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Abstract

The proliferation of broadband wireless communications calls for novel signal pro-
cessing and communications techniques to tackle many new challenging problems, for
which traditional approaches either do not provide satisfactory solutions, or cannot
solve certain problems at all. Multi-way array analysis is a promising set of tools that
has recently been introduced in the context of signal processing and communications.
Many successful applications of multi-way analysis in diverse types of problems have
demonstrated the potential advantages of multi-way array analysis.

This thesis documents some of the recent developments of multi-way array anal-
ysis in the field of signal processing and wireless communications. From the theory
perspective, we derive two equivalent necessary and sufficient conditions for unique
low rank decomposition of certain multi-way arrays, and point out a strong similarity
between the conditions for unique decomposition of bilinear models subject to Con-
stant Modulus (CM) constraints and unique low rank decomposition of multi-way
arrays. We also derive the most general identifiability conditions to date for multi-
dimensional harmonic retrieval in arbitrary dimensions, with important applications
in wireless channel sounding. From the application perspective, based on the the-
ory of multi-way array analysis, we develop a novel receiver to deal with the blind
identification of out-of-cell users in Direct-Sequence Code-Division Multiple Access
(DS-CDMA) systems. This receiver not only detects the in-cell users’ data symbols
reliably, but also helps identify out-of-cell transmissions, the steering vectors of all
active users and spreading codes of out-of-cell users. We also design an effective blind
reception scheme for single input multiple output (SIMO) and multiple input multi-
ple output (MIMO) orthogonal frequency division multiplexing (OFDM) subject to

unknown frequency offset and multipath.



iii

Contents

List of Figures v
List of Acronyms vii
Notation ix
1 Introduction 1
1.1 Motivation and Background . . . . ... ... ..o 1
1.2 Multi-way Array Analysis . . . . . . . . ... ... 2
1.3 Applications . . . . . . .. 4
1.3.1 Multi-Dimensional Harmonic Retrieval . . . . . . ... .. .. 4

1.3.2  Out-of-cell Interference in DS-CDMA . . . . . . ... ... .. 5

1.3.3 Orthogonal Frequency Division Multiplexing . . . . . . .. .. 7

1.4 How to read this Thesis . . . . . .. ... .. ... .. ........ 8
141 Part I: Theory . . . . . . . . ... Lo 8

1.4.2 Part II: Applications . . . . . ... .. ... ... ....... 9

1.4.3 Conclusions . . . . .. ... o 9

I Theory 10
2 Multi-way Array Analysis 11

2.1 CANDECOMP/PARAFAC (CP) Model and Problem Statement . . . 11



2.2 Roadmap of Uniqueness Results . . . . . . ... ... ... ...
2.3 Main Results . . . . . .. ... oL
2.4 Discussion . . . . ... Lo e
2.4.1 ten Berge’s example and counter-example . . . ... ..
2.4.2 Bilinear decomposition under CM constraints . . . . . .
2,5 Conclusions . . . ... .o

Appendix 2.A Kruskal’s Permutation Lemma: Redux . . . .. .. ..

3 Multi-dimensional Harmonic Retrieval

3.1 Some preliminaries . . . . . . .. . ... ... .. ...
3.2 Deterministic identifiability results . . . . .. ... ... .. ..
3.3 On rank and k-rank of the Khatri-Rao product . . . .. .. ..
3.4 Almost sure identifiability of 2-D harmonic retrieval . . . . . . .
3.5 The N-Dimensional Case . . . . . . . ... ... ... ......
3.6 Comments and Extensions . . . . . . .. ... ... .......

3.6.1 Constant-Envelope Exponentials . . . . . . .. ... ...

3.6.2 Common Frequency Mode . . . . .. ... ... .....

3.6.3 Non-Exponential Dimension(s) . .. ... ... ... ..
3.7 Conclusions . . . ... . ... L

Appendix 3.A Proofs . . . . . . ... oo

IT Applications

4 Blind Identification of Out-of-cell Users in DS-CDMA

4.1 Blind Identification Of Out-Of-Cell Users . . . . . . . ... ...
4.1.1 DataModel . . . . .. ... Lo
4.1.2 Preliminaries . . . . . . . .. ... oL
4.1.3 Main Theorem On Identifiability . . ... ... ... ..
4.1.4 Algorithms . . . . .. ... ... ... ... ...,

iv

13
15
20
21
24
28
29

40
42
44
45
48
52
23
23
o4
%)
o6
o7

68



4.2  Extension to Quasi-Synchronous Systems and Multipath Channels . .
4.3 Asymptotic Cramér-Rao Bound . . . . . . .. .. ... ... ... ..
4.4 Simulation Results . . . . .. .. ... 0oL
4.5 Conclusions . . . . . . . . L

Appendix 4.A Asymptotic CRB as N tends to infinity . . . ... .. ...

83

Direct Blind Receiver for SIMO and MIMO OFDM Subject to Fre-

quency Offset

5.1 System Model of SIMO-OFDM . . . ... ... ... .........
5.2 Identifiability . . . . . .. ...
5.3 PARAFAC Receiver . . . . . .. .. .. o
54 MIMO-OFDM System . . . .. ... ... ... ... ... ......
5.5 Simulation Results . . . ... .. ... o0 oL

5.6 Conclusions . . . . . . . . .. s

Conclusions and Future Work

6.1 Summary of Contributions . . . . . . .. . ... ... ... .. ....

6.2 Future Work . . . . . . . .

Bibliography

99
102
105
106
109
109
112

113
113
114

116



vi

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
2.2

Geometric Illustration . . . . . . ... ... ... 0L 32
The first step in the proof of the N-dimensional case . . . . . . . . .. 61
The second step in the proof of the N-dimensional case . . . . . . .. 64
No out-of-cell user interference . . . . . . . . . ... ... ... . ... 87
More active users than spreading gain . . . . . . . .. . ... ... .. 88
Support for small samplesizes . . . . .. ... ... ... .. ..... 88
Robustness to strong out-of-cell interference . . . . . .. ... .. .. 90
TALS performance versus Asymptotic CRB . . . . ... ... .. .. 91
MSE performance of COMFAC and the proposed algorithm against

the CRB bound . . . . . . . . . . . 92
BER versus SNR . . . . . . . . ., 110
BER versus SNR . . . . . . . ., 111



List of Acronyms

AWGN
BER
BPSK
BS
CDMA
CM

CP
CSI
FDMA
FER
FET
FIR
HIPERLAN
IBI
IFFT
IS-95

IST
MC
MIMO
ML

Additive White Gaussian Noise

Bit Error Rate

Binary Phase-Shift-Keying

Base Station

Code Division Multiple Access
Constant Modulus

Cyclic Prefix

Channel State Information
Frequency Division Multiple Access
Frame Error Rate

Fast Fourier Transform

Finite Impulse Response

HIgh PERformance LAN

Inter Block Interference

Inverse Fast Fourier Transform
EIA Interim Standard for U.S. code division
multiple access

Inter-Symbol Interference
MultiCarrier

Multi-Input Multi-Output

Maximum Likelihood

vii



MLSE
MMSE
OFDM
MS
PAM
PAR
QAM
QPSK
SIMO
SISO
SNR
ST
TDMA
WLAN
ZF

Maximum Likelihood Sequence Estimation
Minimum Mean Square Error

Orthogonal Frequency Division Multiplexing
Mobile Station

Pulse Amplitude Modulation
Peak-to-Average Power Ratio

Quadrature Amplitude Modulation
Quadrature Phase Shift Keying
Single-Input Multi-Output
Single-Input-Single-Output
Signal-to-Noise Ratio

Space-Time

Time Division Multiple Access

Wireless Local Area Network

Zero Forcing

viii



Notation

Bold upper letters (e.g. H)
Bold lower letters (e.g. h)
()
()"
()"
()
|- |

det(-)
ra,rank(A)

ka,k —rank(A)

-l
o[ ]

[

N
E{-}
tr{-}
diag(x)

ix

matrices;

column vectors;

conjugate;

transpose;

Hermitian transpose;

pseudo-inverse;

absolute value of a scalar;

determinant of a matrix;

rank of matrix A;

the Kruskal-rank of matrix A, the maximum
number of linearly independent columns that
can be drawn from A in an arbitrary fashion;
Frobenius norm;

Kronecker’s delta;

Kronecker product;

convolution;

integer ceiling;

integer floor;

expectation;

trace of a matrix;

diagonal matrix with x on its diagonal;



A®B
AGB

A+B

the identity matrix of size N,

N x N FFT matrix with (p+ 1, ¢ + 1)st
entry (1/v/N)e 9274/N; vp ¢ € [0, N — 1];
the p-th entry of a vector;

the (p, g)-th entry of a matrix;

the field of complex numbers;

the field of real numbers;

the ¢th column of A;

the (i, f)th element of A, which is also de-
noted by a; f;

a sub-matrix of A, formed by its first m rows;
a diagonal matrix constructed from the ith
row of A;

the Kronecker product of A and B;

the Khatri-Rao (column-wise Kronecker)
product of A and B:

AO®B = [a;®b;---ar @ bp|, where A €
c'*F B e ¢/*F.

the Hadamard (element-wise) product of A
and B;

the number of non-zero elements of vector x;

the L? inner product between functions f and

g.



Chapter 1

Introduction

1.1 Motivation and Background

In the past decade, the unprecedented growth in demand for reliable high-rate wire-
less multimedia services has triggered considerable research efforts to develop new
effective and efficient signal processing schemes for improving the quality and spec-
tral efficiency of broadband wireless links in the presence of channel fading. Broad-
band wireless services must cope with many critical performance-limiting challenges
that include multiuser interference (MUI) caused by simultaneous transmission in
the presence of inter-symbol interference (ISI), multi-carrier interference (MCI) due
to unknown carrier frequency offset (CFO) and time-selective and frequency-selective
fading induced by Doppler and multipath propagation. Traditional approaches either
do not always give satisfactory solutions to those challenges, or cannot solve certain
problems at all. Thus novel techniques in signal processing and wireless communi-
cations are called for tackling those challenges effectively and efficiently. In recent
years, so-called diversity techniques have been introduced to help mitigate those im-
pairments. Receive diversity, for example, can provide multiple independently faded

copies of the same signal. The basic idea is that receive diversity increases the ratio
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of the number of independent equations over the number of unknowns. Spreading
or frequency diversity yields a similar effect, albeit at the expense of bandwidth.
Transmit diversity, on the other hand, helps to average-out fading effects, thereby
enhancing average signal-to-noise ratio (SNR) at the receiver. Transmit diversity is
different from other kinds of diversity, in the sense that it does not yield more equa-
tions, but rather “better-conditioned” equations. All other commonly used forms of
diversity improve the ratio of the number of independent equations over the number
of unknowns. When multiple such forms of diversity are simultaneously present, the
baseband-equivalent data constitutes a multi-way data array. More often than not,
the signal part of this data array can be modeled as a low-rank multi-way array whose
rank is equal to the number of co-channel signals.

Multi-way array analysis in general, and low-rank multi-way array decomposition
in particular, are promising sets of tools that have recently been introduced in modern
signal processing and communications. Many successful applications of multi-way
analysis in diverse types of problems have shown strong evidence of the advantages
of multi-way array analysis. The primary purpose of this thesis was to tackle certain
challenging problems in the field of signal processing and wireless communications
via multi-way array analysis. However, the field of multi-way array analysis is still
far from mature, despite its theoretical and practical significance. Hence, a fair part
of this thesis is devoted to basic research and methodological developments related

to multi-way array analysis.

1.2 Multi-way Array Analysis

Matrices (two-dimensional, or two-way arrays) are the most commonly encountered
arrays. Low rank matrix decomposition is not unique in general, since inserting a

product of an arbitrary invertible matrix and its inverse in between two matrix factors
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preserves their product, yet generates a different decomposition. This is known as the
rotational indeterminacy problem in factor analysis. Low rank matrix decomposition
can be unique only if one imposes additional problem-specific structural properties
on the model or constraints on data to obtain an unique parameterization. Examples
include orthogonality (as in singular value decomposition), Vandermonde, Toeplitz,
constant modulus (CM) or finite-alphabet (FA) constraints.

Compared to the case of matrices, low-rank decomposition for three-way arrays
has a distinctive and attractive feature: it is often unique [30], and the situation
actually improves in higher dimensions [51]. Low rank decomposition of three-
dimensional arrays was developed by Harshman [17-19] under the name PARAllel
FACtor (PARAFAC) analysis, and independently by Carroll and Chang [7] under the
name CANonical DECOMPosition (CANDECOMP). More recently, the term CP
(CANDECOMP/PARAFAC) decomposition is often preferred [7,17]. The deepest
piece of work on uniqueness of CP decomposition of three-way arrays is due to J. B.
Kruskal [30,31]. Since then, the conditions for unique CP decomposition of three-way
arrays have been gradually improved by various authors [28,48, 51,54, 62].

The uniqueness of low-rank decomposition for three- and higher-way arrays is of
great practical significance since it enables unambiguous interpretation of the esti-
mated model parameters, which is crucial in many applications. Therefore, after
its introduction as a data analysis tool in Psychometrics, CP decomposition has
gradually gained popularity in many fields and disciplines such as statistics, arith-
metic complexity, and chemometrics [1,4,7,19,30,32] over the past thirty years. In
recent years many intriguing applications have been found in problems of interest
in signal processing and wireless communications. In the latter context, three-way
methods are often naturally applicable for the analysis of multi-dimensional data sets
encountered in multiple-invariance sensor array processing [53], blind beamforming

in specular multipath [35,55], multiuser signal separation [23,37,54], and diversity
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systems [24, 52].

1.3 Applications

The primary purpose of this thesis was to tackle certain challenging problems emerg-
ing in the field of signal processing and wireless communications via multi-way array
analysis. The following sections provide some background on the applications ad-

dressed in this thesis.

1.3.1 Multi-Dimensional Harmonic Retrieval

The problem of harmonic retrieval is commonly encountered under different disguises
in diverse applications in the sciences and engineering [58]. Although one-dimensional
harmonic retrieval is most common, many applications of multi-dimensional harmonic
retrieval can be found in radar (e.g., [21,34] and references therein), passive range-
angle localization [57], joint 2-D angle and carrier frequency estimation [68,69], and
wireless channel sounding [13-16]. In wireless channel sounding, for example, one
is interested in jointly estimating several multipath signal parameters like azimuth,
elevation, delay, and Doppler, all of which can often be viewed as or transformed into
frequency parameters.

A plethora of one-dimensional as well as multi-dimensional harmonic retrieval
techniques have been developed, ranging from non-parametric Fourier-based methods,
to modern parametric methods which are not bound by the Fourier resolution limit.
In the high signal-to-noise ratio (SNR) regime, parametric methods work well with
only a limited number of samples.

One important issue with parametric methods is to determine the maximum num-
ber of harmonics that can be resolved for a given total sample size; another is to

determine the sample size needed to meet performance specifications.
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Identifiability-imposed bounds on sample size are often not the issue in time series
analysis, because samples are collected along the temporal dimension (hence “inex-
pensive”), and performance considerations dictate many more samples than what
is needed for identifiability. The maximum number of resolvable harmonics comes
back into play in situations where data samples along the harmonic mode come at a
premium, e.g., in spatial sampling for direction-of-arrival estimation using a uniform
linear array (ULA), in which case one can meet performance requirements with few
spatial samples but many temporal samples [59].

Determining the maximum number of resolvable harmonics is a parameter identi-
fiability problem, whose solution for the case of one-dimensional harmonics goes back
to Carathéodory [6]; see also [45,60]. In two or higher dimensions, the identifiability
problem is considerably harder, but also more interesting. The reason is that, in many
applications of higher-dimensional harmonic retrieval, one is constrained in the num-
ber of samples that can be taken along certain dimensions, usually due to hardware
and/or cost limitations. Examples include ultrasound imaging [10] and direction of
arrival (spatial frequency) estimation. The question that arises is whether the num-
ber of samples taken along any particular dimension bounds the overall number of

resolvable harmonics or not.

1.3.2 Out-of-cell Interference in DS-CDMA

In the context of uplink reception for cellular DS-CDMA systems, interference can
be classified as either (i) interchip (ICI) and intersymbol (ISI) self-interference, (ii)
in-cell multiuser access interference (commonly referred to as MUI or MAI), or (iii)
out-of-cell multiuser access interference. The latter is typically ignored, or treated
as noise; however, it has been reported [49] that in IS-95 other cells account for a
large percentage of the interference relative to the interference coming from within

the cell. MUI is usually a side-effect of propagation through dispersive multipath
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channels. The conceptual difference between in-cell and out-of-cell interference boils
down to what the base station (BS) can assume about the nature of interfering signals.
Typically, the codes of interfering in-cell users are known to the BS, whereas those
of out-of-cell users are not. Specifically, in the presence of ICI, the receive-codes of
the in-cell users can be estimated via training or subspace techniques (e.g., cf. [39]),
using the fact that the transmit-codes are known. This is not the case for out-of-cell
users.

Appealing to the central limit theorem, the total interference from out-of-cell users
is usually treated as Gaussian noise. In IS-95, a long random cell-specific code is over-
laid on top of symbol spreading, and cell despreading is used at the BS to randomize
out-of-cell interference. This helps mitigate out-of-cell interference in a statistical
fashion. To see how random cell codes work, consider the simplified synchronous

flat-fading baseband-equivalent received data model
X = Dmcmsm + Doutcoutsout +mn,

where x holds the received data corresponding to one symbol period, C;, (resp. Co,us)
is the spreading code matrix, s;;, (resp. Syyu) is the symbol vector, Dy, (resp. Dy, is
a diagonal matrix that holds a portion of the random cell code for the in-cell (resp.
out-of-cell) users, and n models receiver noise. For simplicity, assume that the in-
cell symbol-periodic codes are orthogonal of length P, and all codes and symbols are

BPSK. Let c; stand for the code of an in-cell user of interest. Then

1
T ~
_C1 DinDoutCoutsout + n.

21 := —¢; Dinx = 8;(1) + P

The interference term is zero-mean; under certain conditions, its variance is O(%).
This is easy to see for a single out-of-cell user. It follows that random cell codes work
reasonably well in relatively underloaded systems with large spreading gain (e.g.,

128 chips/symbol), but performance can suffer from near-far effects, and cell codes
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cannot help identify out-of-cell transmissions. Although the latter may seem of little
concern in commercial applications, it can be important for tracking, hand-off, and
monitoring.

In a way, a structured approach towards the explicit identification of out-of-cell
users is the next logical step beyond in-cell multiuser detection, and is motivated by
considerations similar to those that stimulated research that took us from matched
filtering to multiuser detection. Note that, unlike the case of in-cell interference,
out-of-cell interference cannot be mitigated by power control, simply because the BS
does not have the authority to exercise power control over out-of-cell users. For a
power-controlled in-cell population, near-far effects may be chiefly due to out-of-cell
interference. Unfortunately, out-of-cell detection is compounded by the fact that it
has to be blind, since the BS has no control and usually no prior information on
out-of-cell users. This places limitations on the number and nature of out-of-cell

transmissions that can be identified.

1.3.3 Orthogonal Frequency Division Multiplexing

The proliferation of broadband multimedia wireless communication systems such
as Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), North-
American IEEE 802.11a, and European HIPERLAN-2, has spawned considerable re-
search on the design of wireless Orthogonal Frequency Division Multiplexing (OFDM)
transceivers. OFDM can be used for frequency-selective point-to-point links, possi-
bly in conjunction with transmit and receive diversity, but also for multiplexing.
Regardless of the particular transmission modality, OFDM affords relatively easy
equalization, and the ability to exploit frequency selectivity via symbol and power
loading.

One of the weak points of OFDM is sensitivity to Carrier Frequency Offset (CFO),

which is induced by local oscillator frequency mismatch between the transmitter and
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the receiver, drift, or Doppler effects due to mobility in the case of wireless systems.
The net result is that orthogonality among OFDM subcarriers is destroyed, and the
resulting inter-carrier interference (ICI) significantly degrades OFDM system perfor-
mance. With the FFT-based OFDM receiver, severe degradation occurs even for
relatively small CFO - about 2 — 5% of subcarrier spacing. For this reason, accurate

CFO estimation is necessary.

1.4 How to read this Thesis

This thesis consists of two parts. Part I (Chapters 2 - 3) is devoted to theory, while

Part IT (Chapters 4 - 5) contains the applications.

