Order Number 9211003

Case deletion for multilinear models

Arboleda, Maria Liza De Ungria, Ph.D.
The Ohio State University, 1991

U-M-1

300 N. Zeeb Rd.
Ann Arbor, M1 48106



CASE DELETION FOR MULTILINEAR MODELS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate
School of The Ohio State University

By

M. Liza U. Arboleda, B.S.,M.S.

* %k 3k k %k

The Ohio State University

1991

Dissertation Committee: Approved by

Professor Sue E. Leurgans CC Dé
Professor Angela M. Dean /&‘-( LAt Gl A
Adviser /

Professor Robert T. Ross Department of Statistics




To my father and the memory of my mother

i



ACKNOWLEDGMENTS

Support was received from the Ohio Supercomputer Center. The use of Robert
Ross’ FORTRAN program for computing full estimates for multilinear models, and
help in modifying the program are acknowledged. Comments from Angela Dean
were very helpful. I thank my adviser, Sue Leurgans, without whose guidance,
patience, and encouragement this document would not have been completed. I am
grateful to my family and friends for their unwavering support and understanding,

and to all who have encouraged, cheered, and prayed for me throughout my studies.

iii



ViTa

October 1, 1959......ccovvrvnrrrrinnenes Born-Metro-Manila, Philippines
1981, e B.S., University of the Philippines
Quezon City, Philippines
L985...cciieeiiiireecccceen e M.S. in Statistics,
University of the Philippines
1985-1986.........c00ummeeeriiirnnnnnnne JUniversity Fellow
The Ohio State University
Columbus, Ohio
1987 cieiiiciiiieiereriieeeettee e nenenens M.S. in Statistics,
The Ohio State University
1988 to present.........ccccvevreerererens Graduate Research Assistant

The Ohio State University

FIELDS OF STUDY

Major Field: Statistics

iv



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . .. . it e e e e e e i v e e il
2 1 iv
LIST OF TABLES . . . . . . . et e e e e e e e a s vi
LISTOF FIGURES . . . . . . . e e e e et et e vii
CHAPTER PAGE
I Introduction . . . . . . .. .. .. e 1
1.1 Why Case Deletion? . . ... .. .. ... . .. ... 1

1.2 Linear, Nonlinear, and Multilinear . ... ... ........... 3

13 Roadmap . .. ... .. .. it it et 4

II Introduction to Multilinear Analysis . . . ... .............. 7
2.1 Terminology and Notation . . . . ... ... ... .......... 7

2.2 Applications . . .. .. ... L e e 10

2.3 Multilinear Models as a Special Case of Nonlinear Models . . . . . 13

2.3.1 Nonlinear Models: Notation and Geometry . ... ... .. 14

2.3.2 Some Multilinear Models in Nonlinear Notation . . . . . .. 17

2.4 A Small Example: Plastocyanin Absorption . .. .. .. ...... 19

III Curvature Measures of Nonlinearity for Trilinear PARAFAC Models . . . 23

3.1 Velocity and Acceleration . ... ................... 24
311 Velocity . . . .. ... .. . e e 24
3.1.2 Acceleration Vectors . . . . . . S 34

3.2 Curvature Measures in Nonlinear Models . . . . . .. ... ... .. 38

3.3 Linear Dependencies . . . . . . . .. .. ..., 40



3.3.1 Independence Among Acceleration Vectors . . . . .. .. .. 40
3.3.2 Pairwise Independence Between Tangent and Acceleration

Vectors . . . . . . 0 i i e e e e e e 41
3.3.3 Mutual Independence Among Tangent and Acceleration Vec-
tors .. ... L, e e e e e e e e e e e 43
3.4 Relative Curvatures: Some Examples . . . . ... ... ... .. .. 44
IV Introduction to Cross-Validation . .. ................... 50
4.1 Some Cross-Validation Techniques . .. ... ... ... ...... 50
4.1.1 Leave-out Groups . . .. .. .. . vt vi it 51
4.1.2 Leave-out One Observation . .. ... ... ......... 51
4.2 Cross-Validation Methods in Multilinear Settings . . . . ... ... 52
4.3 Case Deletion in Cross-Validation of Multilinear Models . . . . . . 56
V  Jackknifing in Nonlinear Models: A Review of Literature . . . . . .. .. 58
5.1 Introduction ... ... .. ... .. ... .. 58
5.2 The Linear Jackknife (LP) . . . . . . ... .. ... . ... ..., 59
5.3 The Weighted Linear Jackknife (LQ) . . . . ... ... ... .. .. 60
5.4 The Modified Linear Jackknife (MLP) . ... ... ... ...... 61
5.5 The Reweighted Linear Jackknife (RLQ) . . . . ... ... ... .. 62
5.6 The Weighted Modified Linear Jackknife (MLQ) .. ... ... .. 63
5.7 Comparison of the Estimators . . . . . ... ... .. ... ..... 63
VI Leave-Out-One Approach . . . .. ... ... .. ............. 65
6.1 Case Deletion in Nonlinear Regression . . . .. ... ........ 66
6.1.1 Linear Approximation . . ... ... ... .......... 68
6.1.2 Quadratic Approximation . . ... .. ... ... ...... 68
6.2 Case Deletion for Multilinear Models . . . . . .. .. ........ 69
6.2.1 A NumericalExample . . . ... ... ............ 70
VII Conclusion. . . . . . . . . . . 0 i i it e e e e e e e e e e e e 86
7.1 SummaryofResults .. ... .. ................... 86
72 HowResultsCanbeUsed .. ... ... ............... 87
7.3 Areasfor FurtherStudy ... .. ... .. ... ... .. ...... 88
APPENDICES

vi



S Notation . . . . . . v i i v i it e e e e e e e e e e e e e 90

A.l SMatrix Notation . . . ... .. .. i i i v it v ittt ien 90
A2 SArrayNotation . . . . ... .. .. ... ... 91
Matrix Notation . . . v v v v v it e e i e e e et e et e et et e e e e 92
B.1 Kronecker Product . . . . . . .« i v i v v v i it et e e e 92
B.2 Khatri-Rao Circle Produet . . . . .. .. ... ... ... ...... 92
B.3 Vectorization .......... e e e e e e e e e e e e e 93
B.4 Matrix-Array Multiplication . . . . . .. ... .. .......... 94
Proofs of Lemmas . . . . v v v v v v it e et et e e e e e e e 96
Cl Proofof Lemmalll.l. . ... .. .. .. i nen.. 97
C.2 Proof of Lemmalll.2. ... ... .. e e e e e e e e e 99
C3 Proofof Lemmalll.d. . . . . . . . v i i i it it i e i s e 104
SCode. .. ... i i i i i ittt e e e e e e e e e 110
Dl General Steps . . . . . v v v v v v i e e e e e e e e e e 110
D2 SFunctions . . . . . . v i v i i i it i e e e e e e e e e e 111
vii



LisT OF TABLES

TABLE PAGE
1 Relative Curvatures for Plastocyanin Data . . . ... ... ...... 47
2 Relative Curvatures for NFAK1AData . . ............... 48
3 True, Least-Squares, and Actual Case Deletion Estimates . . . . . . . 75
4  True, Least-Squares, and Linear Case Deletion Estimates . . . . . . . 78

5  Absolute Difference of Actual and Linear Approximation Estimates . 80
6  Comparison of True, Least Squares, and Jackknife Estimates . . . . . 82

7 Standard Errors of Jackknife Estimates . . . . ... .. ... ..... 84

viii



Li1SsT OF FIGURES

FIGURE PAGE
1  Full Least Squares Estimates vs. True Parameter Values . ... ... 76
2 Actual Deletion Estimates vs. True Parameter Values . . . . . .. .. (i

3  Linear Approximation Deletion Estimates vs. True Parameter Values 79
4  Linear Approximation vs. Actual Deletion Estimates . . . ... ... 81

5 Various Jackknife Fstimates vs. True Parameter Values . . . . . . .. 83

1x



CHAPTER 1

Introduction

1.1 Why Case Deletion?

Parameters are usually estimated based on a full or complete data set. Case deletion
refers to leaving out one “case” or observation at a time and re-computing the
parameter estimates. Why would one want to do that?

This idea of leaving out cases or observations has been used in several contexts.
In data sets where there are some outlying observations, it is often desired to de-
termine the effect that leaving out this observation will have on the results of the
analysis. Or, one may wish to see how a particular estimator is affected by extreme
values. Various measures which assess the influence of an observation have been
constructed; such measures, quite naturally, involve case deletion.

Another area where the concept of leaving out observations appears is cross-
validation. When a model is fit to a set of observations, the investigator would want
some indication of how well the model fits. Or, the investigator’s task may be to
choose one of several models that will fit the data best. A reasonable way to do this
is to test a candidate model on a set of observations different from the one on which

estimates of the model parameters were obtained. Since the investigator usually has



only one data set at hand, the available observations can be divided such that only
some are used in obtaining the model estimates, while the rest are set aside to be
used later as a test set. Then the roles can be switched so that each set contributes
to both the estimation and the testing of the model. The “limit” of such a procedure
is setting aside one observation at a time, instead of a group of observations.

Case deletion is also used to obtain jackknife estimates. Like cross-validation,
jackknifing involves leaving out one data point at a time, then re-computing esti-
mates based on the rest. The goal, however, is to arrive at estimates which possess
some desirable property to a larger degree (or an undesirable property to a lesser de-
gree) than the original estimates calculated from the complete data set. Originally
proposed to reduce bias, jackknife estimates have also become useful in estimat-
ing the variances of estimators when there are no cut-and-dried formulas for them.
Various jackknife estimators are presented in

Now that we have seen some purpose in case deletion, we turn to the question of
its implementation. When the number of observations is large, deleting one case at a
time can become a tedious and computationally intensive task. In linear regression,
closed-form expressions exist for the parameter estimates when the r** observation is
deleted; these do not require re-computing the estimates every time a case is deleted.
In nonlinear regression, however, parameters are usually estimated using iterative
procedures, and to get case deletion estimates, it is necessary to actually remove
one observation at a time and go through the entire calculation every time. In order

to avoid such difficulty, some approximations have been suggested in the literature.



How well these approximations perform, compared to the estimates obtained when

the observations are actually left out one at a time is a major point of interest here.

1.2 Linear, Nonlinear, and Multilinear

Multilinear models are a class of nonlinear models which are conditionally linear in
the parameters. They are defined and described in Section 2.1. These models have
been found to be especially useful in spectroscopy (see Leurgans and Ross, 1991a),
among other areas. A discussion of some applications is given in Section 2.2.

The quantity of results that are available for nonlinear models pales in com-
parison with the volumes that have been written on the linear model. But what is
known about nonlinear models can already be considered extensive, relative to what
has been done for multilinear models. If results for linear models can be extended
to nonlinear models, all the more can we apply methods used for nonlinear models
to the special case of multilinear models. In particular, measures of curvature and
approximations to the actual case deletion estimates used in nonlinear regression
can and will be applied in the multilinear setting.

The extension of concepts from linear to nonlinear models usually involves linear
approximation. For instance, the curved expectation surface of a nonlinear model is
approximated by a tangent plane at a point in order to obtain parameter estimates.
The approximation is given by a first-order Taylor series expansion of the expectation
function about that point. Taking this first-order expansion is the same idea behind
the linear approximation estimates presented here.

“Models with conditionally linear parameters enjoy some advantageous proper-



ties, which can be exploited in nonlinear regression.”(Bates and Watts, 1988) The
special structure of multilinear models that arises from their conditional linearity
and from the way they are defined is evident in the form of their derivative ma-
trices and second-derivative arrays. Unlike other nonlinear models, the multilinear
model derivatives have been found to have closed-form expressions and well-defined

relationships. This nice structure is used to advantage in many of the calculations.
1.3 Roadmap

The main purpose of this dissertation is to explore case deletion for multilinear
models. In particular, how viable some of the case deletion approximations are,
when applied to multilinear models, is of interest.

A general introduction to multilinear models is given in Chapter II. The termi-
nology and notation for multilinear models is given in Section 2.1, those for nonlinear
models are given in Section 2.3.1, and two are connected in Section 2.3.2. Transla-
tion of multilinear into nonlinear language makes it easy, later on, to apply nonlinear
methods to multlinear models. An example using a small number of observations
is introduced in Section 2.4; it serves to illustrate the material in this and the next
chapter.

In Chapter III, the structure of a particular type of multilinear model is inves-
tigated. The velocities or first derivatives, and accelerations or second derivatives
of a trilinear PARAFAC model are studied in detail. Closed-form expressions for
them are derived. The formulas for the various estimates in Chapters V and VI use

the velocities and accelerations heavily, so the results of Secitons 3.1.1 and 3.1.2 will



prove invaluable.

The quadratic approximation to the case deletion estimates given in Chapter 6
assumes that the expectation surface is more or less planar. Thus, a measure of
planarity is necessary to verify that validity of this assumption for the data set
under consideration. Curvature measures, which measure planarity and uniformity
of parameter lines for a nonlinear model, are discussed in Section 3.2. A couple of
examples to illustrate their application to PARAFAC models, as well as to pave the
way for the quadratic approximation of Section 6.1.2 are given in Section 3.4.

Calculation of the curvature measures require that the combined dimension of
the tangent and acceleration spaces be known. Although this can be determined
numerically given a data set, the structure of the PARAFAC models again makes it
plausible that it can be found analytically. Investigating linear dependencies among
the velocities and accelerations indeed yields a formula for this quantity, at least
for the one-factor model. The linear dependencies derived in Section 3.3 are also of
interest in themselves since they help to further define the structure of these models.

Chapter 1V gives a more detailed background of cross-validation. It discusses the
relevance of case deletion in the cross-validation of multilinear models and points
out that this is a major area of possible applications.

Chapter V presents some alternatives to the ordinary jackknife estimates. By
relying on a linear approximation, these estimators avoid having to do the actual
deletions. Some of the estimators presented here are evaluated for the numerical

example of the next chapter.



The roads paved by the previous chapters all lead to Chapter 6. Here, linear and
quadratic approximations to case deletion estimates are presented and applied to a
simulated data set. The actual and approximate estimates are compared in order
to see whether the approximations are viable.

Chapter 7 summarizes the results and suggests areas of application and further

study.



CHAPTER 11

Introduction to Multilinear Analysis

This chapter introduces the reader to multilinear models. Section 2.1 defines a
multilinear model and sets down the notation and terminology peculiar to this class
of nonlinear models. Some of its applications are given in Section 2.2. In Section 2.3,
nonlinear models are discussed, with emphasis on the aspects that are relevant to
multilinear analysis. The terminology and notation presented in Sections 2.1 and 2.3
will be used throughout the succeeding chapters. A small example using real data
is given in Section 2.4 to illustrate the material in the preceding sections. This

example will also be used repeatedly in the next chapter.

2.1 Terminology and Notation

A multilinear model represents an M-way array of observed values of a response
variable Y as the sum of F simpler arrays, each the outer product of M vectors, plus
arandom term. The dimension of the m** vector in each outer product (m = 1, .., M)
is the same as the number of levels in the m'* way of the array. The number of
outer products, F), is called the number of components or factors of the model. The
random term has mean zero and unknown variance. The array of expected values

of Y is denoted by u.



The simplest multilinear model is a one-component bilinear model:

Yii,jl = afilBl] + eli,J]

E(Y[s,j]) = wli,jl=aliBl], i=1,..5j=1,..,J (2.1)

where
a is an I-dimensional vector corresponding to the first way,
B is a J-dimensional vector corresponding to the second way.
Equation (2.1) is written using the S notation for matrices described in Appendix

A. In matrix form, the equation is

(441
W=apT=| : |14...0.

ay

IxJ Ix1 _ Jx1
In outer product form, g =& x B . Note that for fixed a, the elements of u are

linear in B. Similarly, g is a conditionally linear function of a. Thus p is a bilinear
function of & and 8.

A one-factor trilinear model is of the form
E(Y[+,5,k]) = a[i]Blj]v(k), ¢ =1,....,I;j=1,...,J; k=1,...,K. (2.2)

where o and 3 are as before, and 4 is a K —dimensional vector corresponding to the
third way. The S notation for arrays (see Appendix A) is used in Equation (2.2).

Jx1
IX'E‘K=1&1 x B x K’}d. For fixed o and 3, p

The array g can also be written as:
is linear in «; for fixed & and «, p is linear in @; and for fixed @ and -, g is linear

in . Thus g is a trilinear function of ¢, 3, and «.



An F-factor bilinear model has the representation

F
mlt, 5] =_§1af[t]ﬁ![]]’ i=1..,;j=1...,J (2.3)

where the F vectors as’s are each I-dimensional and correspond to the first way,
and the F' vectors B,’s are each J-dimensional and correspond to the second way.

