1)

P: & argmax{(Vp o(P", ... P 1, P, P7).0) | Q € O(ni-)}. (20)
On the other hand, a combination of (18), Lemma 1 and (9), implies for all i <N,

P € argmax{{Vpo(P™,..., P>, PF,...,PY),0) | Q € O(n)}. 21)
Now, (20) together with (21) applied to the index i* leads to

(Ve o(Py*, ..., P P, Py), P — Py >0 (22)
and

u(P*™) — u(P")

N
= B PP P Py = 0B BB P PY)

1o st
i=1
N

> (Var(F™",.... PO, B P, BY) P = BY) > 0,
i=1

where the first inequality relies on v being differentiable and partially convex as in
the proof of Lemma 2. All terms in the last sum are nonnegative in view of (21),
but at least the term with index i* is strictly positive according to (22), whence
the strict inequality. The last derivation, however, is in contradiction to the fact that
v(P**) = v(P*) which was proved above. Consequently, the assumption (following
(19)) was false and it holds that 7 = {1,...,N}. As a result, for all i < N the P*
may be written as products UV where U, V; € G(n;) and
v

v
U—@F", .. PP, POV =D =U—P"V;
al)l( 1 i—1s47 N) aP,( )

with some diagonal matrix D, where the second equality relies on (19). Then,

0
Pi*Ta_;(P*) — VIDVIT
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are symmetric matrices for all i < N as required in the stationarity condition (10).
Hence, we have shown, that P* is a stationary solution of problem (P). O

We note that the proof of Theorem 1 follows the typical patterns of conver-
gence proofs for algorithms in nonlinear optimization as developed, for instance, in
Zangwill (1969). The nondegeneracy condition in Theorem 1 may be supposed to
be satisfied in ‘almost all’ problems since it expresses the typical situation of all
singular values of some matrix being distinct and strictly positive. Indeed, in all
examples we considered so far, the algorithm asymptotically reached a stationary
solution (characterized by (10)).
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Abstract

In an attempt to improve the speed of multi-way algorithms, this paper investigates several different implementations of
the Tucker3 algorithm. The interest is specifically aimed at developing a fast algorithm in the MATLAB™ environment that
is suitable for large data arrays. Nine different implementations are developed and tested on real and simulated data. In a
subsequent paper, it will be demonstrated that a fast algorithm for the Tucker3 model provides a perfect basis for improving
the speed of other multi-way algorithms. From the Internet address http:\ \ newton.mli.kvl.dk \ foodtech.html, the developed

algorithms can be downloaded. © 1998 Elsevier Science B

V.

Keywords: Tucker3; Three-mode factor analysis; 3-MFA; Three-way principal component analysis

1. Introduction

The Tucker3 model, or N-way PCA, is one of the
most basic multi-way models used in chemometrics.
It originates from psychometrics from the pioneering
work of Tucker [1], and the algorithmic solution for
estimating the model was later substantially im-
proved by Kroonenberg and de Leeuw [2] and ten
Berge et al. [3]. Several successful applications have
been demonstrated in quite different areas such as
chromatography [4], environmental analysis [5] and
person perception analysis [6). Having an efficient
algorithm especially for large data sets is therefore of
utmost importance. Several different algorithms have
been described in the literature. Almost all are based
on least squares regression, singular value decompo-

* Corresponding author, E-mail: ca@kvl.dk.
! E-mail: ro@kvl.dk.

sition (SVD), Gram-Schmidt (GS) orthogonaliza-
tion, or a modified Bauer—Rutishauer (BR) estima-
tion. In this paper, all steps in the Tucker3 algorithm
will be optimized with respect to speed. The focus
will be on three-way models, but all results are
equally applicable on models of higher orders [7]. In
the sequel, nine different algorithms will be com-
pared as they have been implemented in MATLAB,
and it will also shortly be described how the algo-
rithms can be modified to handle missing values and
data with different uncertainties.

The sizes of the arrays considered are such that the
computer has physical memory to hold the array and
intermediate working arrays. If the array size ex-
ceeds what the physical computer memory can hold,
other problems arise and other algorithms may be
better (see Refs. [8—10]. These algorithms do not
work with exact least-squares solutions, but rather try
to approximate the solution by finding suitable bases

0169-7439 /98 /$17.00 © 1998 Elsevier Science B.V. All rights reserved.
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for the different modes. An efficient algorithm for the
case of one large mode has also been proposed [11].
For arrays whose size does not exceed the potential
computer power, it is not necessary to compress the
array prior to modelling as most Tucker3 algorithms
are quite fast. The purpose of this paper is to provide
the fastest way of estimating the Tucker3 model, and
implicitly providing suitable bases for the modes of
large arrays.

2. Theory

In the following, scalars are indicated by italics,
vectors by bold lower-case characters, bold capitals
are used for two-way matrices, and underlined bold
capitals for three-way arrays. The letters I, J, and X
are reserved for indicating the dimension of the three
different modes. The ijkth element of X is called x;;
and is the element in the ith row, jth column, and kth
tube of X. When three-way arrays are unfolded to
matrices, the following notation will be used: If X is
an I X J X K array and is unfolded to an / X JK ma-
trix, the order of J and X indicates which indices are
running fastest. In this case, the indices of J are run-
ning fastest, meaning that the first J columns of X
contain all variables for k=1 and for j=1to j=J.
In short, we will term the I X JK matrix XV, where
the superscript indicates that it is the first mode that
is preserved. Likewise X® is a J X IK matrix and
X® a K X IJ matrix. If the arrangement of the array
is clear from the context, the superscript will not be
shown.

An IXJXK array X is given and a Tucker3
model of ranks R*, R®, and RC respectively is
sought. Written in matrix notation letting X be the
I X JK unfolded array, and ® denoting the Kro-
necker product, the Tucker3 model reads

X0 = AGD(CT ® BT) + E®, (1)

where AGM(CT ® BT) is the model of XV, E® is
the unmodelled part, i.e., the residuals of the model,
and GO is the core array G arranged as an R% X
RBRC matrix. In Eq. (1), A has size I X R*, B has
size JX R®, and C has size K X R and the matri-
ces hold the loadings in the first, second, and third
mode, respectively. In the following, we will omit the
residual part for simplicity. We restrict ourselves to
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estimate the Tucker3 model with orthonormal A, B,
and C. We further restrict ourselves to algorithms
based on iteratively estimating one of the four sets of
parameters A, B, C, and G conditionally on the re-
maining parameters. In most cases, such an algo-
rithm will be a so-called alternating least squares
(ALS) algorithm.

The core array G can be found conditional on A,
B, and C by a simple projection of X onto A, B, and
C. In matrix notation this reads

G = ATXD(C®B) (2)

If the model is perfect, then G will express all
variation of X. For completeness, note that G can also
be computed from X arranged as J X IK ora K X IJ
matrices:

G® =BTX?(C®A),andG® = CTXO(B ® A),
(3

From the definition of G it follows that the
Tucker3 model of X can be stated

AGW(CT @ BT) = AA’XW(C ® B)(CT ® BT)
= AATXD(CC" @ BBT) 4

For B and C fixed it follows that finding the opti-
mal A is equal to minimizing the norm of (X —
AA™M), where M = X(CC” ® BB"). Using that

(CCT ® BBT)(CC” ® BBT)"
= (CCTCCT @ BB7BBT) = (CCT @ BBT),
(%)

and by tr denoting the trace of the square argument
matrix, the sought norm is

t((X — AATM)(X — AA™™)’)
= tr(XXT) — 2tr(AATMXT)
+ tr(AATMMA4T)
= tr(XXT) — 2tr(AATMXT)
+ r(AATMXTAAT). (6)
As tr{XXT) is fixed, minimizing this expression is
equal to minimizing
—2tr(AATMXT) + tr(AATMXTAAT)
— 2tr(ATMXTA) + tr(ATMXTAT)

— tr(ATMX"AT) 0
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and hence the optimal A is found by maximizing
tr(ATMX"AT) = trf(ATMMTA) (8)
which shows that A is the R* largest eigenvectors of
MM or equivalently the first R* left singular vec-
tors of a singular value decomposition of M.

For estimating B and C similar relations hold, and
these relations form the basis for an algorithm for es-
timating the Tucker3 model. The essentials of such an
algorithm are outlined in the generic algorithm be-
low:

1. Initialize B and C.

2. Calculate M® from B, C and XV. Calculate A.

. Calculate M@ from C, A and X®, Calculate B.
. Calculate M® from A, B and X®. Calculate C.
. Goto step one until convergence

. Calculate the core G

Before going into the details of the algorithm, it is
appropriate to elaborate on the computation of M and
MM, As A is a basis for the column space of the
best fitted rank R* approximation of M = X(CCT ®
BBT), it follows that A can also be determined from
the much smaller matrix X(C ® B). The cross-prod-
uct of M is derived from
(X(CCT ® BB)(X(CC" ® BBT))'

=X(CC" ® BB")XT

= (X(CeB)(X(C®B))" 9
and can hence also be computed from the smaller
matrix X(C ® B).

There are several important steps in actually im-
plementing the Tucker3 algorithm for large prob-
lems: (i) avoiding the use of Kronecker products and
unnecessarily large working matrices, (ii) a good ini-
tialisation method, (iii) if possible, avoiding interme-
diate estimation of the core array, which is algorith-
mically unnecessary, and (iv) a fast method for esti-
mating an F-component orthonormal basis for a ma-
trix. In the following, we will use the update of A as
an example.

Ad (i) It is very common to express the Tucker3
model and algorithm using Kronecker products.
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While intuitively appealing for providing simple ma-
trix expressions for array models, this approach
should not be adopted in the actual implementation,
as it leads to very large intermediate arrays and ex-
cessively many elementary operations. Instead, one
should rearrange the arrays continuously as exempli-
fied below. This approach is justified by the fact that
rearranging a matrix is very fast, as it only requires
changes in indices, not real computations.

The projections X(C ® B) can be written in ma-
trix notation;

W3 =BTX®
Ve =CTw®
XD(CeB)=V®

Though complicated to look at, this way of com-
puting the projections is much faster than directly us-
ing the Kronecker products—in particular for large
arrays. From version 5.0 of MATLAB, general ar-
rays are supported, thus eliminating the need to
specifically program these rearrangements.

Ad (ii) There is no need for initializing the first
mode, i.e., A, as this is given by XV, B and C in the
first iteration according to the algorithm in question.
The most straightforward method for initializing B
and C is to use the R® and RC left singular vectors
from an SVD of X® and X®. A slight change is
suggested here. As above, matrix B is the first R left
singular vectors from an SVD of the J X IK matrix
X®, Subsequently, C is obtained as the RC first left
singular vectors from an SVD of (BTX®)®, In this
way, the initial B and C are likely to be closer to the
solution than results from the SVDs on the separated
modes would be. In addition, C is derived from a
matrix of size KX RBI. As such, this initialization
scheme requires fewer computations than if the sepa-
rate SVDs should be calculated. The order in which
the component matrices B and C are calculated is of
no importance, and one should choose the smallest of
the two first.

Ad (iii) As the core array of the model is implic-
itly given by A, B and C, one can simply calculate it
once after convergence. But, instead of estimating the
full model of X to determine the error after each iter-
ation, the sum of the squared core entries provides a
robust and monotonically increasing parameter that
may be used to detect convergence. During itera-
tions, the sum of the squared residuals, E, is mini-
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mized. Denoting by|| |3, the square of the 2-norm of
the argument, we formulate this as min ||E||§ =
min|[X — MI[3 = min|[X |13 — [MII3. Since [MII} =
IGII3 for orthonormal factors, this corresponds to
maximizing ||G|3. Thus, in the implementations un-
der discussion, we calculate the core to use the sum
of the squared core elements to detect convergence.

Ad (iv) The very essential part of the Tucker3 al-
gorithm is the derivation of orthonormal loading ma-
trices. Using M, the size of the matrix from which A
is calculated is I X JK. Using X(C ® B) the size is
only I X R*R®. In addition, the computation of X(C
® B) is much faster than the computation of X(CC™
® BB™). The following procedures have been tested
for determining A given the matrix X(C ® B):

SVD on X(C ® B)

. Approxxmate Bauer—Rutishauser on X(C ®

B(X(C ® B))T
+ Exact Bauer-Rutishauser on X(C ® B)X(C ®

B))*

+ Gram-Schmidt orthogonalization of X(C ®

BXX(C @ B))T
- NIPALS on X(C ® BXX(C ® B))”

Preliminary investigations did include QR factor-
ization of X(C ® B(X(C ® B)), but since this ap-
proach invariably gives results similar to GS, we
chose to leave this approach out of the discussion.

2.1. Algorithms

We will shortly describe the implemented varia-
tions of the Tucker3 algorithm by showing the up-
date of the first mode loadings in pseudo-code. It is
assumed that only the first R* principal vectors are
used in SVD and NIPALS. By baurut we mean an
algorithm that estimates eigenvectors according to the
principle of Bauer—Rutishauser and by gsm we mean
an algorithm that orthonormalizes according to the
Gram-Schmidt procedure. It should be noted that the
calls to the baurut and nipals algorithms use the pre-
vious iterates of the factors as initial guesses in order
to save computing time. Kroonenberg et al. [11] have
compared the Gram—Schmidt orthogonalization with
the method of Bauer—Rutishauser.

T1: SVD-based algorithm

M=X(C®B)
[A,S,V] = svd(M)
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T2: Bauer-Rutishauser I algorithm. One-step up-
date in each mode

M = (X(C ® B)XX(C ® B))”
[U,S,V] = svd(ATM2A)
A =MAUS /2

T3: Bauer—Rutishauser II algorithm. Three-step
update in each mode

M = (X(C ® B)X(C ® B))"
fori=1t03

[U.S,V] = svd(ATM?A)

A =MAUS™'/?

end

T4: Bauer—Rutishauser III algorithm. Repeated
update in each mode until convergence of A

M = (X(C ® B)XX(C ® B))"
while A has not converged
[U,S,V] = svd(ATM?A)

A =MAUS™1/?

endwhile

T5: Bauer—Rutishauser IV algorithm. Advanced
BR algorithm

M = (X(C ® B)}X(C ® B))”
A = baurut(M,A)

T6: Gram—Schmidt I algorithm. One-step update in
each mode

M = (X(C ® B)X(C ® B))*

A = gsm(MA)
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T7: Gram-Schmidt II algorithm. Three-step up-
date in each mode

M = (X(C ® B)XX(C ® B))T

fori=1to3
A = gsm(MA)
end

T8: Gram-Schmidt III algorithm. Repeated up-
date in each mode until convergence of A

M = (X(C ® B)X(C ® B))"
while A has not converged

A = gsm(MA)

endwhile

T9: NIPALS-based algorithm.
M=X(C®B)

[A,P] = nipals(M,A)

As the principles of SVD (Algorithm 1) and NI-
PALS (Algorithm 9) are well known and widely used
in chemometrics, we will elaborate on the Bauer—
Rutishauser algorithm and the Gram-Schmidt or-
thogonalization. For the Bauer—Rutishauser algo-
rithm, we investigate four different methods: A sim-
ple one-step BR update (Algorithm 2) as suggested by
Kroonenberg et al. [12], an approach repeating the
simple update three times (Algorithm 3) and an ap-
proach, where the simple BR update is repeated until
convergence of the eigenvector estimates is reached
(Algorithm 4). In addition, we have implemented an
advanced algorithm, which is referred to as the full
Bauer—Rutishauser algorithm (Algorithm 5) (see
Rutishauser [13]). To explore the continuity between
the two extremes, i.e., the simple Algorithm 2 and the
advanced Algorithm 5, we have added three-step and
convergence-based implementations of Algorithm 2.
The simple Algorithms 2 and 3 may be regarded as
being equal to Algorithm 5, merely with a looser
convergence criterion. Three implementations of the
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Gram-Schmidt orthogonalization for estimating
eigenvectors are investigated. Algorithm 6 is a sim-
ple one-step GS update as suggested by Kroonenberg
[14], Algorithm 7 repeats the simple update three
times and Algorithm 8 repeats the simple GS update
until convergence is reached. By using repeated iter-
ations better estimates of the true eigensolutions are
obtained with a small computational effort, since the
working matrices are present in directly accessible
forms.

2.2. The Bauer—Rutishauser approach

In [15], Rutishauser proposes an algorithm that
improves the convergence order of the bi-iteration
method for estimating eigenvectors of matrices sug-
gested by Bauer [16]. Using that Y (I X I), e.g., ob-
tained as XX, is positive definite and symmetric, the
aim of Rutishauser’s algorithm is to achieve the good
numerical features offered by Bauer’s approach with
a high convergence order. Rutishauser sets forth sev-
eral suggestions to improve convergence as well as
robustness of the algorithm. For the present purpose,
we shall take a less general approach, since we do not
require extreme accuracy of the obtained eigensolu-
tions, and we desire to keep the computational re-
quirements at a minimum. Thus, the implementation
is kept simple and efficient in Algorithms 2, 3 and 4.
Rutishauser’s strongest suggestions are implemented
in the somewhat more advanced Algorithm 5 for
comparative reasons. In Algorithms 2, 3 and 4, new
orthogonal iterates of A are provided through one,
three or more Ritz-iterations such that the eigendirec-
tions, represented by matrix A ,, are defined by the
projected eigenvalue problem

ATY™?A, =D;2 ATA, =1 (10)
where D, (R* X R%) is diagonal and holds the
eigenvalues of Y on the diagonal. A, is found as
A,=YA,_QD;' QIQ,=1I (11)
Q, (R* X RA) and D, are found by, e.g. an SVD,
according to

Q,D}Q,=AT_Y'YA, ,=A|_ YA (12)

This approach gives results with improved numer-
ical stability and higher convergence rate than the
trivial rule A, = YA ,_, (n=1,2,...). The reader is
referred to Refs. [13,16,17] for details and proofs. The

n—1
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method may be seen as an extension of the method
proposed by Bauer where

A,=YA, R} (13)

and R, (R* X R*) is an upper triangular matrix with
positive diagonal elements which may be derived di-
rectly from an extended Gram-Schmidt orthogonal-
ization of YA ,_, (see [17] for advanced algorithmic
approaches in this direction). One may argue that an
algorithm based solely on Egs. (10)—(12) is overly
simplified. Hence, we also implemented a more
complete Bauer—Rutishauser algorithm according to
some of Rutishauser’s many suggestions [13]. In the
implementation used here, a series of eigenprojec-
tions are calculated with the significant termination
by a single Ritz iteration to estimate the orthogonal
eigenvectors according to the projected eigenvalue
problem.

2.3. The Gram~Schmidt approach

The Gram-Schmidt algorithm may be used for
finding an orthonormal basis of any matrix. The or-
thogonalization is very cheap in terms of operations
and it is non-iterative. For the present purpose we
have applied a very simple GS algorithm with re-or-
thogonalization [13,17]. By the repeated eigenprojec-
tion of Y onto A,_, the enforced response is re-
turned in the new iterate A, according to

A,=YA,, (n=23...) (14)

However, after applying the eigenprojection sev-
eral times, the columns of A , tend to become corre-
lated, thereby compromising orthogonality. To en-
sure the condition of the estimated base and to avoid
an uncontrolled increase in correlation between the
columns of A during iterations, we suggest to apply
the GS orthogonalization continuously. Thus, the re-
sulting sequence takes the form of

A, =gsm(YA, ) (n=23..)) (15)

where gsm represents the orthogonalization of the
matrix argument. To orthogonalize the columns of Z
(IX R*), assuming that Z is non-singular, the GS
algorithm will return an orthonormal basis in V ac-
cording to the following pseudo MATLAB code, in
which V(:,i) designates the ith column of matrix V,

V(1) =Z(:. D) /Z(:. 1),
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For i =2toR*

V(5,i) = Z(5i) = V(,1:(i = DV(,1:(i = 1)T
XZ(:,i)

V(:,i) = V(i) V(i) (16)

end

Some important special variations of the Tucker3
model are: How to incorporate different uncertainties
for different elements and how to handle missing el-
ements. We will shortly discuss different ways to ap-
proach these special cases.

2.4. Incorporating uncertainties

If the uncertainties of the individual data elements
are known, it can be feasible to use these in the de-
composition. If the uncertainties are almost equal for
all elements, there is no need to change the algo-
rithm, but otherwise at least two different possibili-
ties exist. If the uncertainty of a given variable re-
mains almost the same over all modes, it will suffice
to scale the array accordingly, keeping in mind the
‘rules’ for scaling multi-way arrays (see Kroonen-
berg [14]). After scaling, an unconstrained model is
estimated from the scaled array. If the uncertainties
vary also over variables, or if an iteratively re-
weighted solution is sought for robustness, then one
cannot estimate the model using eigenvector-based
methods, but has to use regression-based methods or
the weighted least squares approach suggested by
Kiers [18].

2.5. Missing elements

Missing elements can be effectively handled by the
current algorithm by iteratively replacing missing el-
ements with model estimates of the elements. The
model is thus estimated from an array with no miss-
ing elements, and after each iteration the model of X
is estimated from the parameters. All elements that
are missing are replaced with model estimates, and
the algorithm is repeated until the convergence crite-
rion is fulfilled and the estimates of the missing ele-
ments do not change significantly. That way, the
missing elements do not directly influence the out-
come of the model.
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3. Experimental

The aim of this investigation is to find the fastest
algorithm among the nine under discussion. The al-
gorithms are compared on the time needed to obtain
similar fits to (i) one measured and (ii) several syn-
thesized data sets. For each data set, a model with
many factors is estimated in order to ensure that all
systematic information is modelled. To facilitate a
discussion of the efficiency of the algorithms, we
have shown the number of FLOPS (floating opera-
tions) required to obtain the solutions. The matrices
A, B and C are initiated as previously suggested.

Due to the huge amounts of data handled during
iterations, there is a lot of so-called dead time. The
dead time of the algorithms has been estimated by
removing the code specifically related to the updat-
ing schemes and only keeping the data management
operations. By running 20 iterations of this void al-
gorithm, an estimate on the average dead time per it-
eration, ?,, caused by the size of the data array in
question is obtained. After the various algorithms
have been applied, the number of iterations, N, is
known and the dead time may be subtracted from the
total time, T, to give a clearer picture of the time used
specifically by the updating schemes. The time used
on handling the data is of course required to obtain
any solution, but by removing the dead time, the
common background is subtracted, thereby allowing
us to discuss the sheer time differences caused by the
specific updating schemes.

Given the array X the error f to minimize is given
by

f(AB,C,GX) =[XD - AGD(BT @ CT)|} (17)

where X is the frontal slice-wise unfolding X and
component matrices A, B and C contain the orthogo-
nal factors in their columns. All iterative procedures
require a criterion to indicate if a sufficiently accu-
rate model has been estimated. Given the dimension-
ality of the model, the desire of the analyst is to ob-
tain the lowest possible value of f in the shortest
possible time. As stated earlier, we do not calculate f
explicitly, but we use the sum of the squared core en-
tries instead, designated by g, as this is obtained with
much fewer computations. We seek to maximize the
value of g, since the variance (of X) described by the
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model and g will be at maximum for the same set of
A, B and C (rotation disregarded).

For checking convergence, we have taken one ap-
proach for the real data set and another for the 200
synthesized data sets. For the real data set, a mini-
mum value of the sum of squared core entries, re-
ferred to as g*, will be used as stopping criterion.
The value of g* has been set slightly below the
asymptotic value of g, which was found by inspec-
tion. With regards to the numerous synthesized data
sets, an unsupervised criterion to detect convergence
is required, and for the present application, this is
formulated as the maximum difference of g between
two successive iterations. We will return to this later.

3.1. Data

The measured data set originates from spectrofiu-
orometric measurements on 65 samples, and has di-
mensions 65 X 40 X 311 representing approximately
6.5 MB of data. The values range from zero to ap-
proximately 1295. Investigations not reported here
have revealed that the rank is in the range 6 to 8.
Hence, a model of order 8 X 8 X 8§ is estimated. By
inspection and evaluation of different solutions,
the value of g* for this data set was set to
3.720345874925 - 10'°. Using this value of g * in all
algorithms applied to this data set, the fit of the mod-
els will be comparable from the viewpoint of the an-
alyst.

