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1

Introduction

Summary

In this introduction the basic terminology of the subject matter of this book is
introduced. The underlying research question of the study is presented and the four
main themes that the chapters cover are described and related to this question. The kind
of data that are analysed throughout the book is explained. Furthermore, the aim and the
structure of the book are explained.

Research Question

This book is concerned with problems from sensory and consumer research. What
exactly these kinds of research are, is defined later. The tools used to study the
problems are the apparatus of Multivariate Data Analysis. The underlying question that
is addressed by the research in this book, is:

14



1.2

L2.1

1. Introduction

What has Multivariate Data Analysis to offer for studying problems in
sensory research?

Asking a question like this is more or less "upside down". Usually when one is
confronted with a scientific problem, an experiment is designed to study it or to test a
hypothesis. The reason that this is turned around in this book is that the problems in
sensory science that the author was confronted with, were often such that the data were
already collected. It was the feeling of both the sensory researchers and the author that
"There's more than meets the eye in this dataset."

Sensory Science

Sensory science is the general heading under which the study of a lot of different
problems and the application of a lot of methods can be found. No complete picture of
sensory science will attempted to be given here. A concise history and overview of the
field can be found in Stone and Sidel ( 1985, 1993), McBride (1990) and Punter (1991).

Some definitions

The part of Sensory Science that this book is concerned with can be defined as
follows:

Sensory evaluation is a scientific discipline used to evoke, measure, analyse
and interpret reactions to those characteristics of foods and materials as they
are perceived by the senses of sight, smell, taste, touch and hearing.

This definition was used by the (U.S.) Institute of Food Technologists in 1975 and
quoted by Stone and Sidel (1985). The definition is very general, but it contains most
ingredients of the discipline as it will be presented in this book. The focus in this book
will be on the analysis of the reactions to certain characteristics of Jood products (italics
refer to the ingredients of the definition). The reactions to characteristics will be in the
form of scores given to attributes perceived in the Jood-stimuli, the analyses will be
multivariate and the senses will mainly be the senses of smell and raste.

The field has many names, which may stress different aspects of Sensory Science,
but globally the same problems underlie all sub-disciplines. Thomson (1988) poses the
question:

15



1. Introduction

What are the attributes that consumers perceive in a particular new food
product and in what ways will these combine to determine future purchase
decisions?

as one of the most obvious questions to be answered by the scientific discipline
coined "Food Acceptability”. He also describes "Food Acceptability” as a somewhat
uncomfortable marriage between food science and behavioural psychology. In an
attempt to consolidate this marriage, a third party is introduced in this book: Data
Analysis.

McBride (1990) gives an overview of the position of sensory evaluation in between
the other disciplines:
1. research and development with a food-technical focus
2. consumer and marketing research with a behavioural and psychological focus

Note that the marriage Thomson (1988) referred to is reflected here too. A lot of
bridges can be, and are being, built between the different disciplines involved (see e.g.
Thomson et al. 1988). In this book a bridge is being developed based on statistics and
Data Analysis.

Sensory and Consumer Science and related disciplines

A brief lay-out along simple lines will be given here to explain further the subject
matter of this book. From now on the term Sensory and Consumer Science will be
adopted, because it reflects reasonably well the contents of the field. It is set apart from
the study of the chemical senses, which is commonly referred to as Sensory Psychology
and Sensory Physiology (e.g. Koster 1971, de Wijk 1989). Such research is not of
concern in this book. The (chemical) senses can also be studied in connection to
psychological properties of the experimental subject. In this case behavioural responses
may (be attempted to) be modelled mathematically and the properties of the models
studied. This kind of research is historically linked to psychophysics and
psychometrics. Recent psychophysical studies with applications in sensory science are
Frijters (1980) and Ennis (1991). This field is again not the subject of this book.

Figure 1! presents an overview of the different parts Sensory and Consumer Science
contains.

I This figure is based on a suggestion of Pieter Punter.
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1. Introduction

R&D, :
prisdugt marketing-
development LRIy

—

focus on focus on
products consumers
=
=
: 3E
kS g 5
Q, 88
N U
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N g =~
& I
] Iy
v S
trained (untrained)
assessors consumers

Figure 1~ Overview of Sensory and Consumer Science, illustrating the differences in
focus (1: on products; 2: on consumers).

As is illustrated in Figure 1, Sensory and Consumer Science can be subdivided into

two main fields:
1 the study of products;
2 the study of consumers;

In the study of products, mainly trained assessors are used who judge the products
on rather technical or analytical attributes. This is what is meant by perception, in the
figure, in contrast to appreciation. The hedonic quality -appreciation- of the products is
of no concern in this type of sensory research.

Both appreciative and perceptive aspects are used in the consumer focused studies.
The perceptive part uses consumer characterisations of the products, rather than
technical/analytical attributes. The appreciative part may include measurement of the
ideal intensity of the attributes and/or the preferences of the consumers.

The product-oriented research has a clear relation to R&D and product development.
Consumer-oriented sensory research in addition has a relation to marketing research.

In this book the focus is on the products rather than on the consumer. The perception
will mainly involve taste and smell properties of the products, though visual, auditory
(e.g. Vickers 1983, 1991) and kinesthetic perceptions are by no means excluded from
Sensory and Consumer Science.

The distinction in Figure 1 is not so strict as the figure may suggest. Sensory
profiling studies are usually of an analytical nature, hence often found in perception-
studies. They try to answer the question: "What are the important attributes of the

17



1. Introduction

products?" They can be applied in appreciation studies too. Then the question: "What
products are preferred/accepted/appreciated by the consumers?” is answered. It is a
matter of choosing the attributes. In appreciation studies the attributes are fixed and will
be mostly hedonic and focusing on aspects of the quality of the products. Profiling
studies will be introduced in more detail in later sections (§1.4)

In Sensory-Instrumental research, the relations between physical/chemical
(instrumental) properties and the sensory properties of products are studied. The focus
of these studies is mainly analytical, i.e., they are perception-studies. However, they
may be conducted in an appreciation context, provided that special attention is given to
the relations between the instrumental and the sensory-appreciative (see e.g. Noble
1975). Sensory-Instrumental research is covered in more detail in section 1.7 and is the
subject of part I11.

Time-Intensity research (§1.8 and part IV) is focused on perception only. The time-
course of a particular perceived property of a product is studied.

Sensory Research and Sensory Profiling Data

The questions dealt with in this book are from the field of sensory and consumer
science. In general terms, this is the field of research in which people use their senses to
describe certain properties of objects. Admittedly this definition is too general and needs
narrowing.

Three entities constitute the research and the resulting data in this book:

«  Objects
« People
«  Descriptions (of properties)

Objects can be interpreted very broadly. People can describe physical objects, other
people, services or what have you. Other terms used are products or, borrowed from
psychology, stimuli.

The descriptions can take different forms. They can be a judgement about the quality
of an object, of its hedonic value or of another specific property. In this book the
descriptions will take the form of judgements of a particular sensory property of the
object, like e.g. its sweet taste, its colour, its bitterness or the roughness of its surface.
These properties will be called arnributes, and they constitute the variables of the
research in the sequel. A variable may consist of numerical scores, or of a number of
(ordered) categories.

18



1.3.1

1. Introduction

In sensory research the data are almost exclusively elicited from people. One of the
directions in sensory and consumer science is research of products with the use of
sensory panels, sensory profiling studies. A sensory panel is a group of people that give
Jjudgements about products. There are different kinds of sensory panels, some of which
will be introduced in a following section.

The products in the case of sensory research are food products, drinks, cosmetics or
luxuries like snacks, candy or tobacco. The products are evaluated using essentially all
senses (sight, hearing, smell, touch and taste) though depending on the specific research
question the focus may be on just one or two of them. In purely analytical taste and/or
smell studies the appearance of different products will be controlled for by e.g. using
special lightning conditions. Another modality is texture perception in the mouth. This
sense is important when judging products where texture plays a role e.g. in meat. Sight
and even hearing also play a part in sensory research. The appearance of products may
be important, this depends on the kind of research. The sound of potato chips during
chewing is an example of use of the auditive sense in judging edible goods (see also
Vickers 1991).

Sensory-, Consumer- and Marketing research

Sometimes the line between sensory, consumer and marketing research is very thin
indeed. Often a sensory panel receives a certain amount of training in the judging task
that is expected of them. The term consumer panel is sometimes reserved for a group of
Judges that are not trained with respect to their task. They are sometimes described as
(or in fact) "picked up from the street”, but it also happens that such a panel received a
limited amount of training. No clear standard terminology seems to exist. Matters may
get more complicated when the term marketing-research is included in the picture too. Is
sensory research a special case of consumer research, which is a special case of
marketing research? It proves hard to answer this question and perhaps it is even harder
to consolidate sensory researchers with consumer- and marketing researchers. Van Trijp
(1992, see also Figure 2) makes a distinction between the different types of product that
are studied by the different disciplines. Sensory research studies the core product, i.e. a
product with certain physical/chemical ("instrumental”) characteristics of which the
sensory characteristics are sought. This is the study of the perception of products as
presented in §1.2.2. The generic product possesses certain derived "benefits" as usage
utility, ease of use, perceived durability and a "status”. This generic product is different
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from the core product, though the same physical product may underlie both. Consumer-
or Marketing research is concerned with studying the generic products.

Figure 2 illustrates the relations between the fields of sensory, consumer and
marketing research.

consumer-/marketing sensory
research analysis
T !
| |
| |
| |
1 ~core intrinsic product | | researchand
n | products | characteristics development
consumer | Y [choice ! 7 3 A
market criteria v
“genmeric  _ |extrinsic product | .
products characteristics »-| marketing

Figure 2  Relations between sensory, consumer and marketing research, showing the
differences between core products and the generic products (slightly adapted
from van Trijp 1992).

Figure 2 shows the "classic" point of impact of sensory analysis, studying the
intrinsic product characteristics (the core product) for research and development. The
two double arrows between the intrinsic and extrinsic product characteristics, and
between R&D and marketing, indicate an interesting potential application of sensory
analysis, viz. the study of to what extent sensory perception is influenced by such
properties of the "generic" product as price, packaging, brand labelling, and the derived
characteristics of the generic product. ’

Sensory research and consumer/marketing research have different, though both
psychological, origins. Sensory research is based in sensory physiology and
-psychology and has through psychophysics always had a link with statistics and
psychometrics (see e.g. Punter 1991). Marketing-/consumer- research has its origins in
social psychology, and it has a strong link to direct applications in marketing. Sensory
research is perhaps less applied than marketing-/consumer research, in that it is closer to
research and development of products, and further away from the market (see also
§1.2.1, Thomson 1988, McBride 1990).
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Sensory Panels and Ditto Data

There are a number of different ways to collect sensory profiling data, using different
kinds of sensory panels. One important aspect in which these methods of data collection
differ is in the amount of training the panels receive prior to the actual experiment.
Figure 3 arranges the different panel-types along a continuum with respect to the amount
of training they receive.

no training intensive training
T T T T T T
field consumer  Free Quantitative  Spectrum expert

Choice  Descriptive
Profiling Analysis
\ J

. Y
(Free Choice Profiling)

Figure 3 "Sensory panel method continuum”, ranging from untrained panels at the left
to panels that receive much training at the right.

The sensory analytical panels are located at the right extreme of this continuum.
These panels judge a limited set of products on a number of strictly defined properties,
with respect to which they have been intensively trained. They are sometimes referred to
as expert panels. At the other end of the continuum in Figure 3 the consumer panels
reside. Here one moves closer to marketing research. The most extreme example is
probably found in "mobile testing" where the research takes place in a prepared bus
which drives up to a shopping centre and invites people in to judge products. These
panels may be called field panels, to distinguish them from consumer panels in which
inexperienced consumers are invited to take place in a sensory experiment inside a
laboratory, or at least in a somewhat more controlled environment than a bus. In
between the field-panels and the expert-panels a lot of different sensory-panel methods
exist of which some are indicated in Figure 3. The differences between the QDA and the
Spectrum method are not fundamental, they are not explained here (see Stone and Sidel
1985, 1993 for QDA, Meilgaard et al. 1990 for Spectrum). These two methods have in
common that a standard vocabulary of descriptive attributes is formed. These attributes
are used in the sensory experiment after the panel receives training with respect to the
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attributes. The differences between the methods lie in the amount of and procedures of
training.

Another way of distinguishing between different panels is in terms of the kind of
questions the judges are asked. A sensory panel is also referred to as an analytical panel
when the questions in the experiment apply to analytical, as opposed to hedonic,
properties of the products. This division is also present in Figure 1, where the term
"perception” is used for "analytical”, and "appreciation” for "hedonic". Examples of
analytical attributes are sweet taste, nutty taste, sticky odour, rubbery texture, etc. The
further we move to the right on the continuum in Figure 3, the less likely it is that
hedonic questions will be asked. Hedonic studies are not explicitly covered in this book.
However, when analytical attributes are replaced by hedonic attributes, or just by one
hedonic attribute, most MVA methods discussed in this book can be used for hedonic
sensory profiling studies as well.

Free Choice Profiling panels differ not only in the amount of training, but also in
another property (see §1.4.2). This is why it is hard to include FCP panels in Figure 3.
The panels that are usually called FCP-panels are at the approximate position indicated
in Figure 3. They contain often consumers, or somewhat more experienced panelists,
who receive only a limited amount of training with respect to the attributes. The
important property of FCP studies is that the assessors can choose their own attributes.
When field- or consumer-panels are allowed to choose their own attributes they become
ECP panels too, hence the brace in Figure 3. The panels at the right hand side of FCP
on the continuum are not FCP panels by definition. These, so-called Conventional
Profiling panels, are trained with respect to a fixed set of attributes.

Because the distinction between different types of sensory and consumer panels is
not always clear, and because the data that result from all profiling-type panels are not
very different, both terms sensory and consumer research appear in this book. Another
reason for this is that the Multivariate Analyses applied can be used for both Sensory
and Consumer data. As a result, when the term, sensory research is used it can be read
to mean sensory and consumer research.

Sensory Profiling

A large number of sensory studies are of the sensory profiling type. There are two
different kinds of profiling studies: Conventional profiling and Free Choice Profiling
(Williams & Langron 1984, Williams and Arnold 1985). The data from either profiling
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method are usually derived from the position of marks along a line scale or scores on a
rating scale or from a category scale. The assessor marks his/her perceived intensity of
an atiribute on a line scale or indicates the appropriate category of a category-scale.
Figure 4 gives an example of four line-scales for four attributes.

nét Fresh extr’emely
| |
n(l)t Spicy ext rlemely
| |
verly low Price very high
| |
! Quality verylhigh

very low

Figure 4 Example of four line-scales, for the attributes fresh, spicy, price and quality.

Figure 5 shows two examples of another type of scale, the category scale. These
scales have a limited number of categories of which the assessor can choose one. A
comparison of the results from using line-scales and category-scales can be found in
Chapter 6 (van der Burg and Dijksterhuis 1993). A disadvantage of that study is that the
line-scale data were converted into a low number of categories a posteriori (see also
Chapter 5, van der Burg and Dijksterhuis 1989). In this way the effect of a different
response behaviour of the assessor, resulting from the presentation of a different kind of
response scale is excluded from the study. It would be interesting to study this particular
aspect of the differences in use of response scales.
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| | | | |
[ | | | |
1 2 2 4 5
| | | | |
f [ | |
very low low intermediate high very high

Figure 5 Two different category scales, a 5-point numerical and a 5 category adjective
scale.

The type of response scale used is intimately connected to the problem of the
measurement level and the admissible scale transformations of the data. This point is
returned to in §1.6 and in part I1.

There are other types of response-scales too. King (1986) reports the use of an audio
method in which the assessors give their scores by adjusting a tone to a certain pitch.
Non-graphical response scales, as King's pitch-scale, deserve to be studied too. A
disadvantage is that special devices are needed, graphical scales are much easier to

employ.

Conventional Profiling

In conventional profiling, a fixed vocabulary of descriptive terms is used by the
sensory panel to judge the products. A sensory panel is often trained in the use of these
terms. In the case of e.g. QDA (Quantitative Descriptive Analysis, see Stone & Sidel
1985), the panel starts with the generation of a lot of terms that are thought useful to
describe the products under consideration. The whole procedure of attribute generation
and training may take months. It is assumed that all assessors are able to use the
attributes in the same way, so individual differences in use of the attributes are
minimised due to the training. When one assumes no individual differences or ascribes
them to noise or random error, individual judgements can be averaged and e.g. Principal
Component Analysis can be applied to the average scores.

The data from conventional profiling experiments can be seen as a 3-mode data
structure built from N products, M attributes and K assessors (see Figure 6).
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2 (N x M) datamatrix X,
//for one assessor
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M attributes

Figure 6  3-mode data structure representing Conventional Profiling data: N products
are judged by K assessors using M attributes.

Free Choice Profiling

In Free Choice Profiling (FCP, Williams and Langron 1984, Arold and Williams
1985) the assessors are free to come up with their own attributes, which they use for
Jjudging the products. So there is no a priori agreement on attributes between the
assessors. As aresult, it is impossible to average the individual data directly, because it
makes no sense to add different attributes. The data from Free Choice Profiling
experiments must be analysed by individual difference models which come up with
some kind of average after transformation of the data. Unlike Conventional Profiling
data, Free Choice Profiling data cannot be arranged in a kind of 3-mode data structure
because each assessor k=1,...,K may have a different number of attributes (M,). More
importantly, the jth attributes of the assessors are not necessarily the same. Figure 7
illustrates the structure of an FCP dataset.
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Figure 7  Data structure representing Free Choice Profiling data: N products are judged
by K assessors each using My, attributes.

Figure 7 shows that the individual datamatrices X, cannot be arranged such that the
attributes match because each assessor's individual datamatrix contains different
attributes.

Individual Differences

Differences between the data of the assessors in a sensory panel are a concern in
most sensory studies. Because in sensory research the chemical senses (smell and taste)
play an important role there are rather large individual differences between the judges.
These differences may be larger than with the visual, auditory and other senses. The
lack of consensus is for a large amount due to two effects, a physiological, and a
psychological:

« large individual differences in the internal milieu of the chemical senses, i.e. the
nose and mouth;
«  there is no clear standard vocabulary concerning the sensations of taste and smell.

The first effect results in different perceived intensities of stimuli and different time
courses of the perceptions. The differences in time course are found clearly in Tl-studies
(see also §1.8 and part 1V).
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The second effect results in problems with the interpretation of the behavioural
responses elicited from the assessors. The four basic tastes, sweet, sour, salty and bitter
are clear, but other tastes involve the sense of smell and there are no basic smells
known. Everyone may use another term to describe the same sensation. This is the main
reason that sensory panels are trained when exact and consistent sensory analytical data
are needed.

Under the assumption of only a physiological effect, proper standardisation of scores
should correct for much of the individual differences. In that case, individual scores
could be averaged and analysed subsequently by e.g. PCA. When the psychological
effect plays a role too, and it most often does, standardisation is not enough, and special
methods that correct for the so-called interpretation-effect are needed.

When averages are computed over individuals, both the physiological and the
psychological effect can be interpreted to give rise to random error only. But, when
more elaborate data analysis is employed, as will be illustrated in this book, some of this
error appears not random and may contain interesting information.

Subjects, Objects and Variables: Three-Modes and Three- Ways

A typical sensory profiling experiment consists of presenting a group of people, the
panel, with a number of products and asking them to judge the products on a set of
attributes. In more formal terms: subjects are presented with objects which they judge
using a set of variables. The data resulting from such an experiment can be characterised
as consisting of three ways, corresponding to the three modes: objects, subjects and
variables (see also §1.4.1 and Figure 6). The data can be classified as three-way, three-
mode data (Carroll & Arabie 1983). When K assessors judge N products on M
attributes, the corresponding data can be presented as a three dimensional table (see
Figure 6). An element x from such a three-way datamatrix X can be identified by three
subscripts:

x€X, =L N =L, M k=1, K (1)

Such data are typically multivariate, at least it will be assumed they are (see Heiser
1992). For the multivariate analysis of this kind of data special three way techniques
exist (see e.g. Law et al. 1984, Coppi & Bolasco, 1989).
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Averaging and Individual Differences

A common way of analysing sensory data is by using averages. The first step in
these analyses is the averaging of the individual datamatrices. An individual datamatrix
is one slice X, of order (N x M) from the three-dimensional structure in Figure 6. The
average datamatrix looks just like this slice of Figure 6, with the difference that it
contains averaged scores X;:, € X, i=1,...,N: j=1,....M, instead of individual data X

K
|
X =K injk )
k=1

The average datamatrix X can be analysed by means of Factor Analysis or Principal
Component Analysis. The averaging of the raw data naturally results in loss of
individual differences.

As an alternative to averaging it is possible to perform a PCA on all variables of the
concatenated sets which amounts to an analysis of an (NxMK) datamatrix. Such an
analysis results in MK component loadings which can be inspected. In a plot the
loadings from the same assessor can be marked for easy identification of which variable
goes which what assessor. The disadvantage of this strategy is that the individual
assessors may not be represented fairly. Weighting variables per assessor may help but
eventually other methods will be more appropriate. To solve problems like these an
individual difference model can be useful.

Three-way:models models offer a solution because they respect the third mode, here
the different assessors, in the data. However, these models assume equality of variables
over subjects. This assumption may be justified for data which contains clear and
unambiguous variables but probably not for most sensory data.

Sets in K-sets analyses

The assessors in a sensory panel are the measuring devices with which the data are
collected. The human being acting like a measurement device can measure e.g. the
shape, the colour, the apparent length, the taste, the smoky odour, and lots of other
characteristics of objects. Each individual device (assessor) produces and uses these
variables in its own idiosyncratic way. It is as if all devices were differently, and
obscurely, calibrated, and it is unknown what it is they measure. This confusion is the
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reason that the attributes used by one assessor belong together and are distinct from the
variables from another assessor. In terms of this study, they constitute a ser of
attributes. The application of GPA and GCA in this book is such that an assessor is
represented by a ser in the data. The individual assessor's set is transformed by
Generalised Procrustes Analysis (or Generalised Canonical Analysis) to maximise the
agreement between the assessors.

Because each set consists of its own attributes and does not necessarily contain the
same attributes as the other sets, the data cannot be represented in a three-way table
anymore (see §1.4.2 and Figure 7) since the third-way does not match. Data with
variables grouped into sets like this is called more sets data, or K-sets data.

Measurement Levels

Line-scales are perhaps the most common measuring instrument in sensory profiling.
The scores obtained with such scales are numerical and may range from 0 to 100, but
the range is unimportant. It is usually assumed that the scores are interval or ratio-type
and can safely be used in linear Multivariate Analysis models. When they range from 0
to 10, this assumption may be violated, and the violation may be worse, the less distinct
scores there are. Category-scales are less often used in sensory science, perhaps
because of the lack of appropriate statistical models, though Multidimensional Scaling
methods (see e.g. Shepard et al. 1972, Young and Hamer 1987) can give interesting
results (Schiffman et al 1981, MacFie and Thomson 1984) and despite the fact that the
Gifi (1990) system of non-linear MVA is available in a major statistical software
package for some years now (SPSS 1990).

The second theme of this book concerns the problem of measurement levels of
sensory data. The question is whether ordinal; analyses of a low number of scores give
better results than the usual linear analyses, or perhaps it can be shown that it does not
make much difference whether the scores are analysed linearly (with an assumed
numerical measurement level) or non-linearly (with ordinal or nominal measurement
level assumed). See Chapter 6 (van der Burg and Dijksterhuis 1993b) for such a
comparison.

When one realises what an assessor does in a sensory experiment, it need not be a
surprise that non-linearities to occur:
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perceiving distances
online -scale ~ — judging — scoring
or between categories

perceiving

tasting / smelling — -0/ smell

In this simple model, the assessor switches from sensory tasks (tasting/smelling and
perceiving distances) to a judging task (matching distance to the intensity of the
taste/smell) to a motor task (marking a score). Non-linearities are indeed encountered in
sensory data and can be modelled using non-linear data analyses methods.

Non-linearities in the data

As is since long known from psychophysics, the relation between a physical
stimulus and the perceived intensity of this stimulus is not linear but rather logarithmic.
Weber's law (or the Weber-Fechner law) is written

Y=k logd 3)

With & the physical stimulus intensity, £ a constant and ¥ the perceived stimulus

intensity (see Figure 8).
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Figure 8  Weber-Fechner logarithmic law.
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Stevens (e.g. 1962) proposed a Psychophysical Law in which the logarithm is
replaced by a power function. This so-called Power Law is

W=k " - (C))

where n is the exponent of the power function. Different modalities give rise to a
psychophysical function with a different exponent. When the exponent n=1, a linear
function results. Figure 9 shows some power functions with exponents n€ {0.1, 0.5, 1,
2, 5}.

140

—

o

=)
|

ol

100

80 3
60 3 5

E 1
40 H
] 2

20 5

Perceived intensity ¥
(arbitrary units)

0 T T e
o 1 2 3 4 5 6 7 8 9 10
Physical intensity &

(arbitrary units)

Figure 9 Stevens' powerlaw with different exponents n and constants & (k was chosen to
make the function fit the frame and to show its most non-linear part, for
illustration's sake only).

Over the years, a lot of exponents of power functions have been collected in a large
number of psychophysical experiments. Table 1 lists some exponents for a number of
smell and taste stimuli found in the literature (see Dember and Warm 1979, p. 93, Table
4.1).
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Table 1 Exponents of Power functions relating Physical intensity to Perceived intensity
of some smell and taste stimuli (after Stevens 1960).

modality stimulus exponent n
smell coffee odour 0.55
heptane 0.6
taste saccharine 0.8
sucrose 1.3
salt 1.3

Power functions with the exponents in Table 1 are drawn in Figure 10. This figure is
drawn to illustrate the apparent non-linear relationship between the physical and
perceived intensity of the stimulus. When another range of the physical intensity is
selected the functions may be reasonably well approximated by a linear function. In
practice however, stimuli near the lower threshold, i.e. with low physical intensities, as
well as stimuli with high physical intensities, will be encountered so it is unknown
whether linear approximation will be satisfactory. Especially with sensory profiling of
real food stuffs, contrary to controlled model solutions, the physical intensity of most
attributes is unknown. Often even the precise chemical or physical cause of certain
attributes will be unknown.
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Figure 10 Powerfunctions with exponents from some taste and smell stimuli.
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When instead of perceived intensity, preference (acceptance or liking) is measured

and its relation with physical intensity of the stimulus is plotted, non-linear relationships

are very likely to occur (see Figure 11).

Preference value
IRETH ITUTI RATHY PRTTE AL AT

R R LR LN LALRI LR RE Rl Rana)

Physical intensity

Figure 11  Theoretically possible relationships between the physical intensity of the

stimulus and the perceived preference value of the stimulus.

In sensory studies the physical stimulus can be e.g. different levels of sweetener, and

the behavioural response a preference-score. In this case the inverted U-shape in Figure
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11 may be encountered. Other stimuli will have differently shaped preference functions,
most will be inverted U-shape-like ("sweetness", "saltyness"), very few will be linear.
It is clear that appreciation, ("preference”, "acceptance”, "liking", etc.) -data is probably
rather not modelled using linear approximations.

Other attributes will have non-linear relationships too. As an illustration Figure 12

presents three paired-scatter plots of three attributes from one assessor from a dataset
with 120 products.

attribute 3

3,

N
attribute 4

@

N
attribute 5
@]

O

i
O

(©]e]
OO ©

8’ >)@ g&'f |
B @0 1l 00 i
960 B

attribute 3 attribute 4
T

attribute 2
T

Figure 12 Relationships between three different attributes.

The relationships in Figure 12 are from the data from one assessor. One could
comment that it may be preferred to use average data to be approximated by linear
models but:

1. when all assessors show such a clearly non-linear relation between attribute 3 and
attribute 4 in Figure 12, the average assessor will probably do so too;

2 it was concluded earlier that individual difference models are a useful device for the
analysis of sensory data, so no averaging takes place (and with FCP-data averaging
is impossible).

It may well be that in practice linear relationships are the exception rather than the
rule. It are non-linearities like those illustrated in Figure 12 that play part in all kinds of
profiling data, be it conventional or free choice profiling.

Another subject where non-linear relationships occur is in the study of Sensory-
Instrumental relations, the topic of §1.7.
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Non-linear treatment of categorical data

Another source of non-linearities is found in the way the assessors use categories. It
is commonly assumed, but often not justified, that the assessors use categories as
numerical (interval) data. This would mean that, say, a sweetness judgement of 4 means
that the stimulus was perceived twice as sweet as one with the judgement 2. An ordinal
relationship between the categories of a category-scale would perhaps be closer to the
truth. A score of 4 is more than a score of 3, which is more than a score of 2, etc., it is
unspecified exactly how much more it is. An other possibility would be that 4 could
well be meant to be less than 2, and 3 in between. In the sweetness example this would
probably not apply, but with preference scores this may not be uncommon.

When numerical scores from line-scale variables are converted into categories, or
directly collected as categories from a category-scale, non-linear (nominal or ordinal)
analysis of the data may be useful. In part Il this topic will be studied in more detail.

Non-linearities in MVA

In Figure 13 an example of non-linear transformations of a number of categories, say
from a 10-point category scale, is given. Note that the figure is made purely for
illustrative means, the transformed data in the panels in Figure 13 are fictitious. The
figure contains two variables, x and y, which clearly have a non-linear relation (leftmost
panel). When the categories of x and y are transformed ordinally the relation becomes
somewhat more linear (middle panel). The categories are indicated along the x-axis. It
shows in the unequal spacing between the categories that they are transformed non-
linearly, they are not spaced equally. In the rightmost panel a nominal transformation is
illustrated. In addition to the spacing between the categories, the order of the category-
numbers along the x-axis has changed. The same transformations are applied to y too
(no category-numbers were drawn for y in Figure 13). It is also possible that x and y
receive different transformations. In ™ " only two variables are shown, but in
practise transformations are applied to all variables in the analysis.
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original data | |y ordinal transformation Y o nominal transformation

1.6.4

123456728910 123 4 56 78 910 13 245 6710 98

Figure 13 Illustration of non-linear transformations of two variables in a non-linear
MVA with optimal scaling.

With the usual linear analyses a linear relationship is imposed onto the data. Imagine
this for the data in the leftmost panel of Figure 13. A linear relation may be
inappropriate, though it is recognised that it may often provide reasonable
approximations (see Heiser and Meulman, 1993, p. 1).

The process illustrated in Figure 13 is called optimal scaling (Young 1981). For two
variables (as in Figure 13), the process effectively linearises the regression of x and y.
In the Gifi (1990) system of non-linear Multivariate Analysis an optimal scaling step and
a linear MVA step are alternatingly performed until a certain criterion is satisfied. This
procedure is known as Alternating Least Squares, hence the suffix ALS of the Gifi-
methods (Homals, Princals, Canals, Overals, etc.).

Individual Differences and Measurement Levels

The way numerical scores are used can differ between the assessors in a sensory
panel. This is why the application of methods that combine an individual difference
approach with a non-linear (i.e. nominal or ordinal) analysis is interesting. In Chapter 5
(van der Burg and Dijksterhuis 1989) an analysis is presented which shows that
different individuals received a different quantification of their category-scores. It
reflects a different use of numerical scores. In that study the low number of categories
was constructed a posteriori from line-scale scores which is a methodological
disadvantage. It would have been better if two different experiments had been carried
out, one with line-scales and one with category-scales
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Sensory-Instrumental Relations

The third theme in this book is the study of Sensory-Instrumental relations. The idea
behind the study of Sensory-Instrumental relations is that sensory perceptions have
chemical/physical counterparts in the substance under investigation. A simple example is
the amount of caffeine in a drink, which determines the perceived bitterness. In real life
Sensory-Instrumental research is much more complicated, and can involve complicated
multivariate data from different sources (see e.g. the "Understanding Flavour Quality”
symposium, 1992). Consequently, Multivariate Data Analysis finds an interesting field
of application here.

Sensory-Instrumental Data

In Sensory-Instrumental studies one dataset (X 1) contains the sensory judgements on
a number of products (say N). Another dataset (X,) contains a number of instrumental
measures on the same N products. These can be results of chemical analyses, physical
properties and of other measurements on the products. An illustration of the two
datasets involved in Sensory-Instrumental data analysis is given in Figure 14.

sensory variables instrumental variables
@ @
S °
8| Sensory o | Instrumental
g data - = g data
2 2
X ) X;

Figure 14 Two datasets illustrating Sensory-Instrumental data analysis.

The double arrow in Figure 14 symbolises the relation between the two datasets.
These relations can be investigated using several Multivariate Analysis techniques. In
Chapter 9 Procrustes Analyses is used (Dijksterhuis 1993b), in Chapter 7 and 8
Redundancy Analysis and Canonical Correlation Analysis are used to this end (van der
Burg and Dijksterhuis 1992, 1993a). Note that each of the sets can be the result of prior
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analyses. The sensory set, X, may very well be the group average from a Procrustes
Analysis of the data from a sensory panel.

The multivariate methods to study the relations between the two datasets can differ in
three respects:
1. symmetry;
2. measurement level;
3. criterion.

These three topics are the subjects of the following three sections.

Symmetric and Asymmetric analysis of two datasets

The methods that relate two datasets can be classified into two types: Asymmetric
methods and Symmetric methods. The symmetry concerns the way the two datasets are
treated by the method. Asymmetric methods try to predict one set from the other, and so
treat both sets differently. Partial Least Squares regression, Principal Component
Regression, Redundancy Analysis and Multiple Regression are among these methods
(see Figure 15).

1 M, 1 M,
1 Sensory W Instrumental
dara data
——
X 1 x2
N N

Asymmetricmethods: PLS
Principal Component Regression
Redundancy Analysis
(Multiple) Regression
(M)ANOVA

Figure 15 Two datasets illustrating asymmetric data analysis models.

When both the set X | and X, contain one variable, M;=M,=1, ordinary regression
results. When X, contains a design-set, i.e. binary (dummy) variables coding an
experimental design, a MANOV A method results. An example would be the crossing of
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three levels of sweetener, four different drinks with three temperatures, resulting in 10
dummy variables in X,. When the 3x4x3=36 stimuli are judged on perceived
sweetness only (M;=1), an ANOVA can be performed. When other attributes are also
used (M;>1), a MANOV A must be applied.

Symmetric methods treat both sets identically, swapping the two sets makes no
difference. Neither of the sets is the object of prediction, only the relations between the
sets are studied. Examples of these methods are Canonical Correlation Analysis and
Procrustes Analysis (see Figure 16).

1 M1 1 M 2
1 Sensory 1 Instrumental
data data
e e
) %
N N

Symmetric methods:  Canonical Correlation Analysis
Procrustes Analysis

Figure 16 Two datasets illustrating symmetric data analysis models.

Non-linearities in Sensory-Instrumental Analysis

The examples of non-linear relations between variables in §1.6.1 are valid for
Sensory-Instrumental relations too. Especially when studying appreciative sensory
Jjudgements one has to beware of non-linear relations (see Figure 11, Noble 1975). On
the other hand there is a risk of overfitting when granting the matching method too much
freedom in matching the two datasets. The balance between imposing linear restrictions,
with the risk of missing interesting relations, and imposing hardly any restrictions, with
the risk of fitting noise, may be hard to find.
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Criterion of relation berween the two datasets

The arrows between the datasets X ; and X, in Figure 14, 15 and 16 symbolise the
"relation” between the two datasets. This relation can be defined in different ways, and
gives the difference between the resulting methods. The methods of ordinary linear
regression, Multiple regression and Canonical Analysis, as well as ANOVA and
MANOVA, use essentially the same criterion. They could be interpreted as belonging to
the same family of two-datasets methods. Redundancy Analysis, Principal Component
Regression, Partial Least Squares regression and Procrustes Analysis use different
criteria. It is beyond the scope of this introduction to define these criteria. The papers in
part 11l give more information on the criteria of the methods employed there, or give
references to relevant literature. The methods used in these papers are presented in Table
2, where their main differences in symmetry, measurement level and criterion can be

found.

Table 2 Differences in the three methods used in the chapters in Part III with respect to
their symmetry, measurement level and criterion.

Chapter _method of analysis symmetry measurement level criterion?
7/8 Redundancy asymmetric ordinal/numerical maximal covariances
8 Canonical Correlation symmetric ordinal maximal correlation
9 Procrustes symmetric numerical minimal variances

2 This is a very crude description of the criterion; it is used to illustrate the differences between
methods. A more elaborate exposition of criteria can be found in the references in the corresponding
chapters.
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Time-Intensity Data Analysis

The fourth and final theme in this book is Time-Intensity studies. In Time-Intensity
studies, a taste stimulus is given to an assessor and her/his task is to try to track the
perceived intensity of an attribute, e.g. bitterness, over time. For an overview of TI-
research see e.g. Lee and Pangborn (1986) or Punter et al. (1989). A special computer
program can be used to this end (e.g. Yoshida 1986, OP&P 1991, see also Dijksterhuis
and Roos 1990). The assessor is shown a slider on a screen and she/he can move the
slider using a computer mouse. A so-called Time-Intensity Curve, which is a graphical
representation of the recorded intensity against the recording time, results (see Figure
17). In general, assessors are able to track the change of the taste rather accurately, but
there are large differences between subjects (see e.g. Overbosch et al. 1986, Flipsen
1992, van den Broek 1993).

recorded perceived intensity

time

Figure 17 Typical Time-Intensity curve.

The original analysis of Time-Intensity (TI-) curves focuses on TI-curve parameters
such as e.g. Maximum Intensity Time of maximum Intensity, Area under the curve,
steepness of the flanks of the curve, etc. The parameters are often inferred from an
averaged Tl-curve. The averaging of TI-curves is one of the things criticised by some
researchers and alternative ways of aggregating the TI curves are proposed (Overbosch
et al. 1986, Liu and MacFie 1990, MacFie and Liu 1992, van Buuren 1992). Chapter
10 and 11 present analyses in which a weighted average is computed and individual
curves are better represented in this weighted average curve (Dijksterhuis 1993a,
Dijksterhuis et al. 1994). In Chapter 12 a suggestion for an alternative kind of analysis
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of TI curves is given, based on the shape of the TI-curves (Dijksterhuis and van den
Broek, 1994).

The object of Tl-studies is the change of the perceived intensity of a flavour attribute,
often bitterness, but other attributes are studied as well (e.g. sweetness, fruitiness). It
would take too long to include an introduction to Tl research here, the interested reader
is referred to (Nielson 1957, Larson-Powers and Pangborn 1978, Dijksterhuis and
Roos 1990, Punter et al, 1989). Lee and Pangborn (1986) provide a list of references to
applications of TI techniques. The chapters in this part contain only a brief introduction
to Tl-studies.

The data that result from Tl-experiments have some particular properties:

Tl-studies often generate a large amount of data
there are clear intra-individual consistencies

3. visual inspection shows clear differences between stimuli and between different
attributes
there are large inter-individual differences

5. TI-data always have a distinctive shape: the typical Tl-curve is unimodal, skew, and
levels off gradually, etc. (see Figure 17).

It is not uncommon that intensity scores are collected each second, during two
minutes, so one Tl-curve consists of 120 intensity scores. In a typical Tl-experiment
some 12 assessors may judge eight different stimuli, perhaps even replicated three
times, resulting in 288 Tl-curves (and 34,560 data-points). The first of the five above
mentioned properties is amply illustrated by this example. It is obvious that a data-
reduction method is mandatory. The second and third properties are indications that
there is something in the data worth looking for, although the fourth property may
suggest otherwise on first inspection of the data.

The fifth property is the starting point for the study of the properties of (the shape of)
the Tl-curve in relation to the stimuli and what is known of the perception apparatus and
processes. This specific Tl-curve shape (see Figure 17) recently called for some
alternative methods of Tl-data analysis, mentioned in the Concluding Remarks of part
IV. The properties listed above give a data-analyst the feeling that there is probably more
than meets the eye in those Tl-curves. Part IV of this book expands on this.

)



1.9

1.9.1

1. Introduction

Data analysis, Confirmation and Exploration3

In this book the use of Multivariate Analysis is of an exploratory nature. There are
several reasons for this. The type of research, type of data, and above all the type of
questions asked, are such that model-based statistical hypothesis testing is probably not
the way to go. Such statistical decision making presupposes a priori stating of
hypotheses, random sampling from some well-specified population, the construction of
an experimental design for the experiment and, after collecting the data, the confirmation
or refutation of the hypothesis. The testing is done with an a priori fixed level of a, the
probability of making a type I error, i.¢. the probability of rejecting the hypothesis when
it is actually true.* When the hypothesis is rejected, a new hypothesis is deduced from a
possibly adjusted theory, and a new experiment done. This, rather strict, way of
statistical hypothesis testing may not be practical for making progress in sensory and
consumer research. Especially in applied contexts other methods may be preferred.

