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Abstract

This dissertation studies constrained matrix and tensor factorization problems which

appear in the context of estimating factor analysis models used in signal processing and

machine learning. Factor analysis dates back to the celebrated principal component

analysis (PCA), which provides the optimal low rank approximation to matrix data.

PCA is a key dimensionality reduction technique, however it cannot be used for esti-

mating the underlying generative matrix factors, which are generally non-orthogonal.

On the other hand, it has been observed that imposing simple constraints on the latent

factors, for example non-negativity (which in a way opposes orthogonality) can make

these factors essentially unique – although theoretical understanding of this phenomenon

was very limited prior to this dissertation. Moving from two-way to higher-way tensor

data, the so-called parallel factor analysis (PARAFAC) model can provide essentially

unique factors under mild conditions, but it is also widely accepted that if correct priors

are imposed on the latent factors, the estimation performance can be greatly enhanced.

One of the main contributions of this dissertation is the development of a simple

sufficiently scattered condition that turns out to underpin a great variety of factor

analysis models – including but not limited to non-negative matrix factorization(NMF),

and other models relying on volume minimization, which are nowadays pervasive in

signal processing, machine learning, and geoscience and remote sensing – where it helps

resolve a popular conjecture in multispectral imaging known as Craig’s belief, that

sources can be blindly identified via “minimum volume transformation” under certain

conditions. In these and other applications, the sufficiently scattered condition provides

the best identifiability results known to this date, and it has significant potential for

further applications.

Besides theoretical results on the essential uniqueness for factor analysis models

under non-negativity constraints, a general algorithmic framework is proposed, which

seamlessly and effortlessly incorporates many common types of constraints imposed

onto the latent factors. The new framework is a hybrid between alternating optimiza-

tion (AO) and the alternating direction method of multipliers (ADMM): each matrix

factor is updated in turn, using ADMM, hence the name AO-ADMM. This combination

iv



can naturally accommodate a great variety of constraints on the factor matrices, and

almost all possible loss measures for the fitting. Computation caching and warm start

strategies are used to ensure that each update is evaluated efficiently, while the outer

AO framework exploits recent developments in block coordinate descent (BCD)-type

methods which help ensure that every limit point is a stationary point, as well as faster

and more robust convergence in practice. Extensive simulations and experiments with

real data are used to showcase the effectiveness and broad applicability of the proposed

framework.

In addition to establishing essential uniqueness and providing effective computa-

tional algorithms for various matrix and tensor factorization models, we further study

how well these models estimate the correct latent factors in noise. Towards this end,

pertinent Cramér-Rao bounds (CRB) for constrained matrix and tensor factorization

are derived. This turns out being a nontrivial task, mainly due to the presence of con-

straints, trivial ambiguities, and computational challenges as well. In particular, the

Fisher Information Matrix (FIM) is always singular for the models considered (even

without constraints) – but modern CRB analysis shows that taking the pseudo-inverse

still provides a valid (albeit potentially loose) bound. For big data analytics, how-

ever, the challenge is how to efficiently compute this pseudo-inverse. Towards this end

we succeeded in identifying the null space of the FIM for several special cases, lead-

ing to very efficient algorithms for computing the CRB. Equipped with these results,

we test-drive the performance of various algorithms and benchmark them against the

CRB. Interestingly, our algorithms can approach this (optimistic) CRB under certain

conditions.

v



Contents

Acknowledgments i

Dedication iii

Abstract iv

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Kronecker, Khatri-Rao, and Hadamard Product . . . . . . . . . . . . . . 4

1.2 Tensor Unfolding: Matricization and Vectorization . . . . . . . . . . . . 6

2 Uniqueness of Non-negative Matrix Factorization 8

2.1 Uniqueness of NMF: Precursors . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Uniqueness of NMF: Main Results . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Sufficient Condition . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Uniqueness in Practice . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Volume Minimization-Based Matrix Factorization 24

3.1 Uniqueness: Existing Results . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Uniqueness: Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



3.3 Application: Principled Neuro-Functional Connectivity Discovery . . . . 33

3.3.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 A Flexible and Efficient Algorithmic Framework 50

4.1 Alternating Optimization Framework: Preliminaries . . . . . . . . . . . 52

4.1.1 Alternating Least-Squares Revisited . . . . . . . . . . . . . . . . 52

4.1.2 The Convergence of AO . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Solving the Sub-problems Using ADMM . . . . . . . . . . . . . . . . . . 56

4.2.1 Alternating Direction Method of Multipliers . . . . . . . . . . . . 56

4.2.2 Least-Squares Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 General Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Summary of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . 64

4.4 Case Studies and Numerical Results . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Non-negative Matrix and CP Factorization . . . . . . . . . . . . 67

4.4.2 Constrained Matrix and Tensor Completion . . . . . . . . . . . . 73

4.4.3 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Performance Analysis via the Cramér-Rao Bound 82

5.1 The Cramér-Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 CRB and identifiability . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.2 CRB under constraints . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.3 CRB under Gaussian noise . . . . . . . . . . . . . . . . . . . . . 86

5.1.4 CRB under non-Gaussian noise . . . . . . . . . . . . . . . . . . . 87

5.2 Cramér-Rao Bound for Matrix Factorization Models . . . . . . . . . . . 87

5.2.1 The Fisher Information Matrix . . . . . . . . . . . . . . . . . . . 88

5.2.2 Computing the Cramér-Rao Bound . . . . . . . . . . . . . . . . . 90

5.3 Cramér-Rao Bound for CP Factorization Models . . . . . . . . . . . . . 94

5.3.1 The Fisher Information Matrix . . . . . . . . . . . . . . . . . . . 95

5.3.2 Computing the Cramér-Rao Bound . . . . . . . . . . . . . . . . . 100

vii



5.4 Putting NMF to the Test . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Symmetric Non-negative Matrix Factorization 106

6.1 Uniqueness of Symmetric NMF . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 A Procrustes-based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Cramér-Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.2 Estimation performance . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.3 Co-authorship clustering . . . . . . . . . . . . . . . . . . . . . . . 121

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

References 128

viii



List of Tables

2.1 Maximum reconstruction error for asymmetric NMF . . . . . . . . . . . 21

2.2 The percentage of finding a solution with norm larger than 1 . . . . . . 23

3.1 System matrices recovery in the noiseless case. . . . . . . . . . . . . . . 49

3.2 System matrices recovery of the C. elegans system with noisy data. . . . 49

4.1 Averaged performance of NMF algorithms on synthetic data. . . . . . . 71

4.2 Averaged performance of NCP algorithms on synthetic data . . . . . . . 73

6.1 Maximum reconstruction error for symmetric NMF . . . . . . . . . . . . 109

6.2 Top-10 contributors of the top-3 clusters . . . . . . . . . . . . . . . . . . 123

ix



List of Figures

2.1 A 2-D slice view of R3
+, C, and C∗ . . . . . . . . . . . . . . . . . . . . . . 16

2.2 A graphical view of Example 2.2. . . . . . . . . . . . . . . . . . . . . . . 19

3.1 The neural connectivity obtained from real MEG data. . . . . . . . . . . 35

3.2 Column update of M for approximately solving (3.8). . . . . . . . . . . 41

3.3 Convergence of Algorithm 3.2, step 2 (left) and step 3 (right). . . . . . 43

3.4 Recovery of C. elegans neural connectivity. . . . . . . . . . . . . . . . . 43

4.1 Convergence of some NMF algorithms on the Extended Yale B dataset. 70

4.2 Convergence of some NMF algorithms on the TDT2 dataset. . . . . . . 70

4.3 Convergence of some NCP algorithms on the CT dataset. . . . . . . . . 72

4.4 Convergence of some NCP algorithms on the Facebook Wall Posts dataset. 72

4.5 Illustration of the missing values in the Amino acids fluorescence data. . 75

4.6 The emission loadings produced by the N -way toolbox and by AO-ADMM. 75

4.7 Training and testing error versus model rank of the MovieLens data . . 77

4.8 Trained dictionary from the MNIST handwritten digits dataset. . . . . . 80

5.1 The normalized squared error for W . . . . . . . . . . . . . . . . . . . . 103

5.2 The normalized squared error for H . . . . . . . . . . . . . . . . . . . . 104

6.1 Convergence of the proposed algorithm vs. α-SNMF and β-SNMF . . . 118

6.2 Convergence of the proposed algorithm vs. α-SNMF and β-SNMF . . . 119

6.3 The squared error of three symmetric NMF algorithms versus the CRB 120

6.4 Convergence of the modified proposed algorithm . . . . . . . . . . . . . 127

x



Chapter 1

Introduction

Factor analysis plays an important role in latent parameter estimation and blind source

separation in signal processing, dimensionality reduction and clustering in machine

learning, and numerous other applications in diverse disciplines, such as chemistry and

psychology. What lies underneath is the belief, and often the case the fact, that our

observation can be explained by a simplified model with much fewer latent components.

For matrix data, the classical principal component analysis has paved the way for op-

timal dimensionality reduction by imposing, without loss of generality, orthogonality

constraints.

In this dissertation we also consider tensors, which are data arrays indexed by three

or more indices—a generalization of matrices, which are indexed by two indices. Al-

though it looks like a simple generalization, there are some surprising differences when

we move beyond two indices. Within the factor analysis framework, the biggest dif-

ference lies in the fact that, while low rank approximation of a matrix can be solved

in polynomial time, that of a tensor is in general NP-hard; on the other hand, latent

factors of a matrix is non-unique, while those of a tensor can be uniquely identified (up

to trivial ambiguities) under very mild conditions.

The focus of this dissertation is to study what happens if we impose non-paramatric

constraints onto the latent factors, either of a matrix or of a tensor. Starting from the

seminal work of Lee and Seung [1], people have observed that this simple constraint

on the latent factors usually helps resolving the non-uniqueness issue inherent in the

matrix factorization models [2]. We will roam around different possibilities of priors
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imposed onto the latent factors, and see how they enhance identifiability that does not

appear in their unconstrained counterparts. Pertinent algorithmic issues, performance

analysis tools, and selected applications will also be discussed in detail.

Notation. A scalar is denoted by an italic letter x, a vector is denoted by a bold

lowercase letter x, a matrix bold uppercase letter X; the i-th column of X is denoted

by xi with a subscript, and the j-th row of X, transposed to be a column vector, is

denoted by x[j] with a brace.

We denote the (approximate) factorization of a matrix Y ≈ WHT , where Y is

m × n, W is m × k, and H is n × k, with k ≤ m,n, and in most cases much smaller.

Note that adding constraints on W and H may turn the solution from easy to find (via

SVD) but non-unique, to NP-hard to find but essentially unique. It has been shown

that simple constraints like non-negativity and sparsity can make the factors identifiable,

but at the same time, computing the optimal solution becomes NP-hard—see [3] and

references therein.

An N -way array of dimension n1 × n2 × ... × nN , with N ≥ 3, is denoted with an

underscore, e.g., Y . In what follows, we focus on the so-called canonical polyadic decom-

position (CPD), also known as parallel factor analysis (PARAFAC) model or canonical

decomposition (CANDECOMP), which is essentially unique under mild conditions [4],

but constraints certainly help enhance estimation performance, and even identifiability.

The factorization is denoted as Y ≈ [Hd]
N
d=1, which is a concise way of representing the

model

Y (i1, ..., iN ) ≈
k∑
j=1

N∏
d=1

Hd(id, j), ∀i1, ..., iN .

Each matrix Hd is of size nd × k, corresponding to the factor of the d-th mode.

Roadmap. The rest of this chapter is dedicated to basics of multi-linear algebra. We

start by introducing the matrix Kronecker product, Khatri-Rao product, and Hadamard

product, together with a special class of permutation matrices called the commutation

matrices. Then we introduce the notion of tensor matricization and tensor vectorization,

and their relationship with the aforementioned matrix operators. With the increasing

interest in tensor data processing, there exist many tutorials on this topic, for example,
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[5–7]. Here we briefly review some basic multi-linear operations that will be useful for

the purposes of this paper, and refer the readers to those tutorials and the references

therein for a more comprehensive introduction.

Chapter 2 studies the uniqueness of non-negative matrix factorization (NMF), which

is for a long time conjectured to be unique under mild conditions. We propose the so-

called sufficiently scattered condition that confirms this conjecture. Although checking

if the sufficiently scattered condition is satisfied is NP-hard, we provide useful insights

and heuristics indicating that this condition is indeed easy to satisfy in practice. Main

contents written in this chapter can also be found in [3, 8].

In Chapter 3, we relax the non-negativity constraint in one of the matrix factors in

the NMF model, but instead put a “minimum-volume” criterion on the unconstrained

factor. This model also dates back a long time—in the 90’s, Craig, in the context of

remote sensing, conjectured that this “minimum-volume” criterion is able to identify

sources blindly under mild conditions. Interestingly, so far the best identifiability con-

dition is again sufficiently scattered, and the proof is given for a number of different

“volume-minimization” formulation. This chapter is concluded with an interesting ap-

plication to the neuro-functional connectivity discovery. Main contents written in this

chapter can also be found in [9–12].

Chapter 4 is dedicated to a flexible and efficient algorithmic framework for con-

strained matrix and tensor factorization. The new framework is a hybrid between alter-

nating optimization (AO) and the alternating direction method of multipliers (ADMM):

each matrix factor is updated in turn, using ADMM, hence the name AO-ADMM. This

combination can naturally accommodate a great variety of constraints on the factor

matrices, and almost all possible loss measures for the fitting. Computation caching

and warm start strategies are used to ensure that each update is evaluated efficiently,

while the outer AO framework exploits recent developments in block coordinate descent

(BCD)-type methods which help ensure that every limit point is a stationary point, as

well as faster and more robust convergence in practice. Three special cases are studied

in detail: non-negative matrix/tensor factorization, constrained matrix/tensor comple-

tion, and dictionary learning. Extensive simulations and experiments with real data are

used to showcase the effectiveness and broad applicability of the proposed framework.

Main contents written in this chapter can also be found in [13,14].
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In Chapter 5, we derive the pertinent Cramér-Rao bound for matrix and tensor

factorization models. Since the focus of this dissertation is constrained factor analysis,

we begin with a concise tutorial on recent developments on the subject of Cramér-

Rao bound, with a focus on how constraints and singularity should be handled. Then

we derive the Cramér-Rao bound for both matrix and CP factorization models, discuss in

detail the rank deficiency and computational issues that we encounter in the derivations.

We present some of the well-known NMF algorithms benchmarked with the derived CRB

to showcase their effectiveness in estimating the true latent factors. Main contents

written in this chapter can also be found in [15,16].

Finally, we study an interesting variant of NMF by restraining symmetry to the

two latent factors in Chapter 6. The former topics are revisited on this specific sub-

ject, namely uniqueness, algorithm, and CRB, followed by numerical simulations and

an application to a co-authorship clustering task, showing significant performance im-

provement comparing to the state-of-the-arts. Main contents written in this chapter

can also be found in [3, 15,17].

1.1 Kronecker, Khatri-Rao, and Hadamard Product

The Kronecker product [18] of a m × n matrix S and p × q matrix T , denoted as

S ⊗ T , is the mp× nq block matrix

S ⊗ T =


s11T · · · s1nT

...
. . .

...

sm1T · · · smnT

 .
There are some very interesting properties associated with the Kronecker product, and

we list some of them here that are going to be useful in the sequel.

(S ⊗ T )⊗R = S ⊗ (T ⊗R),

(S ⊗ T )(X ⊗ Y ) = SX ⊗ TY ,

(S ⊗ T )† = S† ⊗ T †,

(S ⊗ T )T = ST ⊗ T T ,

vec
(
SXT T

)
= (T ⊗ S)vec (X) .
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The Khatri-Rao product of matrices S and T having the same number of columns,

denoted as S � T , is defined as the column-wise Kronecker product of S and T . More

explicitly, if S and T both have k columns, then

S � T =
[
s1 ⊗ t1 · · · sk ⊗ tk

]
.

A few properties of the Khatri-Rao product appear similarly with the Kronecker prod-

uct, although not all of them are inherited. Namely,

(S � T )�R = S � (T �R),

(S ⊗ T )(X � Y ) = SX � TY ,

(S � T )(X � Y ) = SX ~ TY ,

vec
(
SDiag {x}T T

)
= (T � S)x,

where ~ denotes the element-wise (Hadamard) product of two matrices with the same

size.

Both Kronecker product and Khatri-Rao product are associative, as we have shown,

but neither of them are commutative. There are, however, operations that make them

appear commutative. A commutation matrix [19] associated with m × n matrices,

denoted as Cm,n, is a permutation matrix of size mn × mn, with the corresponding

permutation defined as follows. Starting with the integer sequence 1, 2, ...,mn, we first

reshape them into a m× n matrix

Π =


1 m+ 1 · · · (n− 1)m+ 1
...

...
. . .

...

m 2m · · · mn

 .
Then the corresponding permutation can be obtained by vec

(
ΠT
)
. The direct conse-

quence is that for any m× n matrix X, we have that

Cm,nvec (X) = vec
(
XT

)
.

However, the more interesting properties of the commutation matrices are how they

interact with the Kronecker and Khatri-Rao products:

Cp,m(S ⊗ T ) = (T ⊗ S)Cq,n,

Cp,m(S � T ) = T � S.
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Moreover, we also have that

Cn,m = CT
m,n = C−1

m,n,

Cmp,nCmn,p = Cm,np.

1.2 Tensor Unfolding: Matricization and Vectorization

The mode-d matricization, also known as mode-d matrix unfolding, of Y , denoted

as Y(d), is a matrix of size
∏N
j=1,j 6=d nj × nd. Each row of Y(d) is a vector obtained by

fixing all the indices of Y except the d-th one, and the matrix is formed by stacking

these row vectors by traversing the rest of the indices from 1 to N . As an example, for

N = 3, the three matricizations are

Y(1) =


Y (:, 1, :)T

...

Y (:, n2, :)
T

 ,Y(2) =


Y (1, :, :)T

...

Y (n1, :, :)
T

 ,Y(3) =


Y (1, :, :)

...

Y (n1, :, :)

 .
where Y (i, :, :), Y (:, i, :), Y (:, :, i) are the i-th matrix slabs of the three-way tensor Y ,

of size n2×n3, n1×n3, n1×n2, respectively. Notice that, though essentially in the same

spirit, this definition of mode-d matricization may be different from other expressions

that have appeared in the literature, but we adopt this one for ease of our use.

The Khatri-Rao product is associative (although not commutative). We therefore

generalize the operator � to accept more than two arguments in the following way

N
�
j=1
j 6=d

Hi = HN � · · · �Hd+1 �Hd−1 � · · · �H1.

With the help of this notation, if Y admits an exact PARAFAC model Y = [Hd]
N
d=1,

then it can be expressed in matricized form as

Y(d) =

 N
�
j=1
j 6=d

Hj

HT
d .

We similarly generalize the Hadamard product to accept more than two argument, and

it is easy to see that  N
�
j=1
j 6=d

Hj

T  N
�
j=1
j 6=d

Hj

 =
N
~
j=1
j 6=d

HT
j Hj .
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The vectorization of Y , denoted as vec (Y ), is defined similarly as the vectorization

of a matrix: the vector is formed by stacking all the elements of Y by traversing the

indices from 1 to N . If Y admits an exact CP model Y = [Hd]
N
d=1, then it can be

expressed in vectorized form as

vec (Y ) = (HN � · · · �H1)1.

Unlike tensor matricizations, the convention is that there is only one version of tensor

vectorization. We can also see that

vec (Y ) = vec
(
Y T

(N)

)
.

As for the other tensor matricizations, they are related to vec (Y ) through the commu-

tation matrices

vec (Y ) = Cnd−1...n1,nN ...ndvec
(
Y T

(d)

)
.



Chapter 2

Uniqueness of Non-negative

Matrix Factorization

Non-negative matrix factorization (NMF) is the problem of (approximately) factoring

Y = WHT , where Y is m× n, W is m× k, with k < min(m,n), H is n× k, W ≥ 0,

H ≥ 0 (inequalities interpreted element-wise). The smallest possible K for which such

decomposition is possible is the non-negative rank of Y . Due to the non-negativity

constraints, the non-negative rank can be higher than the usual matrix rank over the

real field.

NMF has been studied for more than 30 years [20–22], originally known as non-

negative rank factorization or positive matrix factorization. Non-negative matrices have

many interesting properties and a long history in science and engineering [23]. Lee and

Seung [1] popularized NMF when they discovered that it tends to decompose images of

visual objects in meaningful parts - i.e., NMF “is able to learn the parts of objects”.

NMF quickly found numerous other applications in diverse disciplines - see [24] and

references therein. Unfortunately, it was recently shown that (asymmetric) NMF is

NP-hard [25]; yet sustained interest in NMF has produced many good algorithms.

NMF has been such a success story across disciplines because non-negativity is a valid

constraint in so many applications, and NMF often provides meaningful / interpretable

results, and sometimes even ‘correct’ results—that is, it yields the true latent factorsW ,

H. As an example, matrix Y could represent an m×n keyword by document incidence

8
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matrix, wherein entry yi,j is the number of occurences of keyword i in document j. The

k-dimensional reduction Y = WHT can be interpreted as follows. The columns of W

represent k document prototypes as consisting of keywords in specific proportions. The

rows of H represent each document as a weighted combination of these prototypes. In

a clustering scenario, the columns of W are the cluster centroids, and the rows of H

are the (soft) cluster membership indicators. A specific application of clustering via

NMF is [26], where NMF was applied to an article by journal matrix, resulting in a

soft clustering of articles by topic. See also Xu et al. [27] for an application of NMF

to document clustering. Another interpretation of Y = WHT is that the i-th row

of W is a reduced 1 × k representation of the i-th ‘keyword’ or ‘concept’ in latent k-

dimensional space, and likewise the j-th rows of H is the reduced 1× k representation

of the j-th document in the same latent space; Yi,j is the inner product of these two

latent representations, measuring ‘relevance’.

Uniqueness of NMF is tantamount to the question of whether or not these true

latent factors are the only interpretation of the data, or alternative ones exist. Unfortu-

nately, NMF is in general non-unique. One can inquire about existence and uniqueness

of NMF of Y for a given k without any other side information; or about uniqueness of

a particular factorization Y = WHT , i.e., given a particular pair of factors W , H as

side information. Additional constraints can be added to help make the factorization

unique, e.g. sparsity [28] or minimum determinant [29]. Thomas [30] and Chen [21] first

gave different geometric interpretations of NMF, and stated the uniqueness problem in

a geometric way. Donoho et al. [2] and Laurberg et al. [31] later provided uniqueness

conditions by exploiting the aforementioned geometric viewpoint. The sufficient condi-

tions they provided, however, require one of the two matrix factors to contain a scaled

identity matrix—a particularly strict condition. Moussaoui et al. [32] and Laurberg et

al. [31] also provided necessary conditions. We will review these conditions in Section

2.1, and discuss their relationship with the uniqueness conditions we provide herein.

2.1 Uniqueness of NMF: Precursors

Recall that we are interested in the factorization Y = WHT where the m × k matrix

W and the n × k matrix H have non-negative elements. For uniqueness analysis, we
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shall assume that k = rank {Y }, and thus both W and H are full rank. (Notice

that if W and H are drawn from a jointly continuous distribution and Y is in fact

constructed by taking their product, then rank {Y } = k almost surely.) Therefore,

if Y = WHT = W̃ H̃T , then there exists a k × k full rank matrix A such that

W̃ = WA−T and H̃ = HA. A trivial choice of A would be a positively scaled

permutation matrix; such ambiguity is unavoidable without side information.

Definition 2.1 (uniqueness of NMF). The NMF of Y = WHT is said to be (essen-

tially) unique if Y = W̃ H̃T implies W̃ = WPD and H̃ = HPD−1, where D is a

diagonal matrix with its diagonal entries positive, and P is a permutation matrix.

From this definition, it is straight-forward to derive a necessary condition for the

uniqueness of NMF.

Theorem 2.1 (necessary condition). Let supp {x} denote the index set of the non-zero

entries (support) of a vector x, i.e., supp {x} = {i | xi 6= 0}. If the NMF Y = WHT

is unique, then there do not exist µ, ν ∈ {1, · · · , k}, µ 6= ν, such that supp {wµ} ⊆
supp {wν}, or supp {hµ} ⊆ supp {hν}.

Proof. Suppose supp {hµ} ⊆ supp {hν}, then there exist a positive scalar α such that

hν − αhµ ≥ 0.

Define a k × k upper triangular matrix A as

A = I − αeµeTν ,

then

A−1 = I + αeµe
T
ν .

Let W̃ = WA−T and H̃ = HA. Since A−1 ≥ 0, we have that W̃ ≥ 0. On the

other hand, H̃ satisfies that

h̃j =

{
hν − αhµ , j = ν

hj , otherwise.

Therefore H̃ ≥ 0, which means Y = W̃ H̃T = WA−TAHT , but A is not a scaled

permutation matrix.

A similar argument can be applied when supp {wµ} ⊆ supp {wν}.
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A very interesting implication from Theorem 2.1 is as follows, which relates the

uniqueness of NMF with sparsity of the latent factors.

Corollary 2.1. If the NMF Y = WHT is unique, then each column of W and H

contains at least one element equal to 0.

Proof. If the ν-th column of H does not have 0 element, then clearly supp {hν} =

{1, · · · , n}, and supp {hµ} ⊆ supp {hν} ,∀µ 6= ν, which violates the condition given in

Theorem 2.1; and likewise for the columns of W .

In terms of sufficient conditions, which are in practice more of interest, the existing

results are far from satisfactory. Here we list two most noticeable results prior to our

work, followed by discussions.

Theorem 2.2 (Donoho and Stodden [2]). The NMF Y = WHT is unique if the

following conditions are satisfied.

� Separability: For each κ = 1, · · · , k there exists i ∈ {1, · · · , n} such that

Hi,κ 6= 0

Hi,l = 0,∀ l 6= κ

� Generative Model: The set {1, 2, · · · , k} is partitioned into A groups P1, · · · ,PA,

each containing exactly P elements (therefore k = AP ). For every i = 1, · · · ,m
and a = 1, · · · , A, there exists an element wi,κ such that

Wi,κ 6= 0, κ ∈ Pa,

Wi,l = 0,∀l ∈ Pa, l 6= κ

� Complete Factorial Sampling: For any κ1 ∈ P1, κ2 ∈ P2, · · · , κA ∈ PA, there

exists i ∈ {1, · · · , n} such that

Wi,κ1 6= 0,Wi,κ2 6= 0, · · · ,Wi,κA 6= 0

Theorem 2.3 (Laurberg et al. [33]). The NMF Y = WHT is unique if the following

assumptions are satisfied.
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� Sufficiently Spread: For each κ = 1, · · · , k there is a i ∈ {1, · · · , n} such that

Hi,κ 6= 0

Hi,l = 0,∀ l 6= κ

� Strongly Boundary Close: the matrix W satisfies the following conditions

1. For each κ = 1, · · · , k there is an i ∈ {1, · · · ,m} such that

Wi,κ = 0

Wi,j 6= 0,∀ j 6= i

2. There exists a permutation matrix P such that for all i < k there exists a set

{κ1, · · · , κk−i} fulfilling: (WP )i,κj = 0 for all j ≤ k − i; and the matrix
(WP )i+1,κ1 · · · (WP )i+1,κk−i

...
. . .

...

(WP )k,κ1 · · · (WP )k,κk−i


is invertible.

As we can see, the existing results are 1) very complicated 2) asymmetric, which

is non-intuitive mathematically, and 3) imposes a very strict condition on H, which is

termed separability by Donoho and Stodden, and sufficiently spread by Laurberg et al.,

but in fact the same condition. This condition asks that for each κ = 1, ..., k, there

exists a row of H such that only the κ-th entry is non-zero. As a result, every column

of W actually appears in the columns of Y . This is an over-simplified model, and very

hard to satisfy in practice. However, empirically people have seen that NMF admits a

unique solution under much more relaxed conditions.

2.2 Geometric Interpretation

Before we analyze the properties of NMF, we briefly review some prerequisites from

convex analysis; see [34,35] for further background.

Definition 2.2 (polyhedral cone). A polyhedral cone K is a set that is both a polyhedron

and a cone.
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There are two ways to describe a polyhedral cone. The first is by taking the inter-

section of a number of half-spaces, which takes the form

K = {x | ATx ≥ 0}

where each column of A defines a half-space which contains the origin at the boundary.

Notice that the right hand side is 0 in order to make this set a cone. Assuming there

are no redundant constraints, the i-th constraint satisfied as equality is called a facet of

K.

The other way to describe a polyhedral cone is by taking the conic hull of a number

of vectors, i.e.,

K = {x = Bλ | λ ≥ 0} = cone {B}

where the columns of B are the vectors we are taking. If a column of B cannot be

represented by the conic combination (non-negative linear combination) of the rest of

the columns, then it is called an extreme ray of K.

Given a polyhedral cone represented by the intersection of half-spaces, an extreme

ray of the cone would be a vector satisfying all the inequality constraints, and further-

more, at least n−1 linearly independent constraints are satisfied as equalities. Similarly,

given a polyhedral cone represented by the conic hull of vectors, a facet of it is a hyper-

plane defined by at least n− 1 linearly independent extreme rays (and the origin), and

the rest of the extreme rays must be on one side of that hyperplane.

Definition 2.3 (simplicial cone). A simplicial cone is a polyhedral cone such that all

of its extreme rays are linearly independent.

If K = {x = Bλ | λ ≥ 0} = cone {B} is a simplicial cone, then for every element

x ∈ K, there is a unique corresponding λ that indicates how to conically combine the

extreme rays to generate x. For general polyhedral cones, this combination is in most

cases not unique.

Moreover, it is easy to change the representation of a simplicial coneK from halfspace-

intersection to conic hull. For example, if K = cone {B} where B is invertible, then K
is a simplicial cone and K = {x | B−1x ≥ 0}. However, for general polyhedral cones

this switching between representations is a hard problem [36].
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Definition 2.4 (dual cone). The dual cone of a set K, denoted by K∗, is defined as

K∗ = {y | xTy ≥ 0, ∀x ∈ K}.

Some important properties of dual cones are as follows (cf. Laurberg et al. [31]):

Property 2.1. cone {A}∗ = {x | ATx ≥ 0}.

For one column of the matrixA, in the primal cone it defines an extreme ray, while in

the dual cone it defines a facet. Therefore, there is a one-to-one correspondence between

the extreme rays of the primal polyhedral cone and facets of the dual polyhedral cone,

and vice versa.

Property 2.2. If A is invertible, then cone {A}∗ = cone
{
A−T

}
.

From this property, it is easy to see that if A is unitary, i.e., A−1 = AT , then

cone {A}∗ = cone
{
A−T

}
= cone {A}. In other words, the conic hull of a unitary

matrix is self dual.

Property 2.3. If A and B are convex cones, and A ⊆ B, then B∗ ⊆ A∗.

Here is an example of a cone and its dual cone, which will be useful later. Donoho

and Stodden also studied the following cones in [2].

Example 2.1. Define the second-order cone in Rk

C = {x|xT1 ≥
√
k − 1‖x‖2} (2.1)

Its dual cone is another second-order cone

C∗ = {x|xT1 ≥ ‖x‖2} (2.2)

The reason we are interested in C and its dual cone is because they have a very

special relationship with the non-negative orthant Rk+: C ⊆ Rk+ ⊆ C∗. Fig. 2.1 gives a

graphical view of C, C∗ and Rn+ in R3. In fact, Rk+ and its rotated versions are the only

simplicial cones that satisfy this, as stated in the following lemma.

Lemma 2.1. If cone {A} satisfies that C ⊆ cone {A} ⊆ C∗, and the columns of A are

scaled to have unit `2 norm, then
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1. AT1 = 1

2. ATA = I

Proof. Assume cone {A} satisfies that

C ⊆ cone {A} ⊆ C∗

According to Property 2.2 and 2.3 of dual cone, this is equivalent to

cone {A} ⊆ C∗, cone
{
A−T

}
⊆ C∗

cone {A} ⊆ C∗ means that every column of A is in C∗, therefore

1TAei ≥ ‖Aei‖2, i = 1, · · · , k (2.3)

Let B = A−T , i.e. ATB = I. Similarly, for cone {B} ⊆ C∗, we have

1TBei ≥ ‖Bei‖2, i = 1, · · · , k (2.4)

Both (2.3) and (2.4) involve only non-negative numbers, so we can take their product

and sum over all i’s to get

1TABT1 ≥
k∑
i=1

‖Aei‖2‖Bei‖2 (2.5)

The left hand side of (2.5) equals n, since ABT = I. Using the Cauchy-Schwarz

inequality, the right hand side of (2.5) is

k∑
i=1

‖Aei‖2‖Bei‖2 ≥
k∑
i=1

(Bei)
TAei (2.6)

The right hand side equals to n too, again thanks to ATB = I. Therefore, all the

inequalities (2.3)-(2.6) are equalities. Notice that (2.6) is satisfied as an equality if and

only if Bei is a positively scaled version of Aei, for all i = 1, · · · , k. Since we assume

‖Aei‖2 = 1 for all i’s, then A = B, i.e., A = A−T . Therefore, the columns of A are

orthogonal to each other. Furthermore, if (2.5) is satisfied as equality, it implies that

(2.3) and (2.4) are also equalities. In other words, the extreme rays of A lie on the

boundary of C∗, i.e. AT1 = 1.



16

1.20.5
0

-0.5

0.4

0.6

0.8

1

1.2

-0.2

0

0.2

 

 R
+
3

C
C*

[ 0 1 0 ]T

[ 0 0 1 ]T[ 1 0 0 ]T

Figure 2.1: A 2-D slice view of the relationship between R3
+, C, C∗ in R3, looking at the

plane 1Tx = 1.

Equipped with the convex analysis bases, we can revisit the uniqueness of NMF,

and give it a geometric interpretation.

Lemma 2.2. If rank {Y } = k, the NMF Y = WHT is unique if and only if the

non-negative orthant is the only simplicial cone A with k extreme rays that satisfies

cone
{
HT

}
⊆ A ⊆ cone

{
W T

}∗
.

Proof. Since rank {Y } = k, Y = WHT = W̃ H̃T implies that there exists a non-

singular matrix A such that W̃ = WA, H̃ = HA−T . For NMF we further require

that W̃ and H̃ to be non-negative, therefore,

W̃ = WA ≥ 0, H̃ = HA−T ≥ 0,

which, geometrically, means that

cone {A} ⊆ cone
{
W T

}∗
, cone

{
HT

}
⊆ cone

{
A−T

}∗
.

Furthermore, from Property 2.2 we have that cone {A} = cone
{
A−T

}∗
, leading to

cone
{
HT

}
⊆ cone {A} ⊆ cone

{
W T

}∗
.

From Definition 2.1, NMF is unique is the matrix A can only be chosen to be a scaled

permutation matrix, meaning cone {A} can only be the non-negative orthant.
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2.3 Uniqueness of NMF: Main Results

We are now ready to present our new conditions on the uniqueness of NMF. We need

the second-order cone C and its dual cone defined in (2.1) and (2.2) from Example 2.1

to help derive our sufficient condition.

2.3.1 Sufficient Condition

Definition 2.5 (sufficiently scattered). A non-negative matrix X is sufficiently scat-

tered if

1. cone
{
XT

}
⊇ C,

2. cone
{
XT

}∗ ∩ bd {C}∗ = {λeκ | λ ≥ 0, κ = 1, ..., k.},

where C and C∗ are

C = {x|xT1 ≥
√
k − 1‖x‖2}, C∗ = {x|xT1 ≥ ‖x‖2}.

The interpretation of the second part of Definition 2.5 is the following. First of

all, according to Property 2.3 of the dual cones, cone
{
XT

}∗ ⊆ C∗ is equivalent to

cone
{
XT

}
⊇ C, which means all the extreme rays of cone

{
XT

}∗
are contained in C∗.

Per the proof of Theorem 2.4, eκ’s are the extreme rays of cone
{
XT

}∗
, and they lie

on the boundary of C∗ too. This statement requires that all the other extreme rays of

cone
{
XT

}∗
lie in the interior of C∗.

Theorem 2.4 (sufficient condition). If W and H are both sufficiently scattered, then

the NMF Y = WHT is essentially unique.

Proof. We first prove that if cone
{
XT

}
⊇ C, then ∀κ = 1, . . . , k, eκ is an extreme ray

of cone
{
XT

}∗
. This is because 1) eκ is an extreme ray of C∗ (the constraint (2.2) is

satisfied as equality at eκ, hence eκ’s are on the boundary of C∗, and every ray that

lies on the boundary of a second order cone is an extreme ray of this cone); and 2)

eκ is contained in cone
{
XT

}∗
(obviously Xeκ ≥ 0). The eκ’s being extreme rays of

C∗ means that there do not exist two other elements in C∗ that can conically generate

eκ, and since cone
{
XT

}∗ ⊆ C∗, there certainly do not exist two other elements in
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cone
{
XT

}∗
that can conically generate eκ; therefore, the eκ’s are the extreme rays of

cone
{
XT

}∗
.

According to Lemma 2.2, we need to show that under this condition, if a sim-

plicial cone A satisfies that cone
{
HT

}
⊆ A ⊆ cone

{
W T

}∗
, then A = Rk+. Since

cone
{
HT

}
⊇ C and cone

{
W T

}
⊇ C, obviously C ⊆ A ⊆ C∗. According to Lemma

2.1, we know that A can only be a rotated version of Rk+, and that all of its extreme

rays lie on the boundary of C∗. However, since none of the extreme rays of cone
{
W T

}∗
except eκ’s lie on the boundary of C∗, A can only be the non-negative orthant Rk+ itself.

Therefore under this condition the asymmetric NMF Y = WHT is unique.

Our result given in Theorem 2.4 is first of all a clean statement, and is also symmetric

with respect to both W and H. To gain some insights to this condition, we revisit

one toy example first appeared by Laurberg et al. [31], but the uniqueness cannot be

identified using their analysis. Using our analysis, however, the uniqueness can be

exactly demonstrated.

Example 2.2. [31] Consider the NMF Y = WHT where

W = H =


ω 1 1 ω 0 0

1 ω 0 0 ω 1

0 0 ω 1 1 ω


T

For 0 ≤ ω ≤ 1, the NMF is unique if and only if ω < 0.5. This is because if ω < 0.5,

both W and H are sufficiently scattered. If ω ≥ 0.5, define

A =
1

3


−1 2 2

2 −1 2

2 2 −1

 .
One can check that A is unitary and WA = HA ≥ 0 in this case, hence this NMF is

not unique. Fig. 2.2 illustrates the relationship between cone
{
HT

}
, cone

{
W T

}
and C

for selected values of ω. Notice that when ω = 0.5, as is shown in Fig. 2.2b, although

cone
{
W T

}
⊇ C is satisfied, there are other extreme rays of cone

{
W T

}∗
that lie on the

boundary of C∗ and are orthogonal to each other. Thus, it is still possible in this case

to form a suitable simplicial cone which satisfies the requirement given in Lemma 2.2.
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(a) ω = 0.25 (b) ω = 0.5 (c) ω = 0.75

Figure 2.2: A graphical view of Example 2.2 plotted in the same manner as Figure

2.1. The triangle drawn with solid line is R3
+; the inner and outer circles are C and C∗

respectively; the shaded area is cone
{
HT

}
, and the polygon drawn with the dashed

line is cone
{
W T

}∗
. When ω = 0.25, the sufficiently scattered condition is satisfied,

so the NMF is unique; when ω = 0.75, cone
{
W T

}
+ C, so the NMF is not unique;

when ω = 0.5, although cone
{
W T

}
⊇ C, all the extreme rays of cone

{
W T

}∗
lie on

the boundary of C∗, therefore it is still not “scattered enough”. The dotted triangle in

Figure 2.2b and 2.2c shows another self-dual simplicial cone A satisfying cone
{
HT

}
⊆

A ⊆ cone
{
W T

}∗
.

Example 2.2 illustrates the usage of Theorem 2.4 to check the uniqueness of NMF

in low-dimensional cases. Unfortunately, as the dimension increases, it becomes very

hard to check the sufficient condition, since checking whether cone
{
W T

}
⊇ C is true is

NP-complete. To see the NP-completeness of this problem, we can first intersect both

cone
{
W T

}
and C with the hyperplane 1Tx = 1. Then it becomes checking whether a

ball is a subset of a polytope described as the convex hull of points. Freund and Orlin

[37] considered several set containment problems and proved that the aforementioned

one is NP-complete. In the next subsection consider the practical value of sufficiently

scattered.

2.3.2 Uniqueness in Practice

From a computational complexity point of view, we started from a criterion (Lemma

2.2) that is NP-hard to check, and reached a sufficient condition that is NP-complete

to check, which does not seem like much progress. However, Theorem 2.4 treats W
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and H in a balanced fashion, unlike other sufficient conditions which are strict on one

matrix factor, lenient on the other. Furthermore, Theorem 2.4 gives implications about

how the latent factors look like if they indeed satisfy its sufficient conditions, as shown

next.

Corollary 2.2. If the condition given in Theorem 2.4 is satisfied for the NMF Y =

WHT , then for all κ = 1, 2, · · · , k, eκ is an extreme ray of cone
{
W T

}∗
and cone

{
HT

}∗
.

Thus, each column of W and H contains at least k − 1 zero entries.

Proof. We have argued in the proof of Theorem 2.4 that if the sufficient condition is

satisfied, the eκ’s are extreme rays of cone
{
W T

}∗
and cone

{
HT

}∗
. An extreme ray is

the intersection of at least k−1 independent facets of a polyhedral cone with dimension

K. Therefore for cone
{
W T

}∗
, we have

Weκ ≥ 0

and that at least k− 1 of them are satisfied as equalities. Therefore, each column of W

and H contains at least k − 1 zero entries.

Corollary 2.2 builds a link between uniqueness and latent sparsity of NMF. It is

observed in practice that if the true latent factors are sparse, NMF usually tends to

recover the correct solution, up to scaling and permutation. However, counter-examples

do exist, e.g. Example 2.2 when 0.5 ≤ ω < 1. Now we understand that the reason

sparse latent factors usually lead to unique NMF is because if the latent factors are

sparse, it is more likely that the sufficient condition given in Theorem 2.4 is satisfied.

Example 2.3. In this example we randomly generate a 200 × 30 non-negative matrix

W and a 30 × 250 non-negative matrix H, with a certain proportion of randomly se-

lected entries set to zero, and the non-zero entries drawn from an i.i.d. exponential

distribution. The columns of W are scaled to sum up to 1

m∑
i=1

wi,1 =
m∑
i=1

wi,2 = · · · =
m∑
i=1

wi,k = 1,

and the columns of H are ordered such that

n∑
j=1

hj,1 >
n∑
j=1

hj,2 > · · · >
n∑
j=1

hj,k.
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Table 2.1: Maximum reconstruction error for asymmetric NMF

density max ‖Ŵ −W ‖F max ‖Ĥ −H‖F
0.5 0.0070× 10−7 0.0083× 10−5

0.6 0.0030× 10−7 0.0067× 10−5

0.7 0.0184× 10−7 0.0302× 10−5

0.8 0.1154× 10−7 0.1991× 10−5

Then we form the low rank non-negative matrix Y = WHT , and apply NMF on Y

to get an estimate Ŵ and Ĥ. The columns of Ŵ are scaled to sum up to 1, with

the scaling absorbed into the rows of Ĥ, in order to avoid the scaling ambiguity; and

the rows of Ĥ are then re-ordered, with the same re-ordering applied to the columns

of Ŵ , to fix the permutation ambiguity. For density varying from 0.5 to 0.8, in which

case the matrices W and H we randomly generated satisfy that eκ’s are extreme rays

of cone
{
W T

}∗
and cone

{
HT

}∗
with high probability, this procedure is repeated 100

times, and the maximum reconstruction errors for Ŵ and Ĥ are given in the following

table

Notice that the zero elements are randomly located, therefore neither Donoho’s sep-

arability assumption [2] nor Laurberg’s sufficiently spread assumption [31] are satisfied.

However, as can be observed, in all cases the asymmetric NMF is able to reconstruct

the true latent factors. The algorithm used here was AO-ADMM proposed in [14].

The results given in the above examples are reassuring to a certain degree, in light

of the fact that the true sufficient condition is NP-complete to check. They also show-

case how strict the previously suggested sufficient conditions [2, 31] are, since in those

examples the columns of H are highly unlikely to contain all scaled versions of eκ’s.

On a different path, we can attempt to check if a matrixH is sufficiently scattered via

solving the following non-convex quadratic programming optimally.

maximize
x

‖x‖22,

subject to Hx ≥ 0, xT1 = 1.
(2.7)

Then cone
{
HT

}∗ ⊆ C∗ is true if and only if the optimal value of (2.7) is strictly larger

than 1. A simple observation is that since H is non-negative, the standard vectors eκ
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are clearly feasible, and that they lead to the cost equal to 1. In fact, if a feasible point

makes the cost equal to 1, then it lies on bdC∗. Therefore, H is sufficiently scatteredif

and only if the optimal value of (2.7) is 1, and all the optimal solutions are the set of

standard vectors.

Since that particular set containment problem is NP-hard to check, clearly (2.7) is

also NP-hard. A heuristic is to iteratively linearize the objective function and solve a

linear program, i.e.,

maximize
x

xTr x,

subject to Hx ≥ 0, xT1 = 1.
(2.8)

where xr is obtained from the solution of the previous iteration. Since the first-order

Taylor expansion of a convex function is always a lower-bound of that function, we can

see that by iteratively solving (2.8), we are actually iteratively maximizing a lower-bound

of (2.7), which falls into the majorization-optimization method category [38].

Using Corollary 2.2 as a rule of thumb for the sparsity requirement for the matrix,

which is not very strict in terms of sparsity, we can generate random sparse non-negative

matrices and try to check whether they satisfy sufficiently scatteredby approximately

solving (2.7). Although the method we propose to solve (2.7) is not guaranteed to be

optimal, we can try different initializations to ensure that most of the local optima are

found.

As a simple example, we randomly generate matrices with n = 300, and with various

number of rows k and/or ratio of non-zeros s. Similar to the synthetic data generated

in Example 2.3, whether the entries are zeros follow an i.i.d. Bernoulli distribution,

and the non-zeros are drawn from an i.i.d. exponential distribution. For each case 100

random matrices are generated and set as input to the optimization problem (2.7), and

then approximately solved by successively solving (2.8) with 100 random initial points.

The percentage of the matrices that result in a solution with norm larger than 1 is

given in Table 2.2. As we can see, sparse, non-negative tall matrices satisfies sufficiently

scattered with very high probability.
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Table 2.2: The percentage of the matrices with n = 300 columns that result in a solution

with norm larger than 1.

k = 20 k = 30 k = 50

s = 0.3 0% 0% 0%

s = 0.5 0% 0% 1%

s = 0.7 0% 1% 3%



Chapter 3

Volume Minimization-Based

Matrix Factorization

In the previous chapter we studied the non-negative matrix factorization (NMF) Y =

WHT where both W and H are constrained to be element-wise non-negative, and

showed that if both W and H satisfy the sufficiently scattered condition, the factoriza-

tion is essentially unique, thus the true latent factors can be revealed via NMF. Even

though such condition is computationally hard to check, we illustrated that it is satis-

fied with very high probability as long as the latent factors are sparse, which is a very

relaxed condition to hold in a lot of applications. In certain other applications, however,

such latent structures cannot be assumed to be practical, even though we still want to

identify the latent factors using matrix factorization methods. For example, a widely

considered application, hyperspectral unmixing, deals with dense image data, and do-

main knowledge reveals that we can only assume one of the latent factor is non-negative

and sparse, while the other factor is known to be dense (and can sometimes contain

negative values).

In this chapter, we study a variant of NMF Y = WHT that constrains only H ≥ 0.

Without additional specifications, such a “semi-non-negative” matrix factorization is

clearly non-unique, since we can use any non-singular non-negative matrix A and let

H̃ = HA, W̃ = WA−T , so that Y = W̃ H̃T , and H̃ is non-negative. However,

with proper scaling on H, we will see that using the so-called “volume minimization”

24
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(VolMin) criterion, one can still guarantee (essential) uniqueness of the solution, as long

as H satisfies the previously discussed sufficiently scattered condition. Notice that now

we only require H to be sufficiently scattered, while no structure is assumed for W ,

although in practice one may impose additional constraints reflecting prior information

on W , where applicable (such as non-negativity) to improve estimation performance.

3.1 Uniqueness: Existing Results

In the previous chapter we provided a geometric interpretation of NMF, focusing on

the latent domain of the two factors. Perhaps a more straightforward way to give a

geometric interpretation of matrix factorization models with H ≥ 0 is directly looking

at the column space of Y—each column yj = Wh[j] =
∑k

l=1 hjlwl is a non-negative

combination of columns of W , therefore geometrically Y = WHT means we want to

find a simplicial cone W such that cone {Y } ⊆ W, and the extreme rays of W are the

columns of W . Depending on the particular application, we may or may not require

W ∈ Rm+ .

Now suppose that, in addition, the columns of Y also lie on a common affine space,

for example {x|xT1 = 1}, then we can also make W T1 = 1, and HT1 = 1, which

means columns of Y are convex combinations of columns of W , transforming the prob-

lem into finding an enclosing simplex that contains all the column vectors of Y . Notice

that finding the vertices of a polytope can be formulated as a set of convex feasibility

problems, and if all the vertices happen to be linearly independent, then we can simply

use them as the columns of W , and then solve for H very easily. The condition under

which this conceptually simple procedure succeeds is, not surprisingly, exactly the sepa-

rability condition Donoho et al. first proposed for NMF [2]. Indeed, what the procedure

implies is that all the columns of W can be sought from the columns of Y . Depend-

ing on the application, this separability condition may also be termed “pure-pixel” in

hyperspectral unmixing [39, 40], “anchor word” in document topic modeling [41], and

“local dominance” in speech separation [9], to name just a few.

Many algorithms have been proposed to tackle this index-picking problem, and they

can be in general divided into two categories—linear programming based methods and

greedy pursuit based methods. Realizing that determining if a point is a vertex of the
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Algorithm 3.1: Successive projection algorithm (SPA)

Input: Y , k

1 Σ = Diag
{
Y T1

}
;

2 X = Y Σ−1(normalization);

3 Λ = ∅;
4 for κ = 1, ..., k do

5 jκ ← arg minj∈{1,...,n} ‖X(:, j)‖2;

6 Λ← [Λ, jκ];

7 Θ ← arg minΘ≥0 ‖X −X(:, Λ)Θ‖2F ;

8 X ←X −X(:, Λ)Θ;

9 end

10 W = Y (:, Λ);

11 H = arg minH≥0 ‖Y − Y (:, Λ)H‖2F ;

convex hull of a set of points is equivalent to a linear feasibility problem, LP-based

methods [42, 43] take advantage of this hidden convexity rendered by the separability

assumption, while at the same time try to avoid going through the whole dataset one

by one. Greedy methods, on the other hand, replace the step of solving a full-blown

linear programming problem with a simple projection so that the approach is much

more efficient on big data sets. Almost all greedy pursuit based methods come from the

so-called successive projection algorithm (SPA) [44] that is presented in Algorithm 3.1.

SPA-like algorithms first define a normalized matrix X = Y Σ−1 so that each column

of the normalized data X sum to one. Note that X = AΘ where aκ = wκ/w
T
κ 1 and

Θ(κ, j) =
H(j, κ)wT

κ 1

h[j]T1wT
κ 1

.

Consequently, we have ΘT1 = 1 if H ≥ 0, meaning the columns of X all lie on the

simplex spanned by the columns of A. Also, the columns of Θ all lie in the unit simplex.

After normalization, SPA sequentially identifies the vertices of the data simplex, in

conjunction with a deflation procedure.

Both LP-based methods and SPA-based methods rely strongly on the separability

assumption, and will fail miserably if it is violated. This in practice usually means when

the number of latent factors is relatively small. As the number of latent components
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becomes larger, separability becomes harder to satisfy, thus the chances that SPA fails

becomes higher.

As early as 1994, Craig conjectured that even in the absence of “pure-pixels”, the

sources can still be uniquely identified, as long as the mixtures are “sufficiently scat-

tered” in the convex hull of all the sources [45], via searching for the smallest simplex

that encloses all the data points. To quantify “smallest”, the notion of volume is used.

In Rd, a simplex with solid interior can be defined by its d + 1 vertices x0, ...,xd, and

its volume is defined as

vol (x0, ...,xd) =
1

d!

∣∣∣∣∣det

[
x0 ... xd

1 ... 1

]∣∣∣∣∣
=

1

d!
| det[ (x1 − x0) ... (xd − x0) ]|.

Coming back to our model, assume that the columns of Y are scaled to lie on

a common affine space, which can be defined by the affine hull of the columns of W .

Suppose W is square, then we can use the volume of the simplex defined by the columns

ofW and the origin as the criterion for “small” in Craig’s approach, i.e., |detW |. Notice

that

|detW | =
√

detW TW ,

detW TW is a monotonic mapping of the volume | detW |, which also generalizes to the

case when W is tall. We therefore formalize (one form of) the volume minimization-

based matrix factorization as follows

minimize
W ,H

detW TW

subject to Y = WHT ,H1 = 1,H ≥ 0.

(3.1)

Craig’s criterion turns out to be a useful one in searching for the correct sources

blindly in the absence of separability. Part of the reason is that it, as a sanity check,

is able to recover the true latent factors if separability is indeed satisfied. However,

for decades this has been the best theoretical result people can show, despite that

empirically it is known to be much more powerful than mere separability assumption.

For completeness, we provide a simple proof here, following the lines of [46].

Theorem 3.1. Denote an optimal solution of (3.1) as W̃ , H̃. If the true latent factor

H is separable and each of its rows sums to one, then there exists a permutation matrix
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P such that H̃P = H. In other words, W and H can be identified up to permutation

via solving (3.1).

Proof. By contradiction. Suppose W̃ and H̃ is an optimal solution of (3.1), but H̃ is

not a column permutation of H. Since W and H are clearly feasible for (3.1), this

means that det W̃ TW̃ ≤ detW TW .

Since the columns of H and H̃ span the same subspace, there is a k × k matrix A

such that

H̃ = HA,

and since Y = WHT = W̃ H̃T , this means

W̃ = WA−T .