In matrix form,

[ 1xJ
ﬂT
1 lJ
x
FxJ
IxJg IxF Ix1Ix1 Ix1 T
fi=ABT= alag...aF] B
1xJ
ﬂT
L MF ]
Ix1 Jx1

In outer product form, n »F f=1 &5 X By,

An F-component trilinear model is of the form

F
uli i k= Y a8, k], i=1,...,Li=1,....,J; k=1,...,K. (24)
J=1

where the as’s and 3,'s are as before, and the F' vectors «,’s are K-dimensional and

correspond to the third way of the array of expected values. This may be expressed

IxeK Ix Jx1

in outer product form as =yF f=1 & f X By x 7, For a fixed k, the model

can be expressed as

ler'l-

™ 0 ... 0 glJ

IxFFxF FxJ 0 2 ... O T
W=aD.B=@e. & T || P
0 0 ... wmr 1x1.!
| BF |

Models (2.1) through (2.4) are called PARAFAC (Parallel Factors) models, and

may be extended to higher-way models. (See Carroll and Chang, 1970.)
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Note that in (2.4), if oy, @; and -, are each multiplied by constants whose

product is one, the array g of expected values does not change; that is,

F
uli, i, k) = ;_1 ayos[ilbsB [ilesv (K],

for any constants ay, by, and ¢y such that asbscy = 1. There are several ways to
remove this nonidentifiability. One is to require ay and 3, to be unit vectors with
nonnegative first elements, that is, || ay |[= 1 and || B4 ||= 1 Vf. (See Leurgans, Ross
and Abel, 1990.) An alternative way is to set ay[I] = 1 and B,[J] = 1 V{. Finding
the derivative matrix is much simpler when using this latter convention. Thus, the
following normalization shall be used in the subsequent discussion: In Model (2.4),
divide the vectors oy and B, by the constants ay[I] and B,[J], respectively, Vf;
then multiply the vector v, by o[I]8/[J] Vf, thereby making o[I] and 3,[J]
equal to 1 but leaving g unchanged. Similarly, the parameters in Model (2.2) are
normalized by setting a[I] = 1 and B[J] = 1. For the bilinear models (2.1) and (2.3),

the corresponding identifiability conditions are a[I] = 1 and a4[I] V f, respectively.

2.2 Applications

One of the earliest published applications of PARAFAC models is the study made
by Harshman, Ladefoged, and Goldstein (1977) on the position of the tongue while
a speaker pronounces vowels. X-ray movies were taken while a speaker was talking.
During the central portion of a vowel, one frame of the movie was chosen, and
lines were drawn on the X-ray photograph at selected positions. The height of

the upper surface of the tongue was then measured with respect to those lines.
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Observations were taken for 10 American-English vowels, measured at 13 positions
or lines along the tongue, spoken by 5 speakers. PARAFAC models (with varying
number of factors) were fit to the 10x13x5 array of tongue heights. A two-factor
model was selected, yielding three matrices of parameter estimates: a 10x2 matrix
[aif] corresponding to the 10 vowels, a 13x2 matrix ;] corresponding to the 13
positions along the tongue, and a 5x2 matrix [yxs] corresponding to the 5 speakers.
The first two matrices were of most interest: The first was displayed with each row
as a point in F-dimensional space; i.e., the vowels were represented by 10 points in 2-
dimensional space. The resulting configuration was strikingly similar to two classical
representations of American-English vowels. The second matrix was displayed with
each column as a curve made of 13 points (7, 8;¢), because the 13 positions along
the tongue form a natural sequence.

A major area of application of multilinear models is spectroscopy. “Spectroscopy
is the measurement of the absorption of particles by a specimen, or the emission of
particles from a specimen, as a function of the energy of the particles... Common
spectroscopy uses electromagnetic radiation, such as visible light. The particles are
photons. The wavelength of the radiation is inversely proportional to photon en-
ergy, and wavelength is often used instead of energy as the independent variable.”
(Leurgans and Ross, 1991b) Additional independent variables, such as concentra-
tion, time, or other environmental conditions affecting absorplt.ion or emission of
light may also be included.

In fluorescence spectroscopy, the response variable is the amount of light emit-



12

ted by a specimen composed of one or more components. The light emission of a

specimen containing only one component can be modeled as

u[i,j) = ali]8[j]
where
p[i, 7] is the amount of light emitted,
«(t] is the number of photons absorbed when the specimen is illuminated with
light of wavelength ); (also called excitation wavelength),
B[7] is the fraction of absorbed photons which lead to emission of light at wave-
length 7; (also called emission wavelength).

For a specimen containing more than one chromophore or component, we have

uli 1= 32 ol
where

ay[i] is the absorbance of component f at wavelength J;,

B;[7] is the relative emission of chromophore f at detection wavelength 7;,

#[t, 7] is the amount of light emission measured,

and F is the number of chromophores.

The absorbance and emission of light by chromophore f are considered indepen-
dent events, so the amount of light emitted by chromophore f at wavelenth 7; when
illuminated with light at wavelength A; is ats[#]3,[s]. It is assumed that there is no
transfer of energy among the F' chromophores, so that the amount of light emitted
by the specimen is just the sum of the amounts of light emitted by its individual

components.
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Appelloff and Davidson (1981) provided the first application of multilinear anal-
ysis to three-way arrays of fluorescence data. The fluorescence intensity of a solution
containing F' chromophores were observed at 30 excitation wavelengths, 30 emission
wavelengths, and 10 different times (or concentrations, since the concentration of a
chromophore varies with time). The model is

F
pli, g, k] = fz_laf[i]ﬁfU]‘rf[k]
where

ay[i], B;[j], and F are defined as before,

v 4[k] is the relative concentration of chromophore f at time t,

#li, j, k] is the fluorescence intensity at excitation wavelength J);, emission wave-
length 7;, and time t;.

PARAFAC models were fit to real data with two and three chromophores, and
to simulated data with two, three, and four chromophores. For the two- and three-
factor models, the estimated spectra were very close to the true spectra, both for
the real and the simulated data. The four-factor estimates were not as close.

Many more applications of PARAFAC models can be found in Kroonenberg(1983).

2.3 Multilinear Models as a Special Case of Nonlinear
Models

The literature on nonlinear models is very much more extensive than that on mul-
tilinear models. A number of books and articles have been written on nonlinear

regression, covering broad areas such as parameter estimation, or specialized topics
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such as curvature measures and case deletion. In order to avail of this “common
knowledge” and apply it to the uncommon area of multilinear analysis, it would
be useful to cast multilinear models in a nonlinear regression framework. After all,
multilinear models are, strictly speaking, nonlinear in nature,

Section 2.3.1 presents some notation and geometry for the nonlinear regression
model. The same notation and geometrical concepts will be used in Chapters III,
V and VI. Section 2.3.2 connects the multilinear notation in Section 2.1 and the

nonlinear notation in Section 2.3.1 through some examples.
2.3.1 Nonlinear Models: Notation and Geometry

A nonlinear regression model can be written as
Y, =n(z,,0)+ ¢, r=1,...,N (2.5)

where 7 is a nonlinear function of the unknown parameter vector @, ¢; are indepen-
dent with zero expectation and unknown variance. Considering the x;’s as fixed, we

may rewrite the model as

Y=n(0)+¢ (2.6)

where Y is an /V x 1 vector of responses, 5 is an N x 1 vector whose elements are
functions of the P x 1 vector of parameters 8. Note that Y is nonlinear in the
parameters.

Let:

Q be the subset of R consisting of all possible values of 8;

M={n0):0c}e RN be called the expectation surface; .
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€(8) =y —n(8);

5(8) = eTe = |ly — n(0)]|%

8 be the least squares estimate of @, i.e., the value of @ that minimizes S(8);

#) = (@) be the point on M closest to y;

e = y — 1} be the residual vector;

S(8) = eTe;

V,=1,= gfg-, 1 < p < P, the partial derivative of 79 with respect to the pt
component of 8, also called tangent vector or velocity vector ;

Npg = %:—;%, 1 < p,q £ P, called an acceleration vector ;

V be the N x P matrix whose columns are V, called the derivative matriz;

i) be the N x P x P array whose n** face is (i},,);

G=VTV = (9pq)-

The problem of finding the least squares estimates can be stated geometrically
(Bates and Watts, 1988) as: (1) finding the point %) on the expectation surface which

a

is closest to ¢, then (2) determining the parameter vector @ which corresponds to

A

.

For a linear model, an explicit expression for 7 exists. Also, the parameter plane
maps linearly to the expectaion plane, so if we know where we are on one plane,
the corresponding point on the other plane can be found. For a nonlinear model, it
is not easy to find 7}, and even if 7) were known, it would be difficult to find the 6
corresponding to it. To overcome these difficulties, iterative methods are used.

One such method, the Gauss-Newton method, consists of expanding the expec-
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tation function in a first-order Taylor series about an initial guess for 8, 8°. This
initial guess is iteratively improved until the estimates stabilize. The approxima-
tion of 1(@) by a Taylor series expansion at 5° = 7(8°) involves the two distinct
approximations:

(1) approximating the expectation surface by its tangent plane at n(8°) (called
the planar assumption), and

(2) approximating the true parameter coordinate system by a uniform coordinate
system, i.e., imposing a linear coordinate system on the approximating tangent plane
(called the uniform coordinate assumption).

The second-order partial derivatives 17, can be decomposed into their tangential
and normal components, denoted by i}g; and ;’:{p respectively (Bates and Watts,
1980). The space spanned by the vectors 1")2; (1 € p,q £ P) is called the accelera-
tion space. Let 81,...,8, (m < p(p +1)/2) be an orthonormal basis for the accel-
eration space. Then each 1, can be written as a linear combination of the vectors

M,(s=1,...,P)and 6, (a=1,...,m):
'”’Pq = P;qﬁa + b:qaai 1 S »mq S P (27)

The above equation uses the Einstein summation convention, where a repeated
index, once as a superscript and once as a subscript, means summation over the
range of that index, i.e.,

P
L, = Zr;q'.’n (2.8)

s=1

e = Db
a=1
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The coefficients I';, are called connection coefficients by Ross (1987), and correspond
to the elements of the parameter-effects curvature array of Bates and Watts (1980)
in a standardized parameterization. The coefficients b5, correspond to the elements
of their intrinsic curvature array, and are referred to as coefficients of the second
Jundamental form by Ross. The connection coeflicients reflect the degree of param-
eter nonuniformity, while the coeflicients of the second fundamental form indicate
the degree of nonplanarity of the model. The faces of the intrinsic curvature array
are given by the P x P matrices B, = (b3,). Section 3.2 discusses how the curvature

arrays are obtained.
2.3.2 Some Multilinear Models in Nonlinear Notation

The class of nonlinear regression models contains the class of multilinear models,

and in particular the PARAFAC models. The following examples illustrate this:

1. Consider a one-component bilinear model (2.1) with 7 = 2 and J = 2. Here,

N=4=71-J,P=3=I-1+4J,and

afl)
6=1|p801]].

Bl2]
In the form of (2.6), we can write the model as
Y a(1]8(1]
Yo | _ | eflold |, ,
Ya 1-B[1]
Y 1-B[2)
or

n0) = vectax Y =awp= [ %] [ o1 ],
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where the operator ® represents a Kronecker product and vec denotes the

vectorization of a matrix or array. Kronecker products and vectorization are

defined in Appendix B.

2. In a one-factor trilinear model (2.2) with I = 2, J = 3, K = 2 there are
N=12=171.J: K observations and P=5=I1-1+4+J — 1+ K elements in

the parameter vector
all]
Al
=1 82 | . (2.9)
¥
(2]

This model can be written in the form of (2.6) as

Yin a(1]8(1]¥(1]
Yiz a(1]8(1]y[2]
Yin a(1}8[2] (1]
Y1z a(1}8{2]v(2]
Yiat afl]-1-4(1]
Yigg | _ | @ll)-1-902] | |
You | 7| 1-801)~(1] * (2:10)
Yo1a 1-B[1]¥[2]
Yau 1-B[2]~[1]
Yoz 1-B(2]v[2]
Yon 1-1-9[1]
| Y2 | [ 1-1-9[2)

or

6[2]
q(O):vec(axﬁx‘y)T:a@ﬁ@‘!':[051] ] ®[0£3]]®[g{§} .

3. An F-component trilinear model ( 2.4) with I =2, J =3, K =2, F =2 has

N =2-3-2 =12 observations and

P=(-1+J-1+K)F=(1+2+22=10



19

elements in the parameter vector

a[1] ]

ay(1)

B (1)

A

0= 8, | - (2.11)

“h1 [1]

T [2]

72(1]

| 72(2] |
In the form of (2.6), the model can be written as
Yin o118, 1], [1] + ex2[1]B2[1),[1]
Yo o (1]8,[1]7:{2] + o2[1]B8,[1),(2]
Yia1 a1 (1]8,[2]7: 1] + e2(1]B82[2])v,[1]
Yiz a1 (1]8,[2]71(2] + 2[1]82[2])7,[2]
|| S
132 | _ | oallf-1-7i2j+ag]l]-1-7,
Your | T 1-B1[1]7[1) + 1 - B2[1]7,(1] te (2.12)
Ya12 1- B1(1]7,[2] + 1 - B,[1]72[2]
Yoo 1-842]v,(1] + 1 - B;[2]7,[1])
Y322 1- 8,[2]m[2] + 1 - B,[2]7,(2]
Yaa1 1-1-79,{1]4+1-1-9,1]
| Y337 | | 112l 411 7,[2]

or

2 2
7(0) =vec(D oy x By xv) = a; @8, ®7;.
f;l =1

2.4 A Small Example: Plastocyanin Absorption

We now consider an illustration based on real data. This will serve as a running

example to help clarify the material in the preceding as well as the forthcoming

sections. The data is taken from Durell, Draheim and Gross (1988). To keep the
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illustration simple and tractable, we shall look only at a subset of the original data
set.

Plastocyanin is a protein, found in plant chloroplasts, which participates in elec-
tron transport. The data consists of amounts of light absorbed by this substance
measured at different wavelengths, species of plastocyanin, oxidation states and en-
vironmental pH. Absorption measurements were made at 30 different wavelengths,
for 4 biological sources or species (spinach, poplar, lettuce, parsley), and 4 chemical
treatments (combinations of oxidation state and pH variables). The original data
can thus be arranged in a 30 by 4 by 4 array of observations, from which we take
a 2 by 3 by 2 subset. The selected observations correspond to wavelengths of 250
nm and 262 nm, the first 3 species, and the first two treatment levels. Below is the
2 x 3 x 2 data array Y[i,j,k] in S array notation:

Y[,,1]:
Y[,1,] Y[,2,] Y[3,]

Y{l,,] 42 44 43
Y[2,,] 43 41 42

Y[,,2]:

Y[’l’] Y[’2’] Y[13’]
Y[,] 34 37 39
Y[2,, 39 34 38
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In vectorized form,

Yin 4.2
Yii2 3.4
Yia 4.4
Yizz 3.7
Yia 4.3
vee(Yi, j, K])T = 1‘;;?‘:‘ =3 (2.13)
Y12 3.9
Yon 4.1
Yoz 3.4
Yoa 4.2
| Yoso ] | 3.8

where vec(Y[i, j, k])T denotes the modified vectorization of an array defined in Ap-
pendix A.

Previous analysis of the original 30 by 4 by 4 data set indicated that at least 2
factors were present. (See Leurgans and Ross, 1991a.) To keep the example simple,
however, we shall use only a one-fa;:tor model. The multilinear model for the 2 by

3 by 2 data set is therefore

E(Y[i,5,k]) = pli,j, k] = oli]Bli]v[k], (2.14)

i=1,2 =123 k=1,2. (2.15)

A 2-factor trilinear PARAFAC model was fit to the 12 observations using R.T. Ross’
FORTRAN program (see Leurgans, Ross and Abel, 1990) and the least squares esti-
mates for the second of the factors was chosen to represent the estimated parameter
values of the one-factor model. These, rounded to 4 decimal places, are:

0.5710
. 0.7231 ] R . 10.3918
a= , =1 05716 |, and 7=[ ]
[ 0.6907 [ 0.5893 ] 8.9853



22

Using the normalization convention described in Section 2.1, we divide & by

0.6907, we divide @ by 0.5893, and we multiply ¥ by both these constants to obtain

the following normalized least squares estimates:

Parameter Original LSE Normalized LSE
0.7231
0.6907
0.5710
0.5716
0.5893

afl]
a[2]
B(1]
B(2]
B[3)]
(1]
v[2]

10.3918

8.9853

1.0469
1.0000
0.9689
0.9700
1.0000
4.2299
3.6574

Note that in this example, I = 2, J =3, K = 2, and F = 1, just as in the

second example of Section 2.3.2. So the 5 x 1 vector @ is given by Equation 2.9 and

its least squares estimate is

is

D>
il

1.0469
0.9689
0.9700
4.2299
3.6574

Equation 2.10 gives the nonlinear regression form of 2.15. So the estimate of 0(8)

[ 4.2906
3.7099
4.2953
3.7140
4.4284
3.8290
4.0983
3.5436
4.1028
3.5475
4.1028
3.5475
4.2299

| 3.6574 |



CHAPTER III

Curvature Measures of Nonlinearity for Trilinear
PARAFAC Models

For linear models, the first derivatives of the expectation function with respect to the
parameters are constants, and the second derivatives are identically zero. This is not
the case for nonlinear models, in general, and for multilinear models, in particular.
Thus, the acceleration vectors 4),, have been used to measure nonlinearity of a
model (Bates and Watts, 1980). Measures of intrinsic curvature (how planar the
expectation surface M is, or how well M can be approximated by its tangent plane),
and of parameter effects curvature (how uniform the parameter lines are on the
tangent plane) have been derived using the 1,,’s.

