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A bstract

Scaling and clustering techniques are well-established statistical methods for 
generating continuous and discrete structural representations of the relation­
ships between the row and column objects of proximity matrices. Most com­
monly, the representational structure is fit to  the observed data  through mini­
mizing the least-squares loss function; traditional implementations rely typically 
on gradient or sub-gradient optimization. Alternatively, scaling and clustering 
can be reformulated as combinatorial d a ta  analytic tasks, solvable through dis­
crete optimization strategies. We develop generalizations of combinatorial algo­
rithms for analyzing individual differences through scaling and clustering three- 
way d a ta  th a t consist of collections of proximity matrices observed on multiple 
sources. We propose an approach derived from a deviation-from-the-mean prin­
ciple. Order-constrained matrix decomposition can be regarded as a combinato­
rial data  analytic meta-technique, providing a  unifying framework for evaluating 
the differential merits of continuous and discrete structural representations of 
proximity matrices. We introduce a generalization of order-constrained m atrix 
decomposition to  accommodate three-way proximity data. Multiobjective pro­
gramming, as an alternative approach to modelling three-way data, is presented, 
accompanied by a survey of existing applications in the psychometric literature.
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Introduction

In his seminal paper, Tversky (1977) presents a  thorough theoretical treatm ent 
of the concept of similarity, emphasizing its eminent role “in theories of knowl­
edge and behavior. It serves as an organizing principle by which individuals 
classify objects, form concepts, and make generalizations. Indeed, the concept 
of similarity is ubiquitous in psychological theory. It underlies the accounts 
of stimulus and response generalization in learning, it is employed to  explain 
errors in memory and pattern  recognition, and it is central to the analysis of 
connotative meaning” (p. 327). Similarity and its complement, dissimilarity, 
are typically subsumed under the notion of proximity.

In its broadest sense, the term  ‘proximity’, refers to any numerical measure 
of relationship between the elements of a pair from two (possibly distinct) sets 
of entities or objects. Proximities are typically collected into a  matrix, with 
rows and columns representing the respective sets of objects, and the numerical 
cell values the observed pairwise proximity scores. Proximity data  possess the 
attractive feature th a t their collection is straightforward, while, a t the same 
tim e — despite their holistic nature — they yield rich and detailed informa­
tion concerning the constituting features of a  proximity evaluation. In fact, 
the application of appropriate statistical techniques allows to  infer (post hoc) a 
set of perceptual criteria (and their relative weights) tha t informed a subject’s 
proximity judgments, and determine the cognitive structure underlying the per­
ception of an object domain. As our ultim ate analytic goal, we seek to generate 
a  structural representation of the relationship between the objects under study, 
either in the form of a discrete network or a  continuous spatial configuration. 
Substantively, the two models address distinct perspectives on how objects are 
mentally represented.

In most practical applications, the proximity data  are aggregated into a 
single m atrix across multiple d a ta  sources such as subjects, scenarios, exper­
imental conditions, tim e points, and so on. However, if the focus of a study 
lies on individual variability among observational units, we may want to  an­
alyze the data  at a non-aggregated level, where the entire body of data  con­
sists of a  cube, w ith multiple individual proximity matrices stacked as slices 
along the third dimension. The complexity of the non-aggregated data lay-out 
prevents the immediate application of analytic methods suitable for a single 
proximity matrix and calls for appropriate technical adjustments (see Coppi & 
Bolasco, 1989; Law, Snyder, Hattie, &c McDonald, 1984; Smilde, Bro, & Geladi,

1
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2004). Loosely speaking, their common principle consists in modelling individ­
ual variation against a reference structure derived from the entire d a ta  set. The 
INDSCAL implementation (Carroll & Chang, 1970) of the weighted Euclidean 

model, a generalization of multidimensional scaling for analyzing individual dif­

ferences as scaled representations of a (continuous) group space obtained from 
the total data  set, presumably represents the most famous instance of such a 
methodological transfer from a  single proximity matrix to  a setting characterized 
by multiple data  matrices.

In the dissertation presented in the following chapters, we develop combi­
natorial d a ta  analytic techniques for the structural representation of individual 
differences based on multiple data sources. The terms ‘structural representation’ 
and ‘combinatorial d a ta  analysis’ warrant further clarification, to  be offered in 
Chapter 2. We also introduce the general framework developed for accommodat­
ing extensions of combinatorial representation techniques to multiple proximity 
matrices. Lastly, Chapter 2 provides a technical description of the two main 
com putational devices employed for solving combinatorial data analytic tasks, 
namely, quadratic assignment and iterative projection. Chapter 3 introduces ad­
ditive tree representations for thee-way data. Chapter 4 presents an extension 
of (city-block) multidimensional scaling to three-way data. Chapter 5 develops 
a distance-based unfolding model for three-way data. So far, distance-based 
unfolding models cannot necessarily be regarded as an overwhelming success 
due to the unresolved issue of degeneracy. However, combinatorial unfolding 
promises to  successfully remedy the problem of degenerate solutions. Therefore, 
we decided to  include a section solely devoted to degeneracy — although the 
relation to  three-way analysis a t first might appear remote. Order-constrained 
m atrix decomposition can be regarded as a combinatorial data-analytic m eta­
technique for constructing and evaluating structural representations. Chapter 
6  develops order-constrained m atrix decomposition for three-way data. The 
to tal variability of a given proximity m atrix is represented by a minimal num­
ber of additive components, each determined by a distinct object ordering tha t 
translates into discrete and continuous representations immediately comparable 
in terms of formal fit as well as substantive interpretability. The extension of 
order-constrained matrix decomposition to three-way data provides the analyst 
with an instrum ent to  explore complex hypotheses concerning the appropriate­
ness of continuous versus discrete stimuli representations from an interindividual 
as well as intraindividual perspective. Chapter 7, as conclusion and outlook on 
future research directions, introduces multiobjective programming as a  viable 
alternative for the analysis of individual differences based on three-way data.

Two data  sets will be used repeatedly as numerical examples. The Face D ata 
consist of a collection of 2 2  square-symmetric proximity matrices, containing 
the pairwise dissimilarity ratings of 1 2  schematic faces observed on 2 2  graduate 
students in the Psychology department of the University of Illinois. The 6 6  pairs 
of schematic faces were displayed on a computer screen and had to  be evaluated

2
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Krantz (1969), the twelve face stimuli were generated by completely crossing 
the three factors Facial Shape, Eyes, and Mouth (see Figure 1.1).

Figure 1.1: The construction of schematic face stimuli.

Facial Shape Eyes Mouth
smile flat frown

circle open

solid

oval open

solid

Figure 1.2 displays the m atrix of mean dissimilarity ratings derived from the 
22 individual d a ta  matrices. Each individual’s ratings were first converted into 
z-scores (i.e., subtracting a  person’s mean rating from each of his or her 6 6  

dissimilarity ratings, and dividing these differences by his or her standard devi­

ation). The z-scores were then averaged across the 22 respondents for each pair 
of faces. Lastly, to  eliminate negative numbers, and to put the aggregated dis­
similarities back onto a scale similar to the original nine-point scale, the average 
z-score ratings were multiplied by 2, and a constant value of 4 was added.

The contraceptive d a ta  from Weller and Romney (1990) were collected from 
two female (F I and F2) and two male samples (M l and M2), each consisting 
of seven individuals who ranked fifteen contraceptive methods (see Table 1.1) 
from ‘least’ (=  rank 1) to ‘most’ (=  rank 15) with respect to the four criteria 
of perceived effectiveness (E), safety (S), availability (A), and convenience (C). 
The rankings were aggregated into a rectangular 16 x 15 two-way two-mode 
d a ta  matrix, w ith rows containing the sum of all rankings for a specific criterion 
within a particular sample (i.e., EF1 =  rankings with respect to  effectiveness 
from the first female sample; EF2 =  second female sample; EMI =  first male 
sample, and so on). The original d a ta  were transformed into dissimilarities by 
subtracting each cell entry from 15(7) =  105, and are given in Table 1.2. By

3
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Figure 1.2: Dissimilarity ratings of schematic face stimuli aggregated across 22 
subjects.

© @ © © © © @ @ @  @
0.00 2.21 3.45 2.04 4.19 4.88 1.64 4.29 4.89 4.75 5.92 6.22

2.21 0.00 2.43 3.55 2.08 4.49 4.08 2.05 3.98 5.48 4.06 6.30

3.45 2.43 0.00 4.89 4.76 1.97 5.24 4.50 2.61 6.77 5.79 3.93

2.04 3.55 4.89 0.00 2.14 3.37 4.31 5.82 6.17 1.64 3.78 4.92

4.19 2.08 4.76 2.14 0.00 2.90 5.85 3.82 6.08 4.42 2.24 4.80

4.88 4.49 1.97 3.37 2.90 0.00 6.76 6.08 3.87 4.81 5.03 2.16

1.64 4.08 5.24 4.31 5.85 6.76 0.00 2.50 3.00 1.80 4.30 4.87

4.29 2.05 4.50 5.82 3.82 6.08 2.50 0.00 3.11 3.94 1.90 4.60

4.89 3.98 2.61 6.17 6.08 3.87 3.00 3.11 0.00 5.02 4.43 1.93

4.75 5.48 6.77 1.64 4.42 4.81 1.80 3.94 5.02 0.00 2.27 3.33

5.92 4.06 5.79 3.78 2.24 5.03 4.30 1.90 4.43 2.27 0.00 2.64

6.22 6.30 3.93 4.92 4.80 2.16 4.87 4.60 1.93 3.33 2.64 0.00

Table 1.1: The 15 contraceptive methods.

Letter Code Contraceptive Method
1 Pil pill
2 Con condom
3 Iud intrauterine device
4 Dia diaphragm
5 Foa foam
6 Rhy rhythm
7 Abs abstinence
8 Wit withdrawal
9 Vas vasectomy
1 0 Tub tubal ligation
1 1 Abo abortion
1 2 Dou douche
13 Ora oral sex
14 Spe spermicide
15 Hys hysterectomy

collapsing rows of the original data  matrix of Table 1.2, the data  set can be 
re-arranged into three-way three-mode format; for our illustrative purpose, we 
choose the split according to gender, female versus male (see Table 1.3), yielding 
a 4 x 15 x 2 d a ta  cube (of course, the F E M A L E  and M A L E  submatrices sum

4
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Table 1.2: The contraceptive data.

P il C on Iud D ia Foa R hy A bs W it Vas T ub A bo Dou O ra Spe Hys
EF1 31 58 43 49 66 64 24 90 18 23 57 90 21 71 30
E F 2 28 48 45 42 61 82 13 81 22 22 77 84 39 66 25
E M I 26 45 66 50 52 65 9 75 31 43 70 73 33 52 45
EM  2 54 43 24 37 43 66 61 48 36 29 60 69 64 49 52

SF1 77 35 71 47 43 10 2 17 72 78 94 35 16 48 90
SF2 77 25 79 44 51 20 13 22 44 64 89 45 23 62 77
S M I 52 33 64 36 38 32 8 26 66 71 93 51 27 59 79
SM 2 31 20 27 35 48 43 34 43 66 67 75 65 64 54 63

A F1 62 35 63 47 35 13 21 34 85 82 90 29 12 36 91
A F 2 51 34 68 57 36 30 13 12 79 84 79 36 19 46 91
A M I 31 11 57 53 21 39 52 42 66 68 61 36 66 47 85
A M 2 51 16 49 16 45 37 60 38 65 60 63 56 51 58 70

C F 1 31 24 35 40 40 52 18 54 72 76 92 42 34 40 85
C F 2 39 39 45 55 53 63 25 36 49 56 91 52 29 50 53
C M 1 6 26 27 36 38 57 56 74 69 56 75 50 35 60 70
CM 2 60 49 26 29 42 43 44 56 54 40 69 49 58 50 66

into a single 4 x 15 dissimilarity matrix, T O T A L  — see Table 1.3).

Table 1.3: The contraceptive data  matrices aggregated for the female, male, 
and to ta l sample.

F E M A L E
P il C on Iud D ia Foa R hy A bs W it Vas T u b A bo Dou O ra Spe Hys

E 59 106 88 91 127 146 37 171 40 45 134 174 60 137 55
S 154 60 150 91 94 30 15 39 116 142 183 80 39 110 167
A 113 69 131 104 71 43 34 46 164 166 169 65 31 82 182
C 70 63 80 95 93 115 43 90 121 132 183 94 63 90 138

M A L E
P il C on Iud D ia Foa R hy A bs W it Vas T ub A bo D ou O ra Spe Hys

E 80 88 90 87 95 131 70 123 67 72 130 142 97 101 97
S 83 53 91 71 86 75 42 69 132 138 168 116 91 113 142
A 82 27 106 69 66 76 112 80 131 128 124 92 117 105 155
C 66 75 53 65 80 100 100 130 123 96 144 99 93 110 136

T O T A L
P il Con Iud D ia Foa R hy A bs W it Vas T u b A bo Dou O ra Spe Hys

E 139 194 178 178 222 277 107 294 107 117 264 316 157 238 152
S 237 113 241 162 180 105 57 108 248 280 351 196 130 223 309
A 195 96 237 173 137 119 146 126 295 294 293 157 148 187 337
C 136 138 133 160 173 215 143 220 244 228 327 193 156 200 274
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T heoretical Prelim inaries

2.1 D efin itions and C oncepts

2.1.1 P rox im ity  D ata

By assumption, proximities are restricted to  be nonnegative, and are, hence­
forth, consistently interpreted as dissimilarities so th a t larger numerical indices 
pertain  to  less similar pairs of objects. Inspired by concepts originally intro­
duced by Tucker (1964), Carroll and Arabie (1980) established a widely ac­
cepted taxonomy of proximity matrices based on the number of ‘ways’ and 
’modes’. The former relates to the dimensionality of a matrix and the ‘mode’ 
to  the number of sets of entities the ways correspond to. Formally, given a 
set of N  objects, O  =  {O i , . . . ,  On } , the pairwise proximities observed on ob­

jects Oi, Oj  are collected into an N  x N  square-symmetric two-way one-mode 
proximity m atrix P  =  {pt ] }, with pfj  =  pji and pa =  0 for 1 <  i, j  < N .  In 
contrast, a  two-way two-mode proximity m atrix Q  =  {qrc} consists of a rect­
angular N r  x N c  data  set, w ith r  =  1 , . . . ,  N r  and c =  1 , . . . ,  N c , where rows 
and columns represent two distinct sets of entities, O r  = {O i r , . . . ,  O n r r } 
and O c  =  { 0 \ c ,  ■■ •, O ncc }, containing N r  and N c  elements, respectively. 
The proximities qTC between objects OrR €  O r  and Occ  €  O c  can represent 
preference scores obtained from subjects judging objects, ratings of objects on 
attributes, and so on.

The cube formed by stacking proximity matrices from multiple d a ta  sources 
is often referred to  as three-way two-mode or three-way three-mode proximities, 
depending on the d a ta  format of the individual sources, denoted p ( s> =  {ptjs } or 
Q (s > =  {qrcs}, respectively, by introducing the source index s =  1 , . . . ,  S.  The 
layers of individual sources are indicated by P s =  {Pij(s)} and Q s =  {qrc(s)}-

2.1 .2  S tructural R epresentation

In pre-scientific jargon, the essence of what we will formalize in more rigorous 
terms as structural representation is best captured by colloquialisms such as 
‘what goes with w hat’ or ‘what is greater or less than ’. For our purposes, we 
choose the mathematical explication of the concept of structural representa­
tion in term s of a discrete non-spatial or continuous spatial model. The former 
specifies the relationship between row and column objects by a graph-theoretic 
network, with objects represented as nodes and proximities approximated by

6
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paths of different length connecting the object nodes. Depending on the spe­
cific nature of constraints imposed on the path  length estimates, the resulting 
graph either represents an ultram etric or additive tree structure, arranging ob­
jects into (nested) categories — commonly and less accurately, simply referred 
to as a hierarchical cluster diagram. In case of a continuous spatial model, 
the relationship between objects is represented through a (possibly multidimen­
sional) geometric configuration of objects, ordering them along the axes of the 
representational space; the proximities are translated into interobject distances. 
Concretely, we will consider uni- and multidimensional scaling and their com­
panion, distance-based unfolding.

As a common denominator, all structural representations can be treated  as 
least-squares minimization problems. By introducing generic notation S for 
any kind of structural representation, in case of a square-symmetric two-way 
one-mode dissimilarity matrix we express the least-squares loss function as

L(S)  = £ ( p y  -  Sijf  =  ± tr(P  -  S )(P  -  S )',
i<j

where tr  denotes the trace function, defined for an arbitrary matrix, M , as 
t r  M  =  For a rectangular two-way two-mode data  matrix, the least-
squares loss function is given by

L(S)  =  £  5 > rc -  sTCf  =  tr(Q  -  S)(Q  -  S )'.
r  c

The fit of a  particular structural representation is assessed through the variance- 
accounted-for (VAF) criterion, modelled after the least-squares loss function 
and equivalent to the coefficient of determination in regression, R 2 =  1 — 

S S E / S S T O :

VAF =  1 -  =  , _  t r ( P - S ) ( P - S ) '
£ i<  M j - P ) 2  t r (P  — P )(P  — P ) ' ’

with P  denoting a square-symmetric m atrix having zero entries along the main 
diagonal and all off-diagonal values equal to  p  =  E , ^  Pij- For a  rect­
angular dissimilarity matrix, the VAF criterion becomes

v » p  _  , _  E r  E c t e r c  -  S r c ) 2  _  tr(Q  -  S)(Q  -  S)'
Z r Z M r c - q ) 2  t r ( Q - Q ) ( Q - Q ) "

where Q represents a rectangular matrix with each cell containing q =  E , -  E c  ‘Ire
Spectral decomposition of a m atrix into a sum of equally-sized matrices al­

lows for approximating the to tal variability of the original data m atrix by a 
small number of additive components (known as low-rank approximation). In 
an analogous manner, multiple discrete or continuous structures can be fit to 
a given proximity matrix to increase the overall VAF score vis-a-vis a solution

7
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featuring only a single representational structure (see Carroll, 1976). Multiple 
representational structures are fit to the proximity data  matrix through suc­
cessive residualization. Let S*, denote the k th representational structure, with 
k  =  1 , . . . ,  K .  The initial structure Si is fit to P  or Q. The residual matrix 
P - S j  = R t (or Q  — S i) is subsequently fit by a second structure, S 2 , bearing 
residual m atrix R 2  =  R-i — S 2  that, in turn, is fit by a th ird  structure, S 3 . 
The resulting residual m atrix R 3  =  R 2  — S 3  is then approximated by a fourth 
structure, S 4 , and so on. In case of multiple representational structures, the 
least-squares loss functions are given by

L ( S U  S«r) =  £ ( Pp -  £  s ( k ) l ] ) 2  = ± tr(P  -  £  S*)(P  -  £  S t )',
i < j  k  k k

and

L (S i , . . . ,  S * )  =  £  £ ( < j rc -  £  s ( k ) r c ) 2  =  tr(Q  -  £ SfcXQ -  £  s ky.
r  c k k k

The VAF criteria become:

VAp _  _  t r ( P - E fcSfc) ( P - E * S fc)'

E  ̂ ( P o - P ) 2  tr (P  — P )(P  — P ) ' 1

and

YAP _  1 _  E r  Ec(7rc ~  Efc S(k)rc) _   ̂ _  tr(Q  — ^2k Sfc)(Q — ^2k Sfc)'
E r E c  (QrC- q ) 2  ~  t r ( Q - Q X Q - Q ) '

2.1 .3  C om binatorial D a ta  A nalysis and Structural 
R epresentations

Scaling, unfolding and (hierarchical) tree representations are familiar, well- 
established techniques in quantitative psychology and statistics. Traditional 
implementations rely on calculus-based or related numerical methods for min­
imizing the least-squares loss function. They work well w ith multidimensional 
scaling and tree fitting; in instances such as unfolding or unidimensional scaling, 
their performance is often disastrous. In fact, during the past several decades, 
quantitative psychologists have become increasingly aware of the combinatorial 

nature of these representation techniques (for reviews on combinatorial data  
analysis, see Arabie & Hubert, 1992, 1996). As the most prominent example, 
proximity-based unidimensional scaling is today widely recognized as a combi­
natorial optimization problem more appropriately addressed by discrete rather 
than  continuous optimization techniques (see Brusco, 2002b; Defays, 1978; De 
Leeuw & Heiser, 1977; Hubert & Arabie, 1986, 1988; Hubert, Arabie, & Meul- 
man, 2 0 0 2 , 2006).

Distinct from continuous, real-valued optimization problems, combinatorial 
optimization is characterized by non-smooth functions, because additional inte-
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ger (particularly, binary) restrictions have been placed on a t least some of the 
decision variables. Combinatorial optimization problems are discrete, the set 
of feasible solutions is finite, and an optimal solution always exists, implying 
the misrepresentation tha t these problems are “easy” and solvable by complete 
enumeration. The number of feasible solutions, however, grows exponentially 
with problem size, and nice optimality conditions are not in existence to  ver­
ify, analytically, guaranteed optimality. Instead, discrete optimization problems 
require the explicit or implicit search of the entire solution space to locate the 
global optimum. Even for small-scale problems, th e  computational effort of 
an exhaustive enumeration of all feasible solutions is prohibitive. Because of 
this, most current algorithms for solving combinatorial optimization problems 
of substantial size are heuristic, with no guarantee of identifying a  global op­
tim um but often producing solutions at least within a close neighborhood of 
the desired global optimum. Partial enumeration strategies such as dynamic 

programming (see Hubert et ah, 2001a) and branch-and-bound (see Brusco & 
Stahl, 2005a) can often provide guaranteed globally optim al solutions without 
the need for explicit enumeration of the entire feasible solution set but do face 
serious lim itations on the sizes of problems tha t can be handled.

Constructing combinatorial continuous spatial or discrete non-spatial object 
representations rests on identifying optimal object permutations, where ‘opti­
m al’ is operationalized within the context of a specific representation. Defays 
(1978), for instance, demonstrates tha t the task of finding a best-fitting unidi­
mensional scale for given inter-object proximities can be solved solely by per­
muting the rows and columns of the data  matrix such tha t a  certain ordinal 
patterning among cell entries is satisfied, corresponding to an arrangement of 
objects along a dimension. The desired numerical scale values can immediately 
be inferred from the reordered matrix. Similarly, for hierarchical clustering 
problems, in their more refined guise as searches for ultrametric or additive tree 
representations, optimal solutions agree with a characteristic ordinal patterning 
of the input proximity matrix, implied by the constraints deducible from the 
additive or ultram etric inequality defining the respective tree structure.

2 .1 .4  E xtension s o f  C om binatorial Structural
R epresentations to  Three-W ay P roxim ity  M atrices

The approach for modelling three-way data  adopted here for all structural repre­
sentations is guided by a principle common in statistics as well as of immediate 
intuitive appeal, namely, to analyze individual variability within a  deviation- 
from-the-mean framework. Based on the aggregated body of individual prox­
imity data, a combinatorially optimal structural representation is identified and 
then used in a  subsequent step as a  frame of reference for analyzing the in­
dividual proximity matrices. Recall tha t each discrete non-spatial as well as 
continuous spatial representation of the aggregated data matrix is characterized

9
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by a particular permutation of its row and column objects. Their order serves 
as a blueprint for imposing the respective reference structure in a confirmatory 
manner on the individual proximity matrices: the individual source matrices are 
directly fit against the reference permutation by estimating the representational 
structure through a constrained least-squares algorithm. The com putation of 
individual fit measures allows for an interindividual assessment quantifying the 
amount of agreement (or deviation) between the individual data representations 
and the chosen reference structure.

2.2 C om putational D evices

As will be described in much greater detail in Chapter 4, constructing a combi­

natorial continuous spatial representation requires a two-step procedure. First, 
an optim al ordering of objects along the continuum is obtained by permuting 
the rows and columns of the input proximity m atrix through a heuristic search 
term ed quadratic assignment. The identified object order translates into linear 
inequality constraints to be satisfied by the actual numerical estimates of the 
interobject distances minimizing the least-squares loss function. For estimation, 
we use a  constrained least-squares iterative projection algorithm proposed by 
Dykstra (1983). Identifying discrete non-spatial representations does not involve 
quadratic assignment, but solely relies on iterative projection for estim ating the 
length of the paths connecting objects. The next two sections provide a technical 
description of quadratic assignment and iterative projection.

2.2.1 Q uadratic A ssignm ent

M atrix perm utation analysis falls into a class of NP-hard combinatorial prob­
lems (Garey & Johnson, 1979), and guaranteed optimal solutions are difficult if 
not impossible to obtain in a reasonable amount of time. In fact, from a  certain 
object set size onward, obtaining guaranteed optimal solutions is downright in­
feasible (as the number of distinct permutations to be evaluated equals N !/2 , 
in not counting reverse object permutations). Although complete enumeration 
of all object orderings is not computationally feasible for m atrix perm utation 
problems where N  > 13, partial enumeration techniques such as dynamic pro­
gramming and branch-and-bound methods can often facilitate optimal solutions 
of larger problems. Hubert et al. (2001a, Chapter 4) advocate the implementa­
tion of dynamic programming to  guarantee optim al solutions for combinatorial 
d a ta  analysis problems related to  m atrix permutation. Depending on available 
computer resources, especially random-access-memory (RAM) storage, dynamic 
programming is a reliable and efficient method for finding globally optim al per­
mutations for a  variety of important problems related to the seriation and scaling 
of proximity data, provided tha t the number of objects is 30 or fewer. Branch- 
and-bound methods (Brusco & Stahl, 2005a, Chapters 7-11) can sometimes
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provide globally-optimal solutions for slightly larger matrices, but can also re­
quire more computation time than dynamic programming for some matrices. 

Despite significant advancement in the development of optim al solution proce­
dures, heuristic algorithms remain necessary for m atrix perm utation problems 
of practical size. These algorithms typically fall into one of two categories: (1) 
iterative improvement strategies, and (2 ) metaheuristics such as tabu search 
(Glover and Laguna, 1993), genetic algorithms (Goldberg, 1989), simulated an­
nealing (Aarts &; Korst, 1989), and variable neighborhood search (Hansen & 
Mladenovic, 2003, 2005) designed to facilitate escape from local optima. We 
focus on iterative improvement strategies. They require the generation of an 
initial perm utation, which is usually constructed via random assignment of ob­
jects to  sequence positions. Neighborhood search operations, which include 
pairwise interchange of objects, relocation of object blocks, and object-block 
reversals, are subsequently applied to  refine the initial perm utation, resulting 
in iterative improvement of the objective function index corresponding to  the 
m atrix perm utation problem. The iterative improvement algorithm term inates 
when no more neighborhood moves will further improve the objective function. 
The resulting solution is, therefore, locally optimal with respect to  the class of 
neighborhood search operations used in the iterative improvement algorithm.

Q uadratic assignment (QA) represents an especially efficient iterative im­
provement strategy for m atrix perm utation problems (see Hubert et al. 1997, 
2006). In general, solving the QA problem for two given N  x N  matrices 
P =  {pij} and B =  {6 ,j }, requires finding a perm utation of the rows and 
columns of P for B fixed, such that the Hadamard product, the sum of the 
products of corresponding matrix cells is maximized:

max r(p )  = max |  ^~](pp(
i,j

with p(-) =  p denoting a feasible perm utation of the first N  integers (see Hubert 
et al. 1997, 2006; Rendl, 2002). Let P denote any input proximity matrix to  be 
perm uted into a distinctive form most closely approximating the desired ordinal 
patterning associated with a specific structural representation. Matrix B serves 
as target and embodies the intended characteristic patterning. As the algorithm 
iteratively tries to maximize r(p) by re-ordering P against B, those correspond­
ing cells of the two matrices will be matched th a t maximally contribute to an 
increase of the QA criterion. The resulting perm utation will render P  in a form 
as close as possible to the target patterning of B, denoted P p. From the identi­
fied perm utation, p, linear inequality constraints are deduced on the numerical 
estimates of the intended structural representation, S, th a t is fit to P through it­
erative projection (described in detail in the next section). Subsequently, target 
m atrix B can be updated by S obtained, initializing a second search cycle for a 
perm utation possibly superior to  the previously identified. The process iterates 
until convergence, when updating B does not result in any further increase of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r(p).  Clearly, the solution depends on the initial random arrangement of rows 
and columns of P, for which it is passed to the first QA search cycle. There­
fore, to reduce the risk of detecting a purely locally optimal solution, a  common 
nuisance to  any heuristic procedure, utilization of the algorithm w ith multiple 

starts on the randomly permuted input m atrix P is strongly recommended.

2.2.2 Iterative P rojection

The numerical estimates of structural representations, S, must conform to  cer­

tain constraints, either deducible from the specific perm utation of the row and 
column objects of P as found through QA in case of continuous geometric repre­
sentations, or directly imposed by the defining properties of discrete structures. 
The least-squares approximation S to P, is estimated by iterative projection 
(IP), a computational strategy for solving constrained least-squares minimiza­
tion problems proposed by Dykstra (1983; see also Deutsch, 2001). Let p  and s 
indicate vectorizations of matrices P and S; IP minimizes (p —s) '(p  —s) subject 
to  s conforming to  characteristic linear inequality constraints.

In general, let X  6  Rn (with n  G N+) denote a complete inner product space, 
also called a Hilbert space. The least-squares approximation to  an arbitrary  
vector x  G X  is sought from a closed convex set C G X  in the form of a 
vector x* G C minimizing the least-squares criterion, (x — x ) '(x  — x), subject 
to linear constraints imposed on x  as defined by C. The characterization of 
C as a convex set generally implies tha t for arbitrary vectors x , x° G C the 
line segment joining the two points defined by them is also contained in C; 
algebraically a x  +  ( 1  — a)x° € C, with 0  <  a  < 1 ; a  set is closed if for any 
convergent sequence lima:*^ also belongs to  the set.

Conceptually, x* can be found directly by projecting x  onto C; in practice, 
however, this may pose extreme computational demands. D ykstra’s solution 
to  this problem is as simple as it is elegant: based on the decomposition of 

the constraint set C = fj!T=i <-'u' ^  ^ le (presumably) difficult calculation of 
x* G C is broken down into the easier task of constructing a sequence x*P, with 
t =  0 , 1 , 2 , . . . ,  by way of iterative projections of x  onto the W  closed convex 
subsets of restrictions, Ci , . . .  ,Cw,  which, as was proven by Boyle and Dykstra 
(1985), converges to x* G C:

lim || x W - P c ( x )  | |= 0 ,

with Pc (x) indicating the projection of x  onto C. Note tha t C i, . . . , Cw need 
not necessarily be subspaces of X;  they represent linear inequality constraints 
of the general form

=  (x  G Cw | a ^ x  <  bw a(^x -  bw < 0}.

The sequence x ^  is initialized by setting x-0  ̂ :=  x, followed by the projec-
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tion of x ®  onto C\,  resulting in x (1) th a t in tu rn  is projected onto C2 , yielding 
to be projected onto C3, and so on. The difference between consecutive 

projections x^t_1  ̂ and is often called the increment, or residual. The al­
gorithm concludes its first cycle of projections onto sets C \ , . . .  ,Cw,  with the 
projection of x -v'/ ~1) onto Cw  producing , the input vector for the second 
projection cycle through C\ , . . . ,  Cw-  However, from the second cycle on, each 
time C i, . . .  ,Cw  are revisited in subsequent cycles, the increment from the pre­
vious cycle associated with th a t particular set has to be subtracted from the 
vector before actually proceeding with the projection. Introducing notation [t], 
sometimes referred to  as “t mod W " , allows for tying together the number of 
subsequent projections and the index of constraint sets involved (see Deutsch, 
2001; Dykstra, 1983):

[t] := { l , 2 , . . . ,V T } n { f  — g W  |g  =  0 ,1 ,2 ,...} ;

for example, [1] =  1, [2] =  2, [3] =  3, . . . ,  [W] =  W ,  then ]W  +  1] =  1, 
[W +  2] =  2, . . . ,  [2W] =  W,  and so on. Han (1988) demonstrates th a t the 
projection of Pcm{x) =  x ^  for locally minimizing (x -  xW )'(x  — x ^ ) ,  with 
x  G Rn fixed, has the closed form solution

x (t) =  x -  (a i,aK)“ 1 (max{a^,x -

If C i , - - - ,  Cw  are closed subspaces of X ,  or, more generally, if the C i , . . . ,  Cw 
are closed affine sets (i.e., translations of closed subspaces), then the com puta­
tion of the residuals can be omitted, and each x*-1̂ can be directly computed as 
the projection of its predecessor onto C[t] (i.e., x (t'1 — Pc[t](x-(_1*)), because

lim (PCwPcw. ! • • • P c ,)(t)(x) =  Pc (x)
t — * 0 0

(for proofs see Deutsch, 2001; Dykstra, 1983). Hubert and Arabie (1995b) refer 
to  this special case as IP without augmentation, whereas the general case, with 
each projection entailing the preceding removal of the increments from the past 
projection onto the same set, is called IP with augmentation.

In conclusion, we present a detailed account of the intricate com putation of 
the increments based on a recursion formula, including a small-scale example. 
After initializing x ^  := x, and associated residuals as e ®  =  0, the recursion

x<*> =  PC(t](x(t- I>+e<t-" '> ),

allows for construction of the sequence x 1̂  as consecutive projections. The cor­
responding increments, e ^ ,  when moving from x-t_1  ̂ to x ^  are also defined 
recursively, however, not as plain differences between x*t_1l and x ® , but rather 
as corrected residuals, already incorporating the necessary removal of the incre­
ment associated with a particular Cw from the preceding cycle, namely as the
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difference between the corrected projection from the previous step and the one 
onto Cw+l to follow:

(2 . 1)

As an illustration of the underlying mechanics, we will consider the simplest 
case w ith W  =  2. The resulting sequences and are given in Table 2.1; 
note th a t the residuals, as defined in (2.1), are strictly negative. To summarize, 
determining xW first requires to  add e ^ ~ w  ̂ to x -t_ ^ and then project the sum 
x ( « - i )  _|_e (*-W 0 o n )-0

Table 2.1: IP Sequences of x-f' and e ^ " 1 for W  =  2 constraint sets, Ci and Ci.

t x ^
0 XW : = \ e(°) =  0

l si cycle through constraint sets C\ and Ci
1 X(D = ■pC|i|(x(0) + e(_1)) e U) =  xW  +  e l - ^ - P c  (xW )

= PCx (x(0)) =  x ( ° ) - x W
2 x <2 ) = Pcm (x{l) +e<°)) e<2) =  x W + e W - P c p T x W + e W )

= Pc2(x(1}) =  x (‘) - x W

2nd cycle through constraint sets Ci and Ci
3 XW = pcm (x(2) + e (1)) e (3> =  x (2) +  e (1) — PC[3] (x(2) +  eW )

= PCl(x<2> + e « ) =  x W + e W - x W
4 x (4) = Pc14,(x (3) +  e<2>) e(4) =  x ( 3 ) + e ( 2 ) _ p C [ 4 i ( x ( 3 ) + e ( 2 ) )

= Pc2 (x<3 ) + e ( 2>) =  x(3) +  e<! ) - x ( 4)

3rd cycle through constraint sets Ci and C2

5 x (5> = PC(5 ]( x W + e ( 3)) e (5) =  x W + e W - P C|5J( x W + e W )
= PCl(x(4 , + e ( 3)) =  x<4 >+e< 3 > - x < 5>

6 x («) PCl6 ,(x( 5 ) + e ( 4)) e («) =  x <5 > +  e(4 > - P C[6 l (x(5 > + e ( 4>)
P c 2 ( x (4) +  e {3)) II cn + 1 'S'

.
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3 A dditive Tree 
R epresentations

Additive and ultrametric trees represent two of the more prominent graph theo­
retic models for discrete nonspatial representations of two-way one-mode prox­
imity data. Typically, a single best-fitting tree structure for a  given proximity 
m atrix is sought such th a t the discrepancies between the observed interobject 
proximities and corresponding estimates of tree distances are minimized. How­
ever, in some instances a data  representation through multiple tree structures 
might be preferred to attain  a higher overall fit.

Extensions to three-way two-mode data, as might arise in the context of 
cross-sectional or longitudinal studies, to model individual differences, similar to 
the INDSCAL generalization of multidimensional scaling by Carroll and Chang 
(1970), have been suggested for locating additive as well as ultram etric tree 
structures. The INDTREES algorithm for identifying individualized tree struc­
tures (Carroll, Clark, & DeSarbo, 1984; De Soete & Carroll, 1989), estimates 
differential interobject tree distances through conjugate gradient minimization 
of a  least-squares loss function, augmented by penalty term s to  account for vi­
olations of the constraints as imposed by the underlying tree model (i.e., the 
ultram etric inequality in case of ultram etric trees, and the four-point condition 
for additive trees). Unfortunately, INDTREES is not available as a  computer 
program.

We propose an alternative method for finding and fitting additive tree struc­
tures to three-way two-mode proximity data  th a t in estimating the tree distances 
neither relies on gradient-based optimization nor penalty functions. Instead, the 
method presented minimizes the least-squares loss criterion by using IP of the 
vector of observed proximities onto closed convex sets representing the con­
straints defined by the four-point condition specifying the additive tree model 
(see Hubert & Arabie, 1995b; Hubert et ah, 2006).

The next section summarizes the essential definitions and concepts related to 
additive tree representations. We proceed with a review of the penalty function 
algorithm in the third section; the fourth presents IP  as a  tool for heuristic and 
non-heuristic identification of best-fitting additive tree structures. Construct­
ing additive tree representations to accommodate three-way two-mode data  is 
introduced in section five. An application of IP-based additive tree representa­
tions for analyzing individual differences in judgments of schematic face stimuli 
illustrates the method.
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3.1 A d d itive  Tree Structures

3.1.1 D efin itions and C oncepts

A brief review of a few essential graph-theoretic definitions might be helpful in 
clarifying the concept of an additive tree structure:

1. A graph G  is defined as a pair G  =  (V, E),  where V  denotes a finite 
set of nodes or vertices, V  =  {iq, u2, V3 , ...} . Set E  has as its ele­
ments subsets of V  of cardinality two called edges, E  =  {ei, e2 , e3 , . ..}  =  

{{^i, «2}, {t>i, V3 }, {u2, V3 }, • ■

2. In a graph G  =  (V, E)  with e\ = {iq, v2} e  E, v l is said to  be adjacent to 
V‘2 (and vice-versa), and e is incident upon tq (and v-j).

3. The degree of a vertex v of G corresponds to  the number of edges incident 
upon v.

4. The sequence s of vertices s =  (tq, t>2, v3, , Vk), with k > 1, such th a t 
{vj ,Vj+1 } £ E,  for j  = 1 , . . .  , k  — 1, defines a  walk in G. If s does not 
contain any repeated nodes it is called a path.

5. A path  with coinciding endpoints, Vk =  iq , for k > 1, is called a  circuit or 
cycle.

6 . A graph is called connected if there is a t least one path  between any pair 
of distinct vertices.

7. A weighted graph G = (V, E)  involves a function /  : E  1—> R + with 
we =  /(e )  =  f { {v j ,  Vji}), with e € E  and Vj,vy  €  V, j  ^  j '  th a t assigns 
a  weight to edge e. Often weights are interpreted in terms of distances 
between vertices v0 and v y .

8 . A tree is a connected graph G with no cycles; vertices with degree 1 are 
called leaves or terminal nodes, and the other (interior) vertices are termed 
nodes. The distance between leaves and subsequent internal nodes is called 
node height; paths connecting leaves with the first layer of internal nodes 
sometimes are referred to as branches.

9. A rooted tree consists of a  tree G and a node r of G , its root, denoted by 
(G ,r).

An additive tree can be characterized as a weighted acyclic connected graph 
without a natural root (i.e., an additive tree is not necessarily organized into a 
vertical hierarchy), and thus, can be rooted a t any node, or point on any path  
connecting two objects. The terminal nodes of an additive tree represent a  set 
of N  objects G — { 0 1 , . . .  , 0 ^ }  c  V.  The weights along the paths connecting 
objects Oi,Oj ,  with 1 < i , j  < N,  typically with a distance interpretation, can 
be collected into an N  x N  m atrix A  =  {<5,j }. As a  necessary and sufficient
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condition for a unique additive tree representation of A , the Sij have to  satisfy 
the additive inequality or four-point condition (see Barthelemy & Guenoche, 
1991; De Soete & Carroll, 1996):

Sij +5ki < max {6 lk + 5ji,6jk +<5«} for 1 <  < N;  (3.1)

or equivalently, for any object quadruple Oi, Oj, Ok, and O; the two largest sums 
of path length distances among St] -f Ski, Stk +  Sji, and Sjk +  &u must be equal. 
The additive tree metric, as defined by the four-point condition, represents a 
generalization of an ultrametric on A,  defined by the ultram etric inequality (see 
Barthelemy & Guenoche, 1991; De Soete & Carroll, 1996):

5{j <  max{<5ijfc,<5j;fc} for 1  < i , j , k <  N;

in words, for any object triple O,, Oj,  and Ok, the largest two path  length 
distances among StJ, S,k, and 5jk must be equal (for greater clarity, we denote 
distances 6 ij conforming to the ultrametric condition as •ai j ). Unlike an additive 
tree, an ultrametric tree has a unique root, equidistant to  all leaves or term inal 
nodes.

Carroll (1976) discusses the decomposition of an additive tree distance into 
the sum of an ultrametric and a centroid distance. The la tter induces a star 
as its tree representation, where one of the vertices, the center vc, is fixed. 
Distances for all Vj, Vj', with j ,  j '  7 = c, are obtained by passing through vc. 
Formally, centroid distances have the following properties:

1. 5jj = 0  V Vj 6  V,  j  /  c and <5JC > 0

2. Sjjt =  5jc +  5Cj ' V Vj Vj, £ V

3. 6 cj  = Sjc V Vj G V

(subsequently, we use cl} as notation for the centroid distance between objects
Oi, Oj).  Any additive tree m atrix can be represented as the sum of an ul­
tram etric and a centroid matrix. A decomposition is not unique due to  the 
location indeterminacy of the root of an additive tree, leaving an infinite num­
ber of choices for rooting the tree, and as an immediate consequence, allowing 
for infinitely many decompositions.

Numerous conventions exist for determining the root of an additive tree. 
For example, the procedure proposed by Barthelemy and Guenoche (1991, Ch. 
3.3.3) makes explicit use of the ultrametric-centroid decomposition as a means to 
determine the root of an additive tree. Let Oi- and Oj- denote the two objects in 
O  farthest apart, defining the largest path in the additive tree: &i-j- = max-fJjj}. 
Consider a point x  on the path £;*_,* with x  ^  0 \  calculate Si-X = 5j-x =  &i-j-/2. 
For any Oi, Oj  G O,  with i , j  ^  i*,j*,  compute c(i) =  max. {6 a- ,Sij-} — 5t- j- /2,  
and c(j)  =  max {Sji-, Sjj- } — Si- j - l2 — note th a t c(i) — <5;c =  Cic and c(j)  =  
Sjc = Cjc such that the centroid distance between Oi and Oj, Cij, corresponds
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to  the sum of c(i) and c(j),  = c(i) +  c(j). Let the ultram etric distance
between O ,  and O j ,  U i j ,  be given by u t] = 5i j  — c(i) — c(j).  In case of possible 
negative values of u , j , a  constant k  needs to  be determined such th a t u tJ > 0 , 
V i , j ,  to recompute c(i),c(j)  as c(i) c(i) — k/2.  The process is continued 
until all > 0. The ultram etric path  length distances, uXJ, between leaves O i ,  

O j  £ O  are then lengthened or shortened by attaching the centroid components, 
c(z) and cij),  resulting in the final rooted additive tree representation of A . 
Lastly, it should be noted tha t due to  the indeterminacy of the ultram etric- 
centroid decomposition no closed-form computational procedure is available for 
determining k; rather, k  has to  be identified through trial and error.

The approach we will adopt henceforth for rooting an additive tree was sug­
gested by S atta th  and Tversky (1977) and simply identifies the root as the 
particular node, not necessarily in V,  th a t minimizes the variance of the dis­
tances from the root to the leaves. This operationalization seems particularly 
appealing due to  its emphasis on additive trees representing generalizations of 
ultram etric trees as reflected by the minimum variance criterion attaining zero 
in th a t special instance. The Sattath-Tversky procedure tends to  produce bal­
anced tree diagrams as it attem pts to  impose a bifurcated branching pattern  
such tha t at each level of the hierarchy, whenever possible vis-a-vis the actual 
distances, a t most two previously disjoint branches are merged.

3.1 .2  A d ditive Tree R epresentations as C onstrained  
Least-Squares M in im ization  P roblem s

Observed data  typically never satisfy the four-point condition. Thus, the task 
of finding an additive tree representation of a given data, often in the format 
of a square symmetric proximity matrix, P  =  {pij},  observed on O,  requires 
the estimation of path length distances 5,j = : dt], optimally approximating the 
proximities, a t the same time satisfying the constraints as defined by the four- 
point condition in (3.1). Usually, fit is quantified by the least-squares criterion. 
Locating an additive tree structure to  P  can be formalized as a constrained 
optimization problem (see Barthelemy & Guenoche, 1991; De Soete & Carroll, 
1996):

m m {L(D )} =  m i n j 5 > i 3  - d y ) 2j  =  min | ^ t r ( P  -  D )(P  -  D ) ' j  , (3.2) 

subject to

d-ij + dkl <  max [dlk +  d]t, djk + du } for 1 < i , j , k , l < N ,

with D  =  {dl] } denoting the matrix of estim ated path length distances.
Conceptually, locating an additive tree for a given proximity m atrix sep­

arates into the distinct tasks of construction and fitting. The former seeks

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to  identify a particular additive tree structure most appropriate for the given 

data  through establishing constraints as defined by (3.1). F itting  is concerned 
with estimating tree distances, conforming to  the constraints of the particular 

additive tree structure identified such th a t L{D) is minimized. As Krivanek 
(1986) demonstrates, locating an additive tree poses an NP-hard optim ization 
problem, rendering all currently available algorithms for finding additive tree 
structures as heuristics, with no guarantee of obtaining a  globally optim al so­
lution (of course, with the possible exception of a reasonably sized problem 
tha t allows for complete enumeration). If the constraints characterizing the de­
sired tree structure are known in advance, either from research or suggested by 
theory (i.e., the construction step can be skipped), (3.2) reduces to  solving a 
least-squares problem with given linear inequality constraints, typically term ed 
non-heuristic tree-fitting.

3.1 .3  M ultip le  A dditive Tree Structures

Carroll and Pruzansky (1980; see also, Carroll, 1976; De Soete & Carroll, 1996) 
propose locating multiple additive tree structures to  a given d a ta  m atrix  by 
means of successive residualizations of the input proximity m atrix. As an ex­
ample, consider locating a biadditive tree representation of P: an initial tree 
structure D i =  {d(i)ij} is identified for P, and a second structure D 2  =  {d(2 )ij} 
located for the residual m atrix P — Di. In an attem pt to  further improve the 
fit of the biadditive structure, the residuals P  — Di — D2 are added back to  Di,  
followed by re-estimating Di, potentially better fitting P — D 2, and producing 
a revised residual m atrix (P -  D a) -  D t to  be restituted to  D 2, followed by 
refitting D2. The process continues by repetitively fitting the residuals from the 
second additive tree structure by the first, and the residuals from the first addi­
tive tree structure by the second, until the sequence converges (i.e., no further 
improvement in fit can be attained). Note th a t possibly negative residuals can 
be amended by an additive constant of sufficient size because additive (and also 
ultrametric) path  length distances are translation invariant.

3.2 L ocating A d ditive  Trees T hrough th e  

P en alty  Function A lgorithm

The mathematical programming algorithm for finding additive tree structures, 
devised by Carroll and Pruzansky (1980), employs the decomposition of an ad­
ditive tree into an ultrametric and a s ta r tree as a vehicle for identifying an 
additive tree structure by cycling interchangeably through fitting either of the 
two structures while the other is kept fixed, until the process converges. Confor­
mity of the distance estimates to the ultram etric inequality is enforced through 
inclusion of a penalty term  in the loss function. De Soete (1983) suggests a  re­
finement of the penalty algorithm tha t operates directly on the observed proxim-
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ities, w ithout relying on an intermediate decomposition step. De Soete’s penalty 
algorithm utilizes a relaxation of the constrained minimization problem in (3.2), 
obtained by translating the restrictions imposed by the four-point condition into 
a penalty function and shifting the latter into the objective function, yielding 
the unconstrained minimization problem:

min (F (D , A)} =  nun (T (D ) -I- A P(D)} ,

w ith the penalty function reflecting violations of the four-point condition

P (D ) =  ^ 2  (dik + djl -  du -  djkf  ,
S

where the set

Q — ^ ( i , j , k , l )  | i ^  j  ^  k  ^  1 , dij-^rdfci <  min {dik T  dji,djk dn} , dik~\~dji ^  djk~kdn^

contains the ordered quadruples of objects for which the distance estim ates 
infringe the additive inequality. The tuning param eter A is initialized as the 
ratio of L (D )/P (D ), and updated from iteration t  — 1 to t  by A ^  =  10A(t_1), 
thereby steadily increasing the impact of the penalty term  for each iteration. 
Computationally, the minimization of F (D , A) is achieved through an iterative 

conjugate gradient procedure suggested by Powell (1977).

3.3 Locating A d ditive Trees T hrough Iterative  

P rojection

The IP algorithm for constructing additive tree structures by H ubert and Ara- 
bie (1995b), an adaptation of D ykstra’s (1983) general IP algorithm for solving 
least-squares minimization problems with inequality constraints, allows for solv­
ing (3.2) directly, w ithout deployment of intermediate decompositions, penalty 
functions or gradient-based optimization techniques.

Recall th a t an additive tree structure is perfectly determined by the collec­

tion of constraints, C \ , . . .  ,Cw as defined by the four-point condition in (3.1), 
where each Cw is associated with one of the W  =  (^ )  quadruples to  be gener­
ated, given N  objects. For a  specific quadruple w  of objects O,, Oj,  Ok, and 
Oi, the four point condition translates into three possible inequality constraints, 
one of which must be satisfied by the six distances involved, representing the 

associated constraint set Cw:

S{j +  Ski 

Sik +  Sji

S{1 “i“ Sjk

20

—  &ik T = 3jk T  du

— S i j  T  Ski  — S u  A  S j k

<  Sij 4- Ski =  Sik +  Sji.

(3.3)
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A given Cw expands into four inequalities, for example Cw defined by (3.3) 

entails:

Sij + Ski < Sik +  Sji S  ̂ +  Ski — (Sik +  Sji) < 0

Sij +  Ski 5~ Sjk +  Su o  Sij -f Ski — (Sjk +  Su) < 0 

Sik  +  Sj i  £  S j k  + S u  1 ^  +  ^  ^  + g a )  =  0

Ojk Vil — *ik  *j l  J

3.3.1 N on-H euristic  Iterative P rojection

In case the constraints Ci , . . . ,  Cw on the Sij — dx) have already been identified 
(either through previous research or on theoretical grounds), the additive tree 
structure is estimated by what has been termed non-heuristic IP (with augmen­
tation, as the Cw represent convex cones). The practical purpose of fitting a 
known additive tree structure to a given proximity m atrix P  =  p  requires the 
estimation of tree distances D* =  d* £ C =  fjT" Cw th a t minimize the least- 
squares loss function (p — d ) '(p  — d), with p  and d  denoting vectorizations 
of matrices P  and D. After initializing d^°* =  p , the algorithm proceeds by 
checking for each quadruple of objects Oj, O j, Ok, and O; whether the involved 
distances

O i  O j  O k O i

O i d i j  d i k d u

O j d j k d j i

O k d k l

O i

conform to the respective constraints in Cw. If a t iteration ( - l a  violation 
is encountered, the vector of distances d̂ t_P is projected onto Cw, and the 
particular distances are replaced by their projections yielding d^ (see Dykstra, 
1983; Han, 1988). For example, if for the first inequality of Cw, as defined by 
(3.3), we observe dft ^  + d ^  ^  — (d^  ^  +  d^ ^ )  >  0, the projections are given 

by:

4? -  [ - " - 4 - " - 4 ' " )

4? = 4 r ' , - J ( 4 ^ l + 4 ^ , , - 4 r , ) - < < r ,)

4 ?  =  4 ! " , + i ( 4 r , + ‘« - , ) - 4 ; - , , - 4 : - ,>) -

Proceeding in this manner, IP cycles through C i,. . . ,  Cw until convergence to 
d*. As an aside, to  ensure non-negativity of the estim ated distances d t] , for 
each triplet of objects Oi, Oj,  and Ok the triangle inequality has to  hold:

dik d  dij -j- djk,
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which can either be effected by the explicit incorporation as additional con­

straints, or by the translation of the final distance estimates by an additive 
constant of sufficient size.

The VAF criterion serves as a measure for assessing the quality of an esti­
mated additive tree structure, defined by

VAP -i tr(P — D*) (P  — D*)'
E , < > o - P ) 2 tr(P — P ) ( P  — P)'  ’

with p denoting the mean of the off-diagonal entries in P  =  {p, 3  }, and the 
fitted distances, ft should be noted th a t the solution vector d* minimizing the 
least-squares criterion also maximizes the squared correlation between p  and a 
vector d  € C, thus qualifying VAF as a  valid coefficient of determination.

3.3 .2  H euristic  Iterative P rojection

IP can also be applied as a heuristic m ethod when the specific constraints identi­
fying the additive tree structure representation for a given d a ta  set are unknown. 
Heuristic IP  essentially relies on the same algorithm as non-heuristic IP, but 
the necessary inclusion of a construction step for determining the constraints 
calls for modifications to  serve the purpose of a heuristic search strategy. First 
and foremost, repetitively cycling through construction and estim ation may not 
necessarily result in the sequence d ^  converging to  Pc{p) =  d*, the vector 
of optimal tree distances, as Hubert and Arabie (1995b) report. R ather, aug­
mentation, also required with heuristic IP  due to  the specific nature of the 
side-constraints, may cause an indeterminacy problem such tha t the algorithm 
eventually oscillates through a fixed collection of vectors associated with differ­
ent constraint sets. Based on the notion th a t IP without augm entation always 

produces a convergent sequence d ^ ,  but possibly not to  the desired optimum 
d*, Hubert and Arabie (1995b) recommend as heuristic IP  search strategy a 
two-step procedure, initially employing IP with augmentation until oscillation 
occurs, continued by IP without augm entation of a  randomly chosen vector from 
the set of oscillating solutions, which will always converge ( “quadruple reduction 
m ethod” , see Barthelemy & Guenoche, 1991, pp. 66-77). Hubert and Arabie 
(1995b) advocate a final ‘polish’ for the resulting distances by an application 
of non-heuristic IP to p  onto the Cw as they were identified a t the terminal 
stage of convergence. Of course, the VAF criterion can also be used to  assess 
the fit of a heuristic additive tree structure. It is obvious th a t the additive tree 
representation obtained through heuristic IP depends on the initial order of the 
elements in P  because the IP algorithm proceeds by stepwise inspection of all 
object quadruples O i ,  O j ,  O k ,  and O ;. Thus, to  reduce the risk of detecting 
a purely locally optim al solution, a common nuisance to any heuristic proce­
dure, utilization of heuristic IP with multiple runs on the randomly permuted 
input proximity m atrix P  is strongly recommended to identify a solution with
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maximal VAF.

3.4 L ocating A d ditive  Trees for T hree-W ay  

D ata

Algorithms for locating additive tree structures for three-way two-mode data  
generally follow the rationale th a t different sources base their judgm ents on a 
shared frame of reference. The assumption of a  common denominator of per­
ception/judgm ent is operationalized by the technical requirement of locating a 

particular collection of trees all restricted to  an identical topology as an optim al 
representation of the S  individual proximity matrices. The topological structure 
of an additive tree is uniquely determined by the equality constraint on the two 
largest sums of pairs of distances for each quadruple of objects. Imposing the 
restriction of an identical topology onto a collection of S  additive trees trans­
lates into the constraint of those two largest sums of each quadruple of objects 
referring to  the same pairs of distances across all sources S.  Individual varia­
tion is modelled through differential shrinking or stretching of branch lengths. 
Imposing the same-topology condition can be done in two very different ways.

INDTREES (Carroll et al., 1984), a  generalization of the Carroll-Pruzansky 
(1980) penalty algorithm, imposes the same topology condition through the 
ultrametric-centroid decomposition of additive trees. Initially, an ultram etric 
representation of the average of the individual proximity matrices is identified 
from hierarchical clustering. Subsequently, the individual proximity matrices 
are fit against the average representation by the conjugate gradient method. 
For each source s, conformity of the distance estim ates to the constraints de­
fined by the ultram etric inequality is enforced, as in the two-way case, through a 
penalty term  securing equality of the two largest distances. The same-topology 
condition is put into effect through a second penalty term  imposing the same 
two pairs of distances of each object triple Oi, Oj,  Ok to  be the largest two for all 
sources. Construction of source-specific additive tree structures is accomplished 
through subsequent least-squares estimation of individual star components to 
the residual proximities Pij(s) — u ij(s)- INDTREES iterates through the two 
estimation steps until convergence. As INDTREES does not fit directly an ad­
ditive tree to a proximity matrix, one should observe the im portant technical 
issue arising when we wish to  fit multiple additive tree structures: INDTREES 
generates multiple ultram etric tree representations through successive residual- 
ization of the input proximity data, then followed by fitting a single sta r tree 
to  the remaining residuals. No explanation is offered how to distribute the sta r 
component across the previously retrieved multiple ultram etric structures to  re­
trieve the desired multiple additive trees. Also, we need to re-emphasize tha t 
INDTREES has never been made available as a fully implemented computer 
program.
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The task of locating additive tree structures to  three-way two-mode data  
through IP for analyzing individual variability is addressed within a deviation- 
from-the-mean framework: based on the individual proximity matrices aggre­
gated across sources (usually by averaging), denoted by P a , a best-fitting refer­
ence tree structure D* is identified through application of heuristic IP, against 
which the individual data are fit. Concretely, the additive tree representa­
tion D* of P a is determined by the associated collection of constraint sets 
Ci(a) , . . .  ,Cw(a) as identified by heuristic IP. In the subsequent analysis of in­
dividual source variability, Ci(a) , . . . , Civ(a), is treated as the given set of con­
straints for non-heuristic IP used for fitting the S  individual proximity matrices. 
Thus, the specific additive tree structure D* serves as frame of reference for the 
confirmatory fitting of the individual additive trees of sources s, thereby restrict­
ing them  to the same topology; individual variability is modelled through con­
strained least-squares estimation of differential branch lengths. Clearly, in com­
parison with INDTREES, the direct construction of three-way additive trees, 
w ithout an intermediate ultrametric-centroid decomposition and not involving 
penalty terms, represents the most distinctive feature of the proposed IP-based 
routine. The individual loss functions to  be minimized are defined as

m in{L (D s)} =  min j  { ^ tr(Ps "  D ^)(P » ~  D*) ' j  >

with Dj, subject to the sets of linear inequality constraints, C \(a), ■ • • ,C f (a ) ,  
associated with D*. The VAF criterion obtained for each individual tree serves 
as a  fit index quantifying how closely the fitted additive tree distances reflect 
the properties of the reference structure:

E t r ( p , - D ; ) ( p , - D ; r  , .
E i < M m - P s ) 2  tr(p s — p s) ( p s — p s)'

3.5 A pplications

As already mentioned, unfortunately, INDTREES by Carroll, Clark, and De- 
Sarbo (Carroll et al., 1984) is not available as a computer program. INDTREES 
would have been the first, and most natural choice for a comparative evalua­
tion of the performance of our combinatorial algorithm for locating additive 
tree representations of three-way data. However, one might generally consider 
such a  comparison as not particularly germane, because of the indeterminacy of 
the INDTREES solutions with regard to the distribution of the single centroid 
component across the multiple ultram etric tree structures.
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Table 3.1: Heuristic additive tree fitting to  the aggregated proximity data, P a : 
frequency distributions of the VAF scores, as obtained from 10,000 random 
starts.

VAF Frequency
.749 3
.784 4
.790 7
.791 7
.792 1

.793 2

.797 3

.801 14

.802 464

.803 115

.804 16

.805 254

.836 3941

.847 1 1

.852 5158

3.5.1 T hree-W ay A d ditive Tree S tructures for Schem atic  
Face Stim uli

Before presenting details and results of the analysis, a brief comment regarding 
the additive tree representation finally selected seems in order. Initial exper­
imentation with a  single additive tree structure (not reported here) suggested 
th a t a biadditive tree model provides a more adequate and accurate represen­
tation of the structural properties of the data. The inclusion of a second tree 
structure appears to  ‘clean up’ the first tree component, a phenomenon pre­
sumably due to  the correlation between the two structures, which in tu rn  is an 
immediate consequence of the cyclic fitting scheme. The biadditive representa­
tion lends itself to  a  more convincing interpretation than could be deduced from 
the single additive tree structure. So, our preference is with the former because 
of the methodological (rather than substantive) points to  be taken, the choice 
of a  single or biadditive representation seems irrelevant.

Finding and fitting the biadditive tree structure was carried out through a 
MATLAB routine, b ia tre e fn d .m  (see Hubert et al., 2006), performing heuris­
tic IP on the vector of proximities in the average m atrix derived from the 22 
individual data  matrices, denoted P a . Conveniently, b ia tre e fn d .m  allows for 
multiple runs with initial random perm utations of the input proximity matrix; 
we used 10,000 random starts. The frequency distribution of the VAF scores 
obtained is reported in Table 3.1.

The solution with the largest VAF value (.852) was chosen as reference ad­
ditive tree structure against which we fit the 22 individual rating matrices P s. 
The tree graphs of the biadditive reference structure are presented in Figure
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3.1; their interpretation is straightforward (all trees have been rooted utilizing 
the Sattath-Tversky minimum variance criterion [see S a tta th  & Tversky, 1977]). 
Clearly, the first additive tree structure identifies three segments of face stimuli 
based on the primary criterion emotional appearance as implied by the factor 
M outh with its levels ‘frown’, ‘flat’, and ‘smile’. Notice tha t apparently the 
three categories are not perceived as equally distinct, rather ‘flat’ and ‘smile’ 
are merged, while ‘frown’ is still set apart. W ithin each group a secondary sepa­
ration into faces with ‘open’ versus ‘solid’ circled eyes can be observed, while the 
factor Facial Shape differentiates between stimuli on the tertiary  level. The sec­
ond additive tree structure produces a perfectly balanced grouping dominated 
by the feature Facial Shape, subsequently contrasting stimuli w ith ‘open’ and 
‘solid’ circled eyes, while emotional appearance is employed as tertiary  criterion.

For a deeper understanding of the relation between the hierarchy of VAF 
scores and the corresponding tree representations, graphs of all solutions re­

ported in Table 3.1 were obtained. The worst solution (.749) differs from the 
best only in terms of the first tree structure with the order of secondary and 
tertiary  criteria, Eyes and Facial Shape, reversed. Solutions with VAF values in- 
between those two extremes basically represent intermediate stages as resulting 
from transforming the worst into the best additive tree representation.

F itting the biadditive tree structure for the 22 sources was carried out 
through the MATLAB routine b ia t r e e f  i t  .m, performing non-heuristic IP  on 
each of the individual proximity vectors derived from the P s , with constraints 
defined by those detected when locating the biadditive reference structure through 
b ia tree fn d .m . Table 3.2 presents the sorted VAF scores of the 22 sources, due 
to  (3.4), indicating how closely the various individuals were actually represented 
by the reference tree structure. Subjects 5, 12, and 17 form the top three group, 
while the bottom  three comprise subjects 1, 14, and 2. For succinctness, we 
will only consider the two extremes of individuals exceptionally poorly or well- 
represented, the top and bottom  three. Figure 3.2 presents the additive tree 
graphs; due to  limited space only the first additive structure is displayed. As 
sole representative of the top three group, subject 5 is chosen, whereas the addi­
tive tree structures of subjects 1, 14, and 2 are completely documented because 
they promise to  provide deeper diagnostic insight into how sources with data  of 
apparent ill-fit are handled by b ia t r e e f  i t  .m. Not too surprising, the additive 
tree structure of subject 5 matches the reference representation closely, which to 
a lesser degree applies to  subjects 2 and 14, though both tree structures display 
several ties, indicated by vertical bars joining more than  two branches a t a time. 
Ties can occur as a result of remedying violations of the four-point condition 
through averaging the involved distances. For subject 2, the ‘smile’ segment 
conforms well to  the reference structure, while the ‘flat’ and ‘frown’ categories 
are tied, draping the (arbitrarily) split ‘frown’ category around the ‘fla t’ seg-
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Figure 3.1: Biadditive reference tree representation (VAF=.8521) of the aggre­
gated proximity matrix, P a .

First Structure
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Table 3.2: Ranking of individual fit measures.

Source VAF
5 .857

12 .849
17 .818

1 1 .817
2 0 .789
16 .787
13 .771
2 2 .771
19 .756
7 .732

2 1 .723
9 .722

15 .705
3 .683

1 0 .669
4 .660

18 .638
8 .629
6 .623

2 .580
14 .469

1 .104
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ment. Such inversions do not occur with subject 14. Superficially, in its lay-out 
the additive tree structure perfectly matches the reference tree. However, closer 
inspection reveals ties between the ‘flat’ and ‘smile’ segment as well as within 
the ‘frown’ category, which compromise the representation because obviously 
for this particular source conformity to  the reference structure could only be 
attained through tied distance estimates. The individual additive tree structure 
obtained for subject 1  appears extremely distorted, due to  numerous ties, and 
is basically non-interpretable.

Figure 3.2: Individual biadditive tree representations for selected subjects: first 
structure.

Subject 5 (VAF=.857) Subject 2 (VAF=.580)

Subject 14 (VAF=.469) 
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' ©
- ©

©

I ©

©
-©

©
■ ©

To further explore the deviant perspective of the three bottom  subjects as 
suggested by their tree representations, additional insight into the exact nature
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of their judgm ents seems desirable. Therefore, in treating respondents 1, 14, 
and 2  as independent sources, their dissimilarity data were re-analyzed, w ith 
separate biadditive tree representations to  be fit heuristically. The main ob­

jective is to  determine whether subjects just provided random judgm ents, or 
whether they applied idiosyncratic criteria th a t simply did not m atch the rest 
of the sample. Each individual proximity m atrix was subjected to 10,000 ran­
dom starts of b ia tre e fn d .m . For each source the solution with the highest VAF 
score was chosen as its final representation. The respective graphs of the first 
additive tree structure are presented in Figure 3.3. Looking a t the tree graph 
for subject 1  suggests an immediate explanation: the arrangement of the face 
stimuli reveals no interpretable pattern. Obviously, subject 1 just made random 
judgments. The situation is different with subjects 14 and 2. The tree diagrams 
reveal th a t they obviously place different priority on the criteria for judging the 
face stimuli as compared to  the reference tree. Both respondents primarily use 
eye shape to  distinguish between the twelve schematic faces, while Facial Shape 
(subject 14) and emotional appearance (subject 2) serve (not too consistently) 
as secondary criteria.

3.6 D iscussion  and C onclusion

Smith (1998) in a comprehensive evaluation of three heuristic additive tree fit­
ting algorithms, IP, ADDTREE devised by Corter (1982, 1996) based on S atta th  
and Tversky’s (1977) original work, and De Soete’s (1983) penalty function ap­
proach, observed th a t heuristic IP consistently outperformed its competitors in 
locating the best-fitting additive tree. The critical reader may be tem pted to 
suggest further research to  explore whether this result can also be validated for 
IP as a  tool for modelling individual differences through additive tree struc­
tures as proposed in this paper, in comparison, say, with INDTREES (Carroll 
et al., 1984). However, INDTREES is not available. Still, we considered refit­
ting the examples given by Carroll and his collaborators (Carroll et al., 1984). 
Unfortunately, as soon as more than a single additive tree structure is fit to 
the data, the results are incompatible with those obtained through the combi­
natorial additive tree algorithm, because INDTREES fits multiple ultram etric 
components and only a  single centroid structure — so, how to actually split 
the centroid structure to reconstruct multiple additive tree components? Re­
call th a t our IP-based algorithm directly fits additive tree structures w ithout a 
decomposition step. Therefore, we must restrict ourselves to  the indirect conclu­
sion that, given incidental evidence and Sm ith’s results, IP additive tree fitting 
very likely is superior to  INDTREES (recall tha t INDTREES is a generalization 
of the Carroll-Pruzansky [1980] penalty algorithm th a t was later on refined by 
De Soete [1983] into a procedure no longer relying on the ultrametric-centroid
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Figure 3.3: Independent biadditive tree representations for the bottom  three 
subjects: first structure.

Subject 1 (VAF=.862) Subject 14 (VAF=.805)
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Subject 2 (VAF=.802)

decomposition).
The approach adopted in this paper is guided by a principle common in 

statistics as well as of immediate intuitive appeal, namely, to analyze individual 
variability within a deviation-from-the-mean framework: based on the aggre­
gated individual proximity matrices, an additive reference tree is located repre­
senting the average structure, against which the individual data  are fit directly in 
a  confirmatory manner, w ithout involving an intermediate ultrametric-centroid 
decomposition nor penalty terms.

Lastly, as an alternative approach rooted in a very different philosophy of 
how to  analyze three-way data, we need to mention consensus tree modelling: 
initially, tree representations are found and fit to each individual data source
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independently, followed by an integrative step aimed a t locating a prototypical 
tree representation tha t captures a maximum of the individual variability ob­
served among the independent source trees, analogous to a  m ajority voting rule. 
The crucial question of which way is the ‘best’ may not have a definitive answer, 
which rather, a t least to  a certain extent, depends on personal preference as well 
as the objective of a study and specific features of the data  at hand.

Disregarding all these methodological peculiarities, it remains unfortunate 
th a t additive tree representations as a d a ta  analytic tool appear to  be rarely 
used in Psychology. The reasons for this may be in some part due to  the 
relative inaccessibility of appropriate software to  the potential user of a more 
applied inclination. Only SYSTAT offers an implementation of additive tree 
construction and fitting through the ADDTREE algorithm th a t, however, does 
not allow for representation of individual tree differences. An obvious conclusion 

to  this manuscript is tha t if one is interested in applying additive tree structures 
to  three-way two-mode proximity data, the MATLAB heuristics a tre e fn d .m  
(for fitting a single tree structure) and b ia tre e fn d .m , as well as their non­
heuristic counterparts a t r e e f i t .m  and b i a t r e e f i t .m  would be natural choices 
to  consider.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M ultid im ensional Scaling

T he development of models for multidimensional scaling (MDS) th a t explicitly 
account for individual differences in, for example, the judgm ent or perception 
of objects has been a research topic of longstanding interest in quantitative 

psychology (see the monograph by Arabie, Carroll, & DeSarbo, 1987, or the 
comprehensive reviews by Carroll & Arabie, 1980, 1998). The most prominent 
approach to  individual differences scaling is through what is usually called the 
weighted Euclidean model. Based on a common group stimulus space, derived 
from the aggregated sample data, individual object configurations for each sub­
ject (‘private spaces’) are represented in reference to this common space through 
differential weighting of its dimensions, thereby shrinking or extending coordi­
nates of objects along the respective axes. A number of methods for the esti­
m ation of the weighted Euclidean model for individual differences scaling has 
been implemented, such as INDSCAL (Carroll & Chang, 1970; Carroll, 1972), 
SINDSCAL (Pruzansky, 1975), ALSCAL (Takane, Young, & de Leeuw, 1977), 
MULTISCALE (Ramsay, 1977), and most recently, PROXSCAL (Comman- 
deur & Heiser, 1993; Busing, Commandeur, & Heiser, 1997; Meulman, Heiser, 
& SPSS, 1999), as part of the CATEGORIES module in SPSS from version 10 
onwards. All these methods, as implied by the name of the underlying model, 
a ttem pt to  fit Euclidean distances. The goal of this paper is to  introduce a 
method for individual differences scaling within the city-block metric.

Attneave (1950) raised the issue of an adequate metric for scaling stimuli. 
He introduced the (phenomenological) distinction between analyzable and inte­
gral stimuli, with the latter representing a holistic mix of constituting dimen­
sions th a t a t an observer’s perceptual level are assumed extremely difficult to 

decompose into well-defined, separate contributions; the dimensions are ‘unan- 
alyzable’. Colors varying in lightness and saturation may serve as the standard 
example. Analyzable stimuli, in contrast, are postulated to be composed of 
perceptually separable dimensions. Examples are forms varying in size and 
orientation. Empirical evidence suggests tha t for integral stimuli, distances in 
psychological space are best approximated by the Euclidean metric, while the 
city-block metric allows for superior accuracy in mapping the distance struc­
ture of analyzable stimuli (for reviews, see Arabie, 1991; Gamer, 1974; Shepard, 
1991; for general theoretical results on the city-block metric the reader may con­
sult Fichet (1987), Le Calve (1987); for a survey of applications of the city-block 
metric in statistics, see Dodge, 1997).
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In light of these findings, it is surprising tha t, to our knowledge, only two a t­
tem pts for incorporating the city-block metric into individual differences scaling 
have been published in the literature (Okada & Imaizumi, 1980; Heiser, 1989a). 
In both instances the city-block model is fit using gradient-, or subgradient- 
based optimization. To avoid the well-documented difficulty of local minima 
when fitting city-block models (see De Leeuw & Heiser, 1977; Hubert & Arabie, 
1986, 1988) the method developed here utilizes combinatorial optimization th a t 
instead of trying to  identify optim al object coordinates by solving the stationary 
equations associated with a specific loss function, attem pts to solve the opti­
mization problem through finding an arrangement, or perm utation of objects 
along a continuum tha t is optimal in the sense th a t the order-induced object lo­
cations immediately yield coordinates minimizing the given loss function. The 
combinatorial rationale for city-block scaling, comprising unidimensional and 
multidimensional scale construction, can also accommodate individual differ­
ences scaling within a city-block metric.

The subsequent section summarizes the key features of the weighted Eu­
clidean as well as the city-block model for individual differences scaling. A 
review of the theoretical underpinnings of the combinatorial approach to  scale 
construction, and its extension to  individual differences scaling in particular, 
will be presented in the next two sections; a third section gives an illustra­
tive application of combinatorial individual differences scaling to  schematic face 
stimuli within a city-block metric. We conclude with a  discussion of our findings 
in the last section.

4.1 T he W eighted E uclidean and the  

C ity-B lock  M odel for Individual 

D ifferences Scaling

For a given set of objects O  =  { O i,... ,O jv }  the Euclidean distance between 
objects Oi and Oj,  with 1 <  i , j  < N ,  in M-dimensional (psychological) space 
is defined by

sion, m  — 1 and X  the N  x M  coordinate m atrix for the entire set
O. Through differential weighting of the axes of the psychological space, the 
weighted Euclidean model allows for constructing individualized psychological 
spaces for different d a ta  sources (i.e., individuals, situations, scenarios, experi­
mental conditions, etc.). The weighted Euclidean distance between objects O, 
and Oj  within the representational space for source s, with s =  1 , . . . ,  S,  can be

m

where ar;m and x]rn denote the coordinates of O, and Oj  on the m th dimen-
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defined as:

dij(s)(X T W 5) — ( Z ; ( ^ mm(s)^ ‘m ^mm(s) m)  ̂
m

= ( W m m ( s )  ( x i m  ~  X j m )
m

where W s denotes an M  x M  diagonal m atrix of nonnegative weights wmrnU) 
for every dimension m  for source s. Thus, in matrix notation the individualized 
spatial coordinates of the elements in O  for source s, are given by

x s = x w ,

In other words, the weights wmm(sj account for differential salience, or impor­
tance of the m th dimension for source s through shrinking or extending dimen­
sion m  of the psychological space. Typically, object coordinates and dimension 
weights are estim ated such th a t the least squares loss function is minimized.

The city-block model for individual differences scaling retains the concept of 
differential weighting of dimensions as a means for constructing the individual­
ized psychological space for source s, but the inter-object distances are defined 
within the city-block metric:

(-^-i ^  'Wrn7n(s ) X j m \
! 771

^  % j m \ -
m

Heiser (1989a), for example, minimizes the least squares criterion through a 
subgradient approach, employing an iterative majorization algorithm, combined 
with alternating least squares estimation, and a pairwise interchange heuristic 
of the distance estimates as a precaution against local minima, as suggested by 
Hubert and Arabie (1988). As an exemplary application, Heiser fits his model 
to  the “Cola” data  analyzed by Schiffman, Reynolds, and Young (1981), using, 
among other programs, INDSCAL, SINDSCAL, ALSCAL, and MULTISCALE. 
Heiser reports satisfactory results th a t come close to those obtained through 
MULTISCALE by Schiffman, Reynolds, and Young (1981).

4.2 C om binatorial Scaling

Basically, any proximity-based scale construction, uni- or multidimensional, can 
be represented as a combinatorial optim ization problem as it amounts to identi­
fying a  specific object ordering along one or several dimensions, among all pos­
sible object arrangements, which after translation into coordinates, gives inter­
object distances approximating the observed proximities in a least-squares opti-
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mal sense. Hubert, Arabie, and Meulman (Hubert & Arabie, 1986, 1988; Hubert 
et al., 2 0 0 2 , 2006) initially developed a combinatorial optimization framework 
for unidimensional scaling th a t with some minor algorithmic adjustments, read­
ily generalizes to  the task of representing a set of objects in M-dimensional 
space, as well as to  multidimensional individual differences scaling within the 
city-block metric.

4.2 .1  C om binatorial U nid im ensional Scaling

Let P  =  {Pij} denote an N  x N  square-symmetric two-way one-mode prox­
imity matrix. Constructing a unidimensional scale of the N  objects, based 
on their proximities, requires estimation of coordinates a q , . . . ,  representing 
the object locations such th a t the induced N ( N  — l) /2  interpoint distances, 
dij =  \x j  ~  Xi\, approxim ate the proximities in P  optimally, minimizing the 
least-squares criterion:

L (x ) =  -  I1! "  Xi^  =  ^ t r (P  ~  D )(P  ~  D ) '’ (4 1 )
i<j

with D  =  {|xj — Xjj }. W ithout loss of generality, the sum of the coordinates, 
Xi, is restricted to zero, which does not affect the value of the loss function 

(i.e., any set of values x \ , . . . ,  x n  can be replaced by aq — x , . . . ,  — x,  with
x  = { l / N )

The standard iterative gradient-based algorithm to minimizing (4.1), as pro­
posed, for example, by G uttm an (1968), upon convergence yields a  set of coor­
dinates x i , . . . ,  x n , satisfying the necessary condition (based on the stationary 
equations of L(x))

x i  = —  £ p y  sign(xj -  Xi), (4.2)
j

with

( 1  if Xj — Xi < 0
0  if Xj -  x, =  0

— 1  if x j  — X{ > 0

(see De Leeuw & Heiser, 1977; Hubert & Arabie, 1986, 1988). It holds for 
any proximity m atrix P  tha t the coordinates obtained from the gradient-based 
algorithm possess the property

X\ — ti  <  . . .  ^  Xpf —tjv,

with ti defined by

ti :=  ~^(ui ~  vi)i (4-3)

where u t denotes the sum of entries in the i th row of m atrix P  from the extreme
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left up to  the main diagonal:

i— 1
Ui := ^ p i j  for i > 2 ;

3=1

Vi indicates the sum from the main diagonal to  the extreme right of P :

N

Vi for i < N.
j —i+l

Note th a t ui  =  ujv = 0 .  Thus, the gradient procedure permutes the input 
proximity matrix such th a t for consecutive rows, the differences between the 
sums of row entries to  the left and right of the main diagonal are monotonically 
increasing, w ith the immediate choice for the wanted coordinates, x % =  ti (for a 
detailed derivation, see Appendix I).

Obviously, the size of the ti depends directly on a given row/colum n per­
m utation p(-) =  p € ft of P  (with fl  indicating the set of feasible perm utations 
of the first N  integers). Note th a t for square-symmetric matrices no canonical 
order of their rows and columns exists, hence any simultaneous rearrangement 
of rows and columns is legitimate. In general, a m atrix displaying the pattern  
£i <  . . .  <  tj\r is said to  be in monotonic form. Unfortunately, the monotonic 
form of a  matrix is not unique, and as a consequence neither are the coordinates 
provided by the iterative gradient algorithm. In fact, for any given proximity 
m atrix P , a m ultitude of gradient-based solutions for the coordinates a q , . . .  , x n  
exists, all fulfilling the necessary condition in (4.2). Also, satisfaction of (4.2) 
alone does not guarantee a global minimum of the least-squares loss function in
(4.1), as will become obvious after some algebraic manipulation, relying on the 
restriction a:, =  0 , and the additional constraint aq < . . .  < x ^ ,  leading to

L ( * )  =  J 2  P % +  W ( ^ ( a q  -  t i ) 2 -  t f )  (4-4)
i<j i i

(for details, see Appendix II). For a gradient-based solution satisfying (4.2), 
£T(aq — t i ) 2  in (4.4) equals zero because aq =  t t . But, minimizing L(x), in ad­
dition, depends on the size of term  ]>T t f  th a t the gradient algorithm neglects. 
More succinctly, the gradient-based approach does not control for the particu­
lar monotonic form used for P , also maximizing t'f. Therefore, the resulting 
coordinates usually represent only a feasible solution and not necessarily an op­
tim al one. As Hubert, Arabie, and Hesson-Mclnnis (1992) show, these findings 
generalize to  settings where a multidimensional representation (i.e., M  >  1) of 
a  set of objects within the city-block metric is sought.

Under the assumption th a t the optimal order of objects O i , . . .  , 0 at along 
the continuum is known, Defays (1978) dem onstrates th a t the minimization of
(4.1) can be re-phrased as a least-squares problem with a closed form solution
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for the spacings between objects, from which their actual coordinates can be 
deduced immediately (for details, see Appendix III). In addition, Defays (1978) 
verifies th a t, given the specific object order maximizing ]TV t f , the loss function 
of (4.1), indeed, is minimized solely by letting x, =  for 1 <  i < N ,  where the 
ti are retrieved using (4.3). To summarize, if we manage to  find the monotonic 
form of P  th a t gives the optimal object order, we can readily provide the desired 
globally optim al coordinates from Xi =  £,. Formally, if p denotes a perm utation 
of P  yielding a  particular object order, the optimization problem of finding p* 
and x \  <  . . .  <  xjy, defining a global minimum of the loss function in (4.1), can 
be formalized as

(fV ( 0 p*G') — Ix j  ~  x i I) =
i<3

min { z C  (Pp(i)pU) ~  I Xi ~  ^ l ) 2  I P € x i < - < x n ', ^ 2 x i =  o}-
i<j i

As already indicated, the identification of p* represents an NP-hard combinato­
rial optim ization problem, solvable for small data  sets by enumerative methods, 
but calling for heuristic solution strategies for larger N.  The combinatorial op­
tim ization strategy for minimizing T(x) focuses on maximizing ]T7 tf  through 
QA — formally:

r(p )  =  ^ "jPp(i)p(j)\x j  ~  x i\ =  2 N y
i,3 i

with |xj — Xi\ denoting fixed interobject distances based on a set of equally- 
spaced, arb itrary  coordinates, x i  < . . .  < x , <  xj  < . . .  < x ^ ,  satisfying 
constraints x, =  0 and ti <  . . .  < £,v; in other words, the target m atrix B  =  
(|Xj — x ,|} , is in monotonic form. Hence, maximizing T(p) through finding an 
optim al perm utation will render x ltp(l) a  maximum, thereby also maximizing 

because x { = tp(i).

The fit of an identified perm utation p, and associated coordinates is assessed 
through the VAF criterion:

E i< j  (Pij ~  1^ -  *il ) 2  _  tr (P  — D )(P  — D )'
Z ^ j i P i J - P ) 2  tr (P  — P ) (P  — P ) '

with p  denoting the mean of the off-diagonal entries in P  =  {pt] }.
Minimizing the least-squares loss function T(x), as given in (4.1) or (4.4), 

however, corresponds to fitting a regression model through the origin (in familiar 
generic notation: jp =  3 x t +  f,), which — even though justifiable on theoretical 
grounds in certain instances — in general, has serious disadvantages. First, the 
residuals usually do not sum to zero; second, the sum of the squared residuals, 
S S E ,  might exceed the total sum of squares, S S T O ,  hence the coefficient of 
determ ination, R 2  = 1 — S S E / S S T O , might tu rn  out to be negative, thus
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becoming essentially meaningless. Lastly, using uncorrected 5 5  as a remedy 
will avoid a negative R 2, but R 2  will no longer be bounded between zero and 
one, creating another interpretation problem. Yet, by including an additive 
constant /30  in the model, y t =  do +  fh'xt +  e,, we ensure th a t the obtained VAF 
fit score is equivalent to  the (bounded) R 2  measure in regression:

v , p E i ^ t P y - d ^ - ^ l + c ) ) 2 t r ( P - ( D  +  C ) ) ( P - ( D  +  C))'  
- p ) 2  t r (P  — P )(P  — P ) '

with C  =  {c} denoting a square m atrix containing the additive constant, and 
main diagonal entries equal to zero. The inclusion of an additive constant 
changes the least-squares loss function in (4.1) to

L(x, c )  =  Y ,  f ry -  (l*i -  **1 +  c ) f  =  5 tr(p  -  ( °  +  c )) (P -  (D +  C))'.
i<j

“Two interpretations exist for the role of the additive constant c. We could 
consider \xj — x t \ to  be fitted to  the translated proximities p,j +  c, or alter­
natively, |Xj — Xi\ — c to be fitted to  the original proximities , where the 
constant c becomes part of the actual model” to  be fitted to  the untransformed 
proximities pij (Hubert et al., 2006, p. 20). Once c is obtained, constructing 
a unidimensional scale can be regarded as approximating a transformed set of 
proximities +  c by dx] =  jxj — Xi\\ in other words, we are fitting a

metric model. If the are subjected to  an optim al monotone transformation, 
the model represents nonmetric combinatorial unidimensional scaling. As a fi­
nal comment, fitting a least-squares intercept model implies the conjecture th a t 
the proximities have interval (and not ratio) scale properties.

When including an additive constant in the model, we can no longer rely on 
setting Xi =  tp(;), but fitting a unidimensional scale now requires estim ating the 
coordinates and the additive constant c. More succinctly, the inclusion of an 
additive constant conceptually transforms the construction of a combinatorial 
unidimensional scale into a two-fold (constrained) least-squares minimization 
problem, separating into the distinct operations of finding an optimal perm uta­

tion p* through QA, followed by numerical estimation of the object coordinates 
and c. Both estimations are carried out through IP. In the context of combina­
torial scale construction, we need to solve

m in { (p  —d ) '( p  —d )}  , 

subject to  W  = ( 3 ") inequality constraints Cw, defined by the object ordering
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identified through QA:

Oi < Oj X Ok

' ^ d i k '5 : d i j  1 d j k

^ > \ x k ~ X i l  <  |x j  -  X i| +  |rcfc -  X jl

0 <  l^j — ^il +  \%k — Xj | — — Xi\ V i <  j  < k.

Recall th a t p  and d  indicate vectorizations of matrices P  and D  =  {\xj  — x;j}; 
the actual coordinates, X i ,  x3, are reconstructed from the distance estimates, d i j  

(for details of the alternating iterative estimation of coordinates and additive 
constant, see Hubert a t ah, 1997).

4 .2 .2  C om binatorial M ultid im ensional Scaling

The generalization of the combinatorial paradigm to MDS in M-dimensional 
space rests on fitting multiple unidimensional structures, incorporating the city- 
block metric, to successive residualizations of the initial proximity m atrix P  
(unlike Euclidean distances, city-block distances are additive across dimensions). 
The multidimensional setting is aided by the introduction of an additive constant 
to  accommodate computationally for the successive fitting of possibly negative 
residuals. The loss function is given by:

T ( X l , .  . . , X M  , C l , . . . ,  C M  ) — ^  ] ( P o  ^  '  ( IX jrri X{ m  | -f- Cm))
i < j  m

=  W - £ ( D m + C m) ) ( P - £ ( D m +  C m))'.
2 m

The VAF criterion is defined by

y ^ p  _  j  (P i j  ~  ~  X i m\  +  C m ))

=  1 -

£ i < 3(Po -  p ) 2

fa(P  ~  +  C ^ ) )  (P  -  E m ( + C m))'
t r (P  -  P ) ( P  -  P ) '

For the most common case of a two-dimensional configuration, the least-squares 
loss function becomes

L ( x i , X 2 , C 1 ,C 2 ) =  ^ ( P i j  -  ( \ X j l - X n \ + C l )  -  ( \ X j - 2 - X i 2 \ + C 2 ) ) 2

i < j

=  ^ t r ( P  -  (Dr +  CO  -  (D 2  +  C 2)) (P  -  (D j +  C O  -  (D 2  +  C 2))';

notice the legitimate interpretation c =  ci +  c2. Initially, a single unidimen­
sional structure, {|x_,i — | +  ci}, is fit to  P , followed by a second struc­
ture, {\xj 2  — Xi2 1 +  c2}, fit to  the residual m atrix {ptJ — (\xji — xn \  +  ci)}.
In attem pting to  improve the fit of the two structures obtained, the residuals
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{ptj -  -  x im\ +  <=m)} are added back to {\xjX -  x ^ l 4- c ^ ,  succeeded
by re-constructing a first unidimensional structure, with potentially better fit, 
producing revised residuals {ptJ — (|x;1 — xn\  +  ci)} th a t in turn  are restored 
to  the previously estimated second structure {\xj 2  — 2 ,2 ! +  C2 }, followed by re­
fitting the second structure, and so on. The process continues by repetitively 
fitting the residuals from the second structure by the first, and the residuals 
from the first by the second, until the sequence converges. The procedure of 
fitting P  through consecutive unidimensional structures generalizes to  higher 
dimensional configurations (i.e., M  > 2).

4.2.3 Combinatorial Individual Differences Scaling

In addressing the task of combinatorial individual differences scaling, we choose 
to  aggregate the individual proximity matrices P s into a single proximity m atrix 
P a . Based on the latter, an M-dimensional city-block scaling is constructed 
representing the common, or group space, as it is referred to  in the context of 
the weighted Euclidean model. The coordinates of objects in the private space, 
X.,, are estim ated through IP, with restrictions defined by the ordering of objects 
along the dimensions of the group space. In other words, the object orderings 
obtained for P a are used as confirmatory frame of reference against which the S  
individual proximity matrices P s are fit, with the sole restriction th a t the order 
of objects from the group space be preserved. The spacings between objects, 
however, are free to vary such th a t the loss function attains a minimum, provided 
the order constraints imposed by the group space representation are observed. 
The VAF criterion obtained for each source serves as a fit index quantifying how 
closely a private space reflects the properties of the common space.

4.3 A pplication: Scaling o f Schem atic Faces

Before presenting details and results of the analysis, a brief comment regarding 
the dimensionality of the final model seems in order: Of course, the factorial 
design for generating the face stimuli implies a focus on a  three-dimensional 
representation. However, as the scope of this paper is methodological in nature 
rather than substantive, we decided for the benefit of clarity to  confine our 
presentation to two-dimensional solutions because for the points to  be taken 
here it is irrelevant whether a  three- or two-dimensional model is preferred.

Combinatorial individual differences scaling was carried out using the two 
MATLAB routines b isc a lq a .m  and bim onscalqa.m . The first, b isca lq a .m , 
performs bidimensional scaling of an input proximity m atrix within the city- 
block metric, including the estimation of an additive constant using iterative 
QA. Thus, the b isc a lq a .m  model can be considered equivalent to  what Borg 
and Groenen (1997, p. 161) refer to  as metric multidimensional scaling, with the 
disparities obtained through a linear transformation of the input proximities.
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The MATLAB routine bim onscalqa.m  basically relies on the same algorithm as 
b isc a lq a .m , but in addition, allows for an optimal monotonic transform ation 
of the input proximity matrix. As b isc a lq a .m  and bim onscalqa.m  are both 
stand-alone routines, they conveniently allow for multiple runs with initial ran­
dom perm utations of the objects in the input proximity m atrix to  reduce the 
risk of ending up with a merely locally optimal solution; 1 0 , 0 0 0  initial random 
perm utations of the input proximity m atrix P „  were used for both b isc a lq a .m  
and bim onscalqa.m . In case of b isc a lq a .m  all 10,000 runs converged to  the 
same solution with VAF= .649, while for bim onscalqa.m , 5220 runs yielded 
a VAF= .795 versus 4780 runs resulting in a VAF= .796 (it should be noted 
th a t the strict absence of any variability in the VAF values strongly suggests 
th a t both MATLAB routines had detected a global optimum). For each of 
b isc a lq a .m  and bim onscalqa.m , the solution with the largest VAF value was 
selected as the two-dimensional group space. The identified object orderings 
along the two dimensions then served as constraints for the confirmatory fitting 
of the 22 individual rating matrices P s.

To gain an intuition for the performance of the two combinatorial routines, 
it was decided to  obtain some ad-hoc benchmarks through readily available 
commercial software. Of course, none of the two programs chosen performs 
combinatorial optimization; they rely on gradient or subgradient optimization. 
However, in both instances the least-squares loss function is used, which can 
be considered as the common denominator with the combinatorial routines. 
These supplementary analyses axe not intended to  imply a comprehensive soft­
ware evaluation. As an analogue to  b isca lq a .m , the SYSTAT scaling model 
was used, with settings “R-metric: 1” , “split loss: by m atrix” , and “loss func­
tion: minimizing Kruskal’s stress with linear transform ation” . Thus, SYSTAT 
performs gradient-based city-block individual differences (interval) scaling. Un­
fortunately, SYSTAT does not permit multiple random starts. It is mainly for 
this reason th a t the seemingly natural choice for a bim onscalqa.m-benchm ark, 
the SYSTAT scaling routine with settings “city-block metric” and “minimizing 
Kruskal’s stress with monotone transformation” of the proximities, was not re­
alized. Instead, we chose SPSS PROXSCAL as it allows for multiple random 
starts, although it does not support MDS within a city-block metric. How­
ever, features like an iterative majorization algorithm (essentially performing 
subgradient optimization), combined with alternating least squares estimation, 
make SPSS PROXSCAL a technically up-to-date and refined MDS program 

(for details see Busing, Commandeur, & Heiser, 1997; Borg & Groenen, 1997; 
Meulman et al., 1999). SPSS PROXSCAL was run with settings specified to: 
“source: multiple m atrix” , “model: weighted Euclidean” