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C H A P T E R  I

Introduction

1.1 W h y C ase D eletion?

Param eters are usually estimated based on a full or complete data set. Case deletion 

refers to leaving out one “case” or observation at a time and re-computing the 

param eter estimates. Why would one want to do that?

This idea of leaving out cases or observations has been used in several contexts. 

In d a ta  sets where there are some outlying observations, it is often desired to  de­

term ine the effect that leaving out this observation will have on the results of the 

analysis. Or, one may wish to see how a particular estimator is affected by extreme 

values. Various measures which assess the influence of an observation have been 

constructed; such measures, quite naturally, involve case deletion.

Another area where the concept of leaving out observations appears is cross- 

validation. When a  model is fit to a set of observations, the investigator would want 

some indication of how well the model fits. Or, the investigator’s task may be to 

choose one of several models that will fit the data best. A reasonable way to do this 

is to  test a candidate model on a set of observations different from the one on which 

estim ates of the model parameters were obtained. Since the investigator usually has
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only one data set at hand, the available observations can be divided such that only 

some are used in obtaining the model estimates, while the rest are set aside to be 

used later as a test set. Then the roles can be switched so that each set contributes 

to both the estimation and the testing of the model. The “limit” of such a procedure 

is setting aside one observation at a time, instead of a group of observations.

Case deletion is also used to obtain jackknife estimates. Like cross-validation, 

jackknifing involves leaving out one data point at a time, then re-computing esti­

mates based on the rest. The goal, however, is to arrive at estimates which possess 

some desirable property to a larger degree (or an undesirable property to a lesser de­

gree) than the original estimates calculated from the complete data set. Originally 

proposed to reduce bias, jackknife estimates have also become useful in estimat­

ing the variances of estimators when there are no cut-and-dried formulas for them. 

Various jackknife estimators are presented in

Now that we have seen some purpose in case deletion, we turn to the question of 

its implementation. When the number of observations is large, deleting one case at a 

time can become a tedious and computationally intensive task. In linear regression, 

closed-form expressions exist for the parameter estimates when the rth observation is 

deleted; these do not require re-computing the estimates every time a case is deleted. 

In nonlinear regression, however, parameters are usually estimated using iterative 

procedures, and to get case deletion estimates, it is necessary to actually remove 

one observation at a time and go through the entire calculation every time. In order 

to avoid such difficulty, some approximations have been suggested in the literature.



How well these approximations perform, compared to the estimates obtained when 

the observations are actually left out one at a time is a major point of interest here.

1.2 Linear, N onlinear, and M ultilinear

Multilinear models are a class of nonlinear models which are conditionally linear in 

the parameters. They are defined and described in Section 2.1. These models have 

been found to be especially useful in spectroscopy (see Leurgans and Ross, 1991a), 

among other areas. A discussion of some applications is given in Section 2.2.

The quantity of results that are available for nonlinear models pales in com­

parison with the volumes that have been written on the linear model. But what is 

known about nonlinear models can already be considered extensive, relative to what 

has been done for multilinear models. If results for linear models can be extended 

to nonlinear models, all the more can we apply methods used for nonlinear models 

to the special case of multilinear models. In particular, measures of curvature and 

approximations to the actual case deletion estimates used in nonlinear regression 

can and will be applied in the multilinear setting.

The extension of concepts from linear to nonlinear models usually involves linear 

approximation. For instance, the curved expectation surface of a nonlinear model is 

approximated by a tangent plane at a point in order to obtain parameter estimates. 

The approximation is given by a first-order Taylor series expansion of the expectation 

function about that point. Taking this first-order expansion is the same idea behind 

the linear approximation estimates presented here.

“Models with conditionally linear parameters enjoy some advantageous proper­



ties, which can be exploited in nonlinear regression.”(Bates and Watts, 1988) The 

special structure of multilinear models that arises from their conditional linearity 

and from the way they are defined is evident in the form of their derivative ma­

trices and second-derivative arrays. Unlike other nonlinear models, the multilinear 

model derivatives have been found to have closed-form expressions and well-defined 

relationships. This nice structure is used to advantage in many of the calculations.

1.3 Roadmap

The main purpose of this dissertation is to explore case deletion for multilinear 

models. In particular, how viable some of the case deletion approximations are, 

when applied to multilinear models, is of interest.

A general introduction to multilinear models is given in Chapter II. The termi­

nology and notation for multilinear models is given in Section 2.1, those for nonlinear 

models are given in Section 2.3.1, and two are connected in Section 2.3.2. Transla­

tion of multilinear into nonlinear language makes it easy, later on, to apply nonlinear 

methods to multlinear models. An example using a small number of observations 

is introduced in Section 2.4; it serves to illustrate the material in this and the next 

chapter.

In Chapter III, the structure of a particular type of multilinear model is inves­

tigated. The velocities or first derivatives, and accelerations or second derivatives 

of a trilinear PARAFAC model are studied in detail. Closed-form expressions for 

them are derived. The formulas for the various estimates in Chapters V and VI use 

the velocities and accelerations heavily, so the results of Secitons 3.1.1 and 3.1.2 will



prove invaluable.

The quadratic approximation to the case deletion estimates given in Chapter 6 

assumes that the expectation surface is more or less planar. Thus, a measure of 

planarity is necessary to verify that validity of this assumption for the data set 

under consideration. Curvature measures, which measure planarity and uniformity 

of parameter lines for a nonlinear model, are discussed in Section 3.2. A couple of 

examples to illustrate their application to PARAFAC models, as well as to pave the 

way for the quadratic approximation of Section 6.1.2 are given in Section 3.4.

Calculation of the curvature measures require that the combined dimension of 

the tangent and acceleration spaces be known. Although this can be determined 

numerically given a data set, the structure of the PARAFAC models again makes it 

plausible that it can be found analytically. Investigating linear dependencies among 

the velocities and accelerations indeed yields a formula for this quantity, at least 

for the one-factor model. The linear dependencies derived in Section 3.3 are also of 

interest in themselves since they help to further define the structure of these models.

Chapter IV gives a more detailed background of cross-validation. It discusses the 

relevance of case deletion in the cross-validation of multilinear models and points 

out that this is a major area of possible applications.

Chapter V presents some alternatives to the ordinary jackknife estimates. By 

relying on a linear approximation, these estimators avoid having to do the actual 

deletions. Some of the estimators presented here are evaluated for the numerical 

example of the next chapter.



The roads paved by the previous chapters all lead to Chapter 6 . Here, linear and 

quadratic approximations to case deletion estimates are presented and applied to a 

simulated data  set. The actual and approximate estimates are compared in order 

to see whether the approximations are viable.

Chapter 7 summarizes the results and suggests areas of application and further 

study.



C H A P T E R  II

Introduction  to  M ultilinear A nalysis

This chapter introduces the reader to multilinear models. Section 2.1 defines a 

multilinear model and sets down the notation and terminology peculiar to this class 

of nonlinear models. Some of its applications are given in Section 2 .2 . In Section 2.3, 

nonlinear models are discussed, with emphasis on the aspects that are relevant to 

multilinear analysis. The terminology and notation presented in Sections 2.1 and 2.3 

will be used throughout the succeeding chapters. A small example using real data 

is given in Section 2.4 to illustrate the material in the preceding sections. This 

example will also be used repeatedly in the next chapter.

2.1 T erm inology and N ota tion

A multilinear model represents an Af-way array of observed values of a response 

variable Y  as the sum of F  simpler arrays, each the outer product of M  vectors, plus 

a random term. The dimension of the m th vector in each outer product (m =  1, . . ,M)  

is the same as the number of levels in the m tk way of the array. The number of 

outer products, F,  is called the number of components or factors of the model. The 

random term has mean zero and unknown variance. The array of expected values 

of Y  is denoted by p.



The simplest multilinear model is a one-component bilinear model:

Y[i , j ]  = oc[i](3\j] + €[iJ]

E ( Y [ i , j ]) =  ft[i,j] = a[i](3[j], i = 1, j  = 1, . . . ,J .  (2.1)

where

a  is an I-dimensional vector corresponding to the first way,

/3 is a J-dimensional vector corresponding to the second way.

Equation (2.1) is written using the S notation for matrices described in Appendix 

A. In matrix form, the equation is

r oil
, XJ  a TM = <*P ~

a i
[ f t . . .A / ] .

I x J  I x lIn outer product form, ft = a  x /3 . Note that for fixed <*, the elements of n  are 

linear in (3. Similarly, ft  is a conditionally linear function of at. Thus ft  is a bilinear 

function of a  and f3.

A one-factor trilinear model is of the form

E(Y[ i , j , k] )  = ot\i]l.3[j]7[*], i =  1 , . . . , / ;  j  = 1, . . . ,  J ; k = (2.2)

where oc and j3 are as before, and y  is a AT—dimensional vector corresponding to the 

third way. The S notation for arrays (see Appendix A) is used in Equation (2.2). 

The array ft  can also be written as: IxJf t K=Ia  x /3 x Ky i . For fixed a  and f t  ft 

is linear in 7 ; for fixed a  and 7 , ft is linear in f t  and for fixed (3 and 7 , ft is linear 

in oc. Thus ft  is a trilinear function of a ,  f t  and 7 .



An F-factor bilinear model has the representation

M *.i] =  2 «/[*]£/[?]. i =  l , . . . , / ;  i  =
/ = i

(2.3)

where the F  vectors a / ’s are each /-dimensional and correspond to the first way, 

and the F  vectors /3 /’s are each J-dimensional and correspond to  the second way. 

In m atrix form,

V J a f b L I x l l x l

J x l

J x l
a F

I x J

P i
1 xJ

P i

l x J

L P i  J
In outer product form, *$1 =  52/=1 x  P f ■

An F-component trilinear model is of the form

F

=  3 = k = (2.4)
/ = i

where the a / ’s and P / ’s are as before, and the F  vectors 7 / ’s are iif-dimensional and 

correspond to  the third way of the array of expected values. This may be expressed 

in outer product form as IxJfj?K= J2/=i <*} x  P j x  7̂*j. For a fixed k, the model 

can be expressed as

I x J  I x f F x f  r/ x l / x l  /XI,jtfc = A  D  kB 1 =  [a1ac2 . . . a F]

Models (2.1) through (2.4) are called PARAFAC (Parallel Factors) models, and 

may be extended to higher-way models. (See Carroll and Chang, 1970.)

' 1 x J  '

7*i  0  • • 0 P i
I x J

0 7*2 • • • 0
P i

0 0 . . .  J k F  . 1X J

. P i .
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Note th a t in (2.4), if otf, (3j and “y f  are each multiplied by constants whose 

product is one, the array $i of expected values does not change; th a t is,

F

/= i

for any constants a / ,  b/ ,  and cj  such that ajbjcj  =  1. There are several ways to 

remove this nonidentifiability. One is to require a /  and (3 j  to be unit vectors with 

nonnegative first elements, th a t is, || otf ||=  1 and || (3f  ||=  1 V /. (See Leurgans, Ross 

and Abel, 1990.) An alternative way is to set <*/[/] =  1 and /3/[<7] =  1 V/. Finding 

the derivative m atrix  is much simpler when using this la tter convention. Thus, the 

following normalization shall be used in the subsequent discussion: In Model (2.4), 

divide the vectors otf and (3f by the constants <*/[/] and /3f[J], respectively, V/; 

then m ultiply the vector 7 /  by ot/[/]/3y[«7] V /, thereby making ctj[I] and (3j[J] 

equal to  1 but leaving f t  unchanged. Similarly, the param eters in Model (2.2) are 

normalized by setting <*[/] =  1 and (3\J\ =  1, For the bilinear models (2.1) and (2.3), 

the corresponding identifiability conditions are « [ /]  =  1 and otf [I] V /, respectively.

2.2  A p p lica tion s

One of the earliest published applications of PARAFAC models is the study made 

by Harshman, Ladefoged, and Goldstein (1977) on the position of the tongue while 

a  speaker pronounces vowels. X-ray movies were taken while a speaker was talking. 

During the central portion of a  vowel, one frame of the movie was chosen, and 

lines were drawn on the X-ray photograph at selected positions. The height of 

the upper surface of the tongue was then measured with respect to  those lines.
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Observations were taken for 10 American-English vowels, measured a t 13 positions 

or lines along the tongue, spoken by 5 speakers. PARAFAC models (with varying 

num ber of factors) were fit to  the 10x13x5 array of tongue heights. A two-factor 

model was selected, yielding three m atrices of param eter estim ates: a  10x2 m atrix 

[ay] corresponding to  the 10 vowels, a 13x2 m atrix [/?_,/] corresponding to the 13 

positions along the tongue, and a  5x2 m atrix [7*/] corresponding to  the 5 speakers. 

The first two matrices were of most interest: The first was displayed with each row 

as a point in F-dimensional space; i.e., the vowels were represented by 10 points in 2- 

dimensional space. The resulting configuration was strikingly similar to two classical 

representations of American-English vowels. The second m atrix  was displayed with 

each column as a  curve made of 13 points because the 13 positions along

the tongue form a natural sequence.

A m ajor area of application of multilinear models is spectroscopy. “Spectroscopy 

is the measurement of the absorption of particles by a  specimen, or the emission of 

particles from a specimen, as a  function of the energy of the particles... Common 

spectroscopy uses electromagnetic radiation, such as visible light. The particles are 

photons. The wavelength of the radiation is inversely proportional to  photon en­

ergy, and wavelength is often used instead of energy as the independent variable.” 

(Leurgans and Ross, 1991b) Additional independent variables, such as concentra­

tion, tim e, or other environmental conditions affecting absorption or emission of 

light may also be included.

In fluorescence spectroscopy, the  response variable is the am ount of light em it­
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ted by a specimen composed of one or more components. The light emission of a 

specimen containing only one component can be modeled as

fjt[itj] =  a[i\P\j]

where

j \  is the amount of light emitted, 

a[t] is the number of photons absorbed when the specimen is illuminated with 

light of wavelength A; (also called excitation wavelength),

f3\j] is the fraction of absorbed photons which lead to emission of light at wave­

length Tj (also called emission wavelength).

For a specimen containing more than one chromophore or component, we have

*»[*. j] = £  a/[*]0 /[i]
/ = i

where

« / [  i] is the absorbance of component /  at wavelength A,-,

is the relative emission of chromophore /  at detection wavelength Tj, 

pi[i,j] is the amount of light emission measured, 

and F  is the number of chromophores.

The absorbance and emission of light by chromophore /  are considered indepen­

dent events, so the amount of light emitted by chromophore /  at wavelenth Tj when 

illuminated with light at wavelength A,- is otj[i\{3j\j\. It is assumed that there is no 

transfer of energy among the F  chromophores, so that the amount of light emitted 

by the specimen is just the sum of the amounts of light emitted by its individual 

components.



13

Appelloff and Davidson (1981) provided the first application of m ultilinear anal­

ysis to  three-way arrays of fluorescence data. The fluorescence intensity of a  solution 

containing F  chromophores were observed at 30 excitation wavelengths, 30 emission 

wavelengths, and 10 different times (or concentrations, since the concentration of a 

chromophore varies with time). The model is

F

/ = i

where

a /[ i] ,  (3j{j]i and F  are defined as before,

is the  relative concentration of chromophore /  at tim e 

/i[i, j ,  &] is the fluorescence intensity at excitation wavelength A,-, emission wave­

length Tj, and tim e t*.

PARAFAC models were fit to  real data with two and three chromophores, and 

to  simulated data with two, three, and four chromophores. For the two- and three- 

factor models, the estim ated spectra were very close to  the true spectra, both for 

the real and the simulated data. The four-factor estim ates were not as close.

Many more applications of PARAFAC models can be found in Kroonenberg(1983).

2.3 M u ltilin ear M od els as a S pecia l C ase o f  N on linear  
M od els

The literature on nonlinear models is very much more extensive than th a t on mul­

tilinear models. A number of books and articles have been written on nonlinear 

regression, covering broad areas such as param eter estim ation, or specialized topics



14

such as curvature measures and case deletion. In order to avail of this “common 

knowledge” and apply it to the uncommon area of multilinear analysis, it would 

be useful to  cast multilinear models in a nonlinear regression framework. After all, 

multilinear models are, strictly speaking, nonlinear in nature.

Section 2.3.1 presents some notation and geometry for the nonlinear regression 

model. The same notation and geometrical concepts will be used in Chapters III, 

V and VI. Section 2.3.2 connects the multilinear notation in Section 2.1 and the 

nonlinear notation in Section 2.3.1 through some examples.

2.3.1 N on linear M odels: N ota tion  and G eom etry

A nonlinear regression model can be written as

Yr = ij(xr,ff) + er, r = l , . . . , N  (2.5)

where tj is a  nonlinear function of the unknown parameter vector 9,  e; are indepen­

dent with zero expectation and unknown variance. Considering the ar,-’s as fixed, we 

may rewrite the model as

Y  =  ri(6) + e (2.6)

where Y  is an N  X 1 vector of responses, rj is an N  x  1 vector whose elements are 

functions of the P  x 1 vector of parameters 9. Note that Y  is nonlinear in the 

parameters.