In Section 6.1.2, the quadratic approximation to case deletion estimates of the
parameters is a simple expression that has been derived assuming that the expec-
tation surface is more or less planar. Bates and Watts (1988) studied real data sets
using different nonlinear models (67 data set-model combinations in all) and found
that in most of them, the expectation surface could be well-approximated by a tan-
gent plane. Their results strongly support the assumption of planarity. It would be

of great interest to us to see whether the planarity assumption also seems to hold

for PARAFAC models.

23
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Measures of nonplanarity and parameter nonuniformity for nonlinear models are
discussed in Section 3.2. In Section 3.4, these measures are applied to a trilinear
PARAFAC model. In Section 3.1 expressions for the derivative matrix V, its sub-
matrices, the velocity vectors V,, and the acceleration vectors #,, are derived.
Besides being of interest in themselves, V' and %) are necessary ingredients in the
curvature measures of Section 3.2, in the jackknife estimators of Chapter V, and
in the approximate case deletion estimators of Chapter VI. Because they have a
number of uses, the velocities and accelerations are represented in various forms,
some more convenient for certain purposes than others. Linear relationships among
the velocities and accelerations are investigated in Section 3.3. The results of that
section, which are interesting in themselves, are also used in the calculation of

curvature measures.

3.1 Velocity and Acceleration
3.1.1 Velocity

The special str:cture of PARAFAC models yields “nice” forms for the matrix of
partial derivatives V. For instance, for the one-factor bilinear model, V has the

form

1Ix[-14d I, ®8 a®l; In.,.®8 a*®1,
\ 4 Jx(I)—l = IxI-1 I
J

where a* = a[1] is & with the last row deleted.

For the one-factor trilinear model, V' is given by

[ IJ-1®‘Y]
= a® Kx(.)!—l

IJKxI+J+K-2 I 1@8Qy
Vv JK)(()I-I

a®ﬂ®IK] (3.1)
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The first 7 — 1 columns of V' contain the derivative of ¢ with respect to a; the

next J — 1 columns, the derivative with respect to 3; and the last K columns, the

derivative with respect to .

For Example 2 in Section 2.3.2 and the plastocyanin example of Section 2.4, V

is the 12 x 5 matrix,

Al efi]vl]] 0 of1]8)] 0
B2 afl]y[2] 0 0 1801
BRI 0 aflly[l] «f1)B2] 0
BRIv2l 0 afll¥2] 0 «o1]8[2)
~(1] 0 0 afl] 0
| om0 0 0 ol
Y= o a0 sm 0 32
0 ¥[2] 0 0 Bl1)
0 0 (1] B(2] 0
0 0 v(2] 0 B(2]
0 0 0 1 0
|0 0 0 0 1
Observe that (3.2) can be written as
V= [ ﬂe?f’ a® [ 122?7 ] a®B® Iz] ) (3.3)

which is just (3.1) with I = 2, J = 3, and K = 2. For the plastocyanin data, the

derivative matrix evaluated at @ is

[ 4.0983
3.5436
4.1028
3.5475
4.2299
. 3.6574

4.4284
3.8290
0
0
0
0
4.2299
3.6574
0

0
0
0

0

0
4.4284
3.3290

0

0

0

0
4.2299
3.6574

0

0

1.0144
0
1.0155
0
1.0469
0
0.9689
0
0.9700
0
1.0000
0

1.0144

1.0155

1.0469

0.9689

0.9700

1.0000

(3.4)
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For an F-factor trilinear model, V is an IJK by (I — 1+ J — 1 + K)F matrix

which may be partitioned into submatrices, each of which corresponds to the partial

derivatives of i with respect to &}, %, and «,. The vectors a} and B} are a and

B with the I and J*» rows deleted, respectively. We have

V=[VA Vs Vc]

where, for f =1,2,...,F,

LIK x(I-1)F
Va
LIK x(J-1)F
Vo
LIKXKF

c

TIKxI-1
VAf

IJKxJ-1
Bf

IJKxK
ch

(Vas)
(V)

(Ves)

an .
(5;:_'}'),!'—1,...,1—1,

c‘)n) .
Jg=1...,J-1,
(335;' !

on

— |, k=1,...,K, 3.5
(a’fk_f) (3:5)

so that V 44, V gy, and V ¢y are the matrices of partial derivatives of n with respect

to aj, B}, and -/, respectively. The expression for V is essentially (3.1) with oy,

B, and v, in place of @, 3, and 4. Thus for f =1,..., F,

VAf

Vs

Vc;

The i** column of V 4y, the jt*

I..®8,8~
0
a;® [ IJ—10®‘YJ ]
o;®8,®Ik.

column of V gy, and the k** column of V¢ can
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be written, respectively, as

(t'—l)(.)J'le
VAf[’i] = ﬁj®7j $i=1’---s1_’1 (36)
(I-¢)JKx1
0
(j—1)Kx1
» 0
Viesl,jl = a4® 27, yi=1,...,J-1 (3.7)
(J-7)Kx1
0
(k=-1)x1
0
Vesl, k) = a!®ﬁ!® 1 =a;®ﬁf®ek,k=1,...,K, (3.8)
(K—(;c)xl

where e is the vector of length K with 1 in the k** position, 0 elsewhere.

For Example 2 in Section 2.3.2 and the plastocyanin example, since there is only
one factor, V can be partitioned into the 12 x 1 matrix V4, = V4, the 12 x 2
matrix Vg, = Vg = (V[,1], V5[,2]), and the 12 x 2 matrix V¢, = V¢ =
(Vel, 1], Vel,2]). Equations (3.6), (3.7), and (3.8) yield

VA[! 1] =08Q®~;
2x1
~ 0
VB[,I]:Q'@ 4x1 N VB[)2]=C!® 7 ;
0 261

Vc[,1]=a®ﬁ®“] , Vc[,2]=a®ﬁ®[(1'] :

It is easily verified that the vectors above are indeed the columns of the derivative
matrix (3.2).

An alternative expression for V can be obtained as follows: Let

A=[a1 Qz ... QF}
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B=[p, B, ... Br]

C"—'[‘h Y2 .- ‘TF]

FIxF
AB = AGB
JKxF
BC = BoC
IKxF

where @ is the circle product of Khatri and Rao (1968), defined in Appendix B. For
f=1,...,F, define ABf to be the f** block of length IJ of the vectorized matrix
AB; BCf to be the f* block of length JK of vec(BC), and ACf to be the f*

block of length I K of vec(AC'). Using the S notation for matrices, we have

ABf = vec(AB)[IJ(f-1)+1:1Jf]
BCf = vec(BC)[JK(f-1)+1:JK{]
ACf = vec(AC)IK(f-1)+1:1IKf]

Then,

Va = I1®BCf

ABf® Ik

<
Q
—

i

Ve = (I; ® ACS))[,-J]

ACY,; ACf[K(t-1)+1:Ki), f=1,...,F;i=1,...,1,
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so that V p; consists essentially of permutations of the AC f’s.
We now set some notation that will especially be useful in Section 3.3 and that
will give more compact expressions for the velocity and acceleration vectors.

Let I; be the vector whose elements pick out the elements in @ corresponding

to a}:
1
Iy=(f-1){I-11+ : (3.9)
I-1

where 1 is a vector of 1's of conformable length. Setting

I,

I= : ¥

Ir

we have
0[1;] = aj,

8(7]

VAI = V[’If]!

vec(A[-1,]),

Va = V[I].

To illustrate the above notation, consider Example 3 of Section 2.3.2, where

I=2J=3,K=2 F=2. Then (3.9) yields

I, = 1-1D)E2-D1+[1]=1,

I, = (2-1)(2-11+[1]=2, and

- 1]

So 0[11] = 9[1] = a; = 01[1] y
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0[Z;] = 0[2) = a3 =a;y[l], and

141
olT] = [22{1} ’

Comparing the above with Equation (2.11) verifies that Z; indeed picks out the

elements of @ corresponding to . In that same example,

o|l] ag|l
A:[ou “‘2]:[011{2% agH '

So vec(A[-1,]) is the vectorization of the first row of A, which is indeed 8[Z].
Observe also that V[,I;] = V|, 1], the first column of V; V[, T;] = V|[,2], the
second column of V; and V[,I] = V|[,1 : 2|, the first two columns of V, which
agree with the definitions given by the set of equations (3.5).

Let Js and Ky be the vectors whose elements give the positions, respectively, of

B} and of 4% in 8:

1
J;r = FU-D+(F-1)J-1))1+ : ) (3.10)
J-1
1
Ky = FI-1D)+FJ-D+(f-1DKN+| : , (3.11)
K
and set
J Ky
J = P |,and X = :
JF KFr
Then
8[7s] = Bj%,

Ve = V[,J4],



Vg = V|[,J],
a[xf] = Yz,
Ver = V[,Ky],

and Vg = V[,X].

To illustrate, consider again Example 3 in Section ??. There,

T

T2

J

So 9[._71]
0]T,]
0[]

Similarly,

K, =

SO G[ICI] =
0[K;] =

olk] =

- (2(2—1)+(1—1)(3-1))1+[;]=[Z],

= (2(2-1)+(2—1)(3—1))1+[;]=[2‘ . and

3
= 6[3:4]= B} =B,[1:2],

= 0[5:6)=p8,=20,01:2], and

[ By(1:2]
B.1:2] |~

(22-1D+2(3-1)+(1-1)2)1+ [

]=
]=

DY = DD e

(22-1)+2(3—-1)+(2-1)2)1 4 [

B

0[7:8]='71s

8[9:10) =+, , and

(2]

31



32

Again, it is easy to see that the above are consistent with Equation (2.11).
Now define £ to be a three-way array whose [z, j, k] entry is the position of

uli, j, k] in g = vec(uT), so that
E.5,k)=GE-1)JK+(j - 1)K + k. (3.12)

The nonzero velocities can be written as

V [vec(éli,, )" I/ = By@vpi=1,...,0~1,  (3.13)
V [vec(®l. )T T4l = ay@v,i=1...,0-1,  (3.14)
and V [vec(€],, k)T, Kslk]] = a;®8,, k=1,...,K. (3.15)

In Model (2.10) and in the plastocyanin example, consider u{2,2,1] = 1 - 8[2][1],
which is the ninth entry in 17(8). The formula (3.12) should therefore yield a value

of 9, which it does:
£12,2,1] = (2 - )(3)(2) + (2- (@) +1 =9.

It can be verified that (3.12) holds for other values of i, j, and k, as well. Since

F =1, Equations (3.9), (3.10), and (3.11) give

I =1,

J = {g],and

< [t]

which correspond to the correct columns of the derivative matrix (3.2). For-



mula (3.13) is worked out as follows:

vee(gl1,, )7 = | &2U | -

[&[LL1) ] T
€[1,1,2]

€[1,1,2]
§[1,3,1)
€[1,3,2] |

r
[~ I LR P

So V [vec(£[1,,]))7,Z01]] = V[1:6,1] = B® 1,
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which is exactly the first column of V in (3.2). Formulas (3.14) and (3.15) are

similarly worked out below.

é[1,1,1]
vec(€[,1,))7) = gg: ::ﬂ
¢(2,1,2]

€[1,1,1] ]
£(1,2,1]

vec(§[,,1))7) = g{;: ?: H

£(2,2,1)

| £[2,3,1] |

We then have

| 4 vec(f[,l,])T,J[l]
V |vec(€[,2,1)T, J(2]
V [vec(€],,1])7,K[1]
V |vec(€],,2])7,K[2]

i

VI(1,2,7,8),1]
V[(3,4,9,10),2]
viQ,3,5,7,9,11),1]
V[(2,4,6,8,10),2]

1
2|, veeteh 2, =
8

.
3
5 r
2|, veclel, 2 =
9

| 11

£[1,2,1]
£[1,2,2]
£2,2,1]
£[2,2,2]

[ €[1,1,2] ]

£€[1,2,2]
§[1,3,2]
§[2,1,2]
€(2,2,2]

| €[2,3,2] |

a®y,
a®,
a®f,

= a®f,

O o W

[am—
=]

1
OOt b
L i

and

where the S notation V[(r1,r3,...,TR), c] denotes the elements in rows ry,73,..., 7R,

and column ¢ of the matrix V. (See Appendix A.) Inspection of V in (3.2) shows

that the above are a correct representation of the columns of V.

We see that, owing to PARAFAC models’ conditional linearity, the partial deriva-

tive matrix V can be “easily” obtained, relatively speaking, from the least squares
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parameter estimates o, 3, and + for bilinear and trilinear models. We expect that

for higher-way models, this will also be the case.
3.1.2 Acceleration Vectors

Again, the special structure of PARAFAC models enables us to find patterns in the
T)pqe 8. Using the notation (3.9), (3.10), and (3.11) of the previous section, % [,Z;, 7]
is the three-way array of order IJK x (I —1)F x (J —1)F whose columns are
mixed partial derivatives of  with respect to o} and 8%. Similarly, the columns of
[, Js,K] are the mixed partial derivatives of 1 with respect to 8} and -, and
the columns of #{,Z;, K], those with respect to a} and .

We now derive expressions for the acceleration vectors:

1. All second derivatives with respect to a single element of & are 0 since p is a

linear function of every individual element of 8.
W LI, Zsld]) = [, T4 15], T U1l = @ [, K g [R), K [R]] = 0.

2. Because g is conditionally linear in A given B and C, in B given A and C,

and in C given A and B,
a,I,I =q,J,J)=9[,K,K] =0.
3. For PARAFAC models the factors do not “cross,” so
1,24, Tl =0, for fi # fo;

'“7[’ It [J]s K.fs[k]] =0, for f; # fa;



ﬁ [!Ih [ZI,K«'{,[’C]] =0, for f 7é fa.
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4. For fixed f, the mixed partial derivatives with respect to parameters for two of

the ways, say a} and 3%, involve only the parameters for the third remaining

way, vs-

[, T s[5], K[l

7 [’If[i]’ J.f[]]]

7 [a If[i]a K:f[k]]

- (i=1)JKx1 1
0
(i-1)Kx1
0
Kx1
b
(J-5)K x1
)

(I-i)JK x1
| 0 4

Ix1
a; ®

L

(§-1)JK x1
0

(k-1)x1
0

1

(K—k)x1
0

(I-i)JK x1
0

(i—-1)Kx1
H

(k-1)x1
0

1

(K-k)x1
0

(J-)K x1
0

g

C!_f@

(3.16)

0
@ (-3 , (317)
0

er (3.18)

For Example 2 of Section 2.3.2 and the plastocyanin example, the nonzero ac-
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0 0
1 0
0 1
0 0
0 0
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(3.22)

The accelerations (3.19), (3.22), and (3.20) were obtained by actually taking partial

derivatives. It can be seen by closer inspection that the same vectors are obtained

if formulas (3.16), (3.18), and (3.17) are applied to the plastocyanin example.

Using the notation of Equation (3.12), the nonzero entries of # can be written

in more compact form as

7(€l2,5,), 21, T0]) = C, i=1,...,I—-1,j=1,...J -1,

7 (&6, kL IELKR)] = B, i=1,...,I—1,k=1,...K,
A IEL 5 kL TULKK] = A, j=1,..., J—=1,k=1,...K.
An illustration for each of the formulas above is given below.
€[1,2,1] =3, €[1,2,2] =4, so, from (3.19),
1€, 20,201,702 = 16,9, 20,712 = | 0] | =

v[2]
¢[1,1,2] =2, €[1,2,2] =4, £[1,3,2] =6, so, from (3.20),

Bl1]
7[&01,,2], I01], K[2]] = #71(2,4,6), I[1], K[2]) = [ ﬁ?] ] =8.

(3.23)
(3.24)

(3.25)
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£[1,2,2) =4, £[2,2,2] =10, so, from (3.19),
alel,2,2], 712), K2]} = 7 [(4, 10), 7 (2], K[2)] = [ otll ] —o.

For a one-factor model, C, B, and A are just v, 8, and &, so that formulas (3.23),
(3.24), and (3.25) hold for these three examples. It is easily verified that they hold

for other values of i, j, and k, too, as well as for the case when F > 1.

3.2 Curvature Measures in Nonlinear Models

We now describe how the curvature measures of Bates and Watts are obtained, with
a view to computing these measures for PARAFAC models.

Recall our notation for velocity and acceleration vectors:

NxP an ]
V = 70T = (m,)=(Vy),p=1,.., P,
. NxPxP 52 .
where the V, are called the tangent or velocity vectors,and 7 = 55_3%" is the
PxP
array whose n'* face is 9, = (flpp,)s P,¢ =1,..., P, where

o, _av,

‘q = =
g6, 06,
are the acceleration vectors.
The dimension of the tangent space is P, and the combined dimension of the

tangent and acceleration spaces is, say, (P + P’). So P’ is the dimension of the

space orthogonal to the tangent space but spanned by the acceleration vectors.

(The maximum possible dimension is P + P(P +1)/2 = P(P + 3)/2.)
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Nxﬁg;ﬂl

Let W  be the matrix of distinct acceleration vectors, and define

N x BE+3) NxP Nxf.{_‘;i!l
D =V, W (3.26)
If we perform a QR decomposition (See Dongarra, 1979) on D:
NxP NxP' Nx(N-P-P') Nx 2EE)
D= [Ql | @ | Q; } R
the acceleration arrayis given by
(P+P')xPxP
A =@y [l (3.27)

where the brackets operator | ][ ] denotes the matrix-array multiplication defined
in Appendix B. The array A has P faces in the tangent space and P’ faces in
the acceleration space: The first P faces of A, Ay, is called the parameter effects
acceleration array, which measures the nonuniformity of parameter lines. The last
P’ faces of A, A,, called the intrinsic acceleration array, measures nonplanarity or
intrinsic nonlinearity.

The accelerations are dependent on scaling of data and of parameters. Thus,
measures of relative curvature are necessary. From the QR decomposition on D, we

get

R, = [()@)"] D] = Iflu ﬁ;:] ’

PxP
where R;; is the R matrix from the Q R decomposition of V.
The relative curvature array is given by

(P+P")xPxP o
B =(RN)TAR;sVP, (3.28)
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Sa PxPxP .
where s = —-(—)-N_ 5. The first P faces of B, By , is the parameter effects relative
' x Px P
curvature array. The last P’ faces of B, B, , is the intrinsic relative curvature

array introduced in Section 2.3.1. To measure nonplanarity and nonuniformity, we

look at how large (i.e. far from 0) terms in By and B, are.

3.3 Linear Dependencies

To find measures of relative curvature for the PARAFAC models, we need to know
(P + P'), the combined dimension of the tangent and acceleration spaces, or simply
P' (since we know what P is). We, therefore, need to determine whether any linear
dependencies exist among the tangent and acceleration vectors, and if so, how many.
Although (P + P') can always be obtained numerically by finding the rank ~f the
matrix of combined tangent and acceleration vectors, it is hoped that this value can
be found in closed form for some, if not all, of the PARAFAC models, owing to their
special structure.

In the sections below, we shall give the structures for a one-factor trilinear model.
Linear dependencies will be investigated (1) within #; (2) pairwise, between columns
of V' and of #; and (3) mutually, among the columns of V' and 7. What is known,

so far, for the general F-factor model will be stated.
3.3.1 Independence Among Acceleration Vectors

For a trilinear model, we wish to determine whether the columns of % have any

linear dependencies, i.e., if there exist nonzero coefficients g¢;;¢, rjxs and sy such
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that
3 asr LT LT+ 3 v T U K]+ 3 sus 2ot Kyl =07
) h (3.29)

Lemma IIL.1 For F = 1, Equation 3.29 implies that g;j5 = rjxy = Sixy = 0. For
F > 1, we have the constraints

F

> _Aguisvslk] + riksag[i') + sukgByls1}

=1

fori=1,...,I-1,5=1,...,.J=-1, k=1,...,K.

Thus, for a one-factor model, the columns of # are linearly independent. The

lemma, of course, implies that linear independence fails when F' > 1. For an F-factor

model, there are
{I-D)J-D)F-1D)+(J-1DK(F-1)+(I-1)K(F-1)

constraints. The proof is given in Appendix C.

For our example of a 2 by 3 by 2 one-factor model, the columns of # are given
by formulas (3.19), (3.20), and (3.22). Observe that they are indeed linearly inde-

pendent.

3.3.2 Pairwise Independence Between Tangent and Accel-
eration Vectors

We wish to know whether any linear dependencies exist between the columns of

V and those of 7} for a trilinear model. For each of the three submatrices of
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V = (V4,V5s,V¢), we determine whether its columns are linearly independent

of # [, Z[s], T[4]], of # [, I[s],K[k]], and of B[, T[5], K[k]].
Lemma II1.2 For F =1,

1. V 4[,d] and 71 [, I[:], T[7]] are linearly independent.
2. V 4|,i] is a linear combination of #[, ZI[i], K[k]].
8. V4,3 and 1 [, T[j], K[k]] are linearly independent.
4. V[, j] and 77[,Z[t], T{j]] are linearly independent.
5. V[, j] and 7|, Z{i), K[k]] are linearly independent.
6. Vg[,J] is a linear combination of 71 {, T[4, K{k]].
7. Ve[, k] and [, Z[¢], J[j]] are linearly independent.
8. Vi, k] and # [, I[i], K{k]] are linearly independent.
9. V|, k] and 7, T[j], K(k]] are linearly independent.
Thus, for a one-factor model, columns of blocks of # are not linearly independent
of columns of blocks of V. See Appendix C for the proof.

To illustrate this lemma, compare the columns of the derivative matrix (3.2) with

those of # given by (3.19), (3.20), and (3.22). Observe the following relationships :
Vb 1] = (1]l Z[1], £1)) + ~ (219, Z[1), K[2]]

Vs, 1] = y[1lal, T[], K[1)] + ¥4, T(1], K[2]]

V[, 2] = y[1}al, 7121, K[1]] + ~[2]9[, 7(2], K[2]]
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The above equations correspond to parts (2) and (6) of Lemma II1.2. Note also that

no other dependencies exist besides these, just as the rest of Lemma II1.2 states.

3.3.3 Mutual Independence Among Tangent and Acceler-
ation Vectors

We wish to determine if there exist nonzero coeflicients a;y, by, cky, giss, Tk and

Sikf such that

IJK %1

0 =Zf:¢ifVAf[,i] + ZfbijBf[,j]
+§CI¢IVCJ'[’"] + Z;qij.fﬁ[’zf[i]»JJU]]
+%rjkfﬁ[stU],K:f[k]] + %Sikjﬁ[,lf[i],xf[k]] (3.30)

Lemma II1.3 For F =1, FEquation 3.30 implies that

1.ck=0fork=1,... K
2. q;=0fore=1,...,I-1,j=1,...,J-1
3. a;7=—2f=13.-kek Jori=1,...,I—1

4. by = _Ef=lrjkek fori=1,...,J—-1

Part (1) of this lemma says that the first derivative with respect to the «[k] is
independent of everything else; so are the second derivatives with respect to a[:] and
B[7], according to part (2). Parts (3) and (4) say that the linear dependencies that
exist are between the first derivative with respect to a[i] and the second derivative
with respect to afi] and ~[k], and between the first derivative with respect to 2|j]

and the second derivative with respect to B[j] and 4[k]. Thus, there exist nontrivial
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solutions to Equation 3.30, given by parts (3) and (4). These define I — 1+ J —1
dependencies among the velocities and accelerations. Note that the above results
agree with those of the previous two sections. The proof is given in Appendix C.

For the 2 by 3 by 2 one-factor example, it was seen in the previous section that
the only linear relationships which exist are those between V 4|, 1] and %, Z[¢], K[k]],
and between Vp|,j] and #[, J[j],K[k]], and that there 3 = 2 — 1+ 3 — 1 such
dependencies, just as Lemma II1.3 indicates.

Now that the number of linear dependencies among the tangent and acceleration
vectors has been determined, the value of P’, the number of acceleration vectors
which are not in the tangent plane, can be obtained, and the relative curvature

measures of Section 3.2 calculated.

3.4 Relative Curvatures: Some Examples

In this section, the curvature measures of Section 3.2 and the results of Section 3.3
are illustrated for the one-factor trilinear model.
For the model (2.2), there are P = I + J + K — 2 velocity vectors. Section 3.1.2

shows there are

L P(P+1)

w=(I-1)(J-1)+ (- 1)K +(J - 1K -

nonredundant, nonzero acceleration vectors. (The zero vectors shall be excluded
from the matrix W defined in Section 3.2 since they will eventually be consigned

to the part of @ in the QR decomposition of D which is not used in getting the

curvatures.) For multilinear models in general, w will be much less than P(P+1)/2,
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which is the maximum value for nonlinear models, because of the number of zero

acceleration vectors.

The matrix D in Equation (3.26) will have

B P(P2+ 3)

Ptw=IJ+IK+JK-K-1
columns. To partition @ in the QR decomposition of D, we need to know the value
of P'. From Lemma III.1, we know that the columns of W are linearly independent,

so that the rank of W is w. Lemmas I111.2 and IIL.3 tell us that there are T +J-2

dependencies among the velocities and accelerations. Thus, D will have rank

rank(D) = (IJ+IK+JK-K -1)—=(I+J~2) = IJ+IK+JK —I—-J— K +1,
(3.31)

and
P' =rank(D)—rank(V)=IJ+IK+JK -2(I+J+ K)+3 (3.32)

since V is of rank P.

For the 2 by 3 by 2 one-factor model, w = (2—1)(3—1)+(2—-1)24+(3—-1)(2) = 8,
using the formula for w given above. It was seen in Section 3.1.2 that the number of
nonredundant, nonzero acceleration vectors is indeed 8. The matrix D has P+ w =
(2)(3) + (2)(2) + (3)(2) — 2 — 1 = 13 columns consisting of the 5 tangent vectors and

the 8 acceleration vectors. From (3.31) above, the rank of D should be
rank(D) = (2)(3) + (2)(2) + (8)(2) ~2~3-2+1=10=13 - 3,

which is the number of columns of D minus the number of linear dependencies.
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P'=10—5=(2)(3)+(2)(2) + (3)(2) —2(2+3 +2) + 3 = 5,
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using formula (3.32) above. So A and B will be 10 x 5 x 5 arrays, with 5 faces in

the tangent space and 5 faces in the acceleration space.

For the plastocyanin data, D is the matrix whose first 5 columns are exactly V

in (3.4) and whose other 8 columns are

[ 4.2299
3.6574
0

0
0
0
0
0
0
0
0
0

0

0
4.2299
3.6574

Cooc o000 oQ

1.0469

0

0
0
0
0
1
0
0
0
0
0

ot
coo—~ocoococoocfRoo
&

Qo

0
0
0
1.0469
0
0
0
0
0
1
0
0

0.9689
0
0.9700
0

OO0 0O 00O

0
0.9689
0
0.9700

(o= = i on i o e B e ] e

(3.33)

A numerical check on the matrix D confirmed that its rank is indeed 10. The

10 x 5 x 5 relative curvature array B was calculated using the procedure described

in Section 3.2. The value of S(@) was 0.3476, so s=0.2228. Summary statistics for

the first 5 faces of B, which measure parameter effects curvature, and for the other

5 faces, which measure intrinsic curvature, are presented in Table 1. The values of

the intrinsic relative curvatures are close to zero, indicating that the expectation

surface is well-approximated by the tangent plane at 8. The parameter effects rel-

ative curvatures are not too far from zero either, which means that projections of

the parameter curves on the tangent plane would be more or less uniform.
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Table 1: Relative Curvatures for Plastocyanin Data

Minimum | Maximum | Mean SD
Parameter Effects | -0.0680 0.1172 -0.0015 | 0.0245
Intrinsic -0.0283 0.0253 -0.0601 | 0.0103

We now consider a second example with a much larger number of observations,
using the NFAK1A data of Leurgans and Ross (1991a). The data is a 10 by 12 by
5 simulated arrray with 1 factor present. Parameters for a three-factor model were
chosen to be reasonable values from a biophysical perspective. The parameters of
the third factor of the three-factor model were then used as the parameters of the
one-factor model. Independent normal random variables were generated with mean
0 and standard deviation 100 (1 % of the range of the expectation array). These
were added to the expectation arrays to obtain simulated data.

For this data set, I =10, J =12, K = 5, P=25, N = 600, w = 199, and D has
224 columns. There are 20 linear dependencies so the rank of D is 204. Thus, B is
a 204 x 25 x 25 array with the first 25 faces containing the parameter effects relative
curvatures, and the last P’ = 179 faces containing the intrinsic relative curvatures.

Summary statistics for the relative curvatures of the NFAK1A data are given
in Table 2. Note that the relative intrinsic curvatures are again small. This is
not surprising, considering that in various examples given by Ratkowsky (1983),
Bates and Watts (1980), and Bates and Watts (1988), the expectation surface was

found to be nearly planar at #, while parameter-effects curvatures were found to be
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Table 2: Relative Curvatures for NFAK1A Data

Minimum [ Maximum | Mean SD
Parameter Effects | -0.1291 1.2930 0.0008 | 0.0177
Intrinsic -0.0174 0.0174 0.0000 | 0.0010

substantial.

We conclude this section with some comments on the computations involved in
getting the curvature arrays. The ¢r function in the S language (see Becker, et
al.,1988), as in most other packages that do a QR decomposition, does not report
the @ and R matrices explicitly, but returns an object representing the decomposi-
tion, from which  and R have to be extracted. It is simple to get R; calculating
@ directly from the given object is very inefficient, however. Instead, applying the
decomposition twice yields (Q,,Q}) rather easily. The columns of D are pivoted
(see Dongarra, 1979) according to the result of the first decomposition; a second
decomposition is done on the pivoted matrix; then one inversion and one multipli-
cation of the appropriate matrices yield the desired (Q,, Q7). Pivoting is more easily
done interactively. It may also be necessary to specify a larger tolerance when using
the gr procedure since this S function appears to be very sensitive to tiny values
when detecting linear dependencies. It is good practice to check if the rank given
by this function agrees with the rank of D given by the formula (3.31).

Due to the large number of observations for the NFAK1A data, operations such

as multiplication of the 204 x 600 matrix (Q,, Q)T and the 600 x 25 x 25 array
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to get the 204 x 25 x 25 array A took a few seconds longer. Contructing one long
function that calculates the curvatures in one big step was also avoided because
dynamic memory problems were sometimes run into. This, of course, could just
be a local problem. Thus, one may need to working interactively, or increase the
allotted dynamic memory, if possible, when using S to compute curvature arrays for

large data sets.



CHAPTER IV

Introduction to Cross-Validation

Cross-validation is a technique mainly developed for problems involving model se-
lection or assessment of the performance of a predictor. Like the jackknife and the
bootstrap, this nonparametric method requires minimal assumptions and can be
applied in an automatic way to complicated situations. Although cross-validation
and jackknifing both involve omission of items one or more at a time, Stone (1974)
distinguishes between the two by noting that jackknifing manufactures pseudovalues
for the reduction of bias. Efron and Gong (1983) give several examples of using the
bootstrap, the jackknife, and cross-validation in the estimation of statistical error
(i.e., bias, standard error of an estimator, or error rate of a prediction rule).

In Section 4.1, two very general cross-validation methods are discussed. Sec-
tion 4.2 deals with cross-validation techniques that have been used for multilinear
models, or in settings similar to the multilinear one. The final section discusses how

case deletion in multilinear models is also useful for cross-validation purposes.

4.1 Some Cross-Validation Techniques

Stone (1974) gives various descriptions and applications of cross-validation.

50
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4.1.1 Leave-out Groups

The concept of cross-validation, in its most primitive form, involves dividing the
sample into two subsamples, one on which the choice of a statistical model, pre-
dictor, or estimator is based, and the other on which performance of the chosen
model, predictor, or estimator is assessed by measuring its predictions against the
actual observed values. Division of the sample may be controlled, as when items are
randomly assigned to one or the other subsample, or uncontrolled, e.g., in studies
where a “construction sample” and a “validation sample” are collected at separate
times.

This idea of dividing the sample into two groups and leaving out one group while
calculations are done on the other has been extended to dividing the sample into
several groups and leaving out one group at a time. A more detailed discussion is

given in Section 4.2 below.
4.1.2 Leave-out One Observation

Mosteller and Tukey (1977) describe “simple cross-validation” as setting aside one
item, optimizing for the rest of the observations, then testing on the set-aside item.
Realizing that repetition of this process for every single item may be computationally
difficult, they suggest that we make one optimization for all the data, then do a
possibly simpler calculation of the effect of dropping each item, then compare the

adjusted optimized result with the values for the omitted item.



52

4.2 Cross-Validation Methods in Multilinear Settings

In this section, some cross-validation techniques used in factor analysis and principal
component analysis are given. These are relevant to cross-validation for multilinear
models in that the problem of choosing the number of factors is common to all three
settings.

Wold (1978) uses cross-validation to estimate the number of significant compo-
nents, F', in Factor Analysis and Principal Components Analysis (PCA) of a set of
data. The data is divided into G groups. For a starting value of F, say F, , the
first group is deleted and the model parameters are estimated using the reduced
data set and some goodness-of-fit criterion (e.g., least squares). Predicted values
of observations in the deleted group are then calculated. These are compared with
the actual values via the sum of squares of prediction errors (also called PRESS,
for predicted residual sum of squares), or some other measure corresponding to the
goodness-of-fit criterion.

After the first group is restored to the data set, the second group of observations
is deleted, parameters are estimated using the new reduced data set, and a second
sum of squared prediction errors is calculated. Then the third group is deleted, and
the procedure is repeated until all the groups have been deleted once. Summing all
the (partial) sums of squares of prediction errors over all the groups gives a total
PRESS for F = F, , PRESS(F,).

The whole procedure is repeated for different values of F',say Fy, F2,...,yielding
PRESS(F;), PRESS(F3,), and so on. The value of F' is varied systematically to find
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the minimum value of PRESS(F). The value of F which gives the smallest total
PRESS is the optimal choice for the number of components.

Wold’s method is carried out using the NIPALS (nonlinear iterative partial least
squares) algorithm, which has the advantage of converging very rapidly when good
starting values are given, and of being able to work with incomplete data. It is,
however, not as universally available as, say, algorithms using singular value decom-
position (SVD) of a matrix.