This means

det W̃ TW̃ = | detA|−2 detW TW ≤ detW TW ,

i.e.,

| detA| ≥ 1. (3.2)

Because H is separable, this means rows of A appear in the rows of H̃, and since

H̃ is feasible for (3.1), this means

A ≥ 0, A1 = 1.

Then we have the following chain

| detA| ≤
k∏
i=1

‖ai‖ (3.3a)

≤
k∏
i=1

‖ai‖1 (3.3b)

≤
k∏
i=1

1Tai (3.3c)

≤

(∑k
i=1 1Tai
k

)k
(3.3d)

=

(
1TA1

k

)k
(3.3e)

= 1, (3.3f)
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where (3.3a) is Hadamard’s inequality, (3.3b) comes from elementary properties of vec-

tor norms, (3.3c) is because A ≥ 0, and (3.3d) is by the arithmetic-geometric mean

inequality.

Combining (3.2) and (3.3), we conclude that |detA| = 1. Then, all the inequalities

in (3.3) hold as equality, and specifically (3.3b) means that the cardinalities of all the

rows of A are equal to one. Together with the fact that each row of A sum up to

one, this means A can only be a permutation matrix. In other words, W̃ is a column

permutation of H.

As a sneak peek to the forthcoming results, we will see how a much more relaxed

condition can lead to the same identifiability result—the key observation is that the proof

can be carried out in almost exactly the same steps, except that (3.3b) is removed. As

it turns out, the following inequality (3.3c) looks very related to the definition of the

second-order-cone C∗ defined in our proposed sufficiently scattered assumption.

3.2 Uniqueness: Main Results

According to the previously discussed convex geometry, by dropping the separability

condition on H, one cannot identify the columns of W by merely searching in the

columns of Y . We therefore resort to Craig’s criterion to try to identify the true

sources, assuming the mixtures are “sufficiently scattered” in the convex hull of all the

sources [45], via searching for the smallest simplex that encloses all the data points. As

it turns out, the conjecture is correct, and this was first proven in our work et al. [9],

and later by Lin et al. [47]. The precise condition that eluded Craig is the sufficiently

scattered condition in definition 2.5, reproduced below for convenience.

Definition (sufficiently scattered). A non-negative matrix X is sufficiently scattered if

1. cone
{
XT

}
⊇ C,

2. cone
{
XT

}∗ ∩ bd {C∗} = {λeκ | λ ≥ 0, κ = 1, ..., k.},

where C and C∗ are

C = {x|xT1 ≥
√
k − 1‖x‖2}, C∗ = {x|xT1 ≥ ‖x‖2}.
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Theorem 3.2. Denote an optimal solution of (3.1) as W̃ , H̃. If the true latent factor

H is sufficiently scattered (cf. Definition 2.5) and each of its rows sums to one, then

there exists a permutation matrix P such that H̃P = H. In other words, W and H

can be identified up to permutation via solving (3.1).

Theorem 3.2 can be proven easily using the following lemma, which is proven in the

appendix.

Lemma 3.1. Suppose the matrix H satisfies that H ≥ 0, H1 = 1, and is sufficiently

scattered. If a k × k matrix A satisfies that

HA ≥ 0,HA1 = 1,

then we have that |detA| ≤ 1. Furthermore, equality holds if and only if A is a

permutation matrix.

Proof of Theorem 3.2. By contradiction. Suppose W̃ and H̃ is an optimal solution of

(3.1), but H̃ is not a column permutation of H, the true latent factor. Since W and

H are clearly feasible for (3.1), this means that det W̃ TW̃ ≤ detW TW .

Since the columns of H and H̃ span the same subspace, there is a k × k matrix A

such that

H̃ = HA,

and since Y = WHT = W̃ H̃T , this means

W̃ = WA−T .

Since H is sufficiently scattered, according to Lemma 3.1, and our first assumption that

A is not a permutation matrix, we have

| detA| < 1.

However, the optimal objective of (3.1) obtained by W̃ , H̃ is

det W̃ TW̃ = detA−1W TWA−T

= detA−1 detW TW detA−T

= | detA|−2 detW TW

> detW TW ,
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which contradicts our first assumption that W̃ , H̃ is an optimal solution for (3.1).

Therefore, H̃ must be a column permutation of H.

In the special case when W is square, an alternative formulation to (3.12) is to

re-parameterize X = W−1, and then eliminate variable H, yielding

maximize
X

|detX|

subject to XY ≥ 0,Y TXT1 = 1.
(3.4)

A similar result holds for this case.

Proposition 3.1. Denote an optimal solution of (3.4) as X̃. If the true latent factor

H is sufficiently scattered (cf. Definition 2.5) and each of its rows sums to one, then

there exists a permutation matrix P such that Y T X̃TP = H.

Proof. The proof is by contradiction, and very similar to that of Theorem 3.2. Let X̃

be an optimal solution of (3.4), but Y T X̃T is not a column permutation of H, since

X = W−1 is clearly feasible for (3.4), this means that | det X̃| ≥ |detW−1|.
Since the columns of Y T X̃T and H span the same subspace, there is a k×k matrix

A such that

Y T X̃T = HA,

or equivalently

X̃ = ATW−1.

Since H is sufficiently scattered, according to Lemma 3.1, and our first assumption that

A is not a permutation matrix, we have

| detA| < 1.

However, the optimal objective of (3.4) obtained by X̃ is

|det X̃| = | detATW−1|

= | detA||detW−1|

< | detW−1|,

which contradicts our first assumption that X̃ is an optimal solution for (3.4). Therefore,

Y T X̃T must be a column permutation of H.
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The aforementioned analysis is based on convex geometry, which is insightful and

intuitive – the downside though is that to apply convex geometry we need to first rescale

the columns of Y to lie on a common affine space. This rescaling step not only seems

redundant in terms of analysis, but it may also color the noise for real data, making the

estimation problem harder to solve. In the sequel, we will show that it is indeed not

necessary to rescale the data before applying VolMin matrix factorization techniques,

and the nice identifiability results still hold in this case, with an even slightly simpler

proof. The only thing we miss then is the geometric interpretation of the problem,

which is conceptually nice but not needed for practical applications.

Recall that for a matrix factorization Y = WHT , we can always put a diagonal

matrix and its inverse in-between Y = WD−1DHT . Therefore we can, without loss of

generality, assume that the columns ofH sum up to one. In contrast, assuming the rows

of H sum to one implicitly assumes that the columns of Y lie on a common affine space,

which then requires some pre-processing step to make it happen. The pre-process-free

formulation can then be written as

minimize
W ,H

detW TW

subject to Y = WHT ,HT1 = 1,H ≥ 0,

(3.5)

and we have a similar result.

Theorem 3.3. Denote an optimal solution of (3.5) as W̃ , H̃. If the true latent factor

H is sufficiently scattered (cf. Definition 2.5) and each of its columns sums to one,

then there exists a permutation matrix P such that H̃P = H. In other words, W and

H can be identified up to permutation via solving (3.5).

The proof is almost exactly the same as the one for Theorem 3.2 – the only difference

is that instead of using Lemma 3.1, we need to use Lemma 3.2, which is given below.

The proof of Lemma 3.2 can be found in the appendix. We omit the rest of the proof

of Theorem 3.3 for brevity.

Lemma 3.2. Suppose the matrix H satisfies that H ≥ 0, HT1 = 1, and is sufficiently

scattered. If a k × k matrix A satisfies that

HA ≥ 0,ATHT1 = 1,
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then we have that |detA| ≤ 1. Furthermore, equality holds if and only if A is a

permutation matrix.

When W is square, again we can define X = W−1 and work with the alternative

formulation
maximize

X
|detX|

subject to XY ≥ 0,XY 1 = 1.
(3.6)

Proposition 3.2. Denote an optimal solution of (3.6) as X̃. If the true latent factor

H is sufficiently scattered(cf. Definition 2.5) and each of its columns sums to one, then

there exists a permutation matrix P such that Y T X̃TP = H.

The proof of Proposition 3.2 follows the sames steps of that of Proposition 3.1,

except using Lemma 3.2 instead of Lemma 3.1, thus omitted here.

3.3 Application: Principled Neuro-Functional Connectiv-

ity Discovery

How can we reverse-engineer the brain connectivity, given the input stimulus, and the

corresponding brain-activity measurements, for several experiments? We show how to

solve the problem in a principled way, modeling the brain as a linear dynamical system

(LDS), and solving the resulting “system identification” problem after imposing spar-

sity and non-negativity constraints on the appropriate matrices. These are reasonable

assumptions in some applications, including magnetoencephalography (MEG).

In computational neuroscience, one of the major research challenges is estimating

the functional connectivity of the brain, i.e. a relation between neurons (or groups of

neurons) which encodes co-activation of the neurons involved. Functional connectivity

is often determined via cross-correlation or mutual information statistics [48,49], albeit

these approaches do not explicitly model neuronal state dynamics. An introductory

overview of techniques for estimating brain connectivity can be found in [50].

Here, we want to estimate the functional connectivity of the brain, under the follow-

ing experimental regime: a human subject is presented with a stimulus (in particular

concrete nouns of the English language) as well as a task (such as answering a simple

question regarding the shown noun, like is it alive?, can you buy it? and so on), and
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their brain activity is measured 1 over a course of a few seconds. Recently, [51] pro-

posed the “GeBM” model, a simple model for the brain, that successfully captures the

temporal dynamics of the brain. The “GeBM” model is as follows:

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t),
(3.7)

where u(t) is the stimulus signal, y(t) is the observed brain activity measured via

MEG, x(t) is the latent brain activity, A is the functional connectivity matrix, B is the

stimulus matrix, and C models the measurement that maps the internal state of the

brain into MEG sensor values. In the original paper, the “GeBM” model is solved using

“system identification” from control theory, and an ad-hoc, greedy method, to sparsify

the connectivity matrix A.

In this work [12], we formalize the problem, and provide a principled and theoreti-

cally sound treatment of sparse system identification under an additional non-negativity

condition on C, with application to brain functional connectivity estimation. Our main

contributions are the following: (a) a rigorous proof of identifiability for the constrained

problem we propose; (b) an effective, two-stage algorithm; and (c) validation of both,

using semi-synthetic and real (MEG) data.

Figure 3.1 shows an illustration of our results on real MEG data. The left shows the

recovered graph, and the right part shows the corresponding adjacency matrix. Notice

that there are several ’white’ (= empty) cells, exactly because our algorithm enforces

sparsity. See the experiments section for more details.

State-space and, more generally, dynamic latent variable (e.g., Markov) models have

a long history across science, and neural data analysis in particular [52, 53]. Even the

simplest dynamic models, though, can only be identified up to inherent indeterminacies

which generally hide the underlying connectivity pattern. For the linear state-space

model in (3.7), for example, this comes in the form of a simplicity transformation that

alters the structure of A. Such indeterminacy is inherent to the model in (3.7), and is

also borne out of classical subspace-based system identification methods [54,55], which

1 Measurements may be taken either via Magnetoencephalography (MEG) or functional magnetic
resonance imaging (fMRI), although the former offers finer temporal granularity and is preferred when
fine grained temporal dynamics are considered.
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Figure 3.1: The neural connectivity (left), and its corresponding adjacency matrix

(right), obtained from real MEG data.

can only provide Â, B̂, Ĉ satisfying

Â = MAM−1,

B̂ = MB,

Ĉ = CM−1,

for some unknown non-singular matrix M , due to rotational freedom. The mapping

from (A,B,C) → (Â, B̂, Ĉ) is known as a similarity transformation. A key message

of this paper is that sparsity and non-negativity of C can overcome this limitation and

render not only C, but also A and B identifiable without rotational ambiguity (except

the unavoidable permutation and scaling).

For MEG sensors, the assumption that C is non-negative and sparse can be moti-

vated as follows. The brain activity recorded by MEG is limited to very low frequencies,

typically ≤ 30 Hz [56]. Since the corresponding wavelength is so much larger than the

size of a skull, the spatial phase variation of the magnetic wave from one sensor to

the next is insignificant, i.e., the MEG sensors are approximately in phase, hence C

can be assumed non-negative. Furthermore, since field intensity decays very fast as

the distance between the source and the sensor increases, a MEG sensor only measures
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(diffuse) sources that are close to it, leading to a sparse C. Similar arguments can be

made for electroencephalography (EEG) [57].

Notation We denote the true system matrices as A, B, and C. The matrices Â,

B̂, and Ĉ represent the results obtained from the subspace method, i.e., they are

unconstrained. If we take the constraints into consideration, the estimates are denoted

Ã, B̃, and C̃. Generally speaking, when we study identifiability, we compare A, B, C

with Ã, B̃, C̃, and when we design algorithms, we use Â, B̂, Ĉ, and the constraints

to obtain Ã, B̃, and C̃.

Since linear dynamical systems can generally only be identified up to a similarity

transformation, special transformations can be used to bring the system matrices into

certain convenient forms. In the controls field, A, B, and C are often put into canonical

forms, such as the controller forms or the observer forms [58, Sec. 3.4], in which case the

structure ofA is confined to a specific pattern. Since our main purpose here is to discover

the underlying structure of the true A, imposing structure through transformation to

some canonical form is generally inappropriate.

One interesting difference between our model and the classical controls literature is

that the dimension of the output is larger than the number of states2 . In other words,

the matrix C is tall. Moreover, because of the nature of MEG sensors, we can also

assume that C is sparse and takes only non-negative values. In this section, we will

first propose a condition under which a non-negative C is identifiable, and then study

the connection between sparsity, non-negativity, and the proposed condition.

Throughout this paper we will assume that CT1 = 1, because otherwise we can

scale the columns of C to satisfy that, which will result in a similarity transformation

with a diagonal matrix, thus does not change the structure of the system.

Since we are given Ĉ, which we know is a transformed version of a non-negative

matrix C, and its columns are scaled to sum up to 1, we should be able to find a matrix

M that satisfies

ĈM ≥ 0, MT ĈT1 = MT1 = 1.

In fact, there are clearly infinitely many M that satisfy that. Therefore, we can set up

a criterion and try to find the one with the maximum |detM | (one can relate this idea

2 As we discovered from rank analysis of experimental MEG data.
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to SVM, in which case there are infinitely many linear separators and we seek for the

one with the maximum “margin”), i.e.,

maximize
M

|detM |,

subject to ĈM ≥ 0, MT1 = 1,
(3.8)

Geometrically, (3.8) tries to find the simplicial cone that contains all the row vectors of

Ĉ, and with minimum “volume” [40]. Next, we will propose a condition under which

the true C can be recovered by solving (3.8) and then set the estimate as ĈM .

As we can see, formulation (3.8) is exactly as we have discussed in (3.6), which,

according to Theorem 3.2, is able to identify the correct C up to column permutation,

as long as C is non-negative and reasonably sparse.

3.3.1 Proposed Method

Theoretically, if C is sparse, non-negative and tall, in which case sufficiently scatteredis

satisfied with high probability, it is enough to only work on Ĉ to figure out the true

similarity transformation, thus successfully identifying the true A, B, and C, up to

permutation of the states. We will first introduce an algorithm that approximately

solves (3.8), under a noiseless scenario. In practice, when the measurements are noisy,

we found that the aforementioned formulation is very sensitive to noise. We therefore

use a modified robust formulation, followed by a least-squares refinement procedure to

make the resulting Ã, B̃, and C̃ sparse (and non-negative, if/as appropriate).

The absolute value of the determinant of a non-symmetric matrix is proportional to

the volume of a simplex defined by the columns of that matrix (and the origin) [40]. The

objective function of (3.8) is non-convex, therefore (3.8) is presumably hard to solve.

Two approaches that can be used to handle this type of non-convexity are successive

linearization, and block coordinate descent—see [40] and the references therein. In our

experiments we found that the block coordinate descent method works better in the

noiseless case, therefore this method is briefly explained next.

If we fix all columns of M but one, the objective is linear over that column,

detM =

n∑
i=1

(−1)i+jmj(i) detMi,j ,
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where mj(i) means the i-th entry of the j-th column of M , and Mi,j is obtained by

deleting the i-th row and j-th column of M . Thus, the update of one column of M

becomes

maximize
mj

∣∣∣∣∣
n∑
i=1

(−1)i+jmj(i) detMi,j

∣∣∣∣∣ ,
subject to Ĉmj ≥ 0, mT

j 1 = 1.

(3.9)

Now (3.9) is still non-convex, but we can get rid of the absolute value and solve two

linear programming problems instead (maximizing and minimizing the linear objective

function), then set mj as the one that gives the larger absolute value.

If Ĉ is not exactly a transformed version of C, but includes some noise due to

subspace estimation errors, one potential problem with formulation (3.8) is that it may

not even be feasible. As a trade-off between the maximum determinant criterion and

non-negativity of C, we can use instead

maximize
M

log | detM | − λ
∑
i,j

[ĈM ]−,

subject to MT1 = 1,

(3.10)

where [·]− sums the negative elements of its argument. We put a log to the determinant

term because we found that otherwise, in order to make the second term large, the

algorithm tends to makeM singular, even if the regularization parameter λ is very small.

By taking the log of the determinant term, it will decrease the objective function sharply

when M is close to singular, while increasing it slowly when it is not. Algorithmically,

we can still update M column by column, since the sub-problem can still be cast as

two convex optimization problems.

Sparse refinement While our ultimate goal is to estimate A, B, and C, our identifi-

ability results show that a tall non-negative and sparse of C can be enough to guarantee

identifiability, in the noiseless case. In practice, when the noiseless scenario is not re-

alistic, what we observe is that while the robust formulation (3.10) is able to recover

C with minor errors, the resulting Ã and B̃ are not close to A and B, even when the

perturbation in the data is quite small. We therefore propose to refine the result from

(3.10) by solving the problem given in (3.11), which also takes into account possible
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sparsity in A and B. In (3.11), the operation ‖ · ‖0 returns the cardinality of the argu-

ment. Notice that we have introduced an auxiliary variable Minv and a penalty term

λ‖MinvM − I‖2F to make it close to M−1, instead of working directly with both M

and M−1, which is presumably hard.

minimize
Ã,B̃,C̃,
M ,Minv

‖Ã−MinvÂM‖2F + ‖B̃ −MinvB̂‖2F + ‖C̃ − ĈM‖2F ,+λ‖MinvM − I‖2F

subject to ‖Ã‖0 ≤ sA, ‖B̃‖0 ≤ sB, ‖C̃‖0 ≤ sC , C̃ ≥ 0,

(3.11)

This formulation is still non-convex; but it is amenable to block coordinate descent—

the updates for M and Minv are classical linear least-squares, whereas the updates for

Ã, B̃, and C̃ are simple projections. Although the cardinality constraints are not

convex, the corresponding projections are very easy—we only need to keep the entries

with largest (absolute) values and zero out the others. Note that there is no reason

to use an l1 norm surrogate of the cardinality constraints, as hard projection is in fact

easier here, and the MinvM term makes the problem non-convex, regardless. Due to

non-convexity, the block coordinate descent algorithm only guarantees that every limit

point is a stationary point. This is why initializing it with the result of (3.10) is crucial.

Summary of the proposed method The method proposed for principled neuro-

functional connectivity discovery (NFCD) is summarized in Alg. 3.2, which consists of

three steps: i) A system identification step to get Â, B̂, and Ĉ from the input-output

data U and Y , and a given system order n; ii) a determinant maximization step as

discussed in §3.3.1; and iii) a sparse refinement step as discussed in §3.3.1.

In the system identification step, an interesting observation is that our model has

more outputs than states, unlike typical LDS models in automatic control where the

number of outputs is smaller than the number of states. Having more outputs than

states makes system identification easier. As described in the first step of Alg. 3.2,

we only need to take the ‘thin’ SVD of the output samples, and then solve a linear

least-squares problem. In line 3, T is a random n×n matrix—we found by simulations

that this improves the conditioning. In line 4, X̂0 is the first N − 1 columns of X̂, and

X̂1 is the last N − 1 columns of X̂, where N is the number of samples, i.e., the number

of columns of X̂.
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In the 3rd step of Alg.3.2, we used the (hard) thresholding operator Tt(·) parame-

terized by t, and its non-negative version T +
t (·), which are defined as:

Tt(z) =

 z , if |z| ≥ t

0 , else
, T +

t (z) =

 z , if z ≥ t

0 , else
.

A brief discussion on the complexity of NFCD is useful at this point. For the MEG

data that we consider in this paper, m (the input dimension) and p (the number of MEG

sensors) are no more than a few hundreds, and, as shown in [51], for n ranging from 10

to 30 the LDS model is able to capture most of the brain dynamics. Therefore, steps 2

and 3 of NFCD are relatively small scaled. The only number that can possibly go large

is N , the number of samples collected by the MEG sensors, which only comes into play

in step 1. Notice that for both SVD and least-squares, complexity grows linearly in the

large dimension (times the small dimension squared). Thus, even if N is very large,

NFCD is able to scale well.

3.3.2 Experiments

We next present some numerical results to corroborate our theoretical claims and illus-

trate the robustness of our methods. The convex optimization sub-problems are solved

by using CVX, a package for specifying and solving convex programs [?].

Synthetic data We start by experimenting with synthetically generated data, where

we know A, B, C, and we can check whether our proposed method is able to recover

them from input-output data. We begin by assuming that the system is noiseless, and

simply use (3.8) without refinement. The true A, B, and C are generated randomly,

and whether an entry is zero or not is determined by drawing from an i.i.d. Bernoulli

distribution. The non-zeros entries of A and B are drawn from an i.i.d. Gaussian dis-

tribution, whereas the non-zeros of C are drawn from an i.i.d. exponential distribution,

to ensure non-negativity of C. Then A is scaled down by its spectral radius to ensure

stability of the system, and the columns of C are scaled to sum up to 1. The inputs

u(t), t = 1, . . . , N , as well as the initial state x(0), are generated from an i.i.d. Gaussian

distribution. Then the inputs are sent into the system in (3.7) to obtain the outputs

y(t), t = 1, . . . , N .
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Figure 3.2: Column update of M for approximately solving (3.8).

As one particular example, with n = 30, m = 50, p = 300, and approximately 50% of

the entries of A, B, and C being zero, 104 input-output pairs are used to do subspace

system identification, and then the estimated Ĉ is fed to (3.8). The convergence of

the proposed block coordinate descent method is shown in Figure 3.2. Notice that the

horizontal axis starts at 30 because M becomes feasible and non-singular only after the

first round of column updates, therefore it is meaningless to show the objective before

30.

As shown in Figure 3.2, the algorithm converges very fast. In fact, considering that

the first round of column updates tries to find a feasible M , it converges even before the

second round of column updates finishes. Let M? be the result obtained from solving

(3.8); in this noiseless case we simply set

Ã = M−1
? ÂM?,

B̃ = M−1
? B̂,

C̃ = ĈM?.

Before we compare Ã, B̃, and C̃ with the ground truth, we need to be aware that there
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is still a permutation ambiguity, i.e., the similarity transformation can be a permutation

matrix, which does not affect the true structure of the system, but only relabels the

states. We resolve this by first matching the columns of C̃ with C, i.e.,

min
P∈Π
‖C − C̃P‖2F ,

where Π indicates the set of permutation matrices. This problem can be cast as a

linear assignment problem, which be solved optimally by the Hungarian method [59] 3

. After obtaining the best permutation P, the rows and/or columns of Ã, B̃, and C̃

are permuted accordingly.

In Table 3.1, we provide the normalized estimation error of the system matrices for

various settings, where s indicates the ratio of nonzero entries. Sometimes the algorithm

fails to generate a non-singular matrix, in which case a different initialization is used

and the algorithm is run again. For each setting, 10 Monte-Carlo trials are performed,

and we only show the largest error. In all cases, m = 50, and p = 300. As we can see,

this simulation justifies the claim in Proposition 3.2 that sparse, non-negative and tall

C yield an identifiable system.

Semi-synthetic data Next we try noisy data. Instead of synthetically generating the

whole system, the A matrix we use here comes from real data – the neural connectivity

of C. elegans4 . Specifically, we take the connectivity of the first 10 ∼ 20 C. elegans

neurons as the matrix A (those neurons are relatively more densely connected), again

scaled down by its spectral radius to ensure stability. Then we synthetically generate

B and C, similar to the previous experiment. The inputs and the initial state of the

system are generated as before, but now we introduce state and measurement noise, i.e.,

x(t+ 1) = Ax(t) + Bu(t) + v(t),

y(t) = Cx(t) + w(t),

where v(t) and w(t) are white Gaussian, with standard deviation σ = 10−3. The

matrices B and C are generated with m = 50, p = 300, and approximately 50% zeros.

Then Algorithm 3.2 is applied to the input-output data. In step 2, we set λ = 0.5,

3 A MATLAB inplementation of the Hungarian method is used and available at http://www.

mathworks.com/matlabcentral/fileexchange/11609-hungarian-algorithm
4 available at http://www.wormatlas.org/neuronalwiring.html.

http://www.mathworks.com/matlabcentral/fileexchange/11609-hungarian-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/11609-hungarian-algorithm
http://www.wormatlas.org/neuronalwiring.html
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Figure 3.3: Convergence of Algorithm 3.2, step 2 (left) and step 3 (right).
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Figure 3.4: Recovery of C. elegans neural connectivity.

and in step 3, we set λ = 100. The cardinality constraints in step 3 are set to be

approximately 10% more than the true density. For n = 20, the convergence of these

two steps is shown in Figure 3.3.

Finally, the resulting Ã, B̃, and C̃ are compared with the true system A, B, and

C, after column matching using the Hungarian method, and the normalized errors for

different values of n are shown in Table 3.2. Notice that the recovery is almost perfect

when n = 10. For n = 15, the estimated connectivity matrix is compared with the true

connectivity in Figure 3.4, in which case we managed to recover all the true connectivity,

with only a few redundant ones. In fact, if we set the sparsity constraint in (3.11) to be

the exact one, the connectivity is recovered perfectly.
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Real data Next we apply our proposed method to a set of real input-output data.

The experiment was conducted by asking a yes/no question about a particular word to a

human subject, and then his/her brain activities are measured by the 306 MEG sensors.

Approximately 20 questions were asked for 60 words, and then 340 MEG measurements

were collected for each particular question/word. We sampled 10 samples for each

experiment, and also added 2 dimensions to indicate the time the subject responded to

the question, and the answer given. This forms the output matrix Y , with p = 308

and N ≈ 12000. The input dimension m = 40, which is a subset of the 218-questions

description of those 20 words conducted by Amazon Mechanical Turks. For more details

on the dataset, see [51,60].

As mentioned earlier, the LDS (Linear Dynamical System) modeling of the brain

provides good input-output predictions. However, the ultimate goal is not simply to

predict outputs, but also to study the functional connectivity of the brain. As we have

argued at the beginning, for MEG sensors the measurement matrix C is non-negative

and sparse, therefore satisfies sufficiently scatteredwith high probability. Using the

identifiability results and the algorithm developed in this paper, we can analyze this

dataset and see if we obtain interpretable results.

We tried this real input-output data using Algorithm 3.2 to fit a 15-state LDS, with

the same λ values as in the previous simulation, assuming 50% sparsity of A, B, and

C. The regularization parameters in the optimization problem of step 2 and 3 are set

equal to the previous simulation for the C. elegans data. The resulting Ã is represented

as a graph to show the functional connectivity, in Figure 3.1 in the introduction. As

expected, the (hidden) functional connectivity matrix obtained from the MEG experi-

ments is quite sparse, and diagonally dominant. In lieu of ground truth data, we gain

confidence in our model because of the fact that under our assumptions, our algorithms

are able to recover a sparse functional connectivity matrix which successfully (and in a

stable and robust manner) models MEG brain activity in the least squares sense. We

omit the corresponding figures due to space restrictions, however, in our experiments we

observed robust reconstruction of the MEG recorded brain activity using the obtained

model.
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3.3.3 Conclusion

Our goal is to solve the linear dynamical system (LDS) model of the brain by tackling

the subtle, identifiability issue as well as the sparsity and non-negativity constraints, in

a principled, effective way. Our contributions are the following:

� Proof that our proposed conditions resolve the identifiability issue.

� Algorithm: our two-stage algorithm is carefully designed. We give a robust prob-

lem reformulation when the data is noisy; and we propose a refinement step to

sparsify the connectivity matrix.

� Validation, using real and synthetic data. For the semi-synthetic data, we used a

subset of the neuro-connectivity of the C. elegans as the system to simulate a set

of noisy input-output data, and managed to recover the true neuro-connectivity

with high accuracy. On real data measured by MEG, our method produced inter-

pretable results.
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Appendix

Proof of Lemma 3.1

Proof. First of all, the tall matrix H has full column rank, so H1 = 1 and HA1 = 1

implies that A1 = 1.

Geometrically, HA ≥ 0 means that ai ∈ cone
{
HT

}∗
, where ai is the i-column of

A, for all i = 1, ..., k. BecauseH is sufficiently scattered, we have that cone
{
HT

}
⊆ C∗,

which further implies that ai ∈ C∗, which means

‖ai‖ ≤ 1Tai.

Then we have the following chain

| detA| ≤
k∏
i=1

‖ai‖ (3.12a)

≤
k∏
i=1

1Tai (3.12b)

≤

(∑k
i=1 1Tai
k

)k
(3.12c)

=

(
1TA1

k

)k
(3.12d)

= 1, (3.12e)

where (3.12a) is Hadamard’s inequality, (3.12b) is because ai ∈ C∗, and (3.12c) is by

the arithmetic-geometric mean inequality.

Now, suppose equality is attained, i.e., | detA| = 1, then all the inequalities in

(3.12) hold as equality, and specifically (3.12b) means that the columns of A lie on

the boundary of C∗. Recall that ai ∈ cone
{
HT

}∗
, and H being sufficiently scattered,

according to the second requirement in Definition 2.5, shows that

cone
{
HT

}∗ ∩ bd {C∗} = {λeκ | λ ≥ 0, κ = 1, ..., k},

therefore ai’s can only be the eκ’s. In other words, A can only be a permutation

matrix.



47

Proof of Lemma 3.2

Proof. First of all, since we assume that HT1 = 1, we have that ATHT1 = AT1 = 1.

Geometrically, HA ≥ 0 means that ai ∈ cone
{
HT

}∗
, where ai is the i-column of

A, for all i = 1, ..., k. BecauseH is sufficiently scattered, we have that cone
{
HT

}
⊆ C∗,

which further implies that ai ∈ C∗, which means

‖ai‖ ≤ 1Tai.

Then we have the following chain

|detA| ≤
k∏
i=1

‖ai‖ (3.13a)

≤
k∏
i=1

1Tai (3.13b)

= 1, (3.13c)

where (3.13a) is Hadamard’s inequality, (3.13b) is because ai ∈ C∗.
Now, suppose equality is attained, i.e., | detA| = 1, then all the inequalities in

(3.12) hold as equality, and specifically (3.12b) means that the columns of A lie on

the boundary of C∗. Recall that ai ∈ cone
{
HT

}∗
, and H being sufficiently scattered,

according to the second requirement in Definition 2.5, shows that

cone
{
HT

}∗ ∩ bd {C∗} = {λeκ | λ ≥ 0, κ = 1, ..., k},

therefore ai’s can only be the eκ’s. In other words, A can only be a permutation

matrix.

As we can see, the proof of Lemma 3.2 is almost the same as that of Lemma 3.1,

and actually simpler since we saved one step of applying arithmetic-geometric mean

inequality to conclude that |detA| ≤ 1.
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Algorithm 3.2: Algorithm for NFCD

Input: Y , U , n, sA, sB, sC

Output: Ã, B̃, C̃

1 begin Step 1: simple subspace system identification

2 Y ≈ UnΣnV
T
n ;

3 Ĉ ← UnT
−1, X̂ ← TΣnV

T
n ;

4

[
Â B̂

]
= X̂1

[
X̂0

U

]†
;

5 scale the columns of Ĉ to sum up to 1, and then counter-scale Â and B̂;

6 end

7 begin Step 2: solve Problem 3.10

8 initialize M as a random matrix ;

9 repeat

10 for j = 1, . . . , n do

11 Solve (3.10) with respect to mj ;

12 end

13 until convergence;

14 end

15 begin Step 3: solve Problem 3.11

16 initialize M as the result from the previous step, and Minv as its inverse ;

17 repeat

18 t← the sA-th largest value in |MinvÂM | ;

19 Ã← Tt(MinvÂM);

20 t← the sB-th largest value in |MinvB̂|;
21 B̃ ← Tt(MinvB̂);

22 t← max(0,the sC-th largest value in ĈM);

23 C̃ ← T +
t (ĈM) Minv ←

[
Ã B̃ λI

] [
ÂM B̂ λM

]†
;

24 M ←


MinvÂ

Ĉ

λMinv


† 
Ã

C̃

λI

 ;

25 until convergence;

26 end
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Table 3.1: System matrices recovery in the noiseless case.

n = 30 n = 30 n = 15

s = 0.5 s = 0.3 s = 0.5
‖A−Ã‖F
‖A‖F 7.33e-07 5.85e-06 1.03e-05

‖B−B̃‖F
‖B‖F 7.11e-07 5.49e-06 1.50e-05

‖C−C̃‖F
‖C‖F 5.93e-07 5.14e-06 1.30e-05

Table 3.2: System matrices recovery of the C. elegans system with noisy data.

n = 10 n = 15 n = 20
‖A−Ã‖F
‖A‖F 3.71e-04 0.0650 0.0299

‖B−B̃‖F
‖B‖F 4.77e-04 0.0455 0.0153

‖C−C̃‖F
‖C‖F 3.73e-04 0.0375 0.0135



Chapter 4

A Flexible and Efficient

Algorithmic Framework

Constrained matrix and tensor factorization techniques are widely used for latent pa-

rameter estimation and blind source separation in signal processing, dimensionality re-

duction and clustering in machine learning, and numerous other applications in diverse

disciplines, such as chemistry and psychology. Least-squares low-rank factorization of

matrices and tensors without additional constraints is relatively well-studied, as in the

matrix case the basis of any solution is simply the principal components of the singular

value decomposition (SVD) [61], also known as principal component analysis (PCA),

and in the tensor case alternating least squares (ALS) and other algorithms usually

yield satisfactory results [62]. ALS is also used for matrix factorization, especially when

the size is so large that performing the exact PCA is too expensive.

Whereas unconstrained matrix and tensor factorization algorithms are relatively

mature, their constrained counterparts leave much to be desired as of this writing, and

a unified framework that can easily and naturally incorporate multiple constraints on

the latent factors is sorely missing. Existing algorithms are usually only able to handle

one or at most few specialized constraints, and/or the algorithm needs to be redesigned

carefully if new constraints are added. Commonly adopted constraints imposed on

the latent factors include non-negativity [1], sparsity (usually via sparsity-inducing `1

regularization [63]), and simplex constraints [64], to name just a few.

50
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On top of the need to incorporate constraints on the latent factors, many established

and emerging signal processing applications entail cost (loss) functions that differ from

classical least-squares. Important examples include matrix completion [65] where miss-

ing values are ignored by the loss function, and robust PCA [66] where the `1 loss is used.

In the matrix case without constraints on the latent factors, these can be formulated as

convex problems via nuclear norm regularizations and solved in polynomial-time [67].

With explicit constraints imposed on the latent factors, and/or for tensor data, how-

ever, non-convex (multi-linear) formulations are unavoidable, and a unified algorithmic

framework that can handle a variety of constraints and loss functions would be very

welcome.

In this chapter, we describe a general algorithmic framework that seamlessly and

relatively effortlessly incorporates many common types of constraints and loss functions,

building upon and bridging together the alternating optimization (AO) framework and

the alternating direction method of multipliers (ADMM), hence the name AO-ADMM.

While combining these frameworks may seem conceptually straightforward at first

sight, what is significant is that AO-ADMM outperforms all prior algorithms for con-

strained matrix and tensor factorization under nonparametric constraints on the latent

factors. One example is non-negative matrix factorization, where the prior art includes

decades of research. This is the biggest but not the only advantage of AO-ADMM.

Carefully developing various aspects of this combination, we show that

� AO-ADMM converges to a stationary point of the original NP-hard problem;

� Using computation caching, warm-start, and good parameter settings, its per-

iteration complexity is similar to that of ALS;

� AO-ADMM can incorporate a wide-range of constraints and regularization penal-

ties on the latent factors at essentially the same complexity;

� It can also accommodate a wide variety of cost / loss functions, with only moderate

increase in complexity relative to the classical least-squares loss; and

� The core computations are exactly the same as ALS for unconstrained factoriza-

tion, with some additional element-wise operations to handle constraints, making
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it easy to incorporate smart implementations of ALS, including sparse, parallel,

and high-performance computing enhancements.

4.1 Alternating Optimization Framework: Preliminaries

We start by formulating the factorization problem as an optimization problem in the

most general form

minimize
H1,...,HN

l
(
Y − [Hd]

N
d=1

)
+

N∑
d=1

rd(Hd), (4.1)

with a slight abuse of notation by assuming N can also take the value of 2. In (4.1),

l(·) can be any loss measure, most likely separable down to the entries of the argument,

and rd(Hd) is the generalized regularization on Hd, which may take the value of +∞
so that any hard constraints can also be incorporated. For example, if we require that

the elements of Hd are nonnegative, denoted as Hd ≥ 0, then

rd(Hd) =

{
0, Hd ≥ 0,

+∞, otherwise.

Because of the multi-linear term [Hd]
N
d=1, the regularized fitting problem is non-

convex, and in many cases NP-hard [25,68]. A common way to handle this is to use the

alternating optimization (AO) technique, i.e., update each factor Hd in a cyclic fashion.

The popular ALS algorithm is a special case of this when l(·) is the least-squares loss,

and there is no regularization. In this section, we will first revisit the ALS algorithm,

with the focus on the per-iteration complexity analysis. Then, we will briefly discuss the

convergence of the AO framework, especially some recent advances on the convergence

of the traditional block coordinate descent (BCD) algorithm.

4.1.1 Alternating Least-Squares Revisited

Consider the unconstrained matrix factorization problem

minimize
W ,H

1

2
‖Y −WHT ‖2F , (4.2)

and momentarily ignore the fact that the optimal solution of (4.2) is given by the SVD.

The problem (4.2) is non-convex in W and H jointly, but is convex if we fix one and
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treat only the other as variable. Supposing W is fixed, the sub-problem for H becomes

the classical linear least squares and, if W has full column rank, the unique solution is

given by

HT = (W TW )−1W TY . (4.3)

In practice, the matrix inverse (W TW )−1 is almost never explicitly calculated. Instead,

the Cholesky decomposition of the Gram matrix W TW is computed, and for each

column of W TY , a forward and a backward substitution are performed to get the

corresponding column of HT . Since W is m × k and Y is m × n, forming W TW

and W TY takes O(mk2) and O(mnk) flops, respectively, computing the Cholesky

decomposition requires O(k3) flops, and finally the back substitution step takes O(nk2)

flops, similar to a matrix multiplication. If m,n > k, then the overall complexity is

O(mnk).

An important implication is the following. Clearly, if n = 1, the cost of solving a

least-squares problem is O(mk2). However, as n grows, the complexity does not simply

grow proportionally with n, but also amortizes a factor of k and goes to O(mnk). The

reason is that, although it seems we are now trying to solve n least-squares problems,

they all share the same matrix W , thus the Cholesky decomposition of W TW can

be reused throughout. This is a very nice property of the unconstrained least squares

problems, which can be exploited to improve the computational efficiency of the ALS

algorithm.

One may recall that another well-adopted method for least-squares is to compute the

QR decomposition of W as W = QR, so that HT = R−1QTY . This can be shown to

give the same computational complexity as the Cholesky version, and is actually more

stable numerically. However, if W has some special structure, it is easier to exploit this

structure if we use Cholesky decomposition. Therefore, in this paper we only consider

solving least-squares problems using the Cholesky decomposition.

One important structure that we encounter is in the tensor case. For the ALS

algorithm for CP factorization, the update of Hd is the solution of the following least

squares problem

minimize
Hd

1

2

∥∥∥∥∥∥Y(d)−

 N
�
j=1
j 6=d

Hj

HT
d

∥∥∥∥∥∥
2

F

,



54

and the solution is given by

HT
d =

 N
~
j=1
j 6=d

HT
j Hj

−1 N
�
j=1
j 6=d

Hj

T

Y(d).

As we can see, the Gram matrix is computed efficiently by exploiting the structure, and

its Cholesky decomposition can be reused. The most expensive operation is actually

the computation of (�j 6=dHj)
TY(d), but very efficient algorithms for this (that work

without explicitly forming the Khatri-Rao product and the d-mode matricization) are

available [69–75]. If we were to adopt the QR decomposition approach, however, none

of these methods could be applied.

In summary, least squares is a very mature technique with many favorable properties

that render the ALS algorithm very efficient. On the other hand, most of the algorithms

that deal with problems with constraints on the factors or different loss measures do

not inherit these good properties. The goal of this paper is to propose an AO-based

algorithmic framework, which can easily handle many types of constraints on the latent

factors and many loss functions, with per-iteration complexity essentially the same as

the complexity of an ALS step.

4.1.2 The Convergence of AO

Consider the following (usually non-convex) optimization problem with variables sepa-

rated into N blocks, each with its own constraint set

minimize
x1,...,xN

f(x1, ...,xN )

subject to xd ∈ Xd, ∀d = 1, ..., N.
(4.4)

A classical AO method called block coordinate descent (BCD) cyclically updates xd via

solving

minimize
ξ

f(xr+1
1 , ...,xr+1

d−1, ξ,x
r
d+1, ...,x

r
N )

subject to ξ ∈ Xd,
(4.5)

at the (r+1)-th iteration [76, § 2.7]. Obviously, this will decrease the objective function

monotonically. If some additional assumptions are satisfied, then we can have stronger

convergence claims [76, Proposition 2.7.1]. Simply put, if the sub-problem (4.5) is convex
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and has a unique solution, then every limit point is a stationary point; furthermore,

if X1, ...,XN are all compact, which implies that the sequence generated by BCD is

bounded, then BCD is guaranteed to converge to a stationary point, even if (4.4) is

non-convex [77].

In many cases (4.5) is convex, but the uniqueness of the solution is very hard to

guarantee. A special case that does not require uniqueness, first noticed by Grippo

and Sciandrone [78], is when N = 2. On hindsight, this can be explained by the

fact that for N = 2, BCD coincides with the so-called maximum block improvement

(MBI) algorithm [79], which converges under very mild conditions. However, instead

of updating the blocks cyclically, MBI only updates the one block that decreases the

objective the most, thus the per-iteration complexity is (N−1) times higher than BCD;

therefore MBI is not commonly used in practice when N is large.

Another way to ensure convergence, proposed by Razaviyayn et al. [80], is as follows.

Instead of updating xd as the solution of (4.5), the update is obtained by solving a ma-

jorized version of (4.5), called the block successive upper-bound minimization (BSUM).

The convergence of BSUM is essentially the same, but now we can deliberately design

the majorizing function to ensure that the solution is unique. One simple way to do

this is to put a proximal regularization term

minimize
ξ

f(xr+1
1 , ...,xr+1

d−1, ξ,x
r
d+1, ...,x

r
N ) +

µr+1
d

2
‖ξ − xrd‖2

subject to ξ ∈ Xd,
(4.6)

for some µr+1
d > 0 at every iteration for each block, where xrd is the update of xd from the

previous iteration. If (4.5) is convex, then (4.6) is strongly convex, which gives a unique

minimizer. Thus, the algorithm is guaranteed to converge to a stationary point, as long

as the sequence generated by the algorithm is bounded. In the contex of ALS, this type

of update strategy is independently shown in [81] to converge to a stationary point.

Similar results are also proved in [82], where the authors used a different majorization

for constrained matrix/tensor factorization; we shall compare with them in numerical

experiments.
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4.2 Solving the Sub-problems Using ADMM

The AO algorithm framework is usually adopted when each of the sub-problems can be

solved efficiently. This is indeed the case for the ALS algorithm, since each update is in

closed-form. For the general factorization problem (4.1), we denote the sub-problem as

minimize
H

l(Y −WHT ) + r(H). (4.7)

For the matrix case, this is simply the sub-problem for the right factor, and one can

easily figure out the update of the left factor by transposing everything; for the tensor

case, this becomes the update of Hd by setting Y = Y(d) and W = �j 6=dHj . This is for

ease of notation, as these matricizations and Khatri-Rao products need not be actually

computed explicitly. Also notice that this is the sub-problem for the BCD algorithm,

and for better convergence we may want to add a proximal regularization term to (4.7),

which is very easy to handle, thus omitted here.

We propose to use the alternating direction method of multipliers (ADMM) to solve

(4.7). ADMM, if used in the right way, inherits a lot of the good properties that

appeared in each update of the ALS method. Furthermore, the AO framework naturally

provides good initializations for ADMM, which further accelerates its convergence for

the subproblem. As a preview, the implicit message here is that closed-form solution

is not necessary for computational efficiency, as we will explain later. After a brief

introduction of ADMM, we first apply it to (4.7) which has least-squares loss, and then

generalize it to universal loss measures.

4.2.1 Alternating Direction Method of Multipliers

ADMM solves convex optimization problems that can be written in the form

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c,
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by iterating the following updates

x← arg min
x
f(x) + (ρ/2)‖Ax+Bz − c+ u‖22,

z ← arg min
z
g(z) + (ρ/2)‖Ax+Bz − c+ u‖22,

u← u+ (Ax+Bz − c),

where u is a scaled version of the dual variables corresponding to the equality constraint

Ax+Bz = c, and ρ is specified by the user.

A comprehensive review of the ADMM algorithm can be found in [83] and the

references therein. The beauty of ADMM is that it converges under mild conditions

(in the convex case), while artful splitting of the variables into the two blocks x and z

can yield very efficient updates, and/or distributed implementation. Furthermore, if f

is strongly convex and Lipschitz continuous, then linear convergence of ADMM can be

achieved; cf. guidelines on the optimal step-size ρ in [84, §9.3], and [85] for an analysis

of ADMM applied to quadratic programming. It is also shown empirically that ADMM

works very well for non-convex problems as well, e.g. [86, 87], although its convergence

is much harder to analyze.

4.2.2 Least-Squares Loss

We start by considering l(·) in (4.7) to be the least-squares loss (1/2)‖·‖2F . The problem

is reformulated by introducing a k × n auxiliary variable H̃

minimize
H,H̃

1

2
‖Y −WH̃‖2F + r(H)

subject to H = H̃T .

(4.8)

It is easy to adopt the ADMM algorithm and derive the following iterates:

H̃ ← (W TW + ρI)−1(W TY + ρ(H +U)T ),

H ← arg min
H

r(H) +
ρ

2
‖H − H̃T +U‖2F ,

U ← U +H − H̃T .

(4.9)

One important observation is that, throughout the iterations the same matrix W TY

and matrix inverse (W TW + ρI)−1 are used. Therefore, to save computations, we can
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cache W TY and the Cholesky decomposition of W TW +ρI = LLT . Then the update

of H̃ is dominated by one forward substitution and one backward substitution, resulting

in a complexity of O(k2n).

The update of H is the so-called proximity operator of the function (1/ρ)r(·) around

point (H̃T−U), and in particular if r(·) is the indicator function of a convex set, then the

update ofH becomes a projection operator, a special case of the proximity operator. For

a lot of regularizations/constraints, especially those that are often used in matrix/tensor

factorization problems, the update ofH boils down to element-wise updates, i.e., costing

O(kn) flops. Here we list some of the most commonly used constraints/regularizations

in the matrix factorization problem, and refer the reader to [88, §6]. For simplicity of

notation, let us define H̄ = H̃T −U .

� Non-negativity. In this case r(·) is the indicator function of R+, and the update

is simply zeroing out the negative values of H̄. In fact, any element-wise bound

constraints can be handled similarly, since element-wise projection is trivial.

� Lasso regularization. For r(H) = λ‖H‖1, the sparsity inducing regularization, the

update is the well-known soft-thresholding operator: hij = [1− (λ/ρ)|h̄ij |−1]+h̄ij .

The element-wise thresholding can also be converted to block-wise thresholding if

one wants to impose structured sparsity, leading to the group Lasso regularization.

� Simplex constraint. In some probabilistic model analysis we need to constrain the

columns or rows to be element-wise non-negative and sum up to one. As described

in [89], this projection can be done with a randomized algorithm with linear-time

complexity on average.

� Smoothness regularization. We can encourage the columns of H to be smooth

by adding the regularization r(H) = (λ/2)‖TH‖2F where T is obtained from an

n × n tri-diagonal matrix with 2 on the diagonal and −1 on the super- and sub-

diagonal by removing its first and last row. Its proximity operator is given by

H = ρ(λT TT + ρI)−1H̄. Although it involves a large matrix inversion, notice

that it has a fixed bandwidth of 2, thus can be efficiently calculated in O(kn)

time [90, §4.3].

� It is also possible to define projections onto non-convex constraints, for example
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cardinality constraints can be handled by hard thresholding (as opposed to soft

thresholding for lasso regularization). However, ADMM is not guaranteed to

converge to the conditionally optimal solution in this case, therefore it is not

discussed in this paper. If it cannot be avoided, one can still use AO-ADMM

attempting to obtain good results, and the performance is not bad compared to

the alternatives.

We found empirically that by setting ρ = ‖W ‖2F /k, the ADMM iterates for the

regularized least-squares problem (4.8) converge very fast. This choice of ρ can be seen

as an approximation to the optimal ρ given in [84], but much cheaper to obtain. With a

good initialization, naturally provided by the AO framework, the update of H usually

does not take more than 5 or 10 ADMM iterations, and very soon reduces down to

only 1 iteration. The proposed algorithm for the sub-problem (4.8) is summarized in

Alg. 4.1. As we can see, the pre-calculation step takes O(k2m + k3) flops to form the

Cholesky decomposition, and O(mnk) flops to form F . Notice that these are actually

the only computations in Alg. 4.1 that involve W and Y , which implies that in the

tensor case, all the tricks to compute W TW and W TY can be applied here, and then

we do not need to worry about them anymore. The computational load of each ADMM

iteration is dominated by the H̃-update, with complexity O(k2n).

It is interesting to compare Alg. 4.1 with an update of the ALS algorithm, whose

complexity is essentially the same as the pre-calculation step plus one iteration. For a

small number of ADMM iterations, the complexity of Alg. 4.1 is of the same order as

an ALS step.

For declaring termination, we adopted the general termination criterion described

in [83, §3.3.1]. After some calibration, we define the relative primal residual

r = ‖H − H̃T ‖2F /‖H‖2F , (4.10)

and the relative dual residual

s = ‖H −H0‖2F /‖U‖2F , (4.11)

where H0 is H from the previous ADMM iteration, and terminate Alg. 4.1 if both of

them are smaller than some threshold.

Furthermore, if the BSUM framework is adopted, we need to solve a proximal reg-

ularized version of (4.8), and that term can easily be absorbed into the update of H̃.
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Algorithm 4.1: Solve (4.8) using ADMM

Input: Y , W , H, U , k

1 Initialize H and U ;

2 G = W TW ;

3 ρ = trace {G} /k ;

4 Calculate L from the Cholesky decomposition of G+ ρI = LLT ;

5 F = W TY ;

6 repeat

7 H̃ ← (LT )−1L−1(F + ρ(H +U)T ) using forward/backward substitution ;

8 H ← arg minH r(H) + ρ
2‖H − H̃

T +U‖2F ;

9 U ← U +H − H̃T ;

10 until r < ε and s < ε; r and s defined in (4.10) and (4.11)

11 return H and U .

4.2.3 General Loss

Now let us derive an ADMM algorithm to solve the more general problem (4.7). For

this case, we reformulate the problem by introducing two auxiliary variables H̃ and Ỹ

minimize
H,H̃,Ỹ

l(Y − Ỹ ) + r(H)

subject to H = H̃T , Ỹ = WH̃.

(4.12)

To apply ADMM, let H̃ be the first block, and (Ỹ ,H) be the second block, and notice

that in the second block update Ỹ and H can in fact be updated independently. This

yields the following iterates:

H̃ ← (W TW + ρI)−1(W T (Ỹ + V ) + ρ(H +U)T )
H ← arg min

H
r(H) +

ρ

2
‖H − H̃T +U‖2F ,

Ỹ ← arg min
Ỹ

l(Y − Ỹ ) +
1

2
‖Ỹ −WH̃ + V ‖2F ,U ← U +H − H̃T ,

V ← V + Ỹ −WH̃.

(4.13)
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where U is the scaled dual variable corresponding to the constraint H = H̃T , and V

is the scaled dual variable corresponding to the equality constraint Ỹ = WH̃. Notice

that we set the penalty parameter ρ corresponding to the second constraint to be 1,

since it works very well in practice, and also leads to very intuitive results for some loss

functions. This can also be interpreted as first pre-conditioning this constraint to be
1√
ρ Ỹ = 1√

ρWH̃, and then a common ρ is used. Again we set ρ = ‖W ‖2F /k.

As we can see, the update of H̃ is simply a linear least squares problem, and all the

previous discussion about caching the Cholesky decomposition applies. It is also easy to

absorb an additional proximal regularization term into the update of H̃, if the BSUM

framework is adopted. The update of Ỹ is (similar to the update of H) a proximity

operator, and since almost all loss functions we use are element-wise, the update of Ỹ

is also very easy. The updates for some of the most commonly used non-least-squares

loss functions are listed below. For simplicity, we define Ȳ = WH̃ − V , similar to the

previous sub-section.

� Missing values. In the case that only a subset of the entries in Y are available,

a common way to handle this is to simply fit the low-rank model only to the

available entries. Let A denote the index set of the available values in Y , then

the loss function becomes l(Y − Ỹ ) = 1
2

∑
(i,j)∈A(yij − ỹij)2. Thus, the update of

Ỹ in (4.13) becomes

ỹij =

{
1
2(yij + ȳij), (i, j) ∈ A,
ȳij , otherwise.

� Robust fitting. In the case that data entries are not uniformly corrupted by noise

but only sparingly corrupted by outliers, or when the noise is dense but heavy-

tailed (e.g., Laplacian-distributed), we can use the `1 norm as the loss function

for robust (resp. maximum-likelihood) fitting, i.e., l(Y − Ỹ ) = ‖Y − Ỹ ‖1. This

is similar to the `1 regularization, and the element-wise update is

ỹij =


yij , |ȳij − yij | ≤ 1,

ȳij − 1, ȳij − yij > 1,

ȳij + 1, ȳij − yij < −1.
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� Huber fitting. Another way to deal with possible outliers in Y is to use the Huber

function to measure the loss l(Y − Ỹ ) =
∑

i,j φλ(yij − ỹij) where

φλ(z) =

{
1
2z

2, |z| ≤ λ,
λ|z| − 1

2λ
2, otherwise.

The element-wise closed-form update is

ỹij =


1
2(ȳij + yij), |ȳij − yij | ≤ 2λ,

ȳij − λ, ȳij − yij > 2λ,

ȳij + λ, ȳij − yij < −2λ.

� Kullback-Leibler divergence. A commonly adopted loss function for non-negative

integer data is the Kullback-Leibler (K-L) divergence defined as

D(Y ||Ỹ ) =
∑
i,j

(
yij log

yij
ỹij
− yij + ỹij

)
for which the proximity operator is

Ỹ =
1

2

(
(Ȳ − 1) +

√
(Ȳ − 1)2 + 4Y

)
,

where all the operations are taken element-wise [91]. Furthermore, the K-L di-

vergence is a special case of certain families of divergence functions, such as α-

divergence and β-divergence [92], whose corresponding updates are also very easy

to derive (boil down to the proximity operator of a scalar function).

An interesting observation is that if the loss function is in fact the least-squares

loss, the matrix (Ỹ + V ) that H̃ is trying to fit in (4.13) is the data matrix Y per se.

Therefore, the update rule (4.13) boils down to the update rule (4.9) in the least-squares

loss case, with some redundant updates of Ỹ and V . The detailed ADMM algorithm for

(4.12) is summarized in Alg. 4.2. We use the same termination criterion as in Alg. 4.1.

Everything seems to be in place to seamlessly move from the least-squares loss to

arbitrary loss. Nevertheless, closer scrutiny reveals that some compromises must be

made to take this leap. One relatively minor downside is that with a general loss

function we may lose the linear convergence rate of ADMM – albeit with the good

initialization naturally provided by the AO framework and our particular choice of ρ,
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Algorithm 4.2: Solve (4.12) using ADMM

Input: Y , W , H, U , Ỹ , V , k

1 Initialize H, U , Ỹ , and V ;

2 G = W TW ;

3 ρ = trace {G} /k ;

4 Calculate L from the Cholesky decomposition of G+ ρI = LLT ;

5 repeat

6 H̃ ← (LT )−1L−1(W T (Ỹ + V ) + ρ(H +U)T ) using forward/backward

substitution ;

7 H ← arg minH r(H) + ρ
2‖H − H̃

T +U‖2F ;

8 Ỹ ← arg minỸ l(Y − Ỹ ) + 1
2‖Ỹ −WH̃ + V ‖2F ;

9 U ← U +H − H̃T ;

10 V ← V + Ỹ −WH̃ ;

11 until r < ε and s < ε; r and s defined in (4.10) and (4.11)

12 return H, U , Ỹ , and V .

it still converges very fast in practice. The biggest drawback is that, by introducing the

auxiliary variable Ỹ and its dual variable V , the big matrix product W T (Ỹ +V ) must

be re-computed in each ADMM iteration, whereas in the previous case one only needs

to compute W TY once. This is the price we must pay; but it can be moderated by

controlling the maximum number of ADMM iterations.

Scalability considerations. As big data analytics become increasingly common, it

is important to keep scalability issues in mind as we develop new analysis method-

ologies and algorithms. Big data Y is usually stored as a sparse array, i.e., a list of

(index,value) pairs, with the unlisted entries regarded as zeros or missing. With the

introduction of Ỹ and V , both of size(Y ), one hopes to be able to avoid dense opera-

tions. Fortunately, for some commonly used loss functions, this is possible. Notice that

by defining Ȳ = WH̃ − V , the V -update essentially becomes

V ← Ỹ − Ȳ ,
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which means a significant portion of entries in V are constants—0 if the entries are

regarded as missing, ±1 or ±λ in the robust fitting or Huber fitting case if the entries

are regarded as “corrupted”—thus they can be efficiently stored as a sparse array. As

for Ỹ , one can simply generate it “on-the-fly” using the closed-form we provided earlier

(notice that Ȳ has the memory-efficient “low-rank plus sparse” structure). The only

occasion that Ỹ is needed is when computing W T Ỹ .

4.3 Summary of the Proposed Algorithm

We propose to use Alg. 4.1 or 4.2 as the core sub-routine for alternating optimization.

The proposed “universal” multi-linear factorization algorithm is summarized as Alg. 4.3.

A few remarks on implementing Alg. 4.3 are in order.

Since each factor Hd is updated in a cyclic fashion, one expects that after a certain

number of cyclesHd (and its dual variableUd) obtained in the previous iteration will not

be very far away from the update for the current iteration. In this sense, the outer AO

framework naturally provides a good initial point to the inner ADMM iteration. With

this warm-start strategy, the optimality gap for the sub-problem is then bounded by

the per-step improvement of the AO algorithm, which is small. This mode of operation

is crucial for insuring the efficiency of Alg. 4.3. Our experiments suggest that soon after

an initial transient stage, the sub-problems can be solved in just one ADMM iteration

(with reasonable precision).

Similar ideas can be used for Ỹ and V in the matrix case if we want to deal with

non-least-squares loss, and actually only one copy of them is needed in the updates of

both factors. A few different options are available in the tensor case. If memory is not

an issue in terms of the size of Y , a convenient approach that is commonly adopted in

ALS implementations is to store all N matricizations Y(1), ...,Y(N), so they are readily

available without need for repetitive data re-shuffling during run-time. If this practice

is adopted, then it makes sense to also have N copies of Ỹ and V , in order to save

computation. Depending on the size and nature of the data and how it is stored, it may

be completely unrealistic to keep multiple copies of the data and the auxiliary variables,

at which point our earlier discussion on scalable implementation of Alg. 4.2 for big but

sparse data can be instrumental.
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Algorithm 4.3: AO-ADMM for (4.1)

1 Initialize H1, ..., HN ;

2 Initialize U1, ..., UN to be all zero matrices;

3 if least-squares loss then

4 repeat

5 for d = 1, ..., N do

6 Y = Y(d) and W = �j 6=dHj ; // not necessarily formed explicitly

7 update Hd, Ud using Alg. 4.1 initialized with the previous Hd, Ud;

8 end

9 update µ if necessary ; // refer to (4.14)

10 until some termination criterion is reached ;

11 else

12 Initialize Ỹ ← Y , V ← 0;

13 repeat

14 for d = 1, ..., N do

15 Y = Y(d) and W = �j 6=dHj ; // not necessarily formed explicitly

16 update Hd, Ud, Ỹ(d), V(d) using Alg. 4.2 initialized with the previous

Hd, Ud, Ỹ(d), V(d);

17 end

18 update µ if necessary ; // refer to (4.14)

19 until some termination criterion is reached ;

20 end

Sometimes an additional proximal regularization is added to the sub-problems. The

benefit is two-fold: it helps the convergence of the AO outer-loop when N ≥ 3; while

for the ADMM inner-loop it improves the conditioning of the sub-problem, which may

accelerate the convergence of ADMM, especially in the general loss function case when

we do not have strong convexity. The convergence of AO-ADMM is summarized in

Proposition 4.1.

Proposition 4.1. If the sequence generated by AO-ADMM in Alg. 4.3 is bounded, then

for
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1. N = 2,

2. N > 2, µ > 0,

AO-ADMM converges to a stationary point of (4.1).

Proof. The first case with µ = 0 is covered in [79, Theorem 3.1], and the cases when

µ > 0 are covered in [80, Theorem 2].

Note that for N = 2, using µ = 0 yields faster convergence than µ > 0. For N > 2,

i.e., for tensor data, we can update µ as follows

µ← 10−7 + 0.01
‖Y − [Hd]

N
d=1‖

‖Y ‖
, (4.14)

which was proposed in [80] for unconstrained tensor factorization, and works very well

in our context as well.

The convergence result in Proposition 4.1 has an additional assumption that the

sequence generated by the algorithm is bounded. For unconstrained CP, diverging

components may be encountered during AO iterations [93, 94], but adding Frobenius

norm regularization for each matrix factor (with a small weight) ensures that the iterates

remain bounded.

As we can see, the ADMM is an appealing sub-routine for alternating optimization,

leading to a simple plug-and-play generalization of the workhorse ALS algorithm. The-

oretically, they share the same per-iteration complexity if the number of inner ADMM

iterations is small, which is true in practice, after an initial transient. Efficient im-

plementation of the overall algorithm should include data-structure-specific algorithms

for W TY or (�j 6=dHj)
TY(d), which dominate the per-iteration complexity, and may

include parallel/distributed computation along the lines of [95].

Finally, if a non-least-squares loss is to be used, we suggest that the least-squares loss

is first employed to get preliminary estimates (using Alg. 4.3 calling Alg. 4.1) which can

then be fed as initialization to run Alg. 4.3 calling Alg. 4.2. The main disadvantage of

Alg. 4.2 compared to Alg. 4.1 is that the big matrix (or tensor) multiplication W T (Ỹ +

V ) needs to be calculated in each ADMM iteration. Therefore, this strategy can save

a significant amount of computations at the initial stage.
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4.4 Case Studies and Numerical Results

In this section we will study some well-known constrained matrix/tensor factorization

problems, derive the corresponding update forH in Alg. 4.1 orH and Ỹ in Alg. 4.2, and

compare it to some of the state-of-the-art algorithms for that problem. In all examples

we denote our proposed algorithm as AO-ADMM. All experiments are performed in

MATLAB 2015a on a Linux server with 32 Xeon 2.00GHz cores and 128GB memory.

4.4.1 Non-negative Matrix and CP Factorization

Perhaps the most common constraint imposed on the latent factors is non-negativity –

which is often supported by physical considerations (e.g., when the latent factors rep-

resent chemical concentrations, or power spectral densities) or other prior information,

or simply because non-negativity sometimes yields interpretable factors [1]. Due to the

popularity and wide range of applications of NMF, numerous algorithms have been pro-

posed for fitting the NMF model, and most of them can be easily generalized to the

tensor case. After a brief review of the existing algorithms for NMF, we compare our

proposed algorithm to some of the best algorithms reported in the literature to showcase

the efficiency of AO-ADMM.

Let us start by considering NMF with least-squares loss, which is the prevailing

loss function in practice. By adopting the alternating optimization framework, the

sub-problem that emerges for each matrix factor is non-negative (linear) least-squares

(NNLS). Some of the traditional methods for NNLS are reviewed in [96] (interestingly,

not including ADMM), and most of them have been applied to NMF or NCP, e.g.,

the active-set (AS) method [97, 98] and block-principle-pivoting (BPP) [99, 100]. Re-

call that in the context of the overall multi-linear factorization problem we actually

need to solve a large number of (non-negative) least-squares problems sharing the same

mixing matrix W , and in the unconstrained case this means we only need to calcu-

late the Cholesky factorization of W TW once. Unfortunately, this good property that

enables high efficiency implementation of ALS is not preserved by either AS or BPP.

Sophisticated methods that group similar rows to reduce the number of inversions have

been proposed [101], although as k grows larger this does not seem appealing in the
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worst case. Some other methods, like the multiplicative-update (MU) [102] or hierar-

chical alternating least squares (HALS) [92], ensure that the per-iteration complexity

is dominated by calculating W TW and W TY , although more outer-loops are needed

for convergence. These are actually one step majorization-minimization or block coor-

dinate descent applied to the NNLS problem. An accelerated version of MU and HALS

is proposed in [103], which essentially does a few more inner-loops after computing the

most expensive W TY .

ADMM, on the other hand, may not be the fastest algorithm for a single NNLS prob-

lem, yet its overhead can be amortized when there are many NNLS problem instances

sharing the same mixing matrix, especially if good initialization is readily available.

This is in contrast to an earlier attempt to adopt ADMM to NMF [104], which did not

use Cholesky caching, warm start, and a good choice of ρ to speed up the algorithm.

Furthermore, ADMM can seamlessly incorporate different regularizations as well as

non-least-squares loss.

We should emphasize that AO forms the backbone of our proposed algorithm –

ADMM is only applied to the sub-problems. There are also algorithms that directly

apply an ADMM approach to the whole problem [86,91,95]. The per-iteration complex-

ity of those algorithms is also the same as the unconstrained alternating least-squares.

However, due to the non-convexity of the whole problem, the loss is not guaranteed to

decrease monotonically, unlike alternating optimization. Moreover, both ADMM and

AO guarantee that every limit point is a stationary point, but in practice AO almost al-

ways converges (as long as the updates stay bounded), which is not the case for ADMM

applied to the whole problem.

In another recent line of work [82], a similar idea of using an improved AO framework

to ensure convergence is used. When [82] is specialized to non-negative matrix/tensor

factorization, each update becomes a simple proximal-gradient step with an extrapo-

lation. The resulting algorithm is also guaranteed to converge (likewise assuming that

the iterates remain bounded), but it turns out to be slower than our algorithm, as we

will show in our experiments. Some interesting work on non-negative CP can also been

found in [105] and the references therein.

To apply our proposed algorithm to NMF or NCP with least-squares loss, Alg. 4.1
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is used to solve the sub-problems, with line 8 customized as

H ←
[
H̃T −U

]
+
,

i.e., zeroing out the negative values of (H̃T −U). The tolerance for the ADMM inner-

loop is set to 0.01.

Non-negative matrix factorization

We compare AO-ADMM with the following algorithms:

AO-BPP. AO using block principle pivoting [99]1 ;

accHALS. Accelerated HALS [103]2 ;

APG. Alternating proximal gradient [82]3 ;

ADMM. ADMM applied to the whole problem [86] 4 .

AO-BPP and HALS are reported in [99] to outperform other methods, accHALS is

proposed in [103] to improve HALS, APG is reported in [82] to outperform AO-BPP, and

we include ADMM applied to the whole problem to compare the convergence behavior

of AO and ADMM for this non-convex factorization problem.

The aforementioned NMF algorithms are tested on two datasets. One is a dense

image data set, the Extended Yale Face Database B5 , of size 32256×1932, where each

column is a vectorized 168× 192 image of a face, and the dataset is a collection of face

images of 29 subjects under various poses and illumination conditions. The other one is

the Topic Detection and Tracking 2 (TDT2) text corpus6 , of size 10212×36771, which

is a sparse document-term matrix where each entry counts the frequency of a term in

one document.

The convergence of the relative error ‖Y −WHT ‖F /‖Y ‖F versus time in seconds

for the Extended Yale B dataset is shown in Fig. 4.1, with k = 100 on the left and

1 http://www.cc.gatech.edu/~hpark/nmfsoftware.php
2 https://sites.google.com/site/nicolasgillis/code
3 http://www.math.ucla.edu/~wotaoyin/papers/bcu/matlab.html
4 http://mcnf.blogs.rice.edu/
5 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
6 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

http://www.cc.gatech.edu/~hpark/nmfsoftware.php
https://sites.google.com/site/nicolasgillis/code
http://www.math.ucla.edu/~wotaoyin/papers/bcu/matlab.html
http://mcnf.blogs.rice.edu/
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Figure 4.1: Convergence of some NMF algorithms on the Extended Yale B dataset.
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Figure 4.2: Convergence of some NMF algorithms on the TDT2 dataset.

k = 300 on the right; and for the TDT2 dataset in Fig. 4.2, with k = 500 on the left

and k = 800 on the right. The ADMM algorithm [86] is not included for TDT2 because

the code provided online is geared towards imputation of matrices with missing values

– it does not treat a sparse input matrix as the full data, unless we fill-in all zeros.

We also tested these algorithms on synthetic data. For m = n = 2000 and k = 100,

the true W and H are generated by drawing their elements from an i.i.d. exponential

distribution with mean 1, and then 50% of the elements are randomly set to 0. The data

matrix Y is then set to be Y = WHT +N , where the elements of N are drawn from

an i.i.d. Gaussian distribution with variance 0.01. The averaged results of 100 Monte-

Carlo trials are shown in Table 4.1. As we can see, AO-based methods are able to attain
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Table 4.1: Averaged performance of NMF algorithms on synthetic data.

Algorithm ‖Y −WHT ‖F run time iterations

AO-ADMM 193.1026 21.7s 86.9

AO-BPP 193.1516 40.9s 52.2

accHALS 193.1389 26.8s 187.0

APG 193.1431 25.3s 240.2

ADMM 193.6808 31.9s 125.2

smaller fitting errors than directly applying ADMM to this non-convex problem, while

AO-ADMM provides the most efficient per-iteration complexity.

Non-negative CP factorization

Similar algorithms are compared in the NCP case:

AO-BPP. AO using block principle pivoting [100]1;

HALS. Hierarchical alternating least-squares [92]1;

APG. Alternating proximal gradient [82]2;

ADMM. ADMM applied to the whole problem [95];

SDF. Structured data fusion provided by tensorlab [106], using “all-at-once”

updates based on quasi-Newton or Gauss-Newton method [107,108].

For our proposed AO-ADMM algorithm, a diminishing proximal regularization term in

the form (4.6) is added to each sub-problem to enhance the overall convergence, with

the regularization parameter µ updated as (4.14).

Two real datasets are being tested: one is a dense CT image dataset7 of size

260 × 190 × 150, which is a collection of 150 CT images of a female’s ankle, each with

size 260× 190; the other one is a sparse social network dataset – Facebook Wall Posts8

, of size 46952×46951×1592, that collects the number of wall posts from one Facebook

7 http://www.nlm.nih.gov/research/visible/
8 http://konect.uni-koblenz.de/networks/facebook-wosn-wall

http://www.nlm.nih.gov/research/visible/
http://konect.uni-koblenz.de/networks/facebook-wosn-wall
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Figure 4.3: Convergence of some NCP algorithms on the CT dataset.
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Figure 4.4: Convergence of some NCP algorithms on the Facebook Wall Posts dataset.

user to another over a period of 1592 days. The sparse tensor is stored in the sptensor

format supported by the tensor toolbox [109], and all the aforementioned algorithms

use this toolbox to handle sparse tensor data, except SDF, which only accepts the sparse

tensor structure defined by tensorlab. However, due to the algorithms being used by

SDF, the memory requirement exceeded the limit for the latter case, thus it is omitted

for the Facebook wall posts dataset.

Similar to the matrix case, the normalized root mean squared error versus time in

seconds for the CT dataset is shown in Fig. 4.3, with k = 10 on the left and k = 30 on

the right, and that for the Facebook Wall Posts data is shown in Fig. 4.4, with k = 30 on

the left and k = 100 on the right. As we can see, AO-ADMM again converges the fastest,
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Table 4.2: Averaged performance of NCP algorithms on synthetic data

Algorithm ‖Y − [H1,H2,H3]‖ run time iterations

AO-ADMM 1117.597 145.2s 25.1

AO-BPP 1117.728 679.0s 22.6

HALS 1117.655 1838.7s 137.7

APG 1117.649 1077.4s 156.3

ADMM 1156.799 435.9s 77.2

SDF 1118.427 375.8s N/A

not only because of the efficient per-iteration update from Alg. 4.1, but also thanks to

the additional proximal regularization to help the algorithm avoid swamps, which are

not uncommon in alternating optimization-based algorithms for tensor decomposition.

Monte-Carlo simulations were also conducted using synthetic data for 3-way non-

negative tensors with n1 = n2 = n3 = 500 and k = 100, with the latent factors

generated in the same manner as for the previous NMF synthetic data, and the tensor

data generated as the low-rank model synthesized from those factors plus i.i.d. Gaussian

noise with variance 0.01. The averaged result over 100 trials is given in Table 4.2. As

we can see, AO-ADMM again outperforms all other algorithms in all cases considered.

4.4.2 Constrained Matrix and Tensor Completion

As discussed before, real-world data are often stored as a sparse array, i.e., in the form

of (index,value) pairs. Depending on the application, the unlisted entries in the array

can be treated as zeros, or as not (yet) observed but possibly nonzero. A well-known

example of the latter case is the Netflix prize problem, which involves an array of movie

ratings indexed by customer and movie. The data is extremely sparse, but the fact that

a customer did not rate a movie does not mean that the customer’s rating of that movie

would be zero—and the goal is actually to predict those unseen ratings to provide good

movie recommendations.

For matrix data with no constraints on the latent factors, convex relaxation tech-

niques that involve the matrix nuclear norm have been proposed with provable matrix
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reconstruction bounds [65]. Some attempts have been made to generalize the matrix

nuclear norm to tensor data [110,111], but that boils down to the Tucker model rather

than the CP model that we consider here. A key difference is that Tucker modeling

can only hope to impute (recover missing values) in the data, whereas CP can uniquely

recover the latent factors – the important ‘dimensions’ of consumer preference in this

context. Another key difference is that the aforementioned convex relaxation techniques

cannot incorporate constraints on the latent factors, which can improve the estimation

performance. Taking the Netflix problem as an example, user-bias and movie-bias terms

are often successfully employed in recommender systems; these can be easily subsumed

in the factorization formulation by constraining, say, the first column of W and the

second column of H to be equal to the all-one vector. Moreover, interpreting each

column of W (H) as the appeal of a certain movie genre to the different users (movie

ratings for a given type of user, respectively), it is natural to constrain the entries of

W and H to be non-negative.

When matrix/tensor completion is formulated as a constrained factorization problem

using a loss function as in Sec. 4.2.3, there are traditionally two ways to handle it. One

is directly using alternating optimization, although due to the random positions of the

missing values, the least-squares problem for each row ofH will involve a different subset

of the rows of W , thus making the update inefficient even in the unconstrained case. A

more widely used way is an instance of expectation-maximization (EM): one starts by

filling the missing values with zeros, and then iteratively fits a (constrained) low-rank

model and imputes the originally missing values with predictions from the interim low-

rank model. More recently, an ADMM approach that uses an auxiliary variable for the

full data was proposed [86], although if we look carefully at that auxiliary variable, it

is exactly equal to the filled-in data given by the EM method.

In fact, the auxiliary variable Ỹ that we introduce is similar to that of [86], thus

also related to the way that EM imputes the missing values—one can treat our method

as imputing the missing values per ADMM inner-loop, the method in [86] as imputing

per iteration, and EM as imputing after several iterations. However, our proposed AO-

ADMM is able to give better results than EM, despite the similarities. As an illustrative

example, consider the Amino acids fluorescence data9 , which is a 5× 201× 61 tensor

9 http://www.models.kvl.dk/Amino_Acid_fluo

http://www.models.kvl.dk/Amino_Acid_fluo
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Figure 4.5: Illustration of the missing values in the Amino acids fluorescence data.
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Figure 4.6: The emission loadings (H2) produced by the N -way toolbox on the left,

which uses EM, and by AO-ADMM on the right.

known to be generated by a rank-3 NCP model [112]. However, some of the entries

are known to be badly contaminated, and are thus deleted, as shown in Fig. 4.5.

Imposing non-negativity on the latent factors, the emission loadings H2 of the three

chemical components provided by the EM method using the N -way toolbox [113] and

AO-ADMM are shown in Fig. 4.6. While both results are satisfactory, AO-ADMM is

able to suppress the artifacts caused by the systematically missing values in the original

data, as indicated by the arrows in Fig. 4.6.

We now evaluate our proposed AO-ADMM on a movie rating dataset called Movie-

Lens10 , which consists of 100,000 movie ratings from 943 users on 1682 movies. Movie-

Lens includes 5 sets of 80%-20% splits of the ratings for training and testing, and for

10 http://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/
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each split we fit a matrix factorization model based on the 80% training data, and eval-

uate the correctness of the model on the 20% testing data. The averaged performance

on this 5-fold cross validation is shown in Fig. 4.7, where we used the mean absolute

error (MAE) for comparison with the classical collaborative filtering result [114] (which

attains a MAE of 0.73). On the left of Fig. 4.7, we used the traditional least-squares

criterion to fit the available ratings, whereas on the right we used the Kullback-Leibler

divergence for fitting, since it is a meaningful statistical model for integer data. For

each fitting criterion, we compared the performance by imposing Tikhonov regulariza-

tion (λ/2)‖ · ‖2F with λ = 0.1, or non-negativity, or non-negativity with biases (i.e., in

addition constraining the first column of W and second column of H to be all ones).

Some observations are as follows:

� Low-rank indeed seems to be a good model for this movie rating data, and the

right rank seems to be 4 or 5, higher rank leads to over-fitting, as evident from

Fig. 4.7;

� Imposing non-negativity reduces the over-fitting at higher ranks, whereas the fit-

ting criterion does not seem to be playing a very important role in terms of per-

formance;

� By adding biases, the best case prediction MAE at rank 4 is less than 0.69, an

approximately 6% improvement over the best result reported in [114].

Notice that our aim here is to showcase how AO-ADMM can be used to explore possible

extentions to the matrix completion problem formulation, rather than come up with the

best recommender system method, which would require significant exploration in its own

right. We believe with the versability of AO-ADMM, researchers can easily test various

models for matrix/tensor completion, and quickly narrow down the one that works the

best for their specific application.

4.4.3 Dictionary Learning

Many natural signals can be represented as an (approximately) sparse linear combi-

nation of some (possibly over-complete) basis, for example the Fourier basis for speech

signals and the wavelet basis for images. If the basis (or dictionary when over-complete)
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Figure 4.7: Training and testing mean absolute error (MAE) versus model rank of the

MovieLens data, averaged over a 5-fold cross validation, comparing least-squares fitting

(on the left) and Kullback-Leibler fitting (on the right), with Tikhonov regularization,

non-negativity constraint, or non-negativity with biases on the latent factors.

is known, one can directly do data compression via greedy algorithms or convex relax-

ations to obtain the sparse representation [115], or even design the sensing procedure

to reduce the samples required for signal recovery [116]. If the dictionary is not known,

then one can resort to the so called dictionary learning (DL) to try to learn a sparse rep-

resentation [117], if one exists. The well-known benchmark algorithm for DL is called

k-SVD [118], which is a geometry-based algorithm, and can be viewed as a general-

ization of the clustering algorithms k-means and k-planes. However, as noted in the

original paper, k-SVD does not scale well as the size of the dictionary increases. Thus

k-SVD is often used to construct a dictionary of small image patches of size 8× 8, with

a few hundreds of atoms.

DL can also be formulated as a matrix factorization problem

minimize
D,S

1

2
‖Y −DS‖2F + r(S)

subject to D ∈ D,
(4.15)

where r(·) is a sparsity inducing regularization, e.g., the cardinality, the `1 norm, or the

log penalty; conceptually there is no need for a constraint on D, however, due to the

scaling ambiguity inherent in the matrix factorization problem, we need to impose some

norm constraint on the scaling of D to make the problem better defined. For example,
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we can bound the norm of each atom in the dictionary, ||di|| ≤ 1,∀i = 1, ..., k, where di

is the i-th column of D, and we adopt this constraint here.

Although bounding the norm of the columns of D works well, it also complicates the

update of D—without this constraint, each row of D is the solution of an independent

least-squares problem sharing the same mixing matrix, while the constraint couples the

columns of D, making the problem non-separable. Existing algorithms either solve it

approximately [119] or by sub-optimal methods like cyclic column updates [120]. On the

other hand, this is not a problem at all for our proposed ADMM sub-routine Alg. 4.1:

the row separability of the cost function and the column separability of the constraints

are handled separately by the two primal variable blocks, while our previously discussed

Cholesky caching, warm starting, and good choice of ρ ensure that an exact dictionary

update can be done very efficiently.

The update of S, sometimes called the sparse coding step, is a relatively well-studied

problem for which numerous algorithms have been proposed. We mainly focus on the `1

regularized formulation, in which case the sub-problem becomes the well-known LASSO,

and in fact a large number of LASSOs sharing the same mixing matrix. Alg. 4.1 can be

used by replacing the proximity step with the soft-thresholding operator. Furthermore,

if an over-complete dictionary is trained, the least-squares step can also be accelerated

by using the matrix inversion lemma:

(DTD + ρI)−1 = ρ−1I − ρ−1DT (ρI +DDT )−1D.

Thus, if m� k, one can cache the Cholesky of ρI +DDT = LLT instead, and replace

the least-squares step in Alg. 4.1 with

S̃ ← ρ−1(B −DT (LT )−1L−1DB),

where B = DTY + ρ(S + U). The use of ADMM for LASSO is also discussed in

[121–123], and [83], and we generally followed the one described in [83, §6]. Again,

one should notice that compared to a plain LASSO, our LASSO sub-problem in the

AO framework comes with a good initialization, therefore only a very small number of

ADMM-iterations are required for convergence.

It is interesting to observe that for the particular constraints and regularization

used in DL, incorporating non-negativity maintains the simplicity of our proposed
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algorithm—for both the norm bound constraint and `1 regularization, the proximity

operator in Alg. 4.1 with non-negativity constraint simply requires zeroing out the neg-

ative values before doing the same operations. In some applications non-negativity can

greatly help the identification of the dictionary [124].

As an illustrative example, we trained a dictionary from the MNIST handwritten

digits dataset11 , which is a collection of gray-scale images of handwritten digits of

size 28× 28, and for each digit we randomly sampled 1000 images, forming a matrix of

size 784 × 10, 000. Non-negativity constraints are imposed on both the dictionary and

the sparse coefficients. For k = 100, and by setting the `1 penalty parameter λ = 0.5,

the trained dictionary after 100 AO-ADMM (outer-)iterations is shown in Fig. 4.8.

On average approximately 11 atoms are used to represent each image, and the whole

model is able to describe approximately 60% of the energy of the original data, and

the entire training time takes about 40 seconds. Most of the atoms in the dictionary

remain readable, which shows the good interpretability afforded by the additional non-

negativity constraint.

For comparison, we tried the same data set with the same parameter settings with

the popular and well-developed DL package SPAMS12 . For fair comparison, we used

SPAMS in batch mode with batch size equal to the size of the training data, and

run it for 100 iterations (same number of iterations as AO-ADMM). The quality of the

SPAMS dictionary is almost the same as that of AO-ADMM, but it takes SPAMS about

3 minutes to run through these 100 iterations, versus 40 seconds for AO-ADMM. The

performance does not change much if we remove the non-negativity constraint when

using SPAMS, although the resulting dictionary then loses interpretability. Notice that

SPAMS is fully developed in C++, whereas our implementation is simply written in

MATLAB, which leaves considerable room for speed improvement using a lower-level

language compiler.

11 http://www.cs.nyu.edu/~roweis/data.html
12 http://spams-devel.gforge.inria.fr/index.html

http://www.cs.nyu.edu/~roweis/data.html
http://spams-devel.gforge.inria.fr/index.html
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Figure 4.8: Trained dictionary from the MNIST handwritten digits dataset.

4.5 Conclusion

In this paper we proposed a novel AO-ADMM algorithmic framework for matrix and

tensor factorization under a variety of constraints and loss functions. The main advan-

tages of the proposed AO-ADMM framework are:

� Efficiency. By carefully adopting AO as the optimization backbone and ADMM

for the individual sub-problems, a significant part of the required computations

can be effectively cached, leading to a per-iteration complexity similar to the

workhorse ALS algorithm for unconstrained factorization. Warm-start that is

naturally provided by AO together with judicious regularization and choice of

parameters further reduce the number of inner ADMM and outer AO iterations.
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� Flexibility. Thanks to ADMM, which is a special case of the proximal algo-

rithm, non-least-squares terms can be handled efficiently with element-wise com-

plexity using the well-studied proximity operators. This includes almost all non-

parametric constraints and regularization penalties commonly imposed on the

factors, and even non-least-squares fitting criteria.

� Convergence. AO guarantees monotone decrease of the loss function, which is a

nice property for the NP-hard factorization problems considered. Moreover, recent

advances on generalizations of the traditional BCD algorithms further guarantee

convergence to a stationary point.

Case studies on non-negative matrix/tensor factorization, constrained matrix/tensor

completion, and dictionary learning, with extensive numerical experiments using real

data, corroborate our main claims. We believe that AO-ADMM can serve as a plug-

and-play framework that allows easy exploration of different types of constraints and

loss functions, as well as different types of matrix and tensor (co-)factorization models.



Chapter 5

Performance Analysis via the

Cramér-Rao Bound

We have discussed the uniqueness of several matrix factorization models, in comple-

ment to the already well-known and celebrated uniqueness of the CP decomposition

for tensors, and an optimization algorithm that works well for constrained matrix/CP

factorization in terms of minimizing the fitting error. On the other hand, these NP-hard

models were so successfully applied in practice thanks to their ability to identify the

true latent factors. Therefore, apart from making sure that the algorithm is good at

finding latent factors that fits the data well, but also is close to the true latent factors

even if the data have noises.

The Cramér-Rao bound (CRB) [125, Ch. 3] is the most widely used estimation

benchmark in signal processing. In many cases it is relatively easy to compute, and

it is asymptotically achievable by maximum likelihood (ML) estimators in high signal

to noise ratio (SNR) scenarios [125, pp. 164]. In other cases, there may be technical

difficulties in deriving (or complexity issues in computing) the pertinent CRB; but due

to the central role of this bound in signal processing research, work on developing CRB

tools continues [126–129], thereby enlarging the set of problems for which the CRB can

be used in practice.

After a brief review of the Cramér-Rao bound and some of its modern developments,

we will derive the Cramér-Rao for both matrix and CP factorizations. The Fisher
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information matrices (FIM) for the matrix and CP factorization models are irrespective

to the constraints imposed onto the latent factors, even though some of the constraints

(like non-negativity) are crucial in terms of identifiability. We also discuss efficient

ways to (peudo-)invert the FIM to avoid the massive requirement of computation and

memory when the problem size is moderately large, since FIM can easily become huge

as it is a symmetric matrix with number of rows equal to the number of parameters we

want to estimate. Finally, we put some NMF algorithms to the test and evaluate how

these algorithms work for this NP-hard problem in terms of estimating the true latent

factors.

5.1 The Cramér-Rao Bound

Suppose a set of measurements y is drawn from a probability density function p(y;θ)

parameterized by θ, and our goal is to estimate θ given the realizations of y. If the

regularity condition

E {∇θ log p(y;θ)} = 0

is satisfied, we can define the Fisher information matrix (FIM) as

Φ = −E
{
∇2
θ log p(y;θ)

}
,

which can be shown to be equal to [125]

Φ = E
{
∇θ log p(y;θ)∇θ log p(y;θ)T

}
;

then for any unbiased estimator θ̂, i.e., E
{
θ̂
}

= θ, we have

cov{θ̂} = E
{

(θ̂ − θ)(θ̂ − θ)T
}
� Φ−1,

or we can simply take

E
{
‖θ̂ − θ‖2

}
≥ trace

{
Φ−1

}
.

A simple way to prove the CRB is as follows. Let us look at the following covariance

E


[

θ̂ − θ
∇θ log p(y;θ)

][
θ̂ − θ

∇θ log p(y;θ)

]T =

[
cov{θ̂} G

GT Φ

]
� 0 (5.1)
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where G = E
{

(θ̂ − θ)∇θ log p(y;θ)T
}

. According to Schur complement [35, Ap-

pendix A.5.5], if Φ � 0, then (5.1) holds iff

cov{θ̂} −GΦ−1GT � 0. (5.2)

Looking at

E {∇θ log p(y;θ)} =

∫
Y

(∇θ log p(y;θ)) p(y;θ)dy

=

∫
Y
∇θp(y;θ)dy,

suppose the support of the random variable y, denoted as Y, is independent of θ, then

we can reverse the order of derivative and integration, leading to

E {∇θ log p(y;θ)} = ∇θ
∫
Y
p(y;θ)dy = 0,

which gives us the regularity condition. Then for the matrix G we have that

G = E
{

(θ̂ − θ)∇θ log p(y;θ)T
}

= E
{
θ̂∇θ log p(y;θ)T

}
=

∫
Y
θ̂ (∇θ log p(y;θ))T p(y;θ)dy

=

∫
Y
θ̂∇θp(y;θ)Tdy

= DθE
{
θ̂
}T

= I,

where we again used the fact that the order of integral and derivative can be reversed,

and that θ̂ is unbiased E
{
θ̂
}

= θ. Thus, we plug it back into (5.2) and obtain the

Cramér-Rao bound

cov{θ̂} � Φ−1.

If the FIM Φ is singular, we can use the generalized Schur complement result [35,

§A.5.5] to conclude that [
cov{θ̂} H

HT Φ

]
� 0

if and only if

Φ � 0, (I −ΦΦ†)G = 0, cov{θ̂} −GΦ†GT � 0.

This means that:
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1. E
{
‖θ̂ − θ‖2

}
≥ trace

{
Φ†
}

is still a valid bound;

2. this looser bound is in theory not attainable, because I −ΦΦ† 6= 0.

5.1.1 CRB and identifiability

It is natural to suspect that the singularity of FIM is caused by the fact that the model

is not identifiable (meaning the solution is not unique in the noiseless case). However,

identifiability in general neither implies nor is implied by a non-singular FIM. A famous

example is given in [130]: consider the scalar signal model

y = θ2 + ν,where ν ∼ N (0, σ2),

the FIM with respect to θ is

Φ =
4

σ2
θ2;

interestingly, Φ = 0 if and only if θ = 0, the only identifiable point. Experience shows

that the rank deficiency of FIM is usually related to trivial ambiguities of the problem,

but not the critical ones. Take phase retrieval as an example, it has been shown that

the FIM corresponding to this problem is always rank one deficient [131, 132], which,

by identifying its null space, seems to be highly related to the global phase ambiguity

inherent to this problem. For certain measurement systems, e.g., 1D Fourier measure-

ment, the problem is not identifiable besides the trivial phase ambiguity, but the rank

deficiency is still one [133, 134], which means the critical non-uniqueness issue is not

revealed by the singularity of FIM. The practical implication for us is that, for triv-

ial ambiguities, for example the permutation and scaling ambiguity in the matrix and

CP factorization considered in this dissertation, we should do whatever we can to re-

solve these trivial ambiguities, and simply compare the MSE with the generalized CRB

obtained from the pseudo-inverse of the singular FIM.

5.1.2 CRB under constraints

Suppose for estimating θ we have the prior information that

f(θ) ≤ 0, g(θ) = 0.
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Roughly speaking, the inequality constraints do not affect the CRB. For equality con-

straints, denote the Jacobian matrix of the vector function g(θ) at point θ as Dθg(θ),

i.e.,

[ Dθg(θ) ]i,j =
∂gi(θ)

θj
;

we can find a matrix Q with ortho-normal columns that spans the null space of Dθg(θ),

i.e.,

Dθg(θ)TQ = 0, QTQ = I.

Then the constrained CRB is modified as follows

E
{
‖θ̂ − θ‖2

}
≥ trace

{
Q
(
QTΦQ

)†
QT
}
.

5.1.3 CRB under Gaussian noise

Suppose the data model admits the form

y = ϕ(θ) + ν, (5.3)

where ν are i.i.d. Gaussian noise with variance σ2, the most commonly used noise model

in practice. In this case, it can be shown that the Fisher information matrix admits a

very simple form [130], as presented in the following.

Proposition 5.1. The Fisher information matrix for the data model (5.3) is given by

Φ =
1

σ2
Dθϕ(θ)TDθϕ(θ).

Proof. For i.i.d. Gaussian noise ν, the log-likelihood is simply given by

log p(y;θ) = − 1

2σ2
‖y −ϕ(θ)‖2,

a non-linear least squares function. The Hessian matrix of it at point θ has the form [76,

§1.5]

−∇2
θ log p(y;θ) =

1

σ2

(
Dθϕ(θ)TDθϕ(θ) +

∑
i

(yi − ϕi(θ))∇2
θϕi(θ)

)
.

The FIM is taken as the expected value of ∇2
θ log p(y;θ) over y. Notice that in the

above equation, y only appears in the second term; furthermore, according to our data
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model, we have that E {yi} = ϕi(θ), which means the second term becomes zero after

we take expectation. Hence, we have that

Φ = −E
{
∇2
θ log p(y;θ)

}
=

1

σ2
Dθϕ(θ)TDθϕ(θ).

5.1.4 CRB under non-Gaussian noise

In some cases we may observe that the noise is more heavy-tailed, thus we may wish

to model noise different from the Gaussian distribution, for example the Laplacian or

Cauchy. Luckily, it has been shown that the CRB for a family of non-Gaussian noise

models are simply scaled versions of their Gaussian counter-parts [135,136]. Specifically,

it is often the case that the FIM under Gaussian noise with zero mean and variance σ2

takes the form

Φ =
1

σ2
Ψ ,

which could be derived via an easier way as we discussed before; then for the same

model, if the additive noise ν is changed to Laplacian noise

p(ν) =
1

2b
exp

(
−|ν|
b

)
,

the modified CRB is

Φ =
2

b2
Ψ ;

for Cauchy noise with distribution

p(ν) =
1

πγ

(
γ2

ν2 + γ2

)
,

the CRB becomes

Φ =
1

2γ2
Ψ .

5.2 Cramér-Rao Bound for Matrix Factorization Models

Consider the m× n matrix generated as

Y = WHT +N ,
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where W is m × k, H is n × k, and the elements of N are drawn from an i.i.d.

Gaussian distribution with zero-mean and variance σ2. Then the log-likelihood of Y

parameterized by W and H is

log p(Y ;W ,H) = − 1

2σ2

∥∥Y −WHT
∥∥2

F
= − 1

2σ2
‖vec (Y )−ϕ(θ)‖2 ,

where the unknown parameters we want to estimate, W and H, are stacked into a

single long vector of size (m+ n)k as follows

θ =
[
vec (W )T vec (H)T

]T
,

and the non-linear function

ϕ(θ) = vec
(
WHT

)
= (H ⊗ Im)vec (W ) (5.4)

= Cn,mvec
(
HW T

)
= Cn,m(W ⊗ In)vec (H) , (5.5)

where Cm,n represents the commutation matrix of size mn×mn, cf. §1.1.

5.2.1 The Fisher Information Matrix

Invoking Proposition 5.1, the FIM for matrix factorization model under Gaussian noise

has the form

Φ =
1

σ2
Ψ =

1

σ2
Dθϕ(θ)TDθϕ(θ).

The Jacobian matrix of ϕ(θ) can be partitioned into two blocks

Dθϕ(θ) =
[
DWϕ(θ) DHϕ(θ)

]
,

and according to (5.4) and (5.5), we have that

DWϕ(θ) = H ⊗ Im,

DHϕ(θ) = Cn,m(W ⊗ In).

Using properties of the commutation matrices, we have that

DWϕ(θ)TDWϕ(θ) = HTH ⊗ Im,

DHϕ(θ)TDHϕ(θ) = W TW ⊗ In,
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and

DWϕ(θ)TDHϕ(θ) = (HT ⊗ Im)Cn,m(W ⊗ In)

= (HT ⊗ Im)(In ⊗W )Cn,k

= (HT ⊗W )Cn,k

= (Ik ⊗W )(HT ⊗ Ik)Cn,k

= (Ik ⊗W )Ck(Ik ⊗HT ).

Hence, we can then express the (m + n)k × (m + n)k Fisher information matrix

Φ = σ−2Ψ compactly as follows [15]

Ψ =

[
HTH ⊗ Im (Ik ⊗W )Ck(Ik ⊗H)T

(Ik ⊗H)Ck(Ik ⊗W )T W TW ⊗ In

]
(5.6)

=

[
HTH ⊗ Im 0

0 W TW ⊗ In

]
+

[
Ik ⊗W 0

0 Ik ⊗H

][
0 Ck

Ck 0

][
Ik ⊗W 0

0 Ik ⊗H

]T
.

The FIM for the matrix factorization model (5.6) is rank deficient, as shown in the

following proposition.

Proposition 5.2. If W and H both have full column rank, then the rank of the (m+

n)k × (m+ n)k FIM Φ is at most (m+ n)k − k2.

Proof. This proposition is equivalent to the claim that the linear system Ψz = 0 has at

least k2 linearly independent nonzero solutions. Let

z = [ zT1 z
T
2 ]T = [ vec (Z1)T vec (Z2)T ]T ,

where Z1 is an m× k matrix, and Z2 is an n× k matrix. Then

Ψz =

[
HTH ⊗ Imvec (Z1) + (Ik ⊗W )Ck(Ik ⊗H)T vec (Z2)

(Ik ⊗H)Ck(Ik ⊗W )T vec (Z1) +W TW ⊗ Invec (Z1)

]

=

[
vec
(
Z1H

TH +WZT
2 H

)
vec
(
HZT

1 W +Z2W
TW

)] .
Now let Z1 = wκe

T
l , Z2 = −hleTκ , where κ, l = 1, 2, ..., k, then z 6= 0 and

Ψz =

[
vec
((
wκh

T
l −wκh

T
l

)
H
)

vec
((
hlw

T
κ − hlwT

κ

)
W
)] = 0.
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Thus, we have found k2 solutions in that form, and indeed they are linearly independent,

if W and H both have full column rank.

5.2.2 Computing the Cramér-Rao Bound

For classical CRB, once we have derived the FIM, the CRB is simply given by the in-

verse of FIM. As we have argued in Proposition 5.2, the FIM for matrix factorization

models is always rank deficient. Nevertheless, pseudo-inverse of the FIM can be used to

compute a lowerbound, albeit not necessarily attainable in theory. In terms of identifia-

bility, it is well-known that additional constraints are needed to insure uniqueness of the

solution; however, as we have argued, simple constraints like non-negativity can provide

identifiability under mild conditions, and in fact does not affect the CRB since it can

be represented as inequality constraints. Therefore, we discuss how to efficiently com-

pute the psuedo-inverse of the FIM without modifying it to accommodate any equality

constraints.

Without exploiting any structure of the matrix, the usual way to calculate the

pseudo-inverse is by using the singular value decomposition (SVD), which entails com-

plexity approximately cubic in the matrix dimension. The FIM for matrix factorization

is (m+n)k× (m+n)k, and the complexity of brute-force pseudo-inversion via the SVD

is problematic. At first glance, the FIM in (5.6) exhibits good structure: Φ given in

(5.6) is the summation of a non-singular matrix and a low rank term. However, we can-

not directly apply the matrix inversion lemma (Woodbury’s identity) or the blockwise

inversion formula (cf. [137]), simply because they are both singular, as we have argued

in Propositions 5.2.

There exist similar results for the pseudo-inverse, e.g., [138, 139], but the formulas

are very complicated. In fact, Φ also has Kronecker structure, and it is appealing to try

using the following Property of the Kronecker pruduct [137]

(A⊗B)† = A† ⊗B†

to greatly reduce the computation complexity. However, the formulas given in [138,139]

are so complicated that such structure would be destroyed. Therefore, in this section

we seek specialized methods to compute the pseudo-inverse of Φ.
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The basic idea of our method is based on the fact that we have not only identified

the singularity but also bases for the null space of Φ. In this case, the basis of the null

space helps us to calculate the pseudo-inverse by using the techniques for calculating

the inverse, as described in the following lemma.

Lemma 5.1. Let matrix M be symmetric and singular, and the matrix L satisfying

range {L} = null {M}, then

M † = (M +LLT )−1 − (L†)TL†. (5.7)

Proof. Let the thin eigen-decomposition of M be

M = UMΛMU
T
M ,

then the left-hand-side of (5.7) is

M † = UMΛ−1
M U

T
M .

Let the thin SVD of L be

L = ULΣLV
T
L .

Since range {L} = null {M}, we have that the matrix [ UM UL ] is a square unitary

matrix, therefore

M +LLT =
[
UM UL

] [ΛM 0

0 Σ2
L

] [
UM UL

]T
is invertible. Thus, the right-hand-side of (5.7) is(

M −LLT
)−1 − (L†)TL†

=
[
UM UL

] [ΛM 0

0 Σ2
L

]−1 [
UM UL

]T
−ULΣ−2

L U
T
L

= UMΛ−1
M U

T
M ,

which is obviously equal to the left-hand-side of (5.7).

In the sequel, we will also invoke the matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1,
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and the block-wise matrix inversion formula[
A B

D C

]
=

[
(A−BC−1D)−1 z

z (C −DA−1B)−1

]
.

The expressions for the off-diagonal blocks are omitted (z), since we do not need to

compute them in our context.

Now we are ready to derive a computationally efficient way of calculating the pseudo-

inverse of Ψ . Recall that we have fully identified the null space of Ψ in Proposition 5.2,

and a basis of its null space are of the form

z =

[
vec
(
wκe

T
l

)
−vec

(
hle

T
κ

) ] =

[
Ik ⊗W 0

0 Ik ⊗H

][
eκ ⊗ el
−el ⊗ eκ

]

=

[
Ik ⊗W 0

0 Ik ⊗H

][
Ik2 0

0 Ck

][
eκ ⊗ el
−eκ ⊗ el

]
,

Thus, we can stack all the vectors of this form and define the matrix L as

L =

[
Ik ⊗W 0

0 Ik ⊗H

][
Ik2 0

0 Ck

][
Ik2

−Ik2

]

=

[
Ik ⊗W 0

0 Ik ⊗H

][
Ik2

−Ck

]
=

[
Ik ⊗W

− (Ik ⊗H)Ck

]
,

whose columns are linearly independent, thus we can write its pseudo-inverse explicitly

as

L† =
(
LTL

)−1
LT

=
(
Ik ⊗W TW +Ck

(
Ik ⊗HTH

)
Ck
)−1

[
Ik ⊗W

− (Ik ⊗H)Ck

]

=
(
Ik ⊗W TW +HTH ⊗ Ik

)−1

[
Ik ⊗W

− (Ik ⊗H)Ck

]T
,

and we have that range {L} = null {Ψ}. Then we can “complete” the range of Ψ via
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defining

Ω = Ψ +LLT

=

[
HTH ⊗ Im 0

0 W TW ⊗ In

]
+

[
Ik ⊗W 0

0 Ik ⊗H

][
0 Ck

Ck 0

][
Ik ⊗W 0

0 Ik ⊗H

]T

+

[
Ik ⊗W 0

0 Ik ⊗H

][
Ik2 −Ck
−Ck Ik2

][
Ik ⊗W 0

0 Ik ⊗H

]T

=

[
HTH ⊗ Im + (Ik ⊗W )(Ik ⊗W )T 0

0 W TW ⊗ In + (Ik ⊗H)(Ik ⊗H)T

]
,

=

[
ΩW 0

0 ΩH

]
which is, surprisingly, block diagonal, and each diagonal block can be inverted easily

using matrix inversion lemma as follows

Ω−1 =

[
Ω−1
W 0

0 Ω−1
H

]
,

Ω−1
W =

(
HTH

)−1 ⊗ Im−((
HTH

)−1 ⊗W
)(
Ik2 +

(
HTH

)−1 ⊗W TW
)−1 ((

HTH
)−1 ⊗W T

)
,

Ω−1
H =

(
W TW

)−1 ⊗ In−((
W TW

)−1 ⊗H
)(
Ik2 +

(
W TW

)−1 ⊗HTH
)−1 ((

W TW
)−1 ⊗HT

)
,

and finally

Ψ † =

[
Ω−1
W 0

0 Ω−1
H

]
−

[
Ik ⊗W

− (Ik ⊗H)Ck

] (
Ik ⊗W TW +HTH ⊗ Ik

)−2

[
Ik ⊗W

− (Ik ⊗H)Ck

]T
,

thanks to Lemma 5.1.

In a lot of cases we are only interested in evaluating how small ‖W − Ŵ ‖2F and

‖H − Ĥ‖2F can be, on average. We can then define

βW = trace
{(
HTH

)−1 ⊗ Im
}

− trace

{(
Ik2 +

(
HTH

)−1 ⊗W TW
)−1 ((

HTH
)−2 ⊗W TW

)}
− trace

{(
Ik ⊗W TW +HTH ⊗ Ik

)−2 (
Ik ⊗W TW

)}
,
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and

βH = trace
{(
W TW

)−1 ⊗ In
}

− trace

{(
Ik2 +

(
W TW

)−1 ⊗HTH
)−1 ((

W TW
)−2 ⊗HTH

)}
− trace

{(
Ik ⊗W TW +HTH ⊗ Ik

)−2 (
HTH ⊗ Ik

)}
,

and they are the Cramér-Rao bound for the matrix factorization model, i.e.,

E
{
‖W − Ŵ ‖2F

}
≥ σ2βW ,

E
{
‖H − Ĥ‖2F

}
≥ σ2βH ,

for any unbiased estimators Ŵ and Ĥ.

5.3 Cramér-Rao Bound for CP Factorization Models

The CRB for the CP factorization model exhibits a lot of similarities to the one for the

matrix factorization model, but also a fair number of differences, thus it deserves to be

derived from scratch and study its properties separately.

Consider the N -way tensor generated as

Y = [Hd]
N
d=1 +N ,

where Hd is nd × k and the elements of N are drawn from an i.i.d. Gaussian distribu-

tion with zero mean and variance σ2. Then the log-likelihood of Y parameterized by

H1, ...,HN is

log p(Y ;H1, ...,HN ) = − 1

σ2
‖vec (Y )− (HN � ...�H1)1‖2

= − 1

σ2
‖vec (Y )−ϕ(θ)‖2,

where the unknown parameters we want to estimate, H1, ...,HN , are stacked into one

single long vector of size (n1 + ...+ nN )k

θ =
[
vec (H1)T ... vec (HN )T

]T
,
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and the nonlinear function

ϕ(θ) = (HN � · · · �H1)1

= Cnd−1...n1,nN ...nd(Hd−1 � · · · �H1 �HN � · · · �Hd)1

= Cnd−1...n1,nN ...ndvec
(
Hd(Hd−1 � · · · �H1 �HN � · · · �Hd+1)T

)
= Cnd−1...n1,nN ...nd ((Hd−1 � · · · �H1 �HN � · · · �Hd+1)⊗ Ind) vec (Hd) .

(5.8)

5.3.1 The Fisher Information Matrix

Invoking Proposition 5.1, the FIM for the CP model under Gaussian noise has the form

Φ =
1

σ2
Ψ =

1

σ2
Dθϕ(θ)TDθϕ(θ).