Let:

SI be the subset of 3tp consisting of all possible values of 9;

M  =  {»j(0) : 9 €  ft} 6  be called the expectation surface; *
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e(9) =  y  -  v(9);

S(9 ) = eTe = \ \ v - T j ( e ) r ;
A
9 be the least squares estimate of 9 , i.e., the value of 9 that minimizes S(9); 

if = r}(9) be the point on M  closest to y; 

e =  y — if be the residual vector;

S(0 ) = eTe;

V p = Vp = 1 < P < P, the partial derivative of tj with respect to the pth

component of 9 , also called tangent vector or velocity vector ; 

ifpq =  wj)8q) 1 — PiQ — P > calle<i  an acceleration vector ;

V  be the N  x P  m atrix whose columns are Vp, called the derivative matrix;

be the N  x P  x P  array whose nth face is (i/npiJ);

G = V TV  = (gpq).

The problem of finding the least squares estimates can be stated geometrically 

(Bates and W atts, 1988) as: (1) finding the point r) on the expectation surface which 

is closest to y, then (2) determining the parameter vector 0 which corresponds to
A
V-

For a linear model, an explicit expression for if exists. Also, the parameter plane 

maps linearly to the expectaion plane, so if we know where we are on one plane, 

the corresponding point on the other plane can be found. For a nonlinear model, it 

is not easy to find if, and even if if were known, it would be difficult to find the 0 

corresponding to it. To overcome these difficulties, iterative methods are used.

One such method, the Gauss-Newton method, consists of expanding the expec-
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tation function in a first-order Taylor series about an initial guess for 0 , 0 °. This 

initial guess is iteratively improved until the estimates stabilize. The approxima­

tion of ij(0)  by a Taylor series expansion at ij° =  ij(0°) involves the two distinct 

approximations:

( 1) approximating the expectation surface by its tangent plane at rj(0°) (called 

the planar assumption), and

(2) approximating the true parameter coordinate system by a uniform coordinate 

system, i.e., imposing a linear coordinate system on the approximating tangent plane 

(called the uniform coordinate assumption).

The second-order partial derivatives ffpq can be decomposed into their tangential 

and normal components, denoted by ffpg and ffpq, respectively (Bates and W atts, 

1980). The space spanned by the vectors rfpq (1 <  p,q  < P)  is called the accelera­

tion space. Let S i , . . .  ,6 m (m < p(p +  l) /2 )  be an orthonormal basis for the accel­

eration space. Then each rfpq can be written as a  linear combination of the vectors 

rfM (s = 1 , . . . ,  P)  and 6a (a =  1 , . . .  ,m):

»iP,  =  +  bapqs a, i  < p , q < p  (2.7)

The above equation uses the Einstein summation convention, where a repeated 

index, once as a superscript and once as a subscript, means summation over the 

range of th a t index, i.e.,

K ,*!. =  (2 .8)
S=1

m

=  E  K ,6- ■
a=l
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The coefficients r®ff are called connection coefficients by Ross (1987), and correspond 

to the elements of the parameter-effects curvature array of Bates and Watts (1980) 

in a standardized parameterization. The coefficients b°q correspond to the elements 

of their intrinsic curvature array, and are referred to as coefficients of the second 

fundamental form by Ross. The connection coefficients reflect the degree of param­

eter nonuniformity, while the coefficients of the second fundamental form indicate 

the degree of nonplanarity of the model. The faces of the intrinsic curvature array 

are given by the P  x P  matrices B a =  (6“?). Section 3.2 discusses how the curvature 

arrays are obtained.

2.3.2 Some M ultilinear M odels in Nonlinear N otation

The class of nonlinear regression models contains the class of multilinear models, 

and in particular the PARAFAC models. The following examples illustrate this:

1. Consider a one-component bilinear model (2.1) with 1 = 2 and J  = 2. Here, 

N  = 4 = I -  J , P  = 3 = I  — \ + J,  and

e =

In the form of (2.6), we can write the model as

r ^ i  i « [1W 1 I
Vl2 « ( W 1
Yn i  ■ m

. Yu .
or

rj(0) =  vec(a x /3)T = a  <8> P  = •Ei]
l

9 [  2] 

*[3]
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where the operator ® represents a Kronecker product and vec denotes the 

vectorization of a matrix or array. Kronecker products and vectorization are 

defined in Appendix B.

2. In a one-factor trilinear model (2.2) with 1 = 2, J  =  3, K  = 2 there are 

JV =  12 =  I  • J  ■ K  observations and P = 5 = I — 1 + J — l + K  elements in 

the parameter vector
r « [ i ]

m  
0  =  0 [2]

7[1]
. M 2 ]

This model can be written in the form of (2.6) as

'  Km ‘ r «[i])9 [ ih ii]
Y\ 12 «El]j9[l]7 [2]
Y121 « [ 1]0[2]7[1]
Y122 «[1]^[2]7[2]
Yin a[l) ■ 1 ■ 7 [1]
1̂ 32 a [ lj  • 1 ■ 7 [2]
K2U 1 • (3[ 1]7 [1]
Y212 1 • /9[lh[2]
V22I 1 . /J[2h [ l]
>222 1 . (3[2]7[2]
YlSl 1 • 1 * 7[1]

.  ^ 32 . l - l - 7 [ 2 ]  .

or

rj(0) =  vec(a x  j3 x  y ) T = a  <g> f3 ® 7  =

+  e

(2.9)

(2.10)

6 [  1] 
1 ®

^[2] 1 
0[3]

1
® m

s[b]

3. An F*component trilinear model ( 2.4) with 1 = 2, J  =  3, K  = 2, F  = 2 has 

TV =  2 ■ 3 • 2 =  12 observations and

P  = ( I - 1  + J - 1  + K ) F  =  (1 +  2 +  2)2 =  10
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elements in the param eter vector

0 =

“ i t 1]
ot2 [1]
Pill]  
A  [2] 
A W  
«  

7 i [ l ]  

7 i [ 2 ]  

7a[l] 
7 a  [2]

In the form of (2.6), the model can be written as

' *111 ■ " l W i ^ b i l l ]  +  < * 2 [ l ] / 5 a [ l ] 7 a [ l ]

*112 « i [ 1 ] 0 i [ 1 ] 7 i [2] +  £ * 2 [1 ]/3 2 [ 1 ] 7 2 [2]

*121 « i [ l j / 5 i [ 2 ] 7 i [ l j  +  <*2 [ l j / 3 2 [ 2 ] 7 2 [ l ]

*122 « i [ 1 ] 0 i [ 2 ] 7 i [2] +  a r 2 [ l ] 0 2 [ 2 ] 7 2 [ 2 ]

*131 « i [ l ]  • 1 * 7 i [ l ]  +  < * a [ l]  • 1 - 7 2 1 1 ]

T l3 2 « i [ l j  • * • 7 i [ 2 ]  +  a '2 [ l ]  • 1 - 7 2 ( 2 ]

*211 l * / » i [ l ] 7 i M  +  l - / J a [ l ] 7 a [ l ]
*"212 l - / » i [ l ] 7 i [ 2 ]  +  l - ) 3 a [ l ] 7 a [ 2 ]

*221 1 - / ? i [ 2 ] 7 i U ] +  1 - ^ 2 [ 2 ] 7 2 [ 1 ]

*222 l ‘ A [ 2 ] 7 i [ 2 ]  +  l * 0 a [ 2 ] 7 a [ 2 ]

*231 1 1 1 * 7 i [ l ]  +  1 • 1 • 7 2 [1]

*232 1 • 1 • 7 i [2] +  1 • 1 • 7 2 [2]

or

rj(0) = vec(%2 atf  x /3  f x  7 / )r  = ' £ o t } ®(3f ® 7 y. 
/=1 /=i

2.4 A  Sm all Exam ple: P lastocyan in  A bsorption

(2 .11)

(2 .12)

We now consider an illustration based on real data. This will serve as a  running 

example to help clarify the material in the preceding as well as the forthcoming 

sections. The data  is taken from Durell, Draheim and Gross (1988). To keep the
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illustration simple and tractable, we shall look only a t a subset of the original data  

set.

Plastocyanin is a protein, found in plant chloroplasts, which participates in elec­

tron transport. The data  consists of amounts of light absorbed by this substance 

m easured at different wavelengths, species of plastocyanin, oxidation states and en­

vironm ental pH. Absorption measurements were made at 30 different wavelengths, 

for 4 biological sources or species (spinach, poplar, lettuce, parsley), and 4 chemical 

treatm ents (combinations of oxidation state  and pH variables). The original data  

can thus be arranged in a 30 by 4 by 4 array of observations, from which we take 

a 2 by 3 by 2 subset. The selected observations correspond to  wavelengths of 250 

nm  and 262 nm, the first 3 species, and the first two treatm ent levels. Below is the 

2 x 3 x 2  da ta  array Y [ i yj yk] in S array notation:

n , 1] :
n  i,]  n 2 ,] n 3,1

Y [  1 ,,] 4.2 4.4 4.3
Y [  2 ,,]  4.3 4.1 4.2

n ,  2]: 
n  1,] n 2,] na ,]

Y [ l yy) 3.4 3.7 3.9
Y [  2,,j 3.9 3.4 3.8
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In vectorized form,

u e c (y [ i,j ,  fc])T =

'  * 1 1 1 ' ' 4.2 '
*112 3.4
*121 4.4
*122 3.7
*131 4.3
*132 3.9
*211 4.3
*212 3.9
*221 4.1
*222 3.4
*231 4.2
*232 3.8

(2.13)

where vec (Y [ i , j ,  fc])T denotes the modified vectorization of an array defined in Ap­

pendix A.

Previous analysis of the original 30 by 4 by 4 da ta  set indicated th a t a t least 2

factors were present. (See Leurgans and Ross, 1991a.) To keep the example simple,

however, we shall use only a one-factor model. The multilinear model for the  2 by 

3 by 2 d a ta  set is therefore

E ( Y [ i J , k ] )  = p [ i j , k ]  = ot[i]/3\j]y[k\, (2.14)

i = 1,2; j  = 1,2,3; k =  1,2. (2.15)

A 2-factor trilinear PARAFAC model was fit to  the 12 observations using R.T. Ross’ 

FORTRAN program (see Leurgans, Ross and Abel, 1990) and the least squares esti­

m ates for the second of the factors was chosen to represent the estim ated param eter 

values of the one-factor model. These, rounded to 4 decimal places, are:

ct = ‘ 0.7231 ‘
, £  =

' 0.5710 ' ' 10.3918 '
0.6907 0.5716 , and 7  = 8.98530*5893
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Using the normalization convention described in Section 2 .1, we divide or by

0.6907, we divide /? by 0.5893, and we m ultiply by both these constants to obtain

the following normalized least squares estimates:

Param eter Original LSE Normalized LSE
a [l] 0.7231 1.0469
a [ 2] 0.6907 1.0000

m 0.5710 0.9689
m 0.5716 0.9700
m 0.5893 1.0000
7(1] 10.3918 4.2299
7  [2] 8.9853 3.6574

Note that in this example, /  =  2, J  =  3, K  =  2, and F  =  1, just as in the 

second example of Section 2.3.2. So the 5 x 1  vector 0  is given by Equation 2.9 and 

its least squares estim ate is
'  1.0469

0.9689 
6 =  0.9700

4.2299
3.6574

Equation 2.10 gives the nonlinear regression form of 2.15. So the estim ate of rj(0)

is

tf =  Tf(0) =

4.2906 1
3.7099
4.2953
3.7140
4.4284
3.8290
4.0983
3.5436
4.1028
3.5475
4.1028
3.5475
4.2299
3.6574



C H A P T E R  III

C urvature M easures o f  N on lin earity  for Trilinear 
P A R A F A C  M od els

For linear models, the  first derivatives of the expectation function with respect to the 

param eters are constants, and the second derivatives are identically zero. This is not 

the case for nonlinear models, in general, and for m ultilinear models, in particular. 

Thus, the acceleration vectors fjpq have been used to  measure nonlinearity of a 

model (Bates and W atts, 1980). Measures of intrinsic curvature (how planar the 

expectation surface M  is, or how well M  can be approximated by its tangent plane), 

and of param eter effects curvature (how uniform the param eter lines are on the 

tangent plane) have been derived using the ffpq s.

In Section 6.1.2, the quadratic approximation to  case deletion estim ates of the 

param eters is a simple expression th a t has been derived assuming th a t the expec­

tation surface is more or less planar. Bates and W atts (1988) studied real data  sets 

using different nonlinear models (67 data  set-model combinations in all) and found 

th a t in most of them , the expectation surface could be well-approximated by a tan­

gent plane. Their results strongly support the assumption of planarity. It would be 

of great interest to  us to see whether the planarity assum ption also seems to  hold 

for PARAFAC models.
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Measures of nonplanarity and parameter nonuniformity for nonlinear models are 

discussed in Section 3.2. In Section 3.4, these measures are applied to a trilinear 

PARAFAC model. In Section 3.1 expressions for the derivative matrix V , its sub­

matrices, the velocity vectors V p, and the acceleration vectors rjpq are derived. 

Besides being of interest in themselves, V  and ff are necessary ingredients in the 

curvature measures of Section 3.2, in the jackknife estimators of Chapter V, and 

in the approximate case deletion estimators of Chapter VI. Because they have a 

number of uses, the velocities and accelerations are represented in various forms, 

some more convenient for certain purposes than others. Linear relationships among 

the velocities and accelerations are investigated in Section 3.3. The results of that 

section, which are interesting in themselves, are also used in the calculation of 

curvature measures.

3.1 V elocity  and A cceleration

3.1.1 V elocity

The special structure of PARAFAC models yields “nice” forms for the matrix of 

partial derivatives V. For instance, for the one-factor bilinear model, V  has the 

form
I J X I - I + J

V  =
11-i ® 0  a ® I j

J x / —1
0

J x l - 1
0  I j

where a* =  a [ —J] is a  with the last row deleted. 

For the one-factor trilinear model, V  is given by

2 I i - i  ®/3<S> 7
JJCxZ-l a  ®

[ I j - l  ® 7  1
K x J - 1 a  ® ® I k

0 0
(3.1)
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The first I  — 1 columns of V  contain the derivative of rj w ith respect to  a;  the 

next J  — 1 columns, the derivative with respect to (3\ and the last K  columns, the 

derivative with respect to  7 .

For Example 2 in Section 2.3.2 and the plastocyanin example of Section 2.4, V  

is the 12 x 5 m atrix,

V  =

m i \ i ] «[1]7[1] 0 a[l]/3[l] 0

0 [ ib [ 2] «[1]7[2] 0 0 «[1]/3[1]
0 [2b [ i ] 0 a [ l ] 7 [l] a[l]/3[2] 0
{3[ 2b[2] 0 a [ l ] 7 [2] 0 oc[l)/3[2]

7(1] 0 0 « [ 1] 0
7  [2] 0 0 0 a [ l]

0 7[1] 0 m 0
0 7  [2] 0 0
0 0 7[1] m 0
0 0 7(2] 0
0 0 0 1 0
0 0 0 0 1

(3.2)

Observe th a t (3.2) can be written as

(3.3)

which is ju st (3.1) with /  =  2, J  =  3, and K  =  2. For the plastocyanin data, the
A

derivative m atrix  evaluated at 9 is

12X5
V  = /3 ® 7

6X1 a  ® 1 2 ® 7
2x 2 ac® /3 ® 1 2

0 0

V  =

4.0983 4.4284 0 1.0144 0
3.5436 3.8290 0 0 1.0144
4.1028 0 4.4284 1.0155 0
3.5475 0 3.3290 0 1.0155
4.2299 0 0 1.0469 0
3.6574 0 0 0 1.0469

0 4.2299 0 0.9689 0
0 3.6574 0 0 0.9689
0 0 4.2299 0.9700 0
0 0 3.6574 0 0.9700
0 0 0 1.0000 0
0 0 0 0 1.0000

(3.4)
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For an F -factor trilinear model, V  is an U K  b y ( /  — 1 +  J  — 1 +  K ) F  m atrix 

which may be partitioned into submatrices, each of which corresponds to  the partial 

derivatives of tj with respect to tty , and 7 y. The vectors «y  and /3y are at and

f3 with the I th and J ih rows deleted, respectively. We have

V  =  [ V A V b  V c ]

where, for /  =  1 ,2 , . . . ,  F,

I J K x ( I - l ) F
V A

lJKx(J—l)F
V B

I J K x K F
V C

IJKxI-1
V as

I J K x J - \
V b.f

I J K x K
V c s

{ V as),

{ V  B f ) ,

{ V c s ) ,

( & ) • ' " .........

( & ) ■ * "  * '
(3.5)

so th a t V a s , V b s , and V c s  are the matrices of partial derivatives of T) with respect 

to  tty , /3*j , and 7 y, respectively. The expression for V  is essentially (3.1) with tty, 

j,3f, and 7 y in place of a ,  (3, and 7 . Thus for /  =  1 , . . . ,  F,

I 1 - 1  ® [$s ® 7 /
0V as =

V  BS =  <*s®

Vcs  =  a S ® &S ® * K'

I j - i  ® 7 /  
0

The i th column of V as , the j th column of V b s , and the kth column of V c s  can
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be written, respectively, as

V aA A  =

r ( i - l ) J K x i  -] 
0

Pj  ® 7 /
( I - i ) J K x  1 

0
r (j-i)k-xi -| 

0

I f
( J - j ) K x  1 

0

(3.6)

(3.7)

v c/[,k] -  a f ®f3f ®

• (Ar-l)xl -| 
0

( K - k ) x  1 
0

= ctf ® P f ® e k , k  = l , . . . , K ,  (3.8)

where e* is the vector of length K  with 1 in the k th position, 0 elsewhere.

For Example 2 in Section 2.3.2 and the plastocyanin example, since there is only 

one factor, V  can be partitioned into the 12 x 1 matrix V ^i =  V ^ , the 12 x 2 

m atrix V b \  = V b  =  (V 1], V  b [ , 2]), and the 12 x 2 m atrix V c i  = V c  =  
(V c[, 1], Vc[i  2]). Equations (3.6), (3.7), and (3.8) yield 

V,*[,l] = P ® f  ;

V g [,l]  = a ®
7

4X1
0

V B[, 2] = a ®

r 2 x i  
0
7

2X1
0

V c[,l]  = oc® P ® , V c [,2] =  a  ®(3 ®

It is easily verified that the vectors above are indeed the columns of the derivative 

matrix (3.2).

An alternative expression for V  can be obtained as follows: Let

A - [ at\ a 2 . . .  otF
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•® — [ fti ft* • • • f t p ]

C  =  [ 7 i  7 2 • • • 7 f  ]

I J x F
A B  = A Q B

J K x F
B C  =  B e e
I K x F
A C  = A q C,

where 0  is the circle product of Khatri and Rao (1968), defined in Appendix B. For 

/  =  1 , . . . ,  F,  define A B f  to be the f th block of length I J  of the vectorized matrix

AB; B C f  to be the f th block of length J K  of vec(BC), and A C f  to be the f ih

block of length I K  of vec(AC). Using the S notation for matrices, we have

A B f  =  v e c ( A B ) [ I J ( f — 1) +  1 : I J f ]  

B C f  =  vec (B C )[JK ( f  — 1) +  1 : J Kf ]  

A C f  = vec (A C )[ IK ( f  -  1) +  1 : I Kf ]

Then,

V  aj = I i ® B C f  

V c j  =  A B f  0 I K

vBf = (ijeACfji-j)
A C f i  =  A C f [ K ( i - l )  + l : K i ] ,  /  =  1 , . . . ,F ;  * =
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so that V g f  consists essentially of permutations of the A C / ’s.

We now set some notation that will especially be useful in Section 3.3 and that 

will give more compact expressions for the velocity and acceleration vectors.

Let Xf  be the vector whose elements pick out the elements in 0 corresponding 

to a*j\

Xf =  ( / - ! ) ( /  - 1)1 +
1

7 - 1

where 1 is a vector of l ’s of conformable length. Setting

Ti

I f

(3.9)

we have

m i — W
**/•

m = w e c (^ (- / ,] )  ,

V a, =

v A V [,2 ) .

To illustrate the above notation, consider Example 3 of Section

=  2, J  =  3, K  =  2, F  =  2. Then (3.9) yields

h  = (1 - 1)(2 -  1)1 +  [1] =  1 ,

I a =  (2 - 1)(2 -  1)1 +  [1] =  2 , and

I  = ' 1 ' 
2 •

So 0 [li]  =  0[1] = a \ -  a i [ l]  ,
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flpa] — 9 [2] = a j  =  a 2[l] , and

m  = * i[i]
<*2[lj

Comparing the above with Equation (2.11) verifies that 2 /  indeed picks out the 

elements of 9 corresponding to a j .  In that same example,

A  — [ oti a 2 ] = a ^ l] a 2[l] 
a  ̂ 2] a 2[2]

So vec(A [—/ ,  ]) is the vectorization of the first row of A , which is indeed 9\I\ . 

Observe also that V ^ J i j  =  V[, 1], the first column of V; V[, J 2] =  V[,2], the 

second column of V ; and V [,I]  =  V[, 1 : 2], the first two columns of V , which 

agree with the definitions given by the set of equations (3.5).

Let J  j  and K f  be the vectors whose elements give the positions, respectively, of 

f3*j and of 7 } in 9:

1
J } = ( F( I  — !) +  ( /  — 1)(2 — 1))1 +  '

J -  1

K ,  = (F( I  — 1) +  F ( J  — !) +  ( /  — 1)AT)1 +
1

K

and set
'  J 1 ' '  tCi '

J  -
. J f .

, and 1C “
K f

Then

« W A  =

V b ,  = V [ , J , \ ,

(3.10)

(3.11)



V b  =  V \ , J ] ,

«[ICA =  i , ,

V C,  = V[ , K , } ,  

and V c  =  V[,/C] .

To illustrate, consider again Example 3 in Section ??. There,

J i  =  (2(2 -  1) +  (1 -  1)(3 -  1 ))1 +

J 2  ■■

1
2

J  =

(2(2 — 1) +  (2 — 1)(3 — 1))1 +  

3 

6 
So 0[,71] =  *[3 : 4] =  #  =  jS Jl : 2] , 

0 [ J 2] =  ®[5 : 6] =  f c  = 0 2[ 1 : 2] , and 

& [1  : 2]

1
2

3
4

5
6

0\J\  = /J3[l : 2]

Similarly,

fCx =  (2(2 -  1) +  2(3 - 1 )  +  ( 1 -  1)2)1 +  

Ki  =  (2(2 -  1) +  2(3 -  1) +  (2 -  1)2)1 +

■ 1 '

2
'  1 '

2
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Again, it is easy to  see th a t the above are consistent with Equation (2 .11).

Now define £ to  be a  three-way array whose [z, j ,  fc] entry is the position of 

Ar] in tj = vec(fiT)y so th a t

*] -  (*' -  1 ) J K  +  (j -  1 ) K  +  k. (3.12)

The nonzero velocities can be w ritten as

V  [uec(£[i,,])T, J/[*]] =  /3f ® y f , i = 1, . . . , / -  1, (3.13)

V  [ v e c ( t l j , ] )T, J f \j]\ = a ,  j  =  1 , . . . ,  J -  1, (3.14)

and V  [vec(£[, ,fc])T, £/[&]] =  otj ® /3y, A: =  1 , . . , ,  K,  (3.15)

In Model (2.10) and in the plastocyanin example, consider $i\2,2,1] =  1 • /3[2]-y[1], 

which is the ninth entry in 17( 0 ) .  The formula (3.12) should therefore yield a  value 

of 9, which it does:

i [2,2,1] =  (2 -  1)(3)(2) +  (2 -  1)(2) +  1 =  9.

It can be verified th a t (3.12) holds for other values of *, j ,  and fc, as well. Since 

F  =  1, Equations (3.9), (3.10), and (3.11) give

J

J

K

=  1,
2
3
4
5

, and

which correspond to  the correct columns of the derivative m atrix (3.2). For-
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mula (3.13) is worked out as follows:

r € [ i , i , i ]  i ■ 1 ■
€[1, 1, 2] 2
€[1, 2 , 1] 3
€[1, 1, 2] 4
€[1,3,1] 5

.€ [1 ,3 ,2 ] . . 6 .

uec(€[l,,])T =

So V  [vec(£[l, ,])T,X[1]J =  V[1 : 6,1] = {3® y,

which is exactly the first column of V  in (3.2). Formulas (3.14) and (3.15) are 

similarly worked out below.

«“ (€[, 1,J)T) =

€[1, 1, 1] 1 ‘ 1 '
€ [ i , i ,2] 2
€[2, 1, 1] 7
€[2, 1, 2] J . 8 .

uec(€[, 2,]) ) =

€ [1, 2 , 1]
€[1, 2 , 2]
€[2 , 2 , 1]
€[2, 2, 2]

3
4
9
10

uec(€[,, i ] r ) =

€ [ i , i , i ]
€[1,2,1]
€ [i,3 ,i]
€[2,1,1] 
€[2 , 2 , 1] 

L €[2,3,1]

I 
3 
5 
7 
9
I I

oec(*[,,2])r ) =

€[1, 1, 2] 1 ' 1 '
€[1, 2 , 2] 2
€[1,3,2] 3
€[2 , 1, 2] 4
€[2 , 2 , 2] 5

.€[2,3,2] . 6

We then have

V
V
V
V

»<*«[,l,]f,.7[l]
vec({[,2,])’', J[i]  

v ec« [„  2])r ,K[2]'

a  ® 7 
at®  7
at ® (3 
at® (3

and

= V [(l,2 ,7 ,8 ),l]
= V [(3 ,4 ,9 ,10), 2]
= V [( l ,3 ,5,7,9,11), 1]
= V [(2 ,4 ,6 , 8 ,10), 2]

where the S notation V [(ri, r2, . . . ,  r/j), c] denotes the elements in rows r i , r 2, . . .  ,r/j, 

and column c of the matrix V. (See Appendix A.) Inspection of V  in (3.2) shows 

that the above are a correct representation of the columns of V .

We see that, owing to PARAFAC models’ conditional linearity, the partial deriva­

tive matrix V  can be “easily” obtained, relatively speaking, from the least squares
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parameter estimates a ,  /?, and y  for bilinear and trilinear models. We expect that 

for higher-way models, this will also be the case.

3.1.2 A cceleration  V ectors

Again, the special structure of PARAFAC models enables us to  find patterns in the 

tjp9’ s. Using the notation (3.9), (3.10), and (3.11) of the previous section, ij [,X/, J j \  

is the three-way array of order I J K  x ( /  — 1)F  x (J  — 1).F whose columns are 

mixed partial derivatives of rf with respect to a )  and /3}. Similarly, the columns of 

*) [>*?/>£/] are the mixed partial derivatives of ff with respect to and y j ,  and 

the columns of * ? [ ,! / ,£ /] ,  those with respect to at*j and y j .

We now derive expressions for the acceleration vectors:

1. All second derivatives with respect to a single element of 0  are 0  since ft is a 

linear function of every individual element of 8.

=  i, [, J , \ i l  J ,\} \ \  = il[,IC,{k\,K,[k\\ =  0.

2. Because /t  is conditionally linear in A  given B  and C ,  in B  given A  and C , 

and in C  given A  and B ,

ij[,x,z] = = iil.AC,*:] = 0.

3. For PARAFAC models the factors do not “cross,” so

*? 1 27,[ i ] , J h [ill =  for h  #  /a;

v U h [>■]*K h I*1]] =  °* f°r f 2 ^  / 3;
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4. For fixed / ,  the mixed partial derivatives with respect to parameters for two of 

the ways, say at*j and /3^, involve only the parameters for the third remaining 

way, 7  f .

( i - l ) J K x l  -I 
0

U - l ) K x l
0

Kxl
~1s

(J-j)Kxl
0

(r -t) . /K xi
0

0

J x l
Pj ®

(fc-l)x l  1 
0

/ x  1

1
(JC-fc)xl 

0

0

Ci-l)JCxl 
0

0
Pj ® e *  

0

( J - j ) K x l
0

r (fc -i)x i I
0 '  0  '

1 =  Ot f  ® e *
( t f - * ) x l 0

0

(3.16)

(3.17)

(3.18)

For Example 2 of Section 2.3.2 and the plastocyanin example, the nonzero ac-
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v [ , m M  i] =

0 ‘ 0 '

0 0
a [ l] 0

0 « [ 1]
0 0
0
0 , ri[,J[2],JC[2] = 0

0
0 0
1 0
0 1
0 0
0 0

(3.22)

The accelerations (3.19), (3.22), and (3.20) were obtained by actually taking partial 

derivatives. It can be seen by closer inspection th a t the same vectors are obtained 

if formulas (3.16), (3.18), and (3.17) are applied to  the plastocyanin example.

Using the notation of Equation (3.12), the nonzero entries of t) can be written 

in more compact form as

= c ,  * = l , i ,  j = l, ...«/ — l,

[€[*,,*].T[i],£[fc]] =  B ,  i =  1 , . . . ,  / -  1,* =  l , . . . / f ,

f l [£[J , k] , J \ j ] , £[k]]  =  A ,  j  =  1 , . . . ,  J -  1 ,A: =

An illustration for each of the formulas above is given below.

€[1,2,1] =  3, €[1,2,2] =  4, so, from (3.19),

# /[€ [!,2 ,],J[1], J[2}} =  ij[(3 ,4 ),T [l],J[2 ]] =

(3.23)

(3.24)

(3.25)

7 [1] 
7  [2]

=  7

€[1,1,2] = 2 ,  €[1,2,2] =  4, €[1,3,2] =  6 , so, from (3.20),

f l l ]  1
t) [€[1,, 2], J [ l ] , K[2]\ =  V [(2 ,4 ,6), J [ l ] ,  m \  = m

1
=  0 .
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£[1,2,2] = 4 ,  £[2,2,2] =  10, so, from (3.19), 

« K [)2 ,2 ],<7[2],C[2]] =  «[(4 ,10), J[%K[2\\  = [ “ I*1 1 =  «  •

For a one-factor model, C , f l ,  and A  are just y ,  0 ,  and at, so th a t formulas (3.23), 

(3.24), and (3.25) hold for these three examples. It is easily verified tha t they hold 

for other values of i, j ,  and k, too, as well as for the case when F  > 1.

3.2 C urvature M easures in N onlinear M odels

We now describe how the curvature measures of Bates and W atts are obtained, with 

a view to  computing these measures for PARAFAC models.

Recall our notation for velocity and acceleration vectors:

N x P  f i n

IVXrXF
where the V p are called the tangent or velocity vectors, and t) =  ggggT is the

array whose n th face is f}n =  ( r j n p g ) ,  p,q =  1, . . .  ,P , where

d v p d V p
d9q 39 q

are the acceleration vectors.

The dimension of the tangent space is P , and the combined dimension of the 

tangent and acceleration spaces is, say, (P  + P'). So P l is the dimension of the 

space orthogonal to the tangent space but spanned by the acceleration vectors. 

(The maximum possible dimension is P  -|- P{P  +  l ) / 2  =  P {P  +  3)/2.)



J V x ^ ^
Let W  be the matrix of distinct acceleration vectors, and define

jVxV x P  „ 2
V  , wI

D  = (3.26)

If we perform a QR decomposition (See Dongarra, 1979) on D:  

D  =
JVxP JVxP' N x { N - P - P ' ) ‘

Q\  I Q i  I Q 2
N x SLP+*l

R

the acceleration array is given by

( P + P 'J x P x P

(3.27)

where the brackets operator [ ][ ] denotes the matrix-array multiplication defined 

in Appendix B. The array A  has P  faces in the tangent space and P' faces in 

the acceleration space: The first P  faces of A ,  A$, is called the parameter effects 

acceleration arrayt which measures the nonuniformity of parameter lines. The last 

P'  faces of A,  A a, called the intrinsic acceleration array, measures nonplanarity or 

intrinsic nonlinearity.

The accelerations are dependent on scaling of data and of parameters. Thus, 

measures of relative curvature are necessary. From the QR decomposition on D ,  we 

get

« i  =  [(<?il«'i)T] [» ] =
fin fi12

0  R 22

P x P
where H u  is the R  matrix from the QR  decomposition of V . 

The relative curvature array is given by

( P + P ') x P x P  j  „
B  =(Hf,) A R J sVP  , (3.28)
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fsid) P xP xPwhere s = y  jf^p.  The first P  faces of B , B$ , is the parameter effects relative
P'xPxP

curvature array. The last P'  faces of JB, B a , is the intrinsic relative curvature 

array introduced in Section 2.3.1. To measure nonplanarity and nonuniformity, we 

look at how large (i.e. far from 0) terms in B$ and B a are.

3.3 Linear Dependencies

To find measures of relative curvature for the PARAFAC models, we need to know 

(P +  P'), the combined dimension of the tangent and acceleration spaces, or simply 

P'  (since we know what P  is). We, therefore, need to determine whether any linear 

dependencies exist among the tangent and acceleration vectors, and if so, how many. 

Although {P +  P’) can always be obtained numerically by finding the rank ->f the 

matrix of combined tangent and acceleration vectors, it is hoped that this value can 

be found in closed form for some, if not all, of the PARAFAC models, owing to their 

special structure.

In the sections below, we shall give the structures for a one-factor trilinear model. 

Linear dependencies will be investigated (1) within ij; (2) pairwise, between columns 

of V  and of ij; and (3) mutually, among the columns of V  and ij. What is known, 

so far, for the general F-factor model will be stated.

3.3.1 Independence Among Acceleration Vectors

For a trilinear model, we wish to determine whether the columns of ij have any 

linear dependencies, i.e., if there exist nonzero coefficients qijf, rj*/ and s,*/ such
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that

    [ j j f x l
] £  t o n  [i 2 "/[*].*//[>]] +  £  n k f v U  ib],£f[k]\  +  S  si k f v l ^ Ai ] Xj [ k ] ]  = o

3,k,f i,k,J
(3.29)

L em m a I I I . l  For F  =  1, Equation 3.29 implies that qijj = rjkf  =  a,*/ =  0. For 

F  > 1, we have the constraints

F
+  rjkfO£j\i'] + s;»fc//?/[;]}

l=i

f o r i ' =  1 , . . . ,  I  — 1, j  =  1 , . . . ,  J  — 1, k =  1 , . . . ,  K.

Thus, for a one-factor model, the columns of t) are linearly independent. The 

lemma, of course, implies that linear independence fails when F  > 1. For an F-factor 

model, there are

( /  -  1)(J -  1 )(F -  1) +  (J  -  1 ) K ( F  -  1) +  (7 -  1 ) K( F  -  1)

constraints. The proof is given in Appendix C.

For our example of a 2 by 3 by 2 one-factor model, the columns of ij are given 

by formulas (3.19), (3.20), and (3.22). Observe that they are indeed linearly inde­

pendent.

3.3.2 Pairw ise Independence B etw een  Tangent and A ccel­
eration V ectors

We wish to know whether any linear dependencies exist between the columns of 

V  and those of ff for a trilinear model. For each of the three submatrices of
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V  — ( V a , V b , V c )  , we determine whether its columns are linearly independent 

of f ,[yT[i \ ,J\j)],  of £[*]], and of i f U M  £[*]].

L e m m a  I I I . 2 For F  = 1,

1. Vji[,i] and rj [,X[*], jT’Jj']] are linearly independent.

2. V a [,*\ is a linear combination o/i?[,Z'[t],/C[&]].

S. V a \, *] and if [, are linearly independent.

4’ V b [J]  and if [,![*], are linearly independent.

5. and ij [,![*],/C[fc]] are linearly independent.

6. V b [,j]  is a linear combination of  rj [, , 7 [?’], £[&]].

7. V c[, Ar] and if [, 7[*],*7[j]] are linearly independent.

8. V c \ ,  fc] and i) [,T[i],/C[A:]] are linearly independent.

9. V c[, k] and if [, are linearly independent.

Thus, for a  one-factor model, columns of blocks of if are not linearly independent 

of columns of blocks of V .  See Appendix C for the proof.

To illustrate this lemma, compare the columns of the derivative m atrix (3.2) with 

those of if given by (3.19), (3.20), and (3.22). Observe the following relationships :

V aI, 1 ]  =  K [ 1 ] ]  +  - v [ 2 ] n [ . X [ l ] ,  £ [2 1 1

V B [ ,  1 ]  =  7 [ 1 ] ^ U [ 1 ] , « [ 1 ] ]  +  7 [ 2 ] i > [ , J [ l ] , A : [ 2 ] ]

Vb[, 2] = 7 [1W. m  JC[1]] + 7 [2]n[, J l  2], AC[2]]
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The above equations correspond to  parts (2) and (6) of Lemma III.2. Note also that 

no other dependencies exist besides these, just as the rest of Lemma III.2 states.

3 .3 .3  M u tu a l In d ep en d en ce A m on g T angent and A cceler­
a tion  V ectors

We wish to  determ ine if there exist nonzero coefficients a ,/, bjf, c*/, qij/ ,  r,* / and 

S i k f  such that

+ : E bJfv B A j ]
i f

+  X  907*7 2T/[i], JTy[ij]
H f

+  */[*]] (3-30)
i h f

L e m m a  I I I .3  For F  =  1, Equation 3.SO implies that

1. c* =  0 for  k  =  1, . . . ,  K

2. qij =  0 for  * =  1 , 1 ,  j  =  1, . . . ,  J  — 1

3 .  ai7  =  -  E L i  fo r  i =  1 , 1

4 • bj~f = -  E L i  *V*e * for  j  =  1 , . . . ,  J  -  1

Part (1) of this lemma says th a t the first derivative with respect to the -y[A:] is 

independent of everything else; so are the second derivatives with respect to ar[i] and 

according to  part (2). Parts (3) and (4) say th a t the linear dependencies that 

exist are between the first derivative w ith respect to a[i] and the second derivative 

with respect to  at[i] and 7 [fc], and between the  first derivative with respect to  f3\j} 

and the second derivative with respect to /3[/] and *■/[&]. Thus, there exist nontrivial

o =  X a«7^/[>*]
i f

kf
+ X  ri kf*i [»J  /b ‘]> £/[*]]
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solutions to Equation 3.30, given by parts (3) and (4). These define I  — 1 +  J  — 1 

dependencies among the velocities and accelerations. Note that the above results 

agree with those of the previous two sections. The proof is given in Appendix C.

For the 2 by 3 by 2 one-factor example, it was seen in the previous section that 

the only linear relationships which exist are those between V A[, i] and ij[,X[i], K[k]\, 

and between Ve[, j]  a^d *l[,J[j\,tC[k]], and that there 3 =  2 — 1 + 3  — 1 such 

dependencies, just as Lemma III.3 indicates.

Now that the number of linear dependencies among the tangent and acceleration 

vectors has been determined, the value of P', the number of acceleration vectors 

which are not in the tangent plane, can be obtained, and the relative curvature 

measures of Section 3.2 calculated.

3.4 R elative Curvatures: Some Exam ples

In this section, the curvature measures of Section 3.2 and the results of Section 3.3 

are illustrated for the one-factor trilinear model.

For the model (2.2), there are P = I  + J  + K  — 2 velocity vectors. Section 3.1.2 

shows there are

w = ( I -  1 )(J -  1) + ( /  -  1)K +  (J  -  1)I< < f  (P2+

nonredundant, nonzero acceleration vectors. (The zero vectors shall be excluded 

from the matrix VV defined in Section 3.2 since they will eventually be consigned 

to the part of Q  in the QR decomposition of D  which is not used in getting the 

curvatures.) For multilinear models in general, w will be much less than P(P  + 1)/2,
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which is the maximum value for nonlinear models, because of the number of zero 

acceleration vectors.

The m atrix D  in Equation (3.26) will have

P  + w = I J  + I K  + J K - K - l <  P (P  + 3)
z

columns. To partition Q  in the QR decomposition of D ,  we need to know the value 

of P '. From Lemma III. 1, we know that the columns of W  are linearly independent, 

so th a t the rank of W  is w. Lemmas III.2 and III.3 tell us th a t there are I  +  J  — 2 

dependencies among the velocities and accelerations. Thus, D  will have rank

rank(D )  = ( I J  + J K  + J K - K - l ) - ( I + J - 2 )  = I J + I K  + J K  - 1 -  J  - 1< +  1,

(3.31)

and

P ' =  rank(D)  -  rank(V )  = I J  + I K  +  J K  -  2(1 + J  + I<) +  3 (3.32)

since V  is of rank P.

For th e 2  by 3 by 2 one-factor model, w =  (2 —1)(3 —1) +  (2 —1)2+(3 — 1 )(2) ~  8 , 

using the formula for w given above. It was seen in Section 3.1.2 th a t the number of 

nonredundant, nonzero acceleration vectors is indeed 8 . The m atrix D  has P  +  w =  

(2)(3) +  (2)(2) +  (3)(2) — 2 — 1 =  13 columns consisting of the 5 tangent vectors and 

the 8 acceleration vectors. From (3.31) above, the rank of D  should be

rank (D )  = (2)(3) +  (2)(2) +  (3)(2) -  2 -  3 -  2 +  1 =  10 =  1 3 - 3 ,

which is the number of columns of D  minus the number of linear dependencies.
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Thus,

P ' =  10 -  5 =  (2)(3) +  (2)(2) +  (3)(2) -  2(2 +  3 +  2) +  3 =  5,

using formula (3.32) above. So A  and B  will be 10 x 5 x 5 arrays, with 5 faces in 

the tangent space and 5 faces in the acceleration space.

For the plastocyanin data, D  is the m atrix whose first 5 columns are exactly V  

in (3.4) and whose other 8 columns are

W  =

4.2299
3.6574

0
0
0
0
0
0
0
0
0
0

0
0

4.2299
3.6574

0
0
0
0
0
0
0
0

1.0469
0
0
0
0
0
1
0
0
0
0
0

0
1.0469

0
0
0
0
0
1
0
0
0
0

0
0

1.0469
0
0
0
0
0
1
0
0
0

0
0
0

1.0469
0
0
0
0
0
1
0
0

0.9689
0

0.9700
0
1
0
0
0
0
0
0
0

0
0.9689

0
0.9700

0
1
0
0
0
0
0
0

(3.33)

A numerical check on the m atrix D  confirmed th a t its rank is indeed 10. The 

10 x 5 x 5 relative curvature array B  was calculated using the procedure described 

in Section 3.2. The value of S(9)  was 0.3476, so s=0.2228. Summary statistics for 

the first 5 faces of B ,  which measure param eter effects curvature, and for the other 

5 faces, which measure intrinsic curvature, are presented in Table 1. The values of 

the intrinsic relative curvatures are close to zero, indicating th a t the expectation 

surface is well-approximated by the tangent plane a t 0. The param eter effects rel­

ative curvatures are not too far from zero either, which means th a t projections of 

the param eter curves on the tangent plane would be more or less uniform.
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Table 1: Relative Curvatures for Plastocyanin Data

Minimum Maximum Mean SD
Param eter Effects 

Intrinsic
-0.0680
-0.0283

0.1172
0.0253

-0.0015
-0.0001

0.0245
0.0103

We now consider a second example with a much larger number of observations, 

using the NFAK1A data  of Leurgans and Ross (1991a). The data is a 10 by 12 by 

5 simulated arrray with 1 factor present. Parameters for a three-factor model were 

chosen to  be reasonable values from a biophysical perspective. The parameters of 

the third factor of the three-factor model were then used as the parameters of the 

one-factor model. Independent normal random variables were generated with mean 

0 and standard deviation 100 (1 % of the range of the expectation array). These 

were added to the expectation arrays to obtain simulated data.

For this data set, /  =  10, J  =  12, K  — 5, P=25, N  =  600, w = 199, and D  hits 

224 columns. There are 20 linear dependencies so the rank of D  is 204. Thus, B  is 

a 204 x 25 x 25 array with the first 25 faces containing the param eter effects relative 

curvatures, and the last P' ~  179 faces containing the intrinsic relative curvatures.

Summary statistics for the relative curvatures of the NFAK1A data are given 

in Table 2. Note th a t the relative intrinsic curvatures are again small. This is 

not surprising, considering th a t in various examples given by Ratkowsky (1983), 

Bates and W atts (1980), and Bates and W atts (1988), the expectation surface was 

found to be nearly planar at if, while parameter-effects curvatures were found to be
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Table 2: Relative Curvatures for NFAK1A D ata

Minimum Maximum Mean SD
Param eter Effects 

Intrinsic
-0.1291
-0.0174

1.2930
0.0174

0.0008
0.0000

0.0177
0.0010

substantial.

We conclude this section with some comments on the computations involved in 

getting the curvature arrays. The qr function in the S  language (see Becker, et 

al.,1988), as in most other packages th a t do a QR decomposition, does not report 

the Q and R  m atrices explicitly, but returns an object representing the decomposi­

tion, from which Q and R  have to  be extracted. It is simple to  get R; calculating 

Q directly from the given object is very inefficient, however. Instead, applying the 

decomposition twice yields rather easily. The columns of D  are pivoted

(see Dongarra, 1979) according to  the result of the first decomposition; a second 

decomposition is done on the  pivoted m atrix; then one inversion and one multipli­

cation of the  appropriate m atrices yield the desired (Q x, Q\).  Pivoting is more easily 

done interactively. It may also be necessary to  specify a  larger tolerance when using 

the qr procedure since this S  function appears to  be very sensitive to  tiny values 

when detecting linear dependencies. It is good practice to check if the rank given 

by this function agrees with the  rank of D  given by the formula (3.31).

Due to  the large num ber of observations for the NFAKlA data, operations such 

as multiplication of the 204 x 600 m atrix  (Q 1? Q[)T and the 600 x 25 x 25 array ij
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to get the 204 x 25 x 25 array A  took a few seconds longer. Contructing one long 

function that calculates the curvatures in one big step was also avoided because 

dynamic memory problems were sometimes run into. This, of course, could just 

be a local problem. Thus, one may need to working interactively, or increase the 

allotted dynamic memory, if possible, when using S  to compute curvature arrays for 

large data sets.



C H A PT E R  IV

Introduction to  Cross-Validation

Cross-validation is a technique mainly developed for problems involving model se­

lection or assessment of the performance of a predictor. Like the jackknife and the 

bootstrap, this nonparametric method requires minimal assumptions and can be 

applied in an automatic way to complicated situations. Although cross-validation 

and jackknifing both involve omission of items one or more at a time, Stone (1974) 

distinguishes between the two by noting that jackknifing manufactures pseudovalues 

for the reduction of bias. Efron and Gong (1983) give several examples of using the 

bootstrap, the jackknife, and cross-validation in the estimation of statistical error 

(i.e., bias, standard error of an estimator, or error rate of a prediction rule).

In Section 4.1, two very general cross-validation methods are discussed. Sec­

tion 4.2 deals with cross-validation techniques that have been used for multilinear 

models, or in settings similar to the multilinear one. The final section discusses how 

case deletion in multilinear models is also useful for cross-validation purposes.

4.1 Som e Cross-Validation Techniques

Stone (1974) gives various descriptions and applications of cross-validation.

50
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4.1.1 L eave-out G roups

The concept of cross-validation, in its most primitive form, involves dividing the 

sample into two subsamples, one on which the choice of a statistical model, pre­

dictor, or estim ator is based, and the other on which performance of the chosen 

model, predictor, or estimator is assessed by measuring its predictions against the 

actual observed values. Division of the sample may be controlled, as when items are 

randomly assigned to one or the other subsample, or uncontrolled, e.g., in studies 

where a “construction sample” and a “validation sample” are collected at separate 

times.

This idea of dividing the sample into two groups and leaving out one group while 

calculations are done on the other has been extended to dividing the sample into 

several groups and leaving out one group at a  time. A more detailed discussion is 

given in Section 4.2 below.

4.1 .2  Leave-out O ne O bservation

Mosteller and Tukey (1977) describe “simple cross-validation” as setting aside one 

item, optimizing for the rest of the observations, then testing on the set-aside item. 

Realizing th a t repetition of this process for every single item  may be computationally 

difficult, they suggest that we make one optimization for all the data, then do a 

possibly simpler calculation of the effect of dropping each item , then compare the 

adjusted optimized result with the values for the om itted item.
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4.2 C ross-V alidation  M eth od s in M ultilinear S ettin gs

In this section, some cross-validation techniques used in factor analysis and principal 

component analysis are given. These are relevant to cross-validation for multilinear 

models in that the problem of choosing the number of factors is common to all three 

settings.

Wold (1978) uses cross-validation to estim ate the number of significant compo­

nents, F , in Factor Analysis and Principal Components Analysis (PCA) of a  set of 

data. The data is divided into G groups. For a starting value of F , say F„ , the 

first group is deleted and the model parameters are estim ated using the reduced 

da ta  set and some goodness-of-fit criterion (e.g., least squares). Predicted values 

of observations in the deleted group are then calculated. These are compared with 

the actual values via the sum of squares of prediction errors (also called PRESS, 

for predicted residual sum of squares), or some other measure corresponding to the 

goodness-of-fit criterion.

After the first group is restored to the data set, the second group of observations 

is deleted, parameters are estim ated using the new reduced data set, and a second 

sum of squared prediction errors is calculated. Then the third group is deleted, and 

the procedure is repeated until all the groups have been deleted once. Summing all 

the (partial) sums of squares of prediction errors over all the groups gives a  total 

PRESS for F  =  Fa , PRESS(F0).

The whole procedure is repeated for different values of F , say F t, F 2 , . . . ,  yielding 

PRESS(Fi), PRESS(F2), and so on. The value of F  is varied systematically to  find
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the minimum value of PRESS(F). The value of F  which gives the smallest total 

PRESS is the optimal choice for the number of components.

Wold’s method is carried out using the NIPALS (nonlinear iterative partial least 

squares) algorithm, which has the advantage of converging very rapidly when good 

starting values are given, and of being able to  work with incomplete data. It is, 

however, not as universally available as, say, algorithms using singular value decom­

position (SVD) of a m atrix.

Eastm ent and Krzanowski (1982) describe a method for choosing the number 

of components in a PCA using algorithms due to Bunch and Nielsen (1978) for 

updating a  singular value decomposition:

Suppose th a t p  variables are observed on each of n individuals and the data is 

displayed in an n x p  m atrix  Y  with SVD Y  = US V T, where U is an n x n orthogonal 

m atrix, V is a  p  x p orthogonal m atrix, and S is an n x p upper diagonal matrix. 

Based on the cross-validation principle of not using each data point in both the 

prediction and assessment stages, but of nevertheless using as much of the original 

data  as possible in predicting each VJj, Eastment and Krzanowski suggest that Yij 

should be predicted from all the data except the i th row and the j ih columns of Y .

If the i th row is om itted, the SVD of the reduced data m atrix will have left 

singular vectors with length n — 1, and the required values of u,( for forming the 

predictor

v (F) V'Y H = 2 ^ u it3tVtj
t = 1

are not available. Denote the updated values of U, V, and S  by U, V , and S  when
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the j th column of Y  is deleted, and by {/, V, and S  when the i th row of Y  is deleted. 

If the complete matrix is available,

Y ij = 2 ^ u itstvtj. 
i=1

Since un requires information on the i tfl row, we use U . Similarly, vtj requires 

information on the j th column, so use V  . The matrix S  can come from either S  or 

S  so it is reasonable to use both. Hence, Yij is predicted by

t=i

The SVD of the matrix Y  can be found using any number of algorithms currently 

available. Then PRESS(.F) can be obtained and the best value of F  chosen based 

on a suitable function of PRESS(jF). Eastment and Krzanowski use

P R E S S j F  -  1) -  P R E S S ( F )  . P R E S S ( F )
F Dp D r

where D f  is the number of degrees of freedom required to fit the F th component and 

D r  is the number of degrees of freedom remaining after fitting the F ih component. 

So Wp  represents the ratio of the increase in predictive information supplied by the 

F th component to the average information in each of the remaining components. 

The best choice for F  is the last value of F  at which Wp > 1. Krzanowski (1986) 

presents some simulation results for bilinear models.

Leurgans and Ross (1991a) extended the idea of deleting different groups and also 

Eastment and Krzanowski’s technique of leaving out levels to three-way PARAFAC 

models. The simulated data sets NFAK described in the Section 3.4 were used.
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They divided each of the 10 by 12 by 5 arrays into 5 groups and fit models with 

F0 =  1,2,3, deleting one group at a time. For arrays generated from a three- factor 

model, they also fit Fa = 4.

The extension of Eastment and Krzanowski’s technique to three-way PARA FAC 

models involves deleting a level of one of the ways, say, level i of a ,  and estimating 

the parameters of the other two ways, say, (3 and 7 . Thus, &] can be estimated

without using the actual value y[i, j ,  fc] by estimating ot without Y \ , j ,  ] or y [,,fc j, 

estimating f3 without K [ t , ,] or Y [ , , fc], and estimating 7  without , ] or Y[, j ,] .  

Leurgans and Ross have experimented with leaving out each level of one of the 

simulated arrays, and have seen a  need to improve initialization methods to hasten 

calculations. To reduce computational requirements, they have also explored leaving 

out severed levels of each way at a  time: All Y[i,  ,] ’s with i even, all K [i, , ] ’s with i 

odd, all y [ , j , ] ’s with j even, all y [ , j , ] ’s with j odd, all y [ , , fc]’s with k even, and 

all y[, ,fc]’s with k odd. This even-odd deletion was performed on one simulated 

data set, NFAK2A.

Leurgans and Ross use alternating-least-squares algorithms whose initial values 

are based on the decomposition described by Leurgans, Ross and Abel (1990). The 

algorithms are allowed to cycle until convergence is achieved or after 104 iterations, 

whichever comes first. Some of the calculations use one-step approximations to the 

solutions, in which only one iteration is completed after the global fit. They present 

some preliminary results on simulated and real da ta  sets.
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4.3 Case D eletion  in Cross-Validation o f M ultilinear M od­
els

Cross-validation is clearly one area in which finding approximations to case deletion 

estimates is relevant. The general cross-validation approach of leaving out a single 

observation, and the technique for multilinear models of leaving out levels suggest 

case deletion as a natural way to cross-validate multilinear models. Such a method 

would indeed use as much of the original data as possible in predicting each Y[i,j,k].

As Mosteller and Tukey (1977) pointed out, however, deleting one observation 

at a time may prove computationally difficult. In Section 4.2, we saw that Leur­

gans and Ross (1991a) found it necessary to improve initialization methods and 

experimented with leaving out several levels at a time to reduce computational re­

quirements. Bunch and Nielsen’s (1978) algorithm which Eastment and Krzanowski 

(1982) used to facilitate their calculations for two-way models does not have a gen­

eralization for three-way models. Thus leaving out levels for trilinear models would 

still involve intensive computation. Leurgans and Ross also looked into the one-step 

approximation as a means to avoid much computational labor in leaving out groups 

and levels.

All the more difficulty can be expected if an actual leave-out-one-observation 

approach were used. However, if good approximations to the actual case deletion 

estimates can be obtained, and if these approximations require considerably less 

computational labor, they would be extremely useful for cross-validation purposes.

We shall look at approximations to case deletion estimates more closely in the



next two chapters. In Chapter VI, am approximation to the estimate of the rth 

predicted or cross-validatory residual is given. Due to the special structure of mul­

tilinear models, the calculation of this quantity, and thus of the predicted residual 

sum of squares (PRESS), is facilitated.



C H A PT E R  V

Jackknifing in Nonlinear M odels: A R eview  of
Literature

5.1 Introduction

We noted in Chapter IV that jackknifing is similar to cross-validation in that it 

involves leaving out one observation at a time. (Although the two methods, used 

separately, yield different estimates (See Efron and Gong (1983) for illustrations), 

one may be used in conjunction with the other.) Thus, jackknifing is another area 

where case-deletion approximation methods may prove useful.

We discuss here various jackknife estimators for the nonlinear regression model, 

with the posssible use of one or more of these methods in the multilinear setting 

in view. In Chapter VI, three of these methods will be used to find parameter 

estimates for the NFAK1A data. All the estimators discussed in this chapter are 

modifications of the ordinary or standard jackknife (J) defined as follows:

Recall the nonlinear regression model (2.5),

Yr = T)(xr,8)  + t r, r =  1 ,2,..., AT,

where rj is a  nonlinear function of the unknown parameter (vector) 0, er are inde­

pendent, Var(cr)=<T2, unknown.
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A

Let 0(r) be the least squares estim ator of 0 when the  r th data  point is removed. 

Define

P r = N 9 - { N - l ) 9 {r)

to  be the r th pseudovalue;

0J = l / N ' £ P r 

to  be the (ordinary) jackknife estim ator of 0 ;

S j  =  U P r  -  h ) ( P r  -  » j ) T

to  be the jackknife estim ator of V ar(0j). In practice, S j  has also been used to 

estim ate Var(0).

The jackknife was originally suggested by Quenouille (1956) to  reduce bias and 

is also useful for variance estimation.

5.2 T h e  L inear Jackknife (L P )

Fox, Hinkley and Larntz (1980) point out th a t the ordinary jackknife requires n +  1 

fits in the nonlinear regression case: one for the initial fit 0, and n  fits for the 0 (r)’s. 

They propose a  method requiring only one nonlinear fit, based on a linear Taylor 

series approximation to  flpj :

g  ^  g  (VTV )->vfer
-  9 ----------1 = 7 * ------  (5 1 )

, * T » . , * T_  = N ( V  V)- 1V. er
L P r ~  9  + — —

»l,P =  1 / I V E i P r  (5.2)

S l p  =  t) Y.(LP’ -  « l p ) ( L P t -  9 l r ) t  (5.3)
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where
A A

V  is the matrix of partial derivatives of 17 evaluated at 0,

V r is the rth row of V ,  

er is the rih residual, and
* 1 I ( A A A J 1 A A ^

hr is the r ,A diagonal element of the hat matrix H  = V ( V  V )-1V .

Note that the linear jackknife, LP, is analogous to the linear model setting where 

V=X, the hat matrix is X ( X TX )~1X T, and

- * ( X TX )~ 1Xj 'er
1 -  hr

In Chapter VI, it will be seen that the linear jackknife is equivalent to using the 

linear approximation to case deletion estimates given by Ross (1987).

5.3 T he W eighted Linear Jackknife (LQ)

Miller (1974) showed that the usual bias reduction properties of the standard jack- 

knife J  do not hold for nonlinear functions of linear regression parameters. Hinkley 

(1977) suggested an alternative weighting scheme to improve bias reduction and 

variance estimation of the standard jacknife estimator J in linear regression. Fox, 

Hinkley and Larntz extended Hinkley’s work to the nonlinear model by defining the 

weighted linear jackknife (LQ) as follows:

Let
A A A T A .  A T
0(r) = 0 - ( V  V ) ~ ' V r eT,

A A T A d A T
LQr = 9 + N ( V  V ) - ' V TeT,



61

and 0 l q , S l q  be defined by replacing LP by LQ in (5.2) and (5.3). Note th a t 0(r) 

in LQ is just 0(r) in LP with the second term  multiplied by (1 — hT), which, in effect, 

gives less weight to  high leverage points.

Weighted linear jackknife estim ates are calculated for the NFAK1A data in Chap­

ter VI.

5.4 T h e  M od ified  L inear Jackknife (M L P)

Although according to  Fox, Hinkley and Larntz, Olp is not inferior to 0 j ,  Simonoff
— A 

and Tsai (1986) noted th a t 9 l p  does not directly reflect the nonlinearity of the

model. They remedy this by introducing a term  involving the second partial deriva­

tive:

#(r) = 0 -

{vTy - [ e i^ r ' v U r
l - h ;

T - 1V Te  A •» r  r  r  c r

l - h ;
.  * TN 7 t~1V" e 

M L P r =  e + ‘ /  \ T r 
1 -  h;

A A

and Om l p , S m l p  are defined by replacing LP by MLP in (5.2) and (5.3). Here, 

e(r) is th e  (N  — 1) x 1 vector with rih component removed from the residuaal 

vector e;

j is the  (N  — 1 ) x P x P  array with rih component removed from the N x P x P  

array rj of second partial derivatives;

the brackets operator [ ][ ] indicates vector-array multiplication as defined in 

Appendix B;
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Tr  =  V TV  -  [efr)]tf(r)];

K  =  V r T ; ' V , .

Note that if the term [e(r)][»j(r)] is ignored, 0(r) in the modified linear jackknife 

MLP is the same as in LP; that is, instead of using V T V , MLP uses T r.

5.5 The R ew eighted Linear Jackknife (RLQ)

Simonoff and Tsai also propose an alternative weighting scheme to LQ such that 

the weight of the rth observation is inversely proportional to its leverage. That is, 

reweight LQ by multiplying the second term of LQr by (1 — hT). Thus, we have

R LQ t =  0 +  N i ^ V ) - 1 V ^er(l -  kr).

A

In previous studies, S r i q , as usually defined, consistently underestimated the 

true variance in previous simulation studies, so the authors replaced it by:
A n  A T A   A A T A T A .

a. S rlq = &2( V  V ) - 1

h. S rlql, the least squares estimator of variance 

c. S mlp

all coupled with 9 rlq = 1 /NYl  RLQr , yielding the methods RLQ, RLQL, and 

RLQM, respectively.

In Chapter VI, reweighted linear jackknife estimates are calculated for the NFAK1A 

data. These are compared with the linear and weighted linear estimates for the same 

data.
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5.6 T he W eighted M odified Linear Jackknife (MLQ)

Simonoff and Tsai noted that the modification made by the MLP method to the

LP method can also be applied to the weighted linear jackknife LQ; that is, in LQ, 
- t  *

replace V  V  by T r , yielding

M L Q r = 0 + N T ; 1V * er.

The estimators 8mlq, Smlq are defined by replacing LP by MLQ in (5.2) and (5.3).

5.7 Comparison o f th e Estim ators

Simonoff and Tsai compared least squares (LS), J, LP, LQ, MLP, MLQ, and RLQ 

with respect to agreement of parameter and variance estimates in examples using 

different nonlinear models. They also compared LS, J, LP, LQ, MLP, MLQ, RLQ, 

RLQL, RLQM and direct likelihood (DL) with respect to bias, root mean squared 

error, coverage probabilities and volume of confidence regions, using simulation. The 

results can be summarized as follows:

For well-behaved data, there is little difference among the methods, but the 

presence of outliers, leverage points or curvature effects can heavily affect all the 

procedures. The RLQM method provides an estimator relatively robust to outliers, 

leverage points and curvature effects; its confidence regions are quite good compared 

to the others.

Fox, Hinkley and Larntz compared J, LP and LQ using the examples given by 

Duncan (1978). They found that the estimators in J and LP were in close agreement,



and LQ matched J and LP except at the extremes. In terms of coverage probabilities 

for confidence regions, LP and LQ were better than J, and were easier to  use than 

J when variance estimates were needed.



C H A P T E R  V I

Leave-O ut-O ne A pproach

In the previous two chapters, we have seen two settings in which the idea of leaving 

out one observation at a time proves useful. The need for some form of approxima­

tion th a t avoids physically deleting a  case when computing param eter estimates has 

been emphasized. We now turn  to  two responses to this need. These approximations 

have been suggested in the literature for obtaining influence measures based on case 

deletion. We have, in fact, already come across one of them  in Chapter V. The 

“novelty” here stems from the application of these approximate leave-out estimates 

to  multilinear models. The material from Chapter III facilitates this application.

Section 6.1 introduces the case deletion model for nonlinear regression, from 

which d(T), the estim ate of the parameter 0 when the r th case is deleted can be ob-
A

tained. Linear and quadratic approximations to 0(T) are given. The linear approx­

imation is derived by Ross (1987) using the definitions and notation for nonlinear 

models given in Section 2.3.1. This approximation turns out to be the same as the 

expression for 0(r) in Chapter V. The quadratic approximation is derived by Ross 

using Clarke’s (1980) formula and assuming planarity of the expectation surface.

In Section 6.2, the approximations are applied to  simulated data  for a  one-factor 

trilinear PARAFAC model. Since the approximation formulas involve the derivative
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matrix V , the array of second derivatives tj, and the relative curvature array B a, 

they can now be readily applied because of the results derived in Chapter III. The 

estimates obtained by using the two approximations are compared with the estimates 

obtained by actually leaving out one observation at a time. Some of the jackknife 

estimators in Chapter V are also evaluated for this data set. These are compared 

with the standard jackknife, which is obtained by actual case deletion.

6.1 Case D eletion  in Nonlinear Regression

Ross (1987) examines case deletion in nonlinear regression models in the context 

of assessing influence. He notes that, unlike in linear regression, case deletion is 

not easy to do in nonlinear regression, since the entire nonlinear regression must 

be repeated every time an observation is deleted. Computation is simplified by 

using the linear approximation suggested by Fox, Hinkley and Larntz (1980), or by 

constructing a quadratic approximation adapted from Clarke (1980). Ross explores 

the relationship of the geometry of case deletion to these approximations.

Define the case deletion model

Y  = tj(9) + d r(  + e (6.1)

where Y , ij(0), and c are the same as in the nonlinear regression model (2 .6), d r is 

an N  x 1 vector having 1 in the r ih position and zeros elsewhere. Fitting (6.1) with 

P  +  1 parameters (0,C) yields the least squares estimate 0T for 0 when the rih case 

is deleted. The estimate of £ is the rth predicted residual.
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Denote the expected value of Y  by

R ( 0 , 0  = ^ ( 0 ) + drC

Then, using the notation of Section 2.3.1, the first and second partial derivatives of 

Jl(0 ,£ ) are:

Up — i?p =  V p, 1 <  p <  P  

=  d r

R p i  =  Vpq,  1 < P , 9  <  P  

R p(; =  =  0 ,  1 <  p <  P.

In the notation parallel to that of section 2.3.1, let:

Af(P) be the expectation surface defined by R(9,  £);
N x P + l
V (r) =  [V d T] be the matrix of first partial derivatives;

G(r) =  Vfr)V (r).

H  = V G l V T.

Ross gives the following decomposition of Rpg, which is analogous to (2.7):

R p q  =  ^(r)p7-^» "I" +  bpq<f>ai (6-2)

where is an orthonormal basis for the acceleration space of Af(r) at

R{0,( ) -  The P  + 1 x P  +  1 matrix of coefficients of the second fundamental form 

(see Section 2.3.1) of M(r) corresponding to the normal direction <j>a and the P  x P  

matrix of coefficients of the second fundamental form on M  corresponding to the
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normal direction <f>a are related by

n  __  B a 0
B(r>“ “ 0 0 '

6.1.1 Linear A pproxim ation

Let C T = G ~1V Td r and hT be the rth diagonal element of H  (called the leverage 

of the rth case) evaluated at rj.. The first-order approximations to the estimates
A A

of 0(r) and C are obtained by using the same linear approximation used by Fox, 

Hinkley and Larntz(1980), that is, by replacing R ( 8 , ( )  with a first-order Taylor 

series approximation about (£,0). This gives the estimates

0 (r) =  & + «(r) (6.3)

c =  Cr ̂ 1 — hr
(6.4)

where ti(r) =  -   ̂_ ~ c r (6.5)

Note that Equation (6.3) is just 0(r) of Chapter V.

6.1.2 Q uadratic A pproxim ation

A quadratic approximation to 0(r) and (  can be constructed by adapting a higher- 

order formula due to Clarke(1980) to  the case deletion model. Ross(1987) states that 

“the difference between a connection coefficient for M and the corresponding 

coefficient r^r)M for M(r) is a quantity that depends on the nonplanarity of M  as 

a submodel of Af(r) but not on the nonuniformity of parameterization. Thus for a 

model M  which is sufficiently planar, the nonzero connection coefficients of Af(r) will
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be approximately equal to those of A/,” Under the assumption of planarity, Ross 

derives the quadratic approximation as:

=  “M -  5 I> ( r ) “ M (6-6)
a e
< =  —  <6-7>

The second term in Equation 6.6 uses the Einstein summation convention described 

in Section 2.3.1. The superscripts in that equation denote particular rows or ele­

ments of the matrix or vector.

6.2 Case D eletion  for M ultilinear M odels

Since multilinear models are a special case of nonlinear models, the linear and 

quadratic approximations to the parameter estimates when the rth case is deleted 

for a nonlinear model can be used in the multilinear setting. The various jack- 

knife estimates for nonlinear regression can also be applied to multilinear models. 

The conditional linearity of multilinear models suggests that the computational ad­

vantages of these approximations would even be more pronounced in this setting. 

Indeed, we have seen in Chapter III that the special structure of these models leads 

to nice forms for the tangent and acceleration vectors. Since the matrix V  is essen­

tial for the computation of the jackknife estimates, and the accelerations are needed 

for the quadratic approximation, the structure of multilinear models facilitates ob­

taining these estimates.
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6.2.1 A  Num erical Exam ple

The leave-out-one approach for nonlinear regression was applied to a one-factor tri- 

linear model using the NFAK1A data described in Section 3.4. The least squares 

estimates using the full data were computed using a FORTRAN program developed 

by R.T.Ross (See Leurgans, Ross and Abel, 1990.) Actual leave-out-one estimates 

were also obtained by deleting one observation at a time and re-computing the 

estimates. Computations were done on the CRAY at the Ohio Supercomputer Cen­

ter and on the DEC 5500 at the Mathematical Sciences Computing Laboratory. 

Case deletion estimates were obtained using the linear approximation LP, and the 

quadratic approximation described by Ross (1987) with the planarity assumption. 

The linear, weighted linear, and reweighted linear jackknife estimates given in Chap­

ter V were also calculated. The results are summarized in the tables and figures 

below. The parameterization used was that of setting the last elements of a  and /? 

to 1.

Table 3 gives summary statistics for 600 case deletion estimates obtained by 

actually leaving out one observation at a time. The first two columns of numbers 

are the known, true parameter values, and the least squares estimates for the full 

data. The subscript L S  of 9 denotes that the true parameter values were normalized 

with the same constants used to normalize the least squares estimates. The full least 

squares estimates are generally close to the true values, except maybe for a [3], which 

differs by 0.124, and 7[4], with a  difference of 24.77. This can be seen in Figure 1, 

which shows the global estimates on the y-axis plotted against the true parameter



values on the x-axis, for each of the three ways. The plotting symbol is “L” (for 

least squares). The dotted line is the 45-degree line, where the true values equal the 

estimates.

The individual values of the leave-out-one estimates have means and medians 

that are almost exactly equal to the global estimates. Each of the 600 actual deletion 

estimates are plotted (plotting symbol is “@”) in Figure 2 against the true value of 

the a ’s, p ’s and 7 *8. It is not surprising that the points cluster tightly about the 

45-degree line, (except for 7[4]), since they should be very close to the global least 

squares estimates, and the global estimates are, for the most part, near the true 9 .

Table 4 gives summary statistics for 600 case deletion estimates using the linear 

approximation (6.3). The true parameter values and the least squares estimates for 

the full data are given again for comparison purposes. As in the actual deletions, 

the means and medians of the the leave-out-one linear approximation estimates are 

almost exactly equal to their full least squares counterparts. The ranges of the 

linear deletion estimates are slightly larger than the ranges of the actual deletion 

estimates, and the standard errors in Table 4 are somewhat larger than those in 

Table 3, especially for the 7 ’s. In Figure 3, each of the 600 linear estimates are 

plotted (plotting symbol is “@”) against the true 0’s. Observe that the points 

cluster around the 45-degree line, but show a wider spread than Figure 2 for the 

7 ’s. The estimates for 7 (4] all exceed the true value, just as in Figures 1 and 2.

Table 5 presents summary statistics on the absolute difference between the actual 

case deletion estimates and those obtained using the linear approximation. In the
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first two columns, the signed difference “actual minus linear” are given in parenthe­

ses. The differences appear negligible, except for the parameters of the third way. 

Considering the magnitude of the 7 ’s relative to the a ’s and /?’s, it may be useful to 

describe the differences as fractions of the full least squares estimates. For the a ’s, 

the largest absolute difference between the actual and linear leave-out estimates is 

0.072 (for oc[8]); this difference is 0.014 times as big as the full LSE. Among the 

/?’s, the maximum absolute difference between the actual and leave-out estimates is 

0.006 (for /3[11]), which corresponds to  a relative difference of 0.0049. The maxi­

mum absolute difference among the 7 ’s is 21.462, or 0.0135 relative to the full LSE’s. 

Figure 4 is a plot of the 600 linear estimates versus the actual deletion estimates. 

Observe th a t the points (plotting symbol is “@”) lie more or less along the 45-degree 

line.

In Table 6 the case deletion estimates using the quadratic approximation are 

summarized. Huge differences from the global estimates and from the true param eter 

values can be seen in the #(r)’s, particularly for estimates of some of the a ’s. The 

medians are equal to the global LSE’s (up to three decimal places), but as expected, 

the means are pulled considerably away by the extreme values. Further investigation 

showed that the minima occur at the same value of r, observation number 593, or 

y [1 0 ,11,3]. A look at the quantiles of Q!(r) suggests that there are other wild values, 

but most of the estimates are “well-behaved.” For instance, the first five percentiles 

are: -46.87, -8.34, -2.22, -0.64, and -0.14.

Examining the approximation (6 .6 ), we see that the difference between the linear
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and quadratic approximations is a sum of products of connection coefficients and 

rows of «(r). Since we saw in Chapter 2 that the terms in the parameter-effects 

curvature array were not that large (although larger than the intrinsic curvatures), 

the extreme values must be coming from summing products of rows of Indeed, 

a moderately large value of U(r) would more greatly affect the quadratic estimates 

than the linear ones. Thus, the quadratic leave-out estimates may behave fairly well 

in most cases but can yield terrible estimates for observations with high leverages.

The leverages for the NFAK1A data range from 3.2 x 10-7  to 0.2747; the quartiles 

are: 0.0004, 0.0220, and 0.0671. The leverage of observation number 593 is 0.0815, 

which is the 83.6th quantile, and is almost twice as large as the mean leverage of 

P  ■¥ N  =  25 +  600 =  0.0417.

Table 7 presents a comparison of the true parameter values, 9 , the least squares 

estimates using the full data (LS), the ordinary jackknife estimates (J), the lin­

ear (LP), weighted linear (LQ), and reweighted linear (RLQ) jackknife estimates 

discussed in Chapter V. The subscript L S  indicates that the vector was normalized 

with the same constants used to normalize the least squares estimates. The LP, 

LQ, and RLQ estimates differ very little among themselves and are not too far from 

the standard jackknife estimates, nor from 9. The standard estimates generally do 

better than the approximations LP, LQ and RLQ, especially for the 7 ’s, although 

for seven of the parameters, the approximations are closer to 9. In Figure 5, the 

least squares (LSE), standard jackknife (J), linear jackknife (LP), weighted linear 

jackknife (LQ), and reweighted linear jackknife (RLQ) estimates are plotted against



the true 0 using “L,” “J,” “P,” “Q,” find “R,” respectively, as the plotting symbols. 

The symbols appear almost indistinguishable because they overlap a lot. The char­

acters that appear like a “U” near the 45-degree line for 7  is actually the overalp 

of “L” and “J ,” the least squares and ordinary jackknife estimates. Note that the 

figure agrees with our findings from Table 7.

Table 8 gives the standard errors for the various jackknife estimates. We see that 

the ordinary jackknife estimates have larger standard errors than the approximations 

for most of the parameters except, notably, for the 7 ’s.

We can see a trade-off between bias and variance reduction in this example. 

The jackknife estimates using the case deletion approximations have values farther 

from 9  but have smaller standard errors for most of the parameters. The ordinary 

jackknife estimates have slightly larger standard errors but yield values closer to the 

true parameter.
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Table 3: True, Least-Squares, and Actual Case Deletion Estimates

Theta
True
Value
Ols

Full
LSE

Leave-out-one Estimates 0(r) 
Using Actual Deletion

Min Max Median Mean SD
o [l] 0.000 -0.015 -0.022 -0.008 -0.015 -0.015 0.002
a [ 2] 0.000 0.004 -0.003 0.010 0.004 0.004 0.002
a[3] 0.000 0.124 0.117 0.138 0.124 0.124 0.002
a[4] 0.018 0.031 0.024 0.039 0.031 0.031 0.002
a  [5] 0.293 0.334 0.327 0.343 0.334 0.334 0.002
a  [6] 1.753 1.692 1.682 1.699 1.692 1.692 0.002
a[7] 4.410 4.378 4.370 4.385 4.378 4.378 0.002
a [ 8] 5.168 5.205 5.200 5.211 5.205 5.205 0.001
a  [9] 3.091 3.108 3.101 3.116 3.108 3.108 0.002

a  [10] 1.023 1.000 0.992 1.007 1.000 1.000 0.002

m 0.000 -0.011 -0.013 -0.009 -0.011 -0.011 0.000

m 0.000 -0.003 -0.005 -0.001 -0.003 -0.003 0.000
m 0.000 0.012 0.011 0.015 0.012 0.012 0.000
m 0.000 -0.014 -0.017 -0.012 -0.014 -0.014 0.000
m 0.001 0.010 0.008 0.012 0.010 0.010 0.000
m 0.009 0.006 0.004 0.008 0.006 0.006 0.000
m 0.061 0.053 0.051 0.055 0.053 0.053 0.000
m 0.247 0.232 0.229 0.234 0.232 0.232 0.000
m 0.630 0.636 0.634 0.638 0.636 0.636 0.000

1.060 1.063 1.061 1.066 1.063 1.063 0.000
/3[n] 1.221 1.215 1.213 1.218 1.215 1.215 0.000

0 m 0.996 1.000 0.998 1.002 1.000 1.000 0.000

7[1] 1584.986 1589.683 1584.400 1595.480 1589.664 1589.684 1.223
7(2] 1553.923 1561.232 1556.647 1566.264 1561.205 1561.235 1.143
7(3] 1509.538 1510.737 1506.839 1514.435 1510.738 1510.737 1.169
7[4] 1440.879 1465.645 1461.822 1470.880 1465.600 1465.645 1.148

. 7  ?! 1320.854 1315.337 1309.790 1319.701 1315.331 1315.337 1.189
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Table 4: True, Least-Squares, and Linear Case Deletion Estimates

Theta
True
Value
&LS

Full
LSE

Leave-out-one Estimates 0(r) 
Using Linear Approximation

Min Max Median Mean SD
«W 0.000 -0.015 -0.023 -0.006 -0.015 -0.015 0.001
a (2] 0.000 0.004 -0.007 0.014 0.004 0.004 0.001
a[3] 0.000 0.124 0.117 0.133 0.124 0.124 0.001
a[4] 0.018 0.031 0.020 0.040 0.031 0.031 0.001
o[5] 0.293 0.334 0.326 0.344 0.334 0.334 0.001
a [ 6] 1.753 1.692 1.669 1.712 1.692 1.692 0.002
a[7] 4.410 4.378 4.317 4.428 4.378 4.378 0.006
a [ 8] 5.168 5.205 5.133 5.265 5.205 5.206 0.007
a[9] 3.091 3.108 3.065 3.144 3.108 3.109 0.004

f l l ] 0.000 -0.011 -0.013 -0.009 -0.011 -0.011 0.000
m 0.000 -0.003 -0.005 -0.001 -0.003 -0.003 0.000
m 0.000 0.012 0.010 0.015 0.012 0.012 0.000
m 0.000 -0.014 -0.017 -0.012 -0.014 -0.014 0.000
m 0.001 0.010 0.008 0.013 0.010 0.010 0.000
m 0.009 0.006 0.004 0.009 0.006 0.006 0.000
^[7] 0.061 0.053 0.050 0.058 0.053 0.053 0.000
m 0.247 0.232 0.229 0.234 0.232 0.232 0.000
m 0.630 0.636 0.633 0.639 0.636 0.636 0.000

/3[10] 1.060 1.063 1.058 1.067 1.063 1.063 0.000
/3[11] 1.221 1.215 1.210 1.219 1.215 1.215 0.001

7[1] 1584.986 1589.683 1571.201 1610.934 1589.683 1589.656 2.159
7  [2] 1553.923 1561.232 1542.514 1582.103 1561.232 1561.200 2.166
7  [3] 1509.538 1510.737 1493.948 1532.632 1510.737 1510.701 2.059
7(4] 1440.879 1465.645 1449.357 1485.238 1465.645 1465.594 1.986

1320.854 1315.337 1300.719 1332.920 1315.337 1315.312 1.837
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Table 5: Absolute Difference of Actual and Linear Approximation Estimates

Theta Minimum Maximum Median Mean SD
a[l] 0.000 (-0.016) 0.016 (+0.014) 0.000 0.001 0.002
a [ 2] 0.000 (-0.017) 0.017 (+0.017) 0.000 0.001 0.002
«[3] 0.000 (-0.008) 0.016 (+0.016) 0.000 0.001 0.002
a[4] 0.000 (-0.014) 0.018 (+0.018) 0.000 0.001 0.002
a[5] 0.000 (-0.015) 0.015 (+0.014) 0.000 0.001 0.002
« [6] 0.000 (-0.020) 0.023 (+0.023) 0.000 0.001 0.003
a[7] 0.000 (-0.051) 0.060 (+0.060) 0.000 0.002 0.006
a [ 8] 0.000 (-0.060) 0.072 (+0.072) 0.000 0.002 0.007
a[9] 0.000 (-0.036) 0.043 (+0.043) 0.000 0.002 0.004

m 0.000 (-0.004) 0.004 (+0.003) 0.000 0.000 0.001
m 0.000 (-0.003) 0.004 (+0.004) 0.000 0.000 0.001
m 0.000 (-0.003) 0.005 (+0.005) 0.000 0.000 0.001
m 0.000 (-0.004) 0.004 (+0.004) 0.000 0.000 0.000
m 0.000 (-0.004) 0.004 (+0.004) 0.000 0.000 0.000
« 0.000 (-0.004) 0.004 (+0.004) 0.000 0.000 0.000
m 0.000 (-0.004) 0.004 (+0.003) 0.000 0.000 0.000
m 0.000 (-0.004) 0.004 (+0.004) 0.000 0.000 0.000
m 0.000 (-0.003) 0.003 (+0.003) 0.000 0.000 0.000

(3[1Q] 0.000 (-0.004) 0.005 (+0.005) 0.000 0.000 0.001
m \ 0.000 (-0.005) 0.006 (+0.006) 0.000 0.000 0.001

7[1] 0.008 (-21.462) 21.462 (+17.316) 1.035 1.345 1.941
7  [2] 0.008 (-21.078) 21.078 (+20.951) 1.012 1.368 2.082
7  [3] 0.007 (-20.033) 20.033 (+16.718) 0.985 1.351 1.931
7[4] 0.007 (-19.788) 19.788 (+16.219) 0.955 1.321 1.904
7[5] 0.010 (-17.758) 17.758 (+14.556) 0.862 1.256 1.835
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Table 6: Comparison of True, Least Squares, and Jackknife Estim ates

T heta &LS Full LSE Jls LP LQ RLQ
cr(l] 0.000 -0.015 -0.015 -0.011 -0.011 -0.011
a [ 2] 0.000 0.004 0.005 0.016 0.015 0.014
a [  3] 0.000 0.124 0.121 0.128 0.129 0.130
a  [4] 0.018 0.031 0.032 0.011 0.011 0.011
a  [5] 0.293 0.334 0.334 0.316 0.317 0.318
a  [6] 1.753 1.692 1.694 1.637 1.640 1.643
a[7] 4.410 4.378 4.379 4.260 4.263 4.266
a  [8] 5.168 5.205 5.205 5.055 5.062 5.069
a  [9] 3.091 3.108 3.108 3.003 3.009 3.015

ar[10] 1.023 1.000 1.001 1.000 1.000 1.000

m 0.000 -0.011 -0.011 -0.013 -0.013 -0.013
m 0.000 -0.003 -0.003 -0.003 -0.003 -0.003
m 0.000 0.012 0.012 0.011 0.011 0.011
m 0.000 -0.014 -0.013 -0.005 -0.006 -0.006
m 0.001 0.010 0.010 0.008 0.008 0.009
m 0.009 0.006 0.006 0.004 0.004 0.004
m 0.061 0.053 0.053 0.044 0.045 0.045
0 [8] 0.247 0.232 0.233 0.251 0.249 0.247
^[9] 0.630 0.636 0.635 0.642 0.641 0.640
/3[10] 1.060 1.063 1.063 1.074 1.072 1.070
m ] 1.221 1.215 1.216 1.254 1.246 1.240
m \ 0.996 1.000 0.999 1.000 1.000 1.000

7[1] 1584.986 1589.683 1588.966 1605.455 1608.613 1610.859
7  [2] 1553.923 1561.232 1559.278 1580.720 1583.546 1585.479
7(3] 1509.538 1510.737 1510.828 1532.512 1534.493 1535.722
7  [4] 1440.879 1465.645 1465.739 1496.080 1495.273 1494.384
7(5] 1320.854 1315.337 1314.962 1330.070 1332.550 1334.162
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Table 7: Standard Errors of Jackknife Estimates

Param eter J ls LP LQ RLQ
« [ 1] 0.0432 0.0290 0.0273 0.0258
a [  2] 0.0448 0.0286 0.0271 0.0256
«[3] 0.0442 0.0276 0.0259 0.0244
a  [4] 0.0457 0.0257 0.0242 0.0228
a  [5] 0.0439 0.0295 0.0278 0.0262
a  [6] 0.0439 0.0591 0.0551 0.0515
a[7] 0.0411 0.1428 0.1328 0.1237
a  [8] 0.0343 0.1692 0.1572 0.1464
a  [9] 0.0426 0.1033 0.0962 0.0896

a[lO] 0.0451 0.0000 0.0000 0.0000

m 0.0108 0.0070 0.0065 0.0061
m 0.0106 0.0075 0.0070 0.0065
m 0.0111 0.0076 0.0071 0.0066
m 0.0113 0.0074 0.0069 0.0065
m 0.0104 0.0072 0.0067 0.0063
m 0.0107 0.0070 0.0066 0.0062
m 0.0106 0.0082 0.0076 0.0070
m 0.0109 0.0077 0.0071 0.0066
m 0.0104 0.0089 0.0077 0.0068

0.0098 0.0108 0.0089 0.0074
m \ 0.0091 0.0128 0.0103 0.0084
m \ 0.0099 0.0000 0.0000 0.0000

7[i) 29.9025 52.8910 48.9352 45.4321
7[2] 27.9393 53.0591 48.8509 45.1873
7(3] 28.5752 50.4390 46.7533 43.4583
7  [4] 28.0747 48.6561 45.0435 41.8351
7  [5] 29.0803 45.0062 41.5059 38.4405
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We close this section with a discussion of the computational requirements for 

obtaining both the actual and approximate leave-out-one estimates. Obtaining the 

actual case deletion estimates was computationally intensive and required running 

on the CRAY at the Ohio Supercomputer Center. Running the FORTRAN program 

on the DEC at the Mathematical Sciences Computing Laboratory would have to be 

done as a batch job because of the longer processing time, and could possibly be 

hampered by disk space problems for a large data set. For the NFAK1A data, getting 

the actual deletion estimates involved fitting the model 601 times. In contrast, using 

the linear and quadratic approximations required only one global fit.