1.4.1 Part I: Theory

Chapter 2 - Multi-way Array Analysis. Here we introduce the CP model and
study its uniqueness properties. Our main result consists of two equivalent necessary
and sufficient conditions for unique identification of certain CP models. A strong
similarity between the conditions for unique decomposition of bilinear models subject
to CM constraints and certain CP models is pointed out. Our results yield the first
necessary and sufficient conditions for unique CP decomposition and unique bilinear
decomposition under CM constraints. Algorithms for fitting the CP model are also
presented and discussed.

Chapter 3 - Multi-dimensional Harmonic Retrieval. We derive the most
general identifiability conditions to date for multidimensional harmonic retrieval in
arbitrary dimensions. Our proof has subsequently provided the backbone for a new

and effective algebraic 2-D harmonic retrieval algorithm [37].
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1.4.2 Part II: Applications

Chapter 4 - Blind Identification of Out-of-cell Users in DS-CDMA. Based
on the theory of multi-way array analysis, we develop an algebraic solution under
the premise that the codes of the in-cell users are known. The codes of out-of-cell
users and all array steering vectors are unknown. In this pragmatic scenario, we
show that in addition to algebraic solution, better identifiability is possible. Our
approach yields the best known identifiability result for three-dimensional low-rank
decomposition when one of the three component matrices is partially known, albeit
non-invertible. A pertinent asymptotic (symbol-independent) Cramér-Rao bound is
also presented.

Chapter 5 - Direct Blind Receiver for SIMO and MIMO OFDM Subject to
Frequency Offset. We show that by employing two or more antennas at the receiver
affords not only a direct receive-diversity benefit, but also important side-benefits as
well: in fact CFO can be blindly estimated and the transmitted symbols can be
directly recovered, under very relaxed blind identifiability conditions. The results are
general enough to cover both single input multiple output (SIMO) and multiple input
multiple output (MIMO) OFDM systems with multiple users or multiple transmit

antennas.

1.4.3 Conclusions

Chapter 6 - Conclusions and Future Work. In this chapter, we give a brief
summary of the thesis, discuss some open questions, and point out directions for
future work.

The results of this thesis have been reported in Journal papers [25-28]; and con-

ference publications [22—-24].
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Chapter 2

Multi-way Array Analysis

2.1 CANDECOMP/PARAFAC (CP) Model and
Problem Statement

The CP model was independently introduced in 1970 by two different groups, as
CANonical DECOMPosition [7] and PARAllel FACtor analysis [17], respectively. Let
X be a three way array of order I x J x K. Analogous to matrix rank, which can be
defined as the smallest number of rank-one matrices (outer products of two vectors)
that generate the said matrix as their sum, the rank of a three-way array X is defined
as the smallest number of rank-one three-way arrays that generate X as their sum.
A rank-one three-way array is the outer product of three vectors. The CP model

decomposes X into a sum of F' rank-one three-way factors as follows

F
f

where the residual terms have been ignored because they play no role in identification.
Define an I x F matrix A with typical element A(i, f) = a;f, J X F matrix B with
B(j, f) = biy, K x F matrix C with C(k, f) = ¢, and J x K matrices X; with
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X;(j, k) = x;jx. The model in (2.1) can be written as
X; = Bdiag(A;)C, (2.2)

where A; stands for the i-th row of A. If we stack the X, one over another, a compact
matrix representation of the model in (2.1) is possible by employing the Khatri-Rao

(column-wise Kronecker) product

X Bdiag(A
> CLLLEE I ‘f]( 2) c” = (A ®B)C”. (2.3)
Xr Bdiag(Ar))

By symmetry, A, B, C may switch their places in (2.3) if the modes of the array
are switched accordingly.

Suppose we have two different decompositions of the same array X, namely, there
is a triple (A, B, C) other than (A,B,C) such that (A ® B)C? = (A ® B)C”.
Note that if Il is a permutation matrix and Aa, A, Ac are diagonal matrices such
that AAAgAc =1, then (AIIA 5, BITAg, CITA ) will yield the same array given by
(A,B,C). A CP decomposition of (2.3) is therefore said to be unique if for every other
decomposition of (2.3), X//*X = (A®B)C”, we have A = ATIA,B = BIIAg,C =
CIIA¢ for some permutation matrix II and diagonal matrices A, Ag, Ac with
AAABAc =1L

The key problem addressed in this chapter is to pursue necessary and sufficient
conditions under which CP decomposition is unique. Kruskal has shown [30] that
uniqueness holds under relatively mild conditions. A conjecture that these conditions
are generally necessary and sufficient has been upheld until the recent work [62].
An approach of finding alternative CP decompositions for any given CP model has
been developed in [62] to study the uniqueness of CP decomposition and Kruskal’s

conjecture was failed by simple counterexample. However, [62] did not further qualify
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the uniqueness conditions. In what follows, we will derive two equivalent necessary
and sufficient uniqueness conditions when one of the component matrices involved in
the decomposition is full column rank, and explain the examples in [62]. As a bonus,
we will establish a link to uniqueness of bilinear factorization under CM constraints.
Last but not least, we will provide a more palatable proof of a cornerstone result
in the area, Kruskal’s Permutation Lemma, that at least we would have appreciated

being readily available several years ago.

2.2 Roadmap of Uniqueness Results

Recall that CP decomposition, when unique, it is unique up to a common permuta-
tion and non-singular scaling/counter-scaling of columns of the component matrices.
On hindsight, it is therefore natural to ask under what conditions two matrices are
the same up to permutation and scaling of columns. This is precisely the subject of

Kruskal’s Permutation Lemma [30]:

Lemma 2.1 [30] Suppose we are given two matrices A and A, which are I x F and

I x F. Suppose A has no zero columns. If for any vector x € CV such that
WA < F —rz +1, (2.4)
where w(x) stands for the number of non-zero elements of x, we have

wxfA) < w(xfA),

then F < F; if also F > F, then F = F, and there ezist a permutation matriz P g

and a non-singular diagonal matriz A such that A = APzA.

This lemma is the key tool in the area of CP analysis and the cornerstone for

Kruskal’s proof of uniqueness of CP decomposition. Since the statement reads as a
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sufficient condition, it is tempting to attempt to improve upon Kruskal’s condition
for uniqueness of CP decomposition by sharpening the condition in the permutation
lemma. However, Kruskal’s proof of the permutation lemma is ingenious but also
largely inaccessible. We managed to re-prove Kruskal’s Permutation Lemma using a
systematic basic linear algebra and induction approach (see the Appendix). The new
proof suggests that the condition in Kruskal’s Permutation Lemma is sharp, hence
the aforementioned attempt is unlikely to succeed.

Necessary conditions for CP uniqueness are worth recounting at this point. One
is that neither A, nor B, nor C has a pair of proportional columns [29]. Another
is that the Khatri-Rao product of any two component matrices must be full column
rank [36].

On hindsight, the proof of uniqueness of CP decomposition can be decoupled into
three separate steps. Given (A ® B)CT = (A ® B)C7, the first step is to show that
A = ATIpAA,, B = BIIgAg; the second step is to show that IIy = ITg = IT; the
last step is to show C = CTI(ApAg)~' = CITAc. This last step is straightforward

once the previous steps are finished:
(A®B)CT = (A®B)CT = ((ATIAA) ® (BITAB))CT = (A ® B)ITAAAgCT,

and since A ® B is full column rank (recall this is one of the necessary conditions for

uniqueness), we have

CT = TIAAARCY,

or

C = CII(AxAp) .

When one of the component matrices, say C, is full column rank, the aforemen-
tioned procedure can be further simplified. One can first show that C = CITAg,
then obtain

(A®B)CT = (A®B)CT = (A e B)AcII'CY,
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and since C is full column rank,
A OB = (AG0BIIAZ,

it then follows that A = AITIAA,B = BIIAg for some Ax and Ag, such that
AaAAc = I Therefore, when C is full column rank, showing C = CIIAc is
the key step. In Section 2.3, we will derive conditions under which this step can be
accomplished. When those conditions do not hold, alternative CP decompositions

will be constructed.

2.3 Main Results

We now focus on proving uniqueness for restricted CP models, meaning those
with full column rank C. As we have seen in the previous section, one way to show
that the decomposition of restricted CP models is unique is to prove that the full
column rank component matrix C is unique up to permutation and column scaling.
This entails conditions on both A and B. ka + kg > F + 2, as a special case of
Kruskal’s conditions [30], can achieve the goal, but as shown in [62] this condition is
not necessary.

The following condition will be proven to be necessary and sufficient to show that
C is unique up to permutation and column scaling:

Condition A: None of the non-trivial linear combinations of columns of A ©® B
can be written as a tensor product of two vectors.

By non-trivial linear combinations we mean those involving at least two columns
of A ®B.

Clearly, Condition A implies that A ® B is full column rank, since if A ® B is
rank deficient, a non-trivial linear combination of columns of A ® B would constitute
a zero vector and this zero vector can be given in the form of tensor product of a zero

vector and another vector.
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Condition A also implies that neither A nor B has a pair of proportional columns.
Otherwise, one can arrange a non-trivial linear combination of columns of A ® B such
that the resulting vector is in the form of tensor product of two vectors.

Now, let us see why this condition is sufficient for the identification of restricted
CP models. Suppose we have another decomposition of the same array X, (A, B, C),
such that (A ®B)CT = (A ®B)C”. Thanks to the non-singularity of A ® B implied
by Condition A, it can be seen that C'x = 0 for all x such that C'x = 0. This
implies that rc < rg. Since C is assumed full column rank, C has to be full column
rank as well.

To further proceed to show that C is the same as C up to permutation and column
scaling, we resort to Kruskal’s Lemma. It suffices to show that w(x¥C) < w(x*C)
for all w(x#C) < 1. Clearly, we only need to verify that w(x¥C) < w(xC) holds
for all w(x”C) = 1.

Given all x such that w(x?C) = 1, we have

(A B)CT(x*)T = (A @ B)CT(x")".

Note that (A ® B)CT(x#)T is nothing but a scaled tensor product of a column
of A and the corresponding column of B. Therefore, w(xC) must be less or equal
to 1, otherwise, Condition A will be violated. Invoking Lemma 2.1, C and C are the
same up to permutation and column scaling. The result therefore follows.

To show necessity, we proceed by contradiction. Without loss of generality, we
assume that C is an identity matrix!, I, A = [a;,--- ,ar], B=[by,--- ,bp|, and a

linear combination of the first two columns of A ® B constitutes a vector in the form

1Under our working assumption of full column rank C, this is without loss of generality in so far
as uniqueness is concerned. This has been shown by ten Berge via suitable pre-transformation of

the data; see, e.g., [62].
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of a tensor product of a; and by, i.e.,
a1®b1 +a2®b2 :51®51.

It is easy to see that

(AQB)CTZ [a; ® b, a2 @ bg,--- ;ar @ bp| I

1 0 O
2[51®51,32®b2,"',aF®bF] -1 1 O (2.5)
0 0 Ip_
= (A ®B)C”,
where
A =[aj,ay, - ,ap]

T
1 0 o (2.6)
C=|-11 o0 ,
0 0 Ip,

Hence (A, B, C) constitutes an alternative decomposition. This completes the neces-
sity part for Condition A.

Although Condition A has helped us intuitively understand the nature of the iden-
tification of restricted CP models, it has two limitations. The first is that Condition
A is not easily verifiable. Second and more important is that the techniques used
in the proof do not readily generalize to general CP models (rank-deficient C). In
the following, we shall derive an alternative equivalent condition that is often better
suited for verification, and can be extended to cover general CP models.

We first define a set of F' x F' symmetric matrices W;, ;, ;, i, determined by the

second-order minors of A and B as follows:

Qiy,f1 Qig, fy bjlafl bjz,f1

Wil,i2aj1;j2 (fla f2) = ’ (27)

N —

Qiy,fs  Qig, fs bjl,f2 bjz,f2
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for il :1,...,I,i2: ]_,...,I,jl = ]_,...,J,jzz ]_,...,J.

We are now ready to derive the equivalent condition for identification of restricted
CP models. As discussed before, it suffices that w(x?C) < w(x”C) for all w(x#C) <
1. In particular, w(x#C) < w(x#C) for w(x”C) = 1.

Since

(Ao B)C'(x")" = (A@B)C"(x")",
invoking the identity [2] vec(Adiag(xT)BT) = (A ® B)x, we have
Adiag(x"C)BT = Adiag(x"C)B”.
Since w(x”C) = 1, we know
Adiag(x"C)B" = a;,b7,. (2.8)

for some fy € {1,---, F}, and therefore

T A diag(xH C)BT <1,

which is equivalent to all the 2nd order minors of A diag(xC)BT being zero.

Let [y1,--- ,yr] := x2C, we have
M := Adiag(x"C)B nyafbf

Since all the 2nd order minors of Adiag(x” C)B” are equal to zero, this is equiv-

alent to

F F
mil:jl le;]Q _ Zle yfa'zlyfbjlyf Zle yfa/zlafb.721f _ 0 (2 9)
o F F o '
miQajl miQ’jQ Zf:l yfa/i%fbjl:f Zf:]. yfai27fbj21f
for 7;1 :1: aIaiQ :11 aIajl = 15 aJaj2: la aJ'

(2.9) can be written as

F F F F
(Z yfa’ilszjlzf) (Z yfaiz,fbjzaf) - (Z yfail,fbj2,f) (Z yfaz'2,fbj1,f) =0
f=1 f=1 f=1 f=1
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which is nothing but

D Yan (i gi 1bj1 gbjis b — @iy gy wbjy s g) = 0. (2.10)
g#£h

Further simplifying (2.10), we obtain

F

> Ygn(Giy g iy wbjs st iy hiy gbjy hbjy g =i iy hDjy hbjy g =iy Ay gbjy gbsn) = 0.
1=g<h=F

(2.11)
(2.11) can be written as
F

Z ygyh ailag ai?:.q bjlag bj2ag — 0’ (212)

1=g<h=F Qi b Qiyh bjl,h bjz,h

each of which is equivalent to a bilinear form as follows

o |

Wi,y Wi | 2 | =0, (2.13)

Yr
fori; =1,...,1,io=1,...; 1,51 =1,...,J,5o=1,...,J.

We are now ready to state the equivalent condition on identification of restricted
CP models.

Condition B: The set of equations in (2.13) only admits solutions satisfying
w([yr, - ,yr]) < 1.

Note that any y with w([y1, -+ ,yr|) < 1 will automatically satisfy the equations
in (2.13).

When Condition B holds, it is easily seen that w(x”C) < w(x”C) for all
w(xfC) < 1, therefore CP decomposition is unique. On the other hand, when
Condition B is not satisfied, it is easy to show that either A ® B is rank deficient or
a non-trivial linear combination of columns of A ® B constitutes a vector in the form
of tensor product of two vectors. In either case, an alternative decomposition of the

given array can be constructed.
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Sometimes, solving a system of bilinear equations such as (2.13) is not as compli-
cated as it appears. If all W, 4, ;. 4, are real positive semi-definite matrices, then the
solutions to the system of bilinear equations can be obtained by solving a suitable
linear equation. Unfortunately, this is not the case for our problem. More often than
not, Wj, i, i,.j, are in-definite complex matrices. This poses difficulties in checking
whether solutions to (2.13) adhere to the constraint in Condition B. We don’t have
a general tool for handling this verification yet, but, as will be shown shortly, some
instructive simple cases can be worked out by hand, and the issue is currently under
investigation.

We note that since W;_ ;, 5 5, = 0 if i = 4y or j; = j,, the number of active
bilinear equations can be reduced. It is also worth mentioning that instead of casting

(2.12) into (2.13), we can “linearize” (2.12) as follows:

Y1Y2

U| g | =0 (2.14)

| YF1YF |
where the entries of U are determined by (2.12).

In this way, we deal with a linear equation that involves a structured vector.
Note that w([y1,---,yr]) < 1 is equivalent to [Y1y2, - ,YgYn, -+ ,Yr—1yr] = 0. U
being full column rank guarantees that w([y1,- -, yr|) < 1. However, a rank-deficient
U does not necessarily imply that w([y1,---,yr|) > 2 since [y1y2,-- -, yr_1yr| is a

structured vector. In particular, simulations show that U can be rank-deficient even

when A and B are drawn from a continuous distribution.

2.4 Discussion



2.4 Discussion 21

2.4.1 ten Berge’s example and counter-example

One of the motivations of this chapter is to explain the puzzle brought by the counter-
example to necessity of Kruskal’s condition given in [62]. In [62], two simple examples
illustrate that the uniqueness of CP decomposition depends on the particular joint

pattern of zeros in the component matrices. The first example is

100&1
A=1010 ay |-
001 0

100 b
B=1010 0],

| 0 0 1 b3
with a1, as,b; and b3 nonzero, and C = I,. The second example in [62] is given by
changing the first example slightly to have the zero entry in the last columns of A

and B in the same place as follows

100 b
B=|(010 b |
0010

with ay,as, by and by nonzero, and a common C. It has been proven in [62] that the
decomposition of the array given by (A, B, C) in the first example is unique, whereas
alternative decompositions arise in the second example. However, no explanation on
this interesting phenomenon was provided. Equipped with the main results of the

previous Section, we are now in position to offer such explanation.
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In the first example, we know that

» y1+arbiys 0 aybzys
Z yfafb? = azb1 Y4 Y2 Qob3ys (2.15)
f=1
0 0 Y3

Therefore, following (2.12), we have

(

Y1Ya + a1b1Y2ys = 0

Y1ys + a1b1ysys = 0

=0 (210
Yoys =0
Y1ya =0
\
(2.16) can be written as Uw = 0, with U being 5 x 6 and w :=

[Y1Y2, Y193, Y1Ya, Y2U3, Y2Ya, Y3ya|” - (2.16) admits a solution of weight larger than 1 if
and only if there is a nonzero w orthogonal to the five rows of U. For the particular U
in (16), the only possibility for this is to have w proportional to [0, a1b, 0, 0, 0, —1]
with y1, y3, and y4 nonzero. Because w3 = y;y, = 0, this is not possible, and
w is the zero vector after all. Therefore, (2.16) does not admit a solution with
w([y1, Y2, Y3, ya]) > 2.

On the other hand, in the second example, we have

¢

Y1Y2 + a2boy1Ys + a101y2ys = 0
y1ys =0

< (2.17)
Yy2ys = 0

| YsYs = 0

a1b1

It is easy to see that (2.17) admits the solution y; = — T V2 =Lys=0,ys =1

where we assume 1+ asby # 0. If 1 + asbs = 0, we can modify the values of y5 and y,
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accordingly and still have a solution with w([y1, Y2, y3, y4]) > 2. As it has been shown
in [62], the number of such solutions is infinite.

Furthermore, in the second example,

a1b

—_

a1by

o o o o

agb1

AOB=

—_

a9 b2 )

o o o o o o o

1 0

o O o o o o o o

o o o o

0 0

we can see that a linear combination of the first, the second, and the forth columns

of A ® B constitutes a vector in the form of tensor product of two vectors as follows,

Lo ok S
0 0 a1by a1by
0 0 0 0
o [TL 1)L e | | e ] [
TTahaghy | O T L T aebe | T 1tk | T | Ttabh O 1
0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

(2.18)
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2.4.2 Bilinear decomposition under CM constraints

Although bilinear decomposition is not unique in general, bilinear decomposition
with constant modulus (CM) constraints can be unique [33,61,65]. Interestingly,
as pointed out next, the identification condition on bilinear decomposition with CM
constraints is very similar to Condition B derived herein for the identification of
restricted CP models . Any progresses on identification of bilinear decomposition
with CM constraints might be beneficial to better understand Condition B and vice
versa.

Let C = AB”, with full column rank B and a CM constraint on A: that is,
without loss of generality, |a; ;| = a; sa/ = 1.