Confirmatory and Exploratory mode of analysis

Some well known methods of data-analysis are ANOVA and MANOVA (see e.g.
Hand and Taylor 1987). These are often presented as confirmatory methods in the sense
that a priori hypotheses (effects) are tested by means of designed experiments and
subsequent analyses. However, in particular MANOVA methods can grow very
complex, and as a result are liable to become exploratory rather than confirmatory
methods, which is not necessarily a bad thing. Since most MV A methods are not purely
exploratory or confirmatory, it is preferable to think in terms of an exploratory mode of
analysis versus a confirmatory mode of analysis. In any case, the data are collected
using an experimental design for minimising certain unwanted effects (Cochran and Cox
1957)5 and stressing the effect under study. In exploratory mode, the data are of
primary concern, and models are merely suggestions, or come in later. If we "see" an
effect, it is very useful to be able to state the probability that it could have occurred by
chance, and this is exactly what significance tests do for us. Standard parametric
significance tests still assume random sampling, but non-parametric permutation tests

3 Parts of this section are taken from Dijksterhuis and Heiser (1995).

4 Of course the power 1-f is important too, but the subject is too vast and complicated to be covered
here.

For sensory applications of some experimental designs see MacFie et al. (1989) and Schlich
(1993b).
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can be performed without that assumption; they merely prescribe the random sampling
from certain permutations of the data.

A disadvantage of model-based statistical procedures is that a lot of assumptions
must be fulfilled to be able to test the hypotheses or the models. In practise, the
assumptions are seldom checked, sometimes ignored, and as a result the validity of the
obtained results may be low. An example is the multiple testing of hypotheses. When
testing more than one effect from the same data, the level of a should be adapted, which
is seldomly done in practice. In confirmatory mode, models are of primary concern, and
the data are secondary, except for the aspects that distinguish the models. Indeed, model
testing is the prime instrument for confirmation. Yet confirmation is a process that
would soon depend on prejudice alone if we were not allowed to listen to unexpected
signals from the data. These signals can be the seeds for new hypotheses to be
confirmed in fresh observations.

Exploratory:MVA -multivariate- data analysis is not less "strict” as may be thought
by some. In many cases one can say that MVA is just transforming the data in one way
or another, and inspecting it from another angle.¢ The transformations are not arbitrary,
they are strict mathematically defined transformations, sometimes approximated by
algorithms, but strict they remain. The exploratory, and potentially subjective, part is in
the conclusions that the researcher draws from the transformed data.

Why is formal statistical inference rare in descriptive Sensometrics?

There are some reasons that formal statistical inference is not very common in
(Multivariate) Sensometrics. Below the situation concerning Principal Component
Analysis is illustrated, but the results hold for other MV A methods too.

A statistical test to choose the dimensionality in which to present the results of a
PCA, would be a welcome tool. Higher dimensions than the selected dimensionality
would be attributed to noise, and the dimensions 1 through p would be assumed to
model signal. But here we encounter, not surprisingly in a rapidly developing
discipline, an embarrassment of riches. In the literature, several methods are proposed
to infer this dimensionality p. Some of these methods are:

6 Sometimes the data are literally inspected from another angle, e.g. after rotations or projections.
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¢ choose all eigenvalues greater than unity
*  Bartlett test

*  split-sample procedure

e scree-test.

The merits of these methods are lucidly commented on by CIiff (1987, Chapter 13;
see also Zwick and Velicer 1986). It is concluded that the often used eigenvalues-
greater-that-unity-rule should not be taken too seriously. Sometimes it underestimates
the number of components, especially with post hoc rotations, in other cases it
overestimates the number of components. Bartlett's test may accept too few or too many
components depending on the size of the datamatrix. The split-sample approach is an
interesting, though seldom used, method. It involves extra computations, which -by the
way- is not an argument anymore not to employ a technique since personal computers
have the power of the mini's of ten years ago. These split-sample methods however do
presuppse a large datamatrix, in particular a large number of objects N. In practise N
may be too small to employ this method safely. Looking for an elbow in a scree graph is
a very easy and useful method. But this scree-test is not formally a resz, and is not
devoid of misinterpretation.

Another approach is to analytically study the distributions of eigenvalues and their
sensitivity to disturbances (see e.g. Krzanowski 1984). These methods suffer from
several drawbacks (see e.g. Jolliffe 1986, p.39-41):

*  the mathematics are complicated
¢ theresults are often asymptotic
* theoriginal data are often assumed to be multivariate normally distributed.

The disadvantage of the first point is that it will take time and a lot of work to put the
results into practical use, e.g. by means of software implementations, and the methods
may not find common application as a result of their complexity. The second point is
perhaps more serious. Often the datamatrices involved are of rather small size, and it is
not known to what amount the results will apply under "non-asymptotic”, but highly
realistic conditions. The third point is also important. Real data may often not be
multivariate normally distributed, so this assumption is often violated. In addition, with
nonlinear models, the distribution of the residuals may be normal without leading to a
normal distribution of the data, or the other way round. Since a good deal of MVA
methods are nonlinear, this fact complicates the inference process enormously. In view
of these reasons, it need not surprise us that formal, model-based statistical inference is
often omitted in Multivariate Sensometrics.
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Implicit Experimental Design

Some may argue that exploratory multivariate data analysis suffers from a lack of
experimental design. This criticism is heard in particular with respect to sensory
profiling studies, where e.g. GPA is used for the analysis of the data. However,
Experimental Design is present in such studies, albeit perhaps not explicitly. The design
is implicit in the analysis of the data. The following "design-"choices are made when the
data are analysed, e.g. by means of GPA, but probably the argument holds for any
multivariate data-analysis method:

«  choice of observation-units (products), judges and attributes
+  choice of representation
- choice of test

The choice of observation-units is the first design-choice made. In a sensory
profiling experiment it involves selecting the set of products, whom to present it to and
which attributes will be used. In data-analytical terms, these are the modes of the future
datamatrix. The choice of representation determines which mode will be allotted to
which way of the datamatrix (for modes and ways of a datamatrix see Carroll and
Arabie 1980). In sensory profiling experiments the assessors will be represented in the
sets in the data analysis, the products in the rows, and the attributes in the columns of
the datamatrix.” The third choice is the choice of test. This is effectively the choice of
the options within a broad class of analysis methods available for data with the chosen
shape and the chosen representation. Though at first sight this choice will perhaps not
be recognised as a design-choice, the choice of options reflects the implicit design just
as the explicit sampling design follows from the statistical test or from the (M)ANOVA
model employed. For example, GPA is used to find the agreement between the sets
(often assessors), under translation, rotation and isotropic scaling of the configurations
of row-objects (products) within sets, GCA finds agreement between sets focusing on
the maximal correlation between linear combinations of the columns (attributes) of the
sets.

7 K-sets data differ from three-way data (see §1.4.2), but the distinction is ignored here to keep the
reasoning clear. However, the argument holds for K sets data too.
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Brief ontogeny of data analysis techniques

The three design-choices will probably not be made consciously by all researchers.
When a data analysis technique is originally developed, its developer's intentions are to
solve a particular data-analytical problem. The technique is tailored to solve that specific
problem. The developer explicitly made the three design-choices to devise the technique.
Subsequent researchers probably recognised similarities between the data-analytical
problem of the developer and their own, and decided to use her/his technique. When
they succeeded in solving their problem, they would report this in a scientific
publication, talk about it to colleagues, present results at symposia, etc. Then the
technique becomes known as a tool for the solution of a particular data-analytical
problem. Later users of the technique will only use it because their data seems fit for this
technique: it has become a paradigm. They will not explicitly make the three choices,
and they don't always need to. Over time, the technique will become increasingly
utilised as a black-box, where data is input, and the results are interpreted. Provided
there is a clear manual® with the technique, this black-box use of techniques can be very
useful. The manual should contain unmistakable instructions, preferably with reference
to the three choices, about what problems the technique can be used for.

The above illustrates that the design, explicit for the initial developer of the technique,
becomes more and more implicit for later "black-box-users" of the technique. It is
preferred that the latter users know what the choices once were. When in doubt,
researchers should consult an expert or decide not to use this technique.

Graphical Representations and the eye

In the exploratory use of Multivariate Data Analysis, graphical representations are
important. The author believes that a good researcher, who knows her/his sub ject matter
has an eye® very well equipped for recognising the signal from the noise, so to speak.
Just as this eye would have been capable of stating good research hypotheses and
designing proper experiments for statistical hypothesis testing. The difference is that
with the latter the eye is separating the signal from the noise before the experiment, with

The use of the word "manual” seems to imply that the technique is availabe as a computer
program. Though this will often be the case, it is not necessary.

Of course the brain connected to the eye is more important, but the italic printing of eye is meant
to include the brain and "its" knowledge.
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exploratory MVA the eye is doing it afterwards. By the way, the MVA techniques were
also devised before the experiment, as ideally is the choice of variables to be analysed
(so we cannot add or delete variables until the results seem to suit our purposes).

Structure of the Book

All chapters, except the first and the last, in this book were originally articles that
have either been published or are in press at the moment of printing of this book. The
sections 1.5 to 1.8 introduced the four themes which are presented in the following four
parts (see also Figure 18):
part 1 Individual Differences (§1.5);
part 11 Measurement Levels (§1.6);
part 111 Sensory-Instrumental Relations (§1.7);
part IV Time-Intensity Data Analysis (§1.8).

Each part is preceded by an Introduction and ends with Concluding Remarks. In the
Introduction of a part the articles from which the chapters originated are referred to and
some background information is provided. In addition, credit is given to colleagues, co-
authors and others who helped with a particular paper. In the Concluding Remarks, the
conclusions from the chapters in the part are summarised and, where possible, put in the
larger framework of a particular problem in sensory research. Furthermore, possible
future directions for the research under consideration are outlined.

Two of the four themes (I and 1I) are concerned with Sensory Profiling data, an
important and abundant type of data in sensory research. Theme I1I-studies produce
their own type of data of which the Sensory part can be from profiling studies, the
Instrumental part stems from non-sensory, i.e. chemical or physical measurements. TL;-
data, theme 1V, are yet another type of data. They are micro time-series of one or two
minutes length. The different types of data will be illustrated in the corresponding
chapters and their introductions.

The articles are arranged into four parts in this book as shown in Figure 18. There is
some overlap between the themes, some of the chapters apply to more than one theme.
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Figure 18 Structure of the book, the relation of the chapters (italic numbers) to the main

themes in the parts (roman numbers, I, II, III and V).

Because each chapter was originally written as a more or less self-contained article

some matters will be introduced more than once. The reader is invited not to see this

repetition as a problem because it can often be clarifying to re-read material in another

context, in another style, by another author, etc. The advantage of the self-contained-

ness of the chapters is that it enables reading individual chapters. Some chapters may be

known to students of sensory science since they have been published in typical sensory
journals as Food Quality and Preference and the Journal of Sensory Studies, while other
articles, the ones with a somewhat more methodological content, have been scattered

throughout several conference proceeding books and methodological journals.
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Two books or one?

This book can be viewed to consist either of two books or of one, depending on the
main interest of the reader. Sensometricians will read it as one integrated book in which
new multivariate methods are presented and shown to be fit for certain kinds of sensory
data. For others there are two books:

1. sensory problems, sensory data and some results obtained by MVA
2. the presentation of some recently developed MVA methods illustrated by the
analysis of sensory data.

Readers with a mainly sensory interest may find some of the statistical parts too
technical. The findings may be of use to them, but they perhaps need not know the
details of the methods. For them Table 3 contains the sections they can read to find the
results most relevant to sensory problems. They read book I when they follow this
lead. Readers with a mainly statistical and data-analytical interest may find some sensory
results too elaborate. The can read book 2, following the lead in Table 3. They are
invited to pay special attention to the references, which contain most of the original
papers about the different MVA methods. All introductory parts as well as the
Concluding Remarks are best read by both types of readers. They provide useful
background information, a preview on the paper and summarise the main findings along
with some indications for future research, both sensory and data-analytical.
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Table 3 Two books, one with a sensory focus, one with a data analytical focus, sections
omitted from the table should be read by both kind of readers.

sections book 1: sensory book 2: data analysis
Chapter 2

3.3-3.4 vV

3.5-3.6 Y

4.2 v

4.3

<~ <~

5.2-5.3

5.4 Y

6.2-6.3 v

6.4-6.5 v

7.2-7.3 v

7.4-7.6

NN

8

9.3 v

9.4-9.5

10.2

N~

1412

11.3 vV

11.4-11.5 Y
12.2 7
12.3 Y
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Introduction to part I

Individual Differences

Summary

In this part the first theme of the book, Individual Differences, is studied by means
of two Multivariate Analysis methods: (Q-mode) Principal Component Analysis and
Generalised Procrustes Analysis. The methods are briefly introduced and used to
address a recurring problem in sensory and consumer profiling research: assessors differ
systematically in their judgements and in their interpretation and use of attributes.

Chapter 2
Assessing Panel Consonance!

In conventional sensory profiling studies where all assessors use the same
attributes, it cannot be tacitly assumed that all attributes are understood equally well by
all assessors. The lack of agreement can easily be shown by applying e.g. a Generalised
Procrustes Analyisis to the data (see also chapter 3). Even when the panel has been

1" The paper is printed in Food Quality and Preference (Dijksterhuis 1995).
Willem Heiser is thanked for comments on an earlier version of this paper. One of the reviewers of
the paper for Food Quality and Preference is thanked for pointing out the problem of negative
correlations.
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trained and uses a set of attributes with which they have experience, different use and
interpretation of attributes still occurs. This lack of consistency of attribute-use is not
unique to sensory and consumer data, though the lack of clear terms to describe odour
sensations may be especially pernicious. In research where the agreement about one
particular concept is desired the same problem is encountered. The search by Spearman
for "General Intelligence” in the early 20th century, is an example where a
-unidimensional- definition was sought. The lack of unidimensionality eventually
resulted in the development of methods like Factor Analysis.

The application of PCA in this chapter is to illustrate the (lack of) unidimensionality
of the attributes assessors in sensory or consumer panels use. For each attribute a matrix
with the scores the assessors gave the products is analysed. The method is based on Q-
mode Principal Component Analysis, i.e., the assessor inter-correlation matrix is
decomposed. When all assessors use an attribute in the same way this will give a large
first eigenvalue. From the eigenvalues, or equivalently, the percentages of Variance
Accounted For (VAF), a Unidimensionality- or Consonance index is computed. This
index can be used to compare different attributes, or different stages of the training
process of a panel. By plotting the loadings, representing assessors here, the method
also enables easy visual inspection of the consistency of use of the attributes. Assessors
that use a certain attribute differently, can be identified. They may need further training,
after which their use of the attribute can be inspected again.

The plots of the objects can be used to find products that may be responsible for the
dissonant use of a certain attribute by one or more assessors. When products are
presented in replications, these plots provide a rapid check on the validity of the result.
Replicated products should lie very close in the object score plots.

The method assumes that all assessors use nominally the same attributes, so
conventional profiling data is assumed; the method cannot be used with Free Choice
Profiling data.
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Chapter 3
Interpreting Generalised Procrustes Analysis "Analysis of
Variance" Tables2

This chapter introduces "Projecting Procrustes Analysis" (GPPA, Peay 1988) as an
alternative to the "classic" Procrustes Analysis of Gower (GPA, 1975) for the analysis
of Conventional Profiling- and FCP-data. The two methods differ in some respects, the
basic difference being the multidimensional space in which the configurations are
matched. Figure 1 in chapter 3 tries to explain the differences in terms of the partitioning
of the total variance into four parts:

V.

total

lzvin+ Vout+ Vwithin+Vpr0jection )

(see also formula (1) in chapter 3). A brief exposition may be appropriate here. In
classic GPA, for each assessors' set X > @ rotation H, is found that minimises the
squared distances between the corresponding objects in the K sets. This rotation takes
place in the the space with the highest possible dimensionality. After the rotation there is
nothing lost yet, all variance is still contained in this high-dimensional space. The result
is K rotated matrices Y,=X,H,. The N rows, say Yii» With k=1,... K and i=1,...,N, of
each of these matrices define the positions of K N objects in the aforementioned high-
dimensional space. Because the corresponding points in the sets Y, are as close together
as is possible under rotations, the Y, are averaged. The average space Y is called the
GPA Group Average. This space also goes under the name Consensus, but, though
introduced by Gower (1975), later, in Dijksterhuis and Gower (199172, §2.5, p. 72) it
was noted that he has since avoided the term. The Group Average space Y contains the
coordinates of the N objects, in the original high-dimensional space. To present this
space in a lower number of dimensions, e.g. in the two dimensions of a graphical plot, a
Principal Component Analysis is carried out on Y. The configuration of Group Average
points can now be inspected in a low-dimensional representation. The original NK
points, i.e. the N objects for each individual assessor, can also be projected onto this
space.

Two stages of the process induce a loss of variance:

1 the averaging of the Y, to Y

2 The paper was printed as an article in Food Quality and Preference (Dijksterhuis and Punter 1990).
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2 the projection of Y onto a low dimensional space by means of PCA
The loss associated with 1 is called V,,;.. in chapter 3, the loss associated with 2 is
called V.. The amount of variance V... is as small as possible, this is the criterion
optimised by the GPA method.

The GPPA method of Peay (1988) uses another space in which the optimal match of
the configurations is defined. In addition to the rotations, a projection onto a low-
dimensional space is performed by P, say. This rotation/projection is such that the
variance contained in the low dimensional space is maximised. This variance is coined
the consensus-criterion by Peay (1988). After the rotation/projection, the Y,=X P, are
averaged to make the group average Y. Note that this Y contains the coordinates of the
N objects in the low-dimensional space. The configuration of the N points can now be
inspected directly in the space Y. In this process there are again two stages at which
variance is lost:

1 theaveraging of the Y, toY

2 the projection of the X, onto low dimensional spaces Y, by means of Py

The loss associated with 1 is comparable to that in the GPA method, coined V ;.0
in the chapter. The loss associated with 2 is different from the loss V,,, in GPA. Note
that the rotational part of P, induces no loss, only the projection induces loss. This loss
is called mejectiorl

The variance remaining after the two losses are subtracted is called V; for the GPA
methods and V., ceneus fOr the GPPA method. More on the differences between GPA
and GPPA can be found in Dijksterhuis and Gower (1991/2).

In the following chapter the GPPA method is illustrated using a Conventional and a

in chapter 3.

Free Choice Profiling dataset. For both examples the results for the products, the judges
and the dimensions are shown. The distribution of the variances over the products and
over the judges is shown in bar-charts, and the configurations of the products are
plotted. To study the dimensionality of the solution, the percentages of the Variance
Accounted For (VAF) are presented in a scree graph. Furthermore it is suggested to
express the VAF relative to the total variance in the data. This relative measure is easy to
interpret and enables comparison of different Procrustes Analyses.

The use of bar-charts (figures 4 and 8 in the chapter), and stacked bar-charts
(figures 2 and 6 in the chapter) for the representation of the variances, may be liable to
discussion. This point is returned to in the Concluding Remarks which also contain
some remarks about the interpretation of the Scree-graphs in the chapter (figures 5 and
9).
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2.1

Assessing Panel Consonance

Introduction

In sensory- and consumer research a panel of assessors is often used to study
properties of certain products, e.g. food-products. In the case presented here the
subjects give scores on attributes that refer to taste- and smell-perceptions. These
attributes are often hard to define and it is well known that different subjects attach
different meaning to the same attribute. This occurs even when the panel has been
trained and uses a set of attributes with which they have experience. In Conventional
Profiling, or other methods where all assessors use the same set of attributes, it can be
useful to check for the different use of attributes. With Free Choice Profiling (Arnold
and Williams 1985) this can be done by means of special Multivariate methods as
Generalised Procrustes Analysis (GPA; Gower 1975 , Dijksterhuis and Gower 1991/2)
or Generalised Canonical Analysis (van der Burg 1988, van der Burg and Dijksterhuis
1989).

In this paper another method is suggested to study the different use of the attributes
by the assessors in a panel. It provides a check on the consistency, coined
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2.2

"consonance", of use of attributes by each individual assessor. The method assumes that
all assessors use nominally the same attributes, so conventional profiling data is
assumed, the method cannot be used with Free Choice Profiling data.

Recently Schlich (1993a) published a method for an easy graphical representation of
assessor performances. This method, coined GRAPES, is based on Analysis of
Variance. Another method, also based on Analysis of Variance, was proposed by N&s
and Solheim (1991). The plots provided by their method may become hard to interpret
when large numbers of assessors and attributes are analysed.

The main objective of the consonance-method proposed in this paper is to provide the
researcher with an easy graphical method to evaluate assessor's performance.

Data structure

It is assumed that the sensory or consumer panel consists of K assessors who judge
N products, using M attributes. The data from a such a panel can be arranged in a three-
way datamatrix X of order (NxMxK) with elements Xk @(=1,...,N, F=1,...M,
k=1,...,K). An obvious way of analysing such a matrix is by first averaging over the
assessors k, resulting in an (NxM) matrix with averages

K
- gl
x.=K kz_:]xijk (1

which is subsequently analysed by Principal Component Analysis. It is then
implicitly assumed that the M attributes are commensurate. However this assumption is
often not met. The consonance-method proposed below provides an easy check on this
assumption.

Usually the three-way datamatrix X is thought to consist of K matrices X,
k=1,...,K, of order (NxM), one for each assessor. Of course other slices of the three-
way matrix can be taken, e.g. matrices X j, /=1,...,M, of order (NxK) (see Figure 1).
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2.3

Slice X] with
N products x K assessors
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M attributes

Figure 1  Three-way matrix with an (NxK) slice Xj.

The columns of the matrices X r contain the same attribute j for each of the K
assessors. Ideally these attributes, seen as variables, span a one-dimensional space. In
that case the K assessors use the attributes similarly. In practice, the result will not be
one-dimensional, which is the reason to apply an individual-difference technique, such
as e.g. GPA, to the datamatrix X. When the results of the above PCA show a
significant deviation from unidimensionality, it's better not to average the data, and the
attributes had rather be seen as interpreted and used differently by the assessors. Some
assessors may need further training and/or some attributes better defining.

When the variables of the datamatrix X are attributes that measure "preference” the
consonance method is akin to MDPREF (Carroll 1972).

Method

Assuming standardised columns of the X s the matrix X’jX j contains inter-assessor
correlations which give an indication of the consistency of use of the jth attribute but an
underlying dimensional structure cannot be seen from the correlation matrix. A
unidimensional result is signalled by a large first Eigenvalue, or "Variance Accounted
For" value from the PCA applied to the slice X j of the datamatrix. Because a totally
unidimensional result will hardly ever occur in practice it can be useful to study the
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deviation from unidimensionality. One way of doing this is by constructing a two-
dimensional representation of the N products. Such a representation can be obtained by
plotting the object scores from the PCA, i.e. the first two columns of Y (this will be
written Y!?! from now on) where Y = XQA_I, Q is the matrix with Eigenvectors and
AZ the matrix of Eigenvalues from the PCA of X, which can be written as an Eigenvalue
decomposition:

’ o 2 U
XjX]-—QAQ @)

A%isa diagonal matrix which contains the Eigenvalues A2, in decreasing order along
its diagonal. Since in this application the interest is mainly in the differences between the
assessors and not between the products, a different plot may be more useful.

Note that the columns of the matrices X j Tepresent the K assessors. Plotting the
component loadings, i.e. the row-points of (QA)m, gives positions for the assessors in
a two dimensional space. This is the same space as the objects scores from Y2 lay in.
These loadings are the correlations of the rows of the X 7 i.e. the assessors, with the
principal components.

The method as presented here is a linear method, assuming numerical (interval at
least) scores. It can easily be extended into a non-linear method for the analysis of
nominal, ordinal, numerical, or mixed data, by applying Princals (Gifi 1990) instead of
ordinary PCA as presented here.

A perfect panel will consist of assessors that use all the attributes in more or less the
same way. This will result in almost one-dimensional solutions of the PCA's on the
matrices X j’ signalled by a very high first Eigenvalue 7\21. Higher dimensions can then
be regarded as error or noise. One way of comparing the first with higher dimensions is
by looking at the ratio C for a particular attribute (C for Consonance):

-1

-2 c 2
C=xrj| Y% (€)

r=2

Of course the VAF values can be used instead of the Eigenvalues, this does not
change C.

A disadvantage of C may be that high negative correlations also contribute to a
relative high first eigenvalue, hence a high C. This may lead to an overestimation of the
consonance when looking at the value of C only. It is important to inspect the assessor-
plots in addition to the C-values. Negative correlations are clearly visible in the plots. At
the other hand, negative correlations "only" reflect a reversed use of scale by an
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2.4

2.4.1

assessor. The attribute in question is not "different” in the sense that low-correlating
attributes are different. It's a matter of discussion whether one whishes to call reversed
attributes consonant.

Note that C looks similar to other test-statistics as e.g. Student's t or Fisher's F-
value:

_ _ Signal variance ., berween variance
noise or error variance  within variance

@

It would be interesting to be able to use some distributional properties of C. When the
nominator and denominator from (4) can be assumed to follow a distribution like a
variance in normal samples, C will follow an F-distribution, but more research is needed
here.

Examples

A number of examples are presented to illustrate the method. The examples are taken
from different Conventional sensory profiling experiments:
* cheese profiling data;
* peaprofiling data;
*  steak profiling data

Cheese profiling data

The cheese profiling data set is part of a study of the sensory properties of hard
cheeses in which a Scottish and Norwegian panel are compared (Hirst et al. 1993). Here
only the data of the Norwegian panel were used.! In this study 10 assessors scored 12
different cheeses twice, using 19 attributes. The attributes are divided into odour,
flavour and texture attributes, but no reference to this division is made in the analyses.
The replicated administration of the 12 cheeses results in 24 objects in the datamatrix,
these were analysed as if they were different products. Due to missing values one of the
attributes was removed. The remaining 18 attribute-data matrices X j are of order

1 The data were kindly made available by Tormod Nas of Matforsk, As, Norway.

63



Part I: Individual Differences 2. Assessing panel consonance

(24x10). Eighteen separate PCA's were performed. The percentages variance accounted
for (% VAF) by the first four dimensions are shown in figure 2. Each line represents the
results of a PCA on one of the attribute-matrices X o F1,...,18.

dimension

Figure 2 Proportion VAF per dimension of the separate PCA's of the 18 attribute
matrices Xj of the cheese data (the numbers in the plot are attribute-numbers

»-

It can be seen from figure 2 that attribute 15 is closest to unidimensionality. Four
attributes (4, 9, 16 and 17) can be seen to deviate most from unidimensionality. The plot
of the C-ratios clearly indicates the same (figure 3), but more clearly shows that attribute
9 is not unidimensional. In figure 2 the attributes 4, 16 and 17 clearly stand out as not
unidimensional because they have a large VAF value for their second dimension. These
attributes are two-dimensional rather than one-dimensional. Attribute 9 does not have
this two-dimensional nature, but the VAF values are spread more evenly among the
second and higher dimensions. This is better illustrated in figure 3, by means of a low
value of Cy, than in figure 2.
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Figure 3 C-ratios of the attributes in the cheese data set.

Attribute 15 is far more unidimensional than the other attributes, and attribute 4 has
the lowest consonance. In order to find out whether some assessors were responsible
for this, the loadings of the PCA's of the corresponding data matrices X 4 X g and X 17
and of X 5 are plotted and inspected. Figure 4 presents these plots for the attributes 4,
16 and 17 and for attribute 15.
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o Dimension 1

1

o Dimension |

Figure 4  Plot of the assessors from the PCA's of the most unidimensional attribute (no.

15) and the three least unidimensional attributes (no. 4, 16, 17) in the cheese
data set.

In figure 4 assessor 1 can be identified as partly responsible for the deviation in
scores for the attributes 4 and 16. Two groups of assessors can be seen in the plot for
the other less unidimensional attribute (no. 17). One group consists of the assessors 1,
3,5, 6 and 9, the other group of the numbers 2, 4, 7, 8 and 10. This illustrates the
potential of this method to identify segments of assessors with respect to certain
attributes. Especially in consumer studies with a large number of respondents, this could
prove useful.

When replicate information about some products is present in the data, the plotting of
the object scores from the PCA gives information about the consistency of scoring of the
replicates, with respect to each attribute separately. In this example each cheese sample
was judged twice, and in the analysis the two scores were treated as if they came from
different products. As a result the datamatrix contained N rows, while only YN
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different product samples were involved. It is interesting to compare the position of the
members from a pair of identical samples. In order to do this comparison the
corresponding points were connected with each other in figure 5.
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Figure 5 The N cheese sample-points in the objects space of the PCA on the attribute

matrices for the most unidimensional attribute (no. 15) and the three least
unidimensional attributes (no. 4, 16, 17). The elements of the pairs of identical
products are connected by a line.

From figure 5 can be seen that there seems to be no clear systematic difference
between the two samples of each pair. This is different from what is sometimes found in
studies where the replicated samples were Jjudged in a different session (see e.g.
Dijksterhuis 1990/1993). In the cheese study care was taken to avoid effects of order of
presentation by using an appropriate test plan (MacFie et al. 1989, see also Schlich

1993b).

67



Part I: Individual Differences 2. Assessing panel consonance

2.4.2

Pea profiling data

The pea data set comes from a study of the sensory properties of peas? (Kjolstad et
al. 1990, Nas and Kowalski 1989). In this study each pea sample was presented twice.
In contrast with the previous example on cheese, now the two presentations were
analysed separately. This gives two data sets, one containing the first presentations and
one the second presentations of each pea-sample. Both data sets consist of the scores of
10 assessors who scored 60 pea-samples using 6 attributes. The attribute-data matrices
X j are of order (60x10) and 6 separate PCA's were performed for each of the two
presentations. The percentages variance accounted for (%VAF) for the first four
dimensions are shown in figure 6.

2 The data were kindly made available by Tormod Nes of Matforsk, As, Norway.
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Figure 6  Proportion VAF per dimension of the separate PCA's of the 6 attribute
matrices of the two pea-sample presentations ("pea 1 data" and "pea 2 data").

In can be seen from figure 6 that all attributes are rather unidimensional, the
differences are much smaller than in the previous example on cheeses, but there more
attributes were involved. Attribute 6 has the highest consonance. No attributes show
large deviations from unidimensionality. The plot of the C-rafios supports the same
conclusion (figure 7).
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2 3 4
attribute attribute

Figure 7  C-ratios of the attributes in the two pea data sets.
Attribute 6 is more unidimensional than the other attributes. The two presentations of
the peas resulted in about the same consonance results for the 6 attributes. Attribute 4 is

the less unidimensional in both pea-sample presentations. Figure 8 presents the assessor
plots for attribute 4 and 6.
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Figure 8  Plot of the assessors from the PCA's of the most unidimensional attribute (no.
6) and the least unidimensional attribute (no. 4) for both parts of the pea data
set ("peas 1" and "peas 2").

Figure 8 shows clearly that for both pea data sets, attribute 6 is unidimensional, and
attribute 4 is less so. The loadings the attributes of the 10 assessors received are almost
equal for the first dimension, they differ for the second. Assessors 3 and 8 seem to be
deviating the most for attribute 4, for attribute 6 the assessors 5 and 10 apparently
scored different from the others.
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2.4.3 Steak profiling data

The steak study is reported by Rousset et al. (1992) and Schlich (1993b).3 The data
set contains scores of 11 assessors on 16 steaks using 13 attributes. The attribute-data
matrices X j are of order (16x11) and 13 separate PCA's were performed. The
percentages variance accounted for ( %VAF) for the first four dimensions are shown in
figure 9.
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dimension

figure 9  Proportion VAF per dimension of the separate PCA's of the 13 attribute
matrices of the steak data set.

Comparison of the screes in figure 9 with the screes of the previous examples shows
that the former are much flatter, implying less consonance over-all than the latter. This
probably explains the trouble in interpreting the consonance of attribute 4. From figure 9
it shows that attribute 4 and 2 are the least unidimensional, attribute 9 is the most
unidimensional. Though attribute 4 has the second highest VAF value in the first
dimension, it has the highest VAF value in the second dimension, this attribute is rather
two- than one-dimensional. The C-ratios in figure 10 however show attribute 4 as the

3 The data were kindly made available by Pascal Schlich, INRA, Dijon, France.
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second most consonant attribute and indicate that attribute 5 is another low-consonance

attribute. This ambiguity is also exemplified by the relatively low C-ratios presented in
figure 10.

1 23 45 6 7 8 910111213
attribute

Figure 10 C-ratios of the attributes in the steak data set.

The scale of the ratios is much lower than in the previous examples, this means that
the quality of the steak-panel, in terms of consonance of the attributes, is lower than that
of the cheese- and pea-panel. Table 1 presents some statistics of the C-values, it shows
that there is something different in the steak-data compared to the other data sets.

Table 1 Mean, minimum, maximum and range for the C-ratios from the four data sets.
data set mean minimum_ | maximum range
cheese 1.0680 0.3847 3.8903 3.5056
eas 1 2.1103 1.3586 4.6515 3.2929
eas 2 2.0600 1.0794 4.3252 3.2503
steak 0.3758 0.2797 0.6260 0.3463
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This can also be seen in the plots in figure 11. This figure will enable the
identification of assessors that are responsible for the lack of consonance.
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Figure 11 Plot of the assessors for the attributes 3, 5 (low consonance), 4 and 9 (high
consonance) from the steak-data.

Figure 11 clearly shows that the general unidimensionality of the attributes in the
steak data set is lower than in the other data sets analysed. The figures clearly show
more variance in the first dimensions, immediately visible by a cloud of points much
wider than in the previous examples. For attribute 4 assessor 6 is different from the
other assessors, for attribute 9 assessors 3, 4 and 8 deviate from the other assessors.
The two low-unidimensionality attributes (no. 3 and 5) show no clear structure in the
positions of the assessors. In this case a Generalised Procrustes Analysis could be used
to match these configurations of the assessors to look for underlying similarities of the
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2.5

configurations, this is not done here, but would be an interesting extension to the
method.

Conclusion

The method proposed enables a fast assessment of the homogeneity, or
"consonance", of scoring between the assessors in a sensory or consumer profiling
panel. The plots of the C-ratios and the scree graphs of the proportions Variance
Accounted For (VAF) can be used to identify attributes which may have different
meanings for the assessors. The plots of the assessors provide an easy graphical check
on the homogeneity of the panel with respect to each attribute. In addition assessors can
be identified as outliers and segmentations of the panel can be found.

As a method of finding attributes that are used consistently throughout the panel,
"consonant attributes”, the C-ratios can be inspected and attributes below a certain value
may be discarded. It could then be decided that the panel, or some deviant assessors,
require further training with respect to these attributes.
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3.1

Interpreting Generalized Procrustes Analysis

"Analysis of Variance" Tables

Introduction

The field of Generalized Procrustes methods is still lively and recently a new
method was published (Peay, 1988). This method is implemented in the
PROCRUSTES-PC v2.0 program (OP&P 1989, Dijksterhuis & van Buuren 1989).
Because there are now a number of different GPAsoftware packages using different
methods it may be useful to be able to compare the results obtained by different analyses
and by different software. It is important to realize that these methods do not differ
merely in different computer implementations or algorithms, but fit different types of
configurations, and hence should be distinghuised by different names. Here, 'GPA'
(Generalized Procrustes Analysis) is used for the methods based on Gower's 1975
article, Peay's method is referred to as GPPA (Generalized Projection Procrustes
Analysis).
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3.2

In this article a measure relative to the total amount of variance in the data is
proposed, this measure is easier to interpret and related to the V.A.F.- (Variance
Accounted For) measure and the percentage 'explained’ variance. A relative measure
makes it easier to compare solutions from different Procrustes analyses made by
different software. The 'Analysis of Variance' tables produced by the software can be
standardized using the relative measure proposed in this article. These tables can be of
great help in interpreting the solution of the analyses, they show the relation between the
fit of the solution, the dimensionality, the agreement between the judges and the
agreement about the products.

Two different Procrustes Methods

Since its introduction (Green, 1952; Hurley & Cattell, 1962; Cliff, 1966;
Schonemann, 1966) Procrustes Analysis has been in constant development. The early
Procrustes Analysis was the so-called one-sided orthogonal Procrustes Analysis in
which one configuration was rotated to another configuration (the target). Later
extensions included a scaling factor in addition to the rotation (Schonemann & Carroll,
1970). The original method was generalized to include more than two configurations by
Kristof & Wingersky (1971). Gower (1975) extended the method by including a scaling
factor in the generalized case. The Gower article is the most cited one in the field of
Generalized Procrustes Analysis and a lot of GPA software is based on the Gower
method. He also provided an 'Analysis of Variance' table with goodness of fit measures
for the products and the judges. The Gower algorithm was improved by ten Berge
1977).

The characteristic of these GPA methods is that they perform a symmetric analysis.
This means that it is necessary for all individual sets to contain the same number of
attributes, i.e. each judge must use the same number of attributes. Because Free Choice
Profiling (Williams and Langron, 1984) results in data that can differ in the number of
attributes per judge, the number of attributes must be made the same for each judge.
Usually this is done by appending attributes containing only zero's to the sets until all
sets have the same number of columns. Next the sets, which all have the same size now,
are matched by rotating and scaling them. This procedure minimizes the Least Squares
or Procrustes criterion, which measures the difference between the average- or
' consensus'-space and the individual spaces. When this difference is small enough, the
spaces are averaged to produce the consensus-space. From this space the experimenter is
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3.3

usually interested in two or three principal components which are extracted by a regular
Principal Component Analysis.

Ten Berge & Knol (1984) developed a method to rotate sets with possibly different
numbers of attributes to a consensus configuration of low dimensionality. This method
was extended by Peay (1988) to the GPPA method. Peay provided a scaling step and
partitioned the total variance in the data into three distinct parts. The GPPA method of
Peay differs from Gower's GPA approach in that it does not minimize the squared
residuals but it maximizes the variance of the low dimensional consensus-space
obtained. In addition to the rotation and scaling of the sets they are also projected onto a
subspace of a dimensionality chosen by the experimenter. Often the consensus-space is
chosen to be two or three dimensional. The dimensionality of the resulting consensus-
space does not need to be reduced any further by PCA because it's already of low
dimensionality.

Although the two methods are different, in practise they produce almost visually
identical results. Whether or not the empirically determined similarity of the methods is
necessary is not clear and the exact differences and their theoretical and practical
implications are the subject of further study.

Sums-of-squares in Generalized Procrustes Analysis

In Gower's 'Procrustes Analysis of Variance' (1975, Table 4) the total variance is
distributed over the N products and the K judges to show the fit of the products and the
agreement of the judges with the consensus solution. In this table the reported variances
between and within judges seem to be swapped. The score by judge & on attribute j

about product i is represented by x,; i
The total variance can be partitioned as follows:

VTota=V1n* Vout* YWwithin* VProjection 1)

in which Votal 18 the total variance contained in the data, this is the sum-of-squares
over all X sets, N products and M, attributes:

K N M,

Viotal =k): Y Y )

=1i=1-1
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The parts Vy, and Vs together constitute the consensus variance:
VConsensus= Vln+ VOut &)

being the criterion maximized by the Peay method. Vy, is the part ‘explained’ by the
first Q dimensions of the consensus-space, and Vg, is the part left unexplained, this is
the part associated with the higher dimensions of the consensus-space. Since in this
article only results from the Peay method will be discussed it is not useful to pay much
attention toV g, (Vo is only nonzero with the Gower method as can be seen in Figure
1).

The within- and projection-variance are residuals stemming from two different
sources. Vyyihin 18 the part lost in averaging the obtained individual spaces to the
consensus-space. Vi, constitutes the Least Squares or Procrustes criterion
minimized by the Gower method. Vp yicction i8 the variance lost in the process of
projecting data onto the subspaces.
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Figure 1 The two step process of Generalized Procrustes Analysis with the associated

variances VTotal’ VProjection, VConsensus and VWilhin (Respectlvely VT" VP’ VC’
and Vy).

Left: According to the Gower (1975) method. Right: According to the Peay
(1988) method.

Figure 1 reflects the two step nature of Generalized Procrustes Analysis. The right
part of Figure 1 shows the two steps with the corresponding amounts of variance using
the Peay method. The first step is the iterative procedure in which the individual
configurations are matched using the admissible transformations of rotation and scaling
while at the same time projecting them onto lower-dimensional subspaces. The loss
associated with this step is Vbrojection: The second step is the simple averaging of the
individual spaces obtained by the first step, the loss associated with this step is Viithin-
What is left after these two steps is Vonsensus the consensus variance. This implies that
the part of the total variance left after the first step (V-Vp) is distributed over Vwithin
and VCousensus'

The left part of Figure 1 shows the situation with the Gower method, in this
situation the role of Vbrojection 18 Played by Vi in the final Principal Component
Analysis. The term VProjection does not appear in this method, it is zero since the Gower
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method does not project onto subspaces. On the other hand Vg, does not appear in the
Peay method because it does not perform a PCA on the full-dimensional consensus-
space, as a result V,, is zero with the Peay method.