The Jacobian matrix of ϕ(θ) can be partitioned into N blocks

Dθϕ(θ) =
[
DH1ϕ(θ) · · · DHN

ϕ(θ)
]
,

and (5.8) simply gives us

DHd
ϕ(θ) = Cnd−1...n1,nN ...nd ((Hd−1 � · · · �H1 �HN � · · · �Hd+1)⊗ Ind)

Using the properties of the commutation matrices, we have that

DHd
ϕ(θ)TDHd

ϕ(θ) = (HT
d−1Hd−1 ~ · · ·~HT

1 H1 ~H
T
NHN ~ · · ·~HT

d+1Hd+1)⊗ Ind
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and as for the off-diagonal blocks DHcϕ(θ)TDHd
ϕ(θ), consider multiplying this matrix

with vec
(
H̃d

)
where H̃d is a nd × k matrix,

DHcϕ(θ)TDHd
ϕ(θ)vec

(
H̃d

)
=DHcϕ(θ)TCnd−1...n1,nN ...ndvec

(
H̃d (Hd−1 � · · · �H1 �HN � · · · �Hd+1)T

)
=DHcϕ(θ)TCnd−1...n1,nN ...nd(Hd−1 � · · · �H1 �HN � · · · �Hd+1 � H̃d)1

=DHcϕ(θ)T (HN � · · · �Hd+1 � H̃d �Hd−1 � · · · �H1)1

=
(

(Hc−1 � · · · �H1 �HN � · · · �Hc+1)T ⊗ Inc
)
CnN ...nc,nc−1...n1

(Hd−1 � · · · �H1 �HN � · · · �Hd+1 � H̃d)1

=

 N
~
j=1
j 6=d,c

HT
j Hj ~H

T
d H̃d

�Hc

1

=vec

Hc

 N
~
j=1
j 6=d,c

HT
j Hj ~H

T
d H̃d

T


=(Ik ⊗Hc)diag

 N
~
j=1
j 6=d,c

HT
j Hj

 vec
(
HT
d H̃d

)

=(Ik ⊗Hc)diag

 N
~
j=1
j 6=d,c

HT
j Hj

Ck,k(Ik ⊗Hd)vec
(
H̃c

)
.

This holds for all possible H̃ ∈ Rnd×k, implying

DHcϕ(θ)TDHd
ϕ(θ) = (Ik ⊗Hc)diag

 N
~
j=1
j 6=d,c

HT
j Hj

Ck,k(Ik ⊗Hd)

We can then express the (n1 + ...+nN )k×(n1 + ...+nN )k Fisher information matrix

Φ = σ−2Ψ compactly as the following block form

Ψ =


Ψ1,1 · · · Ψ1,N

...
. . .

...

ΨN,1 · · · ΨN,N

 , (5.9)
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where

Ψd,c =

Γd,d ⊗ Ind , d = c,

(Ik ⊗Hd)Ckdiag {vec (Γd,c)} (Ik ⊗Hc)
T , d 6= c,

(5.10)

and

Γd,c =
N
~
j=1
j 6=d,c

HT
j Hj . (5.11)

Alternatively, we can also write it in the form of “block diagonal plus low rank” as

follows

Ψ = ∆+ ΥKΥ T ,

where ∆ and Υ are both block diagonal

∆ =


Γ1,1 ⊗ In1 0 · · · 0

0 Γ2,2 ⊗ In2

...
...

. . . 0

0 · · · 0 ΓN,N ⊗ InN

 ,

Υ =


Ik ⊗H1 0 · · · 0

0 Ik ⊗H2
...

...
. . . 0

0 · · · 0 Ik ⊗HN

 ,

and the Nk2 × Nk2 matrix K is partitioned into N × N blocks each of size k2 × k2,

and the d, c-th block equals to

Kd,c =

 0, d = c,

Ckdiag {vec (Γd,c)} , d 6= c.

Formulae for the Jacobian matrix and FIM have appeared in [140–144], but the

derivation is not as clear and straight-forward as the one given here.

Remark. The FIM for the CP model indeed looks very similar to the FIM for the

matrix factorization model. In fact, for N = 2, if we overload the definition of Γd,c to

be Γ1,2 = Γ2,1 = 1k×k, then the FIM for CP defined in (5.9)-(5.11) for N = 2 becomes
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exactly equal to the FIM for matrix factorization defined in (5.6). Similar to the matrix

factorization case, the FIM is also rank deficient. However, the null space result for the

matrix factorization case does not simply generalize to the CP case, as will be seen in

the following proposition.

Proposition 5.3. If H1, ...,HN all have full column rank, then the rank of the (n1 +

...+ nN )k × (n1 + ...+ nN )k FIM Φ is at most (n1 + ...+ nN )k − (N − 1)k.

Proof. Again, it suffices to find (N − 1)k linearly independent solutions to the linear

system Ψz = 0. Consider a vector z of the following form

z = [ 0 ... 0︸ ︷︷ ︸
(n1+...+nc−1)k

vec (HcD)T 0 ... 0︸ ︷︷ ︸
(nc+1+...+nN )k

]T ,

where D is an arbitrary diagonal matrix, then

Ψz =


Ψ1,cvec (HcD)

Ψ2,cvec (HcD)
...

ΨN,cvec (HcD)

 ,

where

Ψc,cvec (HcD) = vec (HcDΓc,c) ,

and

Ψd,cvec (HcD) = (Ik ⊗Hd)Ckdiag {vec (Γd,c)} (Ik ⊗Hc)
T vec (HcD)

= (Ik ⊗Hd)Ckdiag {vec (Γd,c)} vec
(
HT
c HcD

)
= (Ik ⊗Hd)Ckvec (Γd,dD)

= (Ik ⊗Hd) vec (DΓd,d)

= vec (HdDΓd,d) ,

for d 6= c. Notice that at the third step, diag {vec (Γd,c)} vec
(
HT
c HcD

)
= vec (Γd,dD)

if and only if D is a diagonal matrix. As we can see, for z of this form, the result of

Ψz is independent of c.
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Next, consider z to be the difference of two vectors of the aforementioned form, the

non-zero block of one of them being the first block

z = [ vec (H1D)T 0 ... 0︸ ︷︷ ︸
(n2+...+nc−1)k

− vec (HcD)T 0 ... 0︸ ︷︷ ︸
(nc+1+...+nN )k

]T ,

then

Ψz =


Ψ1,1vec (H1D)

Ψ2,1vec (H1D)
...

ΨN,1vec (H1D)

−

Ψ1,cvec (HcD)

Ψ2,cvec (HcD)
...

ΨN,cvec (HcD)

 = 0.

Fixing c, a k×k diagonal matrix D has k degrees of freedom, and c can be chosen from

2, ..., N , so we have found in total (N − 1)k linearly independent solutions to the linear

system Ψz = 0.

Notice that we can also make the d-th block and c-block of z being vec (HdD) and

−vec (HcD), but it is equal to the first and d-th, minus first and c-th, so this does not

introduce additional dimension to the null space of Ψ .

Remark. In terms of the dimension of the null space of Φ, the FIM for the CP

model does not generalize to the matrix case, since the rank deficiency is (N − 1)k,

whereas the rank deficiency of the FIM for the MF model is k2, which is not equal

to (2 − 1)k. In fact, let us pick a basis for the span of the diagonal matrices to be

{ e1e
T
1 , ..., eke

T
k }, then it becomes apparent that the null space is closely related to

the inherent scaling ambiguity in the CP model (meaning if the l-th column of H1 and

the l-th column of Hc move in the opposite direction, it does not affect the CRB),

whereas in the two factor case, the D matrix is not restricted to be diagonal, which

seems related to the fact that for matrix factorization Y = WHT , we can put a more

general non-singular matrix in between Y = WAA−1HT . Nevertheless, these are

trivial ambiguities within these factor analysis models, and it is not obvious how, for

example, simple non-negativity constraints can lead to essentially unique solutions using

our proposed sufficiently scattered condition.
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5.3.2 Computing the Cramér-Rao Bound

To compute the pseudo-inverse of the FIM we derived in (5.9)-(5.11) to obtain the CRB

for the CP factorization model, we use the similar idea used in CRB for the MF case,

which is by invoking Lemma 5.1, and the fact that we have identified the null space of

Φ in Proposition 5.3.

First, define the matrix L whose columns span the null space of Ψ

L =


vec
(
H1e1e

T
1

)
· · · vec

(
H1eNe

T
N

)
· · · vec

(
H1e1e

T
1

)
· · · vec

(
H1eNe

T
N

)
−vec

(
H2e1e

T
1

)
· · · −vec

(
H2eNe

T
N

)
0 · · · 0

...
...

. . .
. . .

...

0 · · · 0 −vec
(
HNe1e

T
1

)
· · · −vec

(
HNeNe

T
N

)



=


Ik ⊗H1 0 · · · 0

0 Ik ⊗H2

...

...
. . . 0

0 · · · 0 Ik ⊗HN




Ik � Ik · · · Ik � Ik

−Ik � Ik 0

. . .
...

0 · · · −Ik � Ik

 = ΥE,

where E is Nk2 × (N − 1)k, partitioned into N × (N − 1) blocks, with d, c-th block

defined as

Ed,c =


Ik � Ik, d = 1,

−Ik � Ik, d = c+ 1,

0, otherwise.

Since L has full column rank, its pseudo-inverse is

L† =
(
LTL

)−1
LT

=
(
ETΥ TΥE

)−1
ETΥ T ,



101

where the matrix we want to invert has the form

ETΥ TΥE =


Ik ~ (HT

1 H1 +HT
2 H2) Ik ~HT

1 H1 · · · Ik ~HT
1 H1

Ik ~HT
1 H1 Ik ~ (HT

1 H1 +HT
3 H3) Ik ~HT

1 H1

...
. . .

...

Ik ~HT
1 H1 Ik ~HT

1 H1 · · · Ik ~ (HT
1 H1 +HT

NHN )



=


Ik ~HT

2 H2 0 · · · 0

Ik ~HT
3 H3

...

...
. . .

0 · · · Ik ~HT
NHN



+


Ik ~HT

1 H1 Ik ~HT
1 H1 · · · Ik ~HT

1 H1

Ik ~HT
1 H1 Ik ~HT

1 H1

...
. . .

...

Ik ~HT
1 H1 · · · Ik ~HT

1 H1

,
which is “diagonal plus low rank”, thus can be inverted efficiently.

Next, we define Ω by completing the range space of Ψ

Ω = Ψ +LLT

= ∆+ ΥKΥ T + ΥEETΥ T

= ∆+ Υ
(
K +EET

)
Υ T .

In the CP factorization case, the “completed” matrix Ω does not have the nice block

diagonal structure as we did in the matrix case. Such a hope is arguably impossible,

as we notice that each k2 × k2 block not on the diagonal is full rank, and different,

whereas the rank of EET has rank (N − 1)k, therefore we cannot construct a matrix

E such that each of its off-diagonal block have rank k2, unless k < N . Nevertheless, if

K +EET is invertible, applying matrix inversion lemma on Ω leads to

Ω−1 = ∆−1 −∆−1Υ
((
K +EET

)−1
+ Υ∆−1Υ

)−1
Υ T∆−1.

Notice that ∆ is block diagonal, and each of its diagonal blocks is a Kronecker product,

thus computing ∆−1 only requires inverting N number of k × k matrices. The most

expensive step is to compute
(
K +EET

)−1
and

((
K +EET

)−1
+ Υ∆−1Υ

)−1
, both

of size Nk2×Nk2. However, it is still a huge improvement, considering the size of Ψ is

(n1 + ...+nN )k×(n1 + ...+nN )k, if Nk < n1 + ...+nN . Otherwise, the CP factorization
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is not considered “low-rank”, thus directly (pseudo-)invert the FIM is not a bad idea,

nonetheless.

Finally, by subtracting (L†)TL† from Ω−1 we obtain

Ψ † = Ω−1 − (L†)TL†

= ∆−1 −∆−1Υ
((
K +EET

)−1
+ Υ∆−1Υ

)−1
Υ T∆−1

− ΥE
(
ETΥ TΥE

)−2
ETΥ T ,

and the CRB is simply

Φ† = σ2Ψ †.

5.4 Putting NMF to the Test

In this section we illustrate how several NMF algorithms performs compared to our

derived CRB for matrix factorization models. Notice that the data we synthetically

generated were corrupted by additive i.i.d. Gaussian noise, so using Euclidian distance

as the objective actually gives us the ML estimate. This is why algorithms that use

other divergence functions as the objective were not considered here. The algorithms

tested are

MU Multiplicative Update proposed by Lee and Seung [102]

ALS Alternating Least Squares proposed by Berry et al. [145]

PG Projected Gradient proposed by Lin [146]1

HALS Fast Hierarchical Alternating Least Squares proposed by Cichocki and Phan [92,

Algorithm 2]

BPP Alternating Nonnegative Least Squares using Block Principle Pivoting proposed

by Kim and Park [99]2

The entries of W and H were generated such that a certain proportion of them are

randomly set to 0, and the rest are drawn from an i.i.d. exponential distribution. Then

the columns of W are scaled to sum up to 1.

1 Matlab code downloaded from http://www.csie.ntu.edu.tw/~cjlin/nmf/index.html
2 Matlab code downloaded from http://www.cc.gatech.edu/~hpark/nmfsoftware.php

http://www.csie.ntu.edu.tw/~cjlin/nmf/index.html
http://www.cc.gatech.edu/~hpark/nmfsoftware.php
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Ĥ
T
‖
2 F

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

SNR

‖
W

−
Ŵ
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Figure 5.1: The first row shows the normalized squared error for W using various asym-

metric NMF algorithms versus the CRB; similarly, the second row shows the (aggregate)

bias for W , and the third row shows the fitting error.

Three tests were conducted and illustrated in Figs. 5.1 and 5.2 for W and H

respectively—low-rank and sparse latent factors on the left, low-rank but moderately

dense in the middle, and an unbalanced case (n much larger than m) where the rank is

not small compared to the smaller outer dimension, with density set relatively small to

ensure identifiability. The top row of Figs. 5.1 and 5.2 shows the normalized squared

error for each algorithm benchmarked by the CRLB, the second row shows the (aggre-

gate) bias of W , and similarly for H, and the bottom row of Fig. 5.1 shows the fitting

error for each algorithm.

As we can see from the second row of Figs. 5.1 and 5.2, the biases are generally

small and approach zero with increasing SNR, indicating that we can use the CRB to

approximately bound performance. In all three cases, HALS, BPP and PG were able

to provide a good estimate with mean square error close to the CRLB, under all SNRs

tested. On the other hand, MU and ALS are not guaranteed to work well even under
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Figure 5.2: The first row shows the normalized squared error for H using various asym-

metric NMF algorithms versus the CRB; similarly, the second row shows the (aggregate)

bias for H.

very high SNR. All methods separate the variables into blocks, and HALS, BPP and PG

aim to find the conditionally optimal point before moving to the next block, whereas

the updates of MU and ALS cannot guarantee this.

5.5 Concluding Remarks

NMF and other constrained matrix and tensor factorization models entail singular FIMs

as well as constraints and ambiguities that must be dealt with in the computation of the

pertinent CRB. We learned how to tackle those, and used the results to benchmark and

develop insights on what can be expected from some of the best available algorithms. For

symmetric NMF, the CRLB can be approached using the Procrustes rotation algorithm

[3] in the high SNR regime, or α/β-SNMF in low SNR cases. For asymmetric NMF,

the best-performing algorithms were able to give results with mean squared error close

to the CRLB. In both cases, approaching the CRLB is possible when the signal rank is

small and the latent factors are not dense; i.e., when there is a small number of latent

components whose loadings contain sufficiently many zeros. This is quite remarkable

given that the CRLB with a singular FIM is generally unattainable. There may be
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room for improvement in cases involving moderate (SNR, rank, density).

Beyond NMF, the approach and techniques we learned can be used to facilitate

analogous derivations for related factor analysis problems. For example, the FIMs

provided here can be applied to more general bilinear matrix factorizations, e.g., using

other types of constraints on H. The FIM will remain the same, but the U matrix

will be different. Also, we can exploit a basis of the nullspace of the FIM to reduce the

complexity of computing its pseudo-inverse, and this idea is more broadly applicable

to other bilinear matrix factorizations. The results can also be extended towards, e.g.,

non-negative tensor factorization.



Chapter 6

Symmetric Non-negative Matrix

Factorization

In this chapter we study an interesting variant of non-negative matrix factorization,

namely by constraining the two matrix factors to be the same, hence we call it symmetric

NMF. The factorization is denoted as Y ≈ HHT , where Y is a n × n symmetric and

possibly positive semidefinite matrix, and we further constrain the n× k matrix H ≥ 0

element-wise. Notice that in the exact case Y = HHT , H in symmetric NMF is a

square-root factor of the symmetric positive semi-definite matrix Y that is also element-

wise non-negative. Thus symmetric NMF is an element-wise non-negative square-root

factorization of positive semidefinite matrices. In the mathematical programming field,

such matrices are called completely positive matrices [147]. It has recently been shown

that checking whether a positive semidefinite matrix is completely positive is also NP-

hard [148].

Symmetric NMF is relatively less studied in literature, but is it gaining more and

more popular as people have found applications of it in soft-clustering [149] and topic

modeling [41]. In this chapter we give a complete study of this problem, following a

similar path we have already gone through in this dissertation—starting by studying

the uniqueness condition for this model, the Cramér-Rao bound is then derived for

performance analysis, then an efficient algorithm is described which represents the state-

of-the-art for symmetric NMF, and conclude with numerical experiments to support our

106
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claims.

6.1 Uniqueness of Symmetric NMF

Recall that in the asymmetric case, if Y = WHT = W̃ H̃T and rank {Y } = k, then

there exists a non-singular matrix A such that W̃ = WA−T and H̃ = HA. In the

symmetric case, by further constraining W = H, W̃ = H̃, we have that A−T = A,

i.e., A is a k× k unitary matrix. A trivial choice of A would be a permutation matrix,

which is an unavoidable ambiguity without side information. Thus, we define (essential)

uniqueness of symmetric NMF as follows.

Definition 6.1 (uniqueness of symmetric NMF). The symmetric NMF of Y = HHT

is said to be (essentially) unique if Y = H̃H̃T implies H̃ = HP , where P is a

permutation matrix.

Notice that in the symmetric case we do not have scaling ambiguity now. Using this

definition, a necessary condition for the essential uniqueness of symmetric NMF can be

derived, similar to the asymmetric case.

Theorem 6.1 (necessary condition). Let supp {x} denote the index set of the non-

zero entries (support) of a vector x, i.e., supp {x} = {i | xi 6= 0}. If the symmetric

NMF Y = HHT is unique, then there do not exist µ, ν ∈ {1, · · · , k}, µ 6= ν, such that

supp {hµ} ⊆ supp {hν}.

Proof. Suppose supp {hµ} ⊆ supp {hν}, then there exists a positive scalar α such that

hν − αhµ ≥ 0

Let A be a Givens rotation matrix [150] defined as

A = [ eµ eν ]

[
c −s
s c

]
[ eµ eν ]T +

k∑
l=1
l 6=µ,ν

ele
T
l ,

where

c =
1√

1 + α2
, s =

α√
1 + α2

Since A is unitary but not a permutation matrix, and HA ≥ 0, according to Definition

6.1, the symmetric NMF Y = HHT is not unique.
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Using the geometric interpretation of NMF in § 2.2, we can give a similar geometric

interpretation of symmetric NMF.

Lemma 6.1. If rank {Y } = k, the symmetric NMF Y = HHT is unique if and only

if the non-negative orthant is the only self-dual simplicial cone A with k extreme rays

that satisfies cone
{
HT

}
⊆ A = A∗.

Proof. By Definition 6.1, if the symmetric NMF Y = HHT is essentially unique, then

for any unitary matrixA, HA ≥ 0 implies thatA is a permutation matrix. NowHA ≥
0 implies cone

{
HT

}
⊆ cone {A}∗ = cone {A}, and A being a permutation matrix

means cone {A} = Rk+. Thus, this is simply a geometric way to describe Definition

6.1.

For a sufficient condition, the similar sufficiently scattered condition can be used,

which we repeat here.

Definition (sufficiently scattered). A non-negative matrix X is sufficiently scattered if

1. cone
{
XT

}
⊇ C,

2. cone
{
XT

}∗ ∩ bd {C∗} = {λeκ | λ ≥ 0, κ = 1, ..., k.},

where C and C∗ are

C = {x|xT1 ≥
√
k − 1‖x‖2}, C∗ = {x|xT1 ≥ ‖x‖2}.

Theorem 6.2 (sufficient condition). The symmetric NMF Y = HHT is essentially

unique if H is sufficiently scattered.

Proof. As we have proved in Theorem 2.4, if cone
{
XT

}
⊇ C, then ∀κ = 1, . . . , k, eκ

is an extreme ray of cone
{
XT

}∗
. According to Lemma 6.1, if the symmetric NMF is

unique, then we cannot rotate RK+ to A such that cone
{
HT

}
⊆ A. Since cone

{
HT

}
⊇

C, and A is self-dual, then we have A ⊆ cone
{
HT

}∗ ⊆ C∗. As shown in Lemma 2.1,

any rotated version of RK+ that is a subset of C∗ satisfies that its extreme rays lie on

the boundary of C∗. However, none of the extreme rays of cone
{
HT

}
except ek’s lie

on the boundary of C∗, therefore A can only be the non-negative orthant RK+ itself. As

a result, under this condition the symmetric NMF Y = HHT is unique.
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Table 6.1: Maximum reconstruction error for symmetric NMF

density max ‖Ĥ −H‖F
0.5 2.57× 10−13

0.6 4.20× 10−13

0.7 6.42× 10−13

0.8 3.29× 10−12

Following our discussion on the sufficiently scatteredcondition in § 2.3, even though

this condition is NP hart to check in the worst case, in practice it is usually satisfied as

long as the columns of H contain at least k − 1 zeros. To illustrate this, we randomly

generate a 200 × 30 non-negative matrix H, with a certain proportion of randomly

selected entries set to zero, and the non-zero entries drawn from an i.i.d. exponential

distribution. The columns of H are ordered so that

n∑
j=1

hj,1 >
n∑
j=1

hj,2 > · · · >
n∑
j=1

hj,k.

Then we form the low rank complete positive matrix Y = HHT , and apply a symmetric

NMF algorithm to it to get an estimate Ĥ. The columns of Ĥ are then ordered

analogously, to fix the permutation ambiguity. For density (the proportion of non-zero

entries inH) varying from 0.5 to 0.8, in which case the matrixH we randomly generated

satisfies that ek’s are extreme rays of cone
{
HT

}∗
with high probability, this procedure

is repeated 100 times, and the maximum reconstruction error ‖Ĥ −H‖F is given in

Table 2.1. This indicates that over the 400 Monte-Carlo tests we tried, symmetric NMF

successfully recovered the latent factors in each and every case. The algorithm we used

for symmetric NMF is the Procrustes-based algorithm proposed in [3].

If it is not realistic to assume the latent factors are sufficiently scattered, we propose

the following VolMin symmetric NMF that works for general symmetric non-negative

matrices, while still ensuring uniqueness of the latent factors. Consider the following

“Tucker” matrix factorization

Y = HGHT ,
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where H ≥ 0, we can seek for a core matrix G that has the smallest “volume”

minimize
H,G

| detG|

subject to Y = HGHT ,H ≥ 0,HT1 = 1.

(6.1)

Notice that constraining the columns ofH to sum up to one is without loss of generality,

since any column scaling of H can be absorbed into the core matrix G.

Theorem 6.3. Denote an optimal solution of (6.1) to be H̃, G̃. If the true latent

factor H is sufficiently scattered (cf. Definition 6.1) and column sum to one, then there

exists a permutation matrix P such that H̃P = H. In other words, H and G can be

identified up to permutation via solving (6.1).

Proof. By contradiction. Suppose G̃ and H̃ is an optimal solution of (6.1), but H̃ is

not a column permutation of H, the true latent factor. Since G and H are clearly

feasible for (3.1), this means that |det G̃| ≤ |detG|.
Since the columns of H and H̃ span the same subspace, there is a k × k matrix A

such that

H̃ = HA,

and since Y = HGHT = H̃G̃H̃T , this means

G̃ = A−1GA−T .

Since H is sufficiently scattered, according to Lemma 3.2, and our first assumption that

A is not a permutation matrix, we have

|detA| < 1.

However, the optimal objective of (6.1) obtained by G̃, H̃ is

|det G̃| = |detA−1GA−T |

= | detA|−2| detG|

> | detG|,

which contradicts to our first assumption that G̃, H̃ is an optimal solution for (6.1).

Therefore, H̃ must be a column permutation of H.
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6.2 A Procrustes-based Algorithm

Suppose there exists an exact symmetric NMF of Y with k = rank {Y } components.

Then Y is symmetric positive semi-definite; consider its reduced eigen-decomposition

Y = UkΛkU
T
k ,

where Uk is n× k orthogonal and Λk is k × k diagonal. Define

B = UkΛ
1/2
k .

Since

Y = BBT = HHT ,

where both B and H are n× k, there exists a unitary matrix Q such that

BQ = H.

Therefore, after obtaining B via eigen-analysis, we can formulate the recovery of H as

follows:
minimize
H,Q

‖H −BQ‖2F

subject to H ≥ 0,QTQ = QQT = I.

(6.2)

The constraint QTQ = QQT = I is not convex with respect to Q, suggesting that

(6.2) is a hard problem. We propose updating H and Q in an alternating fashion. The

updating rule for H is extremely simple: since H is non-negative, we simply set

H ← max(0,BQ) (6.3)

When updating Q, the solution is given by the Procrustes projection [151], i.e.

Q← V UT (6.4)

where U and V are unitary matrices given by the singular value decomposition of HTB

HTB = UΣV T (6.5)
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This simple algorithm is summarized in Alg. 6.1. The Karush-Kuhn-Tucker conditions

for problem (6.2), after some calibrations, are

QTQ = QQT = I,

H ≥ 0,

H −BQ ≥ 0,

H ~ (H −BQ) = 0.

(6.6)

For Alg. 6.1, the first three of (6.6) are satisfied throughout the iterations of Alg. 6.1,

and the fourth one is satisfied only after the H-update. We therefore measure the norm

of H ~ (H −BQ) after the Q-update and use it as our termination criterion. This is

preferable to checking successive differences of the cost in (6.2), because it avoids early

termination during swamps—intervals during which the progress in terms of the cost

function is slow.

Algorithm 6.1: Proposed algorithm for symmetric NMF

1 Y = UkΛkU
T
k ; // thin eigen-decomposition

2 B ← UkΛ
1/2
k , Q← I;

3 repeat

4 H ← max (0,BQ);

5 HTB = UΣV T ; // full SVD

6 Q← V UT ;

7 until ‖H ~ (H −BQ)‖2F < tolerance;

Proposition 6.1. The value of the objective function in (6.2) is monotonically non-

increasing during iterations of the algorithm given in Alg. 6.1, since each update step

is conditionally optimal for H given Q or vice-versa. Furthermore, every limit point

generated by the algorithm shown in Alg. 6.1 is a KKT point of problem (6.2).

Proof. Since Alg. 6.1 is alternating over two blocks of variables, it falls into the frame-

work of maximum block improvement (MBI) method [79]. Convergence of MBI requires

that every constraint set is a compact set, which directly holds for the set of real unitary

matrices (i.e., the orthogonal group) [152] with respect to Q. The explicit constraint
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set for H is the non-negative orthant, which is not compact because it is unbounded.

However, because Q is unitary, we can put a redundant constraint ‖H‖2F ≤ ‖B‖2F ,

because

‖H‖2F = ‖max (0,BQ) ‖2F
≤ ‖BQ‖2F
= ‖B‖2F .

Thus, the constraint set for H is essentially compact. According to [79, Theorem 3.1

and Corollary 3.2], every limit point of Alg. 6.1 is a KKT point of problem (6.2).

In terms of per-iteration complexity, the matrix multiplications BQ and HTB both

require O(nk2) flops, whereas the SVD performed on the relatively small-sized k × k
matrix HTB requires O(k3) flops [150, pp. 254]. If we assume n� k, which is typically

the case in practice, then the O(nk2) term dominates, which results in a O(nk2) per-

iteration complexity. The computation of k dominant eigenvalues and eigenvectors in

the very first step entails complexity O(n2k), but considering the fact that this is done

only once, its O(n2k) complexity is amortized over many iterations of symmetric NMF.

Remark. Besides the per-iteration complexity we just discussed, another step that

consists of the overall complexity of Algorithm 6.1 is computing the eigen-decomposition

in line 1. Despite the fact that it has in general O(n3) complexity, there are many algo-

rithms that can reduce the complexity down to O(nnz(Y )k) for computing k principal

components of Y , for example, the famous Lanczos algorithm [150]. Moreover, there

are many tricks we can use to avoid increasing nnz(Y ). For example, if what we are

given is a data matrix X, and the matrix Y we want to factor is actually constructed as

Y = XTX, then to apply Algorithm 6.1, it is not necessary to explicitly calculate Y and

introduce excessive amount of nonzeros into Y , but rather directly perform SVD on the

original sparse data X to obtain the left singular vectors and their corresponding singu-

lar values. Even if X is not explicitly sparse, there are ways that tries to avoid filling-in

non-zeros and pertain a “sparse matrix-vector multiplication” complexity, e.g., [153].

In practice, we may encounter cases where k 6= rank {Y }. For k < rank {Y }, we are

trying to find a good non-negative low rank approximation of Y , and we can simply take



114

the first k dominant eigen-components, then apply the same updating rules afterwards.

For k > rank {Y }, we need to modify the basic algorithm; the modified version can be

found in the appendix.

6.3 Cramér-Rao Bound

Consider the n× n symmetric matrix generated as

Y = HHT +N ,

where H is n×k, and the elements of N are drawn from an i.i.d. Gaussian distribution

with zero-mean and variance σ2. Then the log-likelihood of y parameterized by H is

L(Y ;H) = − 1

2σ2

n∑
i=1

n∑
j=1

(
k∑
l=1

jilhjl − yij

)2

.

In order to define the corresponding Fisher information matrix, we stack the un-

known parameter H into a long vector θ = vec (H). Taking the partial derivative over

one element hıκ, we get

∂L

∂hıκ
=

1

σ2

n∑
i=1

(
k∑
l=1

hilhıl − yiı

)
hiκ +

1

σ2

n∑
j=1

(
k∑
l=1

hılhjl − yıj

)
hjκ.

It is easy to check that the regularity condition E
{

∂L
∂hıκ

}
= 0 is indeed satisfied for any

hıκ, since the support of the distribution is independent of the parameter H that we

are trying to estimate [125, pp. 67]. The covariance between the scores are given by

E

{
∂L

∂hıκ

∂L

∂hl

}
=

2

σ2

(
δı,

n∑
i=1

hiκhil + hκhıl

)
,

where δı, is the Kronecker delta. We can then define the nk × nk Fisher information

matrix Φ = 2σ−2Ψ compactly as

Ψ = HTH ⊗ In + (Ik ⊗H)Ck(Ik ⊗H)T , (6.7)

where Ck is the same k2 × k2 commutation matrix we have been using in the FIM for

(asymmetric) matrix and CP factorization models.

Once again, the FIM for symmetric matrix factorization is rank deficient, as shown

in the following proposition.
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Proposition 6.2. If H has full column rank, then the rank of the nk × nk Fisher

information matrix Φ is at most nk − k(k − 1)/2.

Proof. This proposition is equivalent to the claim that the linear system Ψz = 0 has at

least k(k − 1)/2 linearly independent nonzero solutions. Let z = vec (Z), where Z is a

n× k matrix, then

Ψz = (HTH ⊗ In)vec (Z) + (Ik ⊗H)Ck(Ik ⊗H)T vec (Z)

= vec
(
ZHTZ

)
+ (Ik ⊗H)Ckvec

(
HTZ

)
= vec

(
ZHTH

)
+ (Ik ⊗H)vec

(
ZTH

)
= vec

(
ZHTH

)
+ vec

(
HZHT

)
.

Now let Z = hκe
T
l − hleTκ , where κ, l = 1, ..., k, and κ 6= l, then Z 6= 0 and

Ψz = vec
((
hκh

T
l − hlhTκ + hlh

T
κ − hκhTl

)
H
)

= 0.

Thus, we have found
(
k
2

)
= k(k−1)/2 solutions in that form, and indeed these solutions

are linearly independent, if the columns of H are all linearly independent to each other.

Now that we have identified the null space of Φ, we can use that to calculate the

pseudo-inverse of Φ more efficiently. First, define the nk × k(k − 1)/2 matrix L whose

columns span the null space of Φ

L = (Ik ⊗H)R,

where R is a k2 × k(k − 1)/2 matrix defined as

R = [ r1,2 r1,3 ... r1,k r2,3 ... rk−1,k ],

and

ri,j = vec
(
eie

T
j − ejeTi

)
, i = 1, ..., k − 1, j = i+ 1, ..., k.

The matrix L has full column rank, therefore its pseudo-inverse is given by

L† =
(
LTL

)−1
LT

=
(
RT (Ik ⊗HTH)R

)−1
RT (Ik ⊗H)T .
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Next, we define Ω by completing the range space of Ψ

Ω = Ψ +LLT

= HTH ⊗ In + (Ik ⊗H)(Ck +RRT )(Ik ⊗H)T ,

which is full rank, and its inverse can be obtained via matrix inversion lemma as

Ω−1 =
(
HTH

)−1 ⊗ In−((
HTH

)−1 ⊗H
)((

Ck +RRT
)−1

+
(
HTH

)−1 ⊗HTH
)−1 ((

HTH
)−1 ⊗H

)T
.

Finally, the CRB is obtained by Φ† = (σ2/2)Ψ † where

Ψ † = Ω−1 − (Ik ⊗H)R
(
RT (Ik ⊗HTH)R

)−2
RT (Ik ⊗H)T .

Using this procedure, the biggest matrix that need to be inverted is of size k2 × k2,

comparing to the plain size of the FIM nk × nk.

6.4 Simulations

Now we provide some numerical experiments regarding the symmetric NMF problem.

We start by testing the optimization performance of Alg. 6.1 on synthetic data, then the

estimation performance benchmarked by the CRB that we developed for the symmetric

matrix factorization model, and finally apply symmetric NMF to a clustering task on

real data.

6.4.1 Synthetic Data

The matrix Y is generated by taking Y = HHT +N , whereH is a non-negative matrix

with certain amount of zeros and the non-zero entries drawn from an i.i.d. exponential

distribution, and the elements of N first drawn from an i.i.d. Gaussian distribution,

and then symmetrized by taking N ←N+NT . We take the size of H to be 1000×150.

The tolerance we set to terminate Alg. 6.1 is 10−5, and we let α-SNMF and β-SNMF

to run the same amount of time to compare their performances.

The convergence of a single run of our proposed algorithm under various conditions

is illustrated in Fig. 6.1 (in terms of time used) and Fig. 6.2 (in terms of number
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of iterations used), comparing to α-SNMF and β-SNMF provided in [154] with α =

β = 0.99, since their experiments showed (and we verified) that this value gives faster

convergence, and the low-rank approximation (LRA) version of these algorithms, on the

same Y . The cost employed in both α-SNMF and β-SNMF is ‖Y −HHT ‖2F , which is

different from the one used in Alg. 6.1, but we compare all of them using ‖Y −HHT ‖F
on the y-axis as common basis. Since our proposed algorithm uses eigen-decomposition

of the data matrix as a pre-processing step, we include the time it takes to compute this

eigen-decomposition in the timing reported on the x-axis in Fig. 6.1, for fair comparison.

In Fig. 6.1, we show the convergence when Y is noiseless (N = 0) in the top row, and

with small noise (the entries of N are first drawn from an i.i.d. Gaussian distribution

with standard deviation σ = 10−1 and then symmetrized) in the bottom row; and the

densities (proportion of non-zero entries) of the true latent factor H are (from left to

right) 0.5, 0.7, 0.9, 1. In the noiseless case, our proposed algorithm tends to converge

to an exact decomposition, whereas none of the SNMF variants is able to give a good

approximation within that amount of time, although at the beginning they reduce the

cost function faster. When small noise is added, the proposed algorithm shows good

robustness, and again out-performs the two SNMF algorithms after some point. Notice

that given the noise power, the symmetrization strategy, and the size of the matrix,

the value of ‖N‖F is approximately 150, and our proposed algorithm is able to reach

that error bound. An interesting observation is that the rate of convergence is somehow

related to the sparsity of the true latent factor – the smaller the density, the faster

the algorithm converges. Furthermore, overall the convergence rate looks linear, but

swamps are sometimes encountered, which is why our proposed termination criterion

is preferable than checking successive differences of the cost function. Our algorithm

clearly outperforms all of the SNMF variants in this case.

It is important to note that after the computation of the k dominant eigen-components

in the first step of our algorithm, each iteration (update cycle) entails complexity

O(nk2), whereas one iteration of either α-SNMF or β-SNMF entails complexity O(n2k)

(note that k ≤ n). Therefore our algorithm also has an edge in terms of scaling up

for big data, provided we have a scalable way to compute dominant eigenvalues and

eigenvectors. Reduced-complexity variants of α-SNMF and β-SNMF have been very

recently proposed to employ low-rank approximation (LRA) preprocessing to reduce
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Figure 6.1: Convergence of the proposed algorithm vs. α-SNMF and β-SNMF [154] with

α = β = 0.99 and their modified versions employing low rank approximation (LRA):

noiseless (top row) and noisy (bottom row). x-axis counts elapsed time.

the per-iteration complexity to O(IK2). Such a comparison of per-iteration counts is

incomplete, however, as it does not take into account the number of iterations till con-

vergence. Fig. 6.2 shows that the number of iterations is much smaller and the average

convergence rate much faster for the proposed algorithm relative to the SNMF variants,

in all cases considered. Note that in Fig. 6.2 the x-axis counts the number of iterations

instead of total elapsed time as in Fig. 6.1.

6.4.2 Estimation performance

We compare three algorithms for symmetric NMF with the CRB derived before. These

are α-SNMF and β-SNMF with α = β = 0.99 [154], and Alg. 6.1. The true H is

generated such that a certain proportion of its entries are randomly set to 0, and the

rest are drawn from an i.i.d. exponential distribution. Using the generative model

Y = HHT +N , the resulting Y will not be symmetric, so we use 1
2(Y +Y T ), since all

algorithms are designed specifically for symmetric non-negative matrices. The α-SNMF

and β-SNMF algorithms proposed in [154] did not provide a termination criterion, so

both α-SNMF and β-SNMF are left to run for a large number of iterations (104), to

ensure the best possible results. The tolerance for the termination criterion in Alg. 6.1

is set to machine precision eps. We used a single draw of H for each (size,density)
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Figure 6.2: Convergence of the proposed algorithm vs. α-SNMF and β-SNMF [154] with

α = β = 0.99 and their modified versions employing low rank approximation (LRA):

noiseless (top row) and noisy (bottom row). x-axis counts number of iterations.

combination reported. Under various SNRs, the normalized squared error
‖Ĥ−H‖2F
‖H‖2F

is calculated and averaged over 100 Monte-Carlo tests, so that we can get a better

approximation to the expected error E

{
‖Ĥ−H‖2F
‖H‖2F

}
.

The results are plotted in Fig. 6.3, where the first row shows the normalized squared

error benchmarked by the CRB, the second row shows the (aggregate) bias for each

estimate, defined as

bias =

∥∥∥∥∥ 1

T

T∑
t=1

(H − Ĥt)

∥∥∥∥∥
F

, (6.8)

where T is the number of trials, in this case 100; and the third row shows the model

fitting error for each algorithm. The dashed lines in the third row show the total noise

power; a good approximation should yield a fitting error close to the noise power. The

plots in the left column show a case where the symmetric NMF problem is relatively

“over-determined”, since the inner dimension (30) is small compared to the outer di-

mension (200), and the latent factors are quite sparse (density 0.5). The two other

columns show more difficult cases—low rank (30 vs. 200) but relatively dense latent

factors for the middle column, not-so-low rank (50 vs. 100) but relatively sparse latent

factors for the right column. Recall the discussion in § 2.3 on the rule of thumb for

when identifiability can be expected—the middle and right plots illustrate cases where
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Figure 6.3: The first row shows the normalized squared error of three existing symmetric

NMF algorithms versus the CRLB; similarly, the second row shows the (aggregate) bias,

and the third row shows the fitting error.

this requirement is barely satisfied.

In all cases, the aggregate bias is small, and goes to zero as SNR increases, indicating

that the estimates provided by these algorithms are asymptotically unbiased, and we

can use the CRLB to approximately bound the performance. Generally speaking, α/β-

SNMF slightly outperform Alg. 6.1 in the low SNR regime, but fail to reach the CRLB

in the high SNR regime. Alg. 6.1 exhibits classic threshold behavior—for SNR higher

than some threshold, the mean square error (MSE) stays close to the CRLB. The reason

is that it employs eigen-analysis to estimate the column space of H as a first step, then

applies Procrustes rotations in the estimated subspace. On the other hand, both SNMF

variants are modifications of the multiplicative update algorithm using ‖Y −WWT ‖2F
(Gaussian log-likelihood) as the objective, so that it is not surprising that they perform

better in the low-SNR regime. We can also see this from the second row of Fig. 6.3, as
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the biases of α/β-SNMF are lower than that of the Procrustes method under low SNR.

6.4.3 Co-authorship clustering

We applied Alg. 6.1 to a real-life dataset containing co-authorship data from the U.S.

Army Research Laboratory Collaborative Technology Alliance (ARL-CTA) on Commu-

nications and Networks (C&N), a large-scale research project that involved multiple

academic and industry research groups, led by Telcordia. The ARL C&N CTA was an

8-year program, and produced numerous publications, involving over 500 individuals.

A. Swami and N. Sidiropoulos were both involved as researchers and authors in this

project, and A. Swami had significant oversight on much of the research – they know

the ‘social dynamics’ and history of the consortium, and can interpret / sanity check

the results of automated social network analysis of this dataset. The particular data

analyzed here is a 518×518 symmetric non-negative matrix Y , where yi,j is the number

of papers co-authored by author-i and author-j (yi,i is the number of papers written

by author-i). The task is to cluster the authors, based only on Y . Ding et al. [149]

have shown that k-means clustering can be approximated by symmetric NMF of the

pair-wise similarity matrix Y = XTX = HHT , where the columns of X represent the

data points that we want to cluster, and the number of columns of H, k, is the number

of clusters. The cluster that xi belongs to is determined by taking arg maxk hi,k. In our

case, we do not have access to X, but we may interpret Y as the pair-wise similarity

matrix Y = XTX, to be decomposed as Y = HHT , with H ≥ 0.

We run symmetric NMF on Y for k = 3, 10. The weight of cluster c is measured by

‖hc‖2, and the weight of author i in the cluster c is measured by hi,c. Table 6.2 lists

the top-10 contributors of the top-3 clusters, for k = 3 (top) and k = 10 (bottom). The

results are very reasonable. The first cluster is Georgios Giannakis’ group at the Univer-

sity of Minnesota, the participant who contributed most publications to the project.The

second cluster is more interesting: it comprises Lang Tong’s group at Cornell, but also

close collaborators from ARL (Brian Sadler, Ananthram Swami) who co-authored many

papers with Cornell researchers and alumni over the years. The third cluster is even

more interesting, and would have been harder to decipher for someone without direct

knowledge of the project. It consists of Telcordia researchers (Telcordia was the lead

of the project), but it also contains researchers from the City University of New York
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Table 6.2: Top-10 contributors of the top-3 clusters

K = 3 cluster 1 cluster 2 cluster 3

Georgios B. Giannakis Lang Tong Mariusz A. Fecko

Shengli Zhou Ananthram Swami Sunil Samtani

Xiaoli Ma Qing Zhao M. Umit Uyar

Pengfei Xia Brian M. Sadler Ibrahim Hokelek

Xiaodong Cai Yunxia Chen Jianping Zou

Tairan Wang Min Dong Jianliang Zheng

Qingwen Liu Youngchul Sung Myung Jong Lee

Xing Wang Ting He Tarek N. Saadawi

Zhengdao Wang P. Venkitasubramaniam Ulas C. Kozat

Alfonso Cano Zhengyuan Xu Phillip T. Conrad

K = 10 cluster 1 cluster 2 cluster 3

Georgios B. Giannakis Lang Tong Mariusz A. Fecko

Shengli Zhou Ananthram Swami Sunil Samtani

Pengfei Xia Brian M. Sadler M. Umit Uyar

Xiaodong Cai Min Dong Ibrahim Hokelek

Qingwen Liu Ting He Jianping Zou

Tairan Wang Youngchul Sung Jianliang Zheng

Xing Wang P. Venkitasubramaniam Ulas C. Kozat

Zhengdao Wang Srihari Adireddy Phillip T. Conrad

Yingqun Yu Gokhan Mergen Ahmed Abdelal

Alfonso Cano Animashree Anandkumar J. Sucec

(CUNY), and, to a lesser extent, the University of Delaware (UDEL), suggesting that

geographic proximity may have a role. Interestingly, the network of collaborations be-

tween Telcordia, CUNY, and UDEL dates back to the FEDLAB project (which was in

a sense the predecessor of the CTA), and continued through much of the CTA as well.

Notice that the three clusters remain stable even when k = 10 > 3 is used, although

NMF is not guaranteed to be nested (for even higher k, e.g., k = 30, this stability breaks

down, as larger clusters are broken down into more tightly woven pieces).
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Appendix

Modified Symmetric NMF Algorithm For Rank Less Than CP-Rank

The completely positive rank (cp-rank) of a completely positive matrix Y is the mini-

mum k that allows exact symmetric NMF of Y [147]. It is well-known that the cp-rank

need not be equal to the rank of Y . If we indeed encounter a completely positive matrix

with cp-rank strictly larger than its rank, this appendix shows how to modify Alg. 6.1

to seek an exact symmetric NMF, assuming we know the cp-rank.

Let the rank of a complete positive matrix Y be r, then we can perform the thin

eigenvalue decomposition

S = UrΛrU
T
r ,

where Ur is n × r with orthonormal columns, and Λr is r × r diagonal. Assume the

cp-rank is k, then there exists a symmetric NMF of Y

Y = HHT ,

where H is n× k with non-negative elements. The rank of H is r, otherwise the rank

of Y would not be r. Therefore, we can take the thin SVD of H

H = UHΣHV
T
H ,

where UH is n × r with orthonormal columns, ΣH is r × r diagonal, and VH is r × k
with orthonormal columns. Then

Y = HHT = UHΣ
2
HU

T
H .

As we can see, the right-hand-side is also an eigenvalue decomposition. Since the eigen-

value decomposition is unique, this implies that Ur = UH and Λ
1/2
r = ΣH . In other

words, let

Y = BBT

where B = UrΛ
1/2
r , then there exists a k×r orthonormal matrix Q such that BQT ≥ 0.

Thus, finding H can be posed as the following optimization problem

minimize
H,Q

‖H −BQT ‖2F

subject to H ≥ 0,

QTQ = I.

(6.9)
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Notice that compared to problem (6.2), we only have QTQ = I, since Q is not square,

and QQT is now a projection matrix.

Similar to Alg. 6.1, we propose to solve this problem by alternatingly updating H

and Q. For H, the update rule is simply

H ← max(0,BQT ) (6.10)

For the case of Q, the answer is not directly given by the Procrustes rotation. However,

it is easy to show that the solution is similar to what the Procrustes rotation provided

us in the unitary Q case. Since

‖H −BQT ‖2F
= trace

{
(H −BQT )(H −BQT )T

}
= trace

{
HHT

}
+ trace

{
BBT

}
− 2trace

{
HTBQT

}
,

minimizing ‖H −BQT ‖2F is equivalent to maximizing trace
{
HTBQT

}
.

Proposition 6.3. A solution of the following optimization problem

maximize
Q

trace
{
HTBQT

}
subject to QTQ = I,

is Q = UV T , where U and V come from the singular value decomposition of HTB.

HTB = UΣV T .

Proof. Let the singular value decomposition of HTB be

HTB = UΣV T ,

where U is k × r, Σ is r × r and V is r × r. Then we have

trace
{
HTBQT

}
= trace

{
UΣV TQT

}
= trace

{
ΣV TQTU

}
=

r∑
l=1

σlv
T
l Q

Tul
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where σl is the l-th diagonal entry of Σ, and vl, ul are the l-th column of V , U ,

respectively. Therefore,

trace
{
HTBQT

}
≤

r∑
k=1

σk

because

vTl Q
Tuk

≤ ‖vl‖2‖QTul‖2

≤ ‖vl‖2‖ul‖2

= 1

Furthermore, let Q = UV T , then

trace
{
HTBQT

}
= trace

{
ΣV TQTU

}
= trace

{
ΣV TV UTU

}
= trace {Σ}

which attains the upper bound we just derived. Therefore, a solution for this optimiza-

tion problem is Q = UV T .

As an example, let

Y =


2 1 1 0

1 2 0 1

1 0 2 1

0 1 1 2


Then rank {Y } = 3 while cp-rank{Y } = 4. If we apply the plain Alg. 6.1, in which case

we set k = 3, the result is

H =


0 1.3635 0.3630

0 0.3637 1.3633

1.1193 0.8516 0

1.1190 0 0.8520





126

0 50 100 150 200
10

−15

10
−10

10
−5

10
0

10
5

number of iterations

||S
−

W
W

T
|| F

 

 

K=3
K=4

Figure 6.4: Convergence of the modified proposed algorithm vs. original Alg. 6.1 for a

matrix whose rank is less than its cp-rank

and the factorization is not exact, whereas if we set k = 4 and apply the modified

algorithm described in this appendix, the result is

H =


1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1


and the factorization is exact. The convergence of each case is shown in Fig. 6.4.



References

[1] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.

[2] D. Donoho and V. Stodden. When does non-negative matrix factorization give a

correct decomposition into parts? In Advances in Neural Information Processing

Systems (NIPS), pages 1141–1148, 2003.

[3] K. Huang, N. D. Sidiropoulos, and A. Swami. Non-negative matrix factoriza-

tion revisited: Uniqueness and algorithm for symmetric decomposition. IEEE

Transactions on Signal Processing, 62(1):211–224, Jan 2014.

[4] N. D. Sidiropoulos and R. Bro. On the uniqueness of multilinear decomposition

of N-way arrays. Journal of chemometrics, 14(3):229–239, 2000.

[5] A. Smilde, R. Bro, and P. Geladi. Multi-way analysis: applications in the chemical

sciences. John Wiley & Sons, 2005.

[6] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM

review, 51(3):455–500, 2009.

[7] P. Comon. Tensors: a brief introduction. IEEE Signal Processing Magazine,

31(3):44–53, 2014.

[8] K. Huang, N. D. Sidiropoulos, and A. Swami. NMF revisited: New uniqueness

results and algorithms. In IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2013.

127



128

[9] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos. Blind separation of quasi-

stationary sources: exploiting convex geometry in covariance domain. IEEE

Transactions on Signal Processing, 63(9):2306–2320, May 2015.

[10] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos. Robust volume

minimization-based matrix factorization via alternating optimization. In IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

2016.

[11] X. Fu, K. Huang, B. Yang, W.-K. Ma, and N. D. Sidiropoulos. Robust volume

minimization-based matrix factorization for remote sensing and document clus-

tering. IEEE Transactions on Signal Processing, 2016, to appear.

[12] K. Huang, N. D. Sidiropoulos, E. E. Papalexakis, C. Faloutsos, P. P. Talukdar,

and T. Mitchell. Principled neuro-functional connectivity discovery. In SIAM

International Conference on Data Mining (SDM), 2015.

[13] K. Huang, N. D. Sidiropoulos, and A. P. Liavas. Efficient algorithms for ‘univer-

sally’ constrained matrix and tensor factorization. In European Signal Processing

Conference (EUSIPCO).

[14] K. Huang, N. D. Sidiropoulos, and A. P. Liavas. A flexible and efficient algorithmic

framework for constrained matrix and tensor factorization. IEEE Transactions on

Signal Processing, 64(19):5052 – 5065, Oct. 2016.

[15] K. Huang and N. D. Sidiropoulos. Putting nonnegative matrix factorization to

the test: a tutorial derivation of pertinent Cramér-Rao bounds and performance

benchmarking. IEEE Signal Processing Magazine, 31(3):76–86, May 2014.

[16] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos. Tensor decomposition for signal processing and machine learn-

ing. IEEE Transactions on Signal Processing, 2016, submitted. arXiv preprint

arXiv:1607.01668.

[17] K. Huang, X. Fu, and N. D. Sidiropoulos. Anchor-free correlated topic model-

ing: Identifiability and algorithm. In Advances in Neural Information Processing

Systems, 2016, accepted.



129

[18] J. Brewer. Kronecker products and matrix calculus in system theory. IEEE

Transactions on circuits and systems, 25(9):772–781, 1978.

[19] J. R. Magnus and H. Neudecker. The commutation matrix: some properties and

applications. The Annals of Statistics, pages 381–394, 1979.

[20] S. L. Campbell and G. D. Poole. Computing nonnegative rank factorizations.

Linear Algebra and its Applications, 35:175–182, 1981.

[21] J.-C. Chen. The nonnegative rank factorizations of nonnegative matrices. Linear

algebra and its applications, 62:207–217, 1984.

[22] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor

model with optimal utilization of error estimates of data values. Environmetrics,

5(2):111–126, 1994.

[23] A. Berman and R. J. Plemmons. Nonnegative matrices. SIAM, 1979.

[24] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari. Nonnegative Matrix and

Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and

Blind Source Separation. John Wiley & Sons, 2009.

[25] S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM

Journal on Optimization, 20(3):1364–1377, 2009.

[26] F. A. Nielsen. Clustering of scientific citations in Wikipedia. In WikiMania, July

2008.

[27] W. Xu, X. Li, and Y. Gong. Document clustering based on non-negative matrix

factorization. In ACM International Conference on Research and Development in

Informaion Retrieval (SIGIR), pages 267–273, August 2003.

[28] F. J. Theis, K. Stadlthanner, and T. Tanaka. First results on uniqueness of sparse

non-negative matrix factorization. In European Signal Processing Conference (EU-

SIPCO), Sept. 4-8, 2005, Antalya, Turkey.
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