Like CP decomposition, bilinear decomposition with CM constraints, when
unique, it is unique up to column permutation and scaling. Therefore, Kruskal’s
Permutation Lemma can again be taken as the cornerstone for uniqueness. Ear-
lier work on the identification of bilinear mixtures under CM constraints [33, 61]
has yielded sufficient conditions, but necessity has been left open to the best of our
knowledge. Equipped with Kruskal’s Permutation Lemma, we are ready to give a
necessary and sufficient condition for unique bilinear decomposition under CM con-
straints. In this context, uniqueness means that if there is another pair (A, B), with
A having CM elements, such that ABT = ABT”, then there exist a permutation
matrix IT and two non-singular diagonal matrices A4, Ap with Ay Ag =1 such that
A = ATIA,,B = BIIAg. Note that the scaling indeterminacy remains despite the
CM constraint, due to the possibility of rotation in the complex plane. Also, since
we have assumed a full column rank B, it suffices to show that B = BIIAg for a
permutation matrix IT and a diagonal matrix Ag; the result for A then follows by

simple inversion. This is the usual route taken to show uniqueness in this context.
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Note that
ol al
11,9 22,h H
> Syt =1 yrai gl =) " Yy =0, (2.19)
H
g9#h | Qiz,g Q3 p
or
I
[yla e ayF]Wil,iz = Oa
i
H
Qirg  Qjy b
Wilﬂé (ga h) = Z )
a/i27g ail,h
for 9y = 1,---,1,19 = 1,---,1. The necessary and sufficient condition for unique

bilinear decomposition under CM constraints can now be stated:

Condition C: The set of equations in (2.19) only admits solutions satisfying
w([ys, - yr]) <1

Let us show that Condition C guarantees B = BITAg for a permutation matrix
IT and a diagonal matrix Ag. Invoking the Permutation Lemma 2.1, it suffices to
show that w(xB) < w(x%B) for all w(x”B) < 1. To see this, note that Condition C
guarantees A being full rank. This is because Condition C is equivalent to none of the
non-trivial linear combinations of columns of A can be written as a vector comprising
of constant modulus entries, and a zero vector is a constant modulus vector. Then,
from the hypothesis AB” = AB” and the assumption that B is full column rank,
it follows that B is full column rank as well, in which case (cf. statement of Lemma
2.1) we only need to verify that w(x#B) < w(x#B) holds for all w(x7B) = 1.

From the hypothesis ABT = AB”, we have
AB* (x")T = AB" (x")7,

for all x. In particular, for all those x such that w(x¥B) = 1, the left hand side is

a column drawn from A, and thus a vector comprising of constant modulus entries.
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The first element of the right hand side is a linear combination of the elements in the
first row of A, the second is a linear combination of the elements in the second row
of A, and so on. All these row-combinations should have equal modulus. If the only
way for this to happen is that a single column is selected from A, as per Condition
C, then it must be that w(x”B) = 1. This shows that Condition C is sufficient for
uniqueness. For the converse, suppose that Condition C is violated. Without loss of
generality, we may assume that B is an identity matrix Ir and a linear combination

of the first two columns of A constitutes a constant modulus vector ai, i.e.,
a; +ay = aj.

and the modulus of each entry of a; is equal to a, a constant, not necessarily equal
to one.
If a is zero, we know A is rank deficient. Then adding any non-zero null vectors

of A to the first column of B preserves AB”, but generates a different solution for

B.
If a is not zero, it is easy to see that
AB" = [alaaQa T aaF] Ir
Va 0 0
= [PE el | -1 1 (2.20)
- \/aa 29 y AF - 0 .
0 0 Ip_o
= AB7,
where _
A = %,32, ,aF]
T

Va 00 (2.21)
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Clearly, the modulus of each entry of A is one. Hence (A, B) constitutes an alternative
decomposition. This completes the necessity part for Condition C.

We now can see that Condition B for the identification of restricted CP models
and Condition C for the identification of bilinear models subject to CM constraints
are very similar. While both have been derived using Kruskal’s Permutation Lemma,
they stem from conceptually very different structural constraints on the equivalent
bilinear models. More specifically, CP can be viewed as a bilinear model with Khatri-
Rao product structure along the one dimension; whereas CM is a bilinear model with
a modulus constraint on the elements of one matrix factor.

When the CM constraint is imposed along one or more modes of CP, identifiability
naturally improves in terms of the number of available equations. For instance, given
a CP model (A, B, C) with full column rank C and CM constraints on both A and

B, the following is a necessary and sufficient set of uniqueness conditions:

Both

F
a'ilvg a'i2ag bjl)g bj27g _ O

E ygyh -

l=g<h=F| Giyh iy || bji,n bjon
and
F ) ) H 1H
au,gbn,g aiz,hbjz,h H _
Ygyp, =0,

gh | Giy,gDjy g ag,hbﬁ,h
only admit joint solutions with w([y1,--- ,yr]) < 1.

A concise unifying treatment of necessary and sufficient uniqueness conditions
for the identification of general?> CP models subject to CM constraints along one or
more modes is not available at this point. Nevertheless, individual cases can be dealt
with, given the tools developed herein. Even discarding CM constraints, stating and

checking necessary and sufficient uniqueness conditions for unrestricted CP models is

possible but cumbersome. When none of the component matrices is full column rank,

2Meaning: without the full column rank restriction along one mode.
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following the road map provided in Section 2.2, one has to show that A = ATIAA,
and B = BIIgAp separately. High-order minors of A, B and C must be exploited,
and the condition for the identification of general CP models boils down to a number
of multi-linear equations with particular constraints on common solutions. We defer
this pursuit at this point, pending further understanding of Condition B, which we

hope to develop in on-going work.

2.5 Conclusions

Two equivalent necessary and sufficient conditions for unique decomposition of
restricted CP models where at least one of the component matrices is full column rank
have been derived. These conditions explain the puzzle in [62]. A strong similarity
between the conditions for unique decomposition of bilinear models subject to CM
constraints and certain restricted CP models has been pointed out. It is hoped
that this link will facilitate cross-fertilization and unification of associated uniqueness
results. Last but not least, Kruskal’s Permutation Lemma has been demystified. The
new proof should be accessible to a much wider readership than Kruskal’s original

proof.
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Appendix 2.A Kruskal’s Permutation Lemma: Re-
dux

Kruskal’s Permutation Lemma 2.1:
We are given two matrices A and A, which are I x F and I x F. Suppose A has

no zero columns. If for any vector x € CV such that
WwxFA) < F —rz +1,
we have
wx"A) < w(x"A),

then F < F; if also F > F, then F = F, and there exist a permutation matrix Pz
and a non-singular matrix A such that A = APzA.

Remark 2.1 Kruskal’s condition is equivalent to

If a certain vector is orthogonal to ¢ > r5 — 1 columns of A,

then it must be orthogonal to at least ¢ columns of A

which tmplies

For every collection of ¢ > rz — 1 columns of A, there exists a collection of

at least ¢ columns of A such that

Span(these ¢ > rz — 1 columns of A) D Span(c or more columns of A)

To show why the first statement implies the second statement, we proceed by con-
tradiction. Suppose that there is a collection of ¢y > 75 — 1 columns of A, say,
{a;,---,a,}, and there are only (co — k) columns of A, say, {ai,---,a, x}, such
that

Span({ai, -+ ,8.,}) 2 Span({ay, - ,ac,-k}), (2.22)
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where 1 < k < ¢y.

Note the each of the remaining columns of A, i.e., {as ki1, - ,ar}, is linearly
independent with the column set {a;,--- ,a.}, otherwise & can be reduced by 1; this
implies that for every ¢+ = ¢y — k + 1,..., F, there exists a certain non-zero vector

x; € Null({a;,---,a.}) such that

xfai 75 0,
otherwise, if for every x € Null({a,- - ,a.}), x € Null({a;,}) for a certain iy, this
implies
Null({ay,---,a.,}) C Null({a,}),
ie.,

Span({ai, -+ ,a.,}) 2 Span({a;}),

which means that k£ can be reduced by 1 as well.

Let us assume that Null({ay,- - ,a,.}) is an m-dimensional linear subspace, m >
1. m = 0 means that Span({a;,---,a,}) = C’; this further implies that all columns
of A belong to Span({ai, - ,a.,}).

Now, consider

Null({él, v ,500, az})

for each 7. Due to the existence of aforementioned x;, Null({ai,---,a.,a;}) is a
proper linear subspace of Null({ai,--- ,a.}) with dimension m — 1. Since the union
of a countable number of (m — 1)-dimensional linear subspaces of C! cannot cover
an m-dimensional linear subspace of C/, we are able to find a non-zero vector x, €

Null({a;,---,a.}), such that
Xgai§é0, \V/Z:CO—I{J+1,,F

The existence of such x, contradicts the first statement.
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Unlike the statement of Lemma 2.1, where the columns sizes of A and A might be
different, we assume that both A and A are I x F matrices; furthermore, without

loss of generality, we assume both do not contain zero columns.

Remark 2.2 Given two non-trivial vectors ¥ and y, they are linearly dependent
if and only if w(xfy) = 0 for all x satisfying w(x®y) = 0. This can be easily
checked using the testing vector x = [a,0,---,0,b,0,---,0] with a, b chosen such that

w(xfy) =0.

Lemma 2.2 Given A € C™*¥ and A € ¢*F, A = APz A if and only if w(xA) <

w(xA) for all x.

15

Proof of Lemma 2.2: 1t suffices to prove the “if” part, and we will prove this by
induction on the number of columns of A, namely F.

When F = 1, the condition in Lemma 2.2 implies that w(x”A) = 0 for all x
satisfying w(xA) = 0. From Remark 2.2, this implies that A and A are linearly
dependent.

Assume that Lemma 2.2 holds true for all ' < K. Now, consider F' = K + 1. Let
a; denote the i-th column of A, and a; denote the j-th column of A.

We claim that under the condition in Lemma 2, there must exist at least one
column of A, a;,, which is linearly dependent with a;. We will prove this by con-
tradiction. Suppose that this claim is not true; then, based on Remark 2.2 and the
assumption that A does not contain zero columns, we know that for every j, there

exists a x; such that

w(xj'a) =0, w(xj'a;)=1,Vj=1,...,F (2.23)

Then we will show that in fact there exists a common x such that

wxga) =0, wxfa)=1,Vj=1,...,F. (2.24)
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a

Nulfa, a,

—

Nulka, a}

Nulfa,}

Figure 2.1: Geometric Illustration

a; # 0, hence the null space of a;, Null(a;), is an (I —1)-dimensional linear space.

Now consider Null({ai,a;}) for all j. Clearly, all Null({a;,a;}) are covered
by Null(a;). It is clearly seen that the existence of x¢ in (2.24) is equivalent to
Uj—1 Null({a1,a;}) # Nul(ay).

Recall that for every j, there exists a x; such that
w(x]Hél) =0, w(x;-qaj) =1, Vj,

which implies that Null({a;,a;}) cannot be the same as Null(a,), but rather a proper
linear subspace of Null(a;) with dimension I — 2. Furthermore, the union of a count-
able number of (I — 2)-dimensional linear subspaces of C! cannot cover an (I — 1)-
dimensional subspace of C!, also see Fig 2.1. Therefore, Ule Null({a;,a;}) does not
cover Null(a;), hence, we do have a xo such that (2.24) holds.
This implies that
WxfA) < F-1< F=wx{A),

which contradicts the condition in Lemma 2.2. Therefore, we can claim there exists at



Appendix 2.A Kruskal’s Permutation Lemma: Redux 33

least one column of A, which is linearly dependent with a;. Without loss generality,

we say this column is a;,. Clearly,
w(x"a;) = w(xa,,), vx. (2.25)

Now, construct a submatrix of A by removing column a; from A, and denote this
matrix Ag; similarly construct a submatrix of A by removing column aj, from A,
and denote this matrix A,.

From w(x”A) < w(x#A) for all x (condition in statement of Lemma 2), and
(2.25), it follows that

w(x?Ay) < w(xfAy),vx.

But Aj and A are K-column matrices; the result then follows from the induction hy-
pothesis. That is, the (K + 1)-column matrices A, A are the same up to permutation

and scaling of columns. This completes the proof. O
Remark 2.3 The proof of Lemma 2.2 can be also applied to the following corollary.

Corollary 2.1 Given A € C™F and A € C™*F, A = AP A if and only if

wxPA) <w(xfA) for any x such that
wx"A) < F —1.

Compared with Kruskal’s result, the conditions in both Lemma 2.2 and Corollary
2.1 appear more restrictive. There is a gap between the results presented in this
Appendix so far and Kruskal’s result. If r, = 2, this gap has been filled by Corollary

2.1. For the general case, we have the following Lemma:

Lemma 2.3 Given A € C™F and A € c™F, w(x"A) < w(x”A) for all x if and

only if w(xA) < w(xA) for any vector x such that w(x"A) < F —rz + 1.



Appendix 2.A Kruskal’s Permutation Lemma: Redux 34

The interesting case occurs when rj is strictly less than F. Without loss of
generality, we assume 7z < F'.

With an additional condition, namely, kz = rz, where kz stands for Kruskal rank
of A, a relatively simpler proof can be obtained as follows.

Proof of Lemma 2.3 - Case of kx =rx:

It suffices to prove the “if” part, and we prove it by contradiction. Suppose there
exists a non-zero vector X, such that w(xZA) > w(xfA), and w(xZA) > F—rz +1,
and suppose w(xI A) is the smallest such number bigger than F — 7z + 1 in the sense

that w(x”A) < w(x”A) for any vector x such that

w(x"A) < w(xA).
Without loss of generality, we assume
Wx{A)=F —rz +k,

where 2 < k < rz, and

WxFA)=F —ra +k+1,

where 1 <1 <rz — k.
With such xg, we know that there exist (rz — k) columns of A, say,

aj,---,a,, ,t,and (rg — k — ) columns of A, say, {a;,---,a,, ,_;}, such that
A A

{x0,0} C Null({ay,- 8, 4 }) [ | Null({ar,- - 2, x1}).

Since w(x{A) > w(xfA), {a1, -+ ,a,, 1} are the only columns of A that can
possibly belong to Span({ai,---,a,,_x}); otherwise, if there is one more column,
say ap, belonging to Span({a,---,8,,-¢}), then, x{'ap = 0, which implies that

wx¥A)=F —rzg +k+1—1, and contradicts w(x}!A)=F —rz +k+1.
0 0

The remaining P — rz + k columns of A are {a,, 41, ,ap}.
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Recall that, by definition of xq,
wx"A) <w(x"A) vx st. wXPA) < F—rz+k—1<wxA). (2.26)

Similar to Remark 2.1, we can show that (2.26) implies that for every rz — k + 1
or more columns chosen from A, there must exist at least as many columns from A,
such that each of those from A is a linear combination of the said columns of A.

Now consider the following F — rz + k column sets drawn from A,
{5-1: e 55-1‘1:\—/6’ 5.2},

where i =75 —k + 1,..., P. Each of them has r5 — k + 1 distinct columns of A.
According to (2.26), for each column set {ai,---,a,;_x,a;}, there exist at least

ra —k—+1 columns {a;,--- ,a } such that each column from the latter set is a

ir 3 —k+1
linear combination of those in the former set.
Recall that except for {ai,---,a,; i}, there is no other column of A, which

belongs to Span({ai,---,a,;_x}). This implies that at least (I 4+1) = (rz —k+1) —

(rg — k —1) columus from {a;,, --- ,aZ-TA_kH}, other than those in {a;, -, a,, —k—},
must be such that each is a linear combination of a; and some or all of {a;,--- ,a,, &}
Let ¢; denote the column set consisting of those [+1 columns from {a;,, - - -, a, e

We claim that every two ¢; and ¢; are disjoint for ¢ # j; for if there exists a

common element between ¢; and ¢,, say a;- € ¢i() ¢;, then,

’I“A—]C T‘A—k
i _ —— _ _
a; = E Cpa, + Cca; = E dma,, + djaj, c; # 0, dj #0,
n=1 m=1

which in turn implies that the rz — k + 2 column set
{5-17 o :QTA—k)? 5‘i7 é‘]}

is a linearly dependent set of columns with distinct indices. Since £ > 2 and kz = rj3,
we have a contradiction. Therefore, every two ¢; and ¢; are disjoint for i # j. In

addition, it is easily seen that ¢; is disjoint with {ai,---,a,, 4} as well.
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The remainder is a counting problem. The number of all columns of A should not
be less than the number of columns in all the above disjoint column subsets of A.
However, from {ai,---,a,, _x—}, we have rz — k — [ columns, from each ¢;, we have
at least [ + 1 columns, and we have P — rz + k such ¢;, therefore, the total number

of columns from all disjoint column subsets of A is not less then
ra—k—1l+(+1)(F—ra+k)=UF—ra)+F+(k—-1),

which is strictly greater than F for [ > 1, and k& > 2 whereas A has F' columns only.
We have a contradiction. O

The above proof of the special case of Lemma 2.3 provides helpful intuition. Armed
with this insight, the following proof of Lemma 2.3 becomes natural.

Proof of Lemma 2.3 - General Case:

The spirit of the proof follows the earlier argument for the special case. In partic-
ular, we argue by contradiction.

Suppose that there exists a xp, such that w(x/A) > w(xfA), and w(x{A) >

F—rz+1,ie.,
wxfA)=F—rzg+k>F—rz+1, 2<k<rg

WFA)=F —rz+k+1, 1<I1<rz —k,
and suppose w(xJ A) = F —ra + k is the smallest number bigger than F —r4 + 1 in
the sense that w(xA) < w(xA) for any vector x such that

wxPA) < F—rz+k—1<w(xiA),

which implies that for every r5 — k + 1 or more columns chosen from A, there must
exist at least as many columns from A, such that each of those from A is a linear

combination of the said columns of A.
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As before, with such xg, we know that there exist (rz — k) columns of A, say,

{a1,--+,a,, &}, and (ra —k — ) columns of A, say, {a;,---,a,;_x—}, such that

{x0,0} C Null({ay,--- 8, })[ | Null({ar, -+ ,a,,_k1}),

and since w(x{'A) > w(x{A), {a1,---,a,, _,_} are the only columns of A that can
possibly belong to Span({ai,---,a,,_x})-

What we are going to do next is different from the previous proof. We are going to
partition the remaining F' — 3 + k columns of A, namely {a; k41, -+ ,ap}. Notice
that none of those remaining columns of A is going to be linearly dependent with
{a1,---,a,, &}; otherwise, k can be reduced by 1. We will partition those remaining
P — 15 + k columns into® M > 2 non-empty disjoint subsets in the sense that each
subset contains one particular remaining column and all the other columns that are
the linear combinations of this particular remaining column and {a,,--- ,a,, }. Let

S; > 1 denote the number of columns in the i-th partition set. Clearly,

M
ZSZ':F—T’A'i‘]{I.

i=1

Now, add each partition set to {a;,---,a,;_x} to form a concatenated set. Each
concatenated column set of A has S; +7z — k > rz —k + 1 columns. Recall that for
every 75 — k + 1 or more columns chosen from A, there must exist at least as many
columns from A, such that each of those from A is a linear combination of the said
columns of A. Then, there must exist at least (S; + 7z — k) columns of A such that

each of those from A is a linear combination of those columns of the concatenated

3M can be equal to 1 only if 7z = 2, however, the case r5 = 2 has been solved by Corollary

2.1. For r5 > 3, M cannot be 1. Suppose M = 1, then, according to the definition of our partition,

each remaining column of A is the linear combination of a,, k41 and {ay,---,a,5_}. Therefore,
adding all remaining columns of A to {ai,---,a,,_x} is only expected to increase the rank of
[@1,---,8,5 k] by at most one. This implies the rank of A is bounded by r5 — k + 1 which is less

than rz since k > 2. Hence, M > 2.
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set. We already know that {aj,--- ,arA_k_l} are the only columns of A that can
possibly belong to Span({ai,--- ,a,,_x}), therefore, every such (S; 4+ rz — k)-column
subset of A must have at least S; +1 = (S; +rz — k) — (ra — k — [) columns, other
than those in {a;,--- ,a, A_k_l}’ such that each column is a linear combination of at
least one column from i-th partition set and {a;,---,a,, x}-

Let ¢; denote the column set consisting of those S; + [ columns of A.

We claim that all ¢; and {ai,--- ,a,; _x—;} are mutually disjoint.
Suppose this is not true. Recall that no element of ¢; belongs to {ai, - ,a,, _x—i},
hence there is no common element between {ay,--- ,a,, ,;} and any particular ¢o;

meanwhile, if there is a column belonging to two different ¢;, this will contradict the
way we partition the remaining columns of A.

The remainder is again a counting problem. Each ¢; contributes at least S; + [
columns. {ai,---,a,,_x—} also contributes rz — & — [ columns. Summing up, we
know A should have at least

M
ra—k—1+) (Si+1)=F+(M-1)
i=1

columns. Since M > 2 and [ > 1,
F+(M-1)>F,

whereas A only has F' columns. Hence, we have a contradiction. O

One natural question that arises at this point is whether one can further improve
Lemma 2.1, in the sense that Lemma 2.1 can be viewed as an improved version of
Lemma 2.2. Does the conclusion of Lemma 2.1 hold if we pose a smaller bound on the
right hand side of (2.4)? The answer is no in general. It is known that ko = 7 almost
surely when A is drawn from a continuous distribution. With the aid of Remark 2.1,
it can be seen that given a matrix A with k3 = rz, even if w(xA) < w(x7A) for

any vectors with w(x#A) < F —rz, A and A are not necessarily equivalent up to
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permutation and scaling. The Lemma can be relaxed when k5 = 1, but this is not

the case of interest.
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Chapter 3

Multi-dimensional Harmonic

Retrieval

Determining the maximum number of resolvable harmonics is a parameter identifia-
bility problem, whose solution for the case of one-dimensional harmonics goes back
to Carathéodory [6]; see also [45,60]. In two or higher dimensions, the identifiability
problem is considerably harder, but also more interesting. The reason is that, in many
applications of higher-dimensional harmonic retrieval, one is constrained in the num-
ber of samples that can be taken along certain dimensions, usually due to hardware
and/or cost limitations. Examples include ultrasound imaging [10] and direction of
arrival (spatial frequency) estimation. The question that arises is whether the num-
ber of samples taken along any particular dimension bounds the overall number of
resolvable harmonics or not.

Essentially all of the work to date on identifiability of multidimensional harmonic
retrieval deals with the 2-D case (e.g., [34,67]), and provides sufficient identifiability
conditions that are constrained by min(7, J), where I denotes the number of samples
taken along one dimension, and .J likewise for the other dimension. To the best of our

knowledge, the most relaxed condition to date has been derived in [50], which shows
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that identifiability is determined by the sum I+ J. The result of [50] is deterministic,
in the sense that no statistical assumptions are needed aside from the requirement
that the frequencies along each dimension are distinct. Furthermore, it generalizes
naturally to N dimensions for arbitrary N, and shows that identifiability improves
with increasing N, which is intuitively pleasing. However, the sufficient condition
in [50] improves with the sum of I, J, K, - - -, whereas total sample size grows with the
product of I, J, K,---. This indicates that significantly stronger results are possible.

The contribution of this chapter is the derivation of stochastic identifiability results
for multidimensional harmonic retrieval which fulfill this potential. Our tools allow us
to treat the general case of multidimensional complex exponentials that incorporate
real exponential components (e.g., decay rates). We thus make no distinction between
the terms harmonic and exponential. We show that if the number of 2-D harmonics
is less than or equal to roughly I.J/4, then, assuming sampling at the Nyquist rate or
above, the parameterization (including the pairing of parameters) is P, (C*")-almost
surely identifiable, where F is the number of harmonics and P, (C?") is the distribution
used to draw the 2F complex decay/frequency parameters, assumed continuous with
respect to the Lebesgue measure in C2¥. In plain words, this means that if F is
under roughly I.J/4, then the model parameters (amplitudes, phases, decay rates,
and frequencies, including pairing thereof) that give rise to the observed noiseless
data are unique for almost every selection of complex decay/frequency parameters, or,
if one draws the complex decay /frequency parameters from a continuous distribution
over C2F', then the probability that one encounters a non-identifiable model is zero.
This result is subsequently generalized to N dimensions for arbitrary V.

The rest of this chapter is structured as follows. We begin with a discussion of
notation and preliminaries. Section 3.2 summarizes earlier deterministic identifiability
results, while section 3.3 illuminates the rank properties of the Khatri-Rao matrix

product. Both are needed to prove the stochastic identifiability results presented
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herein. In particular, section 3.3 proves that the Khatri-Rao product is full rank
almost surely’. Our main contributions are presented in sections 3.4 and 3.5. Section
3.4 contains the 2-dimensional result, whereas section 3.5 contains its generalization
to arbitrary number of dimensions. The proof of the latter is highly technical, and
therefore deferred to the Appendix, along with other proofs of auxiliary results. Some
comments and extensions of the main results are collected in section 3.6. Conclusions

are drawn in section 3.7.

3.1 Some preliminaries

C denotes the complex numbers, U = {x € C | || = 1} denotes the unit circle,
F F

CF=TxCx---xC, and UF =U x U x --- x U. Matrices (vectors) are denoted

by boldface capital (lowercase) letters. N denotes the number of dimensions, whereas
I,, denotes the number of (equispaced) samples along the n-th dimension. An N-
dimensional (also known as N-way) array is a dataset that is indexed by N indices:
Tiy iy, Where i, € {1,--- , [,}, n=1,---, N. We do not follow the usual convention
of using 4 or j to denote y/—1; instead we explicitly write /—1 when needed, and
use i (j) as row (respectively, column) index, in accordance with common practice
in matrix algebra. We also make extensive use of superscripts to denote variables
stemming from a given variable.

The rank of a matrix (2-way array) A is the smallest number of rank-one matri-
ces needed to decompose A into a sum of rank-one factors. Each rank-one factor
is the outer product of two vectors. Matrix rank can be equivalently defined as the
maximum number of linearly independent columns (or rows) that can be drawn from
A. We will use rp to denote the rank of A. The rank of an N-way array is de-

fined as the smallest number of rank-one N-way factors needed to decompose it [30].

! This statement has to be interpreted properly; see section 3.3.
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Each rank-one N-way factor is the “outer product” of N vectors, meaning that its
(41, ,in)-th element is given by a1, -+ -afn,y, where f is a factor index. Thus,
an N-way array of rank F' can be written as:

F N

Tiy o iy = cy H i -
f=1 n=1
The Kruskal-rank or k-rank [30] of a matrix A (denoted by ka) is r if every r

columns of A are linearly independent, and either A has r columns or A contains a
set of r 4+ 1 linearly dependent columns. The k-rank of A is therefore the maximum
number of linearly independent columns that can be drawn from A in an arbitrary
fashion. Note that k-rank is generically asymmetric: the k-rank of a matrix need not
be equal to the k-rank of its transpose. k-rank is always less than or equal to rank.
A constant-envelope 1-dimensional discrete-time exponential is written as z; =
V——l)w(ifl),

cel 1 = 1,---,1, where ¢ € C accounts for both amplitude and phase.

A non-constant-envelope 1-dimensional exponential is written as z; = ca'™!, i =
1,---,I, where a € C accounts for both decay (or growth) rate and frequency. A

2-dimensional exponential is simply the product of two 1-dimensional exponentials

. . . . . i1—1 do—1 -
indexed by different independent variables, i.e., z; ;, = cai'” a3, iy = 1,---, Iy,
19 = 1,---, I; and likewise for higher dimensions.
An m x p Vandermonde matrix with generators oy, aw,---,a, € C is given by
1 1 1
(075} (67%) @)
_ 2 2
ot ot oyt

If the generators are distinct, then V is full rank [58] and also full k-rank [55]: kv =

rv = min(m, p).
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3.2 Deterministic identifiability results

We will make use of the following results.

Theorem 3.1 (Identifiability of low-rank decomposition of N-way arrays [51, 52])

Consider the F-component N-linear model

F N
xil:"'yiN = : :CfHa'fvnvzn’
f=1 =1

fori, =1,--- I, >2, n=1,--- /N, withc; € C, afpn;, €C. Let A™ denote the
I, x F matriz with (i,, f) element asy;,. If

N

zkA(n) >2F + (N —1),

n=1
then gwen the N-way array x;, .. iy, tn = 1,--+ , I, n =1,--- N, its F' rank-one
N-way factors

N
cfHa/f,'fL,inJ f: ]"-.- 5F
n=1

are unique.

Kruskal was the one who developed the backbone result for N = 3 and array elements

drawn from R [30]. See also [53-55] for other related results.

Theorem 3.2 (Deterministic identifiability of N-dimensional harmonic retrieval

[50]) Given a sum of F' exponentials in N-dimensions

F N
Tiy iy = ZCf H a}’j{l,
f=1 n=1
forin=1,--- I, >2, n=1,--- N, withcy € C and ay, € C such that ay, , # af,n,

Vfi# fo and all n, if
N
> I, >2F + (N -1),
n=1
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then there exist unique (af,, n=1,---,N; ¢5), f = 1,---,F that give rise to
Tiy iy - If an additional M non-exponential dimensions are available,
F N M
-
‘/Eil,"',iN;jl,"',jM = Zcf H alzf,’n H bf7m’jm7 (31)
=1 n=1 m=1
for jm = 1,--- ,Jp > 2, m = 1,--- M, with by = 1, Vf,m by convention,
then uniqueness (including the associated component vectors along non-exponential

dimensions) holds provided that

N M
Y L+ kg >2F+ (N+M-1),
n=1 m=1

where BM™) denotes the J,, x F matriz with (ju, f) element bf .. -

3.3 Onrank and k-rank of the Khatri-Rao product

Consider two Vandermonde matrices

1 1 1
aq Q2 c e arF
A= o2 o ar |
a{ 1 ag_l a} 1
- - (3.2)
1 1 1
B Ba Br
B=1| 45 5 Bz |
J-1 pJ-1 . J—1
| 1 2 F |
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where o, 9, -+ ,ar and By, s, ---, Br are complex generators. The Khatri-Rao

product of A and B is

1 1 1
I B2 - Br
o5y gy B
J—1 J—1 . J-1
1 2 F
al a2 PR aF
AOB=
oy 235 tee apfr
Oé1ﬂ12 042522 tet OéFﬂ%
o B asfy - B
I-1,J-1 I-1,J-1 I-1,5J-1
a;” B Qy Py QG Pp

One can show that full rank (even full k-rank) of both A and B does not necessarily
guarantee that the Khatri-Rao product A ® B is full rank (let alone full k-rank ).

For example, let F' = 6. The generators can be chosen as follows:

a=1l,as=2,03 =3, a4 =4, a5 =5, a5 = 6.

Bi=1,8=V2 83 =3,8 = V4,6 =55 = V6.
With this choice of generators, A and B are full k-rank. When I = 3 and J = 2, the
6 x 6 Khatri-Rao product A ®B is full rank, hence also full k-rank: kpaoB = raes = 6.
Now set I = 2 and J = 3; the Khatri-Rao product is still 6 x 6, but? its rank is 5.

Irrespective of Vandermonde structure, it is simple to show that

TAeB < TATB,

2Tt will be shown that, with proper random sampling, this phenomenon is a measure-zero event;

see Theorem 3.3, and Corollary 3.1.
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e.g., by noting that the Khatri-Rao product of A and B is a selection of columns
drawn from the Kronecker product of A and B. The rank of the Kronecker product
is the product of ranks of the constituent matrices [2].

The following result provides a deterministic lower bound on the k-rank of the
Khatri-Rao product, irrespective of Vandermonde structure. Note that since rank >

k-rank, it also provides a lower bound on rank.

Lemma 3.1 [55] Given two matrices A € C'*F' and B € C'*F, if ka > 1 and

kg > 1, then it holds that
kA@B > min(kA + kg — 1, F) (33)

Other researchers have noted that the Khatri-Rao product appears to exhibit full
rank in essentially all cases of practical interest [66], but no rigorous argument has

been given to justify this observation to date. The following two results settle this

issued.

Theorem 3.3 For a pair of Vandermonde matrices A € C'*F and B € ¢/*F
TaoB = kaes = min(IJ, F), P:(C*) —a.s., (3.4)

where P;(C?F') is the distribution used to draw the 2F complex generators for A and

B, assumed continuous with respect to the Lebesque measure in C2F.
As an almost direct by-product, we obtain
Corollary 3.1 For a pair of matrices A € C'*F' and B € ¢/*F,
raoB = kaop = min(1.J, F), Pg(cUHDF) —q.s., (3.5)

where Pp(CYTIF) is the distribution used to draw the (I + J)F complex elements of

A and B, assumed continuous with respect to the Lebesque measure in CUHF.

Equipped with these results, we proceed to address the main problem of interest

herein.

3Proofs can be found in the Appendix.
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3.4 Almost sure identifiability of 2-D harmonic re-
trieval

Proposition 1 * Given a sum of F 2-D exponentials

F
Tij; = Z cfaic_lbjc_l, (3.6)

f=1
fori=1,...,1 >4, and j =1,...,J > 4, the parameter triples (ay,bs,cy), f =
1,---,F are Pp(C*)-a.5. unique®, where P:(C*") is the distribution used to draw
the 2F complex exponential parameters (ays,bs), f =1,---, F, assumed continuous

with respect to the Lebesque measure in C*F, provided that there exist four integers,

1, I, Ji, Jo such that
I—Il —IQ+min(11J1,F) +min([2J2,F) Z QF, (37)

subject to

Il + ]2 S I, J1 + J2 = J+ 1, min(]l,IQ, Jl, Jz) Z 2. (38)

Proof:
We first define a 5-way array with typical element
Li1yizyiz,giyge <= Lirtia+iz—2,j1+j2—1
F

i 1 {141t 1—1
— § Cfa"lfl-l—zz-l—lg 1-1 1b‘}1+]2
=

F
_ i1—1 _d9—1 i3—1351—13752—1
=) cpaflap TRy
f=1

(3.9)

where i, = 1,---, 1, > 2, and jg =1,---,J3 > 2, for a = 1,2,3, B = 1,2. Since

min(7, J) > 4 has been assumed in the statement of the proposition, such extension

4The result holds true if we switch I and J.
5We assume throughout that sampling is at the Nyquist rate or higher, to avoid spectral folding.

This allows us to restrict attention to discrete-time frequencies in (—m,n].
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to b ways is always feasible. Define matrices
A, =(d ) e, By= () ech T (3.10)

The next step is to nest the 5-way array 7 into a three-way array T by collapsing two

pairs of dimensions as follows

Tig ket = T, LY b ([ £ =11 0= 1=1) e

F
£1-1 [L1-1 E—([E1-1)J1-1
= Zcf (a;h] a;‘]"’] af b, (Tor1=0)
X b )
) k11 k—([E1-D)-1
af%ﬂ—l I=([71-1)J2-1

b, )

F
= craf dysery,
=1

(3.11)

fork=1,--- 1,1 =1,--+,IJ, with di s and ¢; ; given by
£1-1 k—([E]-1)1-1
dpgi=agt by (TR

L1-1 1—([L]-1DJp—1
e = a;”] by (53107 .

(3.12)

Define matrices
D = (dy ;) € c"F, E = (e,f) € cP/*F. (3.13)
D and E are nothing but
D=A,0B;, E=A,0B,. (3.14)
Since Aj is Vandermonde, Theorem 3.2 can be invoked to claim uniqueness, provided

Is+kp+kg>2F+3—1. (315)
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Note that for any particular i3, k£ and [, the product cfa}“‘_ldk,fel,f is equal to

cfaéflb?fl with the following choice of ¢ and j:
k l
= T4 [=]-2
i=in+ (5] + 1512,
k l
=k—(|—|—-1Dh+1—(=—|—1)Jo — 1.
j=k= (1= DA +1= (1= D

As i3, k and [ span their range, the corresponding ¢ and j span their respective range.
It follows that uniqueness of the F' rank-one 3-D factors cfajf’_ldk, seu,r is equivalent
to uniqueness of the F' rank-one 2-D factors cfa}’lbjfl, f=1,---,F. Therefore, the
rank-one factors cfaj?lbjfl and hence the triples (ay,bs,cp), f =1,--+, F, are unique
provided that (3.15) holds true. Invoking Theorem 3.3, almost sure uniqueness holds

provided there exist integers, I, Iy, I3, Ji, Jo > 2 such that
I3+min(flJ1,F)—i—min(IQJg,F) Z 2F+2, (316)

subject to®
)

L+L+L=T+2,

VJi+Jo=J+1, (3.17)

\min(Ila IZ: 13, Jla JQ) > 2.

Setting I3 = 1 + 2 — I; — I, we obtain
I— Il - 12 + min(IlJl, F) + min(Ing, F) Z 2F,

subject to
(

L+ 1, <I,

VJi+Jo=J+1,

kmin(Ila 127 Jl: JZ) Z 27

and the proof is complete. O

6The first two conditions assure that we do not index beyond the available data sample.
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Theorem 3.4 7 Given a sum of F 2-D exponentials

F
Tij = Zcfaj:lbjfl, (3.18)
f=1

fori=1,...,1 >4, and j =1,...,J > 4, the parameter triples (ay, by, cy), f =
1,---, F are P;(C*)-a.s. unique, where P;(C*") is the distribution used to draw the
2F complex exponential parameters (ays,by), f=1,---, F, assumed continuous with

respect to the Lebesque measure in C2F', provided that

F < Léj [%1. (3.19)

Proof: 1f both I and J are even numbers , pick Iy = I, =1, J; = £ and J, = (‘];2)

(thereby satisfying condition (3.8)), and (3.7) becomes

I I 2
min(IJ, F)+ min(%, F) > 2F, (3.20)
which is satisfied for any F < IJ/4. If I is even, J is odd, pick I; = I, = é, and

Ji = J, = ZFL (thereby satisfying condition (3.8)), and (3.7) becomes

I(J +1)
4

M, F) > 2F, (3.21)

, ) 4+ min( 1

min(

which is satisfied for any F' < I(J + 1)/4. If both I and J are odd, pick I; = @,

L= 7 = J, = U (satisfying (3.8)), and (3.7) becomes

2 2

(I-1)(J+1)
4

(I+1)(J+1)
4

, F') + min(

min( ,F) > 2F, (3.22)

satisfied for any F < (I —1)(J+1)/4. Finally, if I is odd and J is even, pick I; = =2,

I =41 J = £ and J, = Z2 (satisfying (3.8)), and (3.7) becomes

(I -1)({J)
4

(I+1)(J+2)

, F) 4+ min( 1

,F) > 2F, (3.23)

min(

satisfied for any F' < (I — 1)J/4. Invoking Proposition 1 completes the proof. O

"The Theorem holds true if I and J are switched.
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Remark 3.1 Some reflection reveals that the arqument behind the proof of Theorem
3.4 (and also its N-D generalization, Theorem 8.5) is in fact constructive, leading to
an eigenvalue solution that recovers everything exactly under only the model identifi-
ability condition in the Theorem, in the noiseless case. Our results have subsequently
led to the development of an effective algebraic identification algorithm for N-D har-

monic retrieval [37].

Remark 3.2 [t is interesting to note that equations-versus-unknowns considerations
indicate a bound of 1J/3, without taking the pairing issue into consideration. To see
this, note that each of the F' 2-D exponential components is parameterized by 3 complex
parameters, and a total of IJ complex data points are given. If the equations-versus-
unknowns bound is violated, then, under certain conditions, the implicit function the-
orem indicates that infinitely many ambiguous solutions exist in the neighborhood of

the true solution.

3.5 The N-Dimensional Case

The result can be generalized to the N-dimensional case. Although the spirit of the
associated proof is clear, the mathematical argument is highly technical. This is so
primarily because one is forced to use a recursive dimensionality-embedding argument
to preserve generality. We therefore state the result and defer the proof to the end
of the Appendix, noting that Figures 3.1, 3.2 help convey the essence of the proof to

the interested reader.

Theorem 3.5 8 Given a sum of ' N-D exponentials

F N
Ty iy = Z cy H a’ﬁn_l, (3.24)
f=1 =1

8The Theorem holds true for any permutation of {I,,}Y_,
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fori,=1,--- I, >4, n=1,--- N, the parameter (N+1)-tuples (a1, -- ,arn,cys),
f =1, ,F, are P (C")-a.s. wunique, where P;(CNT) is the distribution used
to draw the NF complex exponential parameters (asq,--- ,asn), for f =1,--- | F,

assumed continuous with respect to Lebesque measure in CVF' | provided that

e (3.25)

3.6 Comments and Extensions

The restriction of at least 4 samples per dimension is an artifact of the proof. In fact,
we can also treat cases with less than 4 samples in any dimension(s). However, in
the 2-D case with less than 4 samples per dimension, our approach does not yield
anything significant. In the N-D case, having less than 4 samples along certain
dimensions breaks the symmetry of the problem, forcing us to separately consider
cases, depending on the number and sample size distribution of dimensions having less
than 4 samples. This prohibits a concise unifying treatment. Nevertheless, individual

cases can be easily dealt with, given the tools developed herein.

3.6.1 Constant-Envelope Exponentials

So far, we have considered multidimensional complex exponentials that incorporate
real exponential components. In many applications, one deals with constant-envelope
complex exponentials. The proof of Theorem 3.4 carries through verbatim in this case,
except that one needs to ensure that Theorem 3.3 holds for generators drawn from
the unit circle, U. This is easy, because the generic example which shows that the
determinant is nontrivial in the proof of Theorem 3.3 was actually constructed using

generators drawn from the unit circle. We therefore have the following Corollary:
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Corollary 3.2 Given a sum of F' 2-D constant-envelope complex exponentials

F
T = Z Cfex/f_lw,f(ifl)ex/f_lvf(jfl),
f=1
fori=1,....1 >4, and j=1,...,J > 4, the parameter triples (eﬁ“’f,e‘/jl"f,cf),
f=1,-- F are P(U?)-qa.5. unique, provided that

J

I
F< 505

<5051

The same argument holds for Proposition 4 and Theorem 3.5 in the case of constant-

envelope complex exponentials; we skip the corresponding statements for brevity.

3.6.2 Common Frequency Mode

In most applications, having two or more identical frequencies along a certain di-
mension is a measure zero event. Having two frequencies close to each other is very
common, but this affects performance, rather than identifiability. In certain appli-
cations, identical frequencies along one or two dimensions are in fact a modeling
assumption, motivated by proximity of actual frequencies and compactness of model
parameterization [34]. For this reason, it is of interest to investigate identifiability sub-
ject to common frequency constraints. This can be handled using the tools developed
herein, but one needs to check on a case-by-case basis, depending on the “common
mode configuration”: how many distinct frequencies (“batches”) per dimension, how
many components per batch, and what is the pairing across dimensions. In general,
the problem is combinatorial and a unified treatment does not seem to be possible.
The reason is that one needs to construct a “generic” example (cf. the proof of Theo-
rem 3.3) to demonstrate that the determinant of the associated Khatri-Rao product is
nontrivial, for each common mode configuration. We illustrate how this situation can

be handled in the 2-D case with a pair of 2-D exponentials having one frequency in
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common. Interestingly, we obtain exactly the same identifiability condition as before.

The proof of the following result can be found in the Appendix.

Proposition 2 Given a sum of F' 2-D exponentials

F
Tij = Z cfaiflbjc_l,
f=1
for i = 1,...,1 > 4, and 7 = 1,...,J > 4, with by = by, the parame-
ter triples (as,by,cp), f =1, F are Pc(C*! 1)-a.s. unique, where Pg(C*' 1)
is the distribution used to draw the (2F — 1) complex exponential parameters
(a1, a9, ,ap,by,bs, -, br), assumed continuous with respect to the Lebesgue mea-

(CQF—I

sure in , provided that

F< 1.

3.6.3 Non-Exponential Dimension(s)

In certain situations, the signals along one dimension are not exponentials, e.g., in
uniform rectangular sensor array processing with two exponential (spatial) dimensions
and a non-exponential temporal dimension. Our results can be extended to handle

this case as well. As an example, we have the following result®.

Proposition 3 Consider

F
I — i—1
Tige = Y cray Uy sk,
f=1

fori=1,...)I, and j = 1,...,J, where k = 1,..., K, is a temporal index, and
assume that the temporal signal matriz S = (s,5) € CE*F is full column rank F. If
max(I,J) > 3, and

F <1J—min(l,J),

9Note that, assuming sufficiently many temporal samples and persistence of excitation, and taking
M; = Ly = L =1 in equation (22) of [13], yields F < min(I(J —1),J(I — 1)) = IJ — max(I, J);

this is worse but close to our result in Proposition 3, albeit [13] contains no proof.
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then the parameterization in terms of (af,bf,cf,{sk,f},le), f=1,---.F, is
Pr(C?F)-a.s. unique, where Pp(C*'") is the distribution used to draw the 2F com-
plex exponential parameters (as,by), f =1,...,F, assumed continuous with respect

to the Lebesgque measure in C2F.

3.7 Conclusions

We have derived stochastic identifiability results for multidimensional harmonic re-
trieval. The sufficient conditions provided are the most relaxed to date. The sufficient
condition for the 2-D case is not far from equations-versus-unknowns considerations
- hence additional improvements, if any, will be marginal. In the N-D case, the re-
solvability bound is proportional to total sample size, but the proportionality factor
is dependent on N. Although this is not a serious limitation, it does indicate that
one moves further from the equations-versus-unknowns bound in higher dimensions.
It remains to be seen whether a significantly tighter bound can be found in higher

dimensions.
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Appendix 3.A Proofs

We will need to invoke the following Lemma.

Lemma 3.2 Consider an analytic function h(x) of several complex variables x =
[, -~ ,:L'n]T € C". If h is non-trivial in the sense that there erists Xy € C" such that

h(xg) # 0, then the zero set of h(x)
Z:={xeC"h(x) =0}
is of measure (Lebesgue measure in C") zero.

This Lemma is known (e.g., [60]), but we have not been able to find a satisfactory
proof in the literature. We therefore include a simple proof for completeness.

Proof of Lemma 3.2: If n = 1, it is well known that Z is countable (e.g., see [9]
Theorem 3.7'%). For n > 1, define g(x) = 1 if h(x) = 0 , and g(x) = 0, otherwise.
The measure of Z is the integral of g(x) over C". Fix xo, 23, - , Ty, and consider the
single-variable function h(z1,xs, ..., 2,). This is analytic in z, hence its zero set is of

measure zero. This means that, for any fixed z,,--- , x,,

/g(:ClaxQ’ e 7$n)dl'1 = 0

/---/deQ---d:cn
0.

Note that the argument works irrespective of order of integration - hence the multi-

Hence

dimensional integral is indeed zero, by Fubini’s Theorem. This completes the proof.

O

10 Any uncountable set in the complex plane must have at least one limit point because any complex

Cauchy sequence must have one and only one complex limit.
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Proof of Theorem 3.3: We will show that
raoB = kaop = min(IJ, F), P, (C*) — a.s.

The general case can be reduced to the IJ = F case. If I.J < F', it suffices to prove
that the result holds for an arbitrary selection of IJ columns; if IJ > F, then it
suffices to prove that the result holds for any row-reduced square submatrix.

When IJ = F, full rank and full k-rank can be established by showing that the

determinant of A ® B is nonzero. Define

H(ala"' ,aF:ﬁla"' 7/8F)

= det(A(a1, - ,ar) ©B(B1, -, Br)).
H is a polynomial in several variables, hence analytic. In order to establish the
desired result, it suffices to show that H is non-trivial. This requires a “generic”
example, that works for any I,.J, F. This can be constructed as follows. For any
given I, J,F with 2 < I < F and 2 < J < F, IJ = F, define the generators
af = eV TFIUD and B = eV TFUD for f =1,---,F. Tt can be verified that,

with this choice of generators for A and B, A ® B is itself a Vandermonde matrix

with generators (1,eV"1 7, ,eV~1% (=) and therefore full rank. This shows that
H(oy, - ,ar,Bi, -+, Br) is a non-trivial polynomial in C?**. Invoking the analytic
function Lemma 3.2, H (a4, - - - ,ap, f1,-- - , Br) is non-zero almost everywhere, except

for a measure zero subset of C2¥. O

Remark 3.3 An alternative proof of Theorem 3.3 can be constructed by using the
theory of Lagrange interpolation in several variables [12], [40], [46]. The advantage
of such an approach is that it affords geometric insight which facilitates the construc-
tion of full-rank examples and counter-examples. The disadvantage is that the proof

requires a long and delicate argument.

Proof of Corollary 1: 1t is again sufficient to consider the case IJ = F. The generic

example provided for a pair of Vandermonde matrices can be used here also to show
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that the determinant of the square Khatri-Rao product of two matrices of appropriate
dimensions (but otherwise arbitrary) is a non-trivial polynomial in (I 4+ J)F complex
variables, therefore the analytic function Lemma 3.2 applies. O

We will need the following preparatory results to prove Theorem 3.5.

Proposition 4 Given N Vandermonde matrices A,, € C'"*¥" form=1,--- N > 2.

N
TA1@—0OANy = kAl@"'QAN = mln(H Ina F),
n=1 (326)

Py(cNF) —a.s.,

where P;(CNT) is the distribution used to draw the NF complex generators for A,

n=1,---,N, assumed continuous with respect to the Lebesque measure in CNF.

Proof:
The general case can be reduced to the ngl I, = F case. When Hf:[:l I, = F, the

full rank and full k-rank of (A; ®--- ® Ay) is equivalent to its determinant being

nonzero. Define

H(CV1,1, S QR AN, ;OCN,F)

=det(Ai(aq1,---,00p) O O Anx(ani, - ,anF)).
where «,, s is the f-th generatorof A,, n=1,--- N, f=1,---,F. Hisa polynomial
in NF variables, hence analytic in CV¥'. It therefore suffices to show that H is non-
trivial. The following generic example works for any F' and I,, > 2, n =1,---, N,

showing that H is non-trivial:
Op,f = VD F AL I(-1)
forn=1,---,N, f=1,---,F. It can be verified that, with this choice of generators

for A,, n=1,---,N, A; ®---® Ay is a Vandermonde matrix with generators

(1, eVIDF L ,e(‘/__l)%ﬁ(F_l)), therefore full rank. O
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Proposition 5 ' Given a sum of F' N-D exponentials

F

N
Loy = Z cy H ap (3.27)

f=1 n=1
fori,=1,---,I,>4,n=1,--- N, the parameter (N+1)-tuples (a1, - ,arn,cf),
f =1, ,F, are Pc(C"F)-a.s. unique, where P;(CNT) is the distribution used
to draw the NF complex exponential parameters (aysy,--- ,asn), for f =1,---,F,
assumed continuous with respect to the Lebesgue measure in CNY', provided that there

exist 2N integers, I, ; forn=1,--- N, j =1,2 such that

N N
I - Ly — Lp+min([ [ L1, F) + min(] [ Ln2, F) > 2F (3.28)
n=1 n=1
subject to
)
L+ 6L <Ii
Vg +Ina=1I,+1, n=2---,N, (3.29)
\I'r":j 2 25 vn, ]
Proof:

We first extend the given N-way array to a (2N + 1)-way array with typical element

~
Ty 1,01,2,01,3,02,1582,2,7 iN,1,4N,2

*= Ty g +ir,0+i1,3—2, d2,1+i2,2—1, o, iy 1tin,e—1
F N

_ t1,1+141,2+%1,3—3 in,1tin,2—2

= E :Cf (apy Ufn )
f=1 n=2 (3.30)
F N

_ Z.1,3_1 Z.1'L,1‘|‘in,2_2

= E :Cf ( (g3 Arn )
=1 n=1
F N N

. 11,3—1 in,1—1 in,2—1

= Zcf ( Qg O¢n pn );

f=1 n=1 n=1
where in,j = 1, aIn,j > 2, ’i13 = ]_, ,11,3 > 2, n = 1, ,N, j = ]_,2 Such

extension is always possible under our working assumption that I, > 4, Vn. We also

" The Proposition holds true for any permutation of {I,,}2_, .
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N-way array (2N+1)-way array

' COLLAPSE
anl en

FIRST STEP 4

{112}| {22}

(2N-1)-way array

Figure 3.1: The first step in the proof of the N-dimensional case

need the following constraints to avoid indexing beyond the available data sample.

Ly+Lo+5z=1 +2,

(3.31)
I +Ino=1I,+1, n=2--- N.
Define matrices
Ap,j= (aif,’;f_l) ech Ay = (a7 e, (3.32)
forn =1,--- N, j = 1,2. Next, we compress the (2N + 1)-way T array into a

three-way array Z. We do this in two steps for clarity. The first step is to nest Z into

a (2N — 1)-way array 2. This process is illustrated in Figure 3.1.
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/.’L‘\(l)
i1,3,k(M 1MW) i3 1032, in 1,0N,2

(1)

&/‘\ 1 1 . 1
1600, T4, i, kO =B 1) L0, 10121 -1) 5,5,

Ip1 1V g9

13,1,03,2," ,EN, 150N 2

F &1 1 480}
_ [12,1 [@]71 Z13 1 K~ ([H]il)h’lil
= cr ( Qg1 fil ar1 Gp2

=1

@ _riq_ N N
% l ([12,21 1)12’2 1 'Ln 1—1 'Lnl 1 ) (3 33)
Af2 @fm “in .
n=3 n=3

r 21,3— 1 |—k(1)-| 1 kM- (|—k()-| Iz2,1-1
:Zcf(“f, Ay Qo

=1
J(D) . <
o [Tt 10=(I5531- D221 znl 1 znz Ly
Ufa Ufo o
n=3
F
— i1a3_1 an 1 Zn? 1
= E :Cfaf,l ]c(l)f l(l)fH fin
=1 n=3

for kU =1,--+ [ 1151, 1Y =1,--- [ 9155, with dY  and el(l) s given by

) 3 k(1) f
(-1 k(18211
Ay =es” e 3
D f’(1)1 O[] 1)1 '
Gy = =ap;” ag,
Define matrices
D(l) — (d(l) ) c C11,112,1><F
PION; )
! (3.35)
E(l) — (el((ll)) f) c CII’212’2XF,
and note that
DM =A;10 Ay, EW =A1,0As,. (3.36)

The next step is to show that, starting from m = 1, we can recursively nest

the (2(N — m) + 1)-way array 2™ into a (2(N — (m + 1)) + 1)-way array 2™,



Appendix 3.A Proofs 63
m=1,---,(N —2). This step is illustrated in Figure 3.2.
~(m+1)
i1,3, k(m+1), l(m+1), Z.('m-‘,-ey),ly i(m+3),2="'= Z.N,la Z.N,2
=3z (m+1) (m+1) (m+1)
- . Ek(m+1 1(m+1 (m4+1)_ k(m+1
11,3, |—](m+2),1-‘7 |—1( +2)2-| km (fz( +2)1-| DImt2),15
+1 . . . .
1m+1) — (f%]*lﬂ(nﬂ-z),za Um+3),15 L(m+3),20" 5N, 1,EN,2
F
_ i1,3—1 5(m) (m)
- ZC afa |' k(m+1) '| f |' ((m+1) -| f
f=1 Limy2),1 " Iimy2),2
(m+1)
k(m+1)_((I’En:nT),l'|—1)I(m+2),1—l
X O (m+2)
(m+1)
(m+1) _ ([%] DI (pmy2)2—1
X afa(m+2)
N N
Zn 1—1 Zn 2—1
< 11 e 11 ) (3.37)
n=(m+3) n=(m+3)
F (m+1)_r kMmoo _
Z z1 3 1 ( ) k (’—I(m+2),1-| Dlm+2).1-1
km+1) o O (m2)
f=1 [I(m+2) 1] !
(m+1)
(m l(m+1)—(f11(:T)21—1)I(m+2),2—1
X 6( 1) 4 O (m+2)
Timt2),2 "
N N
’Ln 1—1 Zn 27 1
x 11 )
apa 11
n=(m+3) n=(m+3)
F
Zl 3 1 d(m+l (m-‘rl)
k(m+1) £ l(m+1),f
f:
N N
in1—1 Zn 2—1
i |
o |
n=(m+3) n=(m-+3)
for
(m+2)
1
k(m+ ) H In 1
m+2)
1
l(m+ ) H In 25
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COLLAPSE 3—Way array

Nlen  coLLAPSE

>

m+2
Ml

he1 02

(2(N—(m+1))+1)-way array SECOND STEP

Figure 3.2: The second step in the proof of the N-dimensional case

with dl(chTl)), ; and el(:,i? f given by

(mt1) _(p kD 4
dfgr(nm—i——l-ll)) = d(m)(m+1) ak 2 Wi~ ;
;f [ki],f f:(m+ )

T(m+2),1

Imt2),1—1

(m+1) (1D gy (3.38)
(m+1) _ _(m) I(m+2),2
€om+1) 5 = e[ mt) o o G (m+2)

Iimt2y,2

I(m+2),2 -1

Define matrices
(m+2)
DI = (6713 ) € e mex, -
E(mtD) = (o(mtD) 2T Lo xF '
= (el(m+1), f) € Cin .

D™+ and E(™+Y can be written as
D(m+1) — D(m) ® A(m—|—2),1
=A110 - OAmin,1 © Ami2);
(3.40)
E(m+1) — E(m) ® A(m+2),2

=A120 - OAmtn2 © Ay
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The recursion finally terminates at 2(¥=1, which we are going to denote by z,

_ ~(N-1)
X4, 3 kN1 (N=1) 1= T 3, k(N=1) j(N=1)

(3.41)
113 1 N 1) (Nfl)
s k(N n G-y g )

M’lj

f=1

for kN0 =1, T[N Iy, %D =1,--- TV, Io. We have :

n=1

DY = (dfivN 11)) f) A1O--OAN,, (3.42)

EN-Y = (e (gv }))f) Ais® - O Apps.

Since A, 3 is Vandermonde, Theorem 3.2 can be invoked to claim uniqueness, provided
that
Lz + kpw-v + kgw-1y > 2F +3 — 1. (3.43)

Similar to the 2-D case, each product form

i13—1 J(N—2) (N—2)
er (af?™ 4 s ey )

can be put in one-to-one correspondence with cs Hn 1 a}"n L f=1,---, F. Therefore,
uniqueness of the F' rank-one 3-D factors ¢ ( a}lf’ L (N_i)) f e(gvig)) f ) is equivalent

to uniqueness of the F' rank-one N-D factors cy Iy L ar Fo ~1. Tt follows that the rank-
one factors c; Hn 1 a}"n ! and hence the parameter (N + 1)-tuples (apa1,---,arN,cf),
f =1,--- F, are unique provided that (3.43) holds true. Invoking Proposition 4,

almost sure uniqueness holds provided there exist 2N + 1 integers, I;3 > 2 and

I,;>2,forn=1,---,N and j = 1,2 such that

N N
Lg+min(] [ Iy, F) + min(] [ Iz, F) > 2F + 2, (3.44)

subject to

Il,l+[1,2+[1,3211+2, In,1+In,2:In+1, n:2’...,N’
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or, equivalently

N N
=Ty — Ly +min(] [ Ly, F) + min(] [ L2, F) > 2F,
n=1 n=1

subject to
4

L+ 5Ly <I,
<In,1+In,2:In+]—7 ’I’L:2,"',N,

Inj > 2, Vn,]

and the proof is complete. O

I1—-1

Proof of Theorem 38.5: 1f I, is even, pick I;; = I, = L >

11
2

otherwise pick I =
and I o = 2 (thereby satisfying condition (3.29)).

If I, is even, pick I,; = 17“, L, = 'I"2+2’

otherwise, let I,,; = I,» = 2t (hence
satisfying (3.29)), for alln =2,--- | N.
Once we pick all 2N integers following the above rules, condition (3.25) assures that

inequality (3.28) holds. Invoking Proposition 5 completes the proof. O

Proof of Proposition 2: It suffices to show that, when I.J = F,

H(on,ag,- -+ ,arp, B, B2, Br-1)

= det(A(a, a9, -+ ,ap) © B(B1, Bi, -, Br-1)),
is non-trivial analytic function in C?~!, where both A and B are Vandermonde
matrices defined by (3.2). For any given I, J,F with 2 < I < F, 2 < J < F, and
1J = F, define the generators oy = 0, ay = e\/__l%J(f_Q), for f = 2,---,F, and
B = e‘m%(f_l), for f =1,--- ,F — 1. It can be verified that, with this choice of
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generators for A and B,

AOB=
11 1 .- 1
1 1 eV IFT ... VIERE-)
1 1 e\/jl%Q eﬁ%(F—?’)
11 e 12 (J-1) 6@%(}?4) 7
0 1 V175 V1 (F—J-1)
0 1 eV IFmF-2) .. eV IFE
01 1 . 1

which is full rank, hence H is nontrivial in ¢2/~1. O

Proof of Proposition 3: Assume I < J, without loss of generality. Spawn two di-
mensions out of J: J; = J —1, Jo, = 2. Collapse I and J — 1. We are now in
2x I(J—1) x K 3-D space, with the dimension corresponding to I(J — 1) being full
k-rank almost surely. Theorem 3.2 then yields 2F + 2 < min(IJ — I, F) + ks + 2.

Since ks = F has been assumed, the desired result follows. O
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Chapter 4

Blind Identification of Out-of-cell
Users in DS-CDMA

As mentioned earlier in the introduction of this thesis, out-of-cell interference accounts
for a large percentage of the interference relative to the interference coming from
within the cell, yet typically ignored, or treated as noise. Unlike the case of in-cell
interference, out-of-cell interference cannot be mitigated by power control, simply
because the BS does not have the authority to exercise power control over out-of-
cell users. For a power-controlled in-cell population, near-far effects may be chiefly
due to out-of-cell interference. Unfortunately, out-of-cell detection is compounded by
the fact that it has to be blind, since the BS has no control and usually no prior
information on out-of-cell users. This places limitations on the number and nature of
out-of-cell transmissions that can be identified.

The literature on out-of-cell blind identification is scarce. Assuming that (i) the
codes of the in-cell users are known, (ii) the total number of (in-cell plus out-of-cell)
users is less than the spreading gain and the combined spreading code matrix is full
column rank, and (iii) given the correlation matrix of the vector of chip samples

taken over a symbol interval, it is possible to cancel out the effect of out-of-cell
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users [56], then adopt linear or nonlinear solutions for in-cell detection. This approach
is appealing, but it has two drawbacks. First, it can be unrealistic to assume that
the total number of users is less than the spreading gain. This is especially so in
loaded systems and urban areas. Second, in practice one uses sample estimates of
the correlation matrix. This yields cancellation errors for finite samples, even in the
noiseless case.

Recently, a novel code-blind identification approach has been proposed, exploiting
uniqueness of low-rank decomposition of three-way arrays [54]. This requires the use
of a BS antenna array, but in return allows the identification of both in-cell and out-
of-cell users without requiring knowledge of the code or steering vector of any user.
More users than spreading and antenna elements can be supported. There are two
drawbacks to this approach. First, a direct algebraic solution is generally not possi-
ble, thus iterative estimation techniques must be employed. Although these iterative
methods generally work very well, they are computationally intensive. Second, in-cell
code information, which may well be available, is not directly exploited (except nu-
merically, by constraining certain parameters during the iterations). In this chapter,
we develop an algebraic solution that exploits the fact that the codes of the in-cell
users are known. In this scenario, we show that in addition to algebraic solution,
better identifiability is possible. Our approach yields the best known identifiability
result for three-dimensional low-rank decomposition when one of the three component
matrices is partially known, albeit non-invertible.

Note that the group-blind multiuser detection approach of [56] can be easily ex-
tended to handle multiple BS antennae, but this requires that the array steering

vectors, in addition to the spreading codes! of all the in-cell users are known. Esti-

'In the literature, it is common to use the term “(spreading) codes” for the transmit codes,
and “signatures” for the effective receive codes. For brevity and to avoid confusion with spatial

signatures, we adopt the term spreading codes throughout, with the understanding that, in the
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mating steering vectors is more difficult than estimating codes, partly because they
are generally unstructured, but also due to mobility-induced fast-fading. Note that
the approach developed herein (see also [54]) does not assume any parameterization
of the manifold vectors.

For clarity of exposition, we will begin our analysis by assuming that both in-
cell and out-of-cell user transmissions are synchronized at the BS. In practice, this
can be approximately true in synchronous CDMA systems, like CDMA2000%. Quasi-
synchronism (i.e., timing offsets in the order of a few chips) can be handled by drop-
ping a short chip prefix at the receiver. We shall refer to both cases as synchronous
CDMA for brevity. Synchronization is usually achieved via pilot tones emitted from
the BS, or a GPS-derived timing reference for synchronous networks involving mul-
tiple cells. Out-of-cell transmissions will typically not be synchronized with in-cell
transmissions. Notable exceptions include synchronous micro-cellular networks for
“hotspot” coverage, and calls undergoing hand-off at cell boundaries (hence approxi-
mately equidistant from the two base stations). As we will see, when delay spread is
small relative to the symbol duration, this can be handled by treating each out-of-cell
user as two virtual users. Hence our analysis generalizes to the interesting case of
a quasi-synchronous in-cell population plus asynchronous out-of-cell interference, as
in Wideband CDMA (WCDMA). We shall refer to this situation as asynchronous
CDMA.

The rest of the chapter is organized as follows. The main ideas and concepts
are exposed in Section 4.1.1, which treats the idealized case of a synchronous DS-
CDMA uplink subject to flat fading. This is then extended to frequency-selective

multipath and quasi-synchronous transmissions in Section 4.2, which also discusses a

presence of ICI/ISI, the term codes means the receive codes.
2CDMA2000 uses UTC (universal coordinated time) system time reference, derived from GPS.

Mobile stations use the same system time, offset by the propagation delay from the base station to

the mobile station



4.1 Blind Identification Of Out-Of-Cell Users 72

suitable admission protocol that avoids explicit code estimation for the in-cell users.
Note that in the presence of strong out-of-cell interference and frequency selectivity,
estimating the codes of the in-cell users is a difficult task in itself. Section 4.3 discusses
issues related to our choice of a pertinent symbol-independent asymptotic Cramér-
Rao Bound (CRB) to benchmark performance of steering vector and spreading code
estimation. Associated derivations are deferred to the Appendix. Section 4.4 provides
analytical and simulated performance comparisons, and Section 4.5 summarizes our

conclusions.

4.1 Blind Identification Of Out-Of-Cell Users

4.1.1 Data Model

Consider a DS-CDMA uplink with M users (in-cell plus out-of-cell), normalized
chip waveform ¢ of duration 7, and spreading gain P (chips per symbol). The m-th
user is assigned a binary chip sequence (¢,(1),- -+, ¢n(P)). The resulting signature

waveform for the m-th user is
P
Sm(t) =D em(i)p(t —iT,),0 < t < T,
i=1

where Ty = PT, is the symbol duration. All spreading codes are assumed short
(symbol-periodic).
The baseband-equivalent signal received at the BS for a burst of L transmitted

symbols can be written as

M L

2(t) =Y 0V Ensm()bm(t — 1T, — 7)) + w(t)

m=1 1=1
where M is the total number of active users, a,, is the complex path gain, F,, is
the incident power for the m-th user loaded at the transmitter, s,,(l) is the [-th

transmitted symbol associated with the m-th user, 7, is the delay of the m-th user’s
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signal, and w(-) is aditive white Gaussian noise (AWGN). Since in-cell users are
synchronized with the BS, the delays 7,, for all in-cell users are taken to be zero. For
out-of-cell users, the associated delays can be assumed to lie in [0, T}], without loss
of generality.

If K receive antennas are employed at the BS, the baseband signal at the output
of the chip-matched filter of the k-th antenna for the p-th chip in the n-th symbol

interval can be written as

Thnp =< z(t), Bpto(t — nT — pTe) >

M L
- Z A, mﬁk msm + Z Z (7°8 mﬁk msm(l)ypm(na l) + w(ka n, p)
m=M;,+1 [=1
M?/n

= Z ak,mﬁk \/msm (n)c (p)

+ Z Qe,m O [sm( VWom (1, 1) + $m(n — D)vpm(n,n — 1) + w(k, n, p),
m=M;n+1
(4.1)
where M;, (< P) denotes the number of in-cell users and M,,; the number of out-of-
cell users (M = My, + M,y;); By is the antenna gain associated with the k-th antenna;
Upm(n,1) = S0 el fo Yt + (n— DT + (p — )T, — 7)Y (t)dt; w(k,n,p) =
fo (t +nT, + pT, ) (t)dt
Note that, due to asynchronism, each out-of-cell user is viewed by the BS as two
synchronous users, whose symbol sequences are time-shifted versions of one-another.
The associated spreading codes are given by vp,(-, -).
From (4.1), in a frequency-flat block-fading scenario, the baseband-equivalent

chip-rate sampled data model for a synchronous DS-CDMA system with short symbol-

periodic spreading codes and K receive antennas at the BS can be written as

Thmp = 3 (k) (D) Sm(n) + Wi np, (4.2)
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fork=1,---, K, n=1,---,N, p=1,---, P, where N is the number of symbol
snapshots, zj, , denotes the baseband output of the k-th antenna element for symbol
(“time”) n and chip p. a,(k) is the compound flat fading/antenna gain associated
with the response of the k-th antenna to the m-th user.

It is useful to recast this model in matrix form. Let us define P received data
matrices X, € C**¥ with (k,n)-element given by z,», and AWGN matrices W, €
Cf*N with (k,n)-element given by wgn,. Let us also define the steering matrix
A € CEM with m-th column [ ay(1) ... am(K) ]", the spreading code matrix C €
CP*M with m-th column [ ¢,(1) ... ¢n(P)]", and the signal matrix S € cV*M
with m-th column [ s,,(1) ... s,,(N)]". Without loss of generality, we assume that
the sub-matrices A;, € cK>*Min C;, € cP*Min S, € cN*Min  consisting of the first
M;,, columns of A, C, S, respectively, correspond to the in-cell users; and similarly for
A i, Cout, and S,y Thus, we have A = [ Ay Agui |, € = [ Cin Cout) , S = [ Sin Sout |-

X, admits the factorization:

X, =AD,(C)S" +W,

= AmDp(Cm)SZr,; + AoutDp(Cout)ST

out

_ n out
=X+ X" + W,
forp=1,2,..., P.
It is also worth mentioning that we can write the above set of matrix equations into

more compact form if we introduce the Khatri-Rao product. Stacking the matrices

in (4.3), we obtain:
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X1 ADl(C) W1
XHEPXN . — %2 = AD_Q(C) S” + VYQ = (Co®A)S" + WHPXN
Xp AD;(C) Wp

- (Cm © AZ")SZJ;I + (Cout ®© Aout)szut + WKPXN.
(4.4)

Due to the symmetry of the model (4.2), we may also recast (4.4) in the following
form

XPVAK = (S @ C)AT + WINXK (4.5)

where WPV*K ig a re-shuffled AWGN matrix (see [54]).

In what follows, we consider detecting the signal matrix S transmitted from all
active users given only knowledge of C;, and M. As a byproduct, we will be able to
recover the steering matrix A and the unknown spreading code matrix C,,; from the

received data X as well.

4.1.2 Preliminaries

We will make use of the following results in the next subsection to derive our main

identifiability result.

Eigenanalysis

Consider two matrices X; = AD;(C)ST, X, = AD,(C)ST where both A € cK*M
and S € CV*M are full column rank (M), C € C** contains no zero entry, and all

elements on the diagonal of D := Dy(C)D;*(C) are distinct. Consider the singular
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value decomposition (SVD) of the stacked data matrix

X A
f = D,(C)ST = USVH,
X, AD

The linear space spanned by the columns of U is same as the space spanned by

the columns of since SD(C) has full column rank; hence there exists a
AD

nonsingular matrix P such that

U, A
UP = P =
U, AD

Next, construct the auto- and cross-product matrices

Ry =UMU, =P "APAP' :=QP ',
(4.6)
R, =U#U, =P 7AYADP! := QDP..

Note that all matrices in (4.6) are square and full rank. Solving the first equation in

(4.6) for Q, then substituting the result into the second, it follows that
(Ry'R,)P = PD, (4.7)

which is a standard eigenvalue problem with distinct eigenvalues. P can therefore
be determined up to permutation and scaling of columns based on the matrices X;
and X,. After that, A can be obtained as A = U;P, CD;*(C) can be retrieved
with all ones in the first row, and the entire second row taken from the diagonal
of D, and finally SD;(C) can be recovered as SD;(C) = (A*Xl)T, all under the
same permutation and scaling of columns, which carries over from the solution of the
eigenvalue problem in (4.7).

Repeated values along the diagonal of Dy(C)D7*(C) give rise to eigenvalues of
multiplicity higher than one. In this case, the span of eigenvectors corresponding
to each distinct eigenvalue can still be uniquely determined. This will be important

when we discuss the case of asynchronous out-of-cell users later in Section 4.2.
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In general, given matrices X, = AD,(C)ST forp=1,---,P>2 A, C, and S
can be found up to permutation and scaling of columns provided that both A and S
are full column rank, and k¢ > 2.

Since kc > 2, we know that the spreading code matrix C does not contain any
zero columns. Note that kc > 2 does not necessarily imply that there always exists
a sub-matrix of C which comprises of two rows of C such that the k-rank of this

sub-matrix is two. For instance, consider

111
C=112 2
1 21

It can be seen that rc = kc = 3 whereas none of 2 x 3 sub-matrices of C has
k-rank great than 1. On the other hand, we have the following:

Claim: Given C € CP*M with kg > 2, there always exists a 2 x P matrix G such
that the k-rank of GC is two.

For a proof, note that the objective can been easily shown equivalent to proving
that there exists a 2 x P matrix G such that the determinants of all 2 x 2 sub-matrices
of GC are not zero. G is determined by its 2P complex entries. The determinant
of each 2 x 2 sub-matrix of GC is a polynomial in those 2P variables, and hence
analytic. Since k¢ > 2, for each specific 2 x 2 sub-matrix of GC, for instance, the
sub-matrix comprising of the first two columns of GC, it is not hard to show that
there always exists a Gy such that the determinant of the corresponding sub-matrix
of G(C is not zero. Invoking Lemma 2 in [25], we conclude that the set of G’s which
yield zero determinant for any specific sub-matrix of GC constitutes a measure zero
set in C?P. The number of all 2 x 2 sub-matrices of GC is finite, and any finite
union of measure zero sets is of measure zero. The existence of the desired G thus
follows. Not only does such a G exist, but in fact a randomly drawn G will do with

probability one.
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The existence of such G implies that the elements on the diagonal of
D,(GC)D; ' (GC) will be distinct. Therefore, the eigen-analysis steps can be car-
ried through to solve for A and S from the two mixed slabs AD;(GC)S? and
AD,(GC)ST. With the recovered A and S, C can be computed from X,,.

In the proof of our main Theorem, we will need the following:

Lemma 4.1 Given
1 0 x --- % XM
01 % .-+ x
where * stands for a non-zero entry, it holds that for almost every (ui,ps) € R2

(i.e., except for a set of Lebesgue measure zero), the matriz

1 1|10« o0 &
E =

o) (001

1 1 e - .]

_IJ/I Po ke *J

contains no zero entry in the second row; and the first two elements on the diagonal

of D1(E)D; Y (E) are distinct and distinct from the remaining elements.

Proof: Having a zero entry in the second row occurs when (p1, 2 ) lies on the union
of M lines. Since a finite union of lines cannot cover the plane, zeros in the second
row are excluded almost surely. The second claim can be proven in the same manner.

O

4.1.3 Main Theorem On Identifiability

Without loss of generality, we assume that Cj, is in canonical form. The general case

can be reduced to canonical form as explained in the following section.



4.1 Blind Identification Of Out-Of-Cell Users 79

Theorem 4.1 Given X, = AD,(C)ST, p=1,...,P, 2 < M;,, < P, where A €

ckxM Cect*M §ecN*M and C in canonical form :
C= Ip(l : M'm) Cout; (48)

where 1,(1 : M;,) denotes the first My, columns of 1., if the first My, rows of Cyy
contain no zero entries, and kc > 2, min{ka, ks} > My, + 2, then the matrices A,

C, and S are unique up to permutation and scaling of columns.

Proof: We will show that we can first recover A;, and S;, up to permutation and
scaling of columns from the given X, and then obtain A,,;, C,y:, and S,y afterwards.
We begin by recovering the first two columns of A;, and S;,. Start from
X, = AD,(C)S™

Min—2 Mout

—N A
=Adiag |100 --- 0 % --- #| 8T
= Adiag[1 0 x --- %] ST,

X, = AD,(C)ST
= Adiag[010 --- 0 % --- %]S”
= Adiag[01 * --- %] S”.

Recall that * stands for a non-zero entry; A (S) is a column-reduced sub-matrix of

A (S). Invoking Lemma 4.1, we always can pick a pair (u1, po ) € R? such that

1 1 1 0 %« --- %
E:=
[p pe] |01 % ook
1 1 e --- e
| M1 p2 % e K

contains no zero entry in the second row; and the first two elements on the diagonal

of D;(E)D; (E) are distinct and distinct from the remaining elements. We also note
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that both A and S have M,,; + 2 columns from the original A and S; by definition
of k-rank, it follows that
ka > min(ka, Mo + 2),
kg > min(ks, Moy + 2).
Due to fact that min{ka,ks} > M,y + 2, both A and S are full column rank.
Therefore, eigenanalysis in subsection 4.1.2 can be applied to the following mixed
slabs
Y, =X, +X,=Adiag[l 1 e --- O]ST,
Yy = Xy + pueXo = Adiag [y pp @ --- o] S”,
to recover the first two columns of A and ST up to permutation and scaling. We
can repeat this procedure with X; and X;;; to recover the i-th and the (i + 1)-th
columns of A;, and S;, for : =2,---, M;, — 1 until both A;, and S;, are recovered.
The matrices XJ" := A Dy(I,(1 : My,))S], corresponding to the in-cell users can be
constructed, and we thus obtain the matrices X%* by subtracting X}* from X, for
p=1,...,P.

X294 is nothing but AguDy(Cout)Sous- Since Agys, Cour, and Sy are all Moy
column sub-matrices of A, C, and S, respectively, we have

kay, > min(ka, Moys) = Moy,

ks,,, > min(ks, Moyut) = Mout,

kc,,, > min(kc, Myy) = min(2, Myy;).
The first two inequalities hold due to the condition that min{ka, ks} > My, + 2, and
imply that both A,,; and S,,; are full column rank matrices.

If My, > 2, we know that kc,,, > 2, therefore eigenanalysis (the general result)
can be applied to recover A,u:, Cour, and Sy, up to permutation and scaling of
columns.

When M,,; =1, it is known that rank-one matrix decomposition is unique up to

scaling. O
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Remark 4.1 A similar result can be derived for M, = 1, with slightly restricted
condition on C,y. We require both C;, and Cyyy to be full column k-rank in the proof

of Theorem 4.1, but note that C can be a fat matriz.

Remark 4.2 The assumption that the first M;, rows of C,u contain no zero entries
15 posed mainly for simplicity of proof of Theorem 4.1. Theorem 4.1 holds provided
that none of the columns of the sub-matriz comprising of the first My, rows of C,y; is
proportional to a column of Ip;, . We chose to prove the slightly restricted Theorem

4.1 due to space considerations.

Remark 4.3 The model identifiability conditions of Theorem 4.1 are usually met in
practice deterministically or statistically with proper system parameters. For instance,
if we assume that A and C are drawn from a continuous distribution, and S drawn
from i.i.d. BPSK source, it can be shown that ka > My, + 2,kc > 2 holds almost
surely, while ks > My, + 2 occurs with very high probability provided that K >
Moyt +2,N > M, P > 2.

4.1.4 Algorithms

The proof of Theorem 4.1 is constructive; it directly yields a sequential eigenvalue-
based solution that recovers everything exactly in the noiseless case, under only the
model identifiability condition in the Theorem. In the noisy scenario, this eigenvalue
approach can be coupled with an iterative LS-based refinement algorithm that yields
good estimation performance for moderate SNR and beyond.

Assuming that C;, is known, the two major steps of our algorithm are summa-
rized next :

1) Algebraic Initialization : Arrange the received noisy data z , , into a set of matri-

ces, ik e ¢P*N for k =1,---,K. The (p,n) entry of )Nik is Tk np- It can be shown
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that
)ch = CDk(A)ST + Wka
where Wk is the AWGN noise matrix. Left-multiply by the pseudo-inverse of C;, to
get Zj, € CMinxN
Z, = C! X,. (4.9)
Form another set of matrices X,, € C¥*N for m = 1,--- , My, such that the (k,n)

entry of X,, is equal to the (m,n) entry of Zy. It can be shown that
X, = AD,,(C},C)S” + W,,,

where W, is the rearranged Gaussian noise matrix. Note that C}LnC is in canonical
form, and thus we may apply the approach described in the proof of Theorem 4.1 to

estimate A, C}anout, and S. C can also be estimated as

tr
AD;(S) X,

ADy(S) Xy

where the (k,p) element of X,, € CK*¥ is given by x4, (cf. [54] for details).

2) Joint Constrained Least Squares (LS) Refinement : Use the A, C,,, and S ob-

tained in the first step and the known C;, as initialization for Constrained Trilinear
Alternating Least Squares (CTALS) regression applied to the original data x ;. The
basic idea behind TALS is to compute a conditional L.S update of A given C, S, then
repeat for S, etc in a circular fashion until convergence [54]. For CTALS, the C;,

part of C is fixed, and only C,,; is updated in the iterations.
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4.2 Extension to Quasi-Synchronous Systems and

Multipath Channels

There are two issues that must be addressed in order to establish the usefulness of
our algorithm in a realistic cellular CDMA environment. One is synchronization; the
other is frequency selectivity.

In so-called Quasi-Synchronous CDMA (QS-CDMA) the symbol timing of the
in-cell users may be off by as much as a few chips. This causes ISI, but, as already
mentioned, it can be circumvented by dropping a short chip-prefix for each symbol
at the receiver - the associated performance degradation is negligible when the prefix
is short relative to the spreading gain.

Quasi-synchronism is a reasonable assumption for the in-cell user population in
the context of 3G systems (e.g., CDMA2000), but much less so for out-of-cell users,
who actually attempt to synchronize with a different BS. The key here is (4.1): asyn-
chronous out-of-cell users appear as two virtual synchronous users, with “split” code
pieces, and symbol sequences that are offset by one symbol. Note that splitting and
offset generally preserve linear independence; however, the steering vectors (spatial
responses) will be co-linear for each such pair of virtual users. Fortunately, by ex-
changing the roles of A and C and invoking the remark on repeated eigenvalues in
Section 4.1.2, it can be shown that the parameters of all in-cell users can still be
uniquely determined, along with the span of each pair of virtual out-of-cell users.

Frequency selectivity is realistically modeled by convolution with a relatively short
chip-rate FIR filter that models the discrete-time baseband-equivalent channel im-
pulse response, including transmit chip pulse-shaping and receive chip-matched fil-
tering. The effective spreading codes seen at the receiver are the convolution of the
transmit-codes with the corresponding multipath channels. This means that the in-

cell receive-codes must be estimated before our basic approach developed in the above
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section can be applied. This estimation is compounded by the co-channel out-of-cell
interference, which is not under the control of the base station. In order to deal with
the problem of receive-code estimation for the in-cell users, we propose the following

admission protocol:

As new in-cell users come into the system, they are initially treated
as out-of-cell: their receive-codes are thereby estimated blindly, and

they are subsequently added to the list of in-cell users. Initially, the

process is started by solving a blind problem, as in [54].

In this way, the problem of receive-code estimation for the in-cell users is never explic-
itly solved. Once the in-cell receive-codes have been estimated at the base station, the

proposed algorithm can be carried over to the quasi-synchronous frequency-selective

DS-CDMA systems.

4.3 Asymptotic Cramér-Rao Bound

In order to benchmark the performance of our estimation algorithm, it is useful to
derive pertinent bounds. While low bit error rate is of primary concern, accurate
estimates of the out-of-cell user’s receive-codes and both in-cell and out-of-cell steering
vectors are also of interest. Cramér-Rao bounds can be developed for the latter, owing
to the fact that, unlike symbols, steering vectors and receive-codes are continuous
parameters.

The conditional Cramér-Rao Bound (CRB) for low-rank decomposition of multi-
dimensional arrays has been derived in [36], assuming all matrices are fixed unknowns.
In our present context, however, we are more interested in bounds that are indepen-
dent of the symbol matrix S. Towards this end, we can aim for one of two options:
Computing an averaged (or modified) CRB, or an asymptotic CRB. The former turns

out being far more complicated to derive in closed form; we therefore opt for the latter.
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In the Appendix, wherein the detailed CRB derivations can be found, we begin
by developing a compact form of the conditional CRB in [36]. The new compact
form is much simpler to compute than the expression given in [36]. Then, following
the approach developed in [59], we work out the asymptotic CRB as the number of
symbols, N, goes to infinity. The key to this computation is that the limit and the
CRB operator can be exchanged, since the latter is continuous; and when N tends
to infinity, the sample estimate of the correlation matrix of S approaches the exact
correlation matrix of S. For the sake of brevity, in what follows, we assume the entries

of S are drawn from and i.i.d. BPSK constellation. This implies that

E(sml (n1)8m2 (n2)) = 5m1,m25n1,n2- (410)

Note that the asymptotic CRB derived in the Appendix is valid for arbitrary
C - it is not necessary to have C;, in canonical form. The main limitation of the
asymptotic CRB is that it is valid for large enough N, but for small N there will
be some mismatch. In the Section 4.4, we will compare the performance of the
proposed approach against the asymptotic CRB. Throughout, the asymptotic CRB
is first normalized in an element-wise fashion, i.e., each unknown parameter’s CRB
is weighed with weight proportional to the inverse modulus square of the respective
parameter. The average weighted CRB of all the unknown parameters is then used
as a single performance metric. The average mean squared error (MSE) for all free

model parameters is treated in a similar fashion.

4.4 Simulation Results

In this section, we provide computer simulation results to demonstrate the perfor-
mance of the proposed algorithm.
As per Theorem 4.1, scaling ambiguity for all active users and the permutation

ambiguity among out-of-cell users is inherent to this blind separation problem. We
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remove the column scaling ambiguity among the estimated symbol matrix S via
differential encoding, and assume differentially encoded user signals throughout the
simulations. For the purpose of performance evaluation only, the permutation am-
biguity among the out-of-cell users is resolved using a greedy least square matching
algorithm [54]. This permutation ambiguity among the out-of-cell users cannot be
solved at BS without additional side information, but this indeterminacy is irrelevant
in practice.

Let X, = AD,(C)ST + W,, be the received noisy data, for p = 1,---, P, where
W,, are the AWGN matrices. We define the sample SNR at the input of the multiuser

receiver as

> ot | AD,(C)S™ |3

P
> p=1 | Wh |7
We first show that the proposed algebraic initialization significantly accelerates

SNR := 101log,

(4.11)

the convergence of least square refinement and improves the performance. In order
to have a benchmark, we consider cases wherein TALS-based COMFAC [54] is also
applicable, but note that the approach developed herein can work well when COMFAC
fails. When both methods are applicable, our simulations show that the new approach
yields better performance.

Fig. 4.1 plots BER versus average SNR, without out-of-cell interference and for
M;, = 4, DE-BPSK, K = 2, N = 50, and P = 4. Results are averaged over 10? i.i.d.
Rayleigh channels (A - no power control is assumed), and 10° realizations per Rayleigh
channel. Note that total averaging is O(10%). The spreading codes are randomly
drawn from a continuous distribution and fixed throughout the simulations. Fig. 4.2
depicts average BER for the in-cell users for M;, =4, My, =2, K =4, N =50, P =
4, and otherwise the same simulation setup. Note that in the second experiment, both
the number of antennae and spreading gain are less than the number of total active
users. It is seen from those figures that, as expected, the proposed algorithm has

provided better BER performance than COMFAC; in particular, such improvement
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2 antennas, 50 symbol snapshots, 4 spreading gain, 4 in—cell users
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Figure 4.1: No out-of-cell user interference

is significant in the high SNR regime. In addition, the proposed algorithm has been
observed to converge at least 70 percent faster (in time) than the general TALS
with random initialization, and comparably with respect to the computation-efficient
TALS-based COMFAC, especially in the high SNR regime.

Next, the performance of the proposed algorithm and that of the linear group-
blind decorrelating detector [56] with different sample sizes is shown in Fig. 4.3.
The original group-blind multiuser detector is designed for uplink CDMA with a
single receive antenna, but the approach of [56] can be easily extended to handle
multiple BS antennas, provided that the array steering vectors, in addition to the
spreading codes, of all the in-cell users are known. Estimating steering vectors is
more difficult than estimating codes, because the former vary faster due to mobility-
induced fast fading. In our simulation, in contrast to the proposed algorithm, the
linear group-blind decorrelating detector assumes perfect knowledge of in-cell user’s

steering matrix A;,, i.e., we provide the linear group-blind decorrelating detector
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4 antennas, 50 symbol snapshots, 4 spreading gain, 4 in—cell users, 2 out—cell users,

10 T T T T T
—&- COMFAC
—— Algebraic Approach ]
—©— Constrained LS Refinement | |
107E e
10°E 3
o
w
3]
10°E e
107E 4
107 I I | I I |
-5 0 5 10 15 20 25 30
SNR in [dB]
Figure 4.2: More active users than spreading gain
o 4 antennas, 8 spreading gain, 4 in—cell users, 6 users
10 T T T T E|
: —&- GROUP-BLIND-50 |}
—— PROP-50 1
-©- GROUP-BLIND-25
) —4~ PROP-25
10 "k e
10°E 4
x -
w10k 4
«Q b
10°F 4
10°F 4
107 | | | | |
0 5 10 15 20 25 30

SNR in [dB]; Group-blind: known in—cell steering

Figure 4.3: Support for small sample sizes
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with perfect knowledge of (C;, ® Ayy) in (4.4). Fig. 4.3 depicts the performance
of the two competing detectors for two different sample sizes, N = 25, N = 50. It
is observed that the linear group-blind decorrelating detector exhibits an error floor
in the high SNR regime due to using sample estimates of the correlation matrix.
This yields cancellation errors which persist for any number of finite samples, even in
the noiseless case. However, such error floor is acceptable when we use large sample
sizes. With 50 snapshots, the linear group-blind decorrelating detector provides better
BER performance than the proposed detector in the high SNR regime even though
the error floor surfaces at about 24 dB. With a small sample size of N = 25, the
proposed detector clearly outperforms the linear group-blind decorrelating detector,
despite the fact that it uses less side information. In both cases, the proposed detector
outperforms the linear group-blind decorrelating detector in the low SNR regime. We
emphasize that the proposed algorithm performs well even for very small sample sizes
(e.g., N = 10) in the high SNR regime, whereas the group-blind approach hits the
error floor at very low SNR in this case.

Our proposed detector is also robust to strong out-of-cell interference. We have
compared the user 1’s BER performance of proposed approach against the usual
MMSE receiver, which assumes exact knowledge of the in-cell user codes and steering
vectors, but treats out-of-cell users as Gaussian interference. The soft MMSE solution

for S is

ST = ((Cin © Ain)"(Cin © Agn) + ==T) " (Cin © Ayy) TXFPHN,

SNR

Fig. 4.4 shows that as the power of out-of-cell users increases, the performance of
the MMSE receiver deteriorates significantly whereas the degradation of the proposed
detector is marginal.

The proposed algorithm is capable of accurately estimating the steering matrix of

all active users and code matrix of out-of-cell users. We wish to compare the MSE
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Figure 4.4: Robustness to strong out-of-cell interference

performance of proposed approach against the respective asymptotic CRB. The SNR

is defined as
|CoA|%

SNR := 101log,, T Po?
o

dB, (4.12)

which can be shown consistent with the definition (4.11) when we take the expectation
of (4.11) with respect to S.

Fig. 4.5 depicts simulation results comparing TALS performance to this asymp-
totic CRB for two different snapshots. In this simulation, K = 4, P = 4, M = 6,
and the true parameters were used to initialize TALS. The point here is to measure
how tight the asymptotic CRB is for various N; for this reason, we use the sought
parameters as initialization in order to ensure the best possible scenario for TALS. It
can be seen that TALS with good initialization remains very close to the CRB from
medium to high SNR and relatively large sample size, N = 64. Note that N = 64 is

a reasonable number of symbol snapshots in practice. When the sample size is rela-
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Figure 4.5: TALS performance versus Asymptotic CRB

tively small, the MSE performance of TALS is naturally worse than what predicted
by the asymptotic CRB.

Fig. 4.6 presents the average MSE performance of COMFAC and the proposed
algorithm against the CRB bound. We note that the performance of the proposed
algorithm exceeds that of COMFAC considerably once SNR goes beyond the low
SNR regime. This is because the new algebraic approach can provide fairly accurate
initializations for CTALS whereas the COMFAC is forced to use random initializations
in this case, wherein no two modes are full column rank. The average MSE of the
proposed algorithm deviates from CRB about two to three dB. This is mainly because
the initializations the algebraic approach provides are still not perfect, and the pre-
specified tolerance threshold used to terminate the iterative refinement algorithm is

set higher than in previous simulations, due to complexity considerations.
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4 antennas, 4 spreading gain, 4 in—cell users, 6 users total, 64 symbol snapshots
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Figure 4.6: MSE performance of COMFAC and the proposed algorithm against the
CRB bound

4.5 Conclusions

Out-of-cell interference in DS-CDMA systems is usually treated as noise, possibly
mitigated using random cell codes. If the total number of in-cell plus out-of-cell users
is smaller than the spreading gain, subspace-based suppression of out-of-cell users
is possible. The assumption of more spreading than the total number of users can
be quite unrealistic, even for moderately loaded cells. Completely blind reception is
feasible under certain conditions (even with more users than spreading) with base
station antenna arrays. We have proposed a new blind identification procedure that
is capable of recovering both in-cell and out-of-cell transmissions, with sole knowledge
of the in-cell user codes. The codes of the out-of-cell users and the steering vectors
of all users are also recovered. The new procedure remains operational even when

completely blind or subspace-based procedures fail. Interestingly, if the in-cell codes
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are known, then algebraic solution is possible.



Appendix 4.A Asymptotic CRB as N tends to infinity 94

Appendix 4.A Asymptotic CRB as N tends to in-
finity

To derive a meaningful CRB, following what has been done in [36], we assume that
the first row of A and S is fixed (or normalized) to [1---1],,  (this takes care of scale
ambiguity), the first row of C,,; is known and consists of distinct elements (which
subsequently resolves the permutation ambiguity) and Cy, is in canonical form. In
turn, the number of unknown complex parameters is (N + K — 2)M + (P — 1) M,y.
Let

T

e (AT, LT, .. T..T. ... .H. .. H N+K—2)M+(P—1) Mgy x1
0 .= [a2,...,aK,cout2,...,coutP,SQ,...,sN,aQ,...,SN]G(C( YM+(P=1)Mou ,

(4.13)
where a; denotes the kth row of A, ¢,y denotes the ith row of C,,;, and s, denotes
the nth row of S.

It has been shown in [36] that the Fisher Information Matrix (FIM) is given by

Q(O):E{(ag_(‘:))H<6];7(:))}: \(I)lq(;)* 7 (4.14)

where f(0) is the log-likelihood function and

with obvious notation; In addition,

CRB,, CRB, P ‘1’] _ [‘I’as]q,—l wEwH | . (4.15)
CRB[. CRB, vl \IIJ [ J o



Appendix 4.A Asymptotic CRB as N tends to infinity 95

The elements of ¥ can be given® as follows

p { o D } el (3 (60 © O (5.0 Oy

*
8ak1 m 00y ms

n=1
—02 . Zs $n) ¢ (CC)em, Ok ks
ki,ko=2,--- / K,my,mg=1,---, M,
where we have used the following identity
(C"C)« (D"D) = (CoD)*(CeD),

and ¢ stands for the Hadamard product. Similarly, we have

E{ f( ) 8f(0) } _;2 AHA ZS Sn em2 .

X
acpl mi acp2 ym2

p,pp=2,--- , Prmi,my=My, +1,---, M.

In addition, we have

£(6) 95(6) " i
p{CLIOLL et (©0 A)(CO Ao,
= el (CTC) o (AT A)en,0n m, (4.16)

n,no =2, , Nimy,mg=1,--- M (4.17)

E { o af(O)} = L (3o s (mi)sn(ma))cs(mi)ag(ms) (4.18)

o2

E { i B } = esu(m) (S0 G (mi)ey(ma))ag(ma),  (4.19)

E {sz(m? g:gfn(zz } - ﬁS;(ml) ( ZkK:1 ay(mi)ay (mg))cp(mQ), (4.20)

Since we have assumed that

E(S:zl (ml)snz (mQ)) = 6”1,”25m1,m2’

3The forms given here can be shown to be mathematically equivalent to those in [36]. The new

forms are computationally much simpler.
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it follows
f(0) 9f(9) 1
A}l_f)[looNE {aakl,ml Dy, =3 e ( ZS sn) © (C"C)em, 0k, ks

1
—ef IM<>(C C)enm, 0k, ks

2m1

lim —E{ 0f(6) 9£(6) } :iegl(AHA) O Tnr€my 0py s

Nooo N | 0¢, 1y OCpyms o?

P1,m1

N—>ooN 8ak’m1 8cp,m2

n=1

1
— *
- pcp(ml)ak (m2)6m1 M2
hence
. 1 \Ilaa \Ilac 1 \paalimit \Ilaclimit
lim N ==
N—o0 H o H
‘I’ac Wee \Ilaclimit ‘Ilcclimit

with obvious notation.

From (4.16), we know that

(CHC) o (AHA) 0 - 0
‘Pss:% 0 (CHC)o (A"A) --- 0
i 0 0 oo (CHC)o (AHA)