§ Scaling the total variance

In both Procrustes methods the total variance Vi, is scaled prior to the iterative
procedure and remains constant (y) throughout it. There are different ways to scale
Viotal: PeaY provides the most general formula and has Gower's scaling as a special
case:

M, @
1

T =

v =(ma"klel)_l

y is the total number of attributes divided by the maximum number of attributes. In
the case of symmetric data or data made symmetric by the padding of zero-columns, y
amounts to the number of sets K. The exact value of the constant y to which the total
variance is scaled is not relevant to the Procrustes procedure and can in fact be chosen
freely (Gower, 1975, p.37, Peay, 1988, p.205). However the way the variance is
scaled has implications for the way the 'Analysis of Variance' tables look. The
GENSTAT (Amold, 1986) and SAS (Schlich, 1989) macros present these tables in
original units, i.e. the variances reported are not scaled. The PROCRUSTES-PC
program scales according to Peay. Because of the differences in scaling it is not easy to
compare the results from different programs. Even the results from one program are not
directly comparable when the scaling according to Peay or Gower is used since this
scaling depends on the total and maximum number of attributes (see formula 4).

It is possible however to compare the Analysis of Variance tables in an easy and
'natural’ manner by reporting the results relative to the total amount of variance. In this
way the Analysis of Variance results correspond to the familiar 'explained variance' or
"Variance Accounted For' (V.A.F.) concept. The reported Analysis of Variance results
can always be expressed as proportions of the total rescaled variance by the user of the
program after analyzing the data. The developers of Generalized Procrustes Software
would be much more user-friendly if they were to include this in the next release of their
programs. Version 2.1 of the PROCRUSTES-PC program has the possibility of
presenting the variances as percentages VAF (OP&P 1990, Dijksterhuis & van Buuren
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I

1990). This can be easily accomplished by making the constant y equal to 100 and
causes no trouble with computer precision because 100 is a sufficiently small number.

Generalized Procrustes Analysis of a conventional profiling
experiment

The results presented here are from the data of 31 judges, using nine attributes to
describe five kinds of cheese. It was a conventional profiling experiment which means
that every judge used the same attributes. The results are based on a two-dimensional
analysis using the Peay GPPA method implemented in the PROCRUSTES-PC program.
Table 1 shows the unscaled between-, within- and total variance.

Table 1 Between, within, total and rescaled total variance of the cheese data.

Between sets 187042.06

Within sets 539932.00

Total 726974.06
Rescaled 100

The 'Between sets' and the 'Within sets' variances are in original units. The sum
(Votap) is rescaled to y = 100. As a result all other reported variances can be interpreted
as percentages of the total variance. In the PROCRUSTES-PC v2.1 program the
rescaling of the total variance is optional. Either is rescaled according to

_ __total number of attributes
" maximum number of attributes

®)

(see also formula 4), to 100 as proposed in this paper, or it is not scaled at all.
Relative variances can be calculated by dividing the values in the tables by the rescaled
variance y. This holds regardless of how the total variance is scaled, so the results in
original units from the GENSTAT or the SAS macro can easily be converted to relative
measures.
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3.5.1

The total variance Vg, 18 decomposed into four parts (see formula 1). Each of the
parts can be partitioned over the units in the analysis, being the products and the
subjects. As can be seen in Figure 1, first of all mejecﬁon is lost in the Procrustes
procedure, what is left is (Vipggy - mejecﬁon) which is shown in the tables. Though this
variance is called 'Total' in the PROCRUSTES-PC program output it is the variance left
afier projecting, it is not the same as Vr, which is the total variance before any
Procrustes transformation is carried out. The variance left after projecting can be
decomposed further into Vg pcon oo and Vo, Table 2 illustrates this using the data
from the cheese experiment.

Table 2 Rescaled consensus, within, projection and total variance of the cheese data.

vConsensus vWithin VPro'ection VTolaI
67.013 15.186 17.801 100

Virojection 1 17.8% of the total variance so 17.8% of the total variance was
removed in projecting the individual configurations onto the two-dimensional individual
spaces. Of the remaining 82.2% a part is lost again as Vi, in the process of
averaging the individual configuration to the consensus-space. In this case Viinin
amounts 15.2%. The consensus-space still accounts for 67% of the total variance, this is

a respectable amount for two dimensions.

Products

Table 3 shows the percentages of the different variances associated with the five
products from the cheese experiment.
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Table 3 Percentage consensus and within- variance distributed over the five different
kinds of cheese.

products VConsen;us VWithin
1 11.538 2.877

2 9.327 3.605

3 0.447 3.819

4 22.349 2723

5 23.352 2.162
total 67.013 15.186

The 67% total consensus variance is distributed over the 5 products as shown in the
column Vi o Figure 2 presents the variances from Table 3 in graphical form. The
lower, lighter part of the histogram represents the percentage consensus variance, the
upper darker part the residual within variance of the corresponding products.

Figure 2

30
J B % within variance

% consensus variance

20

10

% of total variance

object

Percentages consensus- and within variance distributed over five different
kinds of cheese.

The products 4 and 5 represent respectively 22.4% and 23.4% of the total variance
in the consensus-space. The residual 15.2% within-variance is also distributed over the
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3.5.2

products, this can be seen in the column Vyy;q. in the table. These variances are the
lowest (respectively 2.2% and 2.7% of the total variance) for the products 4 and 5. This
means there exists agreement between the judges about the position of these products.
The products 1 and 2 are intermediate with reference to the consensus and residual
variances. Product 3 only has 0.5% consensus variance is associated with it, the residual
variance is the largest (3.8%) for this product. This means that in the process of
projection to the two dimensional subspace almost ali variance for product 3 is lost. This
cheese showed to explain 5.5% consensus variance in a three dimensional analysis. The
consensus-space for the five products is shown in Figure 3.

0.8

0.6 °
0.4 ]
0.2 ]
0.0 - °

0.2

dimension 2

-0.4 4 2

i e
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dimension 1

Figure 3  Two dimensional consensus-space with the five different kinds of cheese.

From the consensus-space can be seen that product no. 3 lies close to the centre of
the space. This is a result from the fact that cheese number three occupies a different
position in each individual judge's space. The averaging of the individual spaces results
in a central position of this product. It can be concluded that the product is assessed
differently by the individual assessors.

Judges

Table 4 presents the distribution of the residual within-variance over the 31 judges.
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Table 4 Percentages residual VWithin distributed over the 31 judges in the cheese

experiment.
judge VWithin judge (ctd)  Ywithin (1d)| judge (ctd)  Vwithin (Ctd.)

1 0.464 12 0.825 23 0.182
2 0.278 18 0.447 24 0.487
3 0.687 14 0.607 25 0.499
4 0.437 15 0.675 26 0.387
5 0.455 16 0.640 27 0.541
6 0.340 17 0.402 28 0.416
7 0.497 18 0.270 29 0.266
8 0.433 19 1.061 30 0.540
9 0.599 20 0.532 31 0.238
10 0.559 21 0532 . -

11 0.354 22 0.536 . -

- - - - total 15.186

As can be seen from Table 4, 15.2% (Vyy;y,:.) of the total variance is distributed
over the judges. Figure 4 gives a graphical representation of the distribution of Viithin
over the 31 judges.

1.2
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0.8 4

within

0.6 -
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Figure 4  Distribution of the residual Viithin Variance over the 31 judges.
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3.5.3

If the value for Vi, is targe for an individual judge it means that this judge does
not agree with the consensus-space. The judges 3 (0.7%), 12 (0.8%), 15 (0.7%) and 19
(1.1%) are the ones with the larger amounts of residual variance.

Dimensions

Table 2 showed that the two dimensional consensus-space (Figure 3) explains 67%
of the total variance. The distribution of the 67% over the two dimensions is shown in
Table 5.

Table 5 Percentage consensus- and within- variance distributed over the two
dimensions of the consensus-space.

Dimensions VConsensus VWithin
1 46.650 9.374
2 20.363 5.812
total 67.013 15.186

From Table 5 can be seen that the first dimension of the consensus-space explains
46.7% of the total variance, the second dimension explains 20.4%.

It can often be useful to know the distribution of the variance over all dimensions to
help choosing the dimensionality of the consensus-space. For this reason a full-
dimensional analysis of the cheese data (in this case a 4 dimensional analysis) was run.
The percentages consensus variance explained by the four dimensions of the resulting
consensus-space are shown in Table 6.
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Table 6 Percentage consensus variance per dimension and cumulative, contained in the
four dimensions of the full-dimensional consensus-space of the cheese data.

Dimension VConsensus cum Ve onsensus
1 45.609 45.609
2 19.318 64.927
3 13.849 78.776
4 6.518 85.294
total 85.295

From Table 6 can be seen that four dimensions explain 85%, three dimensions
explain 79% of the total variance. The first two dimensions explain 65% instead of the
67% reported in Table 5. This is due to the Procrustes method used. Because the method
includes optimal projection onto subspaces the solutions are not nesred as in the classical
Procrustes methods. The classical GPA methods perform a PCA on a full-dimensional
consensus-space to extract a sufficiently low number of principal axes (see Figure 1).
Because in this case the dimensionality of the consensus-space stems always from the
same PCA the solutions of these GPA methods are nested.

Figure 5 shows a scree graph to assist in determining the dimensionality of the
solution, the graph is based on the data from Table 6.

% consensus variance

dimension

Figure 5 Scree graph of consensus variance per dimension for a full-dimensional
solution of the cheese data.
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3.6

From Figure 5 and Table 6 it can be inferred that a three dimensional GPPA solution
might be useful. To find out it also was computed and it explains 79.8% variance, which
is a little more than the 78.8% from Table 6 due to the non-nestedness of the method. In
fact cheese no. 3 explained 5.5% in the three dimensional solution and the residual
within variance dropped just a little to 3.5%. It can be concluded that there does seem to
exist some kind of agreement between the assessors about this cheese but that it is not as
clear as with the other cheeses. In order to find out more about this cheese, the
correlations of the attributes with the consensus dimensions can be inspected; this is
beyond the scope of this paper.

Generalized Procrustes Analysis of a free choice profiling
experiment

The second series of results comes from a Generalized Procrustes Analysis of free-
choice profiling data. Nine judges assessed eight different yoghurts, each using his/her
own attributes. The number of attributes ranged from 8 to 17. The judges received little
or no training. Below the results from a two-dimensional analysis are presented. Like
the previous example the analysis was carried out to extract a two dimensional
consensus-space with the PROCRUSTES-PC program.

Table 7 Between, within, total and rescaled total variance of the yoghurt data.

Between sets 131012.43

Within sets 437967.87

Total 568980.30
Rescaled 100

The total variance was scaled to 100 (see Table 7) just as with the cheese experiment
above. Table 8 presents the different sources of rescaled variance, Vcongensus ¥ Withine

VProjection and VTotal’
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Table 8 Rescaled consensus, within, projection and total variance of the yoghurt data.

VConsensus vWithin VProiection VTotal
59.461 10.675 29.864 100

Comparison with Table 2 shows a considerable difference in Virojection (17%
versus 30%). This is probably due to the fact that in this Free-Choice profiling
experiment the judges differed more in their assessments because they received less
training.

After the Procrustes procedure (see Figure 1) the averaging of the individual spaces
results in 10.7% loss. The two dimensional consensus-space accounts for 59.5%
variance, this is 7.5% less than the conventional profiling experiment on cheese shown
above.

3.6.1 Products

In Table 9 the distribution of the consensus- and within-variance over the 8 different
yoghurts is shown.

Table 9 Percentages consensus- and within variances distributed over the 8 yoghurts.

product vConsensus VWithin
1 0.765 1.429
2 10.328 0.772
3 6.538 2.629
4 4.098 2.207
5 8.028 0.418
6 7.833 1.318
7 14.179 1.101
8 7.693 0.801
total: 59.461 10.675
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Figure 6 shows the data from Table 9 in graphical form (compare Figure 2). It
shows that the yoghurts number 7 and 2 fit well into the consensus-space compared with
the other yoghurts. There must have been agreement between the judges about these
yoghurts. This is not true for number 1, its 'explained variance' Vg pceneuss 1S Very
small. Numbers 3 and 4 have the largest within variances, presumably the judges did not

agree on these yoghurts.
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Figure 6  Percentages consensus- and within variance distributed over eight different
kinds of yoghurt.

In Figure 7 the consensus-space is shown, it can be seen that there are two pairs of
yoghurts, the numbers 2 and 6 and the numbers 5 and 8 which lie very close. From
Figure 6 it can be seen that Vyyipin and Vegnceng,s are virtually the same for the
yoghurts 5 and 8. In fact these were duplicates's, i)resented blindly to the subjects. It
shows that these two yoghurts were judged almost identically.
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3.6.2
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Figure 7 Two dimensional consensus-space with the eight kinds of yoghurt.

The other pair (2 and 6) turns out to consist of two variants from the same brand,
no. 2 the light (low fat content) and no 6 the normal one. Apparently the two variants
were very much alike for the judges. Number 1 was shown by Figure 6 to be the
yoghurt that has the least agreement between the Jjudges, it lies close to the centre of the
consensus-space. It lies in a different position in the individual spaces for each judge.

Judges

Table 10 shows the distribution of the residual variance Vwithin OVer the 9 judges in
the yoghurt experiment.
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Table 10 Percentages within variance distributed over the nine judges in the yoghurt

experiment.
judge VWithin
1 0.747
2 1.052
3 1.408
4 0.956
5 1.471
6 1.631
7 2.199
8 0.660
9 0.550
total 10.675

Figure 8 shows a graphical representation of the amount of unexplained variance
Vwithin distributed over the nine judges, it contains the same information as Table 8 but
is easier to interpret. It shows that judge number 7 differs most from the other judges,
he/she has the highest percentage of the 10ss Viyiipin- Judge 1, 4, 8 and 9 seem to agree
quite well, the other judges take an intermediate position.

within

% V

judge

Figure 8  Distribution of the residual Vy. . variance over the 9 judges.
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3.6.3

Dimensions

The total amount of variance explained by the two dimensional consensus-space is
59.5%. Figure 9 shows a scree-graph (compare Figure 5) resulting from a 7-
dimensional analysis of the data. From Figure 9 and from Table 11 it can be seen that
adding a third dimension to the consensus-space increases the total amount of explained
consensus variance to 66.2%.

Table 11 Percentage consensus variance contained in the seven dimensions of the full-
dimensional consensus-space of the yoghurt data.

Dimension Vconsensus cum Ve onsensus
1 37.997 37.997
2 19.858 57.855
3 8.390 66.245
4 7.158 73.403
5 5.604 79.007
6 4.566 83.573
7 2.266 85.839
total 85.838

A three dimensional solution explained 68.3% variance, the question whether or not
to include a third dimension depends on the interpretability of a three dimensional
consensus-space.
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3.7

% consenus variance

dimension

Figure 9  Scree graph of consensus variance per dimension for the full dimensional
analysis of the yoghurt data.

Conclusion

Generalized Procrustes Analysis according to Gower (1975) or to Peay (1988)
apply different methods, as shown in Figure 1. The interpretation of the results is the
same, noting a difference in sources of variance. The 'Analysis of Variance' tables
provided by Generalized Procrustes Analysis Software are a useful tool in interpreting
the results from the analysis. When the tables report the variances as percentages of the
total variance, the entries in the tables correspond with the percentages 'Explained
Variance' or percentages 'Variance Accounted For' concept. The distribution of the
different variance measures over the products and over the judges provides an indication
of the agreement of the judges about particular products and with each other in general.
Graphical representation of these tables assists in interpreting the results. The relations
between the products can be seen from their position in the consensus-space.

Generalized Procrustes Analysis is a useful technique for the analysis of sensory
data, not only for data from Free-Choice profiling experiments but just as well for data
from conventional profiling experiments.
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Individual Differences

Summary

In this section the main conlcusions from the two chapters in part I are briefly
repeated. Suggestions for future research are given, both from the standpoint of sensory
research and from the standpoint of Data Theory.

Chapter 2
Assessing Panel Consonance

It is clear that there are large individual differences between the assessors in a sensory
panel as there will probably be in any panel. Sensory research may be especially
sensitive to idiosyncrasies because of the lack of clear vocabulary for the sense of smell.
When a sensory panel is trained to establish a vocabulary it is useful to find out which
attributes are "understood", i.e. used consistently by the assessors, and which attributes
remain unclear to the panel. The consonance-method proposed in chapter 2 does just that
and can be used to determine the need for further training of either the complete panel or
some assessors. The consonance method can be used as a device to monitor the training
of a sensory panel and to adapt the vocabulary during the training.
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Apart from the individual differences between assessors within a panel, there appear
differences berween the panels. Table 1 showed the different ranges of the C-ratios, with
a clear anomaly for the steak-panel. These differences may be an effect of different types
of training that the assessors received.

In this application of PCA the finding will often be that there are few attributes
completely unidimensional. Considering the following quote from L.L. Thurstone it is
interesting to note that Factor Analysis (or Principal Component Analysis) as applied in
this chapter, shows that the domain of sensory and consumer profiling research appears
more chaotic as it may have looked originally:

"The purpose of factor analysis.
A factor problem starts with the hope or conviction that a certain domain is
not so chaotic as it looks." (Thurstone 1947, p.55)

Suggestions for future research

Other PCA-like techniques can be used for alternative consonance-methods. PCA for
categorical data, e.g. Princals (see Gifi 1990), can be used when the data consist of
nominal, ordinal or numerical categories, or mixtures of these.

As was already suggested in chapter 2, the assessor-loading-plots could be matched
by means of GPA to look for a common structure. The common structure would enable
the identification of assessors that are outliers for most attributes, or the discovery of a
segmentation of the panel. Especially with a large number of attributes and assessors,
when comparison by eye becomes impractical, the matching by GPA would be a useful
extension of the method.

The consonance method also provides a means for the comparison of different
training methods in order to look for best training and sensory evaluation methods. It
may also be useful to compare the effects different laboratories may have.

Another interesting extension to the method would be the comparison of the first
eigenvalue with the results from permutation/randomisation analyses or random-data
analyses (e.g. Buja and Eyuboglu 1992, Dijksterhuis and Heiser 1994). These methods
provide a way to perform a significance test of the first eigenvalue, so it can be seen
whether or not a certain attribute is significantly unidimensional, or that there is also a
statistically significant second dimension.
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Chapter 3
Interpreting Generalised Procrustes Analysis "Analysis of Variance"
Tables

This chapter briefly illustrated the differences between the GPA and GPPA methods.
The main conclusion is that individual difference models prove useful not only with Free
Choice Profiling panels but also with Conventional Profiling panels. Despite the,
sometimes intensive, training the assessors receive, the G(P)PA methods still show that
the assessors do not completely agree, and still use attributes differently.

The suggestion to report all Procrustes variances relative to the total variance, hence
turning them into Variance Accounted For (VAF) measures is important, especially since
there are two different Procrustes methods available. The way the results of classical
Procrustes Analysis were sometimes reported was misleading because the VAF
measures were of the final PCA, so ignoring the Procrustes-loss. As a result it looked
like the GPA results were better in terms of fit than the GPPA results. However,
comparison of the two methods in terms of fit is not straightforward (see e.g.
Dijksterhuis and Gower 1991/2).

GPA is a very general method which is a useful tool for data-analysts. Especially in
the sensory and consumer field, and tailored for the analysis of Free Choice Profiling
data, GPA has proven very useful as a research tool (e.g. Oreskovich et al 1991). GPA
has become popular in sensory sciences. More recently it is also applied in consumer-
and marketing research too (e.g. Leemans et al. 1992, Steenkamp et al. 1994). But there
is no limit in its use as long as the user realises what she or he is doing. It is advised not
Just to see GPA as a computer program that gives "an answer".! The researcher should
always think for her and himself what the method does, and what it is she/he wants to
study.

The non-nestedness of GPPA suggests the following scenario for exploratory
Procrustes Analysis:

1 perform GPA
2 infer optimal dimensionality by means of the scree-graph
3 perform GPPA in the number of dimensions suggested by 2.

Admittedly, this may be too exploratory for some, but in practice it works

satisfactory. The scenario works because the difference between a p-dimensional GPPA

1 The computer-software and manual must be clear about the method that is implemented, otherwise
misunderstandigs may easily occur. See e.g. the comments of Dijksterhuis et al. (1992) on Scriven
and Mak (1991) and the responses to it (Scriven 1992, MacFie 1992, Dijksterhuis 1992b).
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solution and the first p dimensions form a GPA solution is usually small. However, note
that this is not guaranteed for all datasets.

Graphical representations

In chapter 3 the results of the analyses are presented in graphical form, sometimes in
addition to their presentation in a table. It is recognised that presentation in both a table
and a graph is not useful. An exception could be made for the scree-graphs because the
"kink" may be easier to see in a graph than from a column of values. The scree in figure
5 shows the kink at the second dimension. This dimension adds 19.3% variance to the
first dimension, which itself explains 45.6%. It can be concluded that the solution is
probably best interpreted in one or two dimensions, probably not in three dimensions as
is suggested in the chapter. The same critique can be applied to the interpretation of the
other scree-graph in the chapter (figure 9). This graph suggests a two-dimensional
solution rather than a three dimensional one.

The use of the bar-charts in figure 4 and figure 8 may be misleading, especially
because the caption mentions a "distribution". The charts do not show a "distribution" in
the statistical meaning of the term. They were presented only to show the differences
between the magnitude of the loss values of the assessors. There is no meaning in the
order of the assessors along the horizontal axes of the bar-charts.

Suggestions for Future Research

There are some lines of research in connection with GPA that are interesting, both
from an applied Sensory Research viewpoint and from a more theoretical Multivariate
Analysis viewpoint.

Statistical Matters
Some researchers expressed their concern about the validity of the results obtained by
GPA. This concern can be formulated as in the following question:

Is the obtained Group Average meaningful, or is it just a hodgepodge left
after intractable mathematical transformations of the data?

See e.g. the paper by Huitson (1989), but then also see the responses by Armold
(1990) and Huitson again (1990). Usually the kind of questions as posed above can be
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answered by statistics. However, there is hardly any statistics available for GPA
methods. Based on certain assumptions statistical tests may be devised (Davis 1978,
Sibson 1978, Langron and Collins 1985), but their usefulness is questionable, because
the assumptions may be unrealistic. A statistical approach where no distributional
assumptions are needed is found in permutation and randomisation tests (see e.g.
Edginton 1987). Such tests are recently reported for GPA by King and Arents (1991)
and Wakeling et al. (1992) for sensory applications. An earlier application of
randomisation tests to GPA, as part of a more theoretical PINDIS (Procrustean
INividual DIfference Scaling, Lingoes and Borg 1978) framework was reported by
Langeheine (1982).

Another interesting approach is the inclusion in and expansion into a large Analysis of
Variance framework, briefly touched upon by Dijksterhuis and Gower (199172).

In connection to the question about the meaningfulness of the GPA Group Average
there is a popular misconception about the nature of Procrustes Analysis. This
misconception pops up every now and then, unfortunately (Huitson 1989, Stone and
Sidel 1993).2 In chapter 13, Conclusions, things are attempted to be straightened out.

2 This misconception was also encountered in several personal communications with researchers in

Sensory and Consumer Science.
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Introduction to Part II

Measurement Levels

Summary

In this part non-linear Multivariate models are introduced. Chapter 4 illustrates a
variant on classical GPA in which quantitative as well as categorical variables are
included in the individual datasets. In chapter 5 a nonlinear extension to K-sets CCA is
introduced. This method is applied to a sensory dataset and can be seen as an alternative
- method to GPA. In chapter 6 this same method is again introduced, though different,
and used for the analysis of another dataset from sensory research.
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Chapter 4

Multivariate Analysis Of Coffee Images: A Study in the
Simultaneous Display of Multivariate Quantitative and
Qualitative Variables for Several Assessors!

The chapter discusses a small image study in which seven assessors judge nine
brands of coffee in terms of six quantitative variables and five categorical variables. The
coffees were not tasted, only the package of coffee was presented to the assessors. The
data were collected with the intent to use them as illustration of the methods of data
analysis used in this chapter. Generalised Procrustes Analysis and Generalised Biplots
are combined to display simultaneously information on the brands and on both
quantitative and categorical variables.

The analyses performed in this chapter can be summarised as:

distance D

X, IRy, TR (v, ) =Y )

where the raw data X, are converted into distances in D; by a distance generating
function g (see formula 1 in chapter 4), g(X)=D,. Coordinates of N points in Y, can
be found by a mapping from D, to Y,, eg. by means of some form of
Multidimensional Scaling. The N points in the rows of Y, reproduce the distances in
D,. The K configurations Y, have arbitrary orientations, they can be subsequently
matched by means of a matching procedure M such as GPA. After a GPA the
configurations M(Y;)=p, Y (H, have commensurable orientations and can be averaged
to form a group average configuration Y. When the last step, the averaging, introduces a
large amount of loss, the group average must be interpreted with caution, because it is
not a good representation of most individual configurations.

The scheme presented in (1) is very flexible. It allows for a large number of
different analyses of K datasets, provided that all the sets contain the same N objects in
their rows. Some possibilities:

«  making distances using g: Euclidean-, Chi-Square-, Minkowski-p-, Extended

Matching Coefficient, etc.

1 The paperis printed in Quality and Quantity (Gower and Dijksterhuis 1994). An older version of
the paper appeared as a research report of the department of Datatheory (Gower and Dijksterhuis
1992) and was presented by the first author at the 3rd Agro Industrie & Methodes Statistiques
Conference held in Montpellier in November/December 1992.

The data were especially collected for this paper by OP&P for which Jeannette Timmermans and
Pieter Punter are thanked. Jacques Commandeur (department of Datatheory, University of Leiden)
kindly did the GPA for datamatrices with missing rows.
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*  mapping: PCA, PCO, MCA, MDS, etc.

*  matching using M: GPA, GCA, etc.

In the chapter there is a complication in that the data contain both qualitative and
quantitative variables. These two kinds of variables are treated differently. For the
quantitative variables g is taken to produce Euclidean distances and for the qualitative
variables g is taken to be the Extended Matching Coefficient (EMC, formula 3 in Chapter
4). The Euclidean distances and the Extended Matching Coefficients are combined into
one matrix (formula 8, Chapter 4). This matrix is decomposed using PCO/classical
scaling, which is the mapping method used. The matching is done by means of GPA.

In fact three different analyses are performed and their results presented:

1 Categorical variables only (subscript ¢ in (2), see §4.4.1):

PCO GPA

EMC
Dy Y -

[ <

Xy

M(ch )-¥, @

EMC (formula 3 in Chapter 4), PCO (Chapter 4, Figure 1), GPA (Chapter 4a,
Table 4, Figure 2)

2 Both categorical and quantitative variables (respective subscripts ¢ and q,
subscripts omitted after their combination, i.e. after the brace in 3); see

§4.4.2):
X, —MC.p,
e e PCO GPA
Euclidean Yy M (Yk ) =Y 3)
Xk _—vl)k J
q q

EMC, GPA (Chapter 4, Table 4b, Figure 3).
3 Aspoint 1 above but with a Jjoint GPA (§4.4.3, Table 4c, Figure 4).
The GPA's with 1 and 2 above are the usual GPA's where the configurations of the
N objects in the rows are matched. The so-called Joint GPA is performed on the
configurations of the N points and the 25 category-points. So the GPA is carried out on
K matrices with N+25 rows. To handle missing categories -some of the matrices have
missing rows- the GPA developed by Commandeur (1991) was used.

105



Part II: Measurement Levels ' Introduction

Chapter 5
Nonlinear Canonical Correlation Analysis of Multiway Data?

The method of nonlinear canonical correlation analysis for K sets of variables, or
Overals, is introduced. It is both a generalisation of homogeneity analysis (Multiple
Correspondence Analysis) as well as of linear canonical correlation analysis. The
method is presented from both viewpoints. The formulations via MCA (Chapter 5,
formula 5) and via Canonical Correlation Analysis (Chapter 5, formula 7) are shown to
be equivalent. It turns out that the inclusion of optimal scaling into K-sets CCA is
equivalent to K-sets MCA with additivity constraints and optimal scaling. The
mathematics was presented in more detail by van der Burg and de Leeuw ( 1987).

In this chapter the method, abbreviated GCA (Generalised Canonical Analysis), is
applied as an alternative to GPA. The advantage of GCA is that nonlinearities can be
modelled, i.e. nominal, ordinal or both kinds of variables can be analysed in addition to
numerical variables. GCA is applied to a dataset from sensory research. The data
originally consisted of numerical data, but are recoded into just three categories to
illustrate the use of ordinal GCA. Three categories is the minimum number of categories
to which an ordinal analysis can be applied. The three categories are believed to code the
approximate positions of the anchors of the line-scales used in the experiment and of a
middle neutral category. There were two anchors, a left anchor ("low", "bad" depending
on the attribute) and a right anchor ("high", "nice" depending on the attribute).

Just as in Procrustes Analyses the data consist of a K individual sets, where each set
represents an assessor. The K sets are matrices with the products in the rows and the
attributes in the columns (see also §1.5.3 and Chapter 1, Figure 6).

The data are from a sensory experiment in which a number of smoked saucages are
judged by a sensory panel.

2 The paper is written together with Eeke van der Burg (van der Burg and Dijksterhuis 1989) and was
presented by the first author at the Multiway 1988 conference in Rome, Italy (see Coppi and
Bolasco 1989). The sensory data were analysed before by the second author in his master's at the
University of Utrecht (Dijksterhuis 1987).
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Chapter 6
Nonlinear Canonical Correlation Analysis: Introduction and
application from sensory research3

In this chapter the same technique as in chapter 5 is introduced. Until then
Generalised Canonical Analysis was described more or less scattered throughout a
number of rather technical papers (Carroll 1968, van der Burg et al. 1988, van der Burg
1988, Gifi 1990) and it was felt that a concise introduction of the method would be
useful. The equivalence of linear GCA with Carroll's (1968) method is shown.

Optimal scaling is introduced as an extension of GCA to include nonlinear
transformations. This extension gives the possibility to analyse nominal or ordinal data
together with data on an interval level. This presentation shows some overlap with that
in the previous chapter.

In the chapter there is mention of a limitation of the Overals program used, it
concerns the limited number of categories the program accepts. This is probably only a
problem with the -old- PC versions of the program.

GCA is applied to data from sensory research. Forty different vegetable soups were
Judged by 19 assessors using 5 attributes. Two different GCA analyses are performed:

*  anumerical ten-category solution

*  anordinal three-category solution

The results of these two analyses are compared by matching the two configurations
using a Procrustes Rotation. The high agreement of the configurations is the reason that
only the configurations from the ordinal analyses are presented.

3 The paper is written together with Eeke van der Burg and presented by the first author at the
SMABS 1992 conference in Nijmegen (van der Burg and Dijksterhuis 1993b). The paper appeared
in the book of the SMABS-conference (Oud and van Blokland-Vogelesang 1993).
The data were kindly made available by Dr. B. Cramwinckel (RIKILT-DLO), Wageningen, the
Netherlands.

107






Chapter 4

Multivariate Analysis of Coffee Images:
A Study in the Simultaneous Display of Multivariate
Quantitative and Qualitative Variables for Several
Assessors

John Gower and Garmt Dijksterhuis

Originally published in 1994 in Quality and Quanrity, 28, 165-184.

(reprinted with kind permission from Kluwer Academic Publishers)



4.1

Multivariate Analysis of Coffee Images

A Study in the Simultaneous Display of Multivariate Quantitative and

Qualitative Variables for Several Assessors.

Introduction

In consumer research, a panel of assessors is often asked to give judgements on the
characteristics of some product under consideration. Judgements may be of diverse
kinds and the scales used may include both quantitative and qualitative measurements.
Quantitative scales are rarely measured directly but the members of the panel will be
asked to use, say, a ten-point scale or to indicate the strength of their response to some
question by marking an appropriate distance along a line. Qualitative responses are
selected from a list of attributes (e.g. red, green, yellow, blue for colour). Often
attributes are ordered (e.g. low, middle and high income) but in the following we take
no cognizance of this information. Occasionally each individual member of the panel
chooses his or her own attributes (e.g. in Free Choice Profiling, FCP, Williams and
Langron 1984). Rather than write about attributes and characteristics we use the standard
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4.2

statistical methodology, referring to qualitative variables as categorical variables and to
their attributes as category-levels. With FCP not only do the variables differ between
individuals but also the number of variables, thus making it difficult to compare the
responses of different individuals.

Generalised Procrustes Analysis (GPA, Gower 1975) offers a way of comparing
individuals who judge products using different variables. Its basic assumption is that a
distance can be defined so that distances between two products, as Jjudged by two
individuals, are comparable, even though they may be based on different variables.
When the variables are nominally the same, there is no guarantee that two individuals
perceive them in the same way, so supporting the use of GPA in a wider context than
Just with FCP-like data (e.g. Chapter 3, Dijksterhuis and Punter 1990). This is the
Justification for using GPA in the following, where the variables used by all assessors
are nominally the same. The distance assumption allows a map to be made of the
products for each individual. Sets of maps may be matched, in an obvious least-squares
sense, and compared as is described in Section 3.

In the use of GPA described here, the distance between pairs of products is defined
(see Section 4.3) as a function of the values taken by the quantitative and/or categorical
variables used. The original description of GPA did not discuss how information on the
original variables could be included in the maps, but soon (Arnold and Williams 1985)
quantitative variables were expressed as vectors through a common origin in what
amounted to an application of classical biplot methodology (Gabriel 1971). Methods
such as multiple correspondence analysis (MCA) show information on categorical
variables but only when all the variables have qualitative form and only for one
individual. Recent advances in biplot theory (Gower and Harding 1988, Gower 1992a,
1992b) unify the treatment of quantitative and categorical variables and offer other
generalisations; for example, MCA is a special case. The methodology used in this paper
brings together GPA and a useful special case of Generalised Biplots (GBP, Gower
1992b).

Data

Seven assessors were asked to Jjudge nine brands of coffee on five categorical and
six quantitative variables. The assessors, two men and five women, were presented with
a package of each coffee and were asked several questions. The coffees were not tasted,
but the assessors were asked to respond according to their conceptions of the properties

111



II: Measurement Levels 4. Multivariate analysis of coffee images

of the coffee. Thus their responses would be based on their pre-knowledge of the
coffees as elicited by the packaging itself. Table 1 briefly describes the nine coffees
together with their prices; Table 2 presents the questions.

Table 1 The nine kinds of coffee used in the experiment with their price in Dutch
Guilders per 250 gram. The symbols represent the corresponding coffees in
the figures.

Symbol Coffee Description Price
A Red brand Ordinary coffee 2.54
Golden brand Luxury coffee 3.64

+ Moccona Instant coffee 12.59

X Nescafe Instant coffee 14.25

O B-Brand Cheap coffee 1.25

e} Hag Decafinated coffee 3.13

O Max Havelaar Third world coffee 3.58

B Espresso Espresso coffee 3.69

@ Chocolate flavour Coffee with chocolate flavour 11.75

To answer question 6, the assessors were asked to give the price in Dutch Cents
(100 Cents = One Guilder) they would be willing to pay for 250g of the coffee.
Questions 7 to 11 were scored on line-scales, giving scores ranging from 0 to 100. Each
subject was asked the same questions but, for the reason given in Section 4.1, it was
thought appropriate to treat the data as if they were of FCP form .

Data of these kinds are collected in the hope of answering questions about the
homogeneity, or otherwise, of the patterns of response across individuals. With
homogeneous patterns, supplementary problems are to suggest which variables are
important and which unimportant in determining the responses, and to examine the
extent of departures from an average response. With heterogeneous patterns, it is of
interest to ask if there is evidence that the individuals fall into two or more homogeneous
groups. Because we had so few assessors, there was insufficient information to answer
most questions of these kinds and this exposition must be regarded as a pilot-study to
validate the methods proposed.
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Table 2 The questions asked of the assessors. The abbreviations of the category-level
names can be found in the figures. The underlinded parts of the lower table
can be found in the corresponding figures.

Questions on categorical variables Category-levels
1 How often do you Drink this coffee?

never
sometimes
regularly
often

y¥ewy®

always
2 What is the most suitable Moment for this coffee?
Mb  with breakfast
Mm  the morning
Ml with lunch
Ma  the afternoon
Md  after dinner
Me  the evening
3 What is the most suitable Occasion for this coffee?
Oh  at home (each day)
Ow  at work
Ov  during vacations
Or  in arestaurant/café
Op  at week-ends/public holidays
Od  after dinner
4 Which Income-group buys this coffee?
I low incomes
Im  middle incomes
Ih  high incomes
5  Would you Buy this coffee?

Bn  never

Bs  sometimes
Br  regularly
Bo often

Ba  always

Questions on Quantitative Variables

6  What price are you willing to pay for 250g of this coffee ?

7  Amount of odour? weak - strong
8  Amount of taste or aroma? weak - strong
9  Full-flavouredness/raciness? weak - strong
10 Bitterness? weak - strong
11 Quality? bad - good
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3.1

Methodology

We may imagine data-matrices X (k = 1,2,....K) to be available for K individuals.
A typical element of X, will be written Xjjko where i = 1,2,...,N refers to N objects
(coffee brands in the example discussed below) which are the same for all K individuals
andj=1,2,....J, refers to variables. The matrix X, has J; columns which refer to the
variables chosen by the kth individual; in general these will differ from individual to
individual but in our example, J, is constant. The variables may be quantitative,
categorical, or a mixture of both types.

Distances d

o« between all pairs 7,5 of objects are defined (see §4.3.3) between rows

rand s of X, where r,s = 1,2,...,N. These may be collected into a symmetric matrix
D, = {d,} with zero diagonal. From D, a configuration with coordinates given by the
rows of a matrix Y, may be obtained by any desired form of metric or non-metric
scaling. In our example we use principal coordinate analysis PCO/classical scaling
which, with the distances used here, always gives real Cartesian coordinates Y, in, at
most, (N-1)-dimensions, which generate the distances d, g exactly.

Overview of Generalised Procrustes Analysis

The multidimensional-scaling configurations Y, (k = 1,2,...,K) are used as the
basis of GPA. That is, orthogonal matrices H, and, possibly, scaling factors p, are
found which minimise

K
) |kak“k - thhthlz
h<k

or, what is the same thing, minimise
K
Y i Yoty - Y“2
k=1
where |JAJ® = tr(A’A) and Y is the GPA group-average given by

V=K' (peYelly)

™ =

k=1
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4.3.2

Thus, the orthogonal matrices H, represent generalised rotations which are chosen to
optimise the overall match of the individual configurations to their average. The scaling
factors p, allow for the possibility that there are size differences between the
configurations; a suitable constraint is chosen to exclude trivial solutions with all pp = 0.
All this is familiar, but we need to establish the notation and draw attention to the
formulation that distinguishes the raw data X, from the configurations Y,. In many
applications the two may be taken to be the same, but we wish to emphasise that this is
not a necessary constraint; the formulation adopted here allows distances d,y to be

defined very generally and it is this that allows for the possibility of including categorical
variables, as will be described below. When Y, =X &> there is an implicit assumption

k 2
that Pythagorean distance given by d,zsk = Z(xrjk - xsjk) is used. However distance is

defined, some preliminary normalisation of the variables of X ¢ May be necessary to
ensure commensurability; it is assumed that all necessary pre-scaling of this kind has

been done (see e.g. Dijksterhuis and Gower, 1991/2). When pre-scaling is applied, there
is little justification for including the additional scaling factors, p,.

Components Analysis, Linear Biplots and GPA

In a principal components analysis of the data for the kth individual, the biplot
methodology for exhibiting variables in the graphical display involves the construction
of the component loadings V/, that satisfy the eigenvalue equation

(XX Vi = VA,

where X, is now assumed to be expressed in deviations from the sample-means.
Thus V, is orthogonal (Vi Vi =1, a unit matrix) and A is diagonal (the matrix of
eigenvalues). The ith object has coordinates given by the ith row of Y, = X,V,. The
vector plotted for the jth variable is obtained by plotting the point whose coordinates are
given by the jth row of V,, and joining this to the origin. This vector is termed the Jjth
biplot axis. Both the component analysis and the biplot axes are usually plotted in some
small number r of dimensions, often r = 2, that is obtained by using V, , the first r
columns of V.. Just as the original axes may have associated scales of measurement, so
may the biplot axes. On the biplot axes, one unit of measurement may be taken to be (i)
that given by V, as described above, which we refer to as the interpolation scale and (ii)

115



Part II: Measurement Levels 4. Multivariate analysis of coffee images

that given by diag( Vi Vi )V « » Which we refer to as the prediction scale. The scales
given by (i) and (ii) de;'merjust one unit of measurement, and just as when plotting with
conventional axes, a series of markers may be associated with the biplot axes indicating
one unit, two units, three units and so on. To interpolate a new sample or product, take
the vector-sum of the markers on the interpolation scales representing the values required
for the variables. To predict the values associated with a sample-point in the ordination,
drop perpendiculars from the point and read off the values against the prediction scale
markers. In exact representations the two scales are arranged so that interpolating a set of
predicted values recovers the original sample-point and the predicted values to be
associated with an interpolated point are the same as the values used for the interpolation;
the two scales are consistent. This consistency property is lost in approximations (see
Gower, 1992a, for a more detailed explanation).