Once the velocities were calculated, the linear leave-out-one estimates were ob­

tained quite easily, compared to the labor involved in the actual deletions. The 

programs were done in S (See Becker et al.,1988) and computations performed on 

the DEC at the Mathematical Sciences Computing Laboratory.

The quadratic estimates took much more time to compute than the linear ones. 

Evaluating the right hand side of Equation (6 .6) took particularly long to compute, 

and had to be run as an S  batch job.

A possible difficulty with the calculations using the approximations should be 

noted, however. If some of the parameter estimates for the full least squares fit
A 7 A (

are zero, V  V  may become singular, and the aprroximations could then not be 

calculated. This situation could be remedied by deleting the zero rows of the full 

estimates and calculating a modified derivative matrix, or by replacing the estimates 

which are zero by tiny values and proceeding with the computations.



C H A PT E R  VII

Conclusion

7.1 Sum m ary o f R esu lts

In Chapter III, closed-form expressions for the first- and second-order partial deriva­

tives of the expectation function'of a trilinear PARAFAC model were presented. 

Linear dependencies among the tangent and acceleration vectors were investigated. 

For the one-factor model, the acceleration vectors were found to be linearly inde­

pendent, but some dependencies were shown to exist among the columns of blocks 

of V  and blocks of rj. The number of dependencies was determined and used to 

compute relative curvature arrays for a numerical example.

In Chapters V and VI, approximations to the case deletion estimates 0(r) and 

various jackknife estimates of 9 were considered. These were then applied to mul­

tilinear models, taking into account the special structure of V  and ff discussed in 

Chapter III.

For a  numerical example using simulated data for a one-factor model, the linear 

approximation to the case deletion estimates was found to perform fairly well, com­

pared with actual case deletion estimates. The largest absolute differences between 

the actual leave-out estimates and their linear approximation counterparts occurred

86
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for the 7 ’s. These five largest values were in the 20’s; when compared to the differ­

ences between the global estimates and the true param eter values, however, the five 

resulting relative differences ranged from 3 to about 5. In view of the considerable 

computational requirements for actual case deletions, the approximate case deletion 

estim ates show promise.

7.2 H ow  R esu lts  Can be U sed

The linear leave-out estimates can be used to compute various jackknife estimates of 

9, as described in Chapter V and illustrated in the numerical example of Chapter VI. 

They are also useful for cross-validation purposes, as discussed in Chapter IV. In 

particular, the linear approximation formulas can be used to find estimates for 

models with increasing values of F,  as well as to calculate the predicted residual 

sum of squares, in order to determine the number of factors present.

Since the leverages hT are a  by-product of the approximate leave-out calculations, 

the assessment of influence is another area where the deletion estimates are relevant. 

The construction of influence measures for nonlinear regression models was, in fact, 

the motivation for the derivation of results cited in Chapter VI. Influential points 

for multilinear models could be studied using such measures.

In general, the approximate deletion estimates are potentially relevant in any 

analysis which involves leaving out one or more observations. Situations where 

the observations are not purposely deleted, but are actually missing, could provide 

another realm of possible applications. In dealing with experimental designs with 

structurally missing observations, for instance, one can surmise that the adaptation
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to multilinear models of the linear approximation estimates can similarly be made 

or extended to such designs.

7.3 Areas for Further Study

The numerical example used in this dissertation was for a one-factor trilinear PARAFAC 

model used to fit simulated data. It would be interesting to see how well the linear 

approximation works for real data. Estimating the parameters of an F  — factor 

model, with F  > 1, to either real or simulated data would also be of interest. 

Simulation studies could be done to cross-validate F  — factor  models using the 

approximate deletion estimates.

Linear dependencies among the velocities and accelerations were investigated 

mostly for the one-factor case. More work could be done to determine if, by setting 

certain constraints, some theoretical results could be obtained for the general F - 

factor model.

Curvature measures have not, to my knowledge, been used in multilinear anal­

ysis. The measures of nonlinearity introduced in Chapter III are just the tip of the 

iceberg, so to speak. Calculating these and other measures for additional data sets 

would give us a feel for the curvature behavior of multilinear models. Other curva­

ture formulas for nonlinear models might also be simplified or derived analytically 

when applied to multilinear models.

The nice structure of the velocities and accelerations for PARAFAC models sug­

gests that this advantage could be explored for other types of multilinear models, 

for instance, the Tucker models. Briefly, Tucker3 models can be seen as generaliza-



tions of the PARAFAC models with F\ factors for the first way, F? factors for the 

second way, and F3 factors for the third way. Tucker2 models can be interpreted as 

allowing general interactions between the F\ factors associated with the first way 

and the Fi  factors associated with the second way, the third way not itself being as­

sociated with a single factor but reflecting the importance of the interactions. How 

the leave-out-one approximations will perfQrm when applied to these models could 

be investigated. These models also have applications in spectroscopy, so their study 

is of theoretical as well as of practical interest.



A ppendix  A

S N otation

The S language was used to calculate the deletion estimates using approximations 

and to prepare the figures in this document. Aside from its computational and 

graphical use, S also provides convenient m atrix and array notation. The S notation 

was therefore used extensively in this document. The relevant notation is explained 

below. For more details on the S language, see Becker, et.al. (1988).

A .l  S M atrix  N ota tion

Let X  be an N  x P  matrix. The (n ,p )tfc element of X  is denoted by X[n,p].  The 

n th row of X  is denoted X [n ,] and the ptK column is denoted X [,p].

The N  — 1 x P  m atrix consisiting of all rows except the n th row and of all 

columns of X  is written as X [ —n,]. Similarly, the N  x P  — 1 m atrix consisting of 

all rows and of all columns except the pth column of X  is written as X [, — p]. The 

N  — 1 x P  — 1 m atrix consisting of all rows except the n th and of all columns except 

the pth is denoted X [—n, —p].

The R  x P  sub-matrix consisting of the rows X [r i,] ,  X [r2)], . . . ,  X [r^ ,]  is 

written as X [ ( r j , r 2, . . . , r / i ) , ] .  If r l5 r 2, . . . ,  tr are consecutive integers, we write 

X[r \  : r/t,]. Similarly, the N  x C  sub-matrix consisting of the columns X [, cj],

90
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X [,c 3], X [,cc] is written as X [ , (c u c2t. . .  ,cc)\. X [ ,c i  : cp\. If clt c2, . . . ,  cc 

are consecutive integers, we write X[, C\ : cc]. The R  x C sub-m atrix consisting 

of the entries in rows r\ through r/j of X  and in columns cj through cc of X  is 

denoted by X [r i  : rj*,Ci : cc].

A .2 S Array N ota tion

The S notation for arrays follows basically the same pattern  as for matrices, except 

for the addition of one or more indices to represent the additional face or faces. Let 

V b e a n i V x P x Q  array. The (n ,p f q)th element of Y  is denoted by Y [n ,p ,  g]. 

The n th level of the first face of Y  is written as Y [ n , ,]; the pih level of the second 

face of Y  is written as K [,p ,]; and the qth level of the third face of Y  is written as 

Y[, ,q ) .

An array formed by leaving out a level of one or more faces of Y  is denoted 

by placing a  minus sign before the appropriate index or indices. For instance, the 

N  — 1 x  P  — 1 x  Q array consisting of all levels except the nth level of the first face, 

all except the pih level of the second face, and all levels of the th ird  face of Y  is 

w ritten as Y [ —n, — p, ].

The S notation for sub-matrices formed by taking blocks of rows and columns, as 

described above, also extends directly to a notation for sub-arrays formed by taking 

blocks of levels of each face.



A ppendix B

M atrix N otation

B .l  K ronecker P roduct

Let A  =  (amn) be an M  x N  m atrix, and B  =  (6P?) be a P  x  Q matrix. The 

Kronecker product of A  and B  is an M P  x N Q  m atrix defined by

A ®  B  =

a u B  ai2B  . . .  auv-B
C2l B  CI22B . . .  02JV-B

(B .l)

. o.m \ B  a\j2B  . . .  o m n B  .

Kronecker products occur in expressions for the derivative m atrix V  and for the

array of acceleration vectors rj.

B .2  K hatri-R ao C ircle P roduct

Let A  be an /  x F  m atrix with column vectors 01 , 02 , ■.. ,  and let B  be a J  x F  

m atrix with column vectors 61, 62, . . . ,  bp. Then the Khatri-Rao product of A  and 

B  is an /  J  x F  m atrix

A  O B  =  [ o j ® 61 | <x2 ® b2 | . . .  j oj? 0  6 j? j . (B.2)

(Khatri and Rao, 1968).

The Khatri-Rao circle product is used in expressing the derivative m atrix V  in 

closed form for models with F  factors.

92



93

B .3 V ectorization

Let X  =  ( ijj)  be an I  x  J  matrix. The vectorization of X ,  denoted by vec{X),  

arranges the elements of X  into a  vector of length I J  by varying the row index first 

before varying the column index. In effect, vec(X)  stacks the columns of X  on top 

of each other. It follows that the vectorization of the transpose of X , ve c (X T), is a 

vector of length I J  obtained by varying the column index first before the row index. 

Thus
* 1 1  ' ‘ * u  '
* 2 1 * 1 2

* n * 1 J

* 1 2 * 2 1

* 2 2 * 2 2

N
... 

£ 
...

and ve c (X T) =
* 2 J

* U * J 1

* 2  J * / 2

1

_____1

Let Y  bean  I x J x K  array. The vectorization of Y-, denoted by uee(Y), arranges 

the elements of Y  into a vector of length I J K  such that the first index varies most 

rapidly and the third index varies most slowly. To denote the arrangement of the 

elements of Y  where the last index varies most rapidly and the first index varies 

most slowly, the notation vec(YT) shall be used, in keeping with the notation for 

matrices. Thus,
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' Ym  ' '  Ynx '

Ym Y\\k

Y1J1 Y m

Yin Yu k

' and vec(YT) =

Yu k Y m

Yi i k Yu k

Yijk Y u  i

Yijk Yijk  _

Vectorization of the matrix or array of expected values ft or, equivalently, of /xT, 

facilitates obtaining closed-form expressions for the velocity and acceleration vectors. 

Whereas in the literature on multilinear models, vec(fi) is used most often, if not 

always, uec(/tT) was used in this document in keeping with the conventional notation 

of factorial experiments where the last index is varied most rapidly.

B.4 M atrix-Array M ultiplication

Let B  be an N\ x JV2 matrix, and C  be an IV2 x ]Vj x N4 array. The product
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denoted by the square bracket multiplication [ ][ ], is an Ni x JV3 x N 4 array whose 

element in the n th face, pth row, and qth column is

N2
A[n,p,q] =

1=1

(See Bates and Watts, 1988.)

Matrix-array multiplication is performed to obtain the curvature arrays.



A ppendix C 

Proofs o f Lem m as

This section presents the proofs of the lemmas stated in Section 3.3. These lemmas 

aim to determine whether any linear dependencies exist among the velocity and 

acceleration vectors. Once the number of such dependencies is known, one can find 

the combined dimension of the tangent and acceleration spaces, P  +  P \  which is 

necessary in the calculation of the curvature arrays. Although the value of P + P '  can 

be obtained numerically given some data, the nice structure of the deriavtive matrix 

V  and the array of second derivatives if} for multilinear models leads one to think 

that there must be some closed-form solution. For the one-factor trilinear PARAFAC 

model, we have found that linear independence or dependence can, indeed be proven 

analytically.

Section ?? gives the proof for linear independence of the acceleration vectors. 

In Section ??, pairwise independence of the tangent and accelration vectors is in­

vestigated. Mutual independence of these vectors is the subject of Section ??. All 

the proofs use notation from Sections 3.1.1 and 3.1.2. The alternative expressions 

for the columns of V  and 7} presented in those sections now come in handy, since 

some of them serve a proof’s purpose better than others.

96



97

C .l  P ro o f o f  Lem m a I I I .l

To determine if any linear dependencies exist among the columns of ij, we wish to 

know if there are nonzero coefficients r ^ / ,  and s,*/ tha t satisfy

I JKx.  1

i j j  j k f  i kf
(C .l)

or

I J K x  1 
=  0 ,

‘ {»— ' 0
( j - l )J fx l0 r ( j - l ) K x l  1 0 0

X 9 i i f T f + X r i kf <*J ® ejt +  X s *kf 0 /  ®  e k
( J - j ) K x  1 0
( / - . ' )  J K  x l  0

i lk,} { J ~ i ) K x  1 0 i , k j ( I - i ) J K x l0

where the summation index i ranges from 1 to  I  — 1, the index j  goes from 1 to 

J  — 1, and the index k from 1 to K.

The proof consists of taking mutually exclusive and exhaustive blocks of rows in 

the above equation, then solving for the coefficients, if any. Blocks of J  • K  =  J K  

rows ( J K  x 1 vectors) are considered. We start with the I th or last block of J K  

rows, then look at the inh block, where i' is any of the other values of i.

Consider the I th block of J K  rows:

X 9*'j7 °  + X
».i./ i , k j

f ( j - D t f x i  i  
0
Cfc

( J - j ) K x  1 
0

_  J K x  1+ X Sikf° = 0

Since ctf[I) = 1 for /  =  1, . . . ,  F,  we have

F  K

X X rJk}*k
J = \  k= 1

K x  1
0 for j  — 1 , . . . ,  J  — 1



or X ! ri*/ =  0 for ;  =  1 , . . . , J -  1, k = 1 , . . . , A\  
!=i

For i =  z', the inh block of J K  rows, for z' =  1 , 1  is

J K x  1
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(C.2)

o = E
/ = i

* ' V 0 ' ek0 0 K 0
Qi'lf ; +  • • • +  1)/ I +  £  rw<*f\i'] ;

0 k=l 0
0 0 0

'  0 ■
>

K 0 K

Y  r ( J - i ) k f <*f [ i ' ] • + Y  S i ' k / P /  ®  e k (C.3)
k= 1

e k
0

k=l

We shall further divide the inh block of J K  rows into mutually exclusive and ex­

haustive sub-blocks of K  rows (K  x 1 vectors) each :

The J th or last block of K  rows in Equation C.3 is

F  K  K x l
E E  Si’kj^k =  0 since (3j[J) =  lfor /  =  1 , . . . ,  F,
j=\ k= 1

F
or =  0 for z' = 1 , 1  k  =  1, . . .  ,K .  (C-4)

/ = i

For j  =  1 , . . . ,  J  — 1, the j th block of K  rows in Equation C.3 is

K x  1 F  f  K  K  i

0 =  L  1 tt 'j /T / +  £  rjkfccf \i']ek + Y  S i 'k jP fW k  \
/=i 1 fc=i fc=i )

F
or 0 -  +  +  (C.5)

/ = i

for z' =  1 , . . . ,  /  — 1, j  =  1 , . . . ,  J  — 1, k  = 1 , . . . ,  K.

From the above equality, Equations C.2 and C.4 we have Lemma III. 1. In 

particular, for F  =  1, qijf =  rjkj =  s;*/ =  0.
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C .2 P ro o f o f  Lem m a III.2

W hen F  = 1, the tangent vectors are given by Equations 3.6, 3.7, and 3.8 as

r (i-i)JICxl  
0

0  g>7
(/-») J K  x l  

0

v b [ J ]  -  a ®

(j-l)Tfxl 1 
0
7

( J - j ) K x  1 
0

, j  — 1) ■ ■ • , J  h

and V c [ ,  k]  =  a  ® (3 ® ek, k  = 1, . . .  K.

(C.6)

(C.7)

(C.8)

and the acceleration vectors are given by Equations 3.16, 3.18, and 3.17 as

( i - l ) J K x l  ‘ 
0

(j-lj/fxl
0
7

( J - i ) K x  1 
0

(7—
0

= a ®

r ( j - i ) K x i  1 
0
ek

( J - j ) K x l
0

r ( i - l ) J K x l  i  
0

P ® e k
{ I - i ) J K x \

0

(C.9)

(C.10)

(C .ll)

for i =  1, 1, j  = 1, . . J  — 1, k = 1, . . . ,  K.

The proof proceeds by taking corresponding (nonzero) blocks of rows of the 

tangent and velocity vectors and determining if one can be expressed as a linear 

combination of the other.
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1. Independence of V^[, i] and i) [,I[t], ^[j]]

We wish to  determine if there exist coefficients Cj ,  not all 0, such that

i = l

Consider Equations C .6 and C.9. For a  fixed «, we need only to  look at the i th 

block of J K  rows because all other rows are 0 :

j - i
P  ® 7  =  2  c3

j = l

r ( j - i ) K x i  -i 
0
7

( J - i ) i i f X l
0

Since P[J] =  1, the last K  rows of the above equation yield 7  =  YhJjZ\ cj0. 