Let H := ((CXC)o (A#A))™'; then

H O 0
P! — 52 0O H .- 0 c c(N-DMx(N-1)M
0 O H

Recall

S %

~~~

N

—~
=

Mw N
[}

o

%

—~

3

N

)

=

)

3

SN—

N—

o

—~

&

SN—

. { 01(6) 0(6)

B { i B } —shlm) (3 €5m)cy(ma)) ).

. E{af( )5f(0)} %(Nliigo%ZSZ(ml)Sn(mz))CZ(ml)ak(W)

c c(N-DMx(N-1)M

(4.21)

(4.22)

(4.23)
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from which it is not difficult to see that

W
= iz [U2R, UsR, - -- ,UNR] c C((K—I)M+(P—1)Mm)><(N—1)M (4.24)
@CS g
where
1 K-1 1
U, :dzag([;:z(l)a o SZ(M)‘; T 7rS:z(1)7 e 7S:L(M)‘7r:z(Min + 1): o 7S:<L(M)‘7
P-1

8 (M + 1), -+, s5(M)])

n

c C((K-1)M+(P-1)Mm) x ((K=1)M+(P=1)Mout )

P *
R— ((Xp= Cp(ml)cp(mQ))ak(mZ)){(k—l)M+m1,m2}  c((B-DM+P-1)Mou) x M
K«
(k=i ag(mi)ag(ms)) cp(mo)) {(p=1) Moys+m1,ma}
Let
\I’as
G — T [TR O] e (C((Kfl)M—k(Pfl)Maut)x((Kfl)M—k(Pfl)Mout), (4.26)
‘Ilcs
then,
1 N
— HyT1H
G=— > U,RHR"U}. (4.27)
n=2
With Z := RHR¥, we have
1 N
— H
G=— 22 U,ZU", (4.28)
and from
E(S:1 (ml)sm (m2)) = 5"1,"257'11,7”2’ (429)
we obtain
li 1G— Ly 1§N:U ZUH—iZoQ (4.30)
Noo N~ 02NN ot T g2 ’ .
where

Q= lim %Z diag(U,)diag(U,)". (4.31)
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Therefore, we have

CRB,, CRB,.
CRBZ CRB,, .

_ CRB,, CRB,.
= lim

N=el CRBEZ CRB,
L (4.32)

) 1| VW | o L [ v | o, (B eh]

=— | lim —

NN | g v, | N | g, |

2
_ 0 \I,aa'limit \Ilaclimit 7 Q
N H ‘I’

AClimit CClimit
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Chapter 5

Direct Blind Receiver for SIMO
and MIMO OFDM Subject to

Frequency Offset

Several OFDM CFO estimators for frequency-selective fading channels have been pro-
posed in the literature. Among them, the non-blind methods require either symbol
repetition [44] or pilot symbols [47]; the blind MUSIC-like CFO estimator 38,63, 64]
based on guard null subcarriers needs sufficiently many null subcarriers to achieve
satisfactory high-resolution CFO estimation, and in certain cases CFO may not be
identifiable [42]. Identifiability of null-subcarrier-based CFO estimation has been
studied in [42], wherein a null subcarrier hopping scheme was proposed which guar-
antees identifiability and improves performance. Null subcarriers are incorporated
in several wireless OFDM standards, but their placement is fixed as in [38, 63, 64]
and does not guarantee identifiability. Subcarrier hopping restores identifiability, but
also gives up the adjacent channel interference protection afforded by fixed guard
null subcarriers. Null subcarrier methods are not really blind, in the sense that null

subcarriers are equivalent to zero-padding and hence suffer roughly the same rate loss
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as training. Another blind OFDM CFO estimator [3] exploits the cyclostationarity
of OFDM signals instead of guard null subcarriers to achieve a carrier frequency ac-
quisition and relies on second-order statistics only. This approach is appealing, but
it unrealistically assumes that the time-dispersive channel impulse response is known
at the receiver, and it requires more samples to estimate second-order cyclic statistics
reliably.

In addition to CFO, the frequency-selective fading channel information is also un-
known at the receiver in wireless OFDM systems. The literature on blind receiver
design for OFDM systems in the presence of unknown frequency offset and multipath
is relatively scarce. Recently, a Bayesian blind turbo receiver [41] for coded OFDM
systems under the Markov chain Monte Carlo (MCMC) framework for Bayesian com-
putation and utilizing the turbo principle has been proposed. A Bayesian demodu-
lator is able to compute approzrimate a posterior: probabilities of the data symbols
based on the received signals by employing MCMC techniques, and is followed by
a maximum a posteriori (MAP) channel decoder. The Bayesian turbo receiver it-
eratively exchanges the extrinsic a posterior: probabilities of data symbols between
the Bayesian demodulator and MAP decoder. It requires knowledge of the specific
probability distributions of the data symbols, multipath, and CFO. Perfect data sym-
bol recovery in the noiseless scenario is not guaranteed. The Bayesian turbo receiver
in [41] does not yield an estimate of CFO or the underlying multipath channel, and
it is computationally intensive.

Relying on parallel factor (PARAFAC) analysis, we explore herein a novel ap-
proach for data symbol detection in wireless uncoded or coded OFDM systems sub-
ject to unknown multipath and CFO. This requires the use of at least two antennas at
the receiver, but in return yields important benefits besides the anticipated receive-
diversity benefit: blind CFO estimation and direct symbol recovery (up to subcarrier

scaling) with guaranteed identifiability under mild conditions. The key is to recog-
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nize that, after suitable preprocessing, the baseband-equivalent models of single input
multiple output (SIMO) and multiple input multiple output (MIMO) OFDM systems
subject to multipath fading and CFO conform to the parallel factor (PARAFAC) anal-
ysis model. It has been shown [30] that under mild conditions, PARAFAC models
admit unique decomposition up to permutation and scaling. Capitalizing on this link,
we develop a blind SIMO/MIMO OFDM receiver that works irrespective of CFO and
yields direct data estimates up to subcarrier scaling plus high-resolution CFO esti-
mates. The resulting receiver is typically only a few dB away from the non-blind
MMSE receiver that assumes exact knowledge of channel and CFO. Given a CFO es-
timate from one batch of data, low-complexity adaptive (e.g., decision-directed) CFO
tracking can be used to return to the low-complexity FFT receiver for subsequent
data blocks. That is, the proposed PARAFAC receiver can be run periodically, and
the simpler FFT receiver can be used in-between to coherently combine all antenna
channels to improve performance.

The rest of this chapter is structured as follows. Section 5.1 describes our as-
sumptions and the discrete-time baseband equivalent data model of SIMO OFDM in
the presence of quasi-static block multipath fading and CFO. In Section 5.2, we link
the problem of interest to PARAFAC analysis, and elaborate on identifiability. A
receiver based on PARAFAC analysis is proposed in Section 5.3. The corresponding
data model for MIMO OFDM and associated identifiability are outlined in Section
5.4. Section 5.5 presents simulation results, and Section 5.6 summarizes our conclu-

sions.
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5.1 System Model of SIMO-OFDM

Consider a synchronous discrete Fourier transform (DFT) based SIMO-OFDM system
with I > 2 antennas at the receiver, N subcarriers, subject to frequency-selective
block fading and frequency offset. As a final step for symbol recovery, we will need to
take care of the scaling ambiguity that is inherent in all blind methods. A simple (but
not the only) way to do this is to use differential encoding on a per-subcarrier basis.
This is the reason why the proposed receiver is really semi-blind as opposed to fully-
blind. Let s(k) = [s1(k), s2(k),- -, sn(k)] be the kth block of differentially-encoded
data to be transmitted. OFDM modulation is implemented by left multiplying s (k)
by an inverse FF'T matrix, and the resulting N-point time-domain signal is given by
FHsT (k). To guard against inter-block interference (IBI) induced by the channel’s
time-dispersive effect, a cyclic prefix (CP) of length L is added before transmission,
where L is chosen to exceed the anticipated maximum delay spread of the I point-
to-point channels. The resulting transmitted block has length N + L, and is given
by
x(k) = T, F7s"(k),

where T, := [(Ixn)TT%]T € CV+EXN_ Each block x(k) is then converted for serial
transmission through the I unknown frequency-selective block fading channels whose
discrete-time equivalent form has finite impulse response {h;(1)}%, of order L; < L
for the multipath channel between the transmitter and ith receiver.

In the presence of zero-mean additive white Gaussian noise (AWGN) and CFO,

the samples at the ith receiver with proper sampling are

ui(t) = V19t Z hi(Dz(t — 1) + vi(¢),

1=0
where ¢ is the normalized CFO due to the Doppler effects and/or mismatch between

the receivers and transmitter oscillators. The initial phase due to CFO is assumed to
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be zero (equivalently, the initial phase can be absorbed into h;(l)). We also assume
that the absolute value of CFO is less than or equal to half of the OFDM subcarrier
spacing, i.e., |¢| < %, where Aw = %’r This is a valid assumption in practice since
the large frequency offset has been already compensated via an automatic frequency
control [11], and what remains is the residual frequency offset. The I > 2 down-
conversion chains at the receiver utilize a common local oscillator, and Doppler is
essentially common for all receive antennas for long- and medium-range propagation
scenarios. The result is that the same CFO appears in the baseband model of all
receive chains. Let z(k(/N + L) + t) be the serialized version of the kth block x(k)
with the tth entry [x(k)]; = z(k(N + L) +t), and v;(t) the corresponding AWGN.
Form the (N + L) x 1 block u;(k) from wu;(t) such that [u;(k)]; := u;(k(N + L) + ¢).
The CP removal can be accomplished by left multiplying u;(k) by the CP removing
matrix Ty, 1= [OnxrIy] € CV*VHL) | This yields y;(k) := Tymu;(k). After simple
calculations, the receiver input for the kth block at ith antenna in the presence of

carrier frequency offset is given by
yi(k) = PFHH;sT (k)edGHDNFD-N) 4 . (k), (5.1)

fori=1,---,1, where w;(k) := T,,,v;(k),

Hi(n) = 30, hi(l)e_ﬂz@m is the channel frequency response for the nth subcarrier

frequency, corresponding to the ith receiver antenna, and

P:=| : piln-1)¢ : e cNxN (5.2)
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is the carrier offset matrix.

Both channel response matrix H; and CFO matrix P are assumed to remain

constant over K blocks. Therefore, the received signals over K blocks at the ith

antenna, can be written as
Y; =PF7H,;(QS)T + W;
=AHB " +W,,i=1,---,1,
where A := PF¥ B = QS, and
Y; = [yi(1), -, yi(K)] € VK

s(1)
S= E(CKXN
s(K)

Q = diag([e*N D) ... | JHEFDNFL-N)]) ¢ CKxK

WZ' = [Wz(l), e ,WZ(K)] € (CNXK.

(5.3)

Since FPF# £ I, the CFO matrix P destroys the orthogonality among the subcar-

riers and hence induces inter-carrier interference (ICI). Therefore, the CFO ¢, needs

to be estimated and compensated before performing DFT and detecting S.

The problem of interest in this chapter is that of estimating the signal matrix S

and CFO ¢ from the receiver outputs {Y;}/_, subject to unknown channels H;.
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5.2 Identifiability

Stacking all matrices {Y;} in (5.3) one over another, the following compact model

representation can be derived

Y1 AHZ Wl
Y=| : | = : BT +
(5.4)
Y; AH; W;
=HoA)B' +W,

where the ith row of H € C/*¥ is given as [H;(1),---, H;(N)]; W € cN*K with
obvious notation.

The data model in (5.4) is in fact symmetric (although this is not immedi-
ately apparent from (5.4)) and thus admits two more convenient matrix system re-
arrangements (cf. [53]). In particular

Z,
Z=| : | = (BoHA" + W2 (5.5)
Zy
where Y;(n, k) = Z(i,n), and W;(n, k) = WZ(i, n).
The noiseless model
Y=(HoA)B" (5.6)
is known as a PARAFAC model. The ubiquitous feature of the PARAFAC model in
(5.6) is its uniqueness. Under a mild condition, the matrices H, A, and B that gives
rise to the data Y, are unique up to column permutation and scaling. Among several
results regarding uniqueness of the PARAFAC model, the most popular and practical
one is due to Kruskal [30] : H, A, and B that give rise to Y in (5.6), are unique up
to permutation and scaling of columns provided kg + ka + kg > 2N + 2 (cf. [30,53]).
Note that A in (5.3) has full k-rank (ko = N) due to the nature of the FFT

matrix, regardless of CFO ¢. Also, it can be shown that a matrix whose elements are
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drawn from a jointly continuous distribution has full k-rank (equal to its rank) with
probability one. This means that, even if the receive antennas and channel taps are
correlated, so long as there is diversity and the channels are not fully coherent, the
matrix H will be full k-rank (kg = min(Z, N)) with probability one. finally, when the
block size K is equal or larger than the number of carriers N, it can be shown that
the probability of rank deficiency of S drawn from i.i.d. BPSK source is bounded
by 0(2(1\(,]_\71_%) For proper K and N, this probability can be fairly small (e.g.
N = K = 8, this probability is less than 107!3). Therefore, differentially encoded S
drawn from i.i.d. BPSK source will be full k-rank (kg = min(K, N)) with very high
probability. Under these justification for the full k-rank conditions, the data model
(5.6) is identifiable provided

min(/, N) +min(K,N) > N + 2.
In practice, I will always be less than N. Hence the practical condition is
I+ min(K,N) > N + 2.

This means that for K > N, just I = 2 antennas are sufficient for blind identifiability.

5.3 PARAFAC Receiver

The design of our PARAFAC receiver is based on the principle of trilinear alternating
least squares (TALS), a basic algorithm to fit the PARAFAC model (5.6) on the
basis of noisy observations (5.4). The idea behind TALS is simple: update one
matrix (e.g. A) using least squares (LS) conditioned on previously obtained estimates
for the other two matrices (e.g. H,B), and repeat this in a circular fashion until
convergence. TALS guarantees monotonic convergence and exact recovery of H, A, B

from Y under only the model identifiability condition in Section 5.2, in the noiseless
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case. In the noisy case, TALS often yields the global LS (ML under our AWGN
assumption) solution and remains close to the CRB, although infrequent bad runs
and convergence to a local minimum cannot be excluded. The reason for the good
performance is uniqueness and the strong structure of the PARAFAC model.

The generic TALS algorithm described above must be adapted for our present
context, to take advantage of the fact that A := PF# is known up to row-scaling
(which contains the desired CFO information). This yields a performance improve-
ment, as expected, but it also speeds-up convergence, because the number of free
variables is significantly reduced.

The appropriately modified TALS algorithm is as follows:

1) Conditional LS Update of A: Recall (5.5), we have

Z=BoHA"+W?%=(BoHFP+W?

Let Z = vec(Z), W2 = vec(W?%), and p denote the diagonal of P, ie., p =
[1,e79,--- e/ N=D9|T it can be verified that

Z=(Iy0o(BoHF)p+W,
therefore, the conditional LS update of p is given as

~ = =\ 5

b — (IN ©(BoH)F )) Z,

where ]§, H denote previously obtained estimates of B, H. We remark that the above
update ignores the Vandermonde structure of the p vector. This will be exploited in
the end to yield a CFO estimate. After the p-update, we set A = diag(p)FH.

2) Conditional LS Updates of B and H: The conditional LS updates for B and H

are

~

~ o~ T PO T
B= ((H © A)TY) = ((A © B)TX)
where A is the previously obtained estimate of A.

3) CFO Estimation and Resolution of Permutation Ambiguity:
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Note that, in the noiseless case and after convergence of the iterative algorithm, the
final P need not be the diagonal of P. PARAFAC uniqueness only implies that A =
diag(P)FH will be the same as the exact A up to column scaling and permutation.
Column order and scaling are both fixed in the modified TALS update of A, but
note that the unconstrained updates of the row-scaling diagonal may effectively yield

a circular shift of the columns of F¥. E.g., if p is a Vandermonde vector of frequency

_ 27
N

all carriers will be shifted by one. Thus the peak of the periodogram of p
will yield the true CFO plus an unknown multiple of the subcarrier spacing. In the
noisy case, a CFO estimate $ is obtained from the peak of the periodogram of p
modulus the frequency spacing, and then P is constructed using (Z and (5.2). The
final A := PF¥.

Note that, unlike other existing TALS-like PARAFAC fitting algorithms, this
modified TALS automatically column-pairs the final A to the columns of the exact
A, by enforcing the knowledge that the sought A matrix is a row-scaled inverse
FFT matrix (and the assumption that the absolute value of CFO is less than half
the subcarrier spacing). This fixes the permutation ambiguity for all three matrices.
What remains is the column scaling ambiguity, i.e., the corresponding columns of two
of A, B, H can be scaled arbitrarily, and the third can be counter-scaled accordingly.

Since B = QS, S cannot be recovered from B until the row-scaling (due to the
diagonal matrix Q) and column scaling (due to blind estimation) ambiguities are
removed. For the former, we note that Q is completely determined by ¢ and the
constants K, N, L. Hence we can reconstruct an estimate of Q from the recovered
estimate of ¢. This allows removal of the row scaling ambiguity. The column-scaling
ambiguity can be dealt with using differential encoding and decoding. This yields a
blind solution for all quantities of interest. Alternatively we can keep sending 1’s along
the 1st carrier, ie., S(:;,1) = [1,---,1]7 € c&*! to decouple row-scaling removal

from the CFO estimate. This gives somewhat better performance for relatively large
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K, N, L, but note that it is not needed for identifiability.

5.4 MIMO-OFDM System

In the context of spatially-multiplexed MIMO-OFDM systems with I > 2 antennas
at the receiver, and J > 2 antennas at the transmitter in the presence of CFO, the
noiseless samples at the ith receiver filter are given by
J
yi(k) =) P;F"Hys;(k)eY 1k TLTL), (5.7)
j=1
Note that the transmitted block depends on j, that is, different data streams can
be transmitted through the different transmit antennas. By inserting nulls into the
transmitted symbol vectors, different overlapping or non-overlapping subcarrier allo-
cation strategies may be implemented. Again, it can been shown that data model
(5.7) can be blindly identified with proper system parameters (N, I, J and K). The
results depend strongly on the subcarrier allocation and multiplexing strategy uti-
lized. For full-rate multiplexing with J independent data streams and no subcarrier
partinioning among the different streams, then identifiability will hold with very high

probability provided
N + min(/, JN) + min(K, JN) > 2JN + 2. (5.8)

However, this condition demands small N to be practical. Judicious subcarrier par-
titioning and stream multiplexing allows much better results. These will be reported

elsewhere.

5.5 Simulation Results

In this section, computer simulations are provided to illustrate the performance of

the proposed blind PARAFAC receiver for an uncoded SIMO-OFDM system with
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Figure 5.1: BER versus SNR

receive antenna array subject to unknown multipath and carrier frequency offset. In
the simulations, we assume differentially encoded BPSK transmission, and a receiver
equipped with I = 2 or 4 antennas. A total of 1 MHZ available bandwidth is split
into N = 32 subcarriers. Performance assessed in terms of the average bit-error-
rate (BER) versus the average signal-noise-ratio (SNR) for all carriers except the
Ist carrier (used to remove the row ambiguity within symbol matrix S). The blind
receiver based on reconstructing Q via estimated 5 will be reported elsewhere. We

define the sample SNR as

[(Ho A)BT|?

SNR = 101log;, WP

dB.

We have averaged the BER performance over Rayleigh frequency-selective fading
channels for CFO ¢ = 0.2Aw or 0.02Aw where Aw = %" is the subcarrier spacing.
The channel order is L = 4, and the multipath channel is assumed constant over
K = 50 blocks. Our results corroborate the identifiability claims in Section 5.2 and

show that the proposed receiver exhibits very good performance.

In contrast to proposed PARAFAC receiver, the CFO compensated MMSE re-
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Figure 5.2: BER versus SNR

ceiver assumes perfect knowledge of multipath fading H and the exact carrier fre-
quency offset ¢ while the CFO-ignorant MMSE receiver only assumes perfect knowl-

edge of multipath fading H and ignores the existence of CFO ¢. Let

G, = ((H A HOA)+ ﬁl)

1
=((HoOFOHEMHOF) + —1
Gy~ (HO P! (HOF) + o),

then, the CFO-ignorant and CFO-compensated MMSE receivers are given as follows

B/ 0sr ™™ = sign(Re(Q" (G (HO A)Y)")) (5.9)
BS/ 05 ™ = sign(Re (Gy'(HO FT)Y)") (5.10)

Fig. 5.1 plots the performances of proposed PARAFAC receiver and the bench-
mark MMSE receivers with different carrier frequency offsets. As expected, simula-
tions show the significant performance degradation of the non-blind MMSE receiver

due to carrier frequency offsets, even with small CFO. The PARAFAC receiver is
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only about 2 dB away from the non-blind CFO-compensated MMSE receiver. Fur-
thermore, the performance of the PARAFAC receiver is essentially the same for both
2% and 20% CFO.

In Fig. 5.2, we depict results for N = 32, K = 50,L = 4, ¢ = 0.2Aw with 2
and 4 antennas at the receiver. As expected, the performance of both the PARAFAC
receiver and the CFO-compensated MMSE receiver improves with the number of
receive antennas. On the other hand, the CFO-ignorant MMSE receiver does not

improve with more receive antennas, because its performance is CFO-limited.

5.6 Conclusions

We have proposed a direct (semi-)blind receiver and CFO estimator for wireless
OFDM systems with receive diversity, based on PARAFAC analysis. The key ideas
have been developed for the SIMO case with a single transmit antenna and two
or more receive antennas, but the concept extends to spatially multiplexed MIMO
systems, possibly with subcarrier allocation, and/or receive diversity created via over-
sampling. The latter requires some excess bandwidth, which is a form of redundancy.
For a minimum of two receive antennas, our CFO solution is the only one to date
that is fully blind, in the sense that it does not require excess bandwidth, pilots,
repetition, or null subcarriers. The associated hardware cost can be compensated by
the performance advantage of 2-branch receive diversity, thus the overall solution is
well-motivated. Extensions to spatially multiplexed MIMO OFDM systems will be

fully reported elsewhere.
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Chapter 6

Conclusions and Future Work

In this chapter, we will briefly summarize the contributions of this thesis and point

out directions for future research.

6.1 Summary of Contributions

In this thesis, we have investigated both theory and applications of multi-way analysis.

The main contributions of this thesis are as follows:

e We derived the first necessary and sufficient conditions for unique decomposition
of certain CP models. These new conditions explain a curious example recently
discovered in the multi-way analysis community. The methodology developed
herein can be extended to general CP models, and offers the possibility to
examine uniqueness of CP solution, albeit the associated necessary and sufficient

uniqueness conditions quickly get of hand with increasing problem size.

e Kruskal’s Permutation Lemma has been demystified. The new proof should be

accessible to a much wider readership than Kruskal’s original proof.

e A strong similarity between the conditions for unique decomposition of bilinear
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6.2

models subject to CM constraints and certain restricted CP models has been
pointed out. It is expected that this link will facilitate cross-fertilization and

unification of associated uniqueness results.

We derived the most general identifiability conditions to date for multi-
dimensional harmonic retrieval in arbitrary dimensions, with important appli-
cations in wireless channel sounding. Our results have subsequently led to the
development of an effective algebraic identification algorithm for 2-D harmonic

retrieval [37].

We developed a novel receiver to deal with the blind identification of out-of-
cell users in DS-CDMA. This receiver not only detects the in-cell users’ data
symbols reliably, but also helps identify out-of-cell transmissions, the steering
vectors of all active users and spreading codes of out-of-cell users. Simulations
show that the proposed identification algorithm remains close to the pertinent
asymptotic (symbol-independent) Cramér-Rao bound, which is also included in

this thesis.

We designed an effective blind reception scheme for SIMO/MIMO OFDM sub-
ject to unknown frequency offset and multipath.Computer simulation results
show that the proposed receiver, based on the theory of multi-way array anal-
ysis, can achieve performance that is only a few dB away from the non-blind

MMSE receiver, and works well for a wide range of carrier frequency offsets.

Future Work

Promising thrusts for on-going and future work include the following:

Algebraic Decomposition Algorithms for General CP Models: A wide variety of al-

gorithms have been developed for computing CP decompositions. These range
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from eigenvalue-type algebraic techniques to Alternating Least Squares (ALS)
algorithms as mentioned earlier. The existing algebraic or direct fitting algo-
rithms only work in restricted cases and ALS is mostly preferred in practice.
Algebraic decomposition algorithms that are applicable in more general settings
would be very useful in reducing complexity and improving the speed of ALS
algorithms via better initializations. One possible lead in this direction is the

algebraic solution of simultaneous diagonalization problems.

Wireless Channel Sounding To further improve the spectral efficiency on the up-
link, multiple antennas are utilized at both the BS and the MS, and such design
has been incorporated in 3G systems and emerging 4G proposals. The result-
ing MIMO propagation channels are well modeled using a finite path parame-
terization, and estimated through double-directional MIMO channel sounding.
Jointly estimating several multipath signal parameters like azimuth, elevation,
delay, and Doppler, all of which can often be viewed as or transformed into fre-
quency parameters, usually gives rise to a multi-dimensional harmonic retrieval
problem. The further advance of multi-dimensional harmonic retrieval theory
and algorithms with applications in MIMO wireless channel sounding, particu-

larly so-called double-directional channel sounding for 4G should be pursued.
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