Now, suppose biplot axes have been computed as described, then we can regard the
coordinate points on the biplot axes given by the rows of V; as being rigidly embedded
in the components space, together with the object-points Y, = pi XV, When GPA
rotates Y, through Hy, then V, is rotated to V, H, giving biplot axes embedded in the
configurations generated by the GPA . Corresponding to the group-average Y of

K
objects, is the group average 7= gt ZVkH ¢ Which gives the biplot axes to be
k=1
associated with the group-average configuration. This, however, is valid only when the
same variables pertain to all the individuals. With FCP, combining incommensurable
variables in this way is not valid. Indeed, the dimensions of the matrices V, will
generally differ from individual to individual. Even when averaging variables is not
permissible, two or more variables may be seen to have similar directions, and then one
might provisionally regard this as an indication that these variables might pertain to the
same, or similar, underlying factors.

Generualised Biplots

The above sketches what is reasonably well-known. The question arises whether or
not something similar can be done for forms of multidimensional scaling other than
components analysis, and for distances other than Pythagorean. The basic methodology
for this extension is given by Gower and Harding (1988) who described non-linear
biplots (NLB), that can be used for any form of distance defined on quantitative
variables, and by Gower (1992b) who described Generalised Biplots (GBP), which
further extends the methodology to include categorical variables. GBP can be very

116



Part I[I: Measurement Levels 4. Multivariate analysis of coffee images

general indeed but here we confine ourselves to a special case, which itself has a
considerable degree of generality. The results required are stated below; derivations and
proofs are given in Gower (1992b).

We assume that each variable contributes independently to overall squared-distance.
That is:

Jk
diy = Zlgj(xrjk'xsjk) @
=

where & .»-) is a function that determines the distance between two samples for the
Jth variable alone. This general form will be required later but for the present it is
assumed that gj(.,.) is the same function for all variables and hence may be written
g(.,.). The form (1) includes the chi-squared distance of MCA, Pythagorean distance
and many popular dissimilarity coefficients.

Next, suppose the rows of Y, contain the Euclidean coordinates for the kth
individual, generated by some form of ordination as described at the begining of §4.3.
Then the coordinates of the marker £ on the Jth biplot axis relative to the axes of the
ordination Y is given by:

HE)=-J(vy)'Y(f+2D,1n7!) @)

where f = {x; j,ﬁ}, is the vector giving the distance of the marker from each of the N
objects (i = 1,2,...,N).

As & varies y (&) will trace out a non-linear trajectory which corresponds to the jth
biplot axis. When g(xrjk,xs jk) = (x,jk - xxjk)2 for all j, we have Pythagorean distance and
if, additionally, PCO is the ordination method that is used, then we have components
analysis and classical linear biplots as a special case. In the examples, we assume this
special form, so our biplots for quantitative variables are identical with those of the well-
known classical linear biplots. However, GBP also allows categorical variables.
Distances for categorical variables may be defined in many ways. Here we assume the
extended matching coefficient:

= 5 ]
g(xrjk' xsjk) 0 when X =X n \ 3)
=1 otherwise ]
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Thus, if the jth variable is, say, a three-level categorical variable, of the colours red,
green and blue then two objects contribute zero distance if they are the same colour, and
unit distance if they are different colours. With this simple definition, Gower (1992b)
shows that the coordinates that represent the jth categorical variable are given by:

. — g 1 ~ " _
Z= A Y(.I(A,lel 1) “)

where (1 is the indicator matrix for the jth variable (ie. G (z l) = 1 when level [
occurs for the ith object, else is zero) and L = diag G’ G j gives the number of
occurrences of the different levels of the jth varlable Here and in the formulae that
follow, there are J of these matrices for the kth individual. Thus, when J, = J, a
constant, there are JK sets of coordinates when totalled over all individuals.

One may note the similarity between (4) and the formula for category coordinates in

MCA:
g _y-lyier
[j—)l YGj(,j 5)
for which
J
1 &1 1
2
drsk _?Z[Z—+Z——] ©6)
kj:l Ji# I

where ¢; (c ) gives the number of occurrences of the category-level of the Jjth
variable observed for the rth (sth) sample for the kth individual and ¥2=A.

A third possibility is to use the GBP methodology with (1) defined by the chi-
squared distance (6). This gives:

1 A gl 7
L 721\ YGij (7

which differs from (5) only in replacing the scaling factors -1 by (l/J,%)A_1 :
However, we agree with the criticism of Greenacre (1988) that chi-squared distance with
the implicit upweighting of scarce categories relative to frequent categories given by (6),
is not an attractive distance to use with sparse categorical data. For its simplicity, and for
other reasons given by Gower (1992b), we prefer the extended matching coefficient and
hence used the category coordinates given by (4) in our example. However, the methods
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based on (4), (5) or (6) have much in common and are included within the general
framework. In all cases, the weighted mean of the category-level points of any variable
is at the origin/centroid, i.e. 1'C jZ g = 0.

A major advantage of GBP is the way that (2) allows quantitative and categorical
variables to be included in the same analysis. All that is required is that in the distance
givenby (1), g (xrjk,xsjk) be defined as Pythagorean for quantitative variables and as the
extended matching coefficient for categorical variables. These are the definitions we
happen to have used; any other combination of distance definitions that might be deemed
desirable may be substituted and in extreme cases every term of (1) could be defined
differently.

Thus, to combine both categorical and quantitative variables in one analysis, a PCO
was carried out on each X k> defining squared distances by (1) with the first five terms
based on the extended matching coefficient and the remaining six on Pythagorean
distances. Such a combined analysis, reduces to an eigenvalue decomposition of each of
the K matrices

A By + QuQ = Y, Y}, with Y, Y/, diagonal ®)

where
B, =}/2(1—N)(;“"((;“") (I-N) o)

with Q, being the mean-centred submatrix of X 4 containing the quantitative
variables and N = I - 11'/N, where 1 is a vector of N units and G®) is the indicator
matrix for all the categorical variables for the kth assessor. That is
> 0 (Gl(k) G;k), .,G;k)), where Gj(-k) is the indicator matrix for the Jth categorical
variable as used in (4).
Thus with Y, defined by (8), (4) gives the coordinates of the points to plot for the

category levels. The corresponding formula for quantitative variables is:
IFE _1 1 ’
This will give coordinates for the observed values of the variable x ik (i.e. the jth
column of X, the data-matrix for the kth individual) and these will be collinear because

Z,, given by (10), has unit rank because it is the product of the two vectors A~ lka
and x’ k- Only one point is needed to define each linear biplot axis but (10) gives N
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4.4

4.4.1

collinear points. A single point, representing the marker for one unit of the jth variable,
has coordinates /\_IY;(X It the other markers are equally spaced along the biplot axis.
With non-Pythagorean, but Euclidean, distances, the trajectory is non-linear and even
the N poirss corresponding to the data-values of a variable given by the general form of
(4) and (10) may be insufficient to give good resolution. Then one would have to use (2)
to interpolate as many points as were needed for adequate definition (Gower, 1992a).

Analyses

The analyses are presented as follows. First we give GPA analyses for the seven
assessors, based on PCO analyses using (i) only the categorical variables and (ii) all the
variables; in both cases, information is included on the variables. We conclude with a
novel form of GPA which is permissible only when individual assessors use the same
category-levels.

Categorical Variables

Table 3(a) gives the percentage variance explained by the first two dimensions of the
PCO solutions using only the categorical variables and defining distance by the extended
matching coefficient (3). The scores of assessor 3 capture most variance (63.4%) and
those of assessor 5 capture least (54.1%) in the first two dimensions. These percentages
might appear disappointing but are typical for work in this field. Figure 1 shows the
two-dimensional PCO's for these two assessors. Comparison is difficult because of the
arbitrary relative orientations of the two configurations. However, there are clear
differences between the relative positions both of the brands and of the category-levels.
Two general comments are prompted by Figure 1. Firstly, it can be seen that neither
assessor uses all 25 category-levels to describe the coffee; this is typical but it can make
for difficulties in comparing configurations. Secondly, the three category levels for
income, which one would expect to be a clear case of an ordered categorical variables,
are shown as at the vertices of a near equilateral triangle by assessor 3 instead of as an
approximate linear ordering. This reflects the multidimensional nature of the extended
matching coefficient, which allocates equal distance to the difference between low and
high income as to the difference between middle and high income. Table 3(a) and also
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Dimension 2

the PCO plots showed no association with gender, so this aspect is not explored further
in the following.

Table 3 Percentage explained variance for the first two dimensions of the PCO analyses
of the categorical variables (a) and of all variables (b) of the seven assessors.
Female f, Male m.

(a) Categorical Variables (b) All Variables
sex Assessor dim1 dim2 Sum Assessor dim1 dim2 Sum
f 1 36.2 210 57.2 1 37.2 25.3 62.5
f 2 39.0 234 624 2 34.3 22.9 57.2
m 3 406 228 634 3 49.0 21.9 70.9
f 4 343 235 578 4 46.4 19.4 65.8
f 5 30.2 239 541 5 35.7 18.4 541
m 6 31.0 23.7 547 6 43.4 19.6 63.0
f 7 34.8 221 56.9 7 42.5 19.8 62.3
4 4
Assessor 3 Assessor S
34 34 Bs
Bn . Ds
24 ov ' 24 ~C ©
Mb3 g RAND Ma MOCC
1 Dr p Max HAG
. HAG oy 4 h
MOGC Ih Mm MACHO®V Oh
NESC GOLD OhDs | g ] :
01 Dn MAKES g & OrBBRAND
-1 Im > &=y NIEFC pBa
ESPR GQLD
CHOC Bn P D i
-2+ -2 o
Mm
3 Ms 34
_4 T 1 T T T T T _4 T T T T T T T
-4 -3 -2 -1 0 1 2 3 4 -4 -3 2 -1 0 1 2 3 4
Dimension 1 Dimension 1

Figure I The two-dimensional PCO approximations for assessors 3 and S using only
categorical variables. See table 2 for the abbreviations of the category levels.
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The role of GPA in minimising the effects of arbitrary orientations is discussed in
the following. First the seven configurations for the brands obtained by PCO are
oriented to best fit as described in Section 3; simultaneously the category-level points
were given the same rotations. This could have been done on the two-dimensional
approximations but we have used all eight dimensions required to give an exact
representation of the nine brands, so as not to sacrifice information at this stage. To
ensure commensurability, the configurations were first scaled to equal sum-of-squares;
no isotropic scaling factors were fitted. Figure 2 gives a two-dimensional display for
each assessor, where orientation is relative to the principal axes of the GPA group-
average and not to its own principal axes; this makes it easier to compare the
configurations of the assessors and accounts for the fact that the two-dimensional
configurations of assessors 3 and 5 are not rotations of the corresponding configurations
of Figure 1. Figure 2 also shows the group-average, which is merely the average of the
configurations for the seven assessors. The configurations for assessors 3 and 5 may be
compared with those given in Figure 1. As expected, the approximations differ but,
apart from orientation, the configurations for assessor 3 have much in common; those
for assessor 5 do not agree well but this is not unexpected as this assessor seems to lie in
a different space to the others.
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Table 4

Percentage sums-of-squares of the GPA analyses shown in Figures 2, 3 and 4.
The variation in the two-dimensions exhibited in the figures is shown
separately from the remaining six dimensions. The quantity minimised by
GPA is the total residual sum-of-squares. a: Categorical variables only; b:
categorical and quantitave variables; c: combined analysis of brands and
category-levels.

(a) Categorical Variables Only

Exhibited 2-Dimensions  Non-Exhibited 6-Dimensions Total

Group Average 41.47 27.43 68.91
Residual 14.06 17.03 31.09
Total 55.54 44 .46 100

(b) Categorical and Quantitative Variables

Exhibited 2-Dimensions  Non-Exhibited 6-Dimensions Total

Group Average 49.29 19.60 68.89
Residual 19.74 11.36 31.11
Total 69.04 30.96 100

(c) Combined Analysis of Brands and Category-Levels

Exhibited 2-Dimensions  Non-Exhibited 6-Dimensions Total

Group Average 30.34 35.51 65.85
Residual 13.23 20.92 34.15
Total 43.57 56.43 100

The whole of a GPA can be summarised in an analysis of variance and this is done

in Table 4a where, for convenience, the contributions are expressed as a percentage of
the total sum of squares. Everything is in eight dimensions but it is desirable to separate
the variation in the two dimensions exhibited in the figures from the remaining six, and
this has been done in Table 4. It can be seen from the total row, that the two dimensions
exhibited account for rather more than the six dimensions not exhibited and, although

dimensionality cannot be equated to degrees of freedom in the normal way, this indicates

that Figure 2 is exhibiting about four times as much variation per dimension than is
occurring in the unexhibited space. The residual sum-of-squares represents the
divergence of the individual assessors from the group-average. The quantity minimised
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by GPA is the residual sum-of-squares in the total space, which in this case is 31.09
percent of the total variation, rather less than half of which is in the exhibited space. The
Group average, which may be thought of as the "signal", is much better represented in
the exhibited space than in the unexhibited space; on a per-dimension basis over four and
a half times better. The variation of the group-average could be broken down into the
individual contributions of each assessor but, mainly for lack of space, this is not
shown. A full account of analysis of variance in the context of GPA and allied methods
is given by Dijksterhuis and Gower (1991/2).

Turning again to Figure 2, the same groups of coffees can be identified, although
they show much more clearly in Figure 1 than in Figure 2 where they have suffered as a
result of the GPA fitting. The configurations in Figure 2 are rotated to best fit the group-
average and when the assessors have heterogeneous responses, the group-average is
likely not to show clear differentiation of all the objects by assigning all the objects to
positions close to the centre. The detailed structure of the configuration for an assessor is
then liable to be diluted in the attempt to match an average that is weak in this assessor's
structure. There seems to be a tendency of this kind in the coffee data but sufficient
structure remains to support some tentative remarks. Moccona goes with Nescafé, in
almost all plots; they are both instant coffee's. The cheap B-Brand coffee tends to lie
apart from all other coffees, probably reflecting its poor image; it is judged like the
instant coffee’'s Mocc and Nesc. In Holland instant coffee has a poor image. It is used
on vacations (Ov) or at breakfast (Mb) by assessor 3. Espresso seems to share
properties with Chocolate coffee for assessor 3, it is drunk after dinner (Od), in the
evening (Me). The other coffees (Red, Max, Gold, Hag) are sometimes or regularly
drunk (Ds, Dr), at home (Oh), in the morning (Mm) by assessor 3. For the same
assessor the categories buy never and buy regularly (Bn, Br) appear at different
positions in Figures 1 and 2; apparently these differences are submerged in the
comparison with the other assessors by GPA.

When each configuration is compared with the group-average, it can be seen that the
assessors do not form a homogeneous group. However, there is some evidence that
some category-points apply to some brands rather consistently for all assessors. This
can be seen in the Group Average plot, in which the category-points that are used most
consistently lie at the outer part of the plot. There seems to be little difference in the
occasions 'after dinner', 'at week-ends/public holidays' and 'in a restaurant/café', the
category-points Or, Od, Op lie close together. These occasions apply mainly to the
coffees in that part of the figure, i.e. Hag, Choc, and Espr. These coffees are judged to
be mainly bought by those with high incomes (Ih) and are never drunk by the assessors
themselves (Dn). The instant coffees Mocc and Nesc lie together with B-Brand and are
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used on vacations (Ov), in the afternoon or with lunch (Ma, MI), and bought by those
with low incomes (Il). These coffees, with Red, are sometimes drunk (Ds) at work
(Ow). In addition, Red is bought always or regularly (Ba, Br), drunk always, often or
regularly (Da, Do, Dr). All other coffee brands clutter in the centre of the plot, as do the
remaining category-points. Hag (a decafeinated coffe) is seen to occupy a slightly
different position. With only seven assessors these observations are extremely tentative,
especially when one recalls that most assessors used only about two thirds of the
permissible category-levels.
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4.4.2
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Figure 2 The GPA of each assessor shown relative to the principal axes of the group-

average (categorical variables only). Also shown is the group-average itself.
The symbols for the coffees are defined in Table 1.

Quantitative and Categorical Variables Combined

A similar analysis was done using both quantitative and categorical variables. The
percentage explained variance for the first two dimensions has been included in Table
3(b) and the associated analysis of variance is in Table 4(b). It shows a similar level of
approximation to that given by the categorical variables alone. Figure 3 is the counterpart
of Figure 2 but for a GPA based on all variables. Its main difference lies in the inclusion
of quantitative variables which induce linear biplot axes. Because the quantitative
variable axes extend beyond the positions for the coffee brands the brands unfortunately
appear superimposed in the centre of the plot; ideally the plots should be enlarged to put
Figure 3 on the same scale as that of Figure 2. Apart from this artifact, the positions of
the brands in the two figures compare well.

In Figure 3 the quantitative biplot axes are labelled at the high-score end by the
corresponding variable with an initial capital letter, and in lower case at the low-score
end. These correspond to the assessors' maximal and minimal scores, respectively. Note
that the linear biplot axes are not drawn in the Group Average plot. This could have been
done in several ways, averaging scale points corresponding to the same raw score, or
averaging the scale points that correspond with the minimum or maximum scale points
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used. The axes could also have been included in the GPA matching process by
averaging over assessors the unit-points on their corresponding biplot-axes, but we do
not show this in the figures.

When we examine the linear biplot axes for assessor 3 we see that the quantitative
variables quality, racy, taste and bitter, all point in the same direction. These attributes
are clearly correlated for this assessor. Odour seems to be a little different and it seems
as if price is only partly correlated with these attributes. The right-hand side of the plot is
characterized by high scores on the quantitative attributes. For assessor 5 we see that
coffee, judged to be of high price, is drunk mostly during vacations (Ov). These
characterisations apply to the instant coffees Moccona and Nescafe. For this person,
high quality coffees score low on bitter and racy, and high on taste.

The most important category points can be seen in the Group Average plot. In
general they seem to be the same as in the group average of Figure 2.
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Figure 3  The GPA of each assessor shown relative to the principal axes of the group-

average (categorical variables and quantitative variables). Also shown is the
group-average itself. The symbols for the coffees are defined in Table 1.

Joint GPA on Brands and Category Levels

Returning to the analysis of categorical variables given in Section 4.4.1, we have
points for nine brands and a total of 25 category-levels. These are common to all
assessors, except that some levels are missing for some assessors. Assuming for the
present that all 34 points are available for all assessors, it is clear that a GPA could be
done that simultaneously oriented to best fit the information on brands and on category-
levels. This would differ from the analysis of Section 4.1 which optimises the fit for the
brands, leaving the category-levels to fit in as best they can. The proposed form of
representation must give a poorer fit for the brands but it gives a better fit for the
category-levels, so might be regarded as a better compromise to exhibiting both types of
information. Figure 4 shows the combined analysis. In doing this analysis, some
responses to questions about some categorical variables were missing for some
assessors. This complicates the computational processes for matching configurations but
Commandeur (1991) has discussed the modifications required and which were used in
our analysis.
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Figure 4 The GPA of each assessor shown relative to the principal axes of the group-

average (categorical variables only). Also shown is the group-average itself. In
this analysis optimal fit has been obtained using the points representing the brands
and the points representing the category-levels. The symbols for the coffees are
defined in Table 1.

By including the category-points in the matching process, it is clear that a better
overall spread of both the brands and category-points has been achieved. Comparing
the assessors' configurations with the ones in figure 2, apart from orientation, reveals
similar configurations for both category- and coffee-positions. Table 4c gives the
analysis of variance and shows that the exhibited two dimensions give a poorer
representation of the coffees. This is the price that has to be paid to accommodate
better the information on the category-levels. Nevertheless, on a per dimension basis,
the two dimensions are still accounting for much more than the unexhibited
dimensions.

Of course, the GPA could also be done solely on the category-level points, thus
giving an optimal representation for the variables and leaving the brands to fit as best
they can. We could also have done the combined analysis as described in Section 4.2
and include the linear biplots for the quantitative variables. In the latter form of
analysis, the linear biplots in the group-average configuration are obtained by
averaging like scale points on the axes for the individual assessors. Although both
these analyses might sometimes be useful, we did neither but that the possibilities exist
exemplifies the flexibility of the methodology.
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4.5

Conclusion

The main thing that we have done here is to demonstrate the feasibility of this kind
of analysis, especially combining information on quantitative and categorical variables.
The few assessors that we have used to demonstrate the methodology would always
have been inadequate for a serious investigation into coffee images but the apparent
heterogeneity of the responses compounds the difficulty in arriving at any firm
conclusions. However, the joint analysis described in Section 4.4.3 has some attractive
features.

In §4.2 it was pointed out that there might be interest in seeing whether there was
evidence that the assessors fell into two or more groups. With only seven assessors, it
seemed futile to try to answer this question and, in any case, in a GPA a heterogeneous
group-average would tend to obscure such differences, if they existed. It would seem
better to proceed by accumulating all the 21 pairwise Procrustes residual sums-of-
squares statistics into a 7x7 symmetric distance-matrix and displaying the seven
assessors by some form of multidimensional scaling (Gower, 1971). Then it can readily
be seen if the assessors group or not.
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5.1

Nonlinear Canonical Correlation Analysis of

Multiway Data

Introduction

The form of nonlinear canonical correlation analysis (CCA) described in this paper
is a technique that gives linear combinations of variables within two or more sets, such
that these linear compounds are as similar as possible to an unknown orthogonal
configuration. At the same time the variables can be transformed nonlinearly so that
nominal or ordinal data can be handled. Transformations are obtained with the help of
optimal scaling (cf. Young 1981). The technique is called OVERALS (Gifi 1981, van
der Burg, De Leeuw & Verdegaal, 1988). It is implemented in a computer program for
which the same name is used (Verdegaal, 1986). However, from the text it is always
clear whether we are referring to the technique or to the program.

There are different ways to get to the formulation of OVERALS. One leads via k-
sets homogeneity analysis (or multiple correspondence analysis, MCA) and the other
one via k-sets linear CCA. The second route via linear CCA (cf. van der Burg & De
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5.2

Leeuw, 1987) leads directly to the definition mentioned above. However it does not
reveal the relationship with correspondence analysis, which the first route does.
Therefore we prefer an introduction via MCA. A much more detailed description can be
found in van der Burg er al. (1988) or van der Burg ( 1988, chapter 5). These authors
also discuss the algorithm and the solutions for the various parameters.

K-Sets Homogeneity Analysis

Homogeneity analysis is a technique which maximizes the homogeneity between a
number of variables by assigning values to the various categories (Guttman 1941, De
Leeuw 1973, Benzécri 1973; Nishisato 1980, Gifi, 1981, Greenacre 1984, Lebart,
Morineau & Warwick 1984). Suppose we have an nxm multivariate data matrix, with
rows corresponding to objects and columns to variables. Assume that variable j has k-
different categories and define G (n xk ) as the indicator matrix corresponding to thrs
variable. Then element (i,/) of G 1s equal to one if object i belongs to category /, and is
zero otherwise. The matrix Y (k xp) represents a p-dimensional quantification of the
categories, and (r Y represents a p-dimensional quantification or transformation of
variable j. The vanables are perfectly homogeneous if all (. | are equal to a matrix of
object scores X (n x p). As perfect homogeneity hardly ever occurs, the aim of MCA is
to minimize the loss of homogeneity (De Leeuw, 1973). As an extra condition the object
scores must be standardized (variance one and zero mean for each column) and
uncorrelated. Thus MCA is

minimize } SSQ X - (1 overXandY
z ox-61)) "

subject to the conditions that X'X =nland u'X=0

$SQ means sum of squares, u is a n-vector of ones, and I (pxp) is the identity
matrix.

MCA treats all variables in an equal way. Suppose, however, that the variables are
divided into k sets and let us indicate the indices of set 7 by J(7). (Note that k£ and & g have
different meanings). Then one way to express the set structure of the variables is by
forming interactive codings for all possible combinations of categories for each set.
Define G " (nxk t) as the indicator super-matrix for set 7 and Xt (k . p) as the super-
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matrix of category quantifications, where k, = Hk iz Then k-sets homogeneity
analysis may be defined as Jel ()

k
minimize y* SSQ(X -Q,X,) over Xand Y, @
=1

subject to the condition that X'X = nl and u’X = 0

As the number of categories can be huge in each set (four variables with five
categories give 5* categories for the interactive coding) it is necessary to restrict the
number of categories. An obvious way to attain this, is by using additivity constraints.
In the terminology of analysis of variance this means a restriction to main effects only.
This gives

GY, = ZGij &)

Another way to restrict the number of categories, or more correctly the number of
category quantifications, is by rank-one restrictions. This corresponds to restricting the
category quantifications Y or Y to lie on a line (i.e. the matrices Y or Y have rank
one). Rank-one restrlcuons are supplemented with optimal scaling restrlctlons (i.e. the
quantifications have to satisfy the measurement level restrictions). We combine additivity
constraints with rank-one restrictions and optimal scaling restrictions, thus we apply
these restrictions to Y Then the following holds for one or more variables

Y j=z ja} (rank - one) with z ;€ C i (optimal scaling ) 4)

where a; is the p-vector of weights, z. the k-vector of single category
quantifications, and Cj the set of (standardized) admissible quantifications according to
the measurement level of the variable (nominal, ordinal or numerical). In the nominal
case the rank-one restriction Y j=2 ja Y is the only restriction (with z . standardized). In
the ordinal case z; is a monotone transformation of the original category scores (raw
data), and in the numerical case z g is a linear transformation of the original scores.
Standardization of z. corresponds to a weighted sum of squares equal to n and a
weighted mean equal to zero, the weights being the frequencies corresponding to each
category.

OVERALS is defined as k-sets homogeneity analysis with additivity constraints and
optimal scaling. It is formulated as follows
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Ko
minimize ZSSQLX— ZGJYJ.} over X and Yj.
=1

jed(t)
subject to the conditions that X'X=nlandu'X=0 5)
and for some variables Y .=z a’ with z . € C;
o J 7 J J

(cf. Gifi 1981, van der Burg ef al. 1988). This definition seems not to agree with
the one in the first paragraph of the introduction. However, they are the same. We will
explain this in the next section.

5.3 K-Sets Canonical Correlation Analysis

To understand why OVERALS (5) is a form of generalized (k-sets) CCA let us
consider the case in which all variables are optimally scaled. Define Gz.asq i and Q , as
the matrix with all qj, Jje J(r), written next to each other, and A ;38 the matrix with all a}
written above each other. Then we get

jeJ() JeJ () JjeJ(r)

Thus in case all variables are optimally scaled, OVERALS (5) turns into

k
minimize ¥ SSQ(X- QA Jover X and Q,

=1
subject to the conditions that X'X=nlandu'X=0 @)
and q;€ Cjwith jeJ)andr=1..k

We use the same notation C; for the set of admissible quantifications with regard to
Z; as to g, as these sets are equivalent (the elements of ¢ i are zj—values, i.e. qj:G 7 f)
The problem formulated in (7) is easily recognized as a form of generalized canonical
correlation analysis. When the optimal scaling restrictions consist of only numerical
restrictions the matrices Qt are in fact no longer variable. Their columns represent the
standardized versions of the columns of the data matrix. Then the formulation of k-sets
CCA is equivalent with the one from Carroll (1968). Other criteria in generalizing CCA
are found in Horst (1961), Kettenring (1971) and van de Geer (1984).
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In the literature the columns of the matrices Q[A , are called the canonical variates.
They correspond to the linear compounds of transformed variables mentioned in the
introduction. In case there are two sets of variables the canonical variates are
uncorrelated within each set. This does not hold for the analysis of three or more sets as
in (7).

The problem formulated in (7) seems more restrictive than (5), as all variables are
supposed to be optimally scaled. However a different look at the p-dimensional
quantification of the categories of a variable brings the two definitions together. Every
matrix Yj can be written as a product of two matrices, eg. ZjAj. The matrix Zj may
simply contain the standardized columns of Yj and A j may contain the corresponding
standard deviations (diagonal matrix), but other decompositions are also possible. Write
z; for the columns of Zj and a }-r for the rows of A ' then

4
CYjmGEA = LGy ®
=

In (8) we are dealing with only one indicator matrix. Thus a p-dimensional
quantification Y . can be considered as p single quantifications of the same variable. This
implies that if we have p copies of a variable within its set, and we use optimal scaling
(nominal restrictions), we get a p-dimensional quantification. Consequently problem (7)
extended with the notion of copies corresponds to 5).

The definition of OVERALS given in the introduction corresponds literally to (7).
With the help of copies this definition also corresponds to (5). Thus k-sets CCA with
optimal scaling and k-sets homogeneity analysis with additivity constraints and optimal
scaling are similar. They are both synonymous to OVERALS. It is a matter of preference
which definition one wants to use. A more detailed description of OVERALS interpreted
as k-sets CCA is given by van der Burg and de Leeuw (1987).

The algorithm of the OVERALS computer program is of the alternating least squares
(ALS) type. This means that parameters are solved for alternatingly, keeping the other
parameters at a constant level. This is an iterative process. Each step consists of solving
a least squares problem (van der Burg eral. 1988).

For the OVERALS computer program usually data matrices of the form objects x
variables (divided into sets) form the input. However also multiway data with three
levels can be analyzed by OVERALS. Suppose the structure of the data is: objects x
variables x occasions. If a researcher is interested in the similarity between the
occasions, he may consider to use OVERALS. In multiway data we always deal with
similar variables and objects for all occasions. For the OVERALS technique this is not
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5.4

necessary with regard to variables, i.e. objects may be measured for sets (occasions) of
different variables.

An Application of Overals to Multiway Data

An application of OVERALS to a multiway table is taken from the field of sensory
research. In sensory research the assessment of products by judges is studied. Typical
sensory data are three mode data, the three modes being products, judges and aspects.
We are interested in the (perceived) quality of certain aspects of the products. In this
particular example the products are sixteen different brands of smoked sausages, judged
by ten untrained persons (see also van Buuren 1987, Dijksterhuis 1987). Often in
sensory research panels are trained to attain consensus about the meaning and the use of
the aspects (from now on called variables). But even then one has to assume that all
individual judges interpret each variable in a similar way. E.g. when tea is judged on
bitterness one can safely make this assumption but in describing perfumes a variable like
"feminine" is likely to have a different meaning to each judge. In the sausage example
we are dealing with untrained judges and therefore we will not assume a consensus
about the variables. This is the reason why we are interested in an OVERALS analysis
of these data, as OVERALS does not assume similar variables in each set.

The variables used in this experiment describe certain attributes of the sausages. The
attributes used for this study are: "appearance” (bad to nice), "taste” (bad to nice),
"odour" (bad to nice), "price" (cheap to expensive) and "nasty taste" (little to much). The
judges were presented with a piece of sausage and rated the attributes on a line scale.
The original data ranged between 0 and 50 and were divided into three categories (0-20,
21-29, 30-50). In the terminology of judges the lowest category reflects the left anchor
of the line scale (e.g. "bad"), the highest category reflects the right anchor (e.g. "nice"),
and the middle category corresponds to a neutral position. The obtained categories were
assumed to have ordinal properties.

Since we are interested in the similarity between the judges we use OVERALS to
construct a common object space for the 10 judges. Each judge defines a set of 5
variables, we thus obtain 10 sets. In total there are 49 variables (one variable was
excluded from the analysis as it did not vary after categorization). We want to obtain a
two-dimensional solution for the sake of easy graphical display.

The OVERALS analysis provided an eigenvalue of 0.70 for the first dimension and
of 0.66 for the second dimension. The eigenvalues are a measure of the fit per
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dimension, which can be maximally 1.0. The OVERALS-loss of (7) is a function of the
eigenvalues. Details can be found in van der Burg et al. (1988) or van der Burg (1988,
chapter 5). From the eigenvalues we conclude that the sets are quite different, this means
that the judges use the variables in rather different ways.
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Figure 1 ~ Component loadings for all 49 variables(1=appearance, 2=taste, 3=odour,
4=price, S5=nasty taste).

In Figure 1 the component loadings for all 49 variables are presented in the two-
dimensional canonical space (space of object scores). The component loadings
correspond to the correlationsof the transformed variables with the object scores. The
variables are labeled 1 to 5 for each judge. It can be seen from Figure 1 that there does
exist some agreement about the use of the variables between the judges. But it is also
clear that individual differences do exist, since most variables with equal numbers are
spread over two quadrants. To take a closer look at the use of the variables by the
individual judges we present the component loadings per set (i.e. per individual judge)
for four sets in Figure 2. (Only four sets are presented here.)
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Figure 2 Component loadings for four sets (1=appearance, 2=taste, 3=odour, 4=price,
5=nasty taste).

Figure 2 shows that strong agreement exists between the sets 1, 2 and 4 with
respect to variable 5 ('nasty taste') (for set 3 this was the excluded variable). For sets 1
and 2 (and 5, 6 and 8 not shown here) the variables 2 and 5 point to opposite directions.
Obviously, sausages with nice taste do possess little nasty taste. However, for some
judges this is not so clear, judge 4 (and 7, 9 and 10 not shown here) use this variable
somewhat differently. Other things that can be seen from Figure 2 are e.g.: For judge 2
the variables 'odour’, 'taste' and 'price’ are correlated, while 'appearance’ does seem to
exert very little influence. 'Nasty taste is important and lies opposite to the other
variables. For judge 4 'price’ and 'taste’ are almost similar, 'appearance’ lies in the
'expensive’ and 'nice taste' direction. Again 'nasty taste' is directed away from the other
variables. 'Odour’ seems to have some particular meaning for this judge, it points to a
direction different from 'taste', ‘price’ and 'appearance’, and opposite to 'nasty taste'.

From these plots we learn about the use of the variables by the judges, as this is
related to the role the variables played in the analysis. We can identify judges using
variables in a deviant way.
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Another way to look at the variables is by inspecting the single category
quantifications. In Figure 3 the single category quantifications are given for all variables
and all sets. We assumed all variables to be of ordinal measurement level and we can
check the effect of this assumption with the help of the single category quantifications
(Figure 3). When the quantifications are like the one of variable 3 for judge 8, numerical
restrictions would have given the same analysis results. When, on the other hand, most
transformations behave like the ones of variables 1, 2 and 3 of judge 7 the ordinal
assumption is rather restrictive. Here two categories are scaled at the same value, in this
case the order of the category quantifications may change when a nominal measurement
level was assumed. However we prefer an ordinal interpretation of the data.
Furthermore we see that for all Jjudges (except no. 8) the highest category of ' nasty taste'
is scaled at a rather high value. As all quantifications are standardized, this means that
the highest score for 'nasty taste’ was less often used than the highest scores for the
other variables. From Figure 3 we also see that Jjudge 4 only used extreme and no neutral
categories of the variables.
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Figure 3  Single category quantifications per set (1=appearance, 2=taste, 3=odour,
4=price, S=nasty taste).

In Figure 4 the sausages are plotted in the canonical space by means of the object
scores. In the plot a clear distinction exists between butcher-made and factory-made
sausages. All factory-made sausages (with the exception of no. 14) lie to the right of the
line , all butcher-made sausages lie to the left of this line. This result was found earlier
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by van Buuren (1987) who applied MCA to these data for each judge separately, and
used Procrustes analysis to match the object scores for each judge.
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Figure 4  Object scores.

Sausage no. 11 takes a special position. This sausage (factory-made) has been
assessed only by judge 3 as having a nice appearance, while the other judges assess this
sausage as bad or neutral. Consequently this sausage lies 'far away' in the second
quadrant, opposite to the forth quandrant, which corresponds to a nice appearance for
most judges (compare Figure 2).

When we compare Figures 2 and 3 with Figure 4 we can see the variables in relation
to the objects. From this combarison we can draw two conclusions:

1 Most judges judge butcher-made sausages as more expensive than factory-

made sausages.

2 The longest 'nasty taste' vectors point to the direction of the sausages 9, 15 and

12.

When we define a kind of 'overall quality’ by high scores on the variables
'appearance’, 'taste' and 'odour' and low scores on ‘nasty taste' we can conclude that
for most judges the 'high quality' sausages lie in the butcher-half of the canonical space,
in the third quadrant.
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Figure 5  Contributions of the canonical variates for each set.

We are interested in the role of the variables, but also in the role of the judges.
Therefore we made a plot of the contributions of each judge to each dimension (Figure
5). This contribution corresponds with the share of each set to the fit. From this plot we
can identify outlying judges and clusters of judges that have similar correlations. In
Figure 5 we see three judges (5, 8 and 10) for which the first variate has contributed
more than the second. Judges 1, 7, 4 and 2 have an equal contribution of the variates
and for judges 3, 6 and 9 the second variate was more important.

5 Conclusion

We have introduced a form of k-sets nonlinear canonical correlation analysis, named
OVERALS. This technique has been described first by Gifi (1981). A more detailed
description is found in van der Burg ef al. (1988), where OVERALS is treated as a form
of k-sets homogeneity analysis. van der Burg & De Leeuw (1987) introduce OVERALS
as k-sets canonical correlation analysis. In this article both interpretations are found
(compare van der Burg 1988, chapter 4 and 5).

OVERALS is a technique that analyzes sets of variables measured on the same
objects. The sets of variables are usually not similar. If they are similar OVERALS
allows for different interpretations of the variables. We have seen that in sensory
research, which often yields three mode data, OVERALS can be applied. Each judge is
represented by a set of variables in the analysis. Using the OVERALS program we are
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able to study all three modes at the same time. The variables can be transformed linearly
as well as nonlinearly so we can also handle mixed measurement level data.

In the application we showed that OVERALS can be a useful analysis technique for
multiway data with three levels in general, and for sensory data in particular.
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6.1

Nonlinear Generalised Canonical Analysis:
Introduction and Application from Sensory

Research

Introduction

Generalised canonical analysis (abbreviated as GCA) is a technique proposed by
Carroll (1968). It is a method for detecting the common features between sets of
variables. GCA is a generalisation of canonical correlation analysis (abbreviated as
CCA) to more than two sets of variables. CCA, originally proposed by Hotelling
(1936), is found in many textbooks on multivariate analysis (e.g. Tatsuoka, 1988). Van
der Burg, De Leeuw and Verdegaal (1988) suggested a generalisation of Carroll's
technique by means of optimal scaling so that data of different measurement levels can
be analysed. This method, or rather the computer program that performs this method, is
called OVERALS.
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The generalisation of CCA, which is used by Carroll (1968), is not the only one. In
fact there exists a whole variety of generalisations of CCA to a k-sets technique.
Kettenring (1971), Van de Geer (1984) and Gifi (1990) discuss many possibilities. In
this paper we restrict ourselves to the version of Carroll. In addition, we show how the
technique of Carroll (1968) and of Van der Burg, De Leeuw & Verdegaal (1988) are
related mathematically. Although several articles refer to this relation (Van der Burg,
1988, p.99; Van der Burg, De Leeuw & Verdegaal, 1988; Gifi, 1990, p. 198) it is not
shown in details earlier. Since OVERALS is easily available (SPSS, 1990) and so more
people will use it, it is worth showing this relationship.

In sensory research very often data consist of products, measured on several
characteristics or attributes for different assessors. Therefore a type of analysis that can
handle sets of variables is relevant in this field of research. As nonlinear GCA has hardly
been used in sensory research, we want to show a sensory research application of
nonlinear GCA in this article. To this end we perform a secondary analysis on data
collected on vegetable soups. The data form a three waytable of assessors products
attributes (c.f. section 6.4). We are interested in answering questions about the
(dis)similarity in use of the attributes by the assessors. Because of the common practise
to treat ordinal data as numerical data, we are, in addition, interested in the difference
between a linear and a nonlinear solution. Although linear GCA is shown to be exactly
similar to Carroll's technique, we do not know of a computer program that performs
Carroll's technique, so we have to make do with what we have. Using OVERALS we
are restricted by the limitations of this computer program, that is only data with not too
many different scores per variable are accepted. Therefore we recoded the data from
scales with 99 scores into scales with 10 scores, which is a generally accepted practise in
exploratory analysis.

Another technique that can handle sets of variables and which is familiar in sensory
research is Generalised Procrustes Analysis (GPA, Gower, 1975; Amold & Williams,
1985; Dijksterhuis & Gower, 1991/2). A nonlinear Procrustes Analysis is proposed by
Van Buuren & Dijksterhuis (1988). This nonlinear GPA however, does not estimate so-
called isotropic scaling factors. Since the majority of GPA applications in sensory
research use these factors, it is hard to compare this nonlinear GPA with linear GPA.
Nevertheless, a comparison between linear GPA and linear GCA would be interesting,
but is beyond the scope of this paper.

In treating the application Procrustes Analysis is used for the comparison of linear
and nonlinear results from GCA. We provide a reference for Procrustes Analysis,
without further explanation.
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6.2

In the following sections we discuss Carroll's technique and show that linear GCA
is mathematically related to this method. Next a short introduction to nonlinear GCA is
given. The subsequent sections, which form the larger part of the paper, contain a
detailed description of the analysis of the vegetable soup data by means of nonlinear
GCA.

Generalised canonical analysis

As was mentioned in the introduction, researchers interested in GCA try to answer a
question concerning the relationship between sets of variables. Many data sets can be
interpreted as consisting of a number of smaller sets. For instance three-way tables of
objectsx variablesxtime-points can be considered as data with a set structure. E.g. the
data for every time-point form a set of objects x variables. In this case every set has the
same number of variables and the variables of each set are similar (have the same
interpretations). If different variables are measured on similar objects and the variables
are naturally grouped, we also have a set structure. The latter situation is more general
than the first one. Let us presume the second situation. Denote a set of variables by H j
(n x mj), thus n objects are measured on m; variables for k sets (/=1,...k). GCA
according to Carroll (1968) is defined as the problem of finding linear combinations of
the variables in each set so that the squared correlations between the weighted sums and
an unmeasured variable z (n * 1) is maximal. Thus maximize

0,(z a)= zk:[p(z, Hjaj)]2 (1
j=1

where p denotes the correlation coefficient, a; (mj x 1) represents the vector of
weights for each set and a refers to the vector containing all a;. In fact Carroll (1968)
uses an even more general function, as he gives each correlation a positive weight.
However we are not interested in these weights so they are left out. The fit measure o,
(denoted as R? by Carroll) can vary from zero to k. The solution for the a; is the well
known regression solution. The weighted linear combination H a; can be expressed in
terms of the projector of H i that is

-1 -1
Hjaj=Hj(HjHj) H'z =P ;2 with Pj=Hj(Hj}lj) H,
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If H i is not of full rank the generalised inverse can be used. Carroll's method can
now be rewritten in terms of P’ j» this gives for the fit

2
P I) kz'P .z

ol(z*)=§(p(z,l’,-z))2 )k: L s =Y = 3)

1 1

The + in the fit shows that the maximum is taken over the corresponding

k
unknowns. Using P for k! Z P ki the average projector, expression 3 changes into
j=1
7Pz
0,(2.%)=k=r" @)

Maximizing expression 4 comes down to the eigenvalue decomposition of P, where
z is proportional to the first eigenvector and the maximum corresponds with & times the
first eigenvalue. A second solution is found by taking the second eigenvector, and so
on. Another way of describing the GCA problem for p solutions is to maximize

0,(Z.*) =tr(kZ PZ.) subject to the condition that Z'Z= I )

where matrix I is the (n * n) identity matrix and 7 is an (n x p) matrix of
unmeasured variables. The maximum is proportional to the sum of the eigenvalues of P
and Z corresponds to the first p eigenvectors of P. Expression 5 is closely related to the
generalisation of GCA which is proposed by Van der Burg (1988, chapter 4 and 5), Van
der Burg, De Leeuw and Verdegaal (1988) and Gifi (1990, chapter 5). These authors

minimize

k '
0,(X.A)= (k) Y (X -1 A ) (X-HA )
subject to the conditions that X'X = nl andu’X=0

where u is an n-vector of ones and 0 an n-vector of zeros. The matrix A consists of
all A j written under each other. The solution for A j (mj x p) is the p-dimensional
regression solution. Thus we get
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6.3

=i
HjAj=Hj<HjHj) H/X =P X )

Substitution of this in expression 6 a gives:

’

0(X.*) = (nk)" )’5 (x—ijj)(x—ijj)=

’

k
- Z w(XX-XPX ) (X-P X;)- ®)
= p—n-ltrx PX
subject to the conditions that X’X =zl and u’X =0

Using the method of Lagrange multipliers for minimization of expression 8 shows .
that X is an orthogonal rotation of the the eigenvectors of P (except the first eigenvector)
and that the minimum is p minus the sum of the corresponding eigenvalues of P (Van
der Burg, De Leeuw & Verdegaal, 1988). If the matrices H; consist of standardized
scores, which is the case in Van der Burg, De Leeuw & Verdegaal (1988), the first
eigenvector is automatically removed from P. Thus we see that Carroll's method and
expression 8 are essentially equivalent.

Nonlinear generalised canonical analysis

A nonlinear version of generalised canonical analysis can be obtained by introducing
optimal scaling (Young, 1981). The scores for the variables (columns of H) are
replaced by transformed variables (columns of Qj, where H and Qj are of the same
order) which satisfy the measurement :restrictions. The method of optimal scaling solves
for the various possible transformations by minimizing the criterion function, which, in
our case, is defined in equation 8. There are three types of measurement restrictions:
nominal, ordinal and numerical (interval level). In the nominal case the ties (similar
scores) per variable remain tied in the transformation. In the ordinal case the ties are kept
and the order of the scores is maintained too. In the numerical case only linear
transformations of the original scores are allowed, which implies that Qj equals H as
both matrices consist of standardized scores. However, for the sake of notation it is
easier to see Qj in the numerical case also as a transformation matrix. Let us denote a

153



Part II: Measurement Levels 6. Nonlinear GCA: Introduction and an Application

column of H i by hjs and a column of Qj by 4 (s:l,...,mj) and symbolize the
transformations that satisfy the measurement restrictions by C(hjs). Then GCA with
optimal scaling corresponds with minimizing

k ’
x -1 - _
0,(X.Q.A)= (k) thr(x QjAj) (x QjAj)
j=
subject to the conditions that X'X =nl, u'’X = 0 and )
q eC(hjS), s=1,.. mj, j=L ..k

where Q denotes the matrix of all Qj written next to each other. Expression 9 can
also be provided with the option of so-called multiple nominal quantifications. This
relates nonlinear GCA to multiple correspondence analysis (Nishisato, 1980; Greenacre,
1984). However, we do not need this for the application we will discuss in the next
section, therefore we do not add this type of transformation. Nonlinear GCA as defined
by expression 9 and extended with multiple nominal transformations is called
OVERALS by Van der Burg, De Leeuw and Verdegaal (1988). If fact the computer
program that realizes the method is called OVERALS. This program is available as an
SPSS module (SPSS 1990).

Note that the solution for the A j is again the regression solution. However, this time
the solution depends on the Qj, which are unknowns. Therefore we write P(Q) to show
that P is no longer fixed. The solution for X s, in this case, proportional to an
orthogonal rotation of the eigenvector matrix of P(Q) which shows the dependence on
the transformations. If all variables are numerical, all Qj are equal to H i and we are back
in formulation 6.

The eigenvalues of P(Q) are a fit measure for every solution or dimension. They
vary between zero and one and their sum is p minus the loss (see expression 9). The
sum of eigenvalues varies between zero and p.

The matrix X is called the matrix of object scores. The correlations between the
transformed variables (qjs) and the object scores are called the component loadings in
analogy with principal component analysis (PCA). The component loadings represent a
point in the X -space for each variable. If every point is connected with the origin we get
a plot of vectors representing the variables, which can be interpreted in a similar way as
in PCA (the difference with PCA is the way the X -space is obtained). In addition, there
are scores for each object (the rows of X), so that both objects and variables can be
plotted. We will use these plots to interpret the solution of the application discussed in
the next section.

154



Part II: Measurement Levels 6. Nonlinear GCA: Introduction and an Application

6.4

Application from sensory research

The data to analyse are from sensory research. Forty vegetable soups were rated by
nineteen trained assessors on five variables concerning odour, taste and mouthfeel
attributes (see Table 1). The scores vary from 0 to 98, the assessors used a line scale to
indicate their ratings. A score of 0 indicates that an attribute was not present according to
the assessor, a score of 98 means that the attribute is very strongly present in a particular
soup. Apart from the attributes, the brand of the soup is known, the package and the
type (see Table 1). In this application the odour, taste and mouthfeel attributes are
analysed. They form a 40x19x5 multiway table. The other characteristics are used to
interpret the solutions and to identify groups.

Originally the vegetable soup data were gathered as part of a larger experiment in
which chemical and microscopical data also were collected (Cramwinckel and Van
Mazijk-Bokslag 1990). The object of that experiment was to get information about the
contents, the sensory quality and the taste of forty different vegetable soups. The main
objective of the secondary analysis reported in this paper is not the quality or taste of the
soups but the use of the five attributes by the assessors. It is interesting to know on
which attribute(s) the assessors agree mostly and which attributes give rise to confusion.
In addition, it is interesting to find out whether the partition of the soups, according to
the ratings, makes sense in the light of the type or package of the soup. In order to try to
answer these questions the ratings are analysed with OVERALS, using the assessors as
sets, the soups as objects and the attributes as variables. Comparison of a solution with
ordinal measurement levels and one with numerical measurement levels, also enables us
to investigate whether this kind of data should be analysed under metric or non-metric
assumptions. In the following paragraphs we show that we use three categories for the
ordinal transformations and ten for the numerical transformations, we also explain why
this is done.

Two assessors (sets) were removed from the data because they had too many
missing values, 17 sets remained. The computer program OVERALS can only take a
relatively small number of different scores per variable, therefore the data were
categorized into a small number of categories. Some preliminary ordinal analyses with
different numbers of categories (seven, six and five were tried) showed an extreme
outlier in a three-dimensional solution. Removal of the outlier resulted in a new outlier,
removal of this outlier again showed a new outlier. The same was encountered with a
two-dimensional solution. This phenomenon seemed due to the fact that many of the
higher scores and some of the lower ones occurred only once. To cope with the outliers
the number of categories was reduced to just three, resulting in less extreme outliers
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(they did not vanish). This data reduction appears not too severe, as the numerical ten-
category and the ordinal three-category analyses show comparable and interpretable
results (c.f. section 5). In a previous OVERALS-analysis a partition of the variables into
three categories also resulted in an interpretable solution (Van der Burg and Dijksterhuis,
1989). The three categories used for all attributes, are 1 (scores 0 to 25), 2 (scores 26 to
50) and 3 (scores 51 to 98). The third category was taken larger than the first and second
category to take account of the skewness. For four variables one category was rescaled
to a lower or higher value, as these four categories still contained only one observation.

Table 1 Variables in the Vegetable Soup Research

Odour and taste attributes

Spiciness (0 = not, ..., 98 = much)
Vegetables (0 = not, ..., 98 = much)
Saltiness (0 = not, ..., 98 = much)
Mouthfeel attributes

Thickness, jelly-like (0 = not, ..., 98 = much)
Firmness of vegetables (0 =not ,...., 98 = much)
Package concentrated in tin

instant in packet
dried in packet
deep-frozen
ready-to-eat in tin

Type ordinary
cream
chinese

Brand brand-names
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Figure 1 ~ Component Loadings of the Ordinal Solution for Each Attribute Separately
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6.5

Table 2 Eigenvalues of a Three-dimensional Solution with Ordinal and Numerical
Measurement Levels

analysis no of categories EIGENVALUES SUM
dim.1 dim.2 dim.3

Ordinal 3 .684 .533 .433 1.650

Numerical 10 715 .510 .429 1.654

To perform a numerical analysis (i.e. with only numerical measurement levels) we
were restricted by the possibilities of the OVERALS computer program. So the data had
to be discretisized again, as 99 scores for 17x5 variables are too much for the computer
program. However, a larger number of categories was used than for the ordinal
analysis. The scores were recoded into ten categories, corresponding to ten equal sized
intervals (category 1 consists of scores 0 to 9,2 of scores 10to 19, ..., 10 of scores 90
to 99). The last category was empty for every variable. Of course recoded data are never
similar to the original data, implying that Qj is not equal to H [ However, it is our
experience that usually hardly any information is lost. The difference between a solution
with many categories (about 10) and very many categories (more than 20) is usually nil
for multivariate techniques. Thus the numerical ten-category analysis is not a real
numerical analysis but a quasi-numerical analysis that is likely to give very similar
results.

Results

A three-dimensional solution is obtained in both the ordinal three-category and the
numerical ten-category analysis. The eigenvalues of the three-dimensional solutions
were not really high (see Table 2). The maximum of an eigenvalue is one and the
minimum zero. A sum of approximately 1.7 indicates that the solutions found are not
very strong. In general high eigenvalues are needed to correspond with much variance in
each set. This gives an indication that the differences between the sets are probably due
to individual differences in the use of the five attributes. As can be seen from Table 2 the
two solutions have rather similar eigenvalues. It appears that the ordinal solution based
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on just three categories is about as good as a numerical solution based on ten categories.
A high number of categories does perhaps provide only superfluous information. To see
if this conclusion holds, not only the eigenvalues are compared but also both the
component loadings and the object scores are matched.

In order to see how the attributes were used by the assessors, plots of the
component loadings are given for each attribute separately. Thus five plots are made
instead of one. Dimension 1 and 2, and dimension 1 and 3 are plotted against each other,
resulting in 10 separate plots. In Figure 1 these plots are shown for the ordinal solution.
Not all vectors are identified by their set number. However, for interpretation of the
figure this will do.

A Procrustes rotation (see e.g. Gower, 1975) to match the three-dimensional
configurations of the component loadings for the ordinal three-category and the
numerical ten-category solution, revealed a virtual identity of solutions: 97% of the
variance of the two configurations was matched. For this reason the results of the
numerical ten-category solution are not shown. The high match confirmed the idea that
the ordinal three-category and numerical ten-category solution provide the same
information.

Inspection of Figure 1 shows that the assessors agree very much on the attribute
‘thickness'. The first dimension depends mostly on this attribute. The second dimension
is dominated by 'spiciness' and 'firmness'. Assessor 3 and, to a lesser extent, assessor
4 are noted as persons who do not agree with the other assessors about 'spiciness'. The
variables of 'vegetables' correlate mostly with the second dimension, although the
agreement between the assessors is much less on this attribute than on 'firmness' or
‘spiciness’. With respect to 'vegetables' assessors 3 and 12 behave rather exceptionally.
The third dimension is, for the larger part, determined by 'saltiness' .

Apparently 'thickness' is the attribute on which most assessors agree mostly,
followed by 'spiciness' and 'firmness’, and in the last place by 'saltiness'. It seems that
'vegetables' is one of the most difficult attributes to agree on. Especially assessor 3 must
be mentioned as a person who interprets many attributes differently from the other
assessors.

In Figure 2 the object scores of the ordinal solution are shown. The soups are
labeled according to package and type. To check if the ordinal three-category and the
numerical ten-category solutions are alike, again a matching is performed with the help
of a Procrustes rotation. This rotation accounts for 98% of the variance in the solutions,
so only 2% is lost in the matching process. Therefore the solutions are almost identical.
Again only the ordinal configuration is shown.
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Figure 2 Object Scores of the Ordinal Solution, Labeled by Type and Package.

From Figure 2 can be inferred that there does exist an overall difference in taste
between soups from tins and from packets (and deep-frozen). This distinction is found
along the second dimension, with the tins having higher scores on it than the packets.
Since 'spiciness' and 'firmness' were the attributes associated mostly with the second
dimension (in negative direction), it seems that soups in tins are less spicy and firm than
in packets.

Most of the soups have low scores on the first dimension, six soups have higher
scores, they seem more thick than other soups. As may be expected, the two cream
soups are found among the thicker types. The third dimension is not directly
interpretable in terms of package or type of soup. Figure 1 showed that 'saltiness’ is the
main attribute for the third dimension, so it can be concluded that the judged 'saltiness’
of the soups has no clear relation with the package of the soup. The four ‘chinese'
vegetable soups all have low scores on the second dimension, so they do possess firm
vegetables and are rather spicy. In other respects the chinese soups do not differ much
from the other soups. The one deep-frozen soup also seems to have a non-salty taste and
firm and spicy vegetables.

Labeling the plot of object scores by brand did not show any regularity. Therefore
the names of the soups are not shown in Figure 2.
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6.6

Conclusion

By analysing k-sets data from the field of sensory research with OVERALS a ot of
aspects of the data can be studied. Plotting the component loadings of a variable for all
sets, as in Figure 1, provides a useful way to identify the consistency of the use of the
variables (in this case attributes) by the sets (assessors in the panel). The relative
position of the objects (vegetable soups) shows the more important (dis)similarities
between the objects. The object scores can be compared with the component loadings to
see which variables are responsible for congruences or differences between them. In
addition, labeling the object scores by external variables (package, type), variables not
used in the analysis, also helps to interpret the solution.

It can be concluded from the analysis that it is not useful to analyse the larger
number of categories. The results from an ordinal analysis with only three categories and
the results from a numerical analysis with ten categories are almost identical. Apparently
the higher number of categories does not provide much extra information. An ordinal
ten-category solution has not been compared with the numerical ten-category solution, as
this solution will capitalize on unique patterns in the data.

Van der Burg and De Leeuw (1988) discuss the stability of OVERALS solutions.
They perform several jackknife and bootstrap studies. These studies are not replicated in
this application although it would be worthwhile. We give it as an option for other users
of the OVERALS program.

As mentioned in the introduction, GPA is another technique for k-sets analysis.
This technique is familiar in sensory research. Therefore a comparison between results
from GCA and GPA applied to the same data will be interesting.
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Measurement Levels

Summary

The findings in the three chapters in this part are summarised and commented upon.
In addition some suggestions for further research are given.

Chapter 4
Multivariate Analysis of Coffee Images

This chapter presented a method that enables the analysis of both categorical and
quantitative variables to be carried out using a GPA. The categorical variables are first
analysed by means of Multiple Correspondence Analysis and the quantitative variables
by a PCO. They are subsequently combined into individual matrices which can be
matched by means of GPA. In fact they can be matched in a number of ways, stressing
the objects, the categories, the quantitative variables, or combinations of these. Strictly
speaking one is free to use another method than GPA, e.g. GCA, though standard GPA,
matching the objects, is the obvious choice. Putting the stress on the fit of categories
could perhaps be useful in special applications. Matching the quantitative variables
introduces a number of possibilities, briefly touched upon in the chapter, but not
employed further.
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The choice for MCA, PCO and GPA is not a necessary restriction, a lot of different
methods can be used within the framework sketched. The method is very flexible and
allows for the combination of different distance-models and multivariate analyses of the
individual assessor's variables.

Though seven assessors is a rather low number, the data serve as an illustration of
the possibilities of the method. Inspecting the individual biplots of the nine coffee-
brands, the categories of the qualitative variables and the positions of the quantitative
variables enables a detailed study of the structure in the data. Matching the individual
configurations, using e.g. standard GPA, retains the most salient features in the data.

Chapter 5
Nonlinear Canonical Correlation Analysis of Multiway Data

Ordinal GCA can be used on data with only three categories and produce an
interpretable result. Of course information is lost in the recoding of the numerical data
into only three categories. A comparison of other categorisations would be useful, but is
wanting. Another interesting analysis is the ordinal, or even nominal, analysis of the
ranked data. The scores of the variables can be replaced by rankings. These rankings can
be analysed by Overals. Such an analysis of the rankings would bypass problems in the
recoding of the original 50 categories into the rather low number of three categories.

A meaningful configuration of sausages, showing a clear division between butcher
made and factory made sausages emerged. The object scores (Chapter 5, Figure 4) as
well as the component loading plots (Chapter 5, Figure 1 and Figure 2) can be
inspected. The modelling of nonlinearities can be studied in the plots of the category
quantifications (Chapter 5, Figure 3). The distiction between butcher-made and factory-
made sausages was obtained by van Buuren (1987) too. Van Buuren applied Multiple
Correspondence Analyis to each individual dataset and matched the results using GPA.
Note that this is an application of the general scheme presented in Chapter 4 (see formula
(1) in the Introduction to Part II) and in Chapter 13, §13.3.1. The Group Average
configuration van Buuren presents (1987, Fig. 2, p-449) shows a more clear grouping
of the sausages. There are a butcher-made and a factory-made cluster of sausages and
some sausages in between. The less clear grouping of the GCA result may be a result of
a difference in data or in method (or both). Van Buuren used all 27 attributes of the
original data while in Chapter 5 only 5 of these variables were used. Matching MCA
results, compared with matching the original individual datasets, may result in loss of fit
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because each set's MCA solution is constructed irrespective of the other sets. It could
happen that there is potential fit excluded in this way, especially since GCA is sensitive
to common directions in the sets. As a result the configuration of sausages obtained by
GCA can be more homogeneous than that obtained by the MCA-GPA method of van
Buuren because there were more "fitting" directions in the individual spaces.

The plot with the contributions of assessors to the dimensions (Figure 5) is a plot
not found in other literature on GCA. This plot was taken from Dijksterhuis (1987)! and
is based on the losses per dimensions for the individual assessors. This loss per
dimension is made into a kind of fit by subtracting it from one. It results in an Indscal-
like individual weights plot. The plot illustrates the importance of a particular dimension
for an assessor.

Around the time the research for this chapter took place no other application of GCA
to a 3-way dataset, assigning each individual set an assessor, was encountered in the
literature (Dijksterhuis 1987). The analysis of sensory data, as illustrated in this chapter,
turned out to be an interesting new application area of GCA.

Chapter 6
Nonlinear Generalised Canonical Analysis: Introduction and
Application from Sensory Research

Comparing an ordinal analysis of a very low number of categories with a numerical
analysis of a larger number of categories, recoded from the same dataset, is a useful
enterprise. The reason to recode the orginal data into a rather low number of categories
was to try to remove unique patterns giving rise to clear outliers in the result. The larger
the number of categories, the more unique categories will arise. GCA is sensitive to such
unique categories, so the data were recoded into the minimal number of categories that
allowed an ordinal analysis: three. The 10-category numerical analysis was carried out to
check whether the recoding into three categories had not resulted in a great loss of
information.

Table 1 summarises the very small differences found after Procrustes matching the
two resulting configurations. Both the configurations with the objects scores and with
the component loadings were separately matched.

L It was suggested by Stef van Buuren.
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Table 1 Agreement of the object scores and the component loadings of a 3-category
ordinal with a 10-category numerical GCA solution.

Configuration Figure Procrustes match (variance lost)
Component loadings Chapter 6, Figure 1 3%
Obiject scores Chapter 6, Figure 2 2%

That the resulting two configurations show such high agreement could lead to two
conclusions:
1. there is no need for line-scales, just give the assessors a low number of
categories to choose from
2. there is no need for nonlinear multivariate methods, just perform linear analyses
of line-scale data.
Both conclusions however are probably premature. Additional research is needed as
will be suggested in the concluding chapter (Chapter 13).
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Introduction to Part II1

Sensory-Instrumental relations

Summary

In this part three different multivariate statistical methods to study Sensory-
Instrumental relations are introduced:

1 (nonlinear) Redundancy Analysis (chapter 7 and 8)

2 (nonlinear) Canonical Correlation Analysis (chapter 8)

3 Procrustes Analysis (chapter 9)

Nonlinear and linear analyses are compared for Redundancy Analysis and Canonical
Correlation Analysis. Parts of the same dataset are used in all three chapters.

Introduction

Figure 1 illustrates the structure of the data used in the three chapters in this part.
For two races of apples, Cox and Elstar, 72 apples are Jjudged by three trained assessors
on the attributes mealyness and firmness. The apples were also subjected to a number of
instrumental measurements, which are briefly explained in the chapters 7, 8 and 9.
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Figure 1  Structure of the apple data in the analysis of the Sensory-Instrumental datasets.
The arrow pointing to the left represents the asymmetric analysis: Redundancy
Analysis (RA), the double arrows represent the symmetric analyses: Canonical
Correlation Analysis (CCA) and Procrustes Analysis (PA).

The differences between the three methods will be summarised in the concluding
remarks at the end of part IIL.

It was argued in Chapter 1 (Introduction) that non-linear analyses might be useful in
the analysis of Sensory-Instrumental relations. Nonlinearity may be encountered
especially when appreciative attributes are involved (§1.7.3), but textural attributes in the
apple data set may also give rise to nonlinearities.

Though the three chapters analyse -parts of- the same data set, they were originally
not intended for the comparison of the three MV A methods. As a consequence it may be
hard to compare the methods and to keep track of which part of the apple data is
analysed by which methods. The Concluding Remarks of this part give an overview of
the analyses and the results.
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Chapter 7
An application of nonlinear Redundancy Analysis!

In the first part of this chapter Redundancy Analysis is briefly introduced. The
extension of linear Redundancy Analysis to include non-linear transformations of the
variables is introduced using optimal scaling. Nonlinear Redundancy Analysis, also
known by the name of the corresponding algorithm, "Redundals”, was developed by
van der Burg and de Leeuw (1990). Because it is a two-data-set method where one of
the sets is predicted from the other set, and because nominal and ordinal variables can be
analysed, the method was thought apt for the problem of the apple-datasets analysed in
this chapter. The apple data contain some background variables (nominal and ordinal),
instrumental variables (numerical) as well as sensory judgements (ordinal, maybe
numerical) on two races of apples. Both a linear and a nonlinear Redundancy analysis
are performed and their results compared.

In the chapter there is mention of a Procrustes rotation to match the solutions from
the ordinal and the numerical Redundals analysis. The percentage of 97.5% variance
accounted for (for the Cox-data), means that after rotating the two configurations
towards each other, only 100%-97.5%=2.5% variance would be lost in subsequent
averaging the two configurations. This means that the two configurations are very
similar. Of course there is no point in averaging the numerical and the ordinal solution
here, it is way to illustrate the concept of Variance accounted for -and lost- in the context
of Procrustes matching two configurations from different analyses.

The paper was presented by Eeke van der Burg to illustrate the Redundals technique in a
presentation at the International Workshop Multidimensional Data Analysis. Meeting of Dutch &
Italian Schools, held in Anacapri, Italy, 2 to 5 October 1991. It was printed in a special issue of
Statistica Applicata, the Italian Journal of Applied Statistics (1992, vol 4, no. 4, p- 565-575).
There is no computer program for Redundals available, the program used for the analyses in the
chapter was an experimental FORTRAN program written by Eeke van der Burg.
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Chapter 8
An application of Nonlinear Redundancy Analysis and
Canonical Correlation Analysis?

This chapter contains a short paper in which both Nonlinear Redundancy Analysis
and Nonlinear Canonical Correlation Analysis (Canals) are applied. The methods are
introduced in a very condensed way. The previous chapter contains a somewhat more
elaborate introduction of Nonlinear Redundancy Analysis. For Nonlinear Canonical
Correlation Analysis the reader is refered to van der Burg and de Leeuw (1983).

There is some overlap between this and the previous chapter. The Redundals results
in table 2 of chapter 7 are summarised in table 2 of the current Chapter. Figure 1 of this
chapter is identical to figure 1a of chapter 7, it shows the correlations of the variables
with the axes of the two-dimensional ordinal Redundals solution. In addition to the
Redundals solution an ordinal Canals solution is computed. The difference is that with
the Canals analyses the background variables were related to the sensory variables and to
the instrumental variables separately. The background variables are design variables
coding origin, picking season, size-class and storage temperature of the apples. These
variables were not used in the Redundancy Analyses in chapter 7.

2 The paper was presented by the first author at the 7th European Meeting of the Psychometric
Society in Trier, Germany, July 29-31, 1991. It is printed in Psychometric Methodology,
Proceedings of the 7th European Meeting of the Psychometric Society in Trier (Steyer, Wender,
Widaman (Eds.) 1993, p. 74-79).
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Chapter 9
Procrustes Analysis in studying Sensory-Instrumental
relations3

In this paper the relation between a sensory and an instrumental dataset is studied by
means of Procrustes Analysis. The method is introduced with emphasis on its
application to match two data sets. First the structure of each dataset is studied separately
by means of Principal Component Analyses. After standardising the two datasets
Procrustes Analysis is used to match the two sets. It is concluded that, though not often
used to this end, Procrustes Analysis is a suitable method to study the relations between
sensory and instrumental data.

The possible advantage that Procrustes Analysis has over Redundancy Analysis and
Canonical Correlation Analysis is the rigidity of its transformations. Especially with
CCA it sometimes happens that almost perfect fit is obtained, which can be the artificial
result of a very high correlation between only two variables, one in each set. When
optimal scaling is included in RA and CCA there is even more freedom to obtain almost
perfect fit, which may or may not be an artifact. Perfect fit often poses problems of
interpretation.

3 This chapter is based on the presentation given at the “"Understanding Flavour Quality" Conference

held September 20-23, 1992 at the University of Bristol, England. This conference was organised
jointly by ELSEVIER science publishers, Sensory Research Laboratories Ltd. (Nailsea, UK) and
Oliemans Punter & Partners (Utrecht, the Netherlands), see Piggott (1993) for an impression of the
conference. The paper is printed in Food Quality and Preference (1994, vol. 5, numbers 1 & 2,p:
115-126) in a special issue on the "Understanding Flavour Quality: Relating Sensory to Chemical
and Physical Data" symposium.

The two apple data sets were made available by ATO-DLO (Institute for Agrotechnology,
Wageningen, the Netherlands).
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7.1

An Application of Nonlinear Redundancy

Analysis

Introduction

The reason for this study is that we are interested in applications of nonlinear
redundancy analysis or REDUNDALS as defined by Van der Burg and De Leeuw
(1990). Redundancy analysis is a technique that can be used when two sets of variables
are present. The aim of the analysis is prediction of one set from the other in an optimal
way. Many types of data can be used for redundancy analysis. However, as
REDUNDALS has the possibility to analyse data of a nominal, ordinal or numerical
measurement level, we preferred data of a nominal or ordinal level. The apple data
analysed by us were gathered to search for variables which can predict certain sensory
qualities of the apples, i.e. mealiness and firmness. The data were analysed with
multiple regression techniques by Koppenaal (1991). In the present paper secondary
analyses on these data are performed by means of the REDUNDALS technique. The
results of this study agree with the earlier results of Koppenaal (1991). We also compare
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7.2

the results of a linear REDUNDALS solution with a nonlinear solution using of a
Procrustes rotation (Cliff 1966, Gower 1975).

In the following sections first an explanation of (nonlinear) redundancy analysis is
given. Subsequently an extensive description of the REDUNDALS-analyses of the apple
data is provided.

Redundancy analysis

Redundancy analysis is a technique named by van den Wollenberg (1977). He
introduced it as an alternative for Canonical Correlation Analysis (CCA). In CCA two
sets of variables optimally predict each other using linear combinations of the variables
per set. This formulation is symmetrical in the way the sets are treated. However often
researchers do not consider their sets as symmetrical. Many times one is interested in
how well one of the sets can be predicted from the other while explaining a maximum of
variance of the criterion set. Let us use the symbol X for the criterion set. Suppose X
contains n rows (objects, individuals, or units) and m; columns (variables,
measurements or qualities). Let Y (nxm,) be a set of m, predictors measured on n
objects. If the predictors are weighted such that every criterion variable is maximally
predicted we can formulate this in a least squares way as follows:

minimize SSQ(X-Y B) 1

With B (m,xm) the matrix of weights and ssq the sum of squares, SSQ(A)=trace
A'A. Formulation (1) corresponds with multivariate multiple regression. When we
presume that the space spanned by the predictors contains a subspace of low rank that
predicts the criterion variables, we restrict the weight matrix B to a matrix of low rank.
This is equivalent with saying that matrix B can be split into V (myxp) and W (my*p)
with p small (p < min(m,,my,)). Then we get

minimize SSQ (X - YVW’) 2

In the above formulation YV corresponds with the low dimensional subspace of the
predictors. The W' are weights for the linear combinations of Y. In (2) there is a lot of
freedom in choosing V and W as postmultiplication of V and W by a rotation matrix H
(pxp) with HH' =1 leads to the same solution. This indeterminacy is common in many
multivariate techniques, e.g. in canonical correlation analysis and principal component
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7.3

analysis. Due to the freedom the most convenient V can be chosen. Let us take the
matrix V such that YV is a p-dimensional orthogonal basis in the Y-space. Thus

VY'YV =nl 3)

With I (pxp) the identity matrix. The technique defined by (2) and (3) is called
redundancy analysis (van den Wollenberg 1977, Israéls 1984 and 1986). This technique
is also called reduced rank regression (Izenman 1975, Davies and Tso 1982, ten Berge
1985). A similar technique has been discussed earlier by Rao (1964). See de Leeuw
(1986) for a brief history of redundancy analysis.

In (2) no restriction is made on the data sets X and Y. Restriction to standardized
variables is of no importance for the predictor variables, it only changes the weights V
but not the product YV. However the X set changes with standardization. Israéls
(1984) describes both possibilities. We restrict ourselves to standardized variables so
that X'% and X'% and Y'Y/n represent correlation matrices. The case with
nonstandardized criterion variables is easily generalized from this paper. Standardization
is formulated as

u'x=0, u'y=0andx'x=n, y'y=n 4

With x a column of X and y a column of Y and u an n-vector of ones.

Optimal Scaling

Van der Burg and De Leeuw (1990) use optimal scaling for their variables to handle
data of which nominal, ordinal or numerical measurement levels are assumed. Optimal
scaling (Young, 1981) is defined as nonlinear transformations of the variables such that
measurement restrictions are satisfied and, at the same time, the analysis criterion is
maximized. Let us use T, (nxm;) and 'l‘y (nxm,) for rescaled X and Y-variables and
use t; for one transformed variable (either from X or from Y; i=1,...,m1+m2), in
addition use C; for the set of transformations that satisfies the measurement restrictions
of the i-th variable. Redundancy analysis with optimal scaling or REDUNDALS is

175



Part ITI: Sensory-Instrumental Relations 7. An Application of nonlinear redundancy analysis

7.4

minimize SSQ (Tx -1 yVW )
with V’T;TyV =nl, w't;=0, tit,=n )

andti €Ci fori=1,...,m1 +m,

The transformation of a variable measured on a nominal level corresponds with the
restrictions "objects with similar raw scores are similarly transformed”. For a variable
measured on an ordinal level the nominal restrictions must be satisfied but also the order
restrictions, i.e. "the order of the transformed scores corresponds with the order of the
raw scores”" (secondary approach to ties, Kruskal and Shepard 1974). For variables
measured on a numerical level all linear transformations of the raw scores satisfy the
restrictions. For a more detailed description compare Young, De Leeuw and Takane
(1976) or Van der Burg and De Leeuw (1983). As the number of measurement
restrictions depends on the number of different raw scores or categories for each
variable, the computer program which performs the REDUNDALS-analysis expects a
small number of categories per variable. Therefore data with many different scores have
to be recoded into a small number of categories. This is also done with the apple data
described in the next section.

Apple Data

The data measured on apples have been collected by the ATO-DLO (Institute for
Agrotechnology) (Koppenaal, 1991). During the season 1989-1990 objective
measurement methods for determining the texture of apples were investigated. The
question was whether instrumental measurement methods could be found or developed
to predict the sensory qualities mealiness and firmness. Koppenaal (1991) used multiple
regression to find the best model for predicting mealiness or firmness. Two varieties of
apples have been used, namely Elstar and Cox's Orange Pippin. These apples have been
grown and stored under different conditions, i.e. origin (low or high calcium), picking-
date (early, middle, late), size (small, large) and storage temperature (3°, 13° or 23
Celsius). Because of the different conditions the apples will show differences in ripening
and texture (see Table 1).
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Table 1 Variables measured on two varieties of apples. For sensory variables the
number of categories used for recoding in the analysis with ordinal restrictions
is given. For instrumental qualities the minimum and the maximum score that
occurred in Cox apples is shown together with the number of categories used
for the recoding.

Background variables Instrumental variables min max cat
Ca  origin (low, high Calcium) Pr  penetrometer: red side 25 5.8 4
Per picking-date (early, middle, late) Pg penetrometer: green side 3.5 55 4
Si size (small, large) Pm penetrometer: mean 3.7 5.9 4
Tmp  storage temp (3°, 13°, 239) Mo  expelled moisture 5.51 43.06 6

Dr  dry matter 12.25 17.08 5
Sensory variables cat Ac total titratable acid 355 8.07 5
M1 mealiness judge 1 4 It Instron: thickness at failure  1.33 3.05 6
M2 mealiness judge 2 4 If Instron: force at failure 26.21 71.67 5
M3 mealiness judge 3 4 lu  Instron: area 11.51 56.64 5
F1  firmness judge 1 4 Is  Instron: slope 7.48 97.95 6
F2  firmness judge 2 4 Im  Instron: modulus 1.27 366 5
F3 firmness judge 3 4 Ct _ catalase activity 6.90 19.40 6

The instrumental qualities investigated by Koppenaal (1991) are a firmness-measure
as acquired by the penetrometer both at the red side and the green side of the apple, the
amount of expelled moisture at compression, the amount of total titratable acidity, the
amount of dry matter, the catalase activity and so-called Instron-measurements
(thickness, force, area, slope, and modulus) (see Table 1). Instron is a universal testing
machine to measure mechanical properties of food which can provide force/deformation
plots. All these variables have been recoded into a small number of categories. The order
of the raw scores has been maintained. However the categories were not equidistant.
Especially raw scores with low occurrences were taken together.

The sensory qualities are the qualities firmness and mealiness as judged by three
trained assessors on a rating scale varying from O=soft/mealy to 100=firm/not mealy.
These rating scales are recoded into 4 categories (1 (0-25), 2 (25-50), 3 (5 1-75),4 (76-
100)) (see Table 1).

The first analysis performed was a REDUNDALS analysis on sensory and
instrumental qualities with ordinal restrictions. The second analysis was an analysis with
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7.5

numerical restrictions. For this analysis a different recoding has been used. The raw data
were divided into many (ten to fourteen) equidistant categories.

Results For Cox Apples

Koppenaal (1991) who first analysed the apple data, used average z-scores of
mealiness and firmness over assessors and performed two separate multiple regressions.
In this study all individual sensory qualities are used in the criterion set. The predictor
set consists of the instrumental measurements. In Table 2 the multiple regression
coefficients are given resulting from a rank-2 REDUNDALS analysis of Cox apples
with ordinal and numerical restrictions. In addition the regression weights (i.e. VW)
corresponding with the ordinal solution, are given for each variable. From Table 2 we
see that all variables are predicted rather well. The difference between ordinal and
numerical is not very large. Further down we compare the solutions in more detail. The
weights in Table 2 show that it is mainly the expelled moisture which predicts the
sensory qualities. The next important predictor is Instron-slope. This result agrees with
that of Koppenaal (1991). Because weights always control for the effect of the other
predictors, we prefer to investigate correlations. As an orthogonal basis in the predictor
space has been formed by means of YV, we are interested in the projections of the X -
and Y-variables in this reduced rank space. These projections correspond with the
correlations n” "', T }V and n‘lT'yTyV (Figure 1a). In addition, we are interested in
the projections of the apples into this space (see Figure 2a).
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Table 2 Multiple correlation coefficients (MCC) for the Cox apple data and regression
weights for the ordinal solution of a rank-2 REDUNDALS analysis.

Mealy1 Mealy2 Mealy3 Firm1 Firm2 Firm3
MCC
ordinal 0.628 0.724 0.604 0.736 0.539 0.610
numerical 0.573 0.728 0.632 0.594 0.558 0.650
Weights
Pr -0.057 0.106 0.145 -0.024 0.056 0.220
Pg 0.224 0.137 0.084 0.224 0.144 0.009
Pm 0.038 -0.200 -0.250 -0.014 -0.122 0.352
Mo 0.552 -0.547 -0.457 -0.600 -0.494 -0.354
Dr -0.065 0.124 0.170 -0.027 0.066 0.257
Ac 0.388 -0.222 -0.128 0.384 -0.240 0.009
It -0.130 -0.071 -0.039 -0.128 -0.079 0.008
If -0.177 0.260 0.370 -0.093 0.128 0576
lu 0.055 -0.248 0.312 -0.010 -0.149 0443
Is 0.386 -0.381 -0.317 -0.419 -0.344 -0.244
Im 0385 0.029 -0.099 0337 0.112 0311
Ct -0.032 -0.150 -0.167 -0.062 -0.107 -0.208

From Figure 1a we see that the sensory qualities have rather large correiations in the
reduced rank space. We find that the sensory qualities are more grouped per assessor
than per quality. However all six quality measures seem rather similar (vectors close to
each other and of the same size). The instrumental qualities are mainly opposite.
Expelled moisture is in the centre and has the longest vector. Therefore it is the best
candidate for prediction. Pr and Pg seem to perform rather poor in this representation,
however Pm, which is the mean of Pr and Pg, does well. The Instron-measures Im, Iu,
Is and If can also have a real contribution to the prediction. Also Ac seems relevant. It,
Dr, Pr, Pg and Ct are the worst candidates for prediction. The good predictors give a lot
of redundant information (many predictors in the same (opposite) direction of the
criterion variables). Most of it can be predicted by Mo and Is (see weights in Table 2).
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Figure 1  Correlations of the variables with the axes of the reduced rank space of the
ordinal solution (la: left) and the numerical solution (1b: right) for the Cox
data.

In Figure 2a the Cox apples are projected in the reduced rank space. They are
labeled by categories of expelled moisture. The lower the moisture the greater the
firmness and the lower the mealiness. The two Figures (la and 2a) can be thought on
top of each other. Then each vector gives the direction of the high (rescaled) scores for
the corresponding variable and the opposite direction points to the low (rescaled) scores.
This holds only for long vectors like Mo, but not for short vectors like It. The plot of
Y V-scores and n_l'l"x'l‘ yV (which is equal to W) together form a biplot of the matrix X
(Ter Braak, 1990).

To compare the results of an ordinal analysis with the results of a more standard
technique like that from Van den Wollenberg (1977), a solution with numerical options
is used. In this case recodings were taken which hardly reduce the information in the
data (many equidistant categories). The result is given in Table 2 and Figure 1b. We saw
already from Table 2 that the multiple correlation coefficients are not much better in the
numerical case than in the ordinal case. Figure 1b shows that the configuration in the
numerical case is also rather similar to that of the ordinal case. The figure is even more
concentrated around the M2-axis and the sensory qualities are very close to each other.
Thus averaging will not raise a big loss. Pg and Ct do much better in Figure 1b than in
Figure la. In the numerical case the information from the predictors is also very
redundant for the criterion variables. From Figure 1b, Mo and Pg will be chosen as best
predictors of mealiness and firmness. This is what Koppenaal (1991) found.

180



Part ITI: Sensory-Instrumental Relations 7. An Application of nonlinear redundancy analysis

7.6

7 Cox ordinal 7 5 Elstar ordinal
23 ]
; 32 " 4
3 3 % 1 ] i 3233 1
1+ 3 1 3
o 4 5 4 13 1 13? 311 2 i 1
g s 5, 33 s 1 5 3,
g ] 44 Ty 52 55 a | ¥
a 3 4 4, 5 ] 2, %
A a* 3 32 1 "= FaF 2,
- | 43
] 6 4 ] 3 1
3 6 4 ] 34
2 5 4 -2
e 1 3
; 6 , ]
B l'll'lllllllll llIllllllIIl'l -3 """IIIIIIII IIll']Ill]ll'[
3 2 0 1 2 3 3 2 ¢ 1 2 3
Dimension 1 Dimension 1

Figure 2 Projections of objects (apples) into the reduced rank space of the ordinal
solution for the Cox data (2a: left) and the Elstar data (2b: right). The Cox
apples are labelled by the categories of Expelled Moisture (1=low, ..., 6=high),
the Elstar apples are labelled by titratable acidity (1=low, ..., S5=high).

A Procrustes rotation to match the correlations of Figures 1a and 1b showed a fit of
97.5% variance. So the two configurations are almost identical. Matching the
configurations of the Cox apples in the reduced rank space for the ordinal and the
numerical solution showed a fit of 86.1% variance. This is lower than the previous
result of the correlations, but still an indication for strong similarity of the two solutions.
It seems that the extra information used in the numerical analysis, compared to the
ordinal analysis, is superfluous. This was found earlier by Van der Burg, De Leeuw and
Dijksterhuis (1994) comparing an ordinal and a numerical solution of a generalized
canonical correlation analysis of data from the sensory assessment of vegetable soups.

Results For Elstar

The Elstar data have been recoded in a way comparable with the Cox data. As the
lowest and highest scores that occurred with Elstar apples differed from those of Cox
apples, we used slightly different boundaries for the recodings into a small number of
categories. Remarkable is that the variables of the Elstar data are much more skewed
than the variables from the Cox data, especially many non-mealy apples are present.
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For Elstar apples the same analyses were performed as for Cox apples. In Table 3
the multiple correlations as obtained from the REDUNDALS analysis are shown. From
this table we see that the ordinal solution fits somewhat better than the numerical
solution. The weights for the numerical solution (not given here) show that Pr, Ac, It,
If, Iu, Is, Ct do better than the other variables. None of the weights is large, the
maximum is 0.322. For the ordinal solution a similar pattern is found. However, in
contrast with the numerical solution, Ac has low weights and Tu performs better than the
rest. In this case the largest weight is 0.428.

Table 3 Multiple correlation coefficients for the Elstar apple data.

Mealy1 Mealy2 Mealy3 Firm1 Firm2 Firm3
ordinal 0.685 0.706 0.615 0.509 0.821 0.497
numerical 0.453 0.545 0.507 0.393 0.633 0.485

Plots of the variables projected in the reduced rank space are given in Figures 3a and
3b. The Figures show a remarkable similarity (98.7% variance overlap with a Procrustes
rotation). Both solutions show a strong one-dimensional structure. The criterion-vectors
of the ordinal solution are a little bit longer than the ones of the numerical solution. This
corresponds with the higher multiple correlations of Table 3. In the ordinal case the Mo-
vector is placed is a little away from the other predictors. The different position of Mo
may be due to the optimal scaling. As the predictor information is rather redundant,
REDUNDALS tries to fit a second dimension by scaling the variable Mo as nonlinearly
as possible. In this case a dichotomy results (1 versus 2 to 5). For the Elstar data it is
reasonable to assume a rank-one restriction on the weights. We do not perform this
analysis here. The result will correspond with the M2-direction of Figure 3a.

182



Part III: Sensory-Instrumental Relations

7.7

Dimension 2

7. An Application of nonlinear redundancy analysis

Elstar ordinal | Elstar numerical

M¥3 Cien

T ' rrey L im am T v ¢ % —rTrr | I —rrr ! (L
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Dimension 1 Dimension 1

Figure 3 Correlations of the variables with the axes of the reduced rank space of the

ordinal solution (3a: left) and the numerical solution (3b: right) for the Elstar
data.

The plots of Elstar apples in the reduced rank space (Figure 2b ordinal solution,
numerical solution not given) also show a high match (90.8% of the variance). The
ordinal plot is more structured than the numerical plot. Figure 2b shows a cluster in the
Ac/Mo-direction. Those apples are the only ones scored high on acidity. The apple
highest on the second dimension has a unique pattern, scoring both high on acidity and
dry matter. The clustering may be the reason that the ordinal solution fits better than the
numerical solution. The fit is inflated by giving the objects with high scores for the
original variables (here acidity and dry matter) an extreme position.

Good predictors for the sensory qualities are all variables projected in the M2-
direction with long vectors (Pg, Pr, Pm, It, Tu, Ct). Thus we find Instron-measures and
penetrometer-measures as Koppenaal (1991) did. Ac and Mo, which were good
predictors of the Cox apples, do not satisfy for Elstar. Koppenaal too found that acidity
is a good predictor for Cox apples and not for Elstar apples.

Conclusion

Using several multiple regressions Koppenaal (1991) concluded that penetrometer-
and Instron-measures and expelled moisture are good predictors for Elstar and Cox
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apples. We obtained comparable results. He also found that Elstar did better than Cox
(higher explained variance). However we find that Cox apples did better than Elstar
apples: in the numerical REDUNDALS solutions Cox apples have higher multiple
correlation coefficients than Elstar apples. Koppenaal did use only mealiness (average z-
scores) in his regression analyses. His argument to drop firmness was that mealiness
and firmness were practically interchangable. We used both mealiness and firmness
(without averaging). However, we do not think that this difference in approach explains
why we find higher multiple correlations coefficients for Cox than for Elstar, as the
mealiness- and firmness-variables turn out to be rather similar in the REDUNDALS-
results too. Maybe the optimal scaling is responsible for this difference.

This study shows that nonlinear redundancy analysis can be a useful tool in
analysing sensory-instrumental correlations. Especially if there are more than one
criterion variables redundancy analysis has the advantage of handling sets of variables
instead of single variables like multiple regression, thus avoiding many separate
analyses. The nonlinear options of the REDUNDALS technique prove useful in
checking nonlinear relations between the variables. In this study it turned out that (at
least for Cox apples) there was not much deviation from linearity.
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An Application of Nonlinear Redundancy

Analysis and Canonical Correlation Analysis

8.1

Introduction

Nonlinear redundancy analysis and nonlinear canonical correlation analysis are
applied to a data-set describing measurements on apples. The data were collected in
order to find instrumental measures which predict the mealiness and the firmness of the
apples. This study is a secondary analysis of the data. Results show that moisture,
titratable acidity, penetrometer- and so-called instron-measures do well in predicting the
quality of the apples. Two varieties of apples were used of which one does better in the
analysis than the other.
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8.2

8.3

Techniques

Nonlinear redundancy analysis is a technique that predicts a set of criterion variables
from a second set of variables. This prediction is done through maximizing the explained
variance of the criterion variables by a weighted sum of predictors, while at the same
time all variables are optimally scaled. The rank of the weight matrix for the predictors is
kept low (van der Burg & De Leeuw, 1990). Nonlinear redundancy analysis is a
generalization of the redundancy analysis of van den Wollenberg (1977). The computer
program that performs nonlinear redundancy analysis is called REDUNDALS! (van der
Burg & De Leeuw, 1990).

Nonlinear canonical correlation analysis is a technique that optimally relates two sets
of variables with each other also using optimal scaling (van der Burg & De Leeuw,
1983). The corresponding computer program is called CANALS. Nonlinear canonical
correlation analysis is a generalization of ordinary canonical correlation analysis (e.g.
Tatsuoka, 1988, chap. 7).

Both REDUNDALS and CANALS are computer programs that fit in the system of
nonlinear multivariate analysis as designed by Gifi (1990).

Description of the data

The data under investigation were collected to find instrumental measures which
predict sensory qualities of two varieties of apples: Cox and Elstar (Koppenaal, 1990).
The sensory qualities were measured by three trained assessors scoring "mealiness" and
"firmness" on a line-scale ranging from zero to 100 (see Table 1). To obtain apples
which differ in quality Koppenaal (1990) manipulated a number of variables which are
referred to as background variables. The instrumental measures correspond with all sorts
of push and pull measures applied to the apples by different machines (Instron,
penetrometer). The scores have been recoded either into a small number of (ordered)
categories, or into many equidistant categories. Both recodings were used, one to
perform analyses with ordinal measurement restrictions and the second one (many
equidistant categories) to perform analyses with numerical measurement levels.

' An experimental program only.
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Table 1 Variables Measured on two Varieties of Apples. For Instrumental Measures the
Minimum and the Maximum Score that Occurred in Cox Apples is Shown.
Background variables categories
Ca origin low, high Calcium
Per picking-date early, middle, late
Si size small, large
Temp storage temperature 3°, 13°, 23° Celsius
Instrumental variables minimum maximum
Pr penetrometer: red side 2.5 5.8
Pg penetrometer: green side 3.5 5.5
Pm penetrometer: mean 3.7 5.9
Mo expelled moisture 5:51 43.06
Dr dry matter 12.25 7.08
Ac total titratable acidity 3.55 8.07
It Instron: thickness at failure 1.33 3.05
If Instron: force at failure 26.21 71.67
lu Instron: area 11.51 56.64
Is Instron: slope 7.48 97.95
Im Instron: modulus 1.27 3.66
Ct catalase activity 6.90 19.40
Sensory variables minimum maximum
M1 mealiness judge 1 0 (not mealy) 100 (very mealy)
M2 mealiness judge 2 0 (not mealy) 100 (very mealy)
M3 mealiness judge 3 0 (not mealy) 100 (very mealy)
F1 firmness judge 1 0 (firm) 100 (soft)
F2 firmness judge 2 0 (firm) 100 (soft)
F3 firmness judge 3 _ 0 (firm) 100 (soft)
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8.4

Table 2 Multiple Correlation Coefficients (MCC) for Cox Apples and an Indication for
the Regression Weights of the Ordinal REDUNDALS Solution.

MCC M1 M2 M3 F1 F2 F3
Ordinal solution 63 .72 60 .74 54 61
Numerical solution .57 73 .63 .59 56 .65
Weights

Pr penetrometer: red side

Pg penetrometer: green side

Pm penetrometer: mean ®
Mo expelled moisture X X X X X ®
Dr dry matter

Ac total titratable acidity @ @

It Instron: thickness at failure

If Instron: force at failure ® b 4
lu Instron: area o X
Is Instron: slope & ® e b 4 ®

Im Instron: modulus [ J ® [ ]
Ct catalase activity
X |weight[>0.4

®  0.3<|weight|<0.4

REDUNDALS results

For the prediction of the sensory qualities the program REDUNDALS has been
used, both with ordinal and numerical measurement restrictions. In Table 2 the results
(multiple correlation coefficients (MCC) and the weights) are shown for the Cox apples.
We see that Moisture and several Instron-measures have (relatively) high weights. The
MCC's vary between 0.54 and 0.73, which is not bad. Ordinal and numerical MCC's
do not differ very much from each other.

As weights in prediction techniques are influenced by the effects of the other
variables within the same set, another way to examine REDUNDALS results is by
making a plot of the reduced rank space. This is a subspace of low dimensionality
spanned by the predictor variables. Both objects (in this case apples) and variables
(predictors and criterion variables) can be projected into the reduced rank space. Figure 1
shows the results for Cox apples (ordinal solution). Only the (optimally scaled) variables
have been projected. We see from this figure that not only Mo and Is are important in
predicting mealiness (M1, M2, M3) and firmness (F1, F2, F3), but that other variables
are also good (Ac, Iu, Im, Pm).
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Figure 1  Projections of the optimally scaled variables into the reduced rank space for
Cox apples (ordinal REDUNDALS solution).

The numerical solution shows a lot of resemblance with the ordinal solution. The
main difference is that the bundle of vectors is somewhat tighter, so that the solution is
more one-dimensional. The fact that the difference between the ordinal solution with a
few categories per variable and the numerical solution with many categories per variable
is very small, shows that a lot of information in the data can be considered to be
superfluous (in the sense that the technique does not use the information) (compare van
der Burg, De Leeuw and Dijksterhuis 1994). Another reason to perform a numerical
analysis is to keep results comparable with results from standard techniques. In this case
with the results obtained by a program as suggested by van den Wollenberg 1977).

Elstar apples give results (not shown here) rather similar to those of the Cox apples.
The ordinal solution is somewhat stronger than the numerical solution (higher MCC's).
This difference is mainly due to the effect of the optimal scaling on objects with a unique
score pattern. Moisture is not so important for Elstar apples as it is for Cox apples.
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8.5 CANALS results

Three analyses were performed with CANALS. The background variables were
related to the sensory variables and to the instrumental measures. In addition, sensory
and instrumental variables were compared. These CANALS analyses were performed
mainly to check the underlying relations. Only the Cox apples were used for these
analyses and, in addition, only ordinal measurement levels were considered.

{ Background and
sensory variables
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Figure 2 Projections of the optimally scaled variables into the canonical space of the
sensory qualities (ordinal CANALS solution).

Analysis of the background variables and the sensory qualities show canonical
correlations of 0.706 and 0.534. Projections of the variables into the canonical space of
the sensory variables show that storage temperature (Temp) and the amount of Ca are
mainly "responsible" for the different qualities of the apples (Figure 2). Background
variables and instrumental measures show a much higher correspondence than
background and sensory variables. In this case the canonical correlations are 0.927 and
0.869. From the projections of the variables into the canonical space of the instrumental
measures (Figure 3) it can be seen that again Temp and Ca are the two background
variables mostly related to the other set. Picking-date (Per) and size (Si) are not
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8.6

8. An application of nonlinear RA and CCA

important. The third analysis (instrumental and sensory variables) was mainly a
repetition of the redundancy analysis. The canonical correlations were 0.941 and 0.889,
which seems really high. The projections into the canonical space show a picture which
is comparable to Figure 1, therefore this plot is not given.
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Figure 3  Projections of the optimally scaled variables into the canonical space of the
instrumental measures (ordinal CANALS solution).
Conclusions

The prediction of the sensory qualities from the instrumental measures shows that
moisture, titratable acidity, penetrometer and the Instron-measures are mainly related to
mealiness and firmness. This result is comparable with that of Koppenaal (1990), who
used the average over mealiness scores and the average over firmness scores in several
multiple regressions.

This study shows that nonlinear redundancy analysis and canonical correlation
analysis can be useful tools in analysing sensory-instrumental correlations. Especially if
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there are more criterion variables, redundancy analysis has the advantage of handling
sets of variables instead of single variables like in multiple regression, thus avoiding
many separate analyses. The nonlinear options of the REDUNDALS technique prove
useful in checking nonlinear relations between the variables. In this study it turned out
that (at least for Cox apples) there was not much deviation from linearity.
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9.1

Procrustes Analysis in Studying Sensory-

Instrumental Relations

Introduction

The study of the relations between sensory judgements and instrumental, i.e.
chemical or physical, measurements is a field where different kinds of Multivariate
Analysis techniques can, and have been, applied. When the sensory dataset contains
only one variable, e.g. "acceptance”, Multiple Regression can be used to relate the
instrumental measures to this variable. In this situation PLS1 or Principal Component
Regression are alternative techniques. In the general case each dataset consists of a
number of variables measured on a number of objects, say N, in this case foodstuffs.
The two datasets are denoted here by X and X7 of respective orders (NxM1) and
(NxMpy), X; contains sensory scores on M, attributes, X, instrumental measures on M,
variables. Another method often used to relate two datasets is PLS2. For the PLS
techniques see e.g. Geladi (1988). A computer program based on the PLS philosophy is
the Unscrambler (Tyssa et al. 1987, CAMO 1992).
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When in a Multiple Regression situation both sets have more than one variable,
Multiple Multivariate Regression, or Canonical Correlation Analysis results. When one
of the sets is restricted in rank, a method called Redundancy Analysis appears (see €.g.
van den Wollenberg 1977). For both Canonical Correlation Analysis and Redundancy
Analysis non-linear versions are developed (van der Burg 1988). Linear, in this case
means that the techniques assume underlying linear, interval or ratio-type scales. Linear
techniques can be, and often are, used to analyse data of ordinal or nominal
measurement level, but this may give unsatisfactory results. Non-linear methods analyse
ordinal or nominal data by transforming the data in accordance with the measurement
level. These transformations can be applied to one of the sets (semi-non linear, see Liu
1990) or to both sets (van der Burg & de Leeuw 1983, 1990). These methods are
applied to sensory data in a number of cases (van der Burg and Dijksterhuis 1989, 1991,
Liu 1990).

The above mentioned methods can be classified into two types: Asymmetric
methods and Symmetric methods. The symmetry concerns the way the two datasets are
treated by the method. Asymmetric methods try to predict one set from the other, and so
treat both sets differently. PLS, Principal Component Regression, Redundancy Analysis
and Multiple Regression are among these methods. Symmetric methods treat both sets
identically, swapping the two sets makes no difference. Neither of the sets is tried to be
predicted from the other, only the relations between the sets are studied. Examples of
these methods are Canonical Correlation Analysis and Procrustes Analysis.

In this paper Procrustes Analysis (Schonemann 1966, 1968, Gower 1975) is used
to study sensory-instrumental relations. This method is more restricted than Canonical
Correlation Analysis and Redundancy Analysis in that the only transformations allowed
to the datasets are rigid-body transformations, i.e. transformation that respect the
distances between objects. A linear version is used, though a non-linear version does
exist (van Buuren and Dijksterhuis 1988) but not for all transformations. Generalised
Procrustes Analysis is a well known method in the analysis of sensory data (e.g.
Oreskovich et al. 1991), but it has not very often been used to study Sensory-
Instrumental relations. Other methods, especially Canonical Correlation Analysis
sometimes gives results with virtually perfect fit. This is partly due to the optimisation
criterion of Canonical Correlation Analysis and with non-linear versions of the method
partly to the freedom there exists in choosing non-linear transformations. The
transformations of such techniques seem to be too lax, this is why in this chapter the
much more strict transformations of linear Generalised Procrustes Analysis are applied
to relate a sensory to an instrumental dataset.
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9.2

Data

The data consist of two datasets measured on 72 apples and is originally collected
by the ATO Agrotechnology institute in Wageningen, the Netherlands (see also van der
Burg and Dijksterhuis 1993a). The apples were artificially manipulated to be different.
The dataset used in this paper consists of sensory judgements of three judges, judging
the apples on Mealiness and Firmness only, giving in total 6 sensory variables. The
instrumental variables are 7 different physical and chemical properties of the apples. The
two sets have different variables, which is the same situation as with Free Choice
Profiling data (Williams and Langron 1984; Arnold and Williams 1985).

The set of sensory data consists of 72 rows representing the objects, in this case 72
different apples of the race "Elstar". The 6 columns of this set are "Mealiness” and
"Firmness" scores given to the apples by 3 assessors. One possibility of treating this
dataset is to average the variables over the judges resulting in only two variables, this
was not done however. Averaging is only appropriate when the assessors use the
variables in the same way, and from previous studies it is known that this assumption
can often not be met (e.g. Dijksterhuis and Punter, 1990).

Usually each set contains the variables of one assessor and Generalised Procrustes
Analysis is used to correct for the different use of the variables. In this paper the
variables of the three assessors are put together in one set, and are treated as 6 different
variables. The set of instrumental variables consists of 7 measurements of physical and
chemical properties of the apples. Both the sensory and instrumental variables are shown
in Table 1 together with some statistics.
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9.3

Table 1 Mean, Standard Deviation, Range, Minimum And Maximum of the variables in
the sensory and instrumental datasets. (PRED, PGREEN: penetrometer at red,
resp. green side of the apple; MOIST: expelled moisture; DRYMAT: amount
of dry matter; ACID: acidity; ITHICK; INSTRON-thickness; KATAC: katalase

activity)
Variable Mean Std. Dev_ Range Minimum Maximum
Sensory
Mealiness 1 34.4 30.1 94 0 94
Mealiness 2 32.0 26.2 90 0 90
Mealiness 3 39.1 29.3 93 2 95
Firmness 1 51.4 21.6 88 6 94
Firmness 2 48.6 30.8 97 1 98
Firmness 3 52.2 27.5 91 5 96
Instrumental
PRED 4.43 0.981 4 3 7
PGREEN 4.41 0.919 3.8 2.8 6.6
MOIST 245 13.1 39.65 10.18 49.83
DRYMAT 15.4 0.989 4.96 13.26 18.22
ACID 7.60 1.16 5.42 4.77 10.19
ITHICK 1.66 0.279 1.25 1.23 2.480
KATAC 12.1 2.17 9.9 7.2 17.1

In Table 1 can be seen that the sensory variables have more or less the same range,
the instrumental variables however are very different. This is perfectly normal because
they are measured with very different devices. It makes some sort of pre-scaling of these
variables necessary for Procrustes Analysis (see e.g. Dijksterhuis and Gower 1991/2).

Procrustes Analysis

Procrustes Analysis was originally developed to match two different solutions from
Factor Analyses (Hurley and Cattell 1962). Generalised Procrustes Analysis (Gower
1975) matches more than two datasets and is often applied to the data from different
assessors from a sensory panel (e.g. Arnold & Williams 1985). For the study of
sensory-instrumental relations the original Procrustes Analysis for two sets is used, but
because the generalisation is a proper one, Generalised Procrustes Analysis with two-
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9.3.1

sets is identical to two-set Procrustes Analysis. The differences between rotating to a
target, or rotating both sets to a common set are of no concern in this study (see
Schénemann 1966, 1968), and the abbreviation GPA will be used although strictly
spoken the G for Generalised could be omitted. In this special case of two sets the
Procrustes procedure is very simple and can be solved in one step, when there are more
than two sets an iterative algorithm must be used.

The idea behind GPA is that the rows of each set define a configuration of the N
object-points in multidimensional space, with the scores on the variables as coordinates
on just as many dimensions. In this case there are N=72 points in M;=6 dimensional
space in the sensory set and 72 points in M,=7 dimensions in the instrumental set. The
distances between these object-points are seen as reflecting the similarity or dissimilarity
between the objects represented by these points. In matching the sets X | and X these
distances are kept unchanged by the transformations applied to the configurations of
points. The transformations applied by GPA are Translations, Rotations and Isotropic
Scaling. The translations are chosen such that the centre of the configuration coincides
with the origin of the multidimensional space.

Rotations

This transformation rotates the two configurations to maximum agreement,
Maximum agreement is defined in terms of a least-squares criterion which measures the
squared distances between corresponding points in the two configurations. For
mathematical details on the method see Gower (1975), Ten Berge (1977). 1t is important
to realise that these rotations take place in the highest dimensional space possible, i.e. in
our case in M=max{M,M}. To make the two sets of the same order (NxM) the
smallest set is padded with zero columns. The result of the rotational procedure are two
rotated configurations X H; and X,H, with the squared distances between the
corresponding points as small as possible. The average  configuration
3(X{H; +X,H,), often called the consensus configuration or Group Average, and
exists in M dimensional space. In order to be able to study this configuration a Principal
Component Analysis is applied to project the data onto a low dimensional space which
can be plotted.
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9.3.2

9.4

Isotropic scaling

The isotropic scaling factors stretch and shrink the configuration to increase the fit
further. They do not change relative distances between the corresponding points in the
two configurations. Details about these scaling factors can be found in Gower (1975),
Ten Berge (1977) and Peay (1988). The resulting group average, with inclusion of the
scaling factors p, looks like %(pIXIHI +p2X2Hz). The scaling factors correct for size
differences of the configurations. Size being defined as total sum of squares of a
configuration. When one set has a sum of squares different from the other, the scaling
factors will shrink the bigger set relative to the smaller. This situation occurs in practise
in sensory data analysis when the datasets stem from different assessors with differing
scaling behaviour. In the example dataset (see Table 1) it can be seen that the judges do
not differ very much in their scoring behaviour, compared with the instrumental dataset.
The latter set is much more heterogeneous, the variables have different variances and the
overall size of the set will depend mainly on the variables with the largest sums of
squares. An isotropic scaling factor for the total set is not a good solution in this case, a
scaling factor per variable would perhaps be better (see e.g. N&s & Kowalski 1989).
However, such non-isotropic scaling factors complicate the mathematics of the
procedure considerably (Commandeur, 1991).

A first look at the data: PCA

For a first look at the two datasets Principal Component Analysis is applied. Table 2
shows the percentage Variance Accounted For, for the analyses on the sensory and the
instrumental sets separately.
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Table 2 Percentage Variance Accounted For, for the Principal Component Analyses on
the sensory and the instrumental sets separately.

Dimension: 1 2 3 4 5 6 7
Sensory

%VAF 72.811 14.13 6.77 3.768 1.538 0.983 -
Instrumental

%VAF 55.883 19.286 10.756 6.834 4.51 1.707 1.024

The table shows that for both datasets the first dimension explains a high percentage
of variance, the second dimension explains much less. Higher dimensions can be
inspected, but for ease of interpretation only the 2 dimensional results are used here.

94.1 Sensory variables

From the numbers in Table 2 we conclude that there is a two dimensional space in
which the data fit quite well (87% variance explained). Whether this space has a
Mealiness and a Firmness dimension cannot be seen from this table. To see this the
component loadings must be inspected. An easy way to do this is by means of plotting
them in the two dimensional space (see Figure 1). The 72 apples' object scores are
superimposed onto the same figure to see the relation between the apples and the
variables.
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Figure |  Sensory variables and the positions of the 72 apples after PCA of the sensory
dataset.

From Figure 1 can be seen that assessor 3 deviated from assessor 1 and 2. The
variables Mealiness 3 and Firmness 3 (M3, F3) are used identically by this assessor, he
or she uses them as if they were the same variables. Assessor 2 also uses Mealiness and
Firmness alike (M2, F2), though he/she judges the apples different from assessor 3. The
correlation between the Mealiness and Firmness variables of the same assessor is very
large (see Table 3). Assessor 1 is the only one who uses the two variables differently
(M1, F1), but they still have a correlation of 0.614.
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Table 3 Correlations between the sensory variables.

M1 M2 M3 F1 F2 F3
M1 1.000
M2 0.798 1.000
M3 0.614 0.645 1.000
F1 0.640 0.648 0.429 1.000
F2 0.827 0.917 0.625 0.668 1.000
F3 0.579 0.638 0.926 0.444 0.645 1.000

The position of the variables suggest that the group of apples at the left-hand side of
the centre of the figure are judged mainly not firm and not mealy. At the right-hand side
lay the apples that have high Firmness and Mealiness scores.

942 Instrumental variables

Table 2 suggests a good approximation of the instrumental dataset in two
dimensions too. A third dimension could perhaps be helpful, but for sake of simplicity
we will only look at the two dimensional result (see Figure 2).
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Figure 2  Instrumental variables and the positions of the 72 apples after PCA on the
instrumental dataset.

Again the apples’ positions are superimposed onto the figure. In Figure 2 can be
seen that there are two main directions: one defined by Drymat, Ithick and Acid, the
other by Pred, Pgreen, Moist, and, negatively correlated, Katac. Two groups of apples
can be identified, at the left the apples with high Katac scores and low Pred, Pgreen and
Moist scores. At the right the apples with high Pred, Pgreen and Moist scores and low
Katac scores. It looks as if the variables Drymat, Ithick and Acid are not very important
in distinguishing these two groups. The correlations between the variables are presented
in Table 4.
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9.5

Table 4 Correlations between the instrumental variables.

PRED  PGREEN _MOIST DRYMAT ACID ITHICK  KATAC

PRED 1.000

PGREEN 0.921 1.000

MOIST 0.841 0.846 1.000

DRYMAT 0.196 0.098 0.027 1.000

ACID 0.609 0.526 0.502 0.534 1.000

ITHICK 0.224 0.182 0.361 0.327 0.390 1.000

KATAC -0.609 -0.587 -0.669  -0.207 -0.497  -0.301 1.000

Now we have seen the structure of both sets separately, we can look whether GPA
is able to relate the two sets to each other without sacrificing too much of this structure.

Matching the sensory and instrumental datasets.

The sensory variables are scored on a line-scale ranging from 0 to 100. They do not
need differential scaling because they have comparable scales. Their mean is set to 0,
this is the translation operation from GPA which is the same as column centring the
variables in this set. The instrumental variables are different and need differential scaling
to make them comparable within the set of instrumental data. An obvious way of pre-
scaling is converting the variables into z-scores. When the instrumental set is
standardised in this way, there remains a size difference between the two sets. One could
imagine this 'size' as the size of the cloud of object-points in the high dimensional space.
When only the instrumental dataset is converted into z-scores the sensory dataset is
much larger than the instrumental set. A simple solution is to standardise both sets prior
the GPA. This leaves a size-(sum of squares) difference caused by the number of
variables in the set. In order to correct for this, so-called Py-scaling was proposed by
Dijksterhuis & Gower (1991/2), which in addition removes the need for fitting isotropic
scaling factors. In this study we applied no Py-scaling and fitted isotropic scaling
factors, only to find them very close to 1 for both sets (resp. p;=1.041 and p,=0.964).

The first two dimensions of the group average configuration resulting from GPA
turn out to explain 68.8% variance. Figure 3 shows the loadings of the sensory variables
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in the GPA Group Average space and the positions of the apples after this set is rotated
to fit the instrumental set.
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Figure 3  Sensory set with the variables and the apples after matching by GPA.

It can be seen from Figure 3 that the structure of the variables is like the structure
revealed by PCA applied to the sensory sets separately (Figure 1). The two
configurations have different orientations but these are irrelevant (one could use GPA to
give them similar orientations, see e.g. Gower and Dijksterhuis 1994).
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Figure 4  Instrumental set with the variables and the apples after matching by GPA.

Figure 4 shows the loadings of the instrumental variables and the apples after this
set is rotated to fit the sensory set. Comparing Figure 4 with Figure 2 shows that, apart
from orientation, the structure of the apple-configuration is not much different. For both
the sensory and instrumental set the same two groups of apples can be identified.

Now GPA has matched the two sets to maximal agreement, the group average can
be constructed by averaging the two configurations of apples. The variables remain in
their position (see Figure 5).
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Figure 5 GPA group average with the positions of the apples and the sensory and
instrumental variables.

The group average in Figure 5 shows the same two groups of apples and the
position of both sensory and instrumental variables. It turns out that high Firmness and
Mealiness scores coincide with high Katac scores. Low Firmness and Mealiness scores
go together with high scores for Pgreen, Pred and Moist. The instrumental variables
Acid and IThick have a less distinct relationship with Firmness and Mealiness. The
variable DryMat shows no relation with the sensory variables.
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9.6

Conclusion

Relations between a sensory and an instrumental dataset can successfully be studied
by means of a Procrustes Analysis. It turns out to be necessary to perform some kind of
pre-scaling to the two datasets. In particular the instrumental variables need to be
standardised or scaled because they can differ very much in range. The easiest way of
scaling the two sets is to transform them into z-scores, so differences between variables
within a set are removed. Other ways of pre-scaling can be useful too, €.8. P;-scaling
(see Dijksterhuis and Gower 1991/2), though not employed in this study. The structure
of each set separately can be studied by PCA. GPA is able to match the sensory and
instrumental sets while retaining most of the structure of the sets. Though GPA is not
often found in sensory-instrumental studies, it turns out to be a useful tool to this end.
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Concluding Remarks Part III:

Sensory-Instrumental Relations

Summary

In this section the analyses in the three preceding chapters are summarised and
compared. An overview of what part of the apple data is analysed using which analysis
method is provided.

Introduction

Table 1 presents a brief overview of the different analyses applied to different parts
of the apple dataset.
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Table 1 The different analyses performed in part III (RA: Redundancy Analysis, CCA:
Canonical Correlation Analysis, PCA: Principal Component Analysis, PA:
Procrustes Analysis).

Chapter _Apples  Relations Method Measurement level  Figure
7 Cox Sensory-Instrumental RA ordinal, numerical 1a/1b, 2a
7 Elstar Sensory-Instrumental RA ordinal, numerical ~ 3a/3b, 2b
8 Cox Sensory-Instrumental RA ordinal 1
8 Cox Background-Sensory CCA ordinal 2
8 Cox Background-Instrumental  CCA ordinal 3
8 Cox Sensory-Instrumental CCA ordinal not shown
9 Elstar Sensory PCA numerical 1
9 Elstar Instrumental PCA numerical 2
9 Elstar Sensory-Instrumental PA numerical 3,4,5

Conclusions about the comparison of the different multivariate methods must be
based on only partial comparisons for some methods.

Chapter 7
An application of nonlinear Redundancy Analysis

The main results of the Multiple Regressions (MLR) Koppenaal (1991) performed
were replicated. One difference was that in the Redundancy Analysis (RA) the multiple
correlation coefficients were higher for Cox apples than for Elstar, the MLR's resulted in
a better result for Elstar than for Cox apples. New analyses could provide the reason for
this small difference.

Redundancy Analysis appears to be a useful extension to Multiple Regression which
was originally applied to the Apple dataset. Two interesting properties of nonlinear RA
in this respect are:

1. analysing more than one criterion variable, i.e. two datasets are analysed

2. inclusion of optimal scaling, so nominal, ordinal and numerical variables can be

analysed.
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Redundancy Analysis has an advantage over Canonical Correlation Analysis
(CCA). With CCA (almost) perfect fit is obtained when two variables, each in one set,
correlate very high. Despite the (almost) perfect fit the solution may explain a low
amount of variance in the two datasets. The capitalisation on the correlation between
_linear combinations of- variables in the two sets, renders CCA and Generalised
Canonical Analysis (GCA) less fit for some two- or more-set problems with highly
correlated variables in different sets. In Redundancy Analysis it is not a correlation
coefficient which is maximised, but a linear combination of variables in the X dataset is
composed which explains as much variance as possible in the other, Y, data set.

Chapter 8
An application of Nonlinear Redundancy Analysis and
Canonical Correlation Analysis

The conclusion of the previous chapter is repeated here because the RA in this
Chapter is the same as employed in Chapter 7. In addition CCA was applied, but with
different data from the Redundancy analyses. CCA was used to study the relationships
between the background variables and the sensory variables and between the
background variables and the instrumental variables. It turns out that in both canonical
correlation analyses the storage temperature and the Calcium level of the orchard the
apples were grown, are important. These two variables seem to span a two dimensional
predictor space.

The different use of RA and CCA reflect the differences between the two methods:

«  RA tries to predict one dataset from the other, here the sensory from the

instrumental data

. CCA studies the relations -correlations- between the two datasets without

predicting one from the other.

It can be argued to use RA to study the prediction of the instrumental and of the
sensory variables from the background variables. Since the background variables are
design variables, coded as dummies, CCA as applied is similar to a Multivariate
Analysis of Variance with four factors (Storage temperature (three levels), Ca-level (two
levels), Picking date (three levels) and Size (two levels)) and respectively six sensory or
12 instrumental variables.
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Chapter 9
Procrustes Analysis in studying Sensory-Instrumental
relations

In this chapter, Procrustes Analysis was applied to the Elstar apple data set. First
both the Sensory and the Instrumental data set are inspected by means of Principal
Component Analysis. Biplotting the results provides a useful view of the data. The
Figures (Chapter 9, Figure 1 and 2) show the 72 apples and their position relative to the
variables. Subsequent matching of the two datasets by means of Procrustes Analysis
produces Figures 3 and 4. These two Figures are combined into the Group Average
(Figure 5). The Group Average shows both the apples and the instrumental and sensory
variables in one plot. The positions of the apples and variables in this plot can be
interpreted and prove meaningful.

PCA turns out to be a useful method to provide an initial look at the individual
datasets. The objects and variables can be (bi-)plotted and give a useful overview of the
data. Outliers and other anomalies become visible in such plots, turning these plots into a
handy device to check the data. When the individual plots are in order, they may be
subsequently matched, in this paper by GPA, but other methods (RA, CCA, see the
other chapters in this part) can be used too.

The transformations of GPA are such that the relative distances between the object-
points (i.c. apples) remain intact. CCA and RA apply transformations which do not keep
distances intact. GPA uses more restricted transformations than CCA and RA which will
generally result in a lower fit. The advantage GPA may have over CCA and RA is that
there is hardly any chance of finding an artificial perfect fit with real data.

Discussion

Table 1 shows that in Chapter 7 ordinal and numerical solutions of Redundancy
Analysis are compared for the two races of apples. A high agreement of the two
solutions emerged, as measured by a Procrustes rotation of the ordinal and the numerical
solution towards each other. Table 2 summarises this fact. Both the configurations of the
object scores -the apples- and of the component loadings -the variables- are rotated
towards each other.
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Table 2 Percentage of variance common to the ordinal and numerical solutions from
the Redundancy Analysis applied in Chapter 7, as measured by a Procrustes

Rotation.
source Cox Elstar
correlations 975 98.7
object scores 86.1 90.8

Table 2 shows a high agreement of the ordinal and numerical solution. It is to be
expected that the agreement is high for both the correlation- and the object-score
configuration, when there is a high fit. A low Procrustes fit would have meant different
solutions, which would probably show in both the correlation- and the object-score

configuration.

Conclusion

Nonlinear MVA is a useful method for the analysis of Sensory-Instrumental
relations. However, too much freedom in fitting the data may result in artificial fit, and
this is why GPA may sometimes be a more appropriate and straightforward method.
When the Sensory-Instrumental relations can reasonably be expected to be nonlinear,
nonlinear methods clearly have an advantage over linear methods. In practice a balance
between fitting nonlinear models, by means of optimal scaling, and fitting
straightforward linear models (e.g. GPA) should be sought after. Achieving this balance
can be difficult and careful analyses must be carried out by careful researchers, keeping
in mind not only the statistical methods but also the properties of the matter under
research.

Suggestions for future research

Some lines of future research are indicated, both from a Sensory(-Instrumental) and
from a statistical point of view.
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Sensory

The study of Sensory-Instrumental relations could be continued in a number of
directions of which two are;

1 Analysis of existing data material

2 Carefully collect new sensory and instrumental data

Many available Sensory-Instrumental datasets exist which have been collected by
sound methods but have been underanalyzed, for example, only one aspect of the data
has been examined, and/or only "classical" methods have been used. These datasets
could be re-analysed using the methods used in this part ((non-)linear Generalised
Canonical Analysis, Redundancy Analysis and Generalised Procrustes Analysis in
Chapters 7, 8, 9) and other methods of (non-linear) MVA.

The second way could be employed when there is a particular sensory aspect of a
certain product that needs investigating. The collection of future Sensory-Instrumental
datasets should be done using an appropriate design, focussing on aspects thought to be
important, and using already available knowlegde about the products. Take for example
a certain off-flavour in a beverage. A number of sound and defective samples of the
beverage can be tasted by a panel, and chemical and physical measurements can be
carried out. By repeatedly presenting the panel with a different set of (off-flavoured)
beverage samples, and carrying out the instrumental measures, the off-flavour could be
tracked to a particular cause, say a particular component due to oxidation, contamination
or bacterial spoilage. The exploratory data analyses presented in this chapter, using the
MVA methods Canonical Correlation Analysis, Redundancy Analysis and Generalised
Procrustes Analysis lend themselves to such an approach.

Multivariate Data Analysis

The Biplot (Gabriel 1971, Gower 1992b) is a useful way to gain insight in the data.
Biplots, briefly mentioned in Chapter 9, could be incorporated in a large number of
MVA methods (see e.g. Ter Braak 1990). The plotting of both the products and the
sensory attributes as well as the instrumental variables, is a promising tool for the
exploration of Sensory-Instrumental data. Biplots can be incorporated in MVA in
different ways (see e.g. Chapter 4). Illustrating the use of Biplots in a Sensory-
Instrumental data analysis context would be useful to forward this method and would
give the researcher a useful device to inspect her/his data.
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Introduction to Part IV:

Time-Intensity Data Analysis

Summary

The theme of the fourth and last part of this book is an interesting direction of
research in Sensory Science, viz. Time-Intensity research.

In the first chapter (Ch. 10) non-centred Principal Component Analysis is proposed
as an analysis method of a number of Tl-curves collected of the same products. In
Chapter 11 three PCA methods (on correlations, on covariances, on raw data) are
compared for the analyis of Tl-curves. The last chapter (Ch. 12) is a brief chapter
suggesting a new direction in modelling Tl-curves, focusing on the shape of the TI-

curve.
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Chapter 10
Principal Component Analysis of Time-Intensity Bitterness
Curves!

The data analysed in this chapter are from an experiment in which K subjects record
the perceived bitterness intensity by moving a slider on a monitor using a computer-
mouse. Usually average TI curves are calculated to give a representation of a product-
specific TI curve. The problem is that there often are large individual differences, so the
average Tl curve is probably not a good representation. An alternative approach is to
perform a Principal Component Analysis on a matrix containing the individual TI-curves
in its columns. The resulting, so-called, Principal Time Intensity Curves (PTIC's)
theoretically are better representations than the average curves. Sometimes the PTIC's
for the different products are hard to distinguish. In such cases a variant PCA method,
non-centered PCA, gives results which show more differences between the products.

There is a terminological flaw present in this chapter. In §10.5 there is mention of
"the loadings in Q". The matrix Q however does not contain loadings but it contains the
weights. The term loadings is usually reserved for the elements of the matrix Q®. In the
application presented here there is not much difference in interpreting weights or
loadings, the difference is in the scaling of the axes by the corresponding singular value.

1 Principal Component Analysis of the matrix with TI-curves was originally developed at OP&P's in
cooperation with Dr. Stef van Buuren (van Buuren 1991, 1992). When the application of this
method on a new Tl-dataset posed some problems in interpreting the results (Dijksterhuis 1991,
Dijksterhuis and Krabbe 1991) an alternative PCA method was used. This was the non-centred PCA
method of chapter 10. The method was presented at the "2nd Agro Industrie & Methodes
Statistiques Conference” held in Nantes, France in June 1991 (Dijksterhuis 1991), and later the
paper in the Journal of Sensory Studies was written based on this presentation.
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Chapter 11
Principal Component Analysis of TI-Curves: three methods
compared?

In the study reported here the Time-Intensity curves are analysed by means of three
variants of Principal Component Analysis (PCA):

*  PCA on correlations;

*  PCA on covariances;

*  PCA onraw data.

The three variants differ in the amount of g priori standardising applied to the
curves. The resulting Principal Curves can be interpreted and reflect underlying
similarities or differences between the time courses of the tastes involved. The loadings3
from the PCA's can be used to help interpreting the Principal Curves and to identify
clusters of assessors, and outliers. Non-centred PCA retains both level and variability
information from the TI-curves, and may be the preferred method for this reason. The
centred PCA variants seem to give the tightest clustering of Principal Curves, hence
differences between the Principal Curves may not become visible.

In 1992 an experiment was carried out at OP&P's by Margo Flipsen, a student from the department
of Marketing and Marketing Research of the Agricultural University of Wageningen, the
Netherlands. This research resulted in a report (Flipsen 1992), from which the paper in chapter 11
resulted. Some of the results of the Flipsen research were presented by Pieter Punter as part of a
more general talk on Time-Intensity research, at the “"Understanding Flavour Quality" symposium
(Punter 1992), in Bristol, UK. The paper in chapter 11 is printed in Food Quality and Preference,
for the "Understanding Flavour Quality” symposium issue (Dijksterhuis et al. 1994).

Paul Krabbe deserves mention here for advise and help with the analyses. Els van den Broek is
thanked for comments on earlier versions of this paper.

The same terminological flaw reported in the previous paragraph for chapter 10 is present in chapter
L1. What are referred to as loadings are commonly called weights.
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Chapter 12
Matching the Shape of Time-Intensity Curves*

Time-Intensity Curves are often summarised by average curves, or recently by
Principal Curves. In this chapter a different method is proposed in which the shape of
the curves is the central concept. A method to match the individual Tl-curves by
stretching or shrinking the curves is suggested. The stretching and shrinking is
performed by isotropic scaling factors which are computed for each curve. These factors
can be tabled and inspected. When a large number of scaling factors are computed it will
be hard to study them in a table. In such cases they can be represented in a plot, for
which in this paper PCA is suggested. In this plot a structure in the scaling factors for
the different TI-curves may become visible. It is also possible to make a plot in which
the homogeneity of the group of assessors can be studied.’

4 Originally the method described in chapter 12 was presented at the "3rd Agro Industrie & Methodes
Statistiques” Conference held in Montpellier, France in November/December 1992 (Dijksterhuis
1992). It was one of the methods in a joint project of OP&P and Unilever Research Laboratories,
Vlaardingen, the Netherlands. The project was largely carried out by Els van den Broek, a student
from the department of Marketing and Marketing Research of the Agricultural University of
Wageningen. This project resulted in a report (van den Broek 1993) and two articles (van den Broek
et al. 1994, Dijksterhuis and van den Broek 1995) of which this chapter contains the latter.

Dr. Arne Maas (Unilever Research Laboratorium, Vlaardingen, the Netherlands) is thanked for
comments on an earlier version of this article.

This chapter suffers the same terminological flaw as the previous two chapters, what are called
loadings are usually called weigths.
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10

Principal Component Analysis of Time-Intensity

Bitterness Curves

10.1 Introduction

The study of the change of taste over time, termed Time-Intensity is now well known
(see e.g. Lee and Pangborn 1986, Overbosch et al. 1986, Neilson 1957). In this chapter
the Time-Intensity data stem from an experiment in which 5 assessors score the
perceived bitterness of drinks. Often the resulting TI-curves are averaged over the
assessors and measures as e.g. Maximum Intensity value, Time to reach this value, Area
under the curve, etc., are computed (see e.g. Punter et al, 1989). In this chapter
Principal Component Analysis (PCA) of the TI-curves (van Buuren 1991, 1992) is
evaluated as an alternative to averaging the curves and an alternative PCA method which
may in some cases provide extra information is suggested.
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10.2 Data

The data consist of the intensity scores recorded by the Tl-equipment each second,
during 90 seconds. In this particular experiment 6 drinks were presented to the judges.
The drinks were mixtures of two caffeine concentrations (B1, B2) and two sugar
concentrations (C1, C2). The following solutions were presented to the subjects: B1,
B2, BIC1, B1C2, B2C1, B2C2, see Table 1. BIC1 was presented twice to give a
possibility for inferring some kind of replication validity of the data.

Table 1 Concentrations of the components of the six drinks used as stimuli.

bitter drinks: 0.75 g/l caffeine 1.5 g/l caffeine
B1 B2
bitter/sweet mixtures:
C1 20 g/l sugar B1C1 B2CH1
C2 40 g/l sugar B1C2 B2C2

A Tl-curve for drink i (i=1,...,N) made by judge k (k=1,...,K) is represented here by
a column vector X;; which has length 90. It is a column of the 90 recorded intensity
values. The data of K judges for one particular drink i are collected in a matrix X ;.
Figure 1 schematically shows this matrix. It contains 5 of the abovementioned colums of
90 intensity values. There is such a matrix for each of the six stimuli.
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Figure 1  Datamatrix X; with the column-vector X;; containing the TI-curve of subject k
for drink i.

In this case there were 90 time-samples, one each second. Of course the number of
time-samples is not important to the analyses presented here. The objects of interest in
this case are the 6 different drinks. The research question is how perceived bitterness
changes differently over time for the different mixtures.

Figure 2 shows the 5 curves for one of the drinks (B2C2), each curve is an averaged
curve of 4 presentations to a judge. Because TI-curves from the same individual are
highly similar (e.g. see Overbosch et al. 1986, Figure 4, p.335) it was assumed that it is
permissible to average the curves from the 4 presentations of the same drink. These
averaged curves are a slightly smoother version of the raw curves.
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Figure 2 Individual TI-curves from the 5 judges for the same drink (B2C2).

Figure 2 shows that there are rather large differences between the curves from
different individuals, although they stem from the same drink. The very idiosyncratic
shape of a subject's curve is sometimes called the signature of the subject (van Buuren
1991). Another experiment with real drinks (not artificially made up from bitter/sweet
mixtures) showed a more apparent signature effect (Dijksterhuis and Krabbe 1991). In
Figure 2 the curves differ in overall height and in shape. Subject 3 shows a much slower
decline than subject 5 and subject 4 seems to experience some kind of after-taste effect at
40 to 60 seconds

In Figure 3 the Tl-curves from one subject for the 6 different drinks are presented.
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Figure 3 Tl-curves from one judge for the different drinks.

From Figure 3 is immediately clear that B2 and B2C1 are the most bitter drinks,
B2C1 has an earlier and higher peak and a faster decline. Perhaps the sugar interacted
with the bitter to result in this difference, but this is just the result for one subject. The
next most bitter curves are the ones for B1, BIC1 and B2C2. The replicated BI1C1-
curves are not exactly the same, one has a much higher peak than the other. Clearly
BIC?2 is the lowest in perceived bitterness.

From Figures 2 and 3 it is apparent that all curves have the same overall shape, one of
the most obvious differences seems to be the general level of the curve. Often the curves
from the same subject are very much alike in shape (the aforementioned signature
effect). Usually it is not the subject but the product that interests the researcher. The goal
of many a TI-experiment is to get information about the change over time of a particular
attribute judged by the subject (bitterness in this case). To this end average product-
curves are often calculated. In the notation of this paper the average curve for object i is

X;:

K
%=K'Y x, (1)
k=1
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In this way average curves can be calculated for each drink i. Of course some
information can be extracted from the average curves. Figure 4 shows the average
curves for the drinks.
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Figure 4  Average Tl-curves for the different drinks.

In Figure 4 it can be seen that all curves with the most bitter component (B2) have a
higher level than all B1 curves. Even the B2C2 (with the strongest sugar solution) lies
higher than the B1 curve.

Realizing that the individual curves have very different shapes, averaging over the
individuals does not necessarily result in a very good representation of the curves. In
addition some other fundamental problems arise when averaging TI-curves (see Liu and
MacFie 1990, MacFie and Liu 1992).

10.3 Principal Curves

An average variable can be seen as an unweighted linear combination of a number of
variables. Including weights in (1) gives
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X =K 'Xa @

which gives the average when a is a column-vector of length K consisting of only
ones. A better representation would result from a containing weights that are chosen to
maximize the variance in the "average" curve, which would in that case not be the
"average" curve anymore but a weighted average curve.

Van Buuren (1991, 1992) suggests performing a Principal Component Analysis of
the matrix X; which contains the TI curves as columns. He performs a Singular Value
Decomposition of the matrix after it is column-centered. The column centered matrix X;
is decomposed:

X; =P0Q’ ©)

with P and Q orthogonal matrices and ® a diagonal matrix with singular values,
decreasing in size down the diagonal. This decomposition describes what is known as a
Principal Component Analysis on the Covariance matrix. It is equivalent to performing
an Eigenvalue decomposition of the covariance matrix XIX;.

Of course an analysis based on the correlation matrix could also be carried out. Then
the data, i.e. the TI curves in X ;» are not only centered but also divided by their standard
deviations, they are transformed into z-values. With such X; the matrix R= XX,
contains the correlations between the curves in the matrix. Because the variance, and
hence standard deviation, of the curves is believed to contain potential interesting
information, the decomposition is not carried out on the correlation matrix. Later it will
be shown that even the mean values contain information that had perhaps better not have
been subtracted from the data.

The decomposition (3) gives a new set of curves P® which are called principal
curves. When an eigenvalue decomposition of the covariance matrix X:X; is carried out,
like

X;X; = Qo’Q’ )
the new set of curves can be found in X ;Q.
It can be shown easily that (3) and (4) are the same by substituting X; = PPQ’ into

(4), which gives:

XiX; = QP'P'PPQ’ ®)
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which is Q<I>2Q’ because P'P =1 and ®'=® is diagonal. Because also Q'Q =1,
post-multiplying both sides of (3) with Q gives X;Q=PD.

Usually not all principal curves will be of interest, only the first two or three might be
interpretable. These two or three principal curves will approximate the information in the
matrix X to a certain extent, and it is very useful to know how good this approximation
is. This is relatively easily seen from the diagonal matrix ® which contains the singular

values or from @ with eigenvalues <bJ assumed to be ordered from large to small.

)
The square root of the singular values is introduced here to simplify the notation in the
remainder.

The amount of information of all curves in X; represented by the first 7 principal

curves, also called fiz, is the sum of the first r eigenvalues:

9 =

r

Y ©)

-

Equivalently, of course, the [oss of this representation is

R
b= Y ¢;j=td>-9, ™

J=r+l

with R the rank of the matrix X;X; (see e.g. Johnson 1963).

It is good practise to explain the fit of a representation in terms of the relative amount
of variance. In this case it boils down to (8,/114)2), the percentage of Variance Accounted
For (VAF) is of course (8,/tx<1>2) 100%.

The analysis of the covariance matrix focuses on the general shape of the curves for a
drink. When the curves all have more or less the same shape this method comes up with
one major principal curve with a relatively large &, which has this shape. Van Buuren
(1991, 1992) presents an analysis of 48 curves from different drinks and different
subjects together. The resulting first three principal curves explained respectively
83.3%, 10.2% and 4.0% of the variance. Other analyses (Dijksterhuis and Krabbe
1991) resulted in comparable percentages.

Figure 5 shows the first three principal curves of the drinks presented in the previous
figures and Table 1.
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Figure 5 First, second and third principal curves for the different drinks.

In an attempt to use the principal curve method to compare the differences in
perceived bitterness changing over time for different drinks Dijksterhuis and Krabbe
(1991) ran into trouble using the first two or three principal curves obtained by analyzing
the matrices X;. The same problem is illustrated by Figure 5 in which it is not easy to
distinguish between the curves of the different drinks. There seem to be roughly two
kinds of curve in PTIC1, B2 and B2C2 against the other ones. In PTIC2 it is not easy to
get to an interpretation that makes sense, PTIC3 seems to contain mostly noise.
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10.4

Figure 3 showed that one of the major differences between the drinks lay in the
general level of a curve. The average curves (Figure 4) also show an important level
difference. Because the method of principal curves works on column-centered curve
matrices X; most of the level-information is lost entirely. Though the method of van
Buuren (1992) is a welcome new tool in investigating the differences in TI-curves this
aspect proves less fortunate. There is however, an alternative method which is closely
related to the principal curve method.

Non-centered PCA

An alternative method of analyzing the matrices with Tl-curves X; was found in a
method called non-centered PCA. As the name suggests the matrix X; is analyzed
without it being put in deviations from the mean first. The decompositions are the same
as in the previous paragraph, the only change is that X; now is an uncentered, raw
datamatrix. Like in the column-centered case a new set of curves is found in P&. These
vectors are no principal components in the usual sense of PCA and they will be called
non-centered principal curves . When the mean contains substantial information, i.e. the
mean value is relatively large, the first non-centered principal curve will reflect the
position of the mean (see e.g8. Jolliffe, 1986; van de Geer, 1986). This can be seen in
Figure 6 where the first non-centered principal curves (NPTIC's) are very much like the
mean curves in Figure 4.
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Figure 6  First three non-centered principal curves for the different drinks.

The second NPTIC shows B2 having the highest peak at about 10 seconds. Bl
distinguishes itself clearly from the rest at 40 to 70 seconds, perhaps reflecting an after-
taste phenomenon. It is strange that B2 does not show this, being a more bitter solution.
B2 does show something of the kind in NPTIC3 at approximately 70 seconds. The
mixtures with sugar and B2 seem to have a later peak in NPTIC2 (B2C1, B2C2).
Perhaps sugar masks a very bitter taste for some 12 seconds? However wild the
interpretations, the second and third non-centered principal curves are more apart than
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10.5

the second and third principal curves in Figure 5 and appear to contain less noise.
Flipsen (1992) compared the alternative PCA analyses and concluded that the non-
centred PCA shows the most information.

The expressions for the fit 9, and loss o, of a representation with r curves are not
different from the centred case (see (6) and (7)). There is a complication with the
explained variance concept of an uncentred PCA. Variance is usually measured around a
certain mean value, but with uncentred PCA the mean is not subtracted, it is still in the
data. This makes is difficult to compare the different PCA approaches on ground of the
amount of variance they explain. Other matters, such as the interpretability of the
solution, must be taken into account to compare the methods.

Further considerations

Another alternative to van Buuren's (1992) principal curve method is row-centering
the X; instead of column centering them. The row means are just the mean curves x;
while the column means contain an average intensity value of each curve for the K
subjects.

The representation of the new curves P® is one result of the analysis, the so called
component scores. Another result are the loadings in Q, each subject k has a loading on
the principal curves. A plot of these loadings reveals differences between the subjects
and can provide interesting information about such things as panel-homogeneity and
outliers. This aspect is being studied and will be presented in future papers (Flipsen
1992, Dijksterhuis et al. 1994).

Still another possibility is performing a PCA (however centered) on the matrices X
(k=1,..., K), instead of X; (i=1,..., N), which contain the curves of one subject for the
different drinks. In that case P® contains principal curves for a subject, the so called
signature. Q then contains the loadings of the drinks on these principal curves. Some
unpublished research (Dijksterhuis, 1991) showed that these loadings, stemming from
different subjects and after (Procrustes-) matching (Gower, 1975), can give interpretable
results.

Since these kind of analyses of Time-Intensity data are very new, a lot of research is
needed to establish its usefulness.
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11

Principal Component Analysis of Time-Intensity

11.1

Curves: three methods compared

Introduction

Time-Intensity studies often result in a large quantity of data. A traditional way of
aggregating the data is averaging the curves over the assessors. Subsequently a number
of parameters can be computed from the averaged curves (see e.g. Yoshida 1986, Leach
and Noble 1986, Punter et al. 1989). However, because individual differences are often
quite large (see e.g. Overbosch et al. 1986, Pangborn et al. 1983, Schmitt et al. 1984)
the average TI-curve is not a good representation of the individual TI-curves (see e.g.
Liu and MacFie 1990, MacFie and Liu 1992). Overbosch et al. ( 1986) suggested a way
of aggregating TI-curves based on a different treatment of the rising and the falling part
of the curves. However Liu and MacFie (1990) noted some drawbacks of this method: it
does not allow for a plateau of maximum intensity, not for more than one peak in the
curve, nor for non-zero end-points, which are things that often occur in practice.
Another disadvantage, noted by Van den Broek (1993) is the fact that the method only
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11.2

results in an aggregated curve and no reference to the individual curves seems to be
provided.

Principal Component Analysis (PCA, see e.g. Jolliffe 1986) of TI-curves is a method
in which the differences between individual curves are taken into account (van Buuren
1991, 1992; Dijksterhuis 1993). Resulting Principal Curves should be better
representations of the individual curves than the average curve. Furthermore PCA has
some additional properties which may prove useful in interpreting TI-curves.

Method

To investigate the usefulness of PCA for TI-data analysis, TI-data for four sweet
solutions and four bitter solutions were collected (Flipsen 1992). All solutions were
prepared in drinking-water and evaluated in fourfold at room temperature. The trained
panel consisted of one male and eight female assessors. All participated in previous TI-
experiments. A series of six training sessions preceded the actual measurements. The
concentrations of the stimuli are shown in Table 1.

Table 1 Concentrations of the bitter (tetrahop and caffeine) and sweet (sugar and
saccharin) stimuli.

concentration 1 concentration 2
tetrahop 12 mg/l 15 mg/l
caffeine 125 mg/l 160 mg/l
sugar 3049/ 60 g/l
saccharin 0.1 g/l 0.2 g/l

Concentrations are set at roughly the same sweetness ratio as the level of the sugar
sweetness scale and at the same bitterness. Time Intensity was measured with the PSA-
computer-system (OP&P 1991). The perceived intensity was recorded on a vertical line
scale anchored at the bottom end by "weak" and at the upper end by "very strong". The
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11.2.1

11. PCA of TI-data: three methods compared

assessors swallowed (part of) the sample (40ml) and then immediately recorded the

perceived intensity for 90 seconds. The samples were presented in eight sessions, four

with sweet solutions and four with bitter solutions. Mineral water and crackers were

provided for neutralising between samples. Each sample was presented four times to a

subject in random order. For each assessor an average Time-Intensity curve over the

four replications for each stimulus is calculated.

Average TI-curves

Figure 1 shows the average sweetness curves of the four sweet stimuli.
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Figure 1  Average curves for the sweet stimuli.
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The Sugar 2 concentration is perceived as the most intense sweet stimulus (at Imax).
Saccharin 2 is perceived about as sweet as Sugar 2. Saccharin 1 is perceived more sweet
than Sugar 1.

The average bitterness curves are presented in Figure 2.
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Figure 2 Average curves for the bitter stimuli.

The higher concentrations of all stimuli are perceived as more intense. The figures 1
and 2 show that the average curves of the sweet stimuli have a different shape from the
average curves of the bitter stimuli. The sweetness curves have a faster rate of rising and
a faster rate of decline than the bitterness curves. Average time to maximum intensity is
11-13 seconds for sweet and 17-18 seconds for bitter. Differences between sweet and
bitter are perhaps related to the location of sensitivity for the four qualities of taste.
Sweet is being sensed at the front part of the tongue and bitter at the back part.
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11.2.2

Individual differences

There are substantial differences between assessors for the same stimulus. Typically,
each assessor demonstrates an idiosyncratic curve shape which is distinct and
reproducible (see e.g. Overbosch et al. 1986). Usually the Tl-curves differ both in
overall height and in shape. Figure 3 shows the individual curves of the nine subjects for

the high sugar concentration.

intensity

time

Figure 3  Individual subject's curves for the high sugar concentration (Sugar 2, numbers
in the curves are subject-numbers).

The idiosyncratic shape of a subject's curve is called signature of a subject by Van
Buuren (1992). A consequence of the high between-subjects variability is that the
average curves drawn in Figure 1 and 2 are not necessarily a good representation of the

individual curves.
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11.3

11.3.1

Principal Curve Analysis

Principal Component Ana[ysis is called Principal Curve Analysis in the context of TI-
data analysis. Applying Principal Component Analysis to a matrix with TI-curves was
originally suggested by van Buuren (1991). PCA weights individual curves in such a
way that similar curves receive large weights, while deviating curves will receive low
weights and will not substantially affect the resulting principal curve (Van Buuren
1992). The first principal curve is the weighted average of the individual curves that
explains most of the total variation. The weights which the individual curves receive are
called curve loadings. These loadings show how the curves contribute to each principal
curve and may be used to classify assessors and interpret the obtained principal curves.

PCA variants

Three variants of PCA are compared, the variants differ in the amount of initial
transformations on the data. The most common transformations are:

*  centering: The average level is subtracted from each individual TI-curve, the result is
a Tl-curve with positive and negative values around an average value of zero. A
PCA on centered data analyses the covariances between the TI-curves.

*  Standardising: When in addition to centering the data are normalised too, this is
commonly called standardising. The TI-curves are divided by their standard
deviation and consequently have a variance of one. A PCA on centered data analyses
the correlations between the T1-curves.

When none of the above is applied the raw data remain. A PCA on the raw,
untransformed data is called a non-centered PCA. This method was suggested by
Dijksterhuis (1993) to analyse TI-curves, the curves resulting from this analysis are
called Non-Centred Principal Curves. Note that both level (average) and variability
information is retained.

Van Buuren (1992) performed a PCA on centered TI-curves, consequently the
covariances between the individual curves are analysed. This results in a new set of
curves which will be called Covariance Principal Curves. The covariances contain
information on the variability of the curves, the level is removed.

Usually PCA is performed on the correlations between variables, here between the
individual Tl-curves. In this case the Tl-curves are standardised curves. The curves
obtained by PCA are now called Correlation Principal Curves. Both level and variability
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11.4.1

information is removed from the curves, what remains could be considered the
underlying shape of the curves.

The heart of the PCA computations is the so called Eigenvalue Decomposition or the
related Singular Value Decomposition, but these are beyond the scope of this paper. Van
Buuren (1992) and Dijksterhuis (1993) provide some information on technical matters
concerning PCA (see Jolliffe 1986 for more on PCA and for further references). The
"goodness of fit" measure associated with Principal Component Analysis, usually
presented as an Eigenvalue or a percentage of Variance Accounted For (VAF), can be
used with Principal Curve Analysis too. This measure however depends on the centering
of the data, so it is hard to use it to compare the uncentered with the centered results. The
analyses reported here all had more than 90% VAF by the first two Principal Curves.

Non-Centred Principal curves

In this section the Non-Centred Principal Curves of the sweet and bitter solutions are
computed. In addition the loadings for the sweet solutions are displayed and used in
interpreting the obtained principal curves.

Non-Centred PCA of T data from four sweet solutions.

In Figure 4 the first Non-Centred Principal Curve for each sweet solution is shown.
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Figure 4  First Non-Centred Principal Curves for the sweet stimuli

The shape of the first Non-Centred Principal Curves resembles that of the average
curves (compare with Figure 1 and 2). Apparently, the different weights for the
individual curves hardly changed the shape of the average curve.

In Figure 5 the second Non-Centred Principal Curves are displayed.
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second intensity scores (non centred PCA)
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Figure 5  Second Non-Centred Principal Curves for the sweet stimuli.

The second Non-Centred Principal Curves have a maximum followed by a minimum.
It turns out that the second Non-Centred Principal Curve models the rate of rising and
declining of the individual TI-curves.

With the aid of the curve loadings on the first two Non-Centred Principal Curves and
the individual TI-curves we can interpret the first two Non-Centred Principal Curves. In
Figure 6 the curve loadings of the nine assessors are given for the sugar solutions. Each
point represents the TI-curve of one assessor.
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Figure 6  Loadings of the assessors on the first two Non-Centred Principal Curves
(dimensions) for the two sugar concentrations.

Assessor 2 and 8 have a high loading on the first Non-Centred Principal Curves for
both concentrations. The loading of assessor 1 is small, the TI-curve of assessor 1 does
not comply very well with the shape and intensity of the first Non-Centred Principal
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Curves. Assessors 2 and 8 have TI-curves which are like the first Non-Centred Principal
Curves.

Assessor 6 has the highest loading for the second Principal Curve, in contrast with
assessors 1 and 2 which are among the lowest loadings on the second Non-Centred
Principal Curve. Figure 3 shows the difference between the individual curves for the
high-sugar concentration. Negative loadings on the second curve go together with slow
rising and declining curves (e.g. assessors 1, 2 and 5), positive loadings mean fast
rising and declining curves (e.g. assessor 6 and 8). The third Non-Centred Principal
Curves seem to consist of mainly error and are not displayed for that reason.

11.4.2 Non-Centred PCA of TI data from four bitter solutions.

Figure 7 shows the first Non-Centred Principal Curves of the four bitter solutions.
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Figure 7 The first Non-Centred Principal Curves of the four bitter solutions.
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second intensity scores (non centred PCA)

The interpretation of the first Non-Centred Principal Curves of the bitter solutions is
analogous to that of the sweet solutions. Again these curves look like the average
curves. Figure 8 shows the second Non-Centred Principal Curves.

60+

Time

Figure 8  The second Non-Centred Principal Curves of the four bitter solutions.

The second Non-Centred Principal Curves for the bitter stimuli also turn out to model
the rate of increase and decline of the original TI-curves. The loadings of the individual
curves on the Principal curves again help in interpreting the Principal Curves. Figure 9
presents these loadings for the caffeine stimuli. Assessor 6 has a high loading on
dimension 1 for the caffeine solutions, assessor 5 has low loadings. For the Tetrahop
solutions assessors (loadings not shown) 2 and 4 load high and assessors 6 and 9 load
low on the first Principal Curve. A negative loading on the second principal curve means
a Tl-curve with a slow rise and slow decline. A positive loading means a curve with fast
rising and falling flanks. Another thing that can be seen from Figure 8 is that the two
Tetra and the two caffeine stimuli cluster together from approximately 15 to 45 seconds.
In the tail of these curves the clustering is less apparent.
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Figure 9  Loadings of the assessors on the first two Non-Centred Principal Curves for the

two caffeine concentrations.
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Covariance Principal Curves

Van Buuren (1992) suggested PCA on centered data. With this analysis the average is
removed from the data and consequently PCA is applied to a matrix with covariances
between the curves. In Figure 10 the first Covariance Principal Curves of the bitter
solutions are shown.
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Figure 10 First Covariance Principal Curves for the bitter stimuli.

The first Covariance Principal Curves do not correspond with the average curves as
the Non-Centred Principal Curves did. The expected differences in concentration are
only visible at about the maximum of the first Covariance Principal Curves, not in the
remainder of the curves. After 50 seconds the higher concentrations of the sweet
solutions cross the lower concentrations. This is contrary to expectation since high
concentrations usually have a longer aftertaste than the low concentrations.

Figure 11 shows the second Covariance Principal Curves for the four bitter stimuli.
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Figure 11 Second Covariance Principal Curves for the bitter stimuli.

Using the individual curves and curve loadings (both not shown) the Covariance
Principal Curves can be interpreted. The first Covariance Principal Curves model the
general shape of the Tl-curve, though without overall height information, since the
average curve is subtracted from the data. The second Covariance Principal Curves
show the deviations in rise and decline from the first Covariance Principal Curves (as
did the 2nd Non-Centred curves). The clustering together of the two Tetra and the two
Caffeine curves can be seen in Figure 11 from approximately 20 to 70 seconds.

Correlation Principal Curves

When the data are corrected for the mean and divided by their standard deviation the
principal curves resulting from the PCA are called Correlation Principal Curves. Now
both overall height and individual spread is deleted from the data. What remains can be
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called the general shape of the curve. As a result the first Correlation Principal Curves
(Figure 12) almost overlap each other because this Shape of all Tl-curves is generally the
same. It is conceivable that the interesting information is in the variability and the level of
the curves. Often level, and/or variability, are not interesting when studying shape, but
with TI-curves this may not be the case. More research is needed to answer questions
about the shape of Tl-curves and which information can be extracted from TI-curves.
For another definition of the shape of TI-curves see Dijksterhuis (1992) and Dijksterhuis
and van den Broek (1994).

Caffeine 2
Tetra 2

Caffeine 1

First intensity scores (correlation PCA)

0 10 20 30 40 50 60 70 80 90

Figure 12 First Correlation Principal Curves for the bitter stimuli.

Differences in concentrations have disappeared in Figure 12. With help of the curve
loadings (not shown) the first Correlation Principal Curves can be interpreted as the
shape of the TI-curve in which time to maximum appears to play an important role. The
second Correlation Principal Curves seem to model the deviation in time to maximum
from the first Correlation Principal Curves (Figure 13).
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second intensity scores (correlation PCA)

Tetra 1

Caffeine 1

Tetra 2
Tetra 2

Caffeine 2

Caffeine

Caffeine 2 Tetra 1

Tetra 2

0 10 20 30 40 50 60 70 80 90

time

Figure 13 Second Correlation Principal Curves for the bitter stimuli.

The clustering together of the curves from the same stimulus can be seen in Figure 13
too. From approximately 20 to 70 seconds the two Tetra and the two caffeine curves
cluster together.

Conclusion

Principal Component Analysis of Time-Intensity data is a useful way of
aggregating the Tl-curves of individual assessors. The first Non-Centred Principal
Component is the best aggregated Tl-curve (of course under the assumptions of linear
PCA). Second Principal Components can be interpreted and seem to model the rate of
rise and fall of the TI-curves. The loadings of the PCA can be used to classify the
assessors and to help interpreting the obtained Principal Curves. The second Principal
Curves show a clustering of the two Tetra and the two Caffeine stimuli, not of the
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sweet stimuli. This clustering is visible with all three PCA variants, perhaps somewhat
more outspoken in the Covariance and the Correlation Principal Curves. This may
point at some systematic difference between the time courses of the Tetra-taste and the
Caffeine taste, further study could be interesting.

Correlation Principal Curves can be interpreted to reflect similarities in general
"shape" of the TI-curves, whether or not enough information is in this "shape"
remains to be investigated further. For aggregating all information in the TI-curves
they are probably less useful, because level and variability information are deleted
from the individual curves. Non-Centred Principal Curves model most aspects of the
individual TI-curves. Covariance Principal Curves are in between Non-Centred and
Correlation Principal Curves.
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12

Matching the Shape of Time-Intensity Curves

12.1 Introduction

Time Intensity (TI) research is used to study changes over time in the taste of food
and beverages. The individual differences in the resulting Time-Intensity curves are
often very large (see e.g. Overbosch et al. 1986, Pangborn et al. 1983). Often TI-curves
are averaged over subjects, after which TI-parameters are obtained from the average TI-
curves. Figure 1 shows an example of this simple averaging process for two curves.
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12.2
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Figure 1  Example of averaging two Tl-curves.

The question is whether the averaged Tl-curve is representative of the individual
curves. The averaged TI-curve often has properties unrepresentative for both curves (see
e.g. Liu & MacFie, 1990). For the study in this paper we will ask: "Is the shape of the
average curve representative of the shapes of the individual curves?"

Recently Principal Component Analysis was suggested for the analysis of TI-curves
(van Buuren 1991, 1992, Dijksterhuis 1993, Dijksterhuis et al. 1994). In Principal
Component Analysis (PCA) of TI-curves each individual curve receives a weight and a
weighted average curve is computed. The weight works in the Intensity-direction only,
the Time-direction remains untouched. A method that would also weight the time-
direction would be interesting. The isotropic scaling weight in the shape-matching
method works both in the time- and intensity-direction. The method is suggested here to
provide another type of aggregating the TI-curves, and perhaps to point at a potential
new direction of TI-curve data analysis.

Method: Shape analysis

Usually TI-curves are regarded as vectors, which are one-dimensional. The vector
contains the intensity values, one for each time-sample. When the Tl-measurement took
one and a half minute and the sample frequency was one per second, this vector is an
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array of 90 intensity values. A common way of inspecting the curves is by plotting the
intensity values against time-values, with time on the abscissa and intensities on the
ordinate (as in Figure 1). The plotted curve lies in a plane spanned by the dimensions
time and intensity. In the remainder of this article we define the term shape as the
configuration in two-dimensional time-intensity space (see also Dijksterhuis 1992). In
this space the curves are characterised by pairs of numbers: (rime, intensity). Each curve
is now represented by an (§x2) matrix with S the number of time-samples. A well
known method for matching two or more matrices is Generalised Procrustes Analysis
(Gower 1975, Dijksterhuis and Gower 1991/2), but this method is not employed here
because not all Procrustes transformations are useful for Tl-data interpreted as curve-
shapes. !

Procrustes Rotations are not used because the shapes as defined above have a unique
orientation, the time- and intensity axes should remain the underlying dimensions of the
space. Translation of the whole curve does not alter the shape of the curve, it merely
shifts the curve, but it has an effect on the isotropic scaling which stretches or shrinks
the curve. This translation shifts the curves around a common centre. A closer match of
the curves is achieved by the subsequent isotropic scaling when the curves are centred
(see Dijksterhuis 1992).

Isotropic scaling is the stretching or shrinking of the entire TI-curve in an equal
amount in all directions of the space. Figure 2 gives an illustration of an isotropically
stretched and a shrunk TI-curve. Stretching is achieved by multiplication of the entire
curve with a scaling factor p>1, shrinking by 0<p<1. The method of isotropic scaling is
described in Gower (1975), Ten Berge (1977) and Peay (1988).

1" When the data are arranged in a 3-mode structure (e.g. time-samplesx stimulixassessors) GPA may
be useful for analysing TI-curves. This is however a different approach from the one used in this

paper.
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original curve
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Figure 2 Illustration of an isotropically stretched and shrunk TI-curve.

Isotropic scaling as applied to a data-set of TI-curve shapes is performed on curves
from different assessors and the same stimulus. This results in a separate analysis for

each stimulus.

Examples

Bitter solutions I

The results of a small study in which 9 subjects judged 8 bitter stimuli is analysed
using the method proposed above. The stimuli were 2 concentrations (Low, 125 mg/l
(L) and High, 160 mg/l (H)) of Caffeine (CL, CH, CLr, CHr; r: replicated) and 2
concentrations (12 mg/l and 15 mg/1) of TetraHop (tetra-hydro-iso-humulone, TL, TH,
TLr, THr; r; replicated). The data are taken from Flipsen (1992, see also Dijksterhuis et
al. 1994). For each stimulus there are 9 individual TI-curves. Replicates were treated as
separate stimuli. For each stimulus a separate analysis is performed. The 8 separate
analyses result in a (8x9) table of scaling weights (see Table 1).
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Table 1 Scaling weights from the analyses of the 9 individual curves from the 8 bitter
solutions from Flipsen (1992)

1 2 3 4 5 6 7 8 9
CL 09163 1.02 1.062 1.069 1.134 0.8903 1.083 0.8906 0.9934
CLr 0.7604 0.8841 1.018 1.076 1.22 0.9619 1.054 1.103 1.027
CH 0.8453 1.05 0.9773 0.9884 1.146 09774 1.073 1.018 0.9379
CHr 1.02 0.8929 0.9575 1.062 1.087 0.9816 1.07 0.9786 0.9885
TL 1.117 0.9535 0.9951 0.9551 1.079 1.124 09812 0.8592 1.026
TLr 1.092 0.8115 0.8902 0.9982 1.008 1.174 1.122 0.9601 1.139
TH 1.041 0.8849 1 0.961 1.191 1.192 0.9346 0.9027 1.042
THr 0.6589 0.8454 1.065 1.038 1.162 1.228 0.9978 0.9879 0.9748

It is hard to see the structure in the scaling weights. When the scaling weights were
equal to 1 this would have meant that all curves were identical, no stretching or
shrinking was necessary. The weights actually are close to 1, which is a result of the fact
that all Tl-curves have approximately the same shape: they rise to a maximum and
slowly decline to zero. To find out whether the small differences in the scaling weights
contain any underlying pattern the table was analysed by means of Principal Component
Analysis (see e.g. Jolliffe 1986). A two-dimensional representation of the 8 stimuli
resulted (see Figure 3). The first two dimensions explained 40.4% and 24.8% variance
respectively. In Figure 3 can be seen that the Caffeine stimuli are better replicated than
the TetraHop stimuli. The scaling weights for the two pairs of replicated Caffeine stimuli
were close for most assessors. The shape of the curves of different Caffeine
concentrations are closer than for TetraHop.

The loadings of the PCA on the data in Table 1 represent the 9 subjects, and are
plotted in Figure 4. It looks like the subject-group was rather homogeneous, there are no
clearly identifiable outliers or clusters of subjects.
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Figure 3

Two dimensional representation of the 8 bitter stimuli.
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12.3.2

we

Figure 4  Position of subjects for the analysis of the bitter-solution TI-curves.

Bitter Solutions I1

The second example concerns data from van den Broek (1993). Three concentrations
(Low, 1250 mg/l (L); Medium, 1950 mg/l (M); High, 2650 mg/l (H)) of Caffeine (CL,
CM, CH) and 3 concentrations of Quinine (125 mg/l (QL), 142,5 mg/l (QM), 160 mg/l
(QH)) were analysed. Each stimulus was presented three times and the mean curve over
replications was calculated. For each stimulus there are 14 individual mean TI curves.
Each stimulus is analysed separately, this resulted in a (6x14) table of scaling weights
(see Table 2).
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Table 2 Scaling weights of the 6 analyses on the 14 individual curves from the 6 bitter
solutions (2 tastes, 3 concentrations) from van den Broek (1993).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CL 1.008 0957 0985 1016 1015 1016 1013 1.002 0999 1014 0987 1.016 0967 101
CM 1 0986 0989 1015 1.011 1015 0992 1.005 1.007 1014 0983 1.013 0.969 1.004
CH 0995 0966 0988 1.019 1.024 1.024 1025 0991 0973 1.01 0977 1.021 0988 1.006
QL 0945 0942 0963 1.05 1.006 1.057 1053 0921 1049 1.016 1.027 1.052 1.038 0.93
QM 0952 0942 0989 1.05 1029 1.055 1.048 091 1049 0939 1.048 1.053 1.052 0938
QH 0924 0942 1022 1051 1035 1.07 0969 0975 1051 0978 1 028 1.066 1.056 0.891

To visualise the structure in the table PCA was applied to it. The results are plotted in
Figure 5. The first dimension explained 69.1 % variance, the second 19.5 %.

QH
—
0+ CL
QM
QL
-15 |
-15 0 15

Figure 5  Structure of Tl-curves of the Quinine and Caffeine stimuli.

262



Part IV: TI Data Analysis 12. Matching the shape of TI-curves

In Figure 5 the curves of the different Caffeine stimuli are closer than the curves of
the Quinine stimuli. This means that the differences within the set of the Caffeine stimuli
are smaller than those in the set of Quinine stimuli. The first dimension seems to
represent a taste component. The second dimension seems to be a concentration effect
for Quinine, however for Caffeine there appears no clear concentration effect.

The group of subjects seems to divide into two small clusters and some loose
subjects. On the left in Figure 6 there is a group of subjects 12, 6, 13, 4,9 and 11, on
the right we find 1, 14, 10 and 2. The pattern of scaling weights over the stimuli seems
to differ for these two groups. Since the first dimension represents a taste-effect
(Quinine versus Caffeine) it can be inferred that the leftmost cluster of subjects has
received higher scaling weights for the Quinine curves. The rightmost cluster has higher
weights for the Caffeine curves. Remembering that high weights correct for relatively
small curves the leftmost group must have had small curves for Quinine. Analogously
the right group has small curves for Caffeine.

-1 .
-1 0 1

Figure 6  Position of subjects for the analysis of the bitter-solutions TI-curves.

It seems that two main segments can be identified in the group of subjects. The two
segments systematically have a different shape of their TI-curves for Quinine and
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Caffeine stimuli. Segmentation becomes interesting with larger groups of subjects, but a
trend can already be found samples of smaller size.

Fat spreads

In this example the data from 35 different fat-spreads are analysed (van den Broek
1993). The fat-spreads were made of 4 carriers, viz. one margarine (M), two kinds of
Jow fat margarine (L1, L2) and an experimental spread (X). Each spread was prepared
with three tastes, diacetyl (D), 3-heptanone (H), ethylheptanoate (E) in three
concentrations (Low (L), Medium (M), High (H)). Each stimulus was evaluated three
times by 14 judges. The mean curve over these 3 replicates was calculated for each
subject. The analysis was done for each stimulus separately, so a (14x35) table of
scaling weights is the result (see Table 3). To find structure in these weights a PCA was
carried out. The first two dimensions explained respectively 31.8% and 16.7% variance
(see Figure 7).
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Scaling weights of the 35 analyses (fat spreads, in rows) of the 14 individual
curves (in columns).

1

2

3

4

5

6

7

8

9

11

12

14
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1.016
0.987
0.998
1.012
1.025
1.017
1.012
1.022
1.025
1.011
1.035
1.055
0974
0979
0.945
0.988
0.947
0.979
1.065

1.055

0.983
1.039
1.001
1.002
0.977
0.987
0.986
0.998
0.958
1.03

0.992
1.02

1.021

0.964
0.96

0972
1.019
0.968
0.961
0.968
0.991
1.018
1.01

0.984
0.944
0.984
0.989
1.019
1.025
1.012
0.938
0.926
0.933
0.945
0.886
1.019
1.019
0.997
0.96

1.003
0.979
0.965
0.97

1.015
1.003
0.994
0.961
1.012

0.979
0.951
1.005
0.99
1.001
0.985
0.969
1.021
0.992
0.976
0.964
1.051
1.002
1

1
0.997
1.016
1.022
1.063
1.004
1.049
1.006
1.015
1.046
1.005
1.037
1.02
1.021
1.002
1.013
1.023
1.029
1.021
1.007
1.023

0917
0.946
0.93

0.945
0.969
0.93

0.879
0.908
0.953
0.933
0.927
1.055
1.014
1.003
0.998
0.981
1.015
1.027
1.061
1.023
1.05

1.018
0.997
1.043
1.021
1.012
1.008
1.021
1.02

1.013
1.022
1.03

1.022
1.02

1.023

1.037
1.043
1.026
0.984
1.032
1.002
1.043
1.029
1.006
1.012
1.013
0.92

1.011
1.014
1.008
1.005
1.004
1.004
0.973
1.024
0.962
1.025
1.005
1.038
1.001
1.033
1.014
1.018
1.003
1.008
1.015
0.948
1.015
0.994
0.999

1.042
1.045
1.028
1.013
1.034
1.034
1.044
1.028
0.992
1.032
1.01

1.054
1.011
1.015
1.017
1.03

1.01

1.032
1.068
1.02

1.052
1.024
1.014
1.043
1.024
1.039
1.015
1.024
1.022
1.015
1.021
1.029
1.019
1.037
1.018

1.032
1.039
0.982
0.995
1.029
0973
1.043
1.004
0.995
1.002
1.025
1.042
0.998
1.002
0.975
1.004
1.018
1.006
1.065
1.008
1.049
1.019

1.036
0.949
1.023
0.921
1.016
0.965
1.003
1.023
1.027
0.997
0.938
1.02

0.996
0.971
1.027
1.027
0.995
1.007
1.023
0.999
0.989
1.019
1.016
1.042
1.006
1.008
1.017
1.018
0.999
1.027
1.041
1.01

1.005

0.982
1.032
0.989
0.995

1.006
0.998
1.002
0.997
1.01

0.998
0.966
1.015

1.015
1.014
0.992
0.994

1.007
0.994
0.98

0.998
0.984
1.012
1.036
0.999
0.984
0.994
0.985
0972
0.997
1.023
0.988
1.025
0.981
0.98

0.958
1.001
1.012
1.001
1.022
1.008
0.991
1.02

0915
1.002
1.003
0.961

1.044
1.034
1.008
0.981
1.028
1.021
1.038
0.99

1.002
1.012
0.997
0.97

1.009
0.999
0.993
0.993
1.008
1.01

0.908
1.006
0.934
1.009
1.015
1.005
1.005
1.013
1.006
1.023
1.001
1.008
1.022
1.005
0.99

1.007
0.947

0916
0.928
0.989
1.005
0.98

1.011
0.968
1.004
1.021
1.01

1.02

0.946
0.959
0.989
0.987
0.979
0.974
0.97

0.985
0.972

0.998
0.99

0.98

0.984
0.974
0.999
0.991
1.007
0.989
0.989
0.963
0.986
1.015
0.955

1.034
1.048
1.031
1.024
1.03

1.04

1.038
1.025
1.033
1.03

1.037
1.044
1.015
1.002
1.022
1.02

1.011
1.031
1.054
1.023
1.042
1.029
1.02

1.045
1.023
1.045
1.02

1.01

1.033
1.013

1.028
1.019
1.02

1.023

1.01

1.02

1.024
1.017
1.031
1.025
0.978
1.022
1.026
1.014
0.991
1.041
1.012
1.009
1.013
1.009
1.004

1.045
1.018
0.991
1.002
1.012
0.991
1.014
1.016
1.01

0.997
0.995
0971
1.016
0974
0.985
1.033
0.975

1.023
1.046
0.997

0.899
0.998
1.038
0.99

0.958
0.963
0.979
0.862
1.01

1.007
1.019
0.971
1.015
0.971
0.814
0.98

0.888
1.022
0.971
0.793
0.991
0.872
1.015
0.901

1.011
0.897
1.028
0.966
0.992
1.02
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Figure 7  Structure of TI-curve shapes of the fat-spread stimuli.

In Figure 7 all experimental stimuli (X) are positioned differently from the other
spreads (L1, L2 and M), irrespective of taste (XD, XH, XE) and concentration (-L, -M,
-H). The other stimuli seem to cluster in two loose groups, one containing mainly
margarine (M) and one of the low fat margarine (L1) stimuli, the other group mainly L2
stimuli. Furthermore there seems to be a taste component visible. The E tastes are mainly
found in the upper leftmost group while the H tastes are distributed over the upper part
of the plot. The D tastes are concentrated in the lower part of the figure. The effect of
concentration is not clearly visible in the plot. The first dimension seems to represent a
carrier component. A taste component (D versus E and H) can be found in the second
dimension.

Some loose clusters of subjects can be seen in Figure 8. At the lower left subject
numbers 14, 10 and 5, at the lower right part number 1, 6,7, 9, 12 and 13 seem to form
such a loose cluster. These clusters are clearly not as tight as the ones found in the
previous example (Figure 5). Therefore it can be concluded that the 14 subjects in this
experiment seems to have rather homogeneously evaluated the stimuli. No clear
systematic differences in the shape of their curves seem to have occurred.
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Figure 8  Position of subjects for the analysis of the fat-spread TI-curves.

Conclusion

Focusing on the shape of the TI-curve in two-dimensional "Time-Intensity-space"
may be a starting point for some new methods of aggregating and analysing TI-curves
(compare "shape theory", Stoyan and Stoyan 1990 or Goodall 1991). The results permit
conclusions about shape-differences in the TI-curves resulting from different stimuli.
The method also gives a plot which can be studied for segmentations of subjects and
identification of outliers. The example analyses of the three TI-datasets in this paper lead
to potentially interesting conclusions about the underlying TI-curves and segmentations
of the group of experimental subjects. The configuration of stimuli may be a bit hard to
interpret without some knowledge of the stimuli. The plot with the judges clearly shows
outliers and groups of subjects scoring similarly.

Another method which immediately suggests itself is based on non-isotropic scaling.
This means that the TI-curves are modified differently in the time- and in the intensity
direction. Weight factors for the time- and intensity direction separately are thus obtained
which may be studied as proposed.
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Summary

In this chapter the main conclusions of the chapters in part IV are summarised and
suggestions for future directions of research are given.

Chapter 10
Principal Component Analysis of Time-Intensity Bitterness
Curves

The Principal Component Analysis of Time-Intensity curves theoretically results in
better aggregated Time-Intensity curves than the average curve over assessors. The
interpretability of the Principal Curves is not straightforward and knowledge of the
stimuli is needed. The non-centred Principal Component Analysis may give results that
are better interpretable than the Principal Curves from other Principal Component
methods, but a more systematic comparison of Principal Component methods is given in
the next chapter. The Non-Centred Principal Time-Intensity Curves may suggest
phenomena at certain points in time which can be investigated further in new
experiments. As an exploratory tool the (non-centred) Principal Component (Curve)
Analysis is promising.

268



Part IV: TI Data Analysis Concluding Remarks

Chapter 11
Principal Component Analysis of Time-Intensity-Curves:
Three Methods Compared

This chapter provides the necessary comparison of three Principal Component
Analysis variants. The previous chapter was lacking such a comparison. There is some
evidence for substantiation of the tentative conclusion from chapter 10 ("Non-centred
analysis is the most promising method."), but more research is needed.

Another aspect of the Principal Component Analysis of Time-Intensity curves is the
interpretation of the loadings (weights). These are used to identify segments of assessors
and outliers. They can also be useful to help interpreting the Principal Curves.

Suggestions for future research

In the previous two chapters replicated curves were averaged before the Principal
Component Analysis was carried out. Replicated Time-Intensity curves, i.e. curves from
the same assessor judging the same stimulus, usually are almost identical. When
replicated curves are included in the matrix as extra columns, this gives the possibility to
check the validity of the results, provided that the number of replications is the same for
each stimulus. Ideally the Principal Curves of replicates should coincide, in practice they
will be close. When they are far apart something has gone wrong in the study, an
assessor is unreliable or another source of error is active.

To be able to judge the Principal Component method on its merits for Time-Intensity
data analysis a large number of Time-Intensity data sets should be analysed. Preferably
datasets that were already analysed by conventional means and of which the
interpretation is clear and well established, should be used for these analyses.

The Principal Components could be attributed a significance measure by performing
some kind of permutation- or randomisation test. This would extend the Principal
Component Analysis-Time-Intensity method with a way to judge whether or not to
interpret 2nd, 3rd or higher Principal Curves.

Another use of the Principal Component Analysis of Time-Intensity-curves is
suggested by van Buuren (1991). Using only the first few Principal Curves, so-called
Predicted Curves can be computed. These curves are smoothed versions of the original
data because the higher components, in casu higher, Principal Curves are not included.
These predicted curves can easily be constructed as linear, weighted, combinations of
the original curves.
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Reflection of curves

In the chapters 10 and 11 the computed Principal Curves are presented together in
one plot. Each of the Principal Curves in the plot resulted from a separate analysis, so
there is no relation between these curves. It can so happen that some curves appear
upside-down. This is no problem usually with the first principal curves because they can
just be plotted with the correct orientation. The reflection of a principal component is
allowed. But with higher principal curves, i.e. second or third, their bumpiness
increases and it can become hard to give them all an orientation for easy display. Since
the comparison is between the curves in one plot, this is a matter of concern. It suggests
not to take into account very bumpy curves, i.e. too high principal curves.

It should not be hard to devise a way to match the principal curves, to give them
orientations as similar as possible. This could e.g. be done by comparing the squared
distances between their corresponding time ponts, for both orientations, and picking the
orientation which results in the lowest squared distance. This enteprise is left to other
researchers.

Chapter 12
Matching the Shape of Time-Intensity Curves

This chapter contains a suggestion of a new direction of research of Time-Intensity
curves. The underlying idea is still that Time-Intensity curves from the same stimulus
can be matched in some way, while correcting for individual differences. The method
suggested is one of many possible methods, and its advantage is that both Intensity- and
Time-scores are weighted (Principal Component Analysis only weights Intensity-
scores). The interpretation of the isotropic scaling weights computed is not
straightforward, unfortunately. A Principal Component Analysis of the table of weights
gives results that can be interpreted, but there is much room for improvement.

The plots with the assessors can be used to find segments or outliers, this is a useful
property of the method, but alternative methods may be useful too.

Suggestions for future research

The method can be divided in two main steps:
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1 estimation of the scaling factors

2 representation of the scaling factors by Principal Component Analysis

In chapter 12, the latter is done both by a table and by a plot of the results of a
Principal Component Analysis on this table. It is clear that with a small number of
factors a table may suffice. But the number of estimated factors is K N, i.e. the product
of the number of assessors and the number of stimuli. In most Time-Intensity
experiments this number will be quite large.

The two steps above can be stated in more general terms:

1 transformation of the Time-Intensity curves

2 representation of the transformations in a convenient way

The first step should correct for individual differences between the Time-Intensity-
curves of different assessors in order to match the shape of the Time-Intensity-curves,
depending on the stimulus. This could mean that for each stimulus a separate analysis is
performed as was done in the method suggested in chapter 12.

For the first step a number of methods can be used of which anisotropic scaling was
already mentioned. Another possibility is computing an (NxN) matrix of pairwise
distance- or association measures between the Time-Intensity curves. This matrix can be
analysed by an appropriate Multidimensional Scaling Method.

For the second step other Principal Component Analysis-like methods can be used
that may be more convenient for the representation of the scaling factors resulting from
step 1.

Future directions in Time-Intensity research!

Apart from Principal Component Analysis other Multivariate methods may be used
to analyse Time-Intensity-data. Different approaches to Time-Intensity-data analysis are
also conceivable. In this section some suggestions are given.

Multivariate analysis of Time-Intensity data

In addition to the abovementioned suggestions for future research some other
Multivariate Analysis techniques may be interesting for the analysis of Time-Intensity
data. For the Principal Component Analyses presented, two-mode matrices (time-points
* assessors) are analysed for each stimulus separately. Three mode matrices (time-points

1 Paul Eilers (DCMR, Milieudienst Rijnmond, The Netherlands) is thanked for his comments
concerning the "Curve fitting" approach.
Dr. Paul Lewi (Janssen Pharmaceutical company, Beerse, Belgium) is thanked for suggesting the
compartment model.
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x stimuli x assessors) may be analysed by 3-mode methods. An obvious method to start
with is Generalised Procrustes Analysis (see footnote 1 in chapter 12), but other three-
mode methods may be used too.

Another way to add a third mode in the analysis is by including replicates.
Replicates may even be added as a fourth mode to the above mentioned three-mode data,
giving (replicates * time-points * stimuli x assessors) data. But the analysis of four-
mode data is very complex and there are very few methods available for this. One might
consider MANOVA methods, but the assumptions of MANOVA will almost certainly be
violated by the Time-Intensity data. More research is needed here.

Curve fitting

Another approach to analysing Time-Intensity-curves is by fitting them onto
theoretical curves. A family of functions that seems able to describe the shape of Time-
Intensity-curves reasonably well is suggested by Eilers (1993a):

A (1_ 'bfxzj) <% 1
y‘-j—aj [ c (1)

where i indexes the time-points and j the assessors. The parameters a, bj and ¢jare
estimated iteratively using the method of "projected curves". This method is sofar only
applied experimentally to a small Time-Intensity dataset (Eilers 1993b), but it may be an
interesting direction for further research.

Pharmacokinetic approach

In pharmacology the path a pharmacon takes through the body, from ingestion to
the receptors at the site where it is needed, can be modelled by a system of equations
known as the compartment-model. The pattern of activity of the pharmacon, plotted
against time, looks like a Time-Intensity-curve. The compartment-model may be an
interesting model to study Time-Intensity-curves. After all the path of a pharmacon is
comparable to that of taste-stimulus: saliva, mucus, receptor-site at the tongue.
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Introduction

It is not easy to formulate general conclusions concisely given the diversity of
statistical methods employed. One problem is the apparent schizophrenic character of
this book. It is on sensory research, but by fits and starts it appears to be on data
analysis, without which, by the way, sensory research cannot be conduced properly.
The Concluding Remarks, at the end of each part, reflect the schism by giving separate
conclusions for sensory science and data analysis. This schizophrenia may be
rationalised by keeping in mind that this is really a book on sensory research and not on
data analysis. The data analysis is a means to analyse the data. That some of the
Multivariate techniques are introduced rather mathematically results from the co-
operation with their developers, which are mathematicians. All techniques are introduced
elsewhere in considerable more detail and appropriate references are provided. The focus
here is on their applications to sensory data, or what is called Sensometrics. Given that
Sensometrics is an evolving field of research, there is no schism really.
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Often a particular problem of -sensory- data analysis calls for modifications or
extensions of MVA methods. But these are secondary to the main topic of this book: the
analysis of data from sensory and consumer science: Sensometrics.

In the following, each part will be presented in turn, their main conclusions
summarised and indications for future research given.

PART I: Individual differences

Individual differences between assessors in a sensory or consumer panel are
acknowledged to exist. Despite this, averaging over assessors, which is almost never
justified, is widely practised. In Chapter 2 it is shown that even in a conventional
profiling panel the use of the attributes can be so different that this casts doubt on any
analysis that averages attributes over assessors. Only one-dimensional attributes can be
averaged safely, and almost no attribute appears strictly one-dimensional.

There are large differences between panels, and some panels will have attributes that
are more one-dimensional -have higher consonance values- than others. It would be
interesting to find out what are the causes of the differences between panels. Is it a
matter of the extent or method of training of the assessors? Does it result from the
particular set of products? Does it result from panel fatigue, was the number of
presentations too high? These are matters worth investigating.

There may be an optimum, somewhere between maximal consonance and minimum
experimentation costs. This optimum may perhaps not be obtained by sensory research
at this moment, and it can certainly not be achieved by averaging data over assessors.
Finding this optimum could lay at the base of a research program in sensory- and
consumer-panel research.

Another conclusion from the low consonances encountered must be that individual
difference models, such as GPA, must be applied to panel data. When GPA is applied it
is in principle not important whether one uses classical GPA (Gower 1975) or Projecting
GPA (GPPA, Peay 1988). The idea is of course that an individual difference model is
applied, and GPA is the simplest and most well known method.

Chapter 3 presents both GPA and GPPA and illustrates GPPA by analysing both a
conventional profiling dataset and a free choice profiling dataset. Once the GPPA or
GPA method are applied, using different optimisation criteria hence giving difference
results, the different fit and loss variance measures from a GPPA can be interpreted just
as the corresponding measures from a GPA. Chapter 3 presents these measures in a

274



13.2.0

13. Concluding Remarks

large number of tables and bar-charts. (For a somewhat more detailed comparison of
GPA and GPPA, and some other individual difference models, see Dijksterhuis and
Gower (1991/2)). An important point that is made in this chapter, as in the previous
chapter, is that GPA (or GPPA) is a mandatory method for FCP data, but perhaps
should be considered mandatory for conventional profiling data too.

Individual differences analysed by GPA

Different methods for GPA (coined "classical" GPA and GPPA in Chapter 3) fit
different models and give different interpretations of the data. Though in practise these
differences may be small, it is important to realise that differences exist (see also
Dijksterhuis and Gower 1991/2). These differences can be linked to the underlying
research question of the sensory experiment at hand.

The question

Can you match the individual datamatrices as well as possible, i.e. using all
available similarity between the individual datamatrices ?

is answered positively by the Classical Procrustes Analysis (GPA) method (Gower
1975). This method uses all dimensions, overlooking no information. The result is a
solution of maximum dimensionality, say R, of which the researcher has to choose a
low number r for the representation and interpretation of the results.

The question

Can you plot as much information from the data in a low number of
dimensions, e.g. two dimensions to make graphical representations ?

can be answered affirmatively when one uses the Projecting Procrustes Analysis
(GPPA) method (Peay 1988). With this method there is an a priori choice of
dimensionality and the fitting of the model takes place irrespective of any similarity that
may exist in higher dimensions. As a result the solutions are not nested, i.e. a p-
dimensional solution is not the same as the first p dimensions of a (p+1)-dimensional
solution. When the researcher has an a priori reason to look for an r dimensional
structure, and wants to find this structure best, though at the risk of overlooking
information in higher dimensions, GPPA is the method to use.

It is impossible to give a conclusion as to which method is best used, it depends on
the question asked, and on preferences of the researcher.
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Some Methodological Issues

The results of GPA are commonly presented as two-dimensional plots of the
configurations of products, sometimes superimposed with plots of the loadings or
correlations of the attributes. Further application of linear biplot theory (Gabriel 1971) in
conjunction with GPA may lead to visually appealing and better interpretable
configurations. The GPA Group Average could be biplotted with the structure
correlations of the attributes from the different assessors (compare Ter Braak, 1990, see
also Dijksterhuis and Gower 1991/2). This may enable easy interpretation of the use of
the attributes, the properties of the objects and, if wished, reification of the dimensions.

The so-called "assessor-plots” sometimes found in connection with GPA (see e.g.
Arnold and Williams 1985) are a device that deserve further investigation. Though they
are not presented in this book, a few points should be addressed. The plots give a
graphical representation of the assessors in a panel. This representation is the result from
a classical scaling, or Principal Coordinate Analysis (PCO, Gower 1966, 1984) of a
symmetric matrix containing the Procrustes loss values between the individual
configurations of each pair of assessors (Banfield and Harries 1975, see also Harries
and MacFie 1976).

The comparison of assessor-plots based on the losses of GPA solutions of different
dimensionality may be a way to help find an optimal dimensionality to represent the
results. It may also serve as a means to identify outliers or segments in the panel, and
perhaps find assessors or segments responsible for a particular dimension in the
solution.

A lot of sensory data may be more easily collected as ordinal or nominal, instead of
as numerical data. The abundance of numerical data does not mean that there really is
information in the numbers. Ordinal or nominal (or mixed) data may contain just as
much information. A non-linear GPA method, without isotropic scaling and only applied
experimentally once (van Buuren and Dijksterhuis 1988), exists and it would be
worthwhile to revitalise the study of this method.

A Misconception about GPA

In the latest printing of their text-book on sensory research, Stone and Sidel (1993)
share a frequently held misconception about GPA. This is very unfortunate because their
book is considered a standard text-book on sensory evaluation.

Stone and Sidel appear to address two different points:
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* QDA is not so time-consuming as is stated by some

»  GPA is not a good method to analyse profiling data

Their first point is correct. Often Free Choice Profiling was presented as an
alternative to QDA and other conventional profiling methods. Though it is true that FCP
can be applied with minimal training of the sensory panel -hence fast- it is a matter of
discussion whether this is any good. Their second point is incorrect. They state about
FCP data:

The individual results and the panel results are then analyzed using a
generalized Procrustes analysis. This type of factor analysis analyzes data
until an acceptable result is achieved; it is a highly experimental procedure,
one that should not be considered without full appreciation for the
consequences. (Stone and Sidel, p. 237)

The procedure is said to analyse "data until an acceptable result is achieved", but this
is exactly what most statistical and data-analytical methods do, and no reason to doubt
the method. Their concern seems to be that GPA "is a highly experimental procedure”,
which may have been true in 1962 when the method was introduced, or in 1975 when
the Generalisation of two-sets Procrustes Analysis was published. After almost 20 year
of applying GPA to sensory data and further research into the method it cannot be
maintained that GPA is "a highly experimental procedure”. That one should not consider
any statistical method without appreciation for the consequences is true. But this can be
said for the averaging over assessors too!

Stone and Sidel continue:

As Huitson (1989) noted, the analysis always produces a result that might
not be justified based on examination of the database itself. (Stone and
Sidel, p. 237)

The article by Huitson (1989) does not show anything with respect to the
justification of Procrustes results (see the reaction by Arnold (1990) and the answer of
Huitson (1990) to this). Huitson used configurations of random data to show that GPA
can make sense out of nothing. Unfortunately he only performed one random data
analysis for a particular problem. Had he performed a larger number of random data
analyses, say 50, he would have performed a random-data test for his particular GPA
dataset, and could have found a significant difference between "real-" data and random
data. The conclusion would have probably been that GPA is able to differentiate between
"real" data, i.e. containing "signal”, and random data containing only "noise".
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PART II: Measurement Levels

Chapter 4 presents a flexible method for the analysis of K datasets which can be
applied to the data from the assessors in a sensory or consumer panel, as was illustrated
by a very small image study. In the Chapters 5 and 6 non-linear GCA is presented for
the analysis of sensory datasets.

Distances as models for sensory perception

The analyses in Chapter 4 are rather complicated, which may inhibit their rapid
adoption by others. However, their general formulation suggests a paradigm for a
direction of fundamental sensory research. The method was summarised as follows:

distan tch
X — 2,22y, 2 (v, ) =Y -

Its distance measures are reminiscent of the early developments in Multidimensional
Scaling and allied methods. In fact the approach to first compute distance matrices and
later match the mapped distances was the rationale for the PINDIS system of Lingoes
and Borg (1978, see also Commandeur 1991). MDS methods were applied to construct
so-called perceptual spaces, which could be interpreted as a model of the way
individuals, or a group of individuals, perceived a set of stimuli. It may be interesting to
study distance models to represent a set of sensory stimuli in an optimal way. Of course
this has been done to a certain extent (by e.g. Schiffman et al. 1981), using a number of
MDS programs, but the current proposal is not restricted to any existing MDS method or
computer program.

A number of questions must be answered first:

1. Which distance measure is best for presentation of the stimuli?

2. Is there an optimal mapping of the distances into perceptual spaces?

3. What is the optimal way to match the individual spaces?

The first question concerns the choice of the distance-generating function, coined g
in Chapter 4. Some methods may use aggregated data:

g(X)=D @

where X is e.g. the average of the individual X ;. Of course an individual difference
approach may be more promising:
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g(X)=D, 3)

Some assessors may need other distance functions than others:

gk(X k)=Dk 4)

specifying a different distance-generating function g, for each assessor. Possibly
some variables may need other distances than other variables. This situation was
encountered in Chapter 4, but alike for all assessors. Adding another subscript
generalises this so that each variable for each assessor may be analysed using a different
distance:

8X =Dy ®

The different distances generated are, for each assessor, combined into one distance
matrix D;.. The problem is to choose the appropriate distance functions 8k Experience,
theory, common sense, experimentation, etc. may give suggestions.

The next step in the scheme (1) is the mapping. Once different functions gjy are
found, the same mapping method can be used for all assessors. Whether this will be
PCO or another method depends on the particular dataset. Note that in Chapter 4 the
combination of the Extended Matching Coefficient for ¢ and PCO defines Multiple
Correspondence Analysis, and choosing Euclidean distances with PCO defines Classical
Scaling.

The individual representations Y, can be studied, preferably after giving them
similar orientations by means of GPA. The preferred mapping method in the proposed
paradigm is GPA because of the rigid-body-character of its transformations: distances
are preserved fixed in the matching.

Individual differences again

The application of Generalised Canonical Analysis (GCA), as an alternative to
Generalised Procrustes Analysis (GPA), enables a detailed study of sensory data.
Because it is an individual difference model individual assessors can be identified and
studied, just as with GPA.

In Chapter 5, GCA is shown to be useful for the analysis of Multiway data, i.c. 3-
way data from sensory research. Even when the original line-scale scores are recoded
into a mere three categories there emerges an interpretable solution. A distinction
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between butcher made and factory made sausages is found, just as van Buuren (1987)
had found using a different method. In Chapter 6, GCA is applied to another sensory
dataset, and two different solutions are compared. These two solutions, from an ordinal
3-category analysis and from a numerical 10-category analysis, are almost identical

The important point is that, again, an individual difference model is employed, and
that in addition non-linearities can be modelled. The latter is necessary when analysing
categorical data on an nominal or an ordinal measurement level. In addition non-linear
relationships between variables are modelled too (see Chapter 1, §1.6.2 and §1.6.3).

Future sensory research

Additional research into the use of response scales is needed, for example a
systematic study of the differences in responses of assessors to:

1. alow number of categories on the scale used

2. aline-scale to indicate an intensity on

Usually line-scales are used, but they may only provide mock information in their
numerical values. Category-scales may be easier to use by the assessors, resulting in
more consistent use of the scale and less fatigue. There may be an optimum number of
categories, perhaps depending on the type of product. On the other hand the assessor
may feel restricted by the categories and may prefer to give a mark along a continuous
line-scale.

Studying the differences between category and line-scales means performing the
same experiment twice, once under condition 1 and once under condition 2. Such an
experiment is different from a post hoc recoding of categories as in Chapter 5 and 6,
though the results could turn out equivalent. However, the experiment should be
performed first.

Using non-linear methods of MV A is appropriate for the analysis of the data from
the experiments suggested above. When an ordinal analysis of a number of categories
shows linear transformations of the category-numbers, one could confine oneself to
linear methods for subsequent analyses.

Identifying nonlinearities may be useful in understanding the responses of the
assessors, or to select a number of variables with certain properties. Comparing a
numerical, an ordinal and a nominal analysis can reveal which variables behave in a non-
linear manner. These variables can be further inspected or deleted from subsequent
ordinal or numerical analyses if such analyses are thought more appropriate.
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It may be easier for assessors to assign one of a relatively low number of categories,
(for an attribute) to a product, than to assign a number to the intensity of the attribute
(see also van Buuren 1987). The marking of a line-scale, as is common practise, implies
a judgement of the distance of the mark to the left and right end of the scale, or to the
anchors. The perceived intensity of an attribute must be converted into a position on a
line scale, hence into a distance to the end of the scale, or to an anchor. The task for the
assessor looks like a kind of cross-modality matching, which is not an easy task in
general. The assignment of a limited number of fixed categories may be easier for the
assessor and result in data with less error. The analysis of this kind of qualitative data is
best performed with non-linear analyses, e.g. using ordinal PCA or GCA.

Data Analysis

There is a fundamental difference between GPA and GCA in the way the matching
of the individual datasets is performed. With GPA distances between products are kept
fixed for each individual dataset X » With GCA the distances change as a result from the
projections involved. It would be interesting to know how exactly GPA relates to GCA
and which position is taken by GPPA.

The extension of non-linear GPA and its relation with non-linear GCA would be an
interesting line of research (see also §13.2.2).

The same misconception about GPA, noted in §13.2.3 will probably arise for some
people, concerning GCA instead of GPA. Though there is less experience with applying
GCA than in applying GPA there is no need for a reserved -conservative- attitude
towards the use of GCA for sensory data. Re-read §1.9 to find out why.

PART III: Sensory-Instrumental Relations

Sensory-Instrumental data usually consists of two datamatrices. One dataset
contains scores on sensory attributes for a number of products, and the other set
contains chemical/physical measurements on the same products.

There is no reason why Sensory-Instrumental relations should be linear, so it is an
obvious choice to use non-linear statistical methods. In part III two of these methods are
used: nonlinear Redundancy Analysis and nonlinear Canonical Analysis. The linear
method employed in Chapter 9, PCA, proves useful in screening both the instrumental
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and sensory datasets. GPA (linear) can be used as a first approximation for the match of
an instrumental and a sensory dataset. When the fit of this match is low, nonlinear
relations can be suspected. Then it may be time to use nonlinear methods, such as used
in Chapter 7 and 8.

When the sensory set contains hedonic judgements ("appreciation”, "liking",
"quality", etc.) there is a large probability of nonlinear responses. So nonlinear methods
are preferred in such cases (see e.g. Noble 1975). Performing both linear and nonlinear
(e.g. ordinal) analyses using RA or CCA enables one to identify the most nonlinear
attributes.

A disadvantage of nonlinear methods, especially of (nonlinear) CCA is the
possibility of obtaining a very high, but artificial, fit. This can result from the freedom of
the optimal scaling algorithm to choose nonlinear transformations of the variables
together with a capitalisation on correlations between pairs of variables, one in each set.
An almost perfect fit is always suspect, and one should look for the reason. Nonlinear
CCA is sensitive for extreme categories with low frequencies. When they are there, they
can be recoded or the corresponding variable deleted. It will be useful to perform another
analysis with a somewhat more strict measurement level. Finally a linear method may be
applied, such as GPA, as suggested in Chapter 9. The balance between the use of non-
linear and linear methods may be hard to obtain. Knowledge of the products under
investigation, and of the statistical methods, should result in a reasonable choice of
analysis method and hopefully a reasonable balance.

Though two datasets are involved, this is not a necessary restriction. GCA (K-sets
CCA) can be applied instead of CCA, and GPA can already handle more than two sets.
In Chapter 7 and 8 three datasets are related: Design variables, Instrumental variables
and Sensory variables. Instead of matching the sets pairwise they could very well be
analysed using GPA or GCA.

PART 1V: Time-Intensity Data Analysis

TI-data consist, as it were, of mini time-series of just one or two minutes length.
Two different ways of exploring the structure present in the TI-curves are presented in
Part IV. In Chapter 10 and 11 PCA is used to this end, and different variants of PCA are
compared. The non-centered analysis may give the best results because both level and
spread information are retained, which are important properties of the TI-curves, and
may reveal interesting psychological or physiological differences among assessors.
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Different products may differ in just these features. Chapter 12 suggests another
approach, that of the analysis of the shape of the TI-curve. This is a highly experimental
approach, which can only be seen as the first step in a new exploratory direction to
analyse TI-curves. As mentioned in Chapter 12, in addition to the isotropic scaling of the
curves, non-isotropic scaling may be applied, or other ways of fitting the curves. The
Concluding Remarks of Part IV suggest some other Multivariate Analyses of TI-curves.

The MVA methods applied in the chapters 10, 11 and 12 are mainly exploratory
methods. In addition to the development of the exploratory analyses of TI-curves it may
be timely to start thinking of other approaches. The curve-fitting of the TI-curves onto
theoretical curves, and the use of the compartment model from Pharmaco-kinetics, are
two methods suggested in the Concluding Remarks to Part IV.

Theory driven approach

Time-Intensity research is quite different from the other research presented in this
book. In a way it is closer to the nose and, in particular, tongue, than the other three
parts in this book. TI-curves are a representation of an assessor's perceived intensity of
a stimulus over a short period of time. This kind of research is close to the original
psychophysical research of Weber, Fechner and Stevens. But the development on the
understanding of the time-course does not reflect this closeness. Little is known about
the exact underlying processes that give the TI-curve its shape. Not many people doubt
that there is something to be found in the curves, but all agree that it is obscured by
individual differences, and perhaps other influences. The three chapters in Part IV try to
model the individual differences by combining individual TI-curves in some way or
another. The resulting pooled TI-curves may be interpreted further, but this is where
much TI-research stops. Stimuli have different TI curves, some have longer after-taste,
some have long lasting high overall intensity, some build up the taste very slowly, some
build up taste very quickly. It is time that the conclusions of TI-research go beyond the
descriptive.

There is a lot of knowledge about the perception of taste-stimuli. Much of this
knowledge is of a chemical, biological and physiological nature. In the "Understanding
Flavour Quality” (1992) symposium some of the latest developments were presented
(see the corresponding issue of Food Quality and Preference, 5, no.1 & 2). There is also
psychophysical knowledge about the processes of smelling and tasting. There are
theories about higher processes of perception, though usually for vision and not for taste
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and smell. This knowledge may be studied for suggestions for developing new theories
of smell and taste. All this may lead to new ways of studying and interpreting TI-curves.

Closing remarks

The diversity of the research presented in this book has been grouped into four main
topics in Sensometrics:

* Individual Differences

*  Measurement Levels

»  Sensory-Instrumental Relations

*  Time-Intensity Data Analysis

Each ideally will profit from the analyses presented. But, as will be clear from all
the "suggestions for future research”, there are no definite solutions yet. The chapters in
this book indicate directions of research in which a potential solution may be concealed,
and must be interpreted as such.

A general conclusion may be that the research field coined Sensomerrics, is an
interesting and lively field, and that there may be much to be gained from the research
taking place in it. It is hoped that this book will contribute in the forwarding of
sensometric research and that some of the suggested future research will actually be
carried out, initially in an academic environment.
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Psychometrie, Statistiek en Modelvorming, met als bijvak informatica.

Gedurende de jaren 1984 tot 1987 werkte hij als student-assistent op het
psychologisch laboratorium van de Rijksuniversiteit Utrecht, bij de groep "Chemische
zintuigen" van Prof. Dr. E.P. Koster. Na de studie psychologie trad hij in 1987 in
dienst van het onderzoeksbureau voor sensorisch- en consumentenonderzoek Oliemans
Punter & Partners, te Utrecht. Daar hield hij zich voornamelijk bezig met de
statistische aspecten van het sensorisch- en consumentenonderzoek. De meeste
artikelen uit dit proefschrift zijn het resultaat van onderzoek uitgevoerd bij dit bureau.

Eind 1993 werd het sensorisch onderzoek verruild voor econometrisch onderzoek
door in dienst te treden van het Economisch Instituut voor het Midden en Kleinbedrijf
(EIM) op de afdeling Fundamenteel Onderzoek. Dit bleek een kort uitstapje naar
andersoortig onderzoek, want vanaf januari 1995 is de schrijver verantwoordelijk voor
het sensorisch laboratorium van het Instituut voor Veehouderij en Diergezondheid (ID-
DLO).

Het proefschrift is het resultaat van een eigen initiatief en is, afgezien van een
aantal artikelen, grotendeels in eigen tijd geschreven. Vanaf 1992 is de schrijver als
gastmedewerker verbonden aan de Vakgroep Datatheorie van de Rijksuniversiteit
Leiden, waar hij de nodige begeleiding heeft ontvangen.

De schrijver is oprichter van de Sensometrics group, een groep onderzoekers
werkzaam op het raakvlak van statistiek en sensorisch- en consumentenonderzoek.
Deze groep houdt in 1996 z'n derde internationale bijeenkomst. Hij is (co-)auteur van
meer dan veertig publicaties, het merendeel op het gebied van het sensorisch- en
consumentenonderzoek.

De huidige onderzoeksinteressen liggen nog steeds op het gebied van de
sensometrie, maar naast de Multivariate Analysen komen nu ook onderwerpen als de
statistische power van sensorische verschiltoetsen, hun efficiéntie, etc. aan de orde.
Hiernaast gaat z'n belangstelling uit naar de werving, selectie, training en monitoring
van sensorische panels, de (academische) positie van het sensorisch onderzoek en de
commercialisatie van sensorisch onderzoek en sensorisch marktonderzoek.
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Stellingen bij het proefschrift
Multivariate Data Analysis in Sensory and Consumer Science
door Garmt Dijksterhuis.

Bij conventioneel sensorisch profileringsonderzoek kan men er beter niet van uit gaan
dat de attributen voor alle proefpersonen dezelfde betekenis hebben.

Dit proefschrift, Part I.

De balans tussen over-fitten (door te veel vrijheid bijvoorbeeld bij Gegeneraliseerde
Canonische Analyse met optimale schaling) en informatie-verlies (door het ten
onrechte opleggen van lineariteit) is moeilijk te vinden. Exploratieve niet-lineaire
multivariate analysen kunnen hier helpen omdat ze niet-lineaire, maar ook lineaire,
verbanden kunnen laten zien.

Dit proefschrift, Part II, Part III.

Bij smaak-onderzoek met de Tijd-Intensiteit-methode moet men de beschrijvende
(Multivariate) analysen gaan aanvullen met kennis over de processen die aan de
smaaksensatie ten grondslag liggen.

Dit proefschrift, Part IV.

In Nederland heeft oploskoffie een slecht imago.
Dit proefschrift hoofdstuk 4.

Wanneer Borg en Lingoes (1987) stellen dat "The generalised Procrustean
transformation problem is of limited applied interest", vergissen zij zich.

Borg, I, Lingoes, J. (1987). Multidimensional Similarity Structure Analysis, New York: Springer-
Verlag. §20.2, blz.333.

Dat "de oude Grieken" de bakermat van de beschaving vormen is wellicht mede een
gevolg van het feit dat zij geen algemeen aanvaarde religieuze dogma's kenden die een
vrije wetenschap in de weg konden staan.

(Zie ook EJ. Dijksterhuis, 1950, De mechanisering van het wereldbeeld, I:114, blz. 98)
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Tussen correlatie en causatie bestaat op z'n best een correlatie.

De verplichting om een groot aantal exemplaren van een proefschrift aan de faculteit
ter beschikking te stellen kan worden afgeschaft, zeker wanneer men bedenkt dat het
grootste deel van dit aantal uiteindelijk ongelezen bij het oud papier zal belanden.

Het overlijden van Frank Zappa (1949-1993) betekent een groot verlies voor de
moderne muziek.

De Nobelprijs voor gekke loopjes is dit jaar ten onrechte niet aan John Cleese
uitgereikt.

Een computer is in wezen niets anders dan een schroevedraaier.

Het limietgeval van een specialisme (heel veel van een klein gebied weten) is alles van
niets te weten.

Veel ontwerpers van gebruiksvoorwerpen lijken het woord "gebruikersvriendelijk"
niet te kennen.

Bij het onderzoek van de "sensorische vleeskwaliteit" van vers vlees worden vaak
alleen de kenmerken "malsheid" en "sappigheid” gebruikt. Dit is een veel te beperkte
benadering.

Het niet toepassen van een effectieve behandeling van een ziekte, uit
levensovertuiging of door het praktizeren van een alternatieve geneeswijze, zou
strafbaar gesteld kunnen worden omdat het vergelijkbaar is met een (poging tot)
mishandeling.