A number of 200 synthesized data sets of dimen-
sions 120 X 120 X 120 with PARAFAC rank not less
than 8 are produced by synthesizing factors from
Gaussian peaks in each of the three modes with ran-
domly distributed peak centres and peak widths, and
subsequently applying 5% homoscedastic (additive)
and 5% heteroscedastic (multiplicative) normally dis-
tributed noise. With regards to spectral data, the re-
sulting level of noise may be regarded as being high.
To ensure the rank, the peak centres were forced
to differ in locations within modes and the synthe-
sized cores consisted of random values between 0
and 1, where the diagonal elements (1,1,1),
(2,2,2),....8,8,8) were forced to be 1. The conver-
gence criterion was estimated for each synthesized
data array in the following way: The SVD-based al-
gorithm (Algorithm 1) was applied with the criterion
that convergence was reached when two successive
fits differed by less than 0.0005. If the algorithm
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honoured this convergence criterion within 19 steps,
the convergence criterion was divided by two, and the
SVD-algorithm was restarted; this was repeated until
the number of required steps exceeded 20. This fea-
sible convergence criterion was then used for the re-
maining 8 algorithms. We estimate that at least 20 it-
erations are required to get accurate measurements on
the computational time. Since very slow convergence
of the most approximate algorithms (i.e., small
changes between iterations in Algorithms 2 and 6)
could erroneously cause the algorithms to exit too
early, a subsequent evaluation of the errors of the fi-
nal models was performed to reject models that did
not fit data satisfactorily.

4. Results and discussion

The results from the models of the measured data
set are listed in Table 1. Standard deviations are neg-
ligible and are not listed. It is readily seen that Algo-
rithm 9 stands out with the lowest time consumption,
T, and the highest efficiency in terms of FLOPS. This
is likely due to the simplicity of the NIPALS algo-
rithm, which is used to estimate eigenvectors in each
of the three subproblems in this algorithm. Another
important observation is the high number of required
main iterations, N, for Algorithms 2 and 6. These two
algorithms have a high degree of simplicity in com-
mon, but whereas this was intended to decrease the
time consumption of the subproblems, the increase in
the overall number of main iterations renders these
approaches infeasible. Algorithms 2 and 6 provide too
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inaccurate approximations to the eigensolutions;
hence, they require more iterations to reach the exact
eigensolutions. If the eigensolutions are inaccurately
determined in one iteration, then the next iteration
will suffer from this suboptimality in the posed prob-
lem. This is in contrast to the experiences reported by
Kroonenberg [14] (p. 87), where he argues that it is
not worthwhile to solve for highly accurate eigenvec-
tors since the resulting algorithm will obtain an itera-
tion-in-iteration structure requiring too much compu-
tational effort, since after all, during iterations, the
eigenproblems posed are only formulated in terms of
intermediate factors. Whereas this may be true for
smaller sized problems, the compromise between
spending computational time on estimating accurate
eigensolutions and the overhead introduced by han-
dling the large data arrays, appears to favour the up-
dating schemes that are more accurate. From the
viewpoint of the analyst Algorithms 2 and 6 are sub-
optimal in terms of FLOPS as well as time; thus, we
will leave them out of the remaining discussion. With
regards to time consumption, T, we see that Algo-
rithms 1 and 4 use markedly more time on the same
number of iterations. By inspection of T, we con-
clude that this is due to the time used in the updating
schemes. Algorithm 1 includes an SVD which is sta-
ble and accurate, but very time consuming. So, in
addition to the conclusions drawn from the very sim-
ple algorithms (i.e., that the eigenvectors must be ac-
curate) it is indicated that there is an upper limit to
the effort that should be used on improving the accu-
racy of the eigensolutions. When compared to Algo-

Table 1

Results from models of the measured data set

Algorithm Flops Number of Time, Corr. time Final value of
number 10%) iterations (N) T(s) (T=T—-Nt)(s) g g(N) 101

1 1.46 21 63.54 28.03 3.72034587493
2 1.75 35 74.40 15.22 3.72034587493
3 1.33 22 52.56 15.36 3.72034587493
4 1.41 21 54.02 18.51 3.72034587493
5 1.15 21 49.18 13.67 3.72034587493
6 1.64 35 71.48 12.30 3.72034587493
7 1.10 22 46.96 9.76 3.72034587493
8 1.10 21 47.78 12.27 3.72034587493
9 0.81 21 42.54 7.03 3.72034587493

All values of required number of FLOPS, number of iterations (), computation time (T'), and corrected time (7,,) are averages of 20 model

runs.
ty=169sit™1.
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rithm 3, Algorithm 4 appears to iterate too many
times in the substeps judged from the value of T.
This may be corrected by reducing the number of in-
ner iterations, e.g., by adjusting the convergence cri-
teria for the subiterations. Algorithms 5, 7 and 8 of-
fers almost similar performance in terms of FLOPS
and time consumption. In line with the findings of
Kroonenberg et al. [12], the efficiency of the GS ap-
proaches, especially Algorithms 7 and 8, are cer-
tainly of interest. With regards to repeating the sub-
steps, it holds for BR and GS that the three-step ap-
proaches significantly reduces the overall time
needed to reach a solution. Since repeated applica-
tion of the GS update improves the accuracy of the
estimated eigensolutions, we attribute the decrease of
iterations to the increased adequacy of the subse-
quently posed eigenproblems. Comparing columns
four and three clearly shows that for all nine algo-
rithms, most time is spent on handling data and not
on solving the eigenproblems. Hence, improving the
speed of data handling will contribute significantly in
reducing the time consumption. The sum of squared
core elements in the last iterations, g(N), in Table 1
verifies that the final models are actually comparable
in fit. Thus, the results from the measured data set
suggest that Algorithms 5, 7, 8 or 9 are fastest, with
Algorithm 9 being fastest for this data set.

The findings from the analysis of the 200 synthe-
sized data sets are listed in Table 2. Since the synthe-
sized data arrays are very different, we have listed the
standard deviation next to the parameters. It is imme-

Table 2

diately recognized that the observed standard devia-
tions are high, thereby rendering interpretation diffi-
cult. This is mainly due to the very different proper-
ties of the data sets and not a matter of great con-
cern. However, the pattern found in the mean values
for T are verified by the fact that Algorithms 3, 7 and
9 are fastest in 41 (21%), 63 (32%) and 84 (42%) of
the 200 models. Since the number of required inner
iterations for all updates depends strongly on the size
and the characteristics of the data under investiga-
tion, we investigated the correlation coefficients and
the condition number of the synthesized factor matri-
ces. Over all three modes, the synthesized factor ma-
trices had absolute correlation coefficients ranging
from 0.1319 to 0.8235 with a mean value of 0.5471
and a S.D. at 0.2852. Ranging from 2.01- 10! to
3.19 - 10° the condition numbers (i.e., the ratio be-
tween the largest eigenvalue and the lowest) was
found to have a mean value at 3.69 - 10* with a S.D.
at 1.80 - 10°. Based on these findings, we may con-
clude that the synthesized data sets were constructed
from factors that were somewhat correlated, thereby
introducing ill-posed subproblems. With regards to
the time spent on the updating schemes, T, Algo-
rithms 2 and 6 were fastest, but the eigensolutions
provided within iterations were too simple and too
inaccurate. This is in accordance with the findings
from the measured data set. Thus, they (consistently)
required the highest number of iterations. We consol-
idate the findings from the analysis of the measured
data set; algorithms for analysis of large data arrays

Mean values and standard deviations of required number of FLOPS, iterations (), computation time (T'), and corrected time (7;,) from 200

synthesized data sets

Algorithm FLOPS (10°) Tterations (N) Time, T (sec) Corr. time, 7, (s)

number Mean S.D. Mean S.D. Mean SD. Mean S.D.
1 248 0.80 28.80 9.29 107.54 35.59 2445 7.89
2 243 0.81 35.33 11.66 107.08 35.62 5.15 1.82
3 221 0.65 30.20 8.88 93.99 27.82 6.86 2.09
4 2.86 0.86 28.80 9.30 103.68 32.13 20.59 5.59
5 224 0.67 29.02 8.82 100.41 30.03 16.70 4.62
6 2.38 0.79 3533 11.70 106.61 35.46 4,68 1.67
7 2.07 0.61 30.20 891 92.94 2749 5.81 1.78
8 223 0.70 28.80 9.34 98.93 30.90 15.84 4.34
9 1.92 0.61 28.81 922 90.75 28.58 7.65 2.28

Compare with Fig. 1.

For the synthesized data sets 1, is 2.89 s it™}.
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must be based on fast, but accurate, algorithms for
estimating eigensolutions of the involved subprob-
lems. It should be noted that Algorithm 4 (conver-
gence-based BR) and 8 (convergence-based GS) re-
quired the same number of outer iterations as Algo-
rithm 1 (based on SVD) for all data sets, verifying
that these three algorithms provide the same accurate
eigensolutions. In accordance with Table 1, Algo-
rithms 7 and 9 require less time and less FLOPS to
reach a solution. To conclude, we find that Algo-
rithm 9 offer the best combination of simplicity and
accuracy of the eigensolutions of the synthesized data
arrays.

C.A. Andersson, R. Bro / Chemometrics and Intelligent Laboratory Systems 42 (1998) 93-103

Measurements of number of FLOPS, iterations N,
total computing time 7, and corrected time T, were
arranged as matrices of dimensions 200 (data sets) X
9 (algorithms), one matrix for each parameter. To il-
lustrate the significant covariations of the parame-
ters, we have extracted one principal component from
each of the four matrices. The superposed factors for
the nine algorithms in Fig. 1 are scaled such that the
largest element in each factor has a value of one. The
figure illustrates the essence of this investigation. The
efficiency of the updating schemes in Algorithms 3,
7 and 9 are evident from the simultaneous low levels
of FLOPS, iterations (N) and the total time required
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Fig. 1. Results from the models of 200 synthesized data sets with respect to the nine applied algorithms. The four superposed principal
components represent the number of FLOPS (F), iterations (N), the total computing time (7), and corrected time (T,). Compare with Table
2. The three factors explain 76.57%, 76.50%, 76.47%, and 80.38% of the variation in the matrices. The factors are scaled such that the

largest element has a value of one.
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(T) as seen from Fig. 1. We notice that the simple
NIPALS algorithm (Algorithm 9), well known and
widely used in chemometrics, substantiates itself as
an excellent compromise between speed and accu-
racy. The huge gain in convergence when comparing
single-step implementations (Algorithms 2 and 6) to
the three-step implementations (Algorithms 3 and 7)
is substantiated. The convergence-based iterations
(Algorithms 4 and 8) are sensitive towards the
threshold of the convergence criteria, and the optimal
convergence criterion may depend on the data at
hand.

5. Conclusion

‘We have compared nine algorithms for solving the
Tucker3 model on very large data arrays. Through
modelling of one measured and several synthesized
data sets especially the NIPALS-based implementa-
tion appears to be feasible with regards to time con-
sumption and FL.OPS. The implementations based on
three repeated simple Gram—Schmidt updates are
suggested as alternative algorithms. Furthermore, we
have found that accuracy, perhaps more than speed,
is required in implementations of Tucker3 models of
large data arrays to yield resuits in the shortest possi-
ble time.
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Abstract

In this paper an approach is developed for compressing a multiway array prior to estimating a multilinear model with the
purpose of speeding up the estimation. A method is developed which seems very well-suited for a rich variety of models
with optional constraints on the factors. It is based on three key aspects: (1) a fast implementation of a Tucker3 algorithm,
which serves as the compression method, (2) the optimality theorem of the CANDELINC model, which ensures that the
compressed array preserves the original variation maximally, and (3) a set of guidelines for how to incorporate optional con-
straints. The compression approach is tested on two large data sets and shown to speed up the estimation of the model up to
40 times. The developed algorithms can be downloaded from http:\ \ newton.mli kvl.dk \ foodtech.html. © 1998 Elsevier

Science B.V. All rights reserved.

Keywords: Tucker3; PARAFAC; CANDELINC; Constraints; Tuckerl; Data compression

1. Introduction

An annoying aspect of estimating some multiway
models using alternating least squares (ALS) is the
time consumption of these algorithms. A way to in-
crease the speed of ALS algorithms is to compress the
data array initially and then subsequently estimate the
model from the compressed data. This is natural since
a multiway model is per se a compression of the
original data into fewer parameters, implying that the
systematic variation in the data is expressible in less
than the original number of data points. Hence, the

* Corresponding author. E-mail: rb@kvl.dk.
! E-mail: ca@kvl.dk.

model to be estimated should also be estimable from
another (condensed) representation of the systematic
variation in the data. Furthermore, since a multiway
model can be considered a multilinear decomposition
preserving the systematic variation in the data, it
seems useful to use a multilinear decomposition for
compression as well. After estimating the parameters
of the model in the compressed space, these can then
be transformed to the original space, and hopefully
provide a good approximate solution to the solution
that would be found if estimating the model directly
from the raw data. In the sequel we will refer to the
model used to compress the data as the compression
model and the model operating on the compressed
array as the analytical model.

Alsberg and Kvalheim have described in a series
of papers a method for compressing high dimen-

0169-7439 /98 /$19.00 © 1998 Elsevier Science B.V. All rights reserved.
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sional arrays [1,2]. Kiers and Harshman [3] have
shown that this approach is equivalent to the CAN-
DELINC (CANonical DEcomposition with LINear
Constraints) approach. In CANDELINC, only or-
thonormal bases are allowed but any non-orthonor-
mal basis can be orthogonalized prior to compression
without any loss of information [4]. The Alsberg and
Kvalheim approach was developed specifically for
estimating Tucker3 models, while the CANDELINC
approach is valid for estimating any multiway model.
Furthermore as stressed by Kiers and Harshman [3]
there is no need for special algorithms in the CAN-
DELINC approach. One simply regresses the data
onto the bases, use any existing multiway algorithm
on the compressed array, and decompress the result
by premultiplying the solution with the projection
bases. This, however, only holds for unconstrained
models with a nonweighted least squares optimiza-
tion criterion as will be shown. The only important
constraint that does not require any special attention
is orthogonality. If orthogonal loadings are found in,
e.g., a PARAFAC model of the compressed array,
then the backtransformed solution will also be or-
thogonal. In this paper Tucker3 is suggested for find-
ing the compression bases as the Tucker3 algorithm
is very fast and has the property of providing optimal
bases in a least squares sense. Alsberg and Kvalheim
suggest different bases in their work. If the size of
the array is so large that estimation of the Tucker3
model is in practice impossible due to the computer
capacity, then these suggested bases are sensible, but
if the computer capacity is sufficient it is not sensi-
ble to use other bases than those defined by the
Tucker3 model.

Note that the suggested compression approach is
relevant for estimating most multiway models. Even
in the case where one is merely interested in a
Tucker3 model, compressing the array first, enables
one to quickly estimate models of different dimen-
sions and perhaps using different constraints in order
to find the most appropriate model.

The compression method is developed and evalu-
ated on several data sets. It is shown that the new
method makes multiway modeling faster and more
memory-efficient. It is discussed how to express im-
portant constraints and weighting schemes in the
modeling of compressed arrays. Three-way arrays
will be used as an example but the developed theory
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is directly applicable for arrays of any order. The ALS
procedure for estimating the PARAFAC model will
be used throughout but the method is also applicable
for other models and algorithms.

In the following, scalars are indicated by (lower-
case) italics, vectors by bold lower-case characters,
bold capitals are used for two-way matrices, and un-
derlined bold capitals for three-way arrays. The ijkth
element of X is called x,; and is the element in the
ith row, jth column, and kth tube of X. When three-
way arrays are unfolded to matrices, the following
notation will be used: if X is an I X J X K array and
is unfolded to an 1 X JK matrix, X, the order of J and
K indicates which indices of J are running fastest. In
this case the indices of J are running fastest, mean-
ing that the first J columns of X contain all variables
for k=1 and for j=1 to j=J. For short we will
define the I X JK matrix X" where the superscript
indicates that it is the first mode that is preserved.
Likewise X@ is a J X IK matrix and X® a K X IJ
matrix. If the arrangement of the array is clear from
the context the superscript will not be shown.

2, Theory

An IXJ XK array X is given. Suppose that the
rank of the systematic variation in each of the three
modes is R*, R®, and R, respectively. By the rank
of the systematic variation is meant the minimum
rank of an appropriate basis for the space spanned by
the systematic variation in a particular mode, i.e., the
rank if no noise was present [5). For the first mode
the rank of, and a basis for, the variable space can for
example be determined from analyzing the I X JK
unfolded matrix X obtained by concatenating the X
layers of size I X J of X one after another.

Several methods exist for determining the proper
rank, e.g., judging the residuals, using cross-valida-
tion [6,7] or methods similar to Malinowski’s indica-
tor function [8]. For compression, however, it is not
essential to find the exact rank, but rather to define
the rank so large that the correct rank is less than the
defined rank. Let U of size I X R® be an orthonor-
mal basis for the space spanned by systematic varia-
tion in the first mode. An orthonormal matrix V of
size J X R® similarly defines the variable space of the
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systematic variation in the second mode and an or-
thonormal matrix Z of size K X R defines the vari-
able space in the third mode. An F-component
PARAFAC model is sought for the I X JX K array
X. An F-component PARAFAC model is defined

through A (IX F), B (JX F), and C (K X F) as
2

K
Y X, — AD,B"
k=1

min

(1)

F

where X, is the kth layer of X, i.e., the I X J matrix
obtained by fixing the third mode at its th value. The
matrix D, is a diagonal matrix containing the kth row
of C in its diagonal. General information on the
PARAFAC model can be found in many papers [9-
13]. As the optimal A is approximately describing the
systematic variation in the first mode of X it must
hold that a matrix exists such that

A=UT, 2

as U is a basis for the systematic variation. Similar
relations hold for the second and third mode:

B=VO (3
and
C=1ZE. 4)

This is the same as saying, that the PARAFAC model
is linearly constrained to the subspaces U, V, and Z.
The CANDELINC model was developed for estimat-
ing multiway models under such linear constraints [4].
The theory of the CANDELINC model states that if
a PARAFAC model of X given by A, B, and C is
sought, subject to the above constraints, then it is only
necessary to estimate the (much) smaller matrices T,
0, and E. More importantly these matrices can be
found by estimating a PARAFAC model on an array
Y of size R* X R® X R® found by regressing X onto
the orthonormal bases U, V, and Z. Written In ma-
trix notation letting X be the 7 X JK unfolded array,
and ® denoting the Kronecker product these regres-
sions read

YO =UTXMN(Z e V). &)

Estimating an F-component PARAFAC model of Y
will give the loading matrices ' (R* X F), © (R®
X F), and E (R X F), and through the relations of
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Egs. (2)-(4) the loading matrices in the original
spaces can be calculated.

If the orthonormal bases are bases for the system-
atic variation, then the model estimated from Y (Eq.
(5)) will give the sought solution. In Ref. [4] This is
shown for any model that can be regarded as a
Tucker3 model or a restricted version of a Tucker3
model. The PARAFAC, PARATUCK?2 [14],
PARAFAC?2 [15,16], and the Tucker2 [17] models
can all be regarded as restricted versions of Tucker3
and can hence be estimated from the compressed ar-
ray without loss of information under the constraints
of Egs. (2)-(4).

The crucial point in this method is to find good
bases for the respective modes. If these are appropri-
ate, one would expect the analytical model estimated
from the compressed space to be equal to the model
estimated from the raw data. One possibility for find-
ing these bases would be to use the singular vectors
from a singular value decomposition (Tucker1) of the
array properly unfolded for each direction. That is, U
would equal the first R* left singular vectors from an
SVD of X®. The bases V and Z are found similarly.
From these estimated bases and the relation in Eq. (5)
the compressed array can be determined. In short for
the Tuckerl-based compression one obtains the pro-
jections matrices as

Tuckerl-based compression
[US,T] = svd(XD,R*)
[2.8,T] = svd(X®,RB)
[V.S.T] = svd(X®,RC),

(6

where the function [R,S,T] = svd(X, F) calculates the
rank F truncated singular value decomposition of the
matrix X, the matrix R holding the first F left singu-
lar vectors. Note that this approach has actually been
suggested earlier for the PARAFAC model specifi-
cally in Ref. [18].

A better way, though, to define optimal bases is to
say that U, V, and Z should give a least squares esti-
mate of the array Y of Eq. (5). This will lead to a set
of bases which preserves most of the original varia-
tion in the compressed array. The definition of the
array Y in Eq. (5) corresponds to the definition of the
so-cailed core array in a Tucker3 model [19]. It
therefore immediately follows that orthonormal load-
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ing matrices of a R* X R® X R® Tucker3 model will
provide optimal bases for calculating the compressed
array. Further, the compressed array will be equal to
the core array of the Tucker3 model. Realizing this,
it then follows that a fast Tucker3 model is the key
to a successful compression method. In part I [20],
such an algorithm was developed for the MATLAB
programming environment. After obtaining the array
Y any suitable model can be estimated as described
In Refs. [3,4], and exemplified above for the
PARAFAC model.

Tucker3-based compression

argmin|X — UY(Z" ® VT)||2
LIRSV A '¢

(M

It is important that most systematic variation be
incorporated into the compressed array. This is espe-
cially true if the subsequent analytical model to be
estimated is constrained in some sense. Henceforth,
the goal of the Tucker3 model is not to find the model
but rather to find a model that is not underestimated
with respect to dimensions. It is of little concern
whether the compressed array is of size 7 X7 X 7 or
11 X 11 X 11 with respect to the speed of the algo-
rithm, but it may have a significant influence on the
quality of the model if not all systematic variation is
retained in the 7 X 7 X 7 array. In general, very few
data types conform exactly to a mathematical model,
which means that one must expect some systematic
variation in the residuals. If, e.g., a three-component
PARAFAC model is sought it will not necessarily be
sufficient to compress the array using a 3 X3 X 3
Tucker3 model. The way to choose the appropriate
number of components in the compression model de-
pends highly on the data type. No general rules can
be given, unless one is willing to settle for a quite
large compressed array. One may for example com-
press the array using, say five extra components
compared to the number of components in the ana-
lytical model, which would probably ensure a valid
model. If this is not satisfactory, one has to resort to
numerical rank-analysis or simply evaluate for in-
creasing number of components in the compression
model when the estimated final model no longer
changes. The results presented in Ref. [21] as well as
here indicate that using the same number of factors
in the Tucker3 model as in the subsequent analytical
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model will work satisfactory in many cases though
not all.

2.1. Modifications of the compression approach

In the literature algorithms have been given for
estimating the three-way PARAFAC and Tucker3
model in situations where only one mode is very
high-dimensional [22,23]. These methods are exact
and implicitly based on the fact, that the rank of the
high-dimensional mode is limited by the dimension-
alities of the remaining modes. If the product, d, of
the two smallest dimensions of the array is smaller
than the dimension in the mode of the largest size,
then it can be shown that the rank of this mode is up-
per-bounded by 4. In the present approach this means
that in situations with one very high-dimensional
mode, one can simply compress only in the high-di-
mensional mode using a basis of dimension d. This
will provide a compressed array that exactly pre-
serves the variation of the original array (A.K.
Smilde, personal communication). It can be shown
that such a compression model can be estimated by a
Tuckerl model.

In general, if some modes are not to be com-
pressed this is implemented in the compression
method by estimating a Tucker2 or a Tuckerl model
instead of the Tucker3 model. Avoiding compression
in a certain mode can be useful, e.g., if the mode is
to be estimated with constraints that do not easily
translate into the compressed space.

If the uncertainties (e.g., standard deviations) of
the individual elements are known, several possibili-
ties exist for incorporating these uncertainties in the
loss function of the analytical model. One may scale
the data prior to compression [24-26] or compute the
compression model using a weighted alternating least
squares regression approach. The analytical model
can henceforth be estimated with an unweighted loss
function. Instead of using the uncertainties in the
compression model, one may also simply estimate the
compression model without considering these. The
uncertainty of the elements of the compressed array
may then be obtained by regressing the uncertainties
(same size as X) in the same way as X is regressed
(Eq. (5)). These uncertainties can hence be used when
estimating the analytical model.
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If the data array contains missing values, the com-
pression must be performed taking this into account
as described in Part I [20]. The resulting compressed
array will have no missing entries and hence no spe-
cial attention is needed in the algorithm for estimat-
ing the analytical model.

If the resulting loading matrices of the analytical
model are required to be nonnegative this poses some
problems, as the bounded least squares problem of the
uncompressed problem turns into a more general and
complicated inequality constrained least squares
problem in the compressed space. Currently no
method seems able to handle this special situation ef-
ficiently but the problem is being worked on, and will
be the subject of a following paper.

3. Experimental

Two data sets arising from fluorescence spec-
troscopy were used for testing the compression on
real data. The first called AMINO is a data set of five
samples with different amounts of tryptophane,
phenylalanine, and tyrosine. Each sample has been
measured spectrofluorometrically at excitation 250-
300 nm, emission 250-450 nm with 1 nm intervals.
The data have also been described in Ref. [13]. The
data array is of dimension 5 (sample) X 51 (excita-
tion) X 201 (emission). Note that for these data the
exact compression mentioned before is not possible.
Even though the first mode is only of dimension 5,
the product of the two smaller is 255 which is more

Table 1

1

than the largest dimension. The proper PARAFAC-
dimensionality of the data has been found to be three.
The other data set stems from an investigation of a
sugar plant process and is called SUGAR. It suffices
here to say that 265 samples of sugar were dissolved
in water and measured spectrofluorometrically from
275-560 nm at excitations 230, 240, 255, 290, 305,
325, 340 nm by a procedure according to Ngrgaard
[27]. Part of the data was significantly influenced by
Rayleigh scatter. In order not to confound the results
with the problems of missing values, this part of the
data set was discarded in this analysis resulting in an
array of size 265 X 371 X 7. The proper PARAFAC
dimensionality is three.

For the AMINO data set, the following procedure
was used. The unconstrained PARAFAC model was
estimated for a two-, three-, and four-component
model respectively. This way it is possible to judge
separately what happens if the model is under- or
over-specified with respect to the number of compo-
nents. For the SUGAR data, only a three-component
PARAFAC model was estimated. A relative change
in fit (sum-of-squared errors) less than 10~% was used
as convergence criterion. Each model was estimated
from the raw data and from an array compressed us-
ing two and up to seven components in the Tucker3
model to verify the influence of the degree of com-
pression. Naturally one expects that the fewer com-
ponents in the Tucker3 model, the faster the subse-
quent estimation will be as the array is smaller.
However, one will also expect that the estimated ana-
lytical model resembles the model estimated from the

Results from estimating a two-component PARAFAC model on the data set AMINO

Data set AMINO, two-component PARAFAC model

SVD-based component

Tucker3 Time of comp/  Time of model (s)  Time of raw (s)  Difference Time of comp/  Difference
components  model (s) (%o experimental)  model (s) (%o experimental)
2 97 43 324 -06-1073 147 8.4

3 16 8 324 63-1073 144 68-1073

4 37 11 324 24-1073 147 24-1073

5 65 16 324 1.9-107% 149 20-1073

6 146 17 324 1.6-1073 152 19-107°

7 73 19 324 04-1073 155 041073

The first column gives the number of components used in the Tucker3 compression. The second column is the time spent in estimating both
the compressed array and the model. The third column gives the time for only estimating the model from the compressed array, and the
fourth column the time for estimating the model from the raw data. The fifth column gives the difference in the percentage of variation
explained by the two models. The last two columns give the results from compressing with Tuckerl loadings.
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Results from estimating a three-component PARAFAC model on the data set AMINO

Data set AMINO, three-component PARAFAC model

SVD-based compression

Tucker3 Time of comp/  Time of model (s)  Time of raw (s)  Difference Time of comp/  Difference
components  model (s) (%o experimental)  model (s) (%o experimental)
3 32 24 849 20-107% 151 23-107*
4 56 29 849 77-1073 157 1.1-107%
5 82 35 849 4.1-107° 162 04107
6 165 41 849 34-1073 168 04107
7 101 48 849 13-107% 175 0.1-107*

For further explanation, see legend of Table 1.

raw data better, the more components are used for
compression.

The time used for estimating the model is given in
seconds and three times are tabulated: the time used
for estimating the model from the raw data (using the
same initialization as for the Tucker3 model), the time
used for compression and estimating the model from
the compressed array and finally the time used for
estimating the analytical model from the compressed
array. The last one is relevant as one will often esti-
mate different models from the data in order to ver-
ify which is better. In such a case one would not re-
compress the array each time, but rather use the same
compressed array each time. We have chosen to use
time rather than the number of FLOPS (floating op-
erations) for indicating the computational complex-

Tuckeri - 2 comp.

a)

Tuckert - 3 comp,

ity, as the number of FLOPS seldom reflects the time
consumption realistically. In order to be able to gen-
eralize the results obtained to other platforms than
MATLAB, however, we will also mention the com-
plexity of the methods with respect to FLOPS. The
difference in fit between the model estimated from the
raw data and from the compressed data is also given.
The model estimated from the raw data is the ‘truth’
as it will per definition be the least-squares estimate;
hence the fit of the model estimated from the com-
pressed data, should give equally good fit.

For comparison, the results of using Tuckerl-
based compression instead of a Tucker3 is also
shown. These Tuckerl-defined bases are often sug-
gested as appropriate bases for describing the respec-
tive variable spaces in the literature. Indeed, if differ-

Tucker3 - 2 comp.

b)

Tucker3 - 3 comp.

d)

Fig. 1. Two-component PARAFAC model of AMINO. The broken lines indicate the loadings estimated directly from the raw data. (a) Us-
ing two-component Tucker] for compression, (b) using two-component Tucker3 for compression, (c) using three-component Tuckerl for

compression, (d) using three-component Tucker3 for compression.
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Tuckeri - 3 comp.

a)

Tucker1 -4 comp.

Tucker3 - 3 comp.

b)

Tucker3 - 4 comp.

d)

Fig. 2. Three-component PARAFAC model of SUGAR. The broken lines indicate the loadings estimated directly from the raw data. (a)
Using three-component Tuckerl for compression, (b) using three-component Tucker3 for compression, (c) using four-component Tuckerl
for compression, (d) using four-component Tucker3 for compression.

ences in time and fit between these two compression
approaches are negligible there is little sense in using
the more complicated iterative Tucker3 model for
compression.

4. Results

The most important finding of the investigation is
that the analytical model obtained from the com-
pressed data is almost always identical to the one ob-
tained from the raw data. Of all the models estimated
only two compression based analytical models differ
substantially from the models estimated directly from
the raw data. These are the Tuckerl-based models
shown in Tables 1 and 2 with two- and three-com-

Table 3

pression components, respectively. To illustrate
qualitatively the difference between the Tuckerl- and
the Tucker3-based compression the estimated load-
ings in the emission mode are compared in Figs. 1 and
2 with the loadings estimated from the raw data.
The estimates are shown for the models men-
tioned above, and models including one more com-
ponent in the compression bases. It is easily verified
that only Tuckerl-based models differ from the ref-
erence loadings (Fig. 1aFig. 2a). Using more compo-
nents will remedy this (Fig. 1cFig. 2c) and the
Tucker3-based compression is always better (Fig. 1b
and dFig. 2b and d). The overall conclusion as judged
from the tables is, that Tucker3 compressed
PARAFAC modeling is consistently faster than un-
compressed modeling. Especially if the PARAFAC

Results from estimating a four-component PARAFAC model on the data set AMINO

Data set AMINO, four-component PARAFAC model

SVD-based compression

Tucker3 Time of comp/  Time of model (s)  Time of raw (s)  Difference Time of comp/  Difference
components  model (s) (%o experimental)  model (s) (%o experimental)
4 874 580 1130 14.0-1073 989 14.0-1073
5 627 581 1130 41073 669 4-1073
6 671 547 1130 21073 760 4-1073
7 625 573 1130 0-1073 710 1-1073

For further explanation, see legend of Table 1.
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Results from estimating a three-component PARAFAC model on the data set SUGAR

Data set SUGAR, three-component PARAFAC model

SVD-based compression

Tucker3 Time of comp/  Time of model (s)  Time of raw (s)  Difference Time of comp/  Difference
components  model (s) (%o experimental)  model (s) (%o experimental)
3 307 111 1545 54-1073 172 64.8-1073
4 297 123 1545 54:1073 172 84-1073
5 447 150 1545 05-1073 174 05-1073
6 455 176 1545 04-1073 177 04-1073
7 450 202 1545 02-1073 180 021073

For further explanation, see legend of Table 1.

model is slightly overparameterized (too many com-
ponents) the gain is large, as the estimation of the
PARAFAC model from the raw data can then be very
time-consuming (Table 3). Surprisingly, modeling
based on Tucker3 compression is also faster than us-
ing the simpler Tuckerl-based compression. This is
because the Tuckerl estimation of bases is per-
formed on quite large arrays. This could have been
remedied by using instead an approach similar to the
initialization of the Tucker3 algorithm as described in
part 1. The Tucker3 compression though, consis-
tently fits the reference model better than Tuckerl-
based compression. Especially if few compression
components are used the difference can be large (Ta-
bles 1 and 4). There are thus no arguments for using
Tuckerl-based compression instead of Tucker3-
based.

For all the models investigated the number FLOPS
used for estimating the models were also registered.
The main result is that estimating the PARAFAC
model using the Tucker3-based compression is gen-
erally 5 to 80 times cheaper than estimating the model
from the raw data in terms of FLOPS as compared to
only a 3 to 40 times cheaper with respect to speed.
Much of the computation (30-90%) is used for esti-
mating the Tucker3 model, though with respect to
time these figures are generally lower. Even though
the compression approach is thus advantageous any
improvement of the Tucker3 algorithm will be bene-
ficial. A simple idea could be to only estimate the
Tucker3 compression model using few iterations (<
10). The observation that the Tuckerl based ap-
proach is almost as efficient as the Tucker3 based
approach seems to indicate, that even an approximate
Tucker3 model can be beneficial. However, one must
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keep in mind, that for all practical purposes, several
analytical models will normally be estimated, but
only one compression model is needed. Therefore the
actual importance of the complexity of the compres-
sion algorithm is less important than indicated by the
results presented here.

5. Conclusion

We have developed an efficient method for com-
pressing large arrays using a fast Tucker3 algorithm
for compression. The compression method has been
shown to speed up estimation considerably. Incorpo-
ration of important constraints has also been dis-
cussed. It might be argued that there is little gain in
using Tucker3 loadings instead of the more easily
calculated Tuckerl models for compression. How-
ever, as the Tucker3 model is fast and because it does
make a difference in some situations, the use of
Tucker3 loadings seems an appropriate choice for
compression. This, especially since the estimation of
the compression model is mostly fast compared to the
estimation of the possibly several analytical models.
The conclusion of this work also applies to, e.g., the
use of singular vectors for defining the variable space
before doing generalized rank annihilation.
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Abstract

An improvement to the Andersson-Bro (A-B) alternating least squares (ALS) algorithm for the Tucker3 three-way model
is presented. The published A-B algorithm deals cyclically with the three modes of the problem. In each ALS substep, the
whole array is projected onto a different mode. The projections are the dominating workload. In the improved version, each
whole-array projection is utilized for two ALS substeps. The same ALS steps are performed as before but the number of
full-sized projections is cut to half. This almost doubles the speed of the algorithm without changing its convergence proper-
ties. The possibility to utilize each full-sized projection for more than two ALS substeps is discussed. © 1999 Elsevier Sci-
ence B.V. All rights reserved.

Keywords: Three-mode factor analysis, 3-MFA; T3; Alternating least squares, ALS; Non-cyclical algorithm

Contents

LoIntroduction . . . v ot e e e e e e 18
2 T (N 18
3. Thebasic A-Balgorithm . . . .. ... ... e e e e e 18
4. Utilizing each first-level projection for two ALSsubsteps . . . . . . . ..o . oo i e . 18
5. Furtherpossibilities . . . . . . . . oo i e 19
6. Experimental results: therealdataset . . . . .. ... ... ittt e 19
7. Experimental results: synthetic data arrays. . . . . . . o v v vt vt b e e e e e e e 20
8. ConCIUSIONS . . & v v v vttt i e e e e e e e e e e 20
References . . . . o v it e e e e e e e e 20

* Corresponding author. Tel.: +358-9-191-8337; Fax: +358-9-191-8680; E-mail: pentti.paatero@helsinki.fi
! Intended for publication in Chemon. Intell. Lab. Syst. Vol. 42, Nos. 1, 2, special issue in honour of Agnar Hskuldsson.
2 E-mail: ca@kvl.dk.

0169-7439/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0169-7439(98)00186-5

134



I1. Algorithms, models and applications

18 P. Paatero, C.A. Andersson / Chemometrics and Intelligent Laboratory Systems 47 (1999) 17-20

1. Introduction

Recently, Andersson and Bro [1] published a thor-
ough analysis of alternating least squares (ALS) al-
gorithms for solving the three-way factor analytic
Tucker3 model. The present note offers an improve-
ment of the published Andersson-Bro (A-B) algo-
rithm. The improved algorithm has been available
through the Internet distribution of the A-B programs
since May 1997. In its basic form, the modification
enables a speed increase of almost a factor of two.
This note is closely coupled to the A-B paper and it
is assumed that the reader has the paper available. The
notation of the A-B paper is mostly followed. Differ-
ent notation will be explained.

2. Notation

Andersson and Bro work with arrays rearranged
(‘unfolded’) into matrices. Thus projecting the array
X onto matrix B is written as a matrix product, W®
=B"X®. The superscript (2) indicates in which way
the array is unfolded. In this work, the simpler nota-

B
tion suggested by Kruskal [2] is used, viz. W= X
meaning w;g, = 1.;b; x, ;. Similarly projections onto
A and onto C are denoted by Y = AX and Z = XC,
meaning ¥, = X;a;, x5 and z;;, = Loy Xy, Te-
spectively. A combined projection onto C and B is
denoted in the A-B paper as V;l) =X"(C®B). In

Kruskal notation this is V= XC, meaning v, =
L,Xybjcp, %, Similar notations apply for double
projections onto A and B, and onto A and C. A nota-

B
tion such as W= A X may be understood equally
well as projecting first on B, then on A or as project-
ing first on A, then on B.

In Ref. [1], one projection is discussed as repre-
sentative of all three and the doubly projected array
is called V. In the present note, the notation V is
dropped as it is necessary to discuss all three cases
separately. Instead, double projections of X onto (B,
), (C, A), and (A, B) are called R, S, and T, re-
spectively.

3. The basic A-B algorithm

One full iteration step of the A-B ALS algorithm
may be described as follows.
(1a} Project array X onto factor matrix B and fur-
B

ther onto C: W= X, R =WC.

(1b) Compute the new factor matrix A as the first
R* singular vectors of the unfolded array R.

(2a) Project array X onto factor matrix C and fur-
ther to the new A: Z =XC, S = AZ.

(2b) Compute the new factor matrix B as the first
R® singular vectors of the unfolded array S.

(3a) Project array X onto the new matll;ix A and

further onto the new B: Y=AX, T=Y.

(3b) Compute the new factor matrix C as the first

R singular vectors of the unfolded array T.

The main contents of Ref. [1] is a thorough analy-
sis of the algorithmic substeps 1b, 2b, and 3b. These
substeps are refined so that the total number of itera-
tion steps becomes as small as possible. In this note,
these substeps are not discussed. As pointed out by
Andersson and Bro, the main workload in the itera-
tion is in the first level projections, i.e., in the com-

B
putations W= X, Z=XC, and Y = AX. In the
second level projections, the arrays W, Z, and Y are
(much) smaller than the original array X and the
workload is correspondingly smaller.

4. Utilizing each first-level projection for two ALS
substeps

The idea of the improved algorithm is that each
first-level projection should be utilized as far as pos-
sible. The projections needed in two full ALS steps
can be organized as follows, while keeping the A-B
algorithm otherwise unchanged. This algorithm is
designated as (2,2,2), indicating that two factor com-
putations are performed after each first-level projec-
tion. The previous basic algorithm is correspondingly
called (1,1,1).

(1) Project X onto g and further onto B:

Z=XC, R= Z. Compute A.

(2) Project X onto C and further onto A:
S = AZ. Compute B.
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(3) Project X onto B and further onto A:

B
W= X, T=AW. Compute C.
(1) Project X onto B and further onto C:
R =WC. Compute A.
(2') Project X onto A and further onto C:
Y = AX, S = YC. Compute B.
3) Projecg X onto A and further onto B:

T =Y. Compute C.

Discussion of the algorithm. The matrix C does
not change in step 1. Thus the first-level task of pro-
jecting X onto C is exactly the same in steps 1 and 2.
The result of first-level projection from step 1, array
Z, may thus be reused for the second-level projection
in step 2. Similarly, W from step 3 may be used in
step 1, and Y from step 2’ may be used in step 3'.
The net gain is that in two full steps, only three
first-level projections are needed instead of six. The
main part of workload is cut to half. The doubly pro-
jected arrays R, S, and T are the same as in the orig-
inal algorithm, except for different rounding errors
caused by a different order of computations. This al-
gorithm has been distributed by Andersson and Bro
through Internet.

5. Further possibilities

The idea presented in the previous section may be
carried further. When X has been projected onto C,
it is possible to recompute A and B several times
while keeping C constant. There will be a problem-
dependent optimum count of these subiterations
where the improvement of fit produced by another

Table 1
Sequence of projections when each first-level projection is fol-
lowed by three second-level projections

1st projection 2nd projection Solve factor
C B A
- A B
- B A
A C
- C A
- A C
A C B
- B C
- C B
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Table 2
Sequence of projections when first-level projections onto A are
avoided

1st projection

2nd projection Solve factor

C A B
- B A
- A B
B A C
- C A
- A C

subiteration step does not justify the additional work-
load caused by another subiteration step. Table 1 il-
lustrates the projection sequence when each first-level
projection is utilized for three second-level projec-
tions and factor solutions. After projecting onto C, A
is solved, then B, and then again A. Similar patterns
occur after first-level projections onto B and onto A.
This arrangement is called (3,3,3).

It is straightforward to count the flops in different
projections. If the three dimensions of the core array
are not equal, then first-level projection to the mode
having the largest core dimension causes the largest
number of flops. As an example, consider a case
where I=J=K=100, R*=10, RE=R¢=5.
Then the cost of first projecting onto A is twice the
cost of the other alternatives. In this example one
might wish to use a projection sequence where first-
level projections are only performed onto B and onto
C. Table 2 shows an example of such a sequence.
This setup is called (0,3,3), where the zero code indi-
cates that no first-level projection is made upon A.

6. Experimental results: the real data set

The experimental data set discussed in Ref. [1] was
analyzed by using the modified algorithms. The re-
sults should be taken as representative examples, not
as the final truth. The iteration counts needed for
convergence will depend on the characteristics of in-
dividual data arrays. In addition, the relative timings
will depend on technical details of the implementa-
tion, on caching characteristics of the hardware, and
also on the dimensions of the three different modes.

The algorithmic variants are denoted by triples of
numbers (na, nb, nc) where na denotes how many
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factor evaluations are performed after each first-level
projection onto A, and so on. For the real data set of
Ref. {1], the iteration counts for (1,1,1), (2,2,2),
(4,4,4), and (10,10,10) were 21, 11, 7, and 4, respec-
tively. The elapsed times were 58, 36, 30, and 26 s.
These results demonstrate that the first-level projec-
tions are not the only significant workload when the
subiteration counts increase above (2,2,2). Although
the main iteration count decreases by 64% from
(2.2,2) t0 (10,10,10), the elapsed time decreases only
by 28%. Avoiding first-level projections in the third
mode resulted in competitive timings, too: (8,7,0) and
(20,19,0) converged in six and three iterations, re-
quiring 32 and 27 s, respectively.

7. Experimental results: synthetic data arrays

Synthetic data arrays were generated in the man-
ner described in Ref. [1]. With 39 such arrays, the re-
sults were ambiguous. The numbers of iterations
seemed to vary randomly between different arrays
and different iteration arrangements. A few extreme
examples of iteration counts for (1,1,1)/(2,2,2)/-
(10,10,10) were 26,/13 /7, 34/36 /16, and 23 /16 /-
23. Further experiments revealed the reason: With the
used numbers of iterations (between 20 and 44 itera-
tions for the (1,1,1) case) the convergence is pushed
so far that numerical accuracy plays a decisive role.
Projecting first onto A and then onto B leads to a
different numerical result than projecting first onto B
and then onto A. Which one is better, depends on the
numerical data values.

Using the same projections but changing the
(1,1,1) solution sequence from (A,B,C) to (A,C,B)
also caused dramatic changes to iteration counts. Ex-
treme examples: 54 iterations were changed to 13, 26
iterations to 47.

These numerical effects masked the conver-
gence—rate differences almost completely. Thus it is
not meaningful to report the results in more detail. In
order to measure the convergence rates more reli-
ably, a different test is needed. Then the required ac-
curacy level should be set according to the require-
ments of a practical data analysis situation. Typi-
cally, one might be satisfied if the sum-of-squares
value is obtained with five true significant digits. (In

the present test, six or seven correct digits were re-
quired.)

8. Conclusions

The suggested modifications may be trivially in-
cluded in existing implementations of the A-B algo-
rithm or in other similar algorithms. With two sub-
steps, the gain in speed is almost a factor of two,
which is worth the effort especially if large problems
are solved. No complications are expected in conver-
gence or numerical precision unless one tries to push
the convergence so far that numerical effects (loss of
significant figures in projections) play a decisive role.

With more than two substeps following each
first-level projection, the gain probably depends on
the data. In the single real-data test performed in this
investigation, 10 subiterations were found to be
marginally faster than four subiterations. It may be
argued that just iterating two of the factor matrices
while keeping the third one unchanged is almost
worthless. On the other hand, this iteration is rela-
tively cheap if the principal vectors are computed
with an efficient algorithm. Only practical tests may
decide how many subiterations give optimum perfor-
mance.

An adaptive approach to organizing the subitera-
tions seems possible. Instead of focusing on a fixed
subiteration pattern (na, nb, nc), one could perform
a variable number of second-level projections after
each first-level projection. This would be based on a
mild convergence criterion: each sequence of sec-
ond-level projections would be continued until the
improvement of fit from another second-level projec-
tion drops below a fixed percentage of the total im-
provement obtained so far under the current first-level
projection.
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Abstract

At the roots of science lies observation and data collection from the world as is and from which conclusions can be in-
duced after classification. This is far from the present theory-driven, deductive, normative stage of science which depends
heavily on modelling discrete functional factors in laboratory experiments and suppresses the aspect of interaction. In spite
of its successes, science today has great difficulty in adapting to the changes which technology has created to cope with
registering and evaluating real data from the world, such as in food production chains. This paper demonstrates that it is
possible and profitable with the help of new technology to reintroduce an explorative, inductive strategy to investigate the
chemistry of a complex food process as is with a minimum of a priori assumptions. The food process investigated is a sugar
plant and the tools necessary in this strategy include a multivariate screening method (fluorescence spectroscopy), an arsenal
of chemometric models (PCA, PLS, principal variables), including multiway models (PARAFAC, Tucker), and a computer.
Not only can chemical criteria and process parameters throughout the process be validly predicted by the screening method,
but process irregularities as well as chemical species can also be detected and validated by multiway chemometric tech-
niques. Inspired by examples from the food area, the paper further discusses the nature of the exploration method in the
selection of tools and data. The aim is to study complex processes as a whole in order to model interaction of the underlying
latent functional factors which may later be defined more precisely by deductive methods. These methods in combination
with an appropriate multivariate screening method allow for unique identification of objects—a significant prerequisite for a
viable, exploratory, inductive data strategy which is needed as a fundamental complement to prevalent normative research in
order to obtain a science on the interdisciplinary level. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Chemometrics; Food science; Multiway models

1. The need for a new multivariate approach in

" ... mathematics is bound to become an increasingly . e e .
interdisciplinary evaluation

experimental science with less of a claim to absolute

truth” The food and health area receives special atten-
Gregory Chaitin [1] tion from the public in the present accelerated change

driven by technology. Chemistry and chemical data

play decisive roles here. Classical basic research

* Corresponding author. based on laboratory experimentation has made ap-
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parent a wide range of natural and manmade chemi-
cal species which appear as functional and antifunc-
tional factors in food science and nutrition. Food sci-
ence is thus, today, in the very centre of the scien-
tific cyclone, drawing on a wealth of disciplines from
chemistry and physics [2,3], mathematics and statis-
tics [4], to biology, genetics, medicine, microbiology
[5], agriculture, technology and environmental sci-
ence, and even further to the cognitive sciences like
sensory [6] and consumer analysis and psychology as
well as to other social disciplines like economy. Such
an elaborate web of contacts increases the need for
the establishment of basic principles for intercontex-
tual multivariate data communication which are nec-
essary tools to create a real science on the interdisci-
plinary level. Chemometrics might help here.

The present rapid change is supported but not pri-
marily driven by science. Instead, inventors mainly
outside the universities develop technology to ad-
vance to the forefront with a much more flexible op-
erational strategy than science. The technologists are
focusing on finding a surprising technological fix that
is visible and attractive to the consumer and which
thus can secure a market. Science often comes long
afterwards and explains why technology works and
what side effects it has by studying interferences to
present hypotheses.

During the Second World War, the organisation of
technological product development and the support-
ing science became much more effective, as vividly
described in the classic OECD report by Erich Jantsch
in 1967 [7]. The aim of the development outlined by
Jantsch is essentially to ‘invent the future’ by tech-
nological forecasting, which Jantsch describes as a
management discipline systematically exploiting
goal-oriented science in order to realize technology
or, in other words, to achieve technological transfer
with a high degree of probability.

Exploratory technological forecasting starts by
pragmatically evaluating the present knowledge base
angd is directed towards the future, while normative
technological forecasting first defines a future goal or
model by evaluating needs, wishes and possibilities
and works backwards toward the present in order to
realize it. In classical science, these two outlooks are
related to inductive and deductive problem-solving,
respectively [8]. When technology and science were
young, they worked in an inductive, exploratory way,
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for example to describe, classify and utilize the
chemical compounds which were isolated by distilla-
tion, precipitation and crystallization and analyzed by
their colour, smell, taste, solubility and reactivity. The
patterns of relationships which could be induced from
the information from these early studies inspired a
theoretical model thinking in formulating general hy-
potheses from which new, specific and detailed prin-
ciples and new, confirmative experiments could be
deduced [9]. Thus, in food science and related indus-
try, data evaluation today is primarily performed by
classical statistical [10] and hard engineering meth-
ods [11] based on distributional assumptions and so-
lution of complex differential equations, which were
necessary before the advent of the computer. These
methods are, however, only relevant for a part of real
life where the sufficient causal understanding is al-
ready available and underlying assumptions fit, such
as in representative sampling techniques, and on the
molecular level when, e.g., modelling heat-transfer in
food processes.

Before the advent of the computer, the necessary
strategy to cope with issues in the multivariate com-
plex world was through problem reduction. The dif-
ferent functional factors in the laboratory were iso-
lated one by one at the expense of control of covari-
ance and overview. Data are still evaluated by a
mathematical language based on axioms which are
more tuned to the logic of the mathematical machin-
ery than to that of chemistry and the world outside the
laboratory. Therefore, the present crisis in today’s
science is rooted in a lack of an accepted strategy in
interdisciplinary science, despite the political quest
for such a cooperation. We maintain that in the sci-
ence of the future new strategies and data, analytical
algorithms and procedures will play a fundamental
role in creating a dialogue on equal terms between the
normative, deductive and the exploratory, inductive
principles. We will now focus on an example of how
the computer, a specific screening method and a range
of chemometric tools mostly funded on vector alge-
bra adapted from mathematical methods of social
science [12] may be used by the human brain to up-
grade the exploratory, inductive research method
which is greatly neglected today. Hempel [8] ex-
plains the current attitude: ‘‘Scientific knowledge is
not obtained by the method of induction based on
earlier collection of data but rather by ‘The hypothe-
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sis method’: that is, to invent alternative hypotheses
deduced from earlier known knowledge as prelimi-
nary answers of the problem under study and there-
after testing these hypotheses empirically’’.

2. Exploring the beet sugar manufacturing pro-
cess by spectrofluorometry and chemometrics—
an example of a highly exploratory, inductive re-
search strategy

We will begin by presenting the sequence of
chemometric results of the exploratory investigation
expressed as a graphic interface which is easily cog-
nitively accessible for any person. In Appendices
A-C, we will comment in more detail on how we use
the chemometric machinery involved, with emphasis
on the new multiway techniques.

Sugar or sucrose [13] is the most abundant disac-
charide in nature and has been a world leading com-
modity for centuries mainly due to its sweet taste
properties. Originally, it was extracted from sugar
canes but today more than half of the world produc-
tion comes from sugar beets. Sugar is probably the
most chemically pure food component produced with
a typical purity of 99.999%. Colour and purity play a
great role when evaluating sugar quality.

In 1992, we heard from a sugar production expert
that UV-lamps and filters were used in Denmark dur-
ing the war for visual classification of sugar accord-
ing to purity. There was a typical blue fluorescence
for less pure sugars. With our background in fluores-
cence analysis in foods [14], but without any in-de-
pth knowledge of sugar production, we contacted and
established a dialogue with the Danish company
Danisco Sugar. We started by analyzing samples
which we knew nothing about in our Perkin Elmer
LS50B spectrofluorometer. After presenting the re-
sults to the sugar technologists, we obtained succes-
sively more information about process conditions and
about chemical analyses of the products for interpre-
tation which we included in our chemometric mod-
els. The measurement conditions are described or re-
ferred to in the text of the figures and tables.

In Fig. 1A, we see the complex fluorescence spec-
tra, each with 1023 data points from 34 different
sugar samples from the year 1993. In order to get an

1,
&
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overview of this complex information, we performed
a data reduction by principal component analysis
(PCA) to reduce the data to a few (three) principal
components (PCs).

The PCA score plot in Fig. 1B (PC#1 vs. PC#3)
reveals 3 clusters which the sugar technologists iden-
tified as average weekly samples from the sugar
campaign (production period) from week 1 to 14 for
3 sugar factories called A, B and C. The different raw
material and processing conditions of the different
factories in 1993 obviously had a unique fluores-
cence signature.

We then obtained 10 kinds of univariate chemical
analyses for each of the 34 samples which are pre-
sented as spectra after scaling in Fig. 1C. We per-
formed a separate PCA score analysis of the chemi-
cal data which also revealed 3 clusters (Fig. 1D) cor-
responding to 3 factories and similar to the spec-
trofluorometric investigation (Fig. 1B). When com-
bining loadings and scores for the chemical analyses
in a bi-plot (Fig. 1E), we could see that ash, colour
and amino—N analyses are situated in the same area
as samples from factory C which indicates that these
have especially high values. Because the independent
classification based on fluorescence data (Fig. 1B)
indicates that factory C is especially high in fluores-
cence, we induced the hypothesis that fluorescence
might be directly or indirectly related to some of the
chemical analyses. In order to test this, we per-
formed a partial least squares (PLS) regression anal-
ysis on the 34 samples correlating whole fluores-
cence spectra with ash. The result reveals a signifi-
cant correlation coefficient of —0.92, which indi-
cates that fluorescence analysis could be a candidate
as a screening method for quality in sugar produc-
tion.

This indication is further verified in a PLS study
[15] with 81 whole fluorescence spectra from 6 dif-
ferent factories showing especially high correlations
with amino~N, ash and colour (Table 1). Five wave-
lengths were selected by the principal variables
method (see Appendix C) which altogether gave rea-
sonable prediction models with amino—N, colour and
ash, indicating that an ‘on-line’ screening method
could be devised based on a simple filter instrument.

When a PCA was performed on fluorescence in-
formation of mean weekly sugar samples during the
campaign for one factory, a horseshoe-formed time
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Fig. 1. (A) Uncorrected fluorescence emission spectra of 34 sugar samples. The spectra are recorded from a solution of sugar in water at
excitation wavelengths 230 nm, 240 nm, 290 nm and 340 nm. The emission ranges sampled with 1 nm intervals are 275-560 nm, 275-560
nm, 311-560 nm, and 361-560 nm, respectively (in total 1023 data points). See Ref. {15] for further details. (B) A score plot from a PCA
on the spectra; three clusters are seen corresponding to samples from three different factories (A, B, and C). (C) Chemical data on the same
34 samples (scaled to a maximum value of 1). (D) Score plot from a PCA on the chemical data; again three clusters are seen corresponding
to samples from three different factories. (E) Bi-plot based on chemical data.
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trend could be envisaged for some factories (Fig. 2A),
but not for others (Fig. 2B) which where rather
chaotic. These two extreme PCA score plots selected
from six factories with data from 1993 were de-
scribed by the sugar engineers as their best and worst
functioning factories. The trend in the PCA analysis
of spectra in Fig. 2A tentatively represents changes in
beet raw material chemistry due to growing condi-
tions, age, climate and storage and the resulting ad-
justments in process technology.

A similar PCA score plot of sugar fluorescence
information from the campaign start of the best func-
tioning sugar factory in 1994 is displayed in Fig. 2C.
A total of 106 sugar samples were taken during the
first three days of the sugar campaign. The PCA score
plot representing these sugar spectra starts at the bot-
tom with samples 3, 2, 5, 6, 4, 9, 8, 7, moving up-
wards to the right, then straight to the left and ending
up in an area of balance from score —50 to score
+50 of PC2. At the same time, the number of signif-
icant principal components diminishes from 4-5 to
1-2, indicating normal operating conditions. How-
ever, in the area of relative balance we can still en-
visage in a local PCA (Fig. 2D) a segregation in two
sample clusters 40—74 and 75-106, indicating a fun-
damental change in the process conditions after sam-

ple 74. This change could be identified in the factory
records as a process breakdown. Sample 88 is an un-
explained outlier. We conclude that it would be
worthwhile to investigate whether the fluorescence
information could be used to assist the process engi-
neer in indicating the balance of the process in the
form of PCA graphics.

We now move upwards in the process chain from
sugar to analyze thick juice—an important unpure
intermediate product in sugar production. In an ear-
lier preliminary study on thick juice [15], we ob-
tained results similar to those as with sugar with re-
gard to fluorescence analysis, however less clear cut,
in the classification of factories and correlation to
chemical analyses. We then employed a more ad-
vanced analysis than two-way PCA, namely 4-way
Tucker [16,17], which is explained in more detail in
Appendix A. Undiluted thick juice does not display
fluorescence due to concentration quenching. It is
possible to ‘develop’ fluorescence information by di-
lution. By simultaneously using fluorescence land-
scapes for partially quenched (1:15 Fig. 3A) and un-
quenched dilutions (1:150 Fig. 3B) we obtain four
external parameters with 47 samples, two levels of
dilution, 20 excitation wavelengths and 311 emission
wavelengths constituting a 4-way data array of order
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Fig. 2. (A) and (B) Score plots from a PCA of fluorescence spectra recorded on weekly collected samples from two factories. Factory D (A)
was known to be the best functioning factory, while factory F (B) was known to be the worst functioning factory. (C) Score plot from a
PCA of fluorescence spectra recorded on 106 sugar samples from the first three days of operation in a given sugar factory. (D) Score plot of

a PCA on the last 87 samples. The numbering is chronological.
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Fig. 2 (continued).

(47 X 2 X 20 X 311). The plot of the PC scores 2 and
3 is displayed in Fig. 3C showing a clear-cut classifi-
cation into 5 factories (a, b, d, e and f) and with a
clear tendency of timing within each cluster from be-
low to above, ranging from the early to the late sam-
ples. This classification is much more clear-cut than
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that obtained from the PCA score plots in the thick
juice material from different factories investigated by
Ngrgaard [15] where factories were overlapping and
where the time aspect of the samples could not be
modelled in the same plot. This underlines the ad-
vantages of respecting and exploiting the structure of
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the data and selecting chemometric algorithms ac-

cordingly, which are further discussed in Appendices
A-C.
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We will now proceed further upstream in the sugar
process to beet production in agriculture. The price
paid to the farmer for the beets is regulated by the
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Fig. 3. (A) and (B) Fluorescence landscapes of one thick juice sample in two concentrations. Note how the fluorescence signal in the UV
region is quenched in the 1:15 dilution (A) and becomes dominant in the lower concentration (B). (C) A Tucker score plot showing the
pattern of principal components two and three of the sample mode from 4-way PCA. Two principles are illustrated by this plot: samples
from the same factories (a, b, d, e, and f) are clustered nicely together and simultaneously the shift of the samples according to week number
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sugar and amino—nitrogen content of the beet juice,
the latter indicative of potentially colour-forming
molecules which could intervene with purification of
white sugar by crystallization,
Fig. 4A displays fluorescence information from 24
sugar beet mash samples taken from the receiving
" station of a sugar factory. As seen in Fig. 4B, there
is an excellent correlation between whole fluores-
cence spectra and amino—N in these samples. In or-
der to preliminarily investigate the variation in fluo-
rescence between sugar beets from different farms,
three 15-kg sugar beet samples were taken from nine
farms. Fig. 4D shows the PCA clustering analysis of
the corresponding fluorescence spectra of the beet
juices from Fig. 4C. There is a clear clustering effect
of the fluorescence information related to farm site
which not only depends on amino—N, but which also
indicates differences in the complex underlying
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Factor 2
Fig. 3 (continued).

chemistry due to beet variety, sowing time, soil, fer-
tilizer and weather which has to be understood by
further systematic trials with laboratory verification
and by correlation to technological quality. The fluo-
rescence method could thus be a candidate for a
screening analysis for beet quality to be used by the
plant breeding companies and farmers to optimize the
plant growing conditions and the beet varieties.

We will now investigate the evaluation possibili-
ties of another multi-way generalization of PCA,
namely PARAFAC [18,19] (the mechanism of which is
discussed in more detail in Appendix B), to study 268
sugar samples, each averaging 8 h of processing
(equal to one shift) by fluorescence from a three-
month campaign in 1995 from a well-controlled sugar
factory. Contrary to the unconstrained Tucker model,
the three-way PARAFAC model (268 samples, 571
emission wavelengths (Fig. 5A) and 7 excitation
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Fig. 4. (A) Fluorescence raw emission spectra of 24 sugar mash samples. Excitation 230 nm, 240 nm, and 340 nm (emission ranges 275-560
nm). (B) Predicted versus measured plot of amino~N values. Based on a three-factor PLS-model with fluorescence spectra as independent
variables and amino-N as the dependent variable. (C) Raw fluorescence spectra recorded on sugar beet mash samples from nine different
farms (three sample from each farm, i.e., in total 27 samples). The excitation /emission wavelengths are the same as those displayed in Fig.
1. (D) A score plot showing that the beets from the same farm no. 4, 7, 9, 10, 12, 15, and 19, in the fluorescent fingerprint seen in the mash
samples.
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Fig. 4 (continued).

wavelengths) may allow direct recovery of some of
the pure spectra from the underlying chemical sub-
stances.

In this study, four loadings called pseudospectra
could be resolved, two of which were identified by
comparing emission and excitation pseudospectra
with the true spectra of tyrosine (Fig. 5B) and trypto-
phane (Fig. 5C, see also discussion in Appendix B).
Fig. 5D shows the four emission pseudospectra and

their correlations to the process parameters colour and
ash. In this preliminary study, it is observed that the
four component candidates have different patterns of
correlation, pointing at the possibility that they may
be used as indicator substances, e.g., for colour or ash
alone or in combination. Compound 4 is obviously
the best indicator for colour.

In Fig. SE, the scores for the four pseudospectra
during the campaign are shown. The components
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Fig. 5. (A) Raw fluorescence emission spectra of 268 sugar samples sampled as a mean spanning eight h equal to one shift during a three-
month campaign (1995). The samples were measured at excitation wavelengths 230, 240, 255, 290, 305, 325, and 340 nm (emission ranges
were all 275-560 nm). (B) Pseudo-emission and excitation spectra for compound 2 compared with pure tyrosine (dashed). To the left the
emission parameters are shown and to the right the excitation parameters are shown. (C) Pseudo-emission and excitation spectra for com-
pound 3 compared with pure tryptophane (dashed). To the left the emission parameters are shown and to the right the excitation parameters
are shown. (D) PARAFAC emission loadings 1-4 and their correlations to ash and colour. (E) Concentrations (scores) of the four pseudocom-
ponents.
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while scores for the other three components are more
constant.

Factory records as well as interviews with the
process engineers revealed that beets are stored longer
during weekends which may produce heat due to mi-
crobiological activity which is reflected in higher
fluorescence scores for all four components as well as
an increase in colour. The change in the level of
compound 4 and the increased colour development
could be explained by frozen beets due to the com-
ing winter and the resulting process adjustments.
Compound 4 could thus be an indicator for colour as
well as for frozen beets. These observations has to be
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verified and generalized in more detailed studies with
other factories and other production years.

The variation of the fluorescence pseudocompo-
nents during the production campaign clearly indi-
cates temperature effects covariant with colour of
sugar. We may therefore induce a hypothesis from
real life data that temperature in the receiving beet
stores may have a major impact on the precursors of
sugar colour which should be checked by monitoring
temperature in the store,

We have demonstrated that with a minimum of
prior knowledge of sugar technology and chemistry
we are able to establish a constructive, exploratory
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dialogue with the sugar technologists throughout the
whole production chain using the tools of a fluores-
cence screening analysis, chemometric software and
the computer. Together we have been able to identify
a range of process events which the fluorescence
analysis had picked up. At the same time we have
shown that the fluorescence screening method has the
potential for providing a holistic fingerprint of the
state of chemistry in the process in the form of 4 flu-
orophores which correlates with a range of important
quality parameters throughout the beet sugar manu-
facturing process and which may be used as indica-
tor substances which is further demonstrated in Ap-
pendix B.

3. What chemometrics and food science can learn
from each other

In his outline on the roots of mathematics in hu-
man culture, Barrow [4] emphasizes the inherent
weakness of the human brain in multivariate analysis
and the fundamental role of written symbols and ba-
sic assumptions axioms—the fundamental on which
the mathematical machinery is built. It should be ac-
knowledged that ‘axioms’ are also a fundamental part
of human cognition—a method to keep a working
platform of consistency in bookkeeping in a complex
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universe. This is often practised without thinking too
much, for example by the chemist in the laboratory
as well as by the food consumer in daily life. How-
ever, when trying to exploit mathematics in real life,
such as in food production, it becomes as crucial to
define ‘the axioms’ of chemistry and food produc-
tion as those of the mathematical models which are
used to describe and predict events in data from food
processes. '

Food production is dependent on the demand of
markets in thousands of complex production chains
regulated by the monetary principle and governmen-
tal and international regulations. The functional unit
is ‘man as selector’ [20} in different roles as con-
sumer, distributor, manufacturer, as well as raw ma-
terial and secondary material supplier.

This exploratory selection process with the indi-
vidual consumer in the centre may be elucidated by a
model for learning— ‘the selection cycle’ (Fig. 6) [20]
related to the concept of the perceptual cycle in psy-
chology {21] (p. 37)—comprising different steps
starting with a primary selection hypothesis inspired
from the global area (0) proceeding with an inven-
tory /screening analysis (I) and selection of material
and methods (II), followed by testing /evaluating (ITT)
which results in a secondary (IV) selection hypothe-
sis are valid for the local area.

After an introductory round the individual selector
proceeds in increasingly more focused and limited
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Fig. 6. The selection cycle [20].

rounds (Fig. 6a—c) (e.g., omitting point O (b) or even
0 and 1 (c)) in the selection cycle. Thus, in each cy-
cle, the dynamically adapted secondary selection hy-
pothesis (IV) is validated experimentally (III) in nu-
merous revolutions. It is a common phenomenon that
in the progress of time the secondary hypothesis
(IV:n) and its derived propositions from the local area
have often overshadowed the more global primary
selection hypothesis derived from. e.g., society. It
now lives its own life in the context of society in the
mind of the selector in spite of its local limitations.
In this way serious bias could be introduced uninten-
tionally.

The food experience of the consumer tells that the
selection cycle contains both global and local as well
as visible and hidden domains. When buying food in
the store, the selector starts with a primary selection
hypothesis (0) implying acquisition of defined foods
with expectations regarding culinary quality, health
and economy in a long-range perspective. He/she
then evaluates foods in the local area with regard to
visible (screening) characteristics (I) like colour,
packaging and price. After selection (II) the individ-
ual ‘develops’ hidden qualities such as smell, taste
and tenderness by cooking the food at home (III).
This may generate a reaction in the form of a new
purchase policy (IV) which will then be checked in
later cycles. The exploratory behaviour of the con-
sumer creates information about foods in the local
area which again may reinforce or weaken a specific
behaviour of selection.

The global aspect of food selection [20] includes
the part of the accumulated feedback on the physiol-
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ogy of the consumer which is caused by his /hers own
food selection and consumption. It also. contains the
hidden feedback effects [20] of nature which Darwin
called ‘natural selection’, now also including the in-
direct influence of the selection force on the food
production environment of the activity of a large
population of human selectors exploiting resources
and the resulting effects on their food quality and
health.

Returning to our example on exploratory analysis
by fluorescence screening, we find that indeliberately
we worked exploratively accarding to the selection
cycle model: we attempted an analysis in the ‘global
area’—the beet sugar production chain—by using
chemometrics.

Without extensive knowledge of sugar manufac-
turing we used the fluorescence screening method to
pose a question to the process as follows: “‘Is fluo-
rescence analysis chemically and technologically rel-
evant as a screening method for control and predic-
tion of parameters of industrial interest?’’ This is the
primary hypothesis (0) in the selection cycle. After
analyzing (1:1) sets of sugar products with fluores-
cence spectroscopy, we could select (II:1) and evalu-
ate (I11:1) sugar samples belonging to defined facto-
ries and processes as well as identify time effects due
to date of delivery throughout the season. We could
also identify process balance in a start-up test (II1:1)
by analyzing the sugar product as well as indicating
a minor breakdown in the balance point.

From these results, we could induce a preliminary
secondary selection hypothesis (IV:I) that a sugar
sample could be looked upon as ‘a datalogger’ which
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integrates information from the production chain up-
stream that could be read by a fluorescence spectro-
photometer and evaluated by PCA.

In our second selection cycle, we proceed on our
data selection adventure in the local area—the labo-
ratory—by comparing the classification of tradi-
tional sugar analyses (I:2) with fluorescence analyses
in two separate PCAs. Due to the fact that samples
with high fluorescence have high ash, colour and
amino—nitrogen values, we selected (II:2) the PLS
algorithm which gave good correlation in an evalua-
tion (III:2) between fluorescence spectroscopy at 5
specific wavelengths and sugar quality, indicating di-
rect or indirect relationships. This fact was used to
formulate a new and more specific secondary selec-
tion hypothesis (IV:2) that fluorescence could be used
as a preliminary screening method for direct analysis
of purity in sugar. In a third selection cycle this hy-
pothesis was expanded to the whole production chain.
In a fourth selection cycle, we enlarged our third sec-
ondary hypothesis by suggesting that behind the flu-
orescence spectra lies information from discrete
chemical compounds which may be used as ‘indica-
tor substances’. These substances reflect chemical
composition of sugar and intermediate products as
well as process parameters. To solve this problem we
selected multiway exploratory algorithms such as
Tucker and PARAFAC. From a complete material of 8
h average sugar samples from an entire sugar cam-
paign PARAFAC displayed 4 different pseudospectra
(loadings) corresponding to 4 discrete compounds
(fluorophores), two of which could be preliminarily
identified. The four pseudospectra were shown to be
able to model process observations, such as frozen
beets and quality criteria like ash and colour, as well
as other important process parameters as discussed in
Appendix B.

Finally, in the fifth turn in the selection cycle we
aim at more precisely identifying the underlying
chemical compounds by high pressure liquid chro-
matography in the local area, the research laboratory,
which is outside the scope of this paper. Thus, we do
not forget to check the results from the exploratory
screening with our chemical interpretation of the
problem.

In the longer perspective, we aim to feed back the
integrated experience of the multivariate fluores-
cence perspective from the five selection cycles into
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the primary area (0), the beet sugar industry, in the
form of an established ‘global’ control method cov-
ering the production chain from beet production to
sugar.

In our sugar process example, with our sensitive
spectrofluorometric method we are not measuring
sugar, which is non-fluorescent, but rather a selec-
tion of impurities such as fluorescent amino acids,
phenols and their reaction products with reducing
sugars: the high molecular coloured melanoidines and
melanines. The sugar processing engineer tries hard
to avoid the formation of colour by adjusting pH with
Ca0 and adding reducing agents in the form of SO,.

In traditional chemical analysis, one starts by
defining the hundreds of chemical substances in-
volved in a process, as was done for the sugar indus-
try by Madsen et al. [22] in order to understand color
formation. If the target hypothesis is to find easily
identifiable indicator substances by which to model
quality and process characteristics, we suggest that
our exploratory, inductive method by introducing a
multivariate screening method in the global area of
the sugar factory would be more economical than a
normative, deductive strategy based only on a priori
chemical knowledge, chromatography and classical
statistics as studied in the local area—the research
laboratory.

We can thus conclude that the strategy of ex-
ploratory chemometric analysis in the example is
closer to the behaviour of ‘man as selector’ perform-
ing in the food production chain than to how statisti-
cians operate today. While statistics is mainly di-
rected toward probabilistic methods in modelling
noise, identifying the object as a void in the space of
noise, exploratory data analysis and chemometrics is
more deterministic [23]. It instead tries to model the
contours of data objects by data experimentation in
the computer.

In our example, statistical validation is completed
with two other alternatives: calibration /test set vali-
dation (data experimentation) and interviews with the
processing engineers, including confirmation from
process data banks. It must be pointed out that ex-
ploratory data analysis, which contains an important
inductive, empirical element of validation through
enumeration [8), does have a more humble profile [24]
in a restricted context than classical mathematics and
statistics. It places less demand on finding the abso-
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lute (generalized) truth (see citation by Chaitin in the
introduction), but instead aims at finding an adequate
and more precise local truth of equal or higher im-
portance which is time- and context-dependent. It is
basically a provisional detective work [25], trying to
explore the partly unknown territory of the world
outside the laboratory where hard hypotheses are
likely to neglect covariance and synergy and there-
fore are insufficient and inefficient. An endeavour of
reversed logics might be fruitless in a classical situa-
tion relying on univariate analyses where each object
has just a few characteristics, a multivariate analyti-
cal situation with many informative data points at-
tached to each object increases the uniqueness of the
description. In classification it allows safe detection
of outliers, thus greatly increasing the validity of the
results.

From our platform of data technology in chemo-
metrics, we can clearly see how it was necessary be-
fore the computer to develop a very special form of
" deep, rigorous and general thinking [26] aimed at
identifying the laws of nature. The goal is to obtain
consensus in the form of a global rational opinion as
a ‘science map of reality’ through organized, inter-
subjective communication [26]. Such an inflexible
outlook is rather strange for model creation in the
normal human mind which is characterized by prag-
matism and cognitive flexibility, although with a
short memory.

In fact, as the physicist and historian Thomas
Kuhn points out [27]: **The investigations of classi-
cal science have few quantitative points of contact
with nature, because investigations of those contact
points usually demand such laborious instrumenta-
tion and approximation and because nature itself
needs to be forced to yield the appropriate result, the
route from theory of law to measurement can almost
never be travelled backward. Numbers gathered
without some knowledge of the regularities to be ex-
pected almost never speak for themselves. Almost
certainly they remain just numbers’’.

We have here applied our global (with regard to
fluorescence) screening method and exploratory data
analysis and gone from measurements of sugar sam-
ples to a theory of selected indicator substances for
process control. Is it not this fairly straight forward
travel from the measurement of phenomena from real
life to construction of a theory which Kuhn calls
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‘backwards’, which we have just humbly attempted
and to a large extent succeeded in?

Obviously, new multivariate screening methods
and data evaluation methods based on induction us-
ing the computer, which Kuhn [27] and Hempel [8]
were unaware of (and still the vast majority of scien-
tists are today), open up new possibilities for con-
necting data from the world as it is with science—if
one can obtain a common platform for ‘the axioms’
and contexts of mathematics and those of the world
under study. This issue is further exemplified in Ap-
pendices A-C.

We may thus conclude that there is a major con-
ceptual distance between the aspiration of science of
global understanding of natural phenomena in its
generalized sense and global evaluation of measure-
ments as is from the real world for prediction and
control. This discrepancy has to be further under-
stood and bridged by a new strategy combining
screening methods, mathematics and information
technology. We can thus look upon the flow of infor-
mation in our sugar process example as a dialogue
between two connected selection cycles—one global
(sugar production) and one local (the laboratory).

Attempts by leading physicists to introduce a new
paradigm change in science, such as in the now clas-
sic book by Prigogine and Stenger [9] (since 1979)
‘Order out of chaos—Man’s new dialogue with sci-
ence’ are only slowly being acknowledged. They see
the world as an open self-organizing system which
develops while consuming energy. The world is het-
erogeneous. It contains simple as well as complex,
reversible as well as irreversible and probabilistic
(e.g., due to thermal movement of molecules) and
deterministic (e.g., due to DNA in organisms) in-
cluding chaotic moments. This- new outlook on the
world, combined with exploratory data analysis, is
much more relevant for describing the dynamic situ-
ation in food science than classical hard modelled
science with its mathematics and statistics which,
however, is still relevant in special cases. One should
thus be cautious in introducing a priori biased statis-
tical evaluation techniques in such a world without
defining context in an inventory in the start of the se-
lection cycle.

As food technologists we, of course, gratefully
acknowledge the laws of nature as defined by sci-
ence in our food technology research. But our pri-
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mary task is not to produce the eternal and general.
We do not aim to make a factory which produces the
same product from the same raw materials by the
same technology forever. Instead, we are interested in
controlling the timely, transient and specific traits of
the production, so that the company may withstand
competition for another year. The generally acknowl-
edged mathematical language which should be used
in the future to model such data should be more
compatible with this context and to the new science
of Prigogine and Stenger [9]. Today it is not.

We now see the great opportunity to directly study
order out of chaos in Prigogine’s and Stengers’ sense
by applying multivariate screening methods in real
life (e.g., in a sugar factory) as evaluated by the
computer and exploratory data analysis. It is there-
fore of great wonder to us that most scientists, in-
cluding Prigogine, investigating self-organizing sys-
tems are still apparently working with hard mod-
elling, deductive methods alone and have not yet
found their way to supplement with the new multi-
variate methods. Science is indeed conservative. It
has not yet discovered all the new kinds of freedom
which the computer may introduce. It is possible
within the limits of the screening analysis and the
mathematical algorithm with the exploratory method
to discover unknown phenomena directly. It is only
possible for classic science to obtain new knowledge
outside its traditional deductive system of hypotheses
indirectly through unexpected interference, e.g., in
discovering environmental problems.

The classical, positivistic science presumptions
[9,26,27] of the world are still dominant in the pre-
sent normative-deductive culture and severely re-
strict chemometrics. They focus on deduction from a
priori hypotheses based on fully transparent factors
which can be seen directly or revealed after experi-
mentation. As long as the present consensus in statis-
tical hard modelling and validation rules, the more
flexible, soft exploratory data models which intro-
duce latent factors and empirical validation, such as
PLS regression, will not be accepted as a science.
This is due to the incomplete transparency of these
algorithms which for the mathematicians are unde-
cidable by lack of mathematical proofs, in spite of
their better robustness and ability to adjust to a
changing context by experimental validation reflect-
ing human behaviour in the selection cycle.
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In fact, the operation of the PLSR aigorithm makes
a dialogue possible between screening data from the
world as it is and laboratory data. This is expressed
in finding common latent factors in a cyclic adapta-
tion process which embodies a dialogue between the
global and local principle, between the real world and
sciences, just as in the selection cycle discussed pre-
viously.

It is obvious that chemometrics can contribute to
food science with new more flexible data programs
which display the exploratory results in cognitively
accessible graphical data interfaces. Food science and
chemistry on the other hand stimulates the chemome-
trician to take new contexts into consideration in the
development of models suitable for real world data
which is exemplified in the Appendices A-C.

In practical life, respect for the ‘axioms’ of the
world in the form of contexts is more important than
transparency. In science it seems to be the reverse.
Transparency is preferred based on the axioms of the
mathematical machinery, far from the contexts of the
world which was supposed to be studied. Because of
its lack of complete transparency we could thus for
the moment look upon chemometrics more as a tech-
nology than as a scientific discipline—a very vital
technology which already has proven its potential in
chemistry and in other related technologies [23,28]
—an invention the results of which science should
explore and incorporate in its basic principles.

As early as 1941, Emil Post, one of the co-dis-
coverers with Turing [4] (p. 292) of non-computable
operations, wrote [29] the following comment regard-
ing the divide between meaning and formalism in
mathematics: ‘‘mathematical thinking is, and must
be, essentially creative. It is to the writer’s continu-
ing amazement that ten years after Godel’s remark-
able achievement current views on the nature of
mathematics are thereby affected only to the point of
seeing the need of many formal systems, instead of a
universal one. Rather has it seemed to us inevitable
that these developments will result in a reversal of the
entire axiomatic trend of the late nineteenth and early
twentieth centuries with a return to meaning and truth.
Postulation thinking will then remain as but one phase
of mathematical thinking’’.

It should thus be possible to assemble a mathe-
matical algorithm to describe and predict complex
conditions in the real world inspired by finding order
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in observational measurements of nature by consult-
ing the computer. Such an endeavour must respect the
mechanisms how humans best senses complex infor-
mation.

While we wait for the breakthrough of the new in-
terdisciplinary science [9] where exploratory, induc-
tive chemometrics is an integrated part as an estab-
lished option, we could with the support of the rela-
tively recently discovered computer contribute to the
basic mathematical language of the new science by
balancing the normative and exploratory principles in
a dialogue, as described in our example. In this work
food technology is an excellent Trojan horse in the
conservative scientific city of Troy, harbouring re-
search teams prepared to fight for the revolutionary
new science and its new mathematics while awaiting
the right moment and better times.
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Appendix A. Selecting and adjusting chemometric
models to represent different contexts of the world

Chemometrics has arisen as a hybrid with contri-
butions from various sciences like econometrics,
psychometrics, classical statistics and physics. The
mixed background is reflected in the way the chemo-
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metrician actually conducts the data analysis. Central
aspects in data analysis are the selection of data as
well as the selection of suitable models, combined
with adaptation of the models to a given problem.
Classification, for example through PCA, is a funda-
mental first step in an exploratory data investigation
of a given data set (e.g., fluorescence spectra), em-
ploying data reduction into latent variables in this way
revealing resemblances and outliers.

In the framework used throughout this paper we
see the alternation between the selection of models
and the selection of data which again influences the
selection of material for analysis and the technologi-
cal focus of the project. The data analyst might fol-
low different chemical roads depending on the goal
of the investigation. However, the exploratory ap-
proach starting with an inventory with a data classifi-
cation from a multivariate screening method is to be
preferred in the beginning of an investigation in or-
der to minimize bias. After revealing the data struc-
ture, both surprising and expected elements can be
identified from which more specific correlation mod-
els may be created using a range of new chemomet-
ric methods. These include the new multi-way meth-
ods employed in our example with sugar process flu-
orescence analyses.

There are various models for analysing multi-way
data sets, see Kroonenberg [A1]. In Figs. 7 and 8 we
shall focus on the N-way principal component analy-
sis (N-way PCA) which is a generalization of the 3-
way Tucker3 model [A2] to N-way data arrays as well
as the PARAFAC model [A3]. The authors would like
to draw the reader’s attention to the fact that the gen-
eralization of bilinear PLSR to multilinear PLSR ( N-
PLS) was given by Bro [A4].

A.l. Tucker model

As with conventional two-way PCA, the model
uses a projection technique whereby the systematic
variation in data is reduced to a few representative
factors. Due to some mathematical features (i.e., fac-
tors are non-unique and can be rotated) of the model
and its solutions, the term N-way PCA is often used
to describe the Tucker 3 model. Fig. 7 provides a ba-
sis for presenting the N-way PCA. The 3-way PCA
model of a 3-way data array X of order (r,, r,, r;) is
depicted in the figure. The array is decomposed into
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a significant systematic part and a non-significant
residual depicted by E. The systematic part is de-
scribed by orthogonal factors which are stored
columnwise in matrices A (r;, w,), B (r,, w,) and C
(r;, w;). The mathematical representation is as fol-
lows

F G H
Xip = Z Z E aifbjgckhgfgh +e;
f=1g=1h=1

(1)

The number of factors in each of the three ways,
i.e., w;, w, and w,, must be determined by the ana-
lyst from a priori knowledge about X or by evaluat-
ing models with different combinations of w,, w, and
w,, choosing the order that gives the most accurate
model of X. The correct number of factors is found
as a compromise between having a good fit and as
few factors as possible. The array G of order (w,, w,,
w3), referred to as the core array, allows the factors
to interact in the model of X. Upon calculation of the
model, the factors in the three component matrices A,
B, and C and the core G must be interpreted. Since
the factors are orthogonal, hence linearly indepen-
dent, the squared core elements are proportional to the
variation explained by the combination of factors in
question. Thus, if g;;, is the largest squared ele-
ment in G, the combination of factor i in the first
mode, factor j in the second mode and factor k in the
third mode explains most of the variation in X and the

analyst should give these factors special attention
when interpreting the model.

Factors from N-way PCA suffer from rotational
ambiguity, i.e., the N-way PCA of X has an infinity
of factors and cores, where one solution can be ro-
tated into another having the exact same fit. Return-
ing to the exploratory power of the squared elements
of the core, one can perform selective transforma-
tions of a solution to give a core where only a few
squared entries are significant [A5]. Having only a
limited number of significant core entries allows the
analyst to focus on a few combinations of more sig-
nificant /general factors. Hence, we use an unsuper-
vised algorithm to select a solution from this infinity
of solutions to yield a model for interpretation which
is simple as possible.

A.2. Data (an in-depth treatment of this data set was
given in Andersson et al. [A6])

Fluorescence intensity landscapes, or excitation-
emission matrices, were measured on 47 thick juice
samples from the 1994 sugar campaign. Five facto-
ries contributed thick juice samples. Two typical
landscapes from one sample are shown in Fig. 3A-B
in the main text. Note that the peaks in the ultraviolet
area do not decrease from A) to B) with dilution. This
is caused by concentration quenching, or inner-ab-

Fig. 8. (A) Factors in the first way representing variation in the thick juice samples. (B) Factors in the second way describing concentration
effects. (C) Factors explaining the excitation profiles. (D) Factors explaining the emission profiles. (E) Rotated sample factors. (F) Rotated
concentration profiles. (G) Rotated excitation factors. (H) Rotated emission factors.
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sorption effect [A7]. Each sample has been diluted
volumetrically 1:15 and 1:150 with pH 9.00 NH,Cl
in double ion exchanged and Si-free water. Both of
these dilutions were measured using 20 excitation
wavelengths (250-440 nm, 10-nm intervals) and 311
emission wavelengths (250—-560 nm, 1-nm intervals).
At the excitation and emission sites 10 nm slit widths
were used. The instrument was the Perkin Elmer
LS50B spectrofluorometer. As indicated by Fig. 3
(main text), the combination of a narrow emission slit
width and generally low turbidity allows for neglect-
ing the Rayleigh scattering. Since each intensity
measurement in the collected data depends on four
external parameters, the sample number (47 samples),
the concentration (two levels of dilution, 1:15 and
1:150), the emission wavelength and the excitation
wavelength, the measured intensities constitute a 4-
way data table of order (47, 2, 311, 20). We will ap-
ply a 4-way PCA model for analysis of these data.
The 4-way PCA used in this application can be con-
ceived as an extension of the decomposition illus-
trated in Fig. 7 with a necessary introduction of an
additional set of factors, D, and by extending X (r,,
ry, 13, 1), G (wy, wy, wy, w) and E (7, 1y, 15, 1)
to be 4-way structures.

In order to find the optimal numbers of factors for
the 4-way PCA model, several models of different
orders were investigated. Table 2 shows the relative
increase in explained sum-of-squares (SS) as the or-
der of the models increase. The total number of pa-
rameters is shown in the far right column of Table 2.
The findings shown in Table 2 suggest that a model
of order (3, 2, 3, 3) should be chosen. For the factors
to be representative a good fit to X is paramount,
hence 96.25% of SS explained seems appropriate in

Table 2

The explained sum-of-squares of the data as a function of the
number of factors in the 4-way PCA model of sugar fluorescence
measurements from the material in Fig. 3A-C

Model order Expl. SS (%) Par.

1,1,1,) 74.13 384
2,1,2,2) 82.88 772
2,2,2,2) 92.08 782
(3,23,3) 96.25 1201
(3,3,3,3) 96.24 1230
4,2,4,4) 97.85 1656
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comparison with the models of higher orders. The
number of parameters should be kept as low as pos-
sible in accordance with the principle of parsimony.
Parsimonious models reduce the risk for fitting non-
systematic trends (i.e., noise). Note that the model
does not improve in fit when using more than two
factors in the second mode. This is in concordance
with the number of observations in the second mode:
one cannot derive three or more orthogonal solutions
in a mode that is only spanned by two variables.
When moving from analysis of two-way data to
multi-way data, we expect increased stability to-
wards outliers. This is due to the increase in selectiv-
ity. Measuring many independent characteristics of
samples will offer more scales on which to evaluate
the goodness or suitability of the sample for mod-
elling by the model in question. This is the so-called
second-order advantage. The N-way PCA and the
two-way PCA have the non-uniqueness in common,
since factors from these two classes of models may
be rotated by orthogonal transformations without af-
fecting the fit.

The sample-to-sample variation among the 47
samples is condensed in the factors in the first way.
The three factors in the first way are depicted in Fig.
8. The factor denoted 1 describes a significant change
of level in the samples. Factors marked 2 and 3 also
reveal systematic behaviour. The factors describing
the concentration levels are shown in Fig. 8. Fig. 8
reveals the behaviour of the intensities as a function
of the excitation wavelength. However, it should be
remembered that the factors are orthogonal. This
makes interpretation with regard to chemical proper-
ties difficult. Fig. 8 shows the principal components
describing the variation in the fourth way which re-
lates to the emission wavelength. In the 54 (=32
3 - 3) element large core array the five most signifi-
cant squared entries and their factor combinations are
2.04 10" (1,1,1,1), 2.27-10° (1,1,3,1), 1.20- 10°
(1,1,1,3),9.92 - 108 (1,2,1,3) and 5.46 - 10° (1,1,2,2).
From these values we see that no clear-cut factor
combinations can be used for further data explo-
ration. If the factors are properly rotated and the core
correspondingly counter-rotated, a more simple
structure of the core may be selected.

Thus, to improve the interpretability of the core
array, the solution was rotated to yield maximum
variance-of-squares of the core [A5]. After transfor-
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mation, the variance-of-squares of the core array
changed from 4.11-10% to 5.46- 10%, i.e. an in-
crease of 32%. The variance-of-squares of the opti-
mised core elements were 2.36 - 10'° (1,1,1,1), 1.73
+10° (1,1,2,2), 9.50 - 10® (1,2,1,3), 1.49 - 108
(1,2,2,3) and 1.03 - 10% (1,2,1,2). Note how the
largest elements of the rotated core have absorbed
variation described by the minor ones. Upon rotation
the factors were as plotted in Fig. 8E-H. The varia-
tion expressed by the factors in Fig. 8 can be plotted
in a more convenient way as in Fig. 3C (main text)
where factor 2 and factor 3 are plotted against each
other (corresponding to a PCA score plot). The con-
clusions drawn from this plot are presented in the
main text.

Appendix B. parafac

B.1. Model

Consider a fluorescence data set with typical ele-
ments, x;;,, where x,;, is the intensity of the ith
sample excited by light at the jth excitation wave-
length and measured at the k’'th emission wave-
length. Theoretically, such data can be approximated

as

(2

F
Xije = Z aifbjfckf+ €ijk
=1

where a,, is the concentration of the fth analyte in
the ith sample, b;; is the relative emission emitted at
wavelength j of analyte f, and ¢, is the relative
amount of light absorbed at the excitation wave-
length k of analyte f. This relation holds for diluted
solutions, and if b, is (approximately) independent
of ¢,, [A8].

The fluorescence model is equivalent to the
PARAFAC (parallel factor analysis) model initially pro-
posed by R.A. Harshman [A9] and Carroll and Chang
[A10]. Leurgans and Ross [Al1], Leurgans et al.
[A12], Ross and Leurgans [A13], and Ngrgaard [A14]
describe in detail the rationale for using PARAFAC
models for modelling fluorescence data. The PARAFAC
model is very closely related to ordinary two-way
PCA, as exemplified graphically in Fig. 9.
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Fig. 9. A two-component PARAFAC model of the threée-way array X
(residuals omitted for brevity). The vector and matrix products to
the right of the equal sign are equivalent to ordinary outer prod-
ucts, i.e. the first component represented by al, b1, and c1 gives a
rank-one part of the model of the same size as X, each element be-
ing a triple product a;,b; ¢;,.

Where two-way PCA gives one score and one
loading matrix, one gets one score matrix and two
loading matrices in a PARAFAC model of a three-way
data set; one for each variable mode in the data.
Therefore, a PCA model is a bilinear model, while
PARAFAC is a trilinear model. The PARAFAC model is
unique [A3,A15]. This means that if the model is ap-
propriate for the data one need not impose orthogo-
nality or other mathematical constraints to identify the
model. Furthermore, instead of abstract latent vari-
ables, the true underlying phenomena are found. In
this case it means that it is possible to estimate the
underlying emission and excitation spectra and con-
centration profiles simply by decomposing the fluo-
rescence data by a PARAFAC model.

B.2. Data

Sugar was sampled every 8 h during a campaign
(approximately three months) at a sugar plant in
Scandinavia, providing a total of 268 samples three
of which were discarded in this study. Each sugar
sample was dissolved in un-buffered water (2.25
g/15 mL) and the solution was measured spectroflu-
orometrically (Perkin Elmer LS50B). For every sam-
ple the emission spectra from 275-560 nm was mea-
sured in 0.5 nm intervals (571 wavelengths) at seven
excitation wavelengths (230, 240, 255, 290, 305, 325,
340 nm). Laboratory determinations of the quality of
the produced sugar were also available. These qual-
ity measures are ash content and colour. In addition,
several automatically sampled process variables were
available, including temperature, flow, and pH deter-
minations at different points in the process. Typically
these variables are very noisy and sampled at quite
different rates.
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A four-component PARAFAC model of the fluores-
cence data is appropriate in this case. However, for
an unconstrained model a large portion of the load-
ings have negative areas at lower wavelengths. The
reason for this is that 60% of the data are missing in
this area, due to Rayleigh scattering. Therefore, the
model is based on only one to four excitations below
360 nm. This causes some of the estimated emission
loadings to be uncertain.

As the parameters of the PARAFAC model reflect
concentrations and emission and excitation spectra,
non-negativity seems a valid constraint to use in or-
der to remedy this problem. One may infer that non-
negativity should not be necessary, since the model
should be identifiable even without using non-nega-
tivity. The adequacy of the unconstrained model,
however, only holds to the extent that the PARAFAC
model is correct for the data. There is a portion of the
data that is missing due to Rayleigh scatter. Also,
very likely a portion of the data that has not been set
to missing values may be influenced by Rayleigh
scatter to a slight degree, and therefore the data do not
necessarily behave according to a trilinear systematic
variation plus random noise. Furthermore, het-
eroscedasticity, quenching and other deviations from
the model can cause the estimated parameters to de-
viate from strict non-negativity.

Very similar results are obtained by an uncon-
strained and a non-negativity constrained model. In
the sample and excitation modes the loadings of the
two models are highly correlated (r = 0.99). Further,

&

the problems arising in the unconstrained model can
be explained by the amount of missing values and
model mis-specification.A four-component non-
negativity constrained PARAFAC model results in the
emission loading vectors displayed in Fig. 10a. The
spectra seem mainly reasonable, but for one spec-
trum, the bump slightly above 300 nm seems to be
more of a numerical artefact than real (Fig. 10b). This
is plausible because many variables are missing in
this area. One important aspect indicates that the
spectrum should really be unimodal namely, that the
most likely fluorophores in sugar (amino acids, sim-
ple phenols, and derivatives) have unimodal emis-
sion spectra due to the Kasha rule [A7,A8].

The above reasoning led to specifying a new
model where all emission spectra were estimated un-
der unimodality constraints and remaining parame-
ters under non-negativity constraints. The estimated
model was stable (Fig. 10c) and the estimated excita-
tion spectra and relative concentrations did not vary
considerably from that of the non-negativity con-
strained model. This strongly confirms the assump-
tion that the cause of the artefact is mainly due to the
amount of missing data in the specific region. It
means that the unimodality is probably a valid con-
straint, and it also implies that unimodality is mainly
necessary for improving the visual appearance of the
emission loadings, hence enabling better identifica-
tion of the underlying analytes.

Fig. 5B,C (main text) show selected estimated
emission spectra, which fit well with the emission

Relative intensity
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Em. Wavelength/nm

500 300

400

Em. Wavelength/nm

500 300 400

Em. Wavelength/nm
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Fig. 10. Estimated emission spectra from fluorescence data. (a) Four spectra estimated using non-negativity. The *suspicious’ spectrum, 1, is
marked with a thicker line. (b) Suspicious spectrum estimated from four different subsets using non-negativity. (c) Estimated spectra from

different subsets using unimodality.

165



I1. Algorithms, models and applications

L. Munck et al. / Chemometrics and Intelligent Laboratory Systems 44 (1998) 31-60

spectra of pure tyrosine and tryptophane respec-
tively, two substances of known technological impor-
tance. The excitation spectra of tyrosine and trypto-
phane crudely agreed with those of the pure chemi-
cals due to the limited number of seven excitation
wavelengths employed with a gap between 255 nm
and 290 nm. The spectra of tyrosine and tryptophane
were acquired under quite dissimilar circumstances
(pH 9, whereas the solutions used here was un-
buffered) in experiments unrelated to this study. Still,
the striking similarity with regard to the emission
spectra confirms that the PARAFAC model is capturing
chemical information. In order to verify with more
confidence the identity of the underlying analytes we
have confirmed the fluorescence signatures of the
pseudospectra in column chromatography fractions of
thick juice.

B.3. Using PARAFAC scores for modelling quality
The scores (A) of the model of the fluorescence

data are estimates of concentrations. Initially, the
correlation between the PARAFAC scores and the pro-
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cess variables was investigated. For some process
variables there were almost no correlations, but for a
large number excellent correlations were obtained.
Examples of can be seen in Fig. 11.

A calibration model was made for predicting ash
and colour from PARAFAC scores, The models for pre-
dicting ash content and colour of the sugar were ex-
cellent. The predicted values and the reference val-
ues are shown in Fig. 12. Note that, disregarding the
fact that no cross- or test set validation has been per-
formed, the prediction models are only based on four
regression coefficients each, hence quite impressive.
The above model substantiates, that it is possible to
use fluorescence for on-line or at-line monitoring of
sugar quality. This is important, as these parameters
are currently only determined every 8 h and with a
certain lag, as the laboratory analysis takes time.

The models described in this application based on
fluorescence data are quite extraordinary. They give
a direct connection between the raw material, pro-
cess parameters and the final sugar quality (as de-
fined by laboratory measurements defining the inter-
nal as well as the external consumer quality). As such,
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Fig. 11. Predictions of two important process variables. Unbroken lines are reference values. Notice the smoothing effect of the predictions
based on fluorescence analysis of 8 h mean sugar samples representing one shift. The fitted values obtained using multiple linear regression
(MLR) are shown. MLR was chosen, because the condition of the independent variables (265 X 4) is excellent, hence no problems arising

from collinearity are expected.
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Fig. 12. Predictions of colour and ash from PARAFAC scores.

the conceptual idea behind the results reach far be-
yond the specific data treated here.

Appendix C. Principal variables (PV)

The PV model is based on exactly the same prin-
ciples as is PCA and PLS. In PCA the first loading
vector is the eigenvector corresponding to the largest
eigenvalue of (X'X)?, while in PLS we look for the
weight vector which is the eigenvector correspond-
ing to the largest eigenvalue of (X' Y)? [A16]. In PV
we investigate exactly the same matrix products, but
since we are interested in finding manifest variables
and not latent factors we seek the largest diagonal el-
ements of the matrices (X'X)? (in the ‘PCA’-case) or
(X'Y)? (in the regression case) corresponding to first
principal variables. In PCA and PLS X is orthogo-
nalised with the information described by the first la-
tent factor. This also holds in the PV algorithm, where
the X matrix is orthogonalised with the manifest
variable: X, ., =X —v -k, where v is the column
corresponding to the first principal variable and k is
the loading.

Next the variables selected by the PV-algorithm
are used in an ordinary multiple linear regression
(MLR) with y as the dependent variable in order to
develop a predictive model based only on the se-
lected variables. We see here the synergistic combi-

200 300

Thick lines are reference values and thin lines the predicted values,
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nation of classical statistics (MLR) and new chemo-
metric methods (principal variables). See the main
text for applications (Table 1).
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Abstract

In previous analyses of colour impurities in processed sugar, a multi-way chemometric model, CANDECOMP-PARAFAC (CP),
has been used to model fluor excitatio ission landscapes of sugar samples. Four fluorescent components were found, two
of them tyrosine and tryptophan, correlating to important quality and process parameters. In this paper HPLC analyses are used to
chemically verify and extend the CP models of sugar. Thick juice, an intermediate in the sugar production, was analysed by size
exclusion HPLC. Tyrosine and tryptophan were confirmed as constituents in thick juice. Colorants were found to be high molecular
weight compounds. Fluorescence landscapes on collected column fractions were modelled by the CP model and seven fluorophores
were resolved. Apart from tyrosine and tryptophan, four of the fluorophores were identified as high molecular weight compounds,
three of them possible Maillard reaction polymers, whereas the seventh component resembled a polyphenolic compound. It is
concluded that the relevance of CP for mathematical separation of fluorescence landscapes has been justified on two levels by
HPLC; firstly as a screening method of fluorophores in complex samples and secondly as a confirmation of peak purity in chro-

matographic separation. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

White sugar produced industrially from sugar beet
contains minute traces of unwanted colorants. Extensive
research into the origin and development of the sugar
colorants has been carried out for many years (God-
shall, 1996). The earliest works date more than 130
years back (Scheibler, 1869). The fact that significant
components have not yet been identified reflects the
extreme complexity of the sugar streams as they occur
in the sugar factory. Approaches that use isolated
laboratory experiments tend to diverge from the natural
seasonal variations of the streams, whereby the findings
become too specialised to have any practical value in the
real process streams at the factories. We have chosen a
new approach to reach conclusions that adapt to the

* Corresponding author. Tel.: +45-3528-3500; fax: +45-3528-
3505.
E-mail address: dba@kvl.dk (D. Baunsgaard).

natural (co)variations of the constituents in the sugar
streams. With the use of exploratory data analysis, func-
tional components in the process streams are found by
soft adaptive modelling instead of using hard chemical
analysis to identify actual chemical substances (Munck,
Nergaard, Engelsen, Bro & Andersson, 1998). Advanced
multi-way models, such as the CANDECOMP-PAR-
AFAC (CP) model, can be used to decompose complex
excitation-emission fluorescence landscapes into excita-
tion and emission spectral profiles of characteristic
components (Leurgans & Ross, 1992). Bro (1999) used
the CP model on fluorescence landscapes from 268
sugar samples collected from a factory during a sugar
campaign. A model with four fluorescent components
was found to capture the variation in that time period.
Two of them had pseudo-spectra, which showed a close
similarity to pure fluorescence spectra of tyrosine and
tryptophan. In addition, the concentrations of the four
components estimated from the sugar samples could be
correlated to several quality and process parameters.
Thus, the four fluorescent components found in the final

0308-8146/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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sugar product are considered as indicator substances of
the chemistry in the sugar process.

In the sugar process streams, there are several poten-
tial fluorophores. These include colour precursors such
as amino acids and polyphenolic compounds (Wolfbeis,
1985). Colour precursors can interact in colour forming
reactions such as amino acids with reducing sugars in
Maillard reactions or enzymatic oxidation of phenolic
compounds to form melanins (Godshall, Clarke, Dooley
& Blanco, 1991). Coloured Maillard reaction products
have been reported to exhibit fluorescence (Adhikari &
Tappel, 1973). One of the preferred methods for ana-
lysing colorants and colour precursors has been gel
permeation chromatography (GPC) since many of the
colorants are considered as high molecular weight com-
pounds (Madsen, Kofod Nielsen, Winstrem-Olsen &
Nielsen, 1978a; Reinefeld, Schneider, Westphal, Tesch
& Knackstedt, 1973; Shore, Broughton, Dutton & Sis-
sons, 1984).

In this paper, we combine CP modelling of fluores-
cence excitation-emission landscapes with HPLC size
exclusion analysis. After separating the sample on the
column, collected fractions are measured as fluorescence
landscapes and modelled with the CP model. Thick
juice, an intermediate product from the sugar manu-
facturing process, is analysed instead of sugar since the
latter is too pure and not suitable for chromatographic
analysis. The purpose of the chromatography is two-
fold. It can be used to verify the identity of the mathe-
matically modelled fluorophores in sugar with peak
identification. Also, the number of identifiable compo-
nents may be improved by the pre-separation of the
components on the column before the fluorescence
measurements. The pre-separation is used to reduce
quenching and other interactions in the complex sam-
ple, which influences the fluorescence, and may violate
the assumptions made prior to application of the CP
model.

2. Materials and methods
2.1. Chemicals

L-tyrosine, L-tryptophan and L-phenylalanine were
purchased from Sigma (USA). The reagents for the
HPLC buffer were obtained from Merck KGaA (Ger-
many). Water was distilled and deionized (Milli-Q,
Waters, USA). HPLC eluents were filtered and degassed
before use.

2.2. Samples
Beet sugar samples and beet sugar thick juice samples

were all provided by Danisco Sugar A/S, Denmark. Ten
thick juice samples from five different sugar factories,
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two from each, were dissolved in water 1:500 (v/v) and
used to measure fluorescence landscapes. Five sugar
samples collected from one of the sugar factories were
prepared by dissolving 7 g sample in 15 ml water for the
fluorescence measurements. For the HPLC analyses
thick juice samples from one of the five factories was
prepared by diluting 100 pl thick juice with 100 u1 0.2 M
ammonium buffer, pH=8.9 and 300 pl water. Due to
the high viscosity of the thick juice sample, a pipette
designed for viscous samples (Microman 250, Gilson,
USA) was used to take samples of the thick juice.

2.3. HPLC analyses

The HPLC size exclusion analyses were performed on
a Gilson system with a Gilson 170 UV-VIS diode array
detector (range: 210-550 nm) and a Jasco FP-920 fluor-
escence detector (excitation/emission wavelengths: 280/
325 nm). A Waters 250 Ultrahydrogel column (range 1-
80 kDa) was used equipped with a guard column of the
same material and thermostatted at 30°C. The mobile
phase consisted of 0.2 M ammonium buffer (NH,Cl/
NHj;), pH=8.9 and water (20:80 v/v) at a flow rate of
0.5 ml/min. All sample solutions were filtered through a
0.22 um hydrophilic PVDF membrane filter (Millipore,
USA) before injecting an aliquot of 100 ul onto the
column. In this publication, two representative HPLC
runs of thick juice were selected for fluorescence land-
scape measurements of 41 collected fractions of 750 ul
(1.5 min) from 10 to 71.5 min in each run.

2.4. Amino acid standards

Tyrosine and tryptophan were identified by peak
identification of spiked thick juice samples with amino
acid standards. The spiked thick juice samples were
prepared by mixing 50 pl thick juice and 100 pl 0.2 M
ammonium buffer, pH=28.9 with 350 ul tyrosine solu-
tion (192 mg/l) or 350 ul tryptophan solution (43 mg/l).
The two amino acid solutions and a phenylalanine
solution (1.4 mg/l) were used to establish the size exclu-
sion range of the column in a 1:2 (v/v) dilution with the
ammonium buffer.

The fluorescence spectra of the tyrosine and trypto-
phan standards were measured with the same para-
meters as with the other samples using a tyrosine
concentration of 1.6 mg/l and a tryptophan concentration
of 0.3 mg/l.

2.5. Fluorescence landscape measurements

A Perkin-Elmer LS50 B fluorescence spectrometer
was used to measure fluorescence landscapes using
excitation wavelengths between 230-300 nm with 5 nm
intervals and 310460 nm with 10 nm intervals. The
emission wavelength range was 288-700 nm. Excitation
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and emission monochromator slit widths were set to 10
nm, respectively. Scan speed was 1500 nm/min. A micro
quartz cuvette with the dimensions 5x5 mm was used to
avoid dilution and to reduce any concentration
quenching effects of the sample solution.

2.6. The CANDECOMP-PARAFAC model

The CANDECOMP-PARAFAC (CP) model was
proposed in 1970 (Carroll & Chang, 1970; Harshman,
1970) and fits the premises of fluorescence spectroscopy
for resolving pure excitation and emission spectra from
measured net signals of mixtures. To allow for a dis-
cussion of the CP model, we consider a fluorescence
data set with elements denoted by Xy, where xy is the
intensity of the ith sample excited by light at the jth
excitation wavelength and measured at the kth emission
wavelength, The resulting data set thus spans a three-
dimensional table structure, where each entry represents
an observation that depends on discrete levels of the
three parameters, (sample numberxexcitation wave-
lengthxemission wavelength). The three-way data array
can be approximated by

F
Xje = Y _aybycir+ egi m
=

In (1) it is assumed that the measured net signal is a sum
of F individual contributors, or fluorophores. For
fluorophore number f, a,ris the concentration in the ith
sample, by is the relative amount of light absorbed at
excitation wavelength j, and cs is the relative intensity
emitted at wavelength k. This tri-linear structure of the
light intensity model is similar to the tri-linear CP model
for which solution algorithms have been devised (see
Carroll & Chang, 1970; Harshman, 1970). Under the
assumption of tri-linearity in the signal/concentration
ratio and additivity of the intensities, the CP model
parameters will be estimates of the underlying excitation
spectra, i.e. the by parameters, and the emission spectra,
i.e. the ¢y parameters of each of the f contributing
fluorophores. However, based on the observations or a
priori knowledge, the task of defining the correct num-
ber of fluorophores, f, remains. The mathematical
uniqueness of the CP-model will provide parameters in
A, B and C of the individual fluorophores contributing
to the net signal. Not only will the parameter estimates
be unique to the individual fluorophores, but since the
fundamental mechanistic model of the net signal of a
single fluorophore is in exact accordance with the CP—
model for F=1, the resolved parameters will be relative
estimates of concentration level, excitation ability
(absorbance spectrum) and emission ability (emitted
spectrum).
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Furthermore, the CP model allows for simultaneous
presence of many such single contributors to the overall
observed emitted intensity, x. Thus, by estimating the
CP parameters, the collection of net signal can be sepa-
rated mathematically into a number of characteristic
profiles for each of the fluorophores/contributors. See
Leurgans and Ross (1992) for an in-depth discussion of
multi-linear models in spectroscopic contexts. For a
more thorough presentation of the model, the reader is
referred to a tutorial on the CP model (Bro, 1997).

The CP results have been obtained with the use of the
N-way Toolbox for MATLAB (Andersson & Bro, 1998)
running MATLAB 5.3 under Microsoft Windows NT 4
SPS on a dual 450 MHz Intel PII Xeon PC. For the tri-
linear CP model to be valid, infeasible measurements
(i.e. Rayleigh scatter and emission wavelengths less than
excitation wavelengths) have to be treated as missing
values. To circumvent the scaling ambiguities of the CP
model and to enhance the interpretability of the model,
the profiles were constrained to non-negativity while
minimising the sum of squared errors, i.e. the con-
strained mode] parameters were estimated from a total
least squares optimisation of Eq. (1).

3. Results and discussion
3.1. Fluorophores in sugar and thick juice

Since thick juice is used instead of sugar in the HPLC
separations, it is important to know the differences and
similarities between fluorophores found in sugar and in
thick juice. In addition, the changes in the properties of
an intermediate sugar product to the properties of the
final product can be useful, e.g. in process control.

The CP analysis on fluorescence landscapes of sugar
samples previously made by Bro (1999) was repeated by
making a CP mode!l using five sugar samples from
another sugar factory. In addition, fluorescence land-
scapes were measured on ten thick juice samples from
five different sugar factories, two samples from each
factory, and modelled with the CP model. A four-com-
ponent model was generated from the sugar data and a
five-component model from the thick juice data. The CP
modelling estimates excitation and emission spectra of
measured fluorophores as well as a sample profile relat-
ing the concentration of each fluorophore in the samples
measured. Fig. 1 (rows 1-4) and Fig. 2 present the exci-
tation and emission spectra of the modelled components
in the sugar and thick juice samples, respectively. The
components are displayed in the same order as they are
modelled depending on their contribution in the sample
profile. The resolved spectra show reasonable spectral
shapes, but they are dependent on the appearance of the
measured fluorescence data and the premises of the model.
Therefore some of the spectra may display artefacts such



I1. Algorithms, models and applications

4 D. B

d et al. | Food Ch:

istry 0 (2000) 1-9

250 300 350 400 300 400 500

NV
SN

250 30 350 400 300 400 500
Excitation wavelength [nm] Emission wavelength [nm]

Fig. 1. The results of a four~component CP model of fluorescence
landscapes of five beet sugar samples. Rows 1-4 contain the excitation
and emission spectra of the four resolved p The left col
shows the excitation profiles and the right column shows the emission
profiles. Rows 5 and 6 show the fluorescence excitation and emission
spectra of pure tyrosine and pure tryptophan, respectively, for a com-
parison. All profiles have been normalised to unit length.

as extra bands in the emission spectra, e.g. the emission
spectrum of component 4 in Fig. 2. The excitation (1st
excited state) and emission wavelength maxima of the
spectra in Figs. 1 and 2 are presented in Table 1. The
shape and maxima of the emission spectra of the sugar
model in Fig. 1 are comparable to the previously mod-
elled spectra of the four-component sugar model by Bro
(1999). In Fig. 1 the excitation and emission spectra of
pure tyrosine and tryptophan standards are displayed in
rows 5 and 6, respectively. Comparing the spectra of the
two amino acids with the spectra of the modelled com-
ponents in Fig. 1, there is a close similarity between tyr-
osine and component 2 and between tryptophan and
component 1. The spectral profiles of thick juice fluor-
ophores in Fig. 2 are consistent with the spectra of the
sugar components in Fig. 1, although there are some dif-
ferences in the profiles. This is also evident by comparing
the excitation and emission maxima in Table 1. The
tyrosine-like fluorophore is component 1 in Fig. 2.
Component 2 in Fig. 2 resembles the tryptophan-like
component in Fig. 1, but the emission profile is shifted
towards lower wavelengths and a fifth component (com-
ponent 3) is introduced in the thick juice model. The
spectral properties of the new component are close to
tryptophan. Thick juice contains much more impurities
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Fig. 2. A fivecomponent CP model of fluorescence landscapes of 10
thick juice samples. The left column shows the resolved excitation
profiles and the right column shows the resolved emission profiles of
the five components. All profiles have been normalised to unit length.

than sugar and the fluorescence data is more difficult to
model. If component 2 is tryptophan, component 3
might be another fluorophore or a tryptophan-derived
component with somewhat changed fluorescent proper-
ties, either of which affecting the estimated tryptophan
profile. Using a larger sample set, it will be possible
better to solve such ambiguities.

In the modelling of sugar and thick juice fluorescence
data, samples from several factories have been used. It is
found that sugar models from different factories contain
the same four fluorophores, e.g. the similarity of the
modelled spectra of the five sugar samples in Fig. 1 with
the previously modelled spectra from another factory
(Bro, 1999). Furthermore, the thick juice model in Fig. 2
was based on samples from five different sugar factories
and HPLC analyses made on the thick juice samples
from the five factories all showed the same qualitative
chromatographic pattern. Therefore, the modelled
fluorophores from the sugar and thick juice fluorescence
data are considered to be common constituents of sugar
and thick juice and not factory related.

3.2. Peak identification using HPLC analyses
It is important to validate the results of the CP mod-

elling of fluorescence landscapes of sugar and thick
juice. When comparing the resolved pseudo-spectra
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Table 1

The excitation and emission maxima of the modeled spectra of sugar, thick juice and HPLC fractions of thick juice

Component® Sugar;me (mm) Thick juice;max (nm) HPLC fractions of thick juict;may, (nm)
Excitati Emissi Excitation Emission Excitation Emission

1 275 350 275 305 275 305

2 275 305 275 340 275 360

3 310 400 280 370 375 460

4 350 450 380 455 340 440

5 - - 335 420 385 460

6 - - - - 290 400

7 - - - - 290 330

* The component numbers correspond to the row numbers given in Figs. 1, 2 and 6 for each of the three CP models.

with pure spectra of tyrosine and tryptophan, a level of
uncertainty is involved due to the limited number of
samples as well as quenching and non-linearities in the
measured fluorescence data. Using chromatographic
peak identification, it is possible to verify that the two
amino acids really are constituents of thick juice.
Drewnowska, Walerianczyk, Butwilowicz, Jarzebinski,
Fitak and Gajewska (1979) have previously estimated
the contents of tyrosine and tryptophan in thick juice
with the use of liquid chromatography. Fig. 3 shows a
HPLC size exclusion separation of one of the thick juice
samples before and after spiking the sample with the
two amino acids and monitored by fluorescence detector
set at 280/325 nm. The three chromatograms show good
overlap and the spiked peaks confirm that the two
dominating components eluting at 25 and 42 min are
the free amino acids, tyrosine and tryptophan, respec-
tively. In addition, the identities of the peaks were con-
firmed by comparison with chromatograms of amino

— Thick juice
B ——-Thick julce + tyrosine
e Thick juice + tryptophan

10 20 30 40 50 60 70
Time (nm)

Fig. 3. HPLC size exclusion chromatograms with qualitative standard
additions of tyrosine (1) and tryptophan (2) to thick juice monitored
by fluorescence detection at 285/325 nm. The chromatograms verify
the expected presence of tyrosine and tryp . The corresponding
UV/VIS absorbance spectra from the diode array scans of the two
peaks are also displayed.
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acid standards. The tyrosine and tryptophan peaks at 25
and 42 min were also found in the chromatograms of
the thick juice samples from the four other factories
used in the thick juice model. The corresponding diode
array scans of the two spiked peaks in Fig. 3 are also
displayed in the figure. The spectra are practically iden-
tical with pure spectra of tyrosine and tryptophan,
which is an additional certainty of the identification of
the peaks.

1t is difficult to analyse the very pure sugar on a HPLC
system. However, the similarity of the spectral profiles in
the sugar model with the thick juice model and the spectra
of the amino acid standards confirm indirectly the identi-
fication of the corresponding fluorophores.

3.3. HPLC size exclusion analyses of thick juice

When using a size exclusion column (range 1-80
kDa), it is possible to separate the thick juice samples
according to molecular weight. This can be used to
separate the colorants as high molecular weight com-
pounds from low molecular weight colour precursors.
The column dead time was determined to 12.4 min using
Blue Dextran 2000. The amino acid standards tyrosine
and phenylalanine were used to establish the end of the
size exclusion area of the column to 25 min. The fact
that tryptophan elutes at 42 min is probably caused by
adsorptive retention on the column. In Fig. 4 three
simultaneously recorded chromatograms of a thick juice
sample are shown. The two upper chromatograms are
captured from the diode array detector at 280 and 420
nm, whereas the lower chromatogram is from the fluor-
escence detector at 280/325 nm. 420 nm is the normal
wavelength chosen by the sugar industry to represent
colour. Many of the known components absorb at 280
nm (amino acids, polyphenols, Maillard reaction pro-
ducts, etc.), which is consistent with the multiple peaks
in the chromatogram. The 420 nm chromatogram, on
the other hand, shows a limited number of small peaks
in the beginning of the run between 15 and 25 min. The
estimated size exclusion range was approx. 12-25 min,
which means that the colorants are smaller than 80 kDa
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Fig. 4. HPLC size exclusion chromatograms of a thick juice sample.
Upper curve: UV detection at 280 nm; middle curve: UV detection at
420 nm; bottom curve: fluorescence detection at 280/325 nm. Diode-
array spectra of sclected peaks (4-6) are also displayed. The spectra of
peaks 1 and 2 are identical with the spectra of the corresponding tyr-
osine and tryptophan peaks in Fig. 3.

but extend the range down to 1 kDa. Colorants have
been estimated to 5 kDa in white beet sugars, though
for some sugars up to 40 kDa, and in molasses colorants
up to 50 kDa have been found (Godshall et al., 1991).
Their findings agree well with the range of the colorants
in thick juice separated on the HPLC column. Apart
from the two very dominating peaks at 25 and 42 min
identified as tyrosine and tryptophan, the fluorescence
chromatogram in Fig. 4 also shows a number of smaller
peaks in the colorants area in the first 25 min.

A few selected diode array scans with very different
spectral appearance are also displayed in Fig. 4. Apart
from confirming the findings in the chromatograms, the
diode array absorbance spectra can provide more detailed
information for the identification of the components in
thick juice. The absorbance spectra of peaks 1 and 2 are
identical to the displayed spectra of corresponding peaks
in Fig. 3. The spectra of peak 3 reveals that the highest
molecular weight colorants absorb light up to 500 nm,
which is consistent with the golden-orange appearance of
the thick juice sample. Peaks 4-6 display different spec-
tra mainly absorbing at 280-300 nm whereas peaks 4
and 5 appear to be composed of multiple components.
The displayed spectra demonstrate the complexity of
the thick juice sample and the fact that the separation of
thick juice on the HPLC size exclusion column is insuf-
ficient to separate the colorants in thick juice.

3.4. A CP model of fluorescence landscapes of HPLC
[fractions of thick juice

To improve the CP model of thick juice as well as the
HPLC separation, 41 fractions of 1.5 min (10-71.5 min)
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were collected during the HPLC separation shown in
Fig. 4. A fluorescence landscape was recorded of each
fraction by off-line measurements in a scanning spec-
trofluorometer. In Fig. 5 the fluorescence landscape of
fraction 9 serves as an example of such a landscape.
There are clearly multiple overlapping fluorescent peaks
in the landscape and a resolution method is required.
The 41 landscapes form a three-dimensional data array
consisting of the 41 fractions in the first dimension, 31
excitation wavelengths (230460 nm) in the second
dimension, and 431 emission wavelengths (288700 nm)
in the third dimension. The array was modelled by the
three-way CP model and seven components were found.
The modelling results are shown in Fig. 6. Each com-
ponent is represented by the estimated excitation and
emission spectra as well as a chromatographic profile,
which shows the concentration of each component in
the 41 collected fractions. The excitation and emission
maxima of the seven components are presented in Table
1. The spectral shapes in Fig. 6 are all reasonable. Again
extra bands appear in some of the emission spectra. The
fluorescence landscape of fraction 9 in Fig. 5 demon-
strate that a large part of the landscape has to be treated
as missing values due to first and second order Rayleigh
scattering (Bro, 1999). In the estimations of these areas,
extra bands may appear depending on the condition of
the fluorescence data. Components 1 and 2 in Fig. 6 are
recognised as the two modelled components tyrosine
and tryptophan, which are also found in the sugar and
thick juice models (Figs. 1 and 2). In the corresponding
chromatographic profiles in Fig. 6 the two components
show two dominant peaks in fraction 10 (23.5-25 min)
and fraction 21 (40-41.5 min), respectively, which are
consistent with the position of the spiked peaks in the
fluorescence chromatogram in Fig. 3. The chromato-
graphic profile of tryptophan in row 2 in Fig. 6 also
shows contributions in fractions 3-12 similar to the
small peaks displayed in the fluorescence chromatogram
in Fig. 4. Tyrosine, on the other hand, is only found in
fractions 9-11. Tryptophan has very distinct fluorescent
properties, which are kept intact even as a functional
group in a larger molecule, whereas tyrosine loses the
fluorescent properties very easily. For example, in pro-
teins the fluorescence is dominated by the tryptophan
residue (Lakowicz, 1983). The fact that the tryptophan
fluorophore is modelled in the higher molecular weight
fractions in the chromatographic profile could be due to
tryptophan residues behaving as individual fluor-
ophores in polymers. This demonstrates that the chro-
matographic profile from a CP model can be used as a
mathematical purification of the overlapping peaks in a
chromatogram, provided that the assumptions of line-
arity and additivity of the model hold. The area of the
chromatogram from 15-25 min with many overlapping
peaks in Fig. 4 is simplified by the CP model and more
information can be obtained.
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from HPLC fraction no. 9 (22-23.5 min) of thick juice measured with 31 excitation wavelengths

(230460 nm) and 431 emission wavelengths (288700 nm). The blank regions hold Rayleigh scatter signals and are thus treated as missing values.

Components 3-5 in Fig. 6 are very similar in their
spectral shapes and position of the emission spectra.
They are modelled as three individual components
because of the differences in the excitation and chroma-
tographic profiles. It can be argued that they are part of
the same group of fluorophores, but are resolved indi-
vidually due to small differences in molecular sizes and/
or small differences in the fluorophore environments.
The size exclusion on the HPLC column is not good
enough in the high molecular weight area and a more
refined fraction collection is necessary to obtain a
clearer separation. This is supported by the chromato-
gram at 280 nm in Fig. 4, where there is only one peak
at 20-23 min. The three components (3-5) in Fig. 6 have
excitation profiles that reach into the visible area above
400 nm, which implies that they contribute to the col-
orants in thick juice. They are all found in the first frac-
tions of the chromatographic profiles and are thus high
molecular weight compounds. The spectral character-
istics of these colorants resemble conjugated Schiff bases
derived from malonaldehyde and amino acids as repor-
ted by Chio and Tappel (1969). The authors ascribed the
absorption and fluorescence properties of the Schiff
bases to the chromophoric system —N=C-C=C—-N-.
Pongor, Ulrich, Bencsath, and Cerami (1984) isolated a
fluorophore from a product of a browning reaction of
polypeptides with glucose, which show similar fluorescence
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spectra. The structure of the isolated fluorophore con-
tained a conjugated system of nitrogen and carbon in an
imidazole derivative. Similar compounds isolated from
real samples in the sugar processing have not been
reported, but quantitative elementary analysis on high
molecular weight fractions from GPC separations of
thick juice showed an eclement ratio of carbon and
nitrogen as 7:1, which indicated that amino acids were
built into the high molecular weight fractions (Madsen,
Kofod Nielsen & Winstrem-Olsen, 1978). All this sug-
gests that some or all of components 3-5 are colorant
polymers formed during the sugar processing in Mail-
lard reactions involving amino acids and reducing
sugars.

Component 6 in Fig. 6 is also a high molecular weight
compound with contributions in the first fractions in the
chromatographic profile. The emission spectrum is in
the visible area, but the excitation spectrum is well
below 400 nm and the component is therefore not a
colorant. The component is similar to component 3 in
the sugar model in Fig. 1 and partly comparable to
component 5 in the thick juice model in Fig. 2. At pre-
sent the component is not associated with any known
fluorophore.

Component 7 in Fig. 6 is the only component not
comparable to any component in the sugar model in
Fig. 1. This component may be the reason that the
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landscapes of 41 collected HPLC fractions (10~71.5 min). The left-

phic profiles, which show the concenmmon of each of the seven fluorescent components in the fractions. The

centre column holds the excitation profiles and the right-most column holds the emission profiles of the fluorophores. All profiles have been nor-

malised to unit length.

tryptophan component is not estimated as clearly in the
thick juice model (Fig. 2) as in the sugar model (Fig. 1),
since it has spectral properties close to tryptophan. Its
concentration is low in thick juice and therefore the CP
model of the 10 thick juice samples in Fig. 2 could not
resolve it. Pre-separation on the column made it possi-
ble to measure the fluorescence of component 7 without
interference like concentration quenching from other
fluorophores in thick juice. The component contributes
only slightly in the first fractions when looking at the
chromatographic profile in Fig. 6, but is spread over
several of the later fractions with a dominant peak in
fraction 13 (28-29.5 min), which indicates either a low
molecular weight compound or a compound with high
column affinity. The excitation and emission profiles of
this component are suggesting a fluorophore with a
polyphenolic group (Duggan, Bowman, Brodie &
Udenfriend, 1957).

4. Conclusion

It is possible to capture the same fluorescent infor-
mation from the CP models of fluorescence landscapes
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of sugar samples and thick juice samples. Four principal
components are resolved from the sugar model, where
two of them have spectra similar to tyrosine and trypto-
phan. The tyrosine component is also found in the five-
component thick juice model, whereas the estimation of
the tryptophan component is less certain due to the more
complex sample. However, the presence of the two
amino acids in the thick juice model is verified by HPLC
peak identification, which also confirms the spectral
identification of the model components. The HPLC size
exclusion separation of thick juice further confirms that
the fluorescent colorants, which are found in the CP
analysis of the sugar and thick juice samples, are high
molecular weight compounds. Landscape measurements
on HPLC collected fractions of thick juice are success-
fully modelled and seven components are found. The
resolved chromatographic profile of the model can be
used as a mathematical purification of the not perfectly
separated chromatogram. Two of the seven modelled
components are identified as the free amino acids, tyr-
osine and tryptophan, but the latter also appears in
higher molecular weight fractions in the chromato-
graphic profile implying intact tryptophan residues in
polymers. Four out of the seven modelled components
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are identified as high molecular weight components;
three of them are suggested to be Maillard reaction
polymers of amino acid origin with different molecular
weights. The seventh component is of low concentration
and has a spectral appearance of a polyphenolic-like
compound. It is important to improve further the
fluorescence information of the sugar streams by mod-
elling a larger data material to improve the CP model
estimations, and it is currently in progress. Future
research will also include CP models of fluorescence data
from samples taken throughout the sugar process to
increase the information of the origin and development
of the fluorophores in the sugar streams.

Thus, this paper demonstrates the usefulness of
mathematical deconvolution by the CP model of fluor-
escence data from complex sample matrices as well as
for peak purity evaluation in chromatography.
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Abstract Unwanted formation of colour takes place dur-
ing the production of crystalline sugar. The degree of
colouration depends partly on the necessary processing
conditions, e.g. heating and pH, and partly on the initial
composition and condition of the sugar beets used as raw
material. Reducing sugars are formed during the process.
These are reactive compounds forming a variety of
coloured complexes and strong precursors to further for-
mation of colour and many of these compounds contain
fluorophores. In the present work it is discussed if spec-
trofluorometric screening of intermediary sugar products
prior to the final heating stages combined with a multi-
way chemometric approach can provide information that
significantly reflects the condition of the process and the
beets. The model used is the N-way PCA (Principal Com-
ponent Analysis) which is an exploratory model, not ne-
cessitating explicit modelling of single parameters nor
any assumptions towards parameter interaction. By use of
a 4-way PCA of order (3,2,3,3) satisfactory classification
of 47 thick juice samples belonging to 5 factories has been
obtained from a spectrofluorometric screening method.
Also, a temporal trend has been found to evolve during
the time of production. The investigation substantiates the
use of modern models from data analysis for extracting
significant information from large and complex data sets.

Dedicated to Professor Dr. Gerhard Werner on the occasion
of his 65" birthday

1 Sugar production

In northern Europe the most important source of sucrose
for the production of crystalline sugar is the sugar beet,
Beta Vulgaris. Harvesting of sugar beets and, immediately
following, production of sugar is concentrated to a yearly
period of approx. 4 months. This period is called the cam-
paign and runs typically from October to January. During
the campaign the factories continuously receive beets
from many different beet farmers. Due to premises of
growing, e.g. fall of rain, frost, soil characteristics, fertil-
izer type and harvesting machinery, there is a high varia-
tion between the truckloads delivered by the farmers. A
consequence of this variation is that the parameters for the
chemical unit processes are difficult to control with regard
to securing a white and uniform final product (see [1] for
an overview of the process). The quality class of the sugar
is determined according to European standards in which
colouration is a main parameter. The classification influ-
ences the price at which the product can be sold, hence
there is a strong economical motivation for minimizing
the formation of colour during the process. Chemometrics
has successfully been applied to the prediction of selected
quality parameters in sugar [2].

A spectrofluorometrically based screening method has
been applied to samples taken weekly of a preliminary
sugar product, thick juice. Data from this screening have
been explored with multi-way, multivariate chemometric
methods.

C. A. Andersson - L. Munck

Chemometrics Group, Food Technology,

Royal Veterinary and Agricultural University, Rolighedsvej 30,
DK-1958 Frederiksberg, Denmark

R. Henrion
‘Weierstrass-Institute of Applied Analysis and Stochastics,
Mohrenstrasse 39, D-10117 Berlin, Germany

G. Henrion
Institute of Chemistry, Humboldt University of Berlin,
Hessische Strasse 1-2, D-10115 Berlin, Germany

2 Experimental

Fluorescence intensity landscapes, or excitation-emission matri-
ces, have been measured on 47 thick juice samples from the 1994
campaign. Five factories have contributed thick juice samples.
Each sample has volumetrically been diluted 1:15 and 1:150 with
NH,C1 pH 9.00 buffer in doubly ion-exchanged and Si-free water.
The buffer was made only once. Both of the dilutions were mea-
sured using 20 excitation wavelengths (250 nm—440 nm, 10 nm in-
tervals) and 311 emission wavelengths (250 nm—560 nm, 1 nm inter-
vals). Two typical landscapes for one sample are shown in Fig. 1.
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Fig. 1 Two fluorescence land-
scapes — one for each dilution
— are measured per thick juice
sample
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Note that the peaks in the ultraviolet do not decrease with dilu-
tion, this is caused by concentration quenching, or inner-absorp-
tion effect, see [3]. At the excitation and emission sides 10 nm slits
were used. The instrument was the Perkin Elmer 1L.S50B spectro-
fluorometer. As indicated by Fig. 1, the combination of a narrow
emission slit width and generally low turbidity allows neglecting
the Rayleigh scattering. The 47 samples were measured in arbi-
trary order.

3 Analysis of Nway data arrays

Each intensity measurement in the collected data depends
on four external parameters; the sample number (47 sam-
ples), the concentration (two levels of dilution), the detec-
tion wavelength (311 emission wavelengths) and the exci-
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tation wavelength (20 excitation wavelengths). Hence, the
intensities measured constitute a 4-way data array of order
(47,2,311,20).

Various models exist for analyzing three-way data sets,
see [4]. In the present work we focus on the N-way prin-
cipal component analysis (N-way PCA) which is a gener-
alization of the 3-way Tucker3 [5] model to N-way data
arrays. Taking a starting point in the 3-way case, Fig. 2
provides a basis for presenting the N-way PCA. The 3-
way PCA model of a 3-way data array X of order ry, r,, 13)
is depicted in the figure. The array is decomposed into a
significant systematic part and a non-significant residual
depicted by E. The systematic part is described by or-
thogonal factors which are stored columnwise in matrices
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Fig. 2 The three-way principal component analysis (PCA) model

A (r, wy), B (5, w,) and C (r3, wy). The number of factors
in each of the three ways, i.e. w, w, and w;, must be de-
termined by the analyst from a priori knowledge about X
or by evaluating models with different combinations of
wy, wy and w;, choosing the order that gives the most ac-
curate model of X. The array G of order (w,, wy, w3), re-
ferred to as the core array, allows the factors to interact in
the model of X. Interaction of factors is not encountered
in conventional, i.e. bilinear, PCA but is only feasible for
N 2 3. After having estimated the orthogonal factors and
the core array the squared entries in the core express how
significant the factor combinations are for the model. The
4-way PCA can be conceived as an extension of the de-
composition illustrated in Fig. 2 with a necessary intro-
duction of an additional set of factors, D, and by extend-
ing X (ry, 1y, 3, 14), G (Wy, Wy, wa, wy) and E (ry, 1y, 13, 1)
to be 4-way structures. The general N-way PCA may be
formulated according to (1).

vecX=(A ® - ®Ay)vec C 1)

In (1) X represents the N-way data array of order (n,, -,
ny) and A (n;, wy) is the orthogonal component matrix be-
longing to the ith way. The array C of order (wy, -, wy)
designates the core array. ® represents the Kronecker prod-
uct. For details of the general N-way model the reader is re-
ferred to [6]. A tutorial on N-way PCA is given in [7]. A
common algorithm calculating component matrices and
core array from the data array in (1), is described in [8].
Factors from N-way PCA suffer from rotational ambi-
guity, i.e. the N-way PCA of X has an infinity of factors
and cores, where one solution can be rotated into another
giving the exact same fit to X. Returning to the ex-
ploratory power of the squared elements of the core, one
can perform controlled transformations of a solution to
give a core where only a few squared entries are signifi-
cant, see [9]. Having only a limited number of significant
core entries allows the analyst to focus on a few combina-
tions of more significant and general factors. In contrast,
having no significant combinations of factors, interpreta-
tion is rendered impossible due to the high number of
non-significant factors that must be evaluated.

4 Principal component analysis
of the 4-way data array

In order to find the optimal order of the 4-way PCA
model, several combinations of different orders were in-

Table 1 Sum-of-squares explained by PCA models of different
orders

Model order Expl. SS [%] Num. Par.
(1,1,1,1) 74.13 384
2,1,2,2) 82.88 772
(2,2,2,2) 92.08 782
(3.2,3,3) 96.25 1201
(3,3,3,3) 96.24 1230
4244 97.85 1656

vestigated. Table 1 shows the relative increase in ex-
plained sum-of-squares (SS) as the orders of the models
increase. The total number of parameters is shown in the
rightmost column of Table 1. The findings from this table
suggest that a model of order (3,2,3,3) should be chosen
since 96.25% of SS explained seems appropriate in com-
parison with the models of higher orders. Also, the num-
ber of parameters should be kept as low as possible in ac-
cordance with the principle of parsimony. Parsimonious
models involve as few parameters as possible, hence the
risk for fitting non-systematic trends (noise) in X is mini-
mized. Note, that the model does not improve in fit when
using more than two factors in the second dimension, this
is in concordance with the number of observations: One
cannot derive three or more orthogonal solutions in a di-
mension that is only spanned by two variables.

In order to improve the interpretability of the (54 ele-
ments large) core array, the solution was transformed to
yield maximum variance-of squares of the core as pro-
posed in [9]. By transformation the variance-of-squares of
the core array, which is an indicator of how few signifi-
cant entries are present in the core, changed from 4.11 %
102 to 5.46 x 10%, i.e. an increase of 32%. The resulting
profiles are plotted in Fig. 3A-D. Inspection of the vari-
ance-of-squares maximized core elements yields (with the
involved factors of the four modes in parentheses) 2.36 %
100 (1,1,1,1), 1.73 x 10° (1,1,2,2) 9.50 x 108 (1,2,1,3),
1.49 x 108 (1,2,2,3) and 1.03 x 10% (1,2,1,2). For conve-
nience of the reader the squared elements of the core have
been sorted, and the values of the 5 largest entries are de-
picted in Fig. 4. From this figure it is clear that the com-
bination indicated by (1,1,1,1), being the first sample pro-
file, first dilution factor and the first excitation and emis-
sion profiles, is most important in the model of X. There-
fore we shall initially concentrate on explaining these fac-
tors since they are most general. In Fig. 3A, profile 1
shows that the main variation between samples is caused
by two levels of the fluorescence intensities. In Fig. 3A
the samples are arranged factory-wise in ascending week
number such that samples 1-10 are from factory a, 11-18
from b, 19-28 from d, 29-36 from e and 37—-47 from f.
Hence, we may conclude that the samples from the last
factory (number 37—47) generally have lower levels of in-
tensity. Similarly, the major trend in the data is that the
fluorescence intensities descend when the samples are di-
luted. This is deduced from Fig.3B since the factor de-
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Fig. 3A-D The rotated factors
from PCA on the 4-way data
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set. The sample profiles are
shown in A. Emission and ex-

citation profiles are shown in
C and D, respectively. The fac-
tors explaining the variation

caused by dilution are illus-
trated in B. 1-3 see text

1:150
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Fig. 4 The 5 largest squared elements of the core array. The re-
maining 49 elements are in the same range, or lower, than the low-
est two elements shown here. Hence, the three most significant
factor combinations are (1,1,1,1), (1,1,2,2) and (1,2,1,3)

creases from 0.93 to 0.40 upon dilution. The reason that
this is not true for all samples, as indicated by factor two,
may be due to concentration quenching, i.e. that the inten-
sity does not decrease with dilution from 1:15 to 1:150.
The spectral excitation and emission profiles marked 1 in
Fig. 3C-D give indications to the profiles of the fluo-
rophores being common to the samples.

15 20 0 50 100 150 200 250 300

Bearing in mind that the samples are ordered factory-
wise after increasing week number, we return to the sam-
ple profiles in Fig. 3A. Sample profile number 2 appears
to reflect time-dependent events since the level generally
increases as the week of sampling increases. There is a
shift in this temporal development going from sample 28
to 29, corresponding to going from factory d to e. Also
sample profile number 3 appears to reflect intensities that
are inversely related to the week number, albeit, this trend
is not as obvious as in the case of profile 2. Additionally,
the profiles not only reflect time dependences but also
give rough indications of different levels for the factories.
‘We have chosen to extend Fig. 3A with a scoreplot where
sample profiles 2 and 3 are plotted against each other, as
shown in Fig. 5. This plot fully exploits the information
in the two profiles as discussed above by combining the
trends from two independent factors in one plot. The re-
lationship among the samples becomes clear since sam-
ples from the same factories are grouped almost without
overlaps. Furthermore, these two factors reveal a devel-
opment in time, that is, there is a trend in the plot that the
samples are dispersed within the clusters according to the
time of sampling (as indicated by the inserted arrow).
Hence, sample profiles 2 and 3 contain fluorometric in-
formation that describes the temporal behaviour of the
thick juices as the campaign runs. Also, plots of sample
profiles 1 vs. 2 and 3 have been investigated, but as indi-
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Fig. 5 A scoreplot combining
the information in sample pro-
files no. 2 and 3. The letters a,
b, d, e and f each relate to a
factory and the numbers desig-
nate the week of sampling.
This plot reveals two important
trends in the fluorescence data:
Grouping according to factory
and a development in time
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cated by sample profile 1 in Fig. 3A, this factor contains
only very general information that cannot reveal detailed
differences between neither time nor factory among the
samples.

5 Results

Explorative soft modelling, in casu 4-way PCA, has sub-
stantiated the use of spectrofluorometry as a screening
method. By showing that the collected 4-way data array
cannot only classify samples according to factories, but
also give an indication of temporal conditions, fluorome-
try gives promise as a very relevant source of information
that is related to variations in the raw beets and the state
of the factory as well. Without explicit modelling of the
many uncontrollable parameters (some being difficult to
asses or quantify, e.g. growing conditions and weather
conditions) causing the differences between samples, the
results from the 4-way PCA has proven that spectrofluo-
rometric measurements give promise as an important
screening method for process control. By temporal char-
acterizing of the thick juice, the process control will be
able to adjust conditions accordingly. On the basis of the
presented results a project has been initiated aiming at de-
veloping a spectrofluorometer for in-line screening. This
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will improve our understanding of the relation between
measured fluorescence signals and the extent of coloura-
tion. The data analytical part of the project will include
extensive use of chemometric multi-way models, as the
one presented.
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SUMMARY

This paper offers an approach for handling retention time shifts in resolving chromatographic data using the
PARAFAC?2 model. In Part I of this series an algorithm for PARAFAC2 was developed and extended to N-way
arrays. It was discussed that the PARAFAC?2 model has a number of attractive features. It is unique under mild
conditions though it puts fewer restrictions on the data than the well-known PARAFACI model. This has
important implications for the modeling of chromatographic data in which retention time shifts can be regarded
as a violation of the assumption of parallel proportional profiles underlying the PARAFACI model. The
PARAFAC?2 model does not assume parallel proportional elution profiles, but only that the matrix of elution
profiles preserve its ‘inner-product structure’ from sample to sample. This means that the cross-products of the
matrix holding the elution profiles in its columns remain constant. Here an application using chromatographic
separation based on the molecular size of thick juice samples from the beet sugar industry illustrates the benefit of
using the PARAFAC?2 model. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: multiway; curve resolution; fluorescence spectroscopy; shifted profiles

INTRODUCTION

In order to understand the chemistry of the color formation during sugar processing from beets, an
experiment was conducted to explore the presence and amount of chemical analytes in thick juice,
which is an intermediate product in the sugar production. The molecular entities of thick juice
samples were separated by size and affinity on a chromatographic system and detected by
fluorescence in the hope that the individual fluorophores could be separated and detected. However, it
turned out to be impossible to separate the analytes completely; that is, the elution peaks/profiles were
partly overlapping. The analysis was further complicated by the fact that there were huge shifts in
retention time of specific analytes from sample to sample.

Overlapping chromatographic peaks can sometimes be separated mathematically. If a univariate
detection system is used in a chromatographic system, an experiment results in a time profile which is
conveniently held in a vector. If several such experiments are performed on different samples, a
matrix X results, of which each row holds the profile of each individual sample. If there are no

* Correspondence to: R. Bro, Chemometrics Group, Food Technology, Department of Dairy and Food Science, The Royal
Veterinary and Agricultural University, Denmark. E-mail: rb@kul.dk

Contract/grant sponsor: Nordic Industry Foundation; Contract/grant number: P93149
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CCC 0886-9383/99/030295-15 $17.50 Received 25 July 1998

Copyright © 1999 John Wiley & Sons, Ltd. Revised 6 January 1999
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retention time shifts in the data, every analyte will give rise to the same elution profile in every
sample, except for a change in magnitude (area) depending on the concentration of the analyte.
Assuming there are R analytes, the data held in the 7 X J matrix X can be modeled by R bilinear
components as

R
X=> ba+E (1)

r=1

where b, is an I-vector holding the concentration of the rth analyte in the 7 samples, a, is the time
profile of the rth analyte, and the matrix E holds the residual variation. For each sample the time
profile is described as a sum of the individual profiles weighted by the corresponding concentrations
of the analyte, b;,a,. This model implies that the time profiles do not change from sample to sample. If
the analytes are completely separated, the individual profiles can immediately be extracted, in which
case no additional mathematical modeling is required. If the time profiles overlap, this corresponds
mathematically to the vectors a,, r=1, ..., R, being non-orthogonal. Resolving or rather estimating
the profiles of the pure analytes in such a case has received a lot of attention in chemometrics, starting
with the work of Lawton and Sylvestre.! Owing to the fundamental rotational indeterminacy in
bilinear modeling, it is not possible to estimate the pure profiles from the data without employing
some sort of external knowledge in the decomposition in order to obtain a unique model. The word
‘external’ is to be taken lightly here, since the necessary knowledge may sometimes be obtained
directly from the data. The main way of obtaining uniqueness is to identify selective variables (or
samples), i.e. elution times where only one analyte is present (or absent). As described theoretically in
Reference 2, this may lead to a unique or partially unique decomposition. The presence of selective
variables forms the basis for most traditional resolution techniques in chemistry. Another approach is
based on the use of constraints. One may estimate the parameters in the bilinear model under
constraints such as non-negativity of concentration estimates or unimodality of elution profiles.?
While constraints are useful for improving the estimates of model parameters, they do not lead to
uniqueness in general. Rather, they help reduce the feasible set of solutions.

Copyright © 1999 John Wiley & Sons, Ltd. J. Chemometrics, 13, 295-309 (1999)
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Figure 2. Elution profiles F, from first experiment (full lines) and last experiment (dotted lines). The first and last
experiments have the most dissimilar elution profiles, and the profiles change gradually throughout the
experiments. Note that as the profiles shift, their width expands as well

‘When spectral detection rather than univariate detection is used, a three-way array is obtained, the
third mode consisting of measurements at different wavelengths. It is well known that for three-way
chromatographic data with no retention time shifts it is possible to resolve uniquely the underlying
components without any additional constraints by the use of the PARAFAC1 model.* Thus the
addition of a third spectral mode is highly convenient, since otherwise resolving the individual
components may not be possible.

The primary concern in this paper is the problem of modeling three- and higher-way
chromatographic data with retention time shifts. In the following we will first describe the
chromatographic data and a set of simulated data used for introducing the PARAFAC2 model with
respect to modeling retention time shifts. A short description of the possible models for resolving
chromatographic multiway data is given. Finally the results of modeling the simulated as well as the
real data are provided.

DATA

Simulated data

A three-way data set was generated for simulating spectrally detected chromatographic data with
retention time shifts. Four analytes with overlapping chromatographic peaks were used. The data
were generated according to the model

X; = F,D,AT +E; (2)
where X is the measured data from sample (i.e. experiment) &, F; is a 100 x 4 matrix holding the
elution profiles of the four (fictitious) analytes present in sample &, Dy is a 4 x 4 diagonal matrix
holding the concentrations of the four analytes in sample & in its diagonal, and the matrix A isa 30 x 4

matrix holding the spectra of the four analytes, chosen as in Figure 1. The matrix E; holds the added
noise. Thus only the spectra in A are constant over the samples. The data set consists of data from ten
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samples. In different samples the concentrations of the analytes were chosen randomly (evenly
distributed between zero and one) and the elution profiles were shifted differently as described below.
Thus the data array is of size 100 (time) x 30 (spectrum) x 10 (sample).

Normally distributed heteroscedastic noise was added proportional to the size of the signal such
that the variance of the noise was 5% of the variance of the systematic variation. Note that this is a
relatively large amount of noise.

The following choice of structure in F; (containing the elution profiles) was used. In any specific
experiment all elution profiles had identical shifts. The amount of shift was gradually increased from
zero in experiment 1 (Figure 2, full lines) to four time units in experiment 10 (Figure 2, dotted lines).
With increasing shifts the width of the peak area was also increased accordingly, being proportional
to the square root of the elution time.

If the data fit the premises of the PARAFAC2 model, the PARAFAC2 model gives unique
parameters (up to trivial scaling and permutations). Since the ‘true’ parameters (pure spectra,
concentrations and elution profiles) will provide a model that also gives the best fit, the PARAFAC?2
parameters will thus be estimates of the true parameters. This is quite dissimilar from bilinear
modeling where the rotational invariance of the solution makes it impossible to estimate the
parameters unless auxiliary information is available. However, in this case it is known a priori that
the data do not fit the PARAFAC?2 model perfectly. For this to hold, the cross-product of the matrix
holding the elution profiles, Fy, should be constant over k as elaborated on in Part L5 Thus F,"F, =G
for any k. That this is not the case in the above example is easily shown from

1-00 0-82 0-93 0-96
0-82 1-10 0-60 1-01

FiFi = 0-93 0-60 0-96 0-80
096 1:01 0-80 1-05
and
1-00 090 096 0-98
FLFo = 0-90 1-05 0-77 1-00

0-96 077 098 0-89
098 100 0-89 1-02

The cross-products shown above have been normalized by scaling the first element to the value one
for easier comparison. It is readily seen that these matrices are not identical and hence the
requirements for the PARAFAC2 model to hold are not valid here. Thus the PARAFAC2 model will
not fit the data perfectly, though still give unique estimates of parameters. The crucial aspect is to
investigate if PARAFAC?2 is still a reasonable model to use and if it can provide sensible estimates of
the underlying parameters (spectra, profiles and concentrations). It is less constrained than a
corresponding PARAFAC1 model, hence it is the main hypothesis in this paper that it can be expected
to perform better than PARAFAC1. We aim to show that for reasonable deviations from perfect data,
PARAFAC?2 will still provide good estimates of the underlying parameters.

Chromatographic data

Fifteen samples of thick juice from different sugar factories were introduced into a Sephadex G25
low-pressure chromatographic system using a 0-02 M NH,CI/NH; buffer (pH 9-00) as carrier. In this
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way the high-molecular reaction products between reducing sugars and amino acids/phenols are
separated from the low-molecular free amino acids and phenols. The high-molecular substances elute
first, followed by the low-molecular species. Aromatic components are retained the longest time
owing to a high affinity to the Sephadex material. The sample size was 300 pl and a flow of 0-4 ml
min~' was used. Twenty-eight discrete fractions of 1-2ml were sampled and measured spectro-
fluorometrically on a Perkin Elmer LS50B spectrofluorometer.

The column was a 20 cm long glass cylinder with an inner radius of 10 mm packed with Sephadex
G25 fine gel. The water used was doubly ion exchanged and millipore filtrated upon degassing. The
excitation—emission matrices were collected using a standard 10 mm x 10 mm quartz cuvette,
scanning at 1500 nm min~" with 10 nm slit widths in both excitation and emission monochromators
(250440 nm excitation, 10 nm intervals; 250-560 nm emission, 4 nm intervals). For each sample, 28
excitation—emission matrices are measured, one for each fraction collected. Thus the size of the four-
way data set is 28 (fraction) x 20 (excitation) x 78 (emission) x 15 (sample).

METHODS

A structural model of chromatographic data will first be developed for the ideal situation in which
there are no retention time shifts. Subsequently it will be shown how to accommodate this model for
handling retention time shifts. First only three-way data will be considered and afterwards it will be
shown how to extend the results to four-way data as well as the mathematical consequences of such an
extension. Then the results of applying the PARAFAC?2 and competing models to the simulated three-
way and real four-way chromatographic data are shown.

Consider data such as the above-mentioned where fluorescence spectroscopy is used for detection.
‘When the emission wavelength is fixed, then at each elution time an excitation spectrum is measured.
This corresponds conceptually to the normal situation in UV-vis detection chromatography. Let x;;
be the emission intensity of the ith fraction (elution time) of the kth sample measured at the jth
excitation wavelength. For a dilute solution in which no quenching occurs it holds that this intensity is
the sum of intensity contributions from the individual fluorophoric entities in the sample plus some
additional noise. Assume there are R independent fluorophores. For each fluorophore # the emission
intensity is linearly dependent on the concentration ¢y, in the kth sample. It is also linearly dependent
on the ‘quantum yield’ at excitation wavelength j, a;,. Finally it is linearly dependent on the relative
amount of sample present in the ith fraction, f;,. Thus the model of the data can be stated as

R
Xijk = Zﬁrajrckr + €ijk (3)
r=1

This model may also be stated in terms of matrices. Let X be the / x JK matrix holding the I x J x K
three-way array with typical elements x;;. The first J columns of X correspond to the I x J slab
obtained from the three-way array by setting k equal to one. The I x R loading matrix F holds the
parameters f;,, and A (J x R) and C (K x R) are defined likewise. The columns of F will be the
estimated elution profiles, the columns of A the estimated spectra, and the elements in C the estimated
concentrations. Then it holds that the PARAFACI1 model can be stated as

X; = FAT + E; (4)
where X is the kth frontal slab of the three-way array and Dy is a diagonal matrix holding the kth row

of C in its diagonal.
From the theory of the PARAFAC1 model*® it immediately follows that given the appropriateness
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of the model it is possible to resolve the data into meaningful components pertaining to individual
analytes. This is so because the PARAFACI model is uniquely identified up to scaling and
permutation of the components under mild conditions.”'® The model of the chromatographic data
derived above assumes that the elution profiles of individual components, i.e. the columns f, of F, are
identical in each sample. However, this is not the case in the presence of retention time shifts. In such
situations, using the PARAFAC1 model will be problematic. We then have to replace the first mode
loadings F with a set of loadings F; specific to sample k. The elution profiles F; for a specific
experiment k are then unrelated to the profiles from another experiment, so as to allow for retention
time shifts in the model. A model of shifted data may therefore generically be stated as

X, = FkaAT + Ex (5)

The parameters and residuals in this model are different in general from the ones given in equation
(4), but the matrices are given the same names in order to stress that ideally these should be identical.
This model is problematic for several reasons. First of all it possesses no uniqueness properties in the
sought sense since it can be shown to be equivalent to a bilinear model of the data unfolded to a two-
way matrix. Also important, though, is that it assumes no relation at all between equivalent elution
profiles in different samples. If the elution profiles are somehow related, not using this will lead to an
unnecessarily high uncertainty in the estimated components.

Between the two extremes of having all F, equal to F and having F; unconstrained there are several
possibilities for imposing structure in F,. It is the choice of the structure of F, that determines the
structure of the model. The PARAFAC2 model offers one such intermediate model. In the
PARAFAC?2 model each loading matrix F; is modeled as

Fe=PF, k=1,....K (6)

where P, is an / x R column-wise orthonormal matrix and F is of size R x R. The matrix F represents
the common part of the elution profile matrices from different experiments in an R-dimensional
subspace, while the matrix P, determines the specific manifestation of these profiles in the I-
dimensional space of the kth experiment.” One may of course also envision other ways of imposing
structure in Fy, but it seems that this type of structure is adequate for approximating many occurring
deviations from the strict linearity required in the standard PARAFAC1 model. A very important
feature of the PARAFAC?2 model is that it retains the advantage of intrinsic structural uniqueness as
discussed at length in References 5, 11 and 12.

The structure imposed in F; can also be formulated differently by observing that equation (6) is
equivalent” to requiring

FiF,=F'F, k=1,....K (7

This means that for every sample £ a set of elution profiles F; is estimated under the constraint that the
cross-products of the profile matrix are identical. It is simple to show that if for example the profiles of
all analytes are shifted the same amount, if there is no peak broadening and the elution baseline is
represented both before and after all analytes appear, then this assumption will be valid. If these
assumptions are not met, the PARAFAC2 model is still less restrictive than the PARAFAC1 model
while being unique. Thus even data that do not conform exactly to the restrictions may be better

Note that the matrix F appearing in the PARAFAC?2 model is not of the same size as the one appearing in the PARAFACI1

model.
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Figure 3. Four-way chromatographic data represented as a three-way array where sample and elution profile
modes are combined into one. Below the corresponding three-way PARAFAC1 model is depicted, showing that
for this unfolding the PARAFAC1 model estimates the elution profiles from each sample independently

modeled by PARAFAC2 than by PARAFACI, since the model misspecification will be less
pronounced for PARAFAC?2.

Having discussed the three-way version of the PARAFAC?2 model, it is appropriate to discuss
aspects of modeling four-way data. As discussed in References 3 and 5, the PARAFAC2 model is
easily extended to higher orders. An interesting aspect of the four-way model is that even if no
constraints are imposed on Fg, the model will still be unique, since the four-way model with
unconstrained F; is equivalent to a three-way PARAFACI model of the four-way data unfolded to a
three-way array.} Since the chromatographic data are four-way, it is therefore possible to validate the
four-way PARAFAC1 and PARAFAC2 models against the results of the three-way PARAFACI1
model fitted to the unfolded four-way data. Regardless of the presence of retention time shifts the
three-way PARAFACI1 model will give reasonable estimates of the model parameters if the elution
and sample modes are combined in the unfolding (Figure 3).

Determining the model complexity

For PARAFACI as well as PARAFAC?2 it is essential to use the correct number of components. In
two-way analysis this is also important, but for multiway models the importance is even more
pronounced. In most two-way analyses one is mainly interested in determining a suitable subspace,
while in PARAFAC models the specific orientation within the subspace is also important. Moreover,
PARAFAC models are not nested, so choosing e.g. a four-component model instead of a three-
component model has implications not only for the additional component but also for the orientation
of all four components.

iStill, if the added structural constraint of the PARAFAC?2 model is valid, it is preferable to use it, since added constraints (on

F,) will in general provide more robust and precise parameter estimates.?
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In order to determine the proper number of components for PARAFACT1 as well as PARAFAC2
models, several possibilities exist. As for ordinary two-way principal component analysis, methods
based on judging residuals and on resampling are possible. For multiway models, however, some
additional tools are available that are very helpful in determining the proper number of components.
The split-half analysis® is founded on exploiting the uniqueness properties of the PARAFACI and
PARAFAC2 models. If the right number of components is chosen, the ‘true’ underlying latent
variables will be found. This will hold regardless of which samples are used for estimating these. If
the proper number of components is not used, the estimated parameters will be linear combinations of
the true parameters and therefore depend on which samples are used.

Another powerful tool for assessing the model complexity of PARAFACI models is the core
consistency diagnostic suggested in Reference 3 and elaborated on in detail in Reference 13. It is
based on the fact that the PARAFAC1 model can be posed as a restricted Tucker3 model where the
core array is fixed to be a superidentity array.'* The core consistency diagnostic amounts to first
calculating the optimal unconstrained core array for a Tucker3 model where the loading matrices are
the ones obtained by the PARAFAC1 model at hand. Then the core consistency diagnostic given as a
percentage is defined as

F F F s
2020 D (8der — taer)

d=1e=1f=1

FOFF o
PIDIPIE
d=1e=1f=1

core consistency = 100| 1 —

(8)

where g.r and #,,; denote the elements of the calculated core and of the intrinsic superdiagonal core
respectively. If G is equal to T, the core consistency is perfect and has a value of unity (100%), which
indicates that the PARAFACI model at hand is indeed appropriate. At the other extreme the
consistency may be below zero if the PARAFAC]1 model is inappropriate or the variation is purely
random, hence mostly off-superdiagonal.

As demonstrated in Reference 13, if the number of components in the hypothesized model exceeds
the proper number of components, the Tucker3 core array will deviate considerably from
superdiagonality. This will not be the case if the proper number of components is used. Thus the
highest number of components that maintains a sufficiently superdiagonal Tucker3 core array will be
the adequate number of components to use.

RESULTS
Simulated data

The results of fitting PARAFAC1 and PARAFAC2 models to the simulated data using the correct
number of components (i.e. four) are shown in Figure 4. The PARAFAC?2 estimates are closer to the
true values than the PARAFACI estimates. Furthermore, it can be seen that the PARAFAC2
estimated elution profiles are less smooth than the corresponding PARAFAC] estimates. This is an
indirect illustration of the important property of PARAFAC?2 that it puts fewer restrictions on the
elution profiles. This is needed because such restrictions are infeasible when there are shifts. In this
case, where a substantial amount of noise was added to the data, the estimated elution profiles become
rather unsmooth, but they do follow the original profiles closely.

In order to verify that the PARAFAC?2 model is superior to the PARAFAC1 model for the given
data, 100 simulations were performed according to the above data but with different random
concentration matrices. For every simulated data set the two models were fitted and the correlations
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Figure 4. Estimated profiles and spectra from simulated data. The top plots show the true profiles (broken lines)
together with estimates (full lines). PARAFAC1 estimates are to the left and PARAFAC2 estimates to the right.
The middle plots show the same for experiment 10 and the bottom plots shows the reference spectra (broken
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Figure 5. Histograms showing correlation between estimated and true concentrations for each component for
PARAFACI (left) and PARAFAC2 (right). The histograms are based on 100 different models with different
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Table 1. Explained variation and core consistency for different three-way PARAFAC1 models, of
chromatographic data

Number of components Explained variation (%) Core consistency (%)
3 96-4 91.9
4 98-9 96-3
5 99-3 20-6
6 99-4 15-1

between estimated and true concentrations calculated. In Figure 5 these correlations are shown. Each
plot is a histogram containing the absolute correlation between the estimated and true concentrations
of one specific analyte for one specific model over all 100 data sets. It is evident that the PARAFAC2
model is generally superior to the PARAFAC1 model. The correlations between true and estimated
concentrations for the PARAFAC2 model are much more skewed towards one than for the
PARAFACI model.

Chromatography

The first step in modeling the chromatographic data is to determine how many components to use in
the model. In order to establish the correct number of components, a three-way PARAFAC1 model
was investigated in which the sample and elution modes were concatenated into one mode (see Figure
3). In this way, retention time shifts will not affect the model, since the profiles of each sample will be
modeled independently. For three-, four-, five- and six-component models the core consistency
(equation (8)) as well as the percentage of variation explained was calculated. The percentage of
explained variation was defined as

222 i i(xijkl — myu)?

i=1j=1k=1[=I1

variation explained = 100| 1 —

©)

where x;, is an element of the four-way array and my, is the corresponding element of the model of
the array.

For the posed models the results are given in Table 1. Note that based on the percentage of variation
explained, it is difficult to assess which of the four candidate models is the most preferable since they
all explain approximately the same amount of variation. Using the core consistency, however, the
picture is much clearer. Three- and four-component models are seen to be suitable since they both
have very high consistencies. A five- or six-component model is definitely not appropriate, since the
loading matrices that should reflect the subspace of the systematic variation are mainly descriptive of
variation on the off-superdiagonal part of the array (indicated by the low core consistency). Since four
is the highest number of components for which the model assumptions hold, it may be concluded that
four components provide an adequate model complexity of the given data under the premises of the
PARAFACI1 model.

Having established the number of components to use, the two competing four-way models of the
data were fitted: a four-way four-component PARAFAC1 model and a four-way four-component
PARAFAC2 model. For both models, non-negativity was imposed on all parameters except the
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Figure 6. Estimated emission (top) and excitation (bottom) spectra from four-way PARAFACI (left) and four-
way PARAFAC? (right)

elution profiles in PARAFAC?2, since imposing non-negativity on these is difficult. In Figure 6 (left)
the excitation and emission mode loadings of a four-component PARAFAC] model are shown. The
parameters are not very appealing. The alikeness of several components suggests that the model may
not be valid. However, the solution is stable in the sense that it was obtained several times from
different starting values. In Figure 6 (right) the excitation and emission mode loadings of a non-
negativity-constrained PARAFAC?2 model are also shown. These parameters look reasonable and are
very different from the PARAFACI loadings, especially in the emission mode. The PARAFAC2
model seems to be better. Based on these results alone, it is difficult, though, to conclusively claim
that the PARAFAC?2 model is valid and better than the PARAFACI1 model.

A very simple way of validating which model is better admits itself as mentioned before. The
sample and elution modes may be combined into one mode and the subsequent three-way array
uniquely modeled by a three-way PARAFAC1 model. Since each elution mode will then be modeled
separately for each sample, possible retention time shifts will not affect the appropriateness of the
model.

For the model of the three-way data the excitation and emission mode loadings are shown in Figure
7. Note the close similarity between the three-way PARAFACI and four-way PARAFAC2 solution.
All three models (three-way PARAFACI, four-way PARAFACI and four-way PARAFAC?2) should
theoretically be identical if no retention time shifts are present. Since the four-way PARAFAC1
model gives substantially different parameter estimates, it may safely be concluded that this model
does not fit the characteristics of the data. The most likely reason for this is retention time shifts.

From the three-way model of the data a set of loadings is also obtained in the combined elution/
sample mode. Reshaping the loading for one specific component to a matrix, a set of elution profiles
for this ‘analyte’ is obtained, one for each sample. In Figure 8 this is shown for component 1. These
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Figure 7. Emission (left) and excitation (right) mode loadings estimated from three-way non-negativity-
constrained PARAFACI model

estimated profiles are not subjected to model error due to retention time shifts, since they stem from
the three-way model.

It is readily seen that even though the elution profiles should be identical in each run, this is
certainly not the case. There are huge shifts in the retention times from sample to sample, probably
caused by the very different contents of the samples. This explains why four-way PARAFAC]1 cannot
fit these data well. The gel in the column is known to be sensitive toward the concentration of
phenolic compounds and certain amino acids. The inter-sample variation in the elution profiles is
probably due to different contents of such compounds with high affinity for the chosen gel causing the
shifts in retention times.

It is interesting to compare the elution profiles estimated by three-way PARAFAC1 with the

a.u.

£
[=]

Fraction number

Figure 8. Estimated elution profiles of component 1 (not scaled) estimated from a three-way PARAFAC1 model.
Each line is the estimated profile of the component in one specific sample. If no retention time shifts were present,
all profiles should be identical!
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Figure 9. Estimates of elution profiles of component 1 in 15 different samples. Estimates from three-way
PARAFACI are shown to the left and from four-way PARAFAC?2 to the right. The top plots show the estimates
of the first five samples, etc.

estimates obtained from PARAFAC2. As for the three-way model and unlike the four-way
PARAFACI1 model, PARAFAC?2 provides individual profiles for each sample (Fy). In Figure 9 the
estimated profiles of component 1 in all samples are compared for three-way PARAFAC] and four-
way PARAFAC?2. Note that the PARAFACTI elution profiles are identical to the ones shown in Figure
8. As for the spectral parameters the similarity is very high even though the deviations between the 15
elution profiles are not of a type expected to be perfectly modeled by PARAFAC2.

Performing a split-half analysis for both the four-way PARAFACI and the PARAFAC2 model
substantiated that the four-way PARAFAC1 model is not suitable, since the parameters did not
replicate over different subsets. The data were divided into two groups by assigning eight samples to
one group and seven to another. For both subsets a PARAFAC1 and a PARAFAC?2 model were fitted.
In Figure 10 the resulting emission and excitation mode loadings are shown. There are large
discrepancies in the PARAFAC1 parameters depending on which subset is used, while for the
PARAFAC?2 model these discrepancies are smaller and probably caused by the very low sample size
(seven and eight respectively).

CONCLUSION

In this application a suggestion has been given for the solution of a very important and frequently
arising problem, namely shifted data. It has been shown that even though the data are severely shifted,
PARAFAC?2 apparently is capable of modeling the data. In this case, validation could be very
elegantly performed by unfolding the four-way data to a three-way structure for which the
PARAFACI model, and its ensuing uniqueness, holds. However, usually, shifted chromatographic
data are at most three-way and therefore such a rearrangement in order to attain uniqueness is
impossible. Furthermore, using the four-way PARAFAC?2 model, more structure is imposed in the
model than with the three-way PARAFACI1 model for the unfolded data, which is preferable from an
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Figure 10. Split-half analysis. The top plots give the results from four-way PARAFACI and the bottom plots the

results from PARAFAC2. The left plots show the emission mode parameters and the right plots the excitation

mode parameters. Loading vectors estimated from a subset of eight samples are shown with full lines, and
loading vectors estimated from a subset of seven samples are shown with dotted lines

interpretation as well as a noise reduction point of view.

The three-way PARAFAC?2 model appears to provide a good approach for solving variable shifts
for three-way data, and further applications to chromatographic data will help substantiate this
conclusion.
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