There are no nonzero cofficients cj that will satisfy this unless all the elements 

of 7  are 0. Thus, V a [,i \ and [,![*], are linearly independent.

2. Independence of V  a[, j] and ij [,;T[i], JC[fc]]

Do there exist coefficients a* ^  0 such that

Vx[,i] =  ?
k= 1

Consider Equations C.6 and C .ll .  For a fixed i, we again need only look at 

the i th block of J K  rows :

K

P  ® 7 =  £  a k P  <8 > ek
k= 1

The above equality holds if we take a* =  7 [fc], k =  1 , . . . ,  K.  Therefore V a [, *] 

is a linear combination of ij [,T[i],/C[fc]].
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3. Independence of and ff [, i7[j],/C[fc]]

Do there exist coefficients bjk ±  0 such that

iM

Consider Equations C .6 and C.10. For a fixed i , the i th block of J K  rows is

0  ® 7  =  E  &;*“ [*] 
},k

(j-l)ATxl -j 
0
ejt

( J - j ) K x i
0

Since /3[J] =  1, the last K  rows of the above equation yields 7  =  * 6jtO;[i]0 .

There are no nonzero cofficients bjk that will satisfy this unless all the elements 

of 7  are 0. Thus, V a [, i] and »j[,*7[j],lC[Ar]] are linearly independent.

4. Independence of V b  [, j ] and i) [, T{i\, J \ j \ \

We wish to determine if there exist coefficients c,-, not all 0, such that

t'=l

In Equations C.7 and C.9, consider the last (I th) block of J K  rows :

« [ / ]

r ( j - i ) K x l  -1 
0 / - 1

= E c.°
t=i

The above equality holds only if a[J]7 =  1 • 7  = 0. So V b  [, j] and rj [, T[i], J \ j ^  

are linearly independent.

5. Independence of Vjg[,j] and rj [,I[i],AC[fc]]
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Do there exist coefficients &,•* ^  0 such that

V a U I - E M L I M , *[*]]?
i,k

In Equations C.7 and C .ll ,  consider the last {Ith) block of J K  rows:

r (j-i)atxi 
0
7

( J - j ) K x  1 
0

=  £ M )
i,k

Again, there are no constants 6,-* which can satisfy the above equation unless 

7  =  0 . Thus, V b \ i 3 \ an<l are linearly independent.

6 . Independence of Vb[, j] and fj [, J \ j] ,  £[&]]

Do there exist coefficients a* /  0 such that

v s [ .i]  =  !> »*>  U W . K W
fc=l

Consider Equations C.7 and C.10. For a given j ,  we need only to consider the 

j th sub-block of K  rows within each of the /  blocks of J K  rows, since all other 

elements are 0 :
K  K

<*[*]7 = Y  QfeQ![*]efc = “ [*] Y  °kek
k=l k=l

The above equation is satisfied when a* =  7 [k], k — 1 , . . . ,  K.  Therefore V b[»j] 

is a linear combination of ff [, J \ j \ ,  /C[fc]].

7. Independence of Vc[,  fc] and [,X[z], J7"[j]]

We wish to determine if there exist coefficients a,j, not all 0, such that
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In Equations C.8 and C.9, consider the I th block of J K  rows:

a[/]/3®eA. =  l -  / ?®e* =  5 ^ a tj0  .

ifi

Since there are no coefficients a,; that will satisfy this equation, unless /3 = 0, 

V c \t  fc] and t) [,X[i], J \ j \ \  are linearly independent.

8 . Independence of V c[, fc] and f/ [, J[t], £[&]]

Do there exist coefficients 6,- ^  0 such that

v 0 [,*] =  £ M ? [ . m * W
t=l

Consider Equations C.8 and C .ll. Similar to the above, the last block of J K  

rows is
/ - i

P  ® ek = Y ,  ■>
i= i

which holds only if all the /?’s are 0. So Vc\,k]  and rj [, J[i], £[&]] are linearly 

independent.

9. Independence of V c[, k] and i) [,J\j],fC[k]]

Do there exist coefficients Cj ^  0 such that

Vc [,*] = !> ,•« [ ,J IM * ]]?
j=i

In Equations C .8 and C.10, consider the J th sub-block of K  rows in each of 

the I  blocks of J K  rows :

a[i]P[J]ek =  ^ C j-a [ i]0
i= i

or a[t] • 1 • ek =  a[i] ^  J  — IcjO .
i= i
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Since there are no coefficients cj which will satisfy the above equations unless 

each a[i] is 0 , Vc[,k]  and fj [, £[&]] are linearly independent.

C.3 P roof o f Lemma III.3

To determine if the velocities and accelerations are mutually independent for a one- 

factor trilinear model, we wish to know if there exist nonzero coefficients a,-, bj, c*, 

Qij, fjki and such that

I J K x  1
o = £ > n i [ ; ] ]  + s > i n j w i + s > v  [>*wi+

» j k
E w H .zM ,.ft) ']]  + E w [ . J [ ) ] , c W I  +  E ^ [ .z i * ] .K W ] ' ( c . i 2 )

),k i,k•J

We start by evaluating each of the linear combinations in the above equation :

1. E f c i '  O iV  [ , ! [ . ] ]

From Equation 3.13, we know V  [,![»]] is nonzero only on £[z,,], where V  [, 1\i\[ 

equals (3 ® 7 , independent of i. Note that the term  £ [ /,, ] is never disturbed 

because it is out of the sum. If we define an I  x 1 vector a 0 to be

a i

00 =
O.I- 1 

0

then

5 3  OiV [,I[i]] =  o 0 <g> 0  ® 7-
t=i

(C.13)

2 . L?]]
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As in the above, we see from Equation 3.14 th a t V  [, is nonzero only on 

£[,.?, ]. If we define a  J  x 1 vector

bi

bo —
b j- i

0

then
j - i

^  biV  [, J\j]]  =  ot ® b0  <g> 7 - 
i=i

3- E f „ « V [ ,K [* r |]

Similarly, defining a K  x 1 vector c  to  be

Cl
c =

CK

we see from Equation 3.15 th a t

K
5 3  c*Vc[, A] =  a  <g> (3 <g> c.
Jt=i

4. E f c , 'E £ J  ««*[,*[<]. .fl;]]

Equation 3.23 shows th a t [,X[i], ^ [ j]]  is equal to  7  on 

elsewhere. If we define an /  x J  m atrix  Q  to  be

Q[i

then

=  vec(QT) <S> 7-
t=i j=l

(C.14)

(C.15)

and zero

(0.16)
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5. E / r t  E f.1  [, J\j],K[k]\

It can be seen from Equation 3.25 that ff [, J\j],K\k\[  is equal to a  on £[,, k] 

and zero elsewhere. Defining a J  x K  matrix R  to be

we have

* & * ] - { ? *  j z i : 1

23 23  r )*^ I’ ^b 'l.^ l* ]] =  “  ® vec(RT)
>=i k=i

(C.1T)

6. Efri1 E f= i s * i  [, Z[i], £[*)]

Again, it can be seen from Equation 3.24 that ff [,T[i],£[fc]] is nonzero only 

on £[z,, k\, at which it is equal to /3. If we define an I  x  K  matrix S  as

S  =
8

1 X K
0

similar to the above, then

=  vec(v>u(P X S r ))
i=l *=1

where y>i2 exchanges ways 1 and 2 of an array.

(C.18)

From Equations C.13, C.14, C.15, C.16, C.17, C.18, and C.12, the columns of 

V  and ff are linearly independent if there exist nontrivial ao, &o> c, Q, R ,  and S, 

such that

I J K x  1
0 = a o ® / ? ® 7  + a t®6o® 7  + «*®/3®c

+uec(QT) ® 7  +  a  ® vec(RT) +  vec(tp12(/3 x S T)) (C.19)
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Grouping the second and fifth terms of the above equation, we get

oc ® (60 ® 7  +  vec(RT)).

But bo ® 7  +  vec(Rt ) — vec(RT +  7  x 60).

Observe that R T* =  —60 x 7  is always valid, because J lT*[, J] =  —yb 0 [J] =  0 . 

Similarly, grouping the first and sixth terms of Equation C.19, gives

uec(7 X/3x 00+ ^ 12(0 x S T) =  vec(ipu [0X‘y x a o + P x S T) = uec(v5i2(/3 x (7 Xo0+ S 7')).

Again, note that S T* =  —7  x a 0 is always valid.

Thus, there exist 2 nontrivial solutions to Equation C.19. It remains to be shown 

that there exist no others. Set

Ai =  7  x b 0 +  R t

and A2 =  7  x a 0 +  S T

These are the “amounts” by which R T and S T fail to cause the singularities just 

derived.

Equation C.19 now is

a  ® (3 <S> c + vec(QT) ® 7  +  vec(Ai x a )  +  uec(y>i2(/3 x A 2)) =  0. (C.20)

We need to show that this implies c, Q, A i, and A 2 are all zero. Now look at

the above equation as an array equation :

c x / 3 x a - | - 7 x Q t  +  Ai x a  + v?i2(/3 x A 2) =  0  . (C.21)

Consider sub-matrices for each way :
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1. Take the [„I] subface:

c x f 3 x  « [/]  +  7  x Q t [, I] + + /3 x  A 2[, /] =  0

But a[7] =  0 by convention, Q[, I] =  0 by definition, and A 2[, I] =  0 by 

definition of S  and Oq. So the above equation reduces to

c x / 3  +  Ai =  0  (C.22)

Now take the [,J] column:

c(3[J] + Ai[, J] =  0 .

But Ai[, J] =  0  by definition of R  and 60, and (3[J\ =  1 by convention. 

Therefore,

c =  0 .

From Equation C.22,

A 1 = 0 .

2. Repeat the above using the [,J,] subface. Equation C.21 gives

c x (3[J] x a +  7  x Q r [J,] +Aj [ ,  J ,] x  a  + f3[J]A2 =  0.

Since /3[J] =  1, and Q T[J,\ =  0 , and Ai[, J] =  0 ,

c x a  4- A 2 =  0.

But c =  0, so

a 2 =  0.
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3. It only remains to show that Q  =  0 . Consider the [k„] face, from Equa­

tion C.21, we get

c[fc] x /3 x a  + 7 [fc]QT +  A[&,] x a  + (3 x A 2[fc,, ] =  0

Since c[fc] =  0, Ai[fc,] =  0 , and A 2[fc,,] =  0 ,

~ i m j = o.

So 7 [fc] 7̂  0 implies

Q 1 =  0 or Q = 0.



A ppendix D

S Code

D .l  G eneral Steps

This section outlines the steps for obtaining : (1) the case deletion estimates for a 

one-factor trilinear model using the linear approximation; (2 ) the linear, weighted 

linear, and reweighted linear jackknife estimates; (3) the derivative matrix, leverages, 

and other quantities incidental to the calculations of (1) and(2). The S functions 

used to carry out the steps, variable names used in these functions, and relevant 

comments are given in parentheses following each step.
A

To obtain the 0? s using the linear approximation:

1. Obtain full least squares estimates by running R.T.Ross’ FORTRAN program 

on the complete data set.

2 . Set a [ /]  and /3[J] equal to 1 by dividing a  and j3 by the appropriate con­

stants; then adjust 7  by multiplying by the same constants. For comparison 

purposes, do the same normalization on the true values of the parameters. 

(The normalized full least squares estimates are named alpha.norm, beta.norm, 

gamma.norm; the normalized true parameter values are named alpha.comp, 

beta.comp, gamma.comp)

110
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3. Read in the data. (The function fun.dataray reads in the data in the usual 

input format to  FORTRAN except that the title, names, and other characters 

are removed.)

4. Obtain the derivative m atrix V .  (The function fun.v will return an N  x P  

matrix.)

5. Compute (V’TV )~ 1 V T. (The function fun.vtvivt will return a P x N  matrix. 

If the “solve” command complains that V  is singular, check using the “svd” 

command. If the singular value decomposition confirms the singularity of V ,  

the problem may be due to several parameter estimates being zero. If so, 

modify V  by deleting the full estimates which are zero or setting them to  a 

very small value, say 10-6 . Also, for large matrices, using “svd” instead of 

“solve” might be more efficient.)

6 . Obtain the leverages hT. (The function fun.hr will return a  vector of length 

N.)

7. Compute

(The function fun.rho will return a vector of length N.)

8 . Calculate the 0 r ’s. (The function fun.thetadel will return the P  x N  matrix 

containing the linear approximation leave-out estimates of the P  parameters 

when each of the N  observations are deleted.)
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To obtain the linear (LP), weighted linear (LQ) and reweighted linear (RLQ) 

jackknife estimates :

1. Do steps (1) to (6) above.

2. To find LP, compute rho (see step (7) above); to find LQ, compute rholq =  e; 

to find RLQ, compute rkorlq =  e ( l  — h T). (Each of the functions fun.rho, 

fun.rholq, and fun.rhorlq will return a vector of length N.)

3. To find LP, compute

nm ur =  n ( V TV )~ 1V T■ C. ;
1 — h r

which is the second term in Equation 5.2; to find LQ, compute nmurlq, the 

second term in Equation ??; to find RLQ, compute nmurrlq , the second term 

in Equation ??. (Use rho, rholq, and rkorlq, respectively, as arguments to 

the function fun.nmur.)

4. Obtain the jackknife estimates LP, LQ and RLQ. (Use nmur, nmurlq , and 

nmurrlq, respectively, as arguments to the function fun.lp.)

D .2 S Functions

Below are the S functions referred to in the previous section. The arguments have 

been given names that are as obvious as possible. The discussion in the previous 

section should also shed light on what the arguments represent.

Most of functions given here are very short; they can easily be combined into 

one long function, or a main function that calls each of the shorter ones. For clarity
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and ease of understanding, the simpler functions are given. Also, performing all the 

calculations in one swoop may cause dynamic memory problems for large da ta  sets, 

so it is sometimes useful to  be able to  break up the  program into smaller pieces.

fun.dataray «— function(filename =  "n fak la .data” )

{ dataraw <— scan(filename, what =  ””) 

dataraw «— as.numeric(dataraw)

I *— dataraw [1]

J  *— dataraw [2]

K *— dataraw[3]

N ♦- I * J * K

dataray <— array(dataraw[9 +  I +  J - f - K : 8  +  I +  J +  K +  N], c(I, J,

K))

return(dataray) }

fun.kronecker «— function(am at, bm at)

{ T .am at as,m atrix(am at)

T.bm at as.m atr ix  (bmat)

T.m atprod m atrix(aperm ((outer(T .am at, T.bmat)), c (3 ,1 ,4 ,2)), 

ncol =  ncol(T.am at) * ncol(T.bm at)) 

return(T .m atprod) }



fun.v <— function(alpha.norm, beta.norm, gamma.norm)

{ I *— length(alpha.norm)

J *— length(beta.norm)

K *— length(gamma.norm)

P « - I  +  J +  K -  2

vl l  *— fun.kronecker(diag(I - 1), fun.kronecker(beta.norm,gamma.norm)) 

v l *— rbind(vll, matnx(rep(0, J * K * (I - 1)), ncol =1 - 1)) 

v2b +— rbind(fun.kronecker(diag(J - 1), gamma.norm), 

matrix(rep(0, K * (J - 1)), ncol =  J - 1)) 

v2 «— fun.kronecker(alpha.norm, v2b)

v3 fun.kronecker(fun.kronecker(alpha.norm, beta.norm), diag(K)) 

v *— cbind(vl, v2, v3) 

return(v) }

fun.vtvivt <— function(v)

{ vtv *— t(v) % * % v 

vtvivt «— solve(vtv, t(v)) 

return(vtvivt) }

fun.hr «— function(v, vtvivt)

{ h «— v % * % vtvivt



hr <— diag(h) 

return(hr) }

fun.rho *- function(alpha.norm, beta.norm, gamma.norm, dataray, hr)

{ etaray *— outer (outer (alpha, norm, beta.norm), gamma.norm)

residray <— dataray - etaray

resid *— c(residray)

rho «— resid/(l - hr)

return (rho) } endquote

fun.thetadel *— function(alpha.norm, beta.norm, gamma.norm, 

vtvivt, rho)

{ I «— length(alpha.norm)

J *— length(beta.norm)

K <— length(gamma.norm)

P «- (I - 1) +  (J - 1) +  K

ur <— 1 * vtvivt * outer(rep(l, P), rho)

theta.norm *— c(alpha.norm[- 1], beta.norm[ - J], gamma.norm) 

thetadel «— theta.norm +  ur 

return(thetadel) }

fun.nmur *— function(I, J, K, vtvivt, rho)
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{ N « - I * J * K  

P « - I  +  J +  K -  2

nmur «— N * vtvivt * outer(rep(l, P), rho) 

return(nm ur) }

fun.lp function(alpha.norm, beta.norm, gamma.norm, nmur)

{ I «— length(alpha.norm)

J  «— length(beta.norm)

K *— length(gamma.norm)

N +- I * J  * K 

P «— (I - 1) +  (J - 1) +  K

theta.norm  +— c(alpha.norm[ - 1], beta.norm[ - J], gamma.norm)

lpr «— theta.norm  +  nmur

lp «— apply (lpr, 1, mean)

varlp +— apply (lpr, 1, var)

varlp *— varlp/N

selp *— sqrt (varlp)

return(list(lp, selp)) }
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