Eastment and Krzanowski (1982) describe a method for choosing the number
of components in a PCA using algorithms due to Bunch and Nielsen (1978) for
updating a singular value decomposition:

Suppose that p variables are observed on each of n individuals and the data is
displayed in an n x p matrix Y with SVDY = USV7T, where U is an n xn orthogonal
matrix, V is a p X p orthogonal matrix, and S is an n X p upper diagonal matrix.
Based on the cross-validation principle of not using each data point in both the
prediction and assessment stages, but of nevertheless using as much of the original
data as possible in predicting each Y;;, Eastment and Krzanowski suggest that Y;;
should be predicted from all the data except the i** row and the j** columns of Y.

If the i** row is omitted, the SVD of the reduced data matrix will have left
singular vectors with length n — 1, and the required values of u;; for forming the

predictor
F
o(F)
Y =2 tiswy
t=1

are not available. Denote the updated values of I/, V, and S by U, V, and § when
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the j** column of Y is deleted, and by U, V, and S when the i** row of Y is deleted.
If the complete matrix is available,
f’ff) = ZF: TR RPN
i=1
Since u;; requires information on the i** row, we use I/ . Similarly, v,; requires
information on the j** column, so use ¥ . The matrix S can come from either S or

S so it is reasonable to use both. Hence, Y;; is predicted by

a (F)

F
Yi =§(a.-t\/57)(\/s‘mﬁ).

The SVD of the matrix Y can be found using any number of algorithms currently
available. Then PRESS(F') can be obtained and the best value of F' chosen based

on a suitable function of PRESS(F'). Eastment and Krzanowski use

_ PRESS(F —1) - PRESS(F) _ PRESS(F)

Wr Dr Dr

where D is the number of degrees of freedom required to fit the F** component and
Dp, is the number of degrees of freedom remaining after fitting the F** component.
So W represents the ratio of the increase in predictive information supplied by the
F* component to the average information in each of the remaining components.
The best choice for F is the last value of F' at which Wr > 1. Krzanowski (1986)
presents some simulation results for bilinear models.

Leurgans and Ross (1991a) extended the idea of deleting different groups and also
Eastment and Krzanowski’s technique of leaving out levels to three-way PARAFAC

models. The simulated data sets NFAK described in the Section 3.4 were used.
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They divided each of the 10 by 12 by 5 arrays into 5 groups and fit models with
F, =1,2,3, deleting one group at a time. For arrays generated from a three- factor
model, they also fit F, = 4.

The extension of Eastment and Krzanowski’s technique to three-way PARAFAC
models involves deleting a level of one of the ways, say, level ¢ of a, and estimating
the parameters of the other two ways, say, @ and -. Thus, u[t, j, k] can be estimated
without using the actual value Yi, j, k] by estimating & without Y[, j,] or Y|, , k],
estimating @ without Y'[t,,] or Y[, , k], and estimating «y without Y'{i,,] or Y|, J,].
Leurgans and Ross have experimented with leaving out each level of one of the
simulated arrays, and have seen a need to improve initialization methods to hasten
calculations. To reduce computational requirements, they have also explored leaving
out several levels of each way at a time: All Y'[¢,,]’s with i even, all Y[i,,]’s with i
odd, all Y[, ,]’s with j even, all Y, ,]’s with j odd, all Y[,, k]’s with k even, and
all Y'[,,k]’s with k odd. This even-odd deletion was performed on one simulated
data set, NFAK2A.

Leurgans and Ross use alternating-least-squares algorithms whose initial values
are based on the decomposition described by Leurgans, Ross and Abel (1990). The
algorithms are allowed to cycle until convergence is achieved or after 10* iterations,
whichever comes first. Some of the calculations use one-step approximations to the
solutions, in which only one iteration is completed after the global fit. They present

some preliminary results on simulated and real data sets.
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4.3 Case Deletion in Cross-Validation of Multilinear Mod-
els

Cross-validation is clearly one area in which finding approximations to case deletion
estimates is relevant. The general cross-validation approach of leaving out a single
observation, and the technique for multilinear models of leaving out levels suggest
case deletion as a natural way to cross-validate multilinear models. Such a method
would indeed use as much of the original data as possible in predicting each Y[i,j k].

As Mosteller and Tukey (1977) pointed out, however, deleting one observation
at a time may prove computationally difficult. In Section 4.2, we saw that Leur-
gans and Ross (1991a) found it necessary to improve initialization methods and
experimented with leaving out several levels at a time to reduce computational re-
quirements. Bunch and Nielsen’s (1978) algorithm which Eastment and Krzanowski
(1982) used to facilitate their calculations for two-way models does not have a gen-
eralization for three-way models. Thus leaving out levels for trilinear models would
still involve intensive computation. Leurgans and Ross also looked into the one-step
approximation as a means to avoid much computational labor in leaving ocut groups
and levels.

All the more difficulty can be expected if an actual leave-out-one-observation
approach were used. However, if good approximations to the actual case deletion
estimates can be obtained, and if these approximations require considerably less
computational labor, they would be extremely useful for cross-validation purposes.

We shall look at approximations to case deletion estimates more closely in the
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next two chapters. In Chapter VI, an approximation to the estimate of the rtt
predicted or cross-validatory residual is given. Due to the special structure of mul-
tilinear models, the calculation of this quantity, and thus of the predicted residual

sum of squares (PRESS), is facilitated.



CHAPTER V

Jackknifing in Nonlinear Models: A Review of
Literature

5.1 Introduction

We noted in Chapter IV that jackknifing is similar to cross-validation in that it
involves leaving out one observation at a time. (Although the two methods, used
separately, yield different estimates (See Efron and Gong (1983) for illustrations),
one may be used in conjunction with the other.) Thus, jackknifing is another area
where case-deletion approximation methods may prove useful.

We discuss here various jackknife estimators for the nonlinear regression model,
with the posssible use of one or more of these methods in the multilinear setting
in view, In Chapter VI, three of these methods will be used to find parameter
estimates for the NFAK1A data. All the estimators discussed in this chapter are
modifications of the ordinary or standard jackknife (J) defined as follows:

Recall the nonlinear regression model (2.5),
Y, = ﬂ(mna) +¢, r=12,..,N,

where 7 is a nonlinear function of the unknown parameter (vector) 8, ¢, are inde-

pendent, Var(¢,)=c?, unknown.

58
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Let é(,) be the least squares estimator of & when the r** data point is removed.

Define
P, = N8 — (N -1)b,
to be the r** pseudovalue;
6;=1/NY_P,

to be the (ordinary) jackknife estimator of ;
-1 j 5 )T
Sy = NN =) S (P, —06,5)(P.~8,)

to be the jackknife estimator of Var(@;). In practice, S; has also been used to
estimate Var(@).
The jackknife was originally suggested by Quenouille (1956) to reduce bias and

is also useful for variance estimation.

5.2 The Linear Jackknife (LP)

Fox, Hinkley and Larntz (1980) point out that the ordinary jackknife requires n + 1
fits in the nonlinear regression case: one for the initial fit 8, and n fits for the é(,)’s.
They propose a method requiring only one nonlinear fit, based on a linear Taylor

series approximation to é(,.) :

By = 5.1
by = 8 T (5.1)
s T 1o T
tp, = §4 XY V) V.o
1=k,

brr = 1/NSLP, (5.2)
. 1 . .

Sip = vy LR — e (LR —bup)T (5.3)
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where

V is the matrix of partial derivatives of i evaluated at 8,

V. is the r* row of V,

e, is the r** residual, and

h, is the r*# diagonal element of the hat matrix H = V(VT‘A’)‘I v

Note that the linear jackknife, LP, is analogous to the linear model setting where
V=X, the hat matrix is X(XTX)~*XT, and

" » (XTX)1XTe,
ﬁ(r)=16_( 11’0.,-’.

In Chapter VI, it will be seen that the linear jackknife is equivalent to using the

linear approximation to case deletion estimates given by Ross (1987).

5.3 The Weighted Linear Jackknife (LQ)

Miller (1974) showed that the usual bias reduction properties of the standard jack-
knife J do not hold for nonlinear functions of linear regression parameters. Hinkley
(1977) suggested an alternative weighting scheme to improve bias reduction and
variance estimation of the standard jacknife estimator J in linear regression. Fox,
Hinkley and Larntz extended Hinkley’s work to the nonlinear model by defining the
weighted linear jackknife (LQ) as follows:

Let

by =0 - (VTV) 107,

L@, =8+ NV V) Ve,



61

and éLq,.S"Lq be defined by replacing LP by LQ in (5.2) and (5.3). Note that é(,)
in LQ is just é(,) in LP with the second term multiplied by (1 — h,), which, in effect,
gives less weight to high leverage points.

Weighted linear jackknife estimates are calculated for the NFAK1A data in Chap-

ter VI.

5.4 The Modified Linear Jackknife (MLP)

Although according to Fox, Hinkley and Larntz, @L.p is not inferior to 9_;, Simonoff
and Tsai (1986) noted that éLp does not directly reflect the nonlinearity of the

model. They remedy this by introducing a term involving the second partial deriva-

tive:
o T 2 oy, T
é = é _ (V V- [eg;)][n(r)]) lVr Er
) 1k
_ é T:IVZ‘C,.
1—h:
-1 T
MLP. = 0+ —IY-TI——‘;";

and 9MLP, Srip are defined by replacing LP by MLP in (5.2) and (5.3). Here,

e(r) is the (N — 1) x 1 vector with r** component removed from the residuaal

vector e;

f';(,.) is the (N —1) x P x P array with r** component removed from the N x P x P

array 1) of second partial derivatives;

the brackets operator [ ][ ] indicates vector-array multiplication as defined in

Appendix B;
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a T &

T.=V V- [e:(l;)]['a,(r)];

hy = ‘A/TT: 1“/:{

Note that if the term [e()[f,)] is ignored, @) in the modified linear jackknife

MLP is the same as in LP; that is, instead of using ‘A/Tf’, MLP uses T',.

5.5 The Reweighted Linear Jackknife (RLQ)

Simonoff and Tsai also propose an alternative weighting scheme to LQ such that
the weight of the r** observation is inversely proportional to its leverage. That is,

reweight LQ by multiplying the second term of LQ, by (1 - k,). Thus, we have

RLQ, = 8+ N(VV) W e, (1 - b,).

In previous studies, S'RLQ, as usually defined, consistently underestimated the
true variance in previous simulation studies, so the authors replaced it by:

a. Srig =&V V) LV, - a2V (VT

b. § RLQL, the least squares estimator of variance

c. Smrp

all coupled with éRLQ =1/NY RLQ, , yielding the methods RLQ, RLQL, and
RLQM, respectively.

In Chapter VI, reweighted linear jackknife estimates are calculated for the NFAK1A

data. These are compared with the linear and weighted linear estimates for the same

data.
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5.6 The Weighted Modified Linear Jackknife (MLQ)

Simonoff and Tsai noted that the modification made by the MLP method to the
LP method can also be applied to the weighted linear jackknife L.Q; that is, in LQ,

replace Vv by T, yielding

MLQ, =0 + NT'Ve,.
The estimators 8 MLQ, SamLq are defined by replacing LP by MLQ in (5.2) and (5.3).

5.7 Comparison of the Estimators

Simonoff and Tsai compared least squares (LS), J, LP, LQ, MLP, MLQ, and RLQ
with respect to agreement of parameter and variance estimates in examples using
different nonlinear models. They also compared LS, J, LP, LQ, MLP, MLQ, RLQ,
RLQL, RLQM and direct likelihood (DL) with respect to bias, root mean squared
error, coverage probabilities and volume of confidence regions, using simulation. The
results can be summarized as follows:

For well-behaved data, there is little difference among the methods, but the
presence of outliers, leverage points or curvature effects can heavily affect all the
procedures. The RLQM method provides an estimator relatively robust to outliers,
leverage points and curvature effects; its confidence regions are quite good compared
to the others.

Fox, Hinkley and Larntz compared J, LP and LQ using the examples given by

Duncan (1978). They found that the estimators in J and LP were in close agreement,
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and LQ matched J and LP except at the extremes. In terms of coverage probabilities
for confidence regions, LP and LQ were better than J, and were easier to use than

J when variance estimates were needed.



CHAPTER VI

Leave-Out-One Approach

In the previous two chapters, we have seen two settings in which the idea of leaving
out one observation at a time proves useful. The need for some form of approxima-
tion that avoids physically deleting a case when computing parameter estimates has
been emphasized. We now turn to two responses to this need. These approximations
have been suggested in the literature for obtaining influence measures based on case
deletion. We have, in fact, already come across one of them in Chapter V. The
“novelty” here stems from the application of these approximate leave-out estimates
to multilinear models. The material from Chapter III facilitates this application.
Section 6.1 introduces the case deletion model for nonlinear regression, from
which é(,), the estimate of the parameter @ when the r** case is deleted can be ob-
tained. Linear and quadratic approximations to ﬁ(,.) are given. The linear approx-
imation is derived by Ross (1987) using the definitions and notation for nonlinear
models given in Section 2.3.1. This approximation turns out to be the same as the
expression for é(,.) in Chapter V. The quadratic approximation is derived by Ross
using Clarke’s (1980) formula and assuming planarity of the expectation surface.
In Section 6.2, the approximations are applied to simulated data for a one-factor

trilinear PARAFAC model. Since the approximation formulas involve the derivative

65
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matrix V, the array of second derivatives 17, and the relative curvature array B,,
they can now be readily applied because of the results derived in Chapter III. The
estimates obtained by using the two approximations are compared with the estimates
obtained by actually leaving out one observation at a time. Some of the jackknife
estimators in Chapter V are also evaluated for this data set. These are compared

with the standard jackknife, which is obtained by actual case deletion.

6.1 Case Deletion in Nonlinear Regression

Ross (1987) examines case deletion in nonlinear regression models in the context
of assessing influence. He notes that, unlike in linear regression, case deletion is
not easy to do in nonlinear regression, since the entire nonlinear regression must
be repeated every time an observation is deleted. Computation is simplified by
using the linear approximation suggested by Fox, Hinkley and Larntz (1980), or by
constructing a quadratic approximation adapted from Clarke (1980). Ross explores
the relationship of the geometry of case deletion to these approximations.

Define the case deletion model
Y=90)+d.(+e€ (6.1)

where Y, 1(8), and € are the same as in the nonlinear regression model (2.6), d, is
an N x 1 vector having 1 in the r** position and zeros elsewhere. Fitting (6.1) with
P +1 parameters (8, () yields the least squares estimate 8, for @ when the r** case

is deleted. The estimate of { is the r* predicted residual.
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Denote the expected value of Y by
R(6,¢) = n(8) + d.(.

Then, using the notation of Section 2.3.1, the first and second partial derivatives of

R(0,() are:

3
I
£
i
e
—
TAN
-]
A
"

In the notation parallel to that of section 2.3.1, let:
M,y be the expectation surface defined by R(8,();
Né?:: [V d.] be the matrix of first partial derivatives;
G = ViV
H=VG'vT

Ross gives the following decomposition of R,,, which is analogous to (2.7):

qu = Ffr)qu' + qud" + b;q¢a$ (6‘2)

where @,,...,¢,, is an orthonormal basis for the acceleration space of M) at
R(0,(). The P+ 1 x P+ 1 matrix of coefficients of the second fundamental form
(see Section 2.3.1) of M(,) corresponding to the normal direction ¢, and the P x P

matrix of coefficients of the second fundamental form on M corresponding to the
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normal direction ¢, are related by

B, 0
)

6.1.1 Linear Approximation

Let C, = G 'V7Td, and h, be the rtt diagonal element of H (called the leverage
of the r** case) evaluated at #).. The first-order approximations to the estimates
of é(,.) and f are obtained by using the same linear approximation used by Fox,
Hinkley and Larntz(1980), that is, by replacing R(8,() with a first-order Taylor

series approximation about (8,0). This gives the estimates

@(,) = @ + u(y) (6.3)
- . €r
¢ = 1= hy (64)
where u() = -1 i’h C, (6.5)

Note that Equation (6.3) is just 5(,) of Chapter V.
6.1.2 Quadratic Approximation

A quadratic approximation to 0;,.) and ¢ can be constructed by adapting a higher-
order formula due to Clarke(1980) to the case deletion model. Ross(1987) states that
“the difference between a connection coefficient I';, for M and the corresponding
coefficient I{r)pe for M(y) is a quantity that depends on the nonplanarity of M as
a submodel of M(;) but not on the nonuniformity of parameterization. Thus for a

model M which is sufficiently planar, the nonzero connection coefficients of M, will
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be approximately equal to those of M.” Under the assumption of planarity, Ross
derives the quadratic approximation as:

AP ap . 1
Oy =0 = ufy = 3Toufyuy (6.6)

¢ = T—h (6.7)

The second term in Equation 6.6 uses the Einstein summation convention described
in Section 2.3.1. The superscripts in that equation denote particular rows or ele-

ments of the matrix or vector.

6.2 Case Deletion for Multilinear Models

Since multilinear models are a special case of nonlinear models, the linear and
quadratic approximations to the parameter estimates when the r** case is deleted
for a nonlinear model can be used in the multilinear setting. The various jack-
knife estimates for nonlinear regression can also be applied to multilinear models.
The conditional linearity of multilinear models suggests that the computational ad-
vantages of these approximations would even be more pronounced in this setting.
Indeed, we have seen in Chapter III that the special structure of these models leads
to nice forms for the tangent and acceleration vectors. Since the matrix V is essen-
tial for the computation of the jackknife estimates, and the accelerations are needed
for the quadratic approximation, the structure of multilinear models facilitates ob-

taining these estimates.
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6.2.1 A Numerical Example

The leave-out-one approach for nonlinear regression was applied to a one-factor tri-
linear model using the NFAK1A data described in Section 3.4. The least squares
estimates using the full data were computed using a FORTRAN program developed
by R.T.Ross (See Leurgans, Ross and Abel, 1990.) Actual leave-out-one estimates
were also obtained by deleting one observation at a time and re-computing the
estimates. Computations were done on the CRAY at the Ohio Supercomputer Cen-
ter and on the DEC 5500 at the Mathematical Sciences Computing Laboratory.
Case deletion estimates were obtained using the linear approximation LP, and the
quadratic approximation described by Ross (1987) with the planarity assumption.
The linear, weighted linear, and reweighted linear jackknife estimates given in Chap-
ter V were also calculated. The results are summarized in the tables and figures
below. The parameterization used was that of setting the last elements of o and 3
to 1.

Table 3 gives summary statistics for 600 case deletion estimates obtained by
actually leaving out one observation at a time. The first two columns of numbers
are the known, true parameter values, and the least squares estimates for the full
data. The subscript LS of 8 denotes that the true parameter values were normalized
with the same constants used to normalize the least squares estimates. The full least
squares estimates are generally close to the true values, except maybe for a[3], which
differs by 0.124, and 4{4], with a difference of 24.77. This can be seen in Figure 1,

which shows the global estimates on the y-axis plotted against the true parameter
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values on the x-axis, for each of the three ways. The plotting symbol is “L” (for
least squares). The dotted line is the 45-degree line, where the true values equal the
estimates.

The individual values of the leave-out-one estimates have means and medians
that are almost exactly equal to the global estimates. Each of the 600 actual deletion
estimates are plotted (plotting symbol is “@”) in Figure 2 against the true value of
the a’s, 3’s and 4’s. It is not surprising that the points cluster tightly about the
45-degree line, (except for [4]), since they should be very close to the global least
squares estimates, and the global estimates are, for the most part, near the true 8.

Table 4 gives summary statistics for 600 case deletion estimates using the linear
approximation (6.3). The true parameter values and the least squares estimates for
the full data are given again for comparison purposes. As in the actual deletions,
the means and medians of the the leave-out-one linear approximation estimates are
almost exactly equal to their full least squares counterparts. The ranges of the
linear deletion estimates are slightly larger than the ranges of the actual deletion
estimates, and the standard errors in Table 4 are somewhat larger than those in
Table 3, especially for the 4’s. In Figure 3, each of the 600 linear estimates are
plotted (plotting symbol is “@”) against the true 8's. Observe that the points
cluster around the 45-degree line, but show a wider spread than Figure 2 for the
v’s. The estimates for (4] all exceed the true value, just as in Figures 1 and 2.

Table 5 presents summary statistics on the absolute difference between the actual

case deletion estimates and those obtained using the linear approximation. In the
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first two columns, the signed difference “actual minus linear” are given in parenthe-
ses. The differences appear negligible, except for the parameters of the third way.
Considering the magnitude of the +’s relative to the a’s and 8’s, it may be useful to
describe the differences as fractions of the full least squares estimates. For the a’s,
the largest absolute difference between the actual and linear leave-out estimates is
0.072 (for «[8]); this difference is 0.014 times as big as the full LSE. Among the
s, the maximum absolute difference between the actual and leave-out estimates is
0.006 (for A[11]), which corresponds to a relative difference of 0.0049. The maxi-
mum absolute difference among the 4’s is 21.462, or 0.0135 relative to the full LSE’s.
Figure 4 is a plot of the 600 linear estimates versus the actual deletion estimates.
Observe that the points (plotting symbol is “@”) lie more or less along the 45-degree
line.

In Table 6 the case deletion estimates using the quadratic approximation are
summarized. Huge differences from the global estimates and from the true parameter
values can be seen in the §)’s, particularly for estimates of some of the a’s. The
medians are equal to the global LSE’s (up to three decimal places), but as expected,
the means are pulled considerably away by the extreme values. Further investigation
showed that the minima occur at the same value of r, observation number 593, or
Y[10,11,3]. A look at the quantiles of a{,) suggests that there are other wild values,
but most of the estimates are “well-behaved.” For instance, the first five percentiles
are: -46.87, -8.34, -2.22, -0.64, and -0.14.

Examining the approximation (6.6), we see that the difference between the linear
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and quadratic approximations is a sum of products of connection coefficients and
rows of u(;). Since we saw in Chapter 2 that the terms in the parameter-effects
curvature array were not that large (although larger than the intrinsic curvatures),
the extreme values must be coming from summing products of rows of ;). Indeed,
a moderately large value of u(,) would more greatly affect the quadratic estimates
than the linear ones. Thus, the quadratic leave-out estimates may behave fairly well
in most cases but can yield terrible estimates for observations with high leverages.

The leverages for the NFAK1A data range from 3.2x10~7 t0 0.2747; the quartiles
are: 0.0004, 0.0220, and 0.0671. The leverage of observation number 593 is 0.0815,
which is the 83.6'" quantile, and is almost twice as large as the mean leverage of
P+ N =25+ 600 = 0.0417.

Table 7 presents a comparison of the true parameter values, @, the least squares
estimates using the full data (LS), the ordinary jackknife estimates (J), the lin-
ear (LP), weighted linear (LQ), and reweighted linear (RLQ) jackknife estimates
discussed in Chapter V. The subscript LS indicates that the vector was normalized
with the same constants used to normalize the least squares estimates. The LP,
LQ, and RLQ estimates differ very little among themselves and are not too far from
the standard jackknife estimates, nor from 8. The standard estimates generally do
better than the approximations LP, LQ and RLQ), especially for the 4's, although
for seven of the parameters, the approximations are closer to 8. In Figure 5, the
least squares (LSE), standard jackknife (J), linear jackknife (LP), weighted linear

jackknife (LQ), and reweighted linear jackknife (RLQ) estimates are plotted against
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the true @ using “L,” “J,” “P,” “Q,” and “R,” respectively, as the plotting symbols.
The symbols appear almost indistinguishable because they overlap a lot. The char-
acters that appear like a “U” near the 45-degree line for « is actually the overalp
of “L” and “J,” the least squares and ordinary jackknife estimates. Note that the
figure agrees with our findings from Table 7.

Table 8 gives the standard errors for the various jackknife estimates. We see that
the ordinary jackknife estimates have larger standard errors than the approximations
for most of the parameters except, notably, for the «4’s.

We can see a trade-off between bias and variance reduction in this example.
The jackknife estimates using the case deletion approximations have values farther
from @ but have smaller standard errors for most of the parameters. The ordinary
jackknife estimates have slightly larger standard errors but yield values closer to the

true parameter.



Table 3: True, Least-Squares, and Actual Case Deletion Estimates
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True Full Leave-out-one Estimates 9(,)

Theta | Value LSE Using Actual Deletion
s Min Max | Median Mean SD
all] 0.000 -0.015 -0.022 -0.008 -0.015 -0.015 | 0.002
al2) 0.000 0.004 -0.003 0.010 0.004 0.004 | 0.002
al3] 0.000 0.124 0.117 0.138 0.124 0.124 | 0.002
(4] 0.018 0.031 0.024 0.039 0.031 0.031 | 0.002
(5] 0.293 0.334 0.327 0.343 0.334 0.334 | 0.002
«|6) 1.753 1.692 1.682 1.699 1.692 1.692 | 0.002
7] 4.410 4.378 4.370 4.385 4.378 4.378 | 0.002
(8] 5.168 5.205 5.200 5.211 5.205 5.205 | 0.001
«[9] 3.001 3.108 3.101 3.116 3.108 3.108 | 0.002
a[10] 1.023 1.000 0.992 1.007 1.000 1.000 | 0.002
B[] 0.000 -0.011 -0.013 -0.009 -0.011 -0.011 | 0.000
(2] 0.000 -0.003 -0.005 -0.001 -0.003 -0.003 | 0.000
B(3] 0.000 0.012 0.011 0.015 0.012 0.012 | 0.000
Bl4] 0.000 -0.014 -0.017 -0.012 -0.014 -0.014 | 0.000
B(5] 0.001 0.010 0.008 0.012 0.010 0.010 | 0.000
B16) 0.009 0.006 0.004 0.008 0.006 0.006 | 0.000
B{7] 0.061 0.053 0.051 0.055 0.053 0.053 | 0.000
B8] 0.247 0.232 0.229 0.234 0.232 0.232 | 0.000
B8[9] 0.630 0.636 0.634 0.638 0.636 0.636 | 0.000
Al10] 1.060 1.063 1.061 1.066 1.063 1.063 | 0.000
B[11] 1.221 1.215 1.213 1.218 1.215 1.215 | 0.000
A12] 0.996 1.000 0.998 1.002 1.000 1.000 { 0.000
~+{1] | 1584.986 | 1589.683 | 1584.400 | 1595.480 | 1589.664 | 1589.684 | 1.223
~[2] | 1553.923 | 1561.232 | 1556.647 | 1566.264 | 1561.205 | 1561.235 | 1.143
~[3] | 1509.538 | 1510.737 | 1506.839 | 1514.435 | 1510.738 | 1510.737 | 1.169
~[4] | 1440.879 | 1465.645 | 1461.822 | 1470.880 | 1465.600 | 1465.645 | 1.148
~[5] | 1320.854 | 1315.337 | 1309.790 | 1319.701 | 1315.331 | 1315.337 | 1.189
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Table 4: True, Least-Squares, and Linear Case Deletion Estimates

18

True Full Leave-out-one Estimates b(,)

Theta | Value LSE Using Linear Approximation
0Ls Min Max | Median Mean SD
oll] 0.000 -0.015 -0.023 -0.006 -0.015 -0.015 | 0.001
of2] 0.000 0.004 -0.007 0.014 0.004 0.004 | 0.001
(3] 0.000 0.124 0.117 0.133 0.124 0.124 | 0.001
al4) 0.018 0.031 0.020 0.040 0.031 0.031 | 0.001
a5 0.293 0.334 0.326 0.344 0.334 0.334 | 0.001
a[6) 1.753 1.692 1.669 1.712 1.692 1.692 | 0.002
a[7] 4410 4,378 4317 4.428 4.378 4.378 | 0.006
af8) 5.168 5.205 5.133 5.265 5.205 5.206 | 0.007
af9) 3.091 3.108 3.065 3.144 3.108 3.109 | 0.004
B[1] 0.000 -0.011 -0.013 -0.009 -0.011 -0.011 | 0.000
Bl2] 0.000 -0.003 -0.005 -0.001 -0.003 -0.003 | 0.000
B3] 0.000 0.012 0.010 0.015 0.012 0.012 | 0.000
B4] 0.000 -0.014 -0.017 -0.012 -0.014 -0.014 | 0.000
Bi5] 0.001 0.010 0.008 0.013 0.010 0.010 | 0.000
(6] 0.009 0.006 0.004 0.009 0.006 0.006 | 0.000
Bl7) 0.061 0.053 0.050 0.058 0.053 0.053 | 0.000
B8] 0.247 0.232 0.229 0.234 0.232 0.232 | 0.000
B[9] 0.630 0.636 0.633 0.639 0.636 0.636 | 0.000
B[10} 1.060 1.063 1.058 1.067 1.063 1.063 | 0.000
B[11] 1.221 1.215 1.210 1.219 1.215 1.215 | 0.001
~[1] | 1584.986 | 1589.683 | 1571.201 | 1610.934 | 1589.683 | 1589.656 | 2.159
(2] |1553.923 | 1561.232 | 1542.514 | 1582.103 | 1561.232 | 1561.200 | 2.166
~[3] | 1509.538 | 1510.737 | 1493.948 | 1532.632 | 1510.737 | 1510.701 | 2.059
~v[4] | 1440.879 | 1465.645 | 1449.357 | 1485.238 | 1465.645 | 1465.594 | 1.986
~[5] | 1320.854 | 1315.337 | 1300.719 | 1332.920 | 1315.337 | 1315.312 | 1.837
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Table 5: Absolute Difference of Actual and Linear Approximation Estimates

Theta Minimum Maximum | Median | Mean SD
of1] | 0.000 (-0.016) | 0.016 (+0.014) | 0.000 | 0.001 | 0.002
af2] | 0.000 (-0.017) | 0.017 (+0.017) | 0.000 | 0.001 | 0.002
af3] | 0.000 (-0.008) | 0.016 (+0.016) | 0.000 | 0.001 | 0.002
al4] 0.000 (-0.014) 0.018 (+0.018) 0.000 { 0.001 | 0.002
a|5) 0.000 (-0.015) 0.015 (40.014) 0.000 | 0.001 | 0.002
al6] | 0.000 (-0.020) | 0.023 (+0.023) | 0.000 | 0.001 | 0.003
(7] 0.000 (-0.051) 0.060 (-+0.060) 0.000 | 0.002 | 0.006
@8] | 0.000 (-0.060) | 0.072 (+0.072) [ 0.000 | 0.002 | 0.007
al9] 0.000 (-0.036) 0.043 (+0.043) 0.000 | 0.002 | 0.004
Bl1] | 0.000 (-0.004) | 0.004 (+0.003) | 0.000 | 0.000 | 0.001
B[2] 0.000 (-0.003) 0.004 (+0.004) 0.000 | 0.000 { 0.001
B3] | 0.000 (-0.003) | 0.005 (+0.005) | 0.000 | 0.000 | 0.001
B[4 0.000 (-0.004) 0.004 (+0.004) 0.000 | 0.000 | 0.000
B[5) 0.000 (-0.004) 0.004 (+0.004) 0.000 | 0.000 | 0.000
Bl6] | 0.000 (-0.004) | 0.004 (+0.004) | 0.000 | 0.000 | 0.000
B[7] 0.000 (-0.004) 0.004 (+0.003) 0.000 { 0.000 | 0.000
B8] 0.000 (-0.004) 0.004 (+0.004) 0.000 | 0.000 | 0.000
B[9] 0.000 (-0.003) 0.003 (+0.003) 0.000 | 0.000 | 0.000
B[10] | 0.000 (-0.004) 0.005 (40.005) 0.000 | 0.000 | 0.001
B[11] [ 0.000 (-0.005) 0.006 (+0.006) 0.000 | 0.000 | 0.001
~[1] | 0.008 (-21.462) | 21.462 (+17.316) 1.035 | 1.345 | 1.941
~[2] |0.008 (-21.078) { 21.078 (4+20.951) 1.012 | 1.368 | 2.082
~[3] | 0.007 (-20.033) | 20.033 (+16.718) | 0.985 | 1.351 | 1.931
~[4] |0.007 (-19.788) | 19.788 (+16.219) 0.955 | 1.321 | 1.904
~[5] | 0.010 (-17.758) | 17.758 (+14.556) | 0.862 | 1.256 | 1.835
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Table 6: Comparison of True, Least Squares, and Jackknife Estimates

Theta Ors | Full LSE JLs LP LQ RLQ
all] 0.000 | -0.015| -6.015| -0.011| -0.011| -0.011
a[2] 0.000 0.004 0.005 0.016 0.015 0.014
a[3] 0.000 0.124 0.121 0.128 0.129 0.130
a[4] 0.018 0.031 0.032 0.011 0.011 0.011
a[5] 0.293 0.334 0.334 0.316 0.317 0.318
(6] 1.753 1.692 1.694 1.637 1.640 1.643
a[7] 4.410 4.378 4.379 4.260 4.263 4.266
a[8] 5.168 5.205 5.205 5.055 5.062 5.069
a[9] 3.091 3.108 3.108 3.003 3.009 3.015
o[10] 1.023 1.000 1.001 1.000 1.000 1.000
B[1] 0.000 [ -0.011| -0.011| -0.013| -0.013( -0.013
B[2] 0.000 | -0.003| -0.003| -0.003| -0.003( -0.003
B[3] 0.000 0.012 0.012 0.011 0.011 0.011
B[4] 0.000 [ -0.014| -0.013| -0.005| -0.006( -0.006
B5] 0.001 0.010 0.010 0.008 0.008 0.009
B[6] 0.009 0.006 0.006 0.004 0.004 0.004
B[7] 0.061 0.053 0.053 0.044 0.045 0.045
B8] 0.247 0.232 0.233 0.251 0.249 0.247
B[9] 0.630 0.636 0.635 0.642 0.641 0.640
B(10] 1.060 1.063 1.063 1.074 1.072 1.070
B[11] 1.221 1.215 1.216 1.254 1.246 1.240
B[12] 0.996 1.000 0.999 1.000 1.000 1.000
~[1] | 1584.986 | 1589.683 | 1588.966 | 1605.455 | 1608.613 | 1610.859
~[2] |1553.923 | 1561.232 | 1559.278 | 1580.720 | 1583.546 | 1585.479
~[3] {1509.538 | 1510.737 | 1510.828 | 1532.512 | 1534.493 | 1535.722
(4] | 1440.879 | 1465.645 | 1465.739 | 1496.080 | 1495.273 | 1494.384
(5] |1320.854 | 1315.337 | 1314.962 | 1330.070 | 1332.550 | 1334.162
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Table 7: Standard Errors of Jackknife Estimates

Parameter Jrs LP LQ RLQ
afl] 0.0432 | 0.0290 | 0.0273 | 0.0258
a[2] 0.0448 | 0.0286 | 0.0271 0.0256
a[3] 0.0442 | 0.0276 { 0.0259 | 0.0244
al4] 0.0457 | 0.0257 | 0.0242 { 0.0228
a[5] 0.0439 | 0.0295 0.0278 0.0262
a[6) 0.0439 | 0.0591 | 0.0551 [ 0.0515
a[7] 0.0411 | 0.1428 0.1328 | 0.1237
a[g] 0.0343 | 0.1692 | 0.1572 | 0.1464
al9) 0.0426 | 0.1033 | 0.0962 | 0.0896
a[10] 0.0451 { 0.0000 | 0.0000 | 0.0000
(1] 0.0108 [ 0.0070 | 0.0065 | 0.0061
B[2] 0.0106 | 0.0075 | 0.0070 | 0.0065
3[3] 0.0111 | 0.0076 | 0.0071 0.0066
B[4] 0.0113 | 0.0074 | 0.0069 | 0.0065
ﬁ[5] 0.0104 | 0.0072 | 0.0067 | 0.0063
(6] 0.0107 | 0.0070 | 0.0066 | 0.0062
ﬂ['T] 0.0106 | 0.0082 | 0.0076 | 0.0070
B8] 0.0109 | 0.0077 | 0.0071 | 0.0066
B9] 0.0104 | 0.0089 | 0.0077 | 0.0068
B8[10] 0.0098 | 0.0108 | 0.0089 | 0.0074
B11] 0.0091 | 0.0128 | 0.0103 { 0.0084
ﬁ[lZ] 0.0099 | 0.0000 | 0.0000 | 0.0000
~[1] | 29.9025 | 52.8910 | 48.9352 | 45.4321
¥{2] 27.9393 | 53.0591 | 48.8509 | 45.1873
~(3] 28.5752 | 50.4390 | 46.7533 | 43.4583
~[4] | 28.0747 | 48.6561 | 45.0435 | 41.8351
~ [5] 29.0803 | 45.0062 | 41.5059 | 38.4405
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We close this section with a discussion of the computational requirements for
obtaining both the actual and approximate leave-out-one estimates, Obtaining the
actual case deletion estimates was computationally intensive and required running
on the CRAY at the Ohio Supercomputer Center. Running the FORTRAN program
on the DEC at the Mathematical Sciences Computing Laboratory would have to be
done as a batch job because of the longer processing time, and could possibly be
hampered by disk space problems for a large data set. For the NFAK1A data, getting
the actual deletion estimates involved fitting the model 601 times. In contrast, using
the linear and quadratic approximations required only one global fit.

Once the velocities were calculated, the linear leave-out-one estimates were ob-
tained quite easily, compared to the labor involved in the actual deletions. The
programs were done in S (See Becker et al.,1988) and computations performed on
the DEC at the Mathematical Sciences Computing Laboratory.

The quadratic estimates took much more time to compute than the linear ones.
Evaluating the right hand side of Equation (6.6) took particularly long to compute,
and had to be run as an § batch job.

A possible difficulty with the calculations using the approximations should be
noted, however. If some of the parameter estimates for the full least squares fit
are zero, V' V may become singular, and the aprroximations could then not be
calculated. This situation could be remedied by deleting the zero rows of the full
estimates and calculating a modified derivative matrix, or by replacing the estimates

which are zero by tiny values and proceeding with the computations.



CHAPTER VII

Conclusion

7.1 Summary of Results

In Chapter III, closed-form expressions for the first- and second-order partial deriva-
tives of the expectation function-of a trilinear PARAFAC model were presented.
Linear dependencies among the tangent and acceleration vectors were investigated.
For the one-factor model, the acceleration vectors were found to be linearly inde-
pendent, but some dependencies were shown to exist among the columns of blocks
of V and blocks of 7. The number of dependencies was determined and used to
compute relative curvature arrays for a numerical example.

In Chapters V and VI, approximations to the case deletion estimates 9(,.) and
various jackknife estimates of  were considered. These were then applied to mul-
tilinear models, taking into account the special structure of V and # discussed in
Chapter III.

For a numerical example using simulated data for a one-factor model, the linear
approximation to the case deletion estimates was found to perform fairly well, com-
pared with actual case deletion estimates. The largest absolute differences between

the actual leave-out estimates and their linear approximation counterparts occurred
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for the 4’s. These five largest values were in the 20’s; when compared to the differ-
ences between the global estimates and the true parameter values, however, the five
resulting relative differences ranged from 3 to about 5. In view of the considerable
computational requirements for actual case deletions, the approximate case deletion

estimates show promise.
7.2 How Results Can be Used

The linear leave-out estimates can be used to compute various jackknife estimates of
0, as described in Chapter V and illustrated in the numerical example of Chapter VI.
They are also useful for cross-validation purposes, as discussed in Chapter 1V. In
particular, the linear approximation formulas can be used to find estimates for
models with increasing values of F, as well as to calculate the predicted residual
sum of squares, in order to determine the number of factors present.

Since the leverages h, are a by-product of the approximate leave-out calculations,
the assessment of influence is another area where the deletion estimates are relevant.
The construction of influence measures for nonlinear regression models was, in fact,
the motivation for the derivation of results cited in Chapter VI. Influential points
for multilinear models could be studied using such measures.

In general, the approximate deletion estimates are potentially relevant in any
analysis which involves leaving out one or more observations. Situations where
the observations are not purposely deleted, but are actually missing, could provide
another realm of possible applications. In dealing with experimental designs with

structurally missing observations, for instance, one can surmise that the adaptation
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to multilinear models of the linear approximation estimates can similarly be made

or extended to such designs.

7.3 Areas for Further Study

The numerical example used in this dissertation was for a one-factor trilinear PARAFAC
model used to fit simulated data. It would be interesting to see how well the linear
approximation works for real data. Estimating the parameters of an F — factor
model, with F > 1, to either real or simulated data would also be of interest.
Simulation studies could be done to cross-validate F' — factor models using the
approximate deletion estimates.

Linear dependencies among the velocities and accelerations were investigated
mostly for the one-factor case. More work could be done to determine if, by setting
certain constraints, some theoretical results could be obtained for the general F-
factor model.

Curvature measures have not, to my knowledge, been used in multilinear anal-
ysis. The measures of nonlinearity introduced in Chapter III are just the tip of the
iceberg, so to speak. Calculating these and other measures for additional data sets
would give us a feel for the curvature behavior of multilinear models. Other curva-
ture formulas for nonlinear models might also be simplified or derived analytically
when applied to multilinear models.

The nice structure of the velocities and accelerations for PARAFAC models sug-
gests that this advantage could be explored for other types of multilinear models,

for instance, the Tucker models. Briefly, Tucker3 models can be seen as generaliza-
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tions of the PARAFAC models with F; factors for the first way, F; factors for the
second way, and Fj factors for the third way. Tucker2 models can be interpreted as
allowing general interactions between the F) factors associated with the first way
and the F; factors associated with the second way, the third way not itself being as-
sociated with a single factor but reflecting the importance of the interactions. How
the leave-out-one approximations will perform when applied to these models could
be investigated. These models also have applications in spectroscopy, so their study

is of theoretical as well as of practical interest.



Appendix A

S Notation

The S language was used to calculate the deletion estimates using approximations
and to prepare the figures in this document. Aside from its computational and
graphical use, S also provides convenient matrix and array notation. The S notation
was therefore used extensively in this document. The relevant notation is explained

below. For more details on the S language, see Becker, et.al. (1988).

A.1 S Matrix Notation

Let X be an N x P matrix. The (n,p)** element of X is denoted by X [n,p]. The
nt* row of X is denoted X[n,] and the p** column is denoted X[, p}.

The N — 1 x P matrix consisiting of all rows except the n** row and of all
columns of X is written as X [—n,]. Similarly, the N x P — 1 matrix consisting of
all rows and of all columns except the p** column of X is written as X[, —p]. The
N —1 x P—1 matrix consisting of all rows except the n** and of all columns except
the p** is denoted X[—n,—p)].

The R x P sub-matrix consisting of the rows X|[ry,], X|rs,], ..., X[rg,] is
written as X[(r1,72,...,7R),}. If 71, r2, ..., TR are consecutive integers, we write

X|[r1 : rp,]. Similarly, the N x C sub-matrix consisting of the columns X[, ],
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X[,ca], ..., X|,cc] is written as X{, (c1,¢2,...,¢0)). X[,c1 : cc). K ey, €2, -.., cC
are consecutive integers, we write X[,c1 : c¢]. The R x C sub-matrix consisting
of the entries in rows ry through rg of X and in columns ¢; through cc of X is

denoted by X|[ry : rg,c; : c¢).

A.2 S Array Notation

The S notation for arrays follows basically the same pattern as for matrices, except
for the addition of one or more indices to represent the additional face or faces. Let
Y be an N x P x Q array. The (n,p,q)** element of Y is denoted by Y [n,p, q.
The n** level of the first face of Y is written as Y[n,,]; the p** level of the second
face of Y is written as Y[, p,]; and the ¢** level of the third face of Y is written as
Y[, ,q.

An array; formed by leaving out a level of one or more faces of Y is denoted
by placing a minus sign before the appropriate index or indices. For instance, the
N —1 x P—1 x Q array consisting of all levels except the n** level of the first face,
all except the pt* level of the second face, and all levels of the third face of Y is
written as Y [—n,—p,].

The S notation for sub-matrices formed by taking blocks of rows and columns, as
described above, also extends directly to a notation for sub-arrays formed by taking

blocks of levels of each face.



Appendix B

Matrix Notation

B.1 Kronecker Product

Let A = (amn) be an M x N matrix, and B = (b,) be a P x @ matrix. The

Kronecker product of A and B is an MP x NQ matrix defined by

anB a; ;B ... anB
ay3 B aypB ... a;nyB

AgB=| 7 mE o o (B.1)
amnB apaB ... aynB

Kronecker products occur in expressions for the derivative matrix V and for the

array of acceleration vectors .

B.2 Khatri-Rao Circle Product

Let A be an I x F matrix with column vectors a,, az,...,ar, and let Bbea Jx F
matrix with column vectors by, bs,...,bp. Then the Khatri-Rao product of 4 and

B is an I.J x F matrix

AOB=|a;®b | a;®b; | ... | ar®br]. (B.2)

(Khatri and Rao, 1968).

The Khatri-Rao circle product is used in expressing the derivative matrix V' in

closed form for models with F factors.
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B.3 Vectorization

Let X = (z;;) be an I x J matrix. The vectorization of X, denoted by vec(X),
arranges the elements of X into a vector of length IJ by varying the row index first
before varying the column index. In effect, vec(X) stacks the columns of X on top
of each other. It follows that the vectorization of the transpose of X, vec(X7), is a

vector of length I.J obtained by varying the column index first before the row index.

Thus ) . X .
X1 X1
X21 X12
Xn Xis
Xi2 Xa

Xaa X2

vec(X) = X.n and vec(X7T) = X.QJ

le XIl

Xas Xn
| X1 ] X1 |

Let Y be an I xJ x K array. The vectorizationof Y, d-enoted by vec(Y'), arranges
the elements of Y into a vector of length IJK such that the first index varies most
rapidly and the third index varies most slowly. To denote the arrangement of the
elements of Y where the last index varies most rapidly and the first index varies
most slowly, the notation vec(YT) shall be used, in keeping with the notation for

matrices. Thus,
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[ Yin | [ Y |
Y Yux
Yin Yin
Yin Yk

vec(Y) = and vec(YT) =

Yuk Ym
Yk Ynx
Yk Yin

RS | Yk |

Vectorization of the matrix or array of expected values u or, equivalently, of u7,
facilitates obtaining closed-form expressions for the velocity and acceleration vectors.
Whereas in the literature on multilinear models, vec(p) is used most often, if not
always, vec(uT) was used in this document in keeping with the conventional notation

of factorial experiments where the last index is varied most rapidly.

B.4 Matrix-Array Multiplication
Let B be an N; x N; matrix, and C be an N; x N3 x Ny array. The product

A= [B][C]a
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denoted by the square bracket multiplication [ ][ ], is an Ny x N3 x Ny array whose
element in the n'* face, p** row, and ¢** column is
N
Aln,p,q] = 3_ Bn,iCli,p, q].
i=1
(See Bates and Watts, 1988.)

Matrix-array multiplication is performed to obtain the curvature arrays.



Appendix C

Proofs of Lemmas

This section presents the proofs of the lemmas stated in Section 3.3. These lemmas
aim to determine whether any linear dependencies exist among the velocity and
acceleration vectors. Once the number of such dependencies is known, one can find
the combined dimension of the tangent and acceleration spaces, P + P’, which is
necessary in the calculation of the curvature arrays. Although the value of P+ P’ can
be obtained numerically given some data, the nice structure of the deriavtive matrix
V and the array of second derivatives #) for multilinear models leads one to think
that there must be some closed-form solution. For the one-factor trilinear PARAFAC
model, we have found that linear independence or dependence can, indeed be proven
analytically.

Section 7?7 gives the proof for linear independence of the acceleration vectors.
In Section ??, pairwise independence of the tangent and accelration vectors is in-
vestigated. Mutual independence of these vectors is the subject of Section 7?. All
the proofs use notation from Sections 3.1.1 and 3.1.2. The alternative expressions
for the columns of V and # presented in those sections now come in handy, since

some of them serve a proof’s purpose better than others.
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C.1 Proof of Lemma III.1

To determine if any linear dependencies exist among the columns of #, we wish to

know if there are nonzero coefficients ¢i;s, rjis, and s;xs that satisfy

- - » ™ N " » IJKXI
Do @i LI, ToN + X rinein [ T 5[], Ks Lkl + 3 sung®y [ s8], Ky [K]] = O,
iif skt ikf
(C.1)
or
[ (i-1)JKx1 T
0
(j-:())xn (j—l()]le (i-1)JK x1
1IKx1
> aijy Yy + ) ragoy® e + sus| By®e | = 0,
(5N (‘,—J)KXI hkS (J"j)le ik,f (I_’.)Jle
0 0 0
(I=i)JK x1
b 0 -

where the summation index 7 ranges from 1 to J — 1, the index j goes from 1 to
J — 1, and the index k from 1 to K.

The proof consists of taking mutually exclusive and exhaustive blocks of rows in
the above equation, then solving for the coefficients, if any. Blocks of J - K = JK
rows (JK x 1 vectors) are considered. We start with the I'** or last block of JK
rows, then look at the i"** block, where i/ is any of the other values of i.

Consider the I** block of JK rows:

(j—l())le
JK x1
3 qif 0+ Y riggag] ex + Y sux0=0
i.j.f jtkof (J_j()lKXI ..lklf

Since ay[lj =1forf =1,..., F, we have

F K Kx1
ZZrﬂ,;ek = 6( fOI‘j:l,...,J—-l
f=1k=1
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F
or erkf = Qforj=1,...,J-1,k=1,..., K. (C.2)
/=1

For ¢ = #/, the i block of JK rows, for¢' =1,...,I —11is

) o o .
Vs 0 e
JKx1 F 0 0 K . 0
0 = Y qans| |+t apons| P |+ rwsagli]|
J=1 0 27 k=1 0
\ 0 0 | 0 |
- 0 - - ‘
K 0 K
+ or-nwsagli]| | Y snBr@eny (C.3)
k=1 k=1
ex
L 0 - J

We shall further divide the i"** block of JK rows into mutually exclusive and ex-
haustive sub-blocks of K rows (K x 1 vectors) each :

The J** or last block of K rows in Equation C.3 is

F X Kx1
> > sogex = 0 since By[J)=lor f=1,...,F,

f=1k=1
F

or ) sy = 0for i'=1,....7-1k=1,...,K. (C.4)
f=1

For j =1,...,J — 1, the j* block of K rows in Equation C.3 is

Kx1 F K ) K _
0 = ) {‘Ii’if'f[ + ) ricpaylilen + 3 si’k.fﬁf[]]ek}
f=1 k=1 k=1
F
or 0 = 3 {quisvylk] + rinsosi') + sonsBylil} (C.5)
=1

for ¥ = 1,....,0—1,j=1,....,0—1, k=1,...,K.

From the above equality, Equations C.2 and C.4 we have Lemma III.1. In

particular, for F = 1, gij; = rjks = siks = 0.
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C.2 Proof of Lemma II1.2

When F' = 1, the tangent vectors are given by Equations 3.6, 3.7, and 3.8 as

(i—l)(.,lel
Val,i] = B®R®~y |,i=1,...,1-1, (C.6)
(I-i)JK x1
0
(G-1)Kx1
]
VB[vj] = a® Y yJ=LL...,J-1, (07)
(J-7)Kx1
0
and Vo[,k] = a®08Qe, k=1,...K. (C.8)

and the acceleration vectors are given by Equations 3.16, 3.18, and 3.17 as
[ (i-1)JK'x1 T
0

(F-1)Kx1
0

[, ZE)L, IU] = Y , (C.9)

(J-§)K x1
0

(I-i)JK x1
e 0 -

(i-1)Kx1
0

W, JGELKK)] = a®| e |, (C.10)
(J-J'())le

(i-1)JK x1
0

and 7 [ ZlL,KIK] = | B®@e (C.11)

(I-)JK x1
0

fori=1,...,7-1,j=1,...,J-1Lk=1,... K.
The proof proceeds by taking corresponding (nonzero) blocks of rows of the
tangent and velocity vectors and determining if one can be expressed as a linear

combination of the other.



100

1. Independence of V 4|,i] and # [, Z[z], T [5]]

We wish to determine if there exist coefficients ¢;, not all 0, such that
J-1
Valii]= 3 ;0 [, Z[], I -
i=1
Consider Equations C.6 and C.9. For a fixed ¢, we need only to look at the it*

block of JK rows because all other rows are 0 :

(7-1)Kx1
J-1 0
BRY=D) ¢ ¥
=1 (J—;'())le

Since B[J] = 1, the last K rows of the above equation yield v = Z:_‘T-’;} c;0.
There are no nonzero cofficients c; that will satisfy this unless all the elements

of 4 are 0. Thus, V 4[,] and # [, Z[z], J[;]] are linearly independent.

. Independence of V 4[,1] and # [, Z[s], K[k]]

Do there exist coefficients a; # 0 such that
K
Val,il =Y auiy [, Z[i], K[k]) 7
k=1
Consider Equations C.6 and C.11. For a fixed i, we again need only look at
the i** block of JK rows :
K
BRy=73 aB e
k=1
The above equality holds if we take a; = y[k], k = 1,..., K. Therefore V 4|, ]

is a linear combination of # [, Z{¢], K[k]].
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3. Independence of V 4[,i] and # [, T[], K[¥]]

Do there exist coefficients b;; # 0 such that

Valiil= 3" budt [, T3], KK} ?

Jik

Consider Equations C.6 and C.10. For a fixed ¢, the it* block of JK rows is

(i-1)Kx1

0

BRy= Z b,-;,a[i] €
ik (J-j())xxl

Since B[J] = 1, the last K rows of the above equation yields v = ¥, ; bjrax[?]0.
There are no nonzero cofficients b;; that will satisfy this unless all the elements

of v are 0. Thus, V' 4[,{] and # [, J[], K[k]] are linearly independent.

4. Independence of V g[,j] and # [, I{[¢], J[7]]

We wish to determine if there exist coefficients ¢;, not all 0, such that

Valil= 3" o Tiil, U

=1

In Equations C.7 and C.9, consider the last (I**) block of JK rows :

(i=1)Kx1
0 -1
ol v |=YXao0
(J—J'())le i=1

The above equality holds only if @{I]ly = 1 - 4 = 0. So V5[, j] and # [, Z[¢], T [5]]

are linearly independent.

5. Independence of Vg|,j] and 7 [, Z[i], K[k]]
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Do there exist coefficients b;, # 0 such that

V|l = ; by [, I{i], K[K]] ?

In Equations C.7 and C.11, consider the last (I**) block of JK rows:

{i-1)Kx1
]
1. ni = Zb.-ko
(J-J'())le ik

Again, there are no constants b; which can satisfy the above equation unless

~ = 0. Thus, V g[, j] and # [, Z[z), K[k]] are linearly independent.

. Independence of V5[, j] and # [, 7[j], K[¥]]

Do there exist coefficients a; # 0 such that

K
Vl,j] = kZ_; ariy |, I [4], K[K]] ?

Consider Equations C.7 and C.10. For a given j, we need only to consider the
7t sub-block of K rows within each of the I blocks of JK rows, since all other

elements are 0 :
K K
a[ih = E aka[i]ek = a[z'] Z ap€ep
k=1 k=1
The above equation is satisfied when a; = «[k], k = 1,..., K. Therefore V g, j]

is a linear combination of # [, J[j], K[k]].
. Independence of V¢[, k] and 7 {, T[i], J[5]]

We wish to determine if there exist coeflicients a;;, not all 0, such that

Vol K = ¥ aii [, 20, T3]
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In Equations C.8 and C.9, consider the I** block of JK rows:

a[I]ﬁ@ek=l-ﬂ®ek=Za,~j0.

i
Since there are no coefficients a;; that will satisfy this equation, unless 3 = 0,

Vel, k] and # [, Z[i}, J[j]] are linearly independent.

. Independence of V¢, k] and # [, Z[], K[k]]

Do there exist coefficients b; # 0 such that

-1
Vol, k] =Y b [, Z[E), K[k]) ?

=1
Consider Equations C.8 and C.11. Similar to the above, the last block of JK

rows is

I-1
B®er=) b0,
f=1

which holds only if all the 8’s are 0. So V¢, k] and % [, I[7], K[k]] are linearly

independent.

. Independence of V¢|, k] and # [, J[j], K{k]]

Do there exist coefficients ¢; # 0 such that

J-1
VC[: k] = Z_; c.iﬁ [, J[J]aK:[k]]?

In Equations C.8 and C.10, consider the J** sub-block of K rows in each of

the I blocks of JK rows :

J-1
alilflles = Y cialilo

orafi]-1-ex = afi]) J—1c0.

j=1
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Since there are no coefficients ¢; which will satisfy the above equations unless

each aft] is 0, V¢[, k] and 7 [, J[7], K[¥]] are linearly independent.

C.3 Proof of Lemma II1.3

To determine if the velocities and accelerations are mutually independent for a one-
factor trilinear model, we wish to know if there exist nonzero coefficients a;, b;, c,
ijy Tjk, and sg such that

IJK x1

0 =3 aVLZ + S5V Il+ S eV LKk +
> an [ ZI), T[] + 2; riit [, T1j), KIk]] + Zk: siep [, Z1d], K{k]). (C.12)

We start by evaluating each of the linear combinations in the above equation :

1. T eV [, Z0E])

From Equation 3.13, we know V [, I[{]] is nonzero only on £[z, , ], where V' [, Z1i]]
equals 8 ® «, independent of i. Note that the term §[I,,] is never disturbed

because it is out of the sum. If we define an I x 1 vector ap to be

a;
a=| ° |,
ar.i
0
then

-1
Y aVIfill=a®B8®1. (C.13)
=1
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As in the above, we see from Equation 3.14 that V [, J[j]] is nonzero only on

£[,7,]- If we define a J x 1 vector

b
bo = 5 ,
° by
0
then
J-1
Eb.-V LJUll=a®be®~. (C.14)
1=1

. Zi‘;] aV [1 K:[k]]

Similarly, defining a K x 1 vector ¢ to be

G
c= )
CK
we see from Equation 3.15 that
K
Ecch[,k] =a®fRc. (015)
k=1

o 272 ¢ 20, TG
Equation 3.23 shows that # [, Z[:], J[j]] is equal to +y on £[¢,7,], and zero

elsewhere. If we define an I x J matrix Q to be

o ef .',.’ "SI_I;J’SJ_I 0
Q[zaJ]={g[z J] :'=IOTj'=J SOth&tQ:[g 0]1
then
I-1J-1
33 it [ ZE)L, T = vec(@T) ® . (C.16)

=1 j=1



106

5. T35 Tl risit [, T (5], KIK]
It can be seen from Equation 3.25 that # [, J[j], K[k]] is equal to o on €[, , k]

and zero elsewhere. Defining a J x K matrix R to be

)ik 3SJ-1
R[J’k]—{ 0J j=J,
we have
J-1 K
> > rawdt [ I1), Klk]) = & @ vee(RT) (C.17)
i=1k=1

6. 11;11 f:l sikﬁ [11[’:], K:[k]]

Again, it can be seen from Equation 3.24 that # [, Z[i], K[k]] is nonzero only

on £[z,, k], at which it is equal to 3. If we define an J x K matrix S as

8
S = [IXK]
0
I-1

K
E 3 sady [, Z[2), K[k]] = vee(pra(B ¥ L) (C.18)

=1 k=1

similar to the above, then

where (13 exchanges ways 1 and 2 of an array.

From Equations C.13, C.14, C.15, C.16, C.17, C.18, and C.12, the columns of
V and #) are linearly independent if there exist nontrivial ao, by, ¢, @, R, and S,

such that

IJK x1
0 =a®@8QY + a@b@vy+a®B®c

+vec(QTY® v + a @ vec(RT)+ vec(p12(B x ST)) (C.19)
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Grouping the second and fifth terms of the above equation, we get
a ® (bo ® v + vee(RT)).

But bo ® « + vec(RT) = vec(RT + + x by).

Observe that RT* = —by x ~ is always valid, because RT*[,J] = —~bo[J] = 0.

Similarly, grouping the first and sixth terms of Equation C.19, gives

vec(YxBxao+p12(BxST) = vee(p1a(BxYxa0+8xST) = vec(pi2(B% (vxao+ST)).

Again, note that $T* = —4 x ag is always valid.
Thus, there exist 2 nontrivial solutions to Equation C.19. It remains to be shown

that there exist no others. Set

Ay = yxbo+ RT
and A, = yxap+ST
These are the “amounts” by which RT and S7 fail to cause the singularities just

derived.

Equation C.19 now is

a®BQc+vec(QF) @ v + vec(A; x &) + vec(p12(B x Az)) = 0. (C.20)

We need to show that this implies ¢, Q, A;, and A, are all zero. Now look at
the above equation as an array equation :

KxJxrl
exBxatyx QT +A xa+pn@xA)= 0 . (C.21)

Consider sub-matrices for each way :
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1. Take the [,,I] subface:
exBxalll+yx QT I+ Aall]+ 8 x Ay[,I] =0

But a[I] = 0 by convention, Q[,I] = 0 by definition, and A;[,I] = 0 by

definition of S and ay. So the above equation reduces to
exfB+A =0 (C.22)
Now take the [,J] column:
cBlJ]+ A4, J]=0.

But A;[,J}] = 0 by definition of R and by, and B[J] = 1 by convention.

Therefore,

From Equation C.22,

A =0.
2. Repeat the above using the [,J,] subface. Equation C.21 gives
ex Bl xa+vxQT[J ]+ Ai[,J,] xa+B[J]A; = 0.
Since B[J] = 1, and QT[J,] = 0, and A,[,J] = 0,
exa+A;=0.

But ¢ =0, so
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3. It only remains to show that Q@ = 0. Consider the [k,,] face. from Equa-

tion C.21, we get
clk] x B x a + 7[k]QT + Alk,] x & + B8 x Asfk,,] = 0
Since ¢[k] = 0, Ay[k,] =0, and Aj[k,,] =0,
vkQT = 0.

So 4[k] # 0 implies

QT=OorQ=0.



Appendix D

S Code

D.1 General Steps

This section outlines the steps for obtaining : (1) the case deletion estimates for a
one-factor trilinear model using the linear approximation; (2) the linear, weighted
linear, and reweighted linear jackknife estimates; (3) the derivative matrix, leverages,
and other quantities incidental to the calculations of (1) and(2). The S functions
used to carry out the steps, variable names used in these functions, and relevant
comments are given in parentheses following each step.

To obtain the #,’s using the linear approximation:

1. Obtain full least squares estimates by running R.T.Ross’ FORTRAN program

on the complete data set.

2. Set a[l] and B[J] equal to 1 by dividing & and 3 by the appropriate con-
stants; then adjust 4 by multiplying by the same constants. For comparison
purposes, do the same normalization on the true values of the parameters.
(The normalized full least squares estimates are named alpha.norm, beta.norm,
gamma.norm; the normalized true parameter values are named alpha.comp,

beta.comp, gamma.comp)

110
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3. Read in the data. (The function fun.dataray reads in the data in the usual
input format to FORTRAN except that the title, names, and other characters

are removed.)

4. Obtain the derivative matrix V. (The function fun.v will return an N x P

matrix.)

5. Compute (VITV)~'VT, (The function fun.vtvivt will return a P x N matrix.
If the “solve” command complains that V' is singular, check using the “svd”
command. If the singular value decomposition confirms the singularity of V,
the problem may be due to several parameter estimates being zero. If so,
modify V by deleting the full estimates which are zero or setting them to a
very small value, say 107%. Also, for large matrices, using “svd” instead of

“solve” might be more efficient.)

6. Obtain the leverages h,. (The function fun.hr will return a vector of length

N.)

7. Compute

e
1—h,

rho =
(The function fun.rho will return a vector of length N.)
8. Calculate the 8,’s. (The function fun.thetadel will return the P x N matrix

containing the linear approximation leave-out estimates of the P parameters

when each of the N observations are deleted.)
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To obtain the linear (LP), weighted linear (LQ) and reweighted linear (RLQ)

jackknife estimates :
1. Do steps (1) to (6) above.

2. To find LP, compute rho (see step (7) above); to find LQ, compute rholq = e;
to find RLQ, compute rhorlg = e(1 — h,). (Each of the functions fun.rho,

fun.rholq, and fun.rhorlq will return a vector of length N.)

3. To find LP, compute

e -
1-h,’

nmur = n(VIV)y7T

which is the second term in Equation 5.2; to find LQ, compute nmurlq, the
second term in Equation ??; to find RLQ, compute nmurrlq, the second term
in Equation ??. (Use rho, rholq, and rhorlq, respectively, as arguments to

the function fun.nmur.)

4. Obtain the jackknife estimates LP, LQ and RLQ. (Use nmur, nmurlq, and

nmurrlg, respectively, as arguments to the function fun.lp.)

D.2 S Functions

Below are the S functions referred to in the previous section. The arguments have
been given names that are as obvious as possible. The discussion in the previous
section should also shed light on what the arguments represent.

Most of functions given here are very short; they can easily be combined into

one long function, or a main function that calls each of the shorter ones. For clarity
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and ease of understanding, the simpler functions are given. Also, performing all the
calculations in one swoop may cause dynamic memory problems for large data sets,

so it is sometimes useful to be able to break up the program into smaller pieces.

fun.dataray « function(filename = "nfakla.data”)

{ dataraw « scan(filename, what = ")

dataraw «— as.numeric(dataraw)

I « dataraw[1]

J « dataraw[2]

K « dataraw(3]

N«~I*J*K

dataray « array(dataraw[9 + 1+ J + K:8 + I+ J + K + NJ, ¢(I, J,
K))

return(dataray) }

fun.kronecker « function(amat, bmat)

{ T.amat as.matriz(amat)
T.bmat as.matriz(bmat)
T.matprod matriz(aperm((outer(T.amat,T.bmat)), c(3, 1,4, 2)),
ncol = ncol(T.amat) * ncol(T.bmat))

return(T.matprod) }



fun.v « function(alpha.norm, beta.norm, gamma.norm)

{ I « length(alpha.norm)

J « length(beta.norm)

K « length(gamma.norm)

P—I+J+K-2

v11 + fun.kronecker(diag(I - 1), fun.kronecker(beta.norm, gamma.norm))
vl « rbind(v1l, matrix(rep(0, J * K * (I - 1)), ncol =I - 1))

v2b + rbind(fun.kronecker(diag(J - 1), gamma.norm),
matrix(rep(0, K * (J - 1)), ncol = J - 1))

v2 « fun.kronecker(alpha.norm, v2b)

v3 « fun.kronecker(fun.kronecker(alpha.norm, beta.norm), diag(K))
v « cbind(vl, v2, v3)

return(v) }

fun.vtvivt « function(v)
{(vtv =tV % *% v
vtvivt + solve(vtv, t(v))

return(vtvivt) }

fun.hr « function(v, vtvivt)

{hev%*% vtvivt

114
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hr « diag(h)

return(hr) }

fun.rho « function(alpha.norm, beta.norm, gamma.norm, dataray, hr)
{ etaray « outer(outer(alpha.norm, beta.norm), gamma.norm)
residray « dataray - etaray

resid « c(residray)

rho + resid/(1 - hr)

return(rho) } endquote

fun.thetadel + function(alpha.norm, beta.norm, gamma.norm,

vtvivt, rho)

{ I « length(alpha.norm)

J « length(beta.norm)

K « length(gamma.norm)

P—~(I-1)+4J-1)+K

ur « -1 * vtvivt * outer(rep(1, P), rho)

theta.norm « c(alpha.norm| - 1}, beta.norm{ - J}, gamma.norm)
thetadel «— theta.norm + ur

return(thetadel) }

fun.nmur « function(l, J, K, vtvivt, rho)
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{N<I*J*K
P—I+J+K-2
nmur « N * vtvivt * outer(rep(1, P), rho)

return(nmur) }

fun.lp « function(alpha.norm, beta.norm, gamma.norm, nmur)
{ I « length(alpha.norm)

J « length(beta.norm)

K « length(gamma.norm)

N«—I*J*K

P—(I-1)+J-1)+K

theta.norm - c(alpha.norm( - I}, beta.norm| - J], gamma.norm)
lpr « theta.norm + nmur

lp « apply(lpr, 1, mean)

varlp « apply(lpr, 1, var)

varlp « varlp/N

selp « sqrt(varlp)

return(list(lp, selp)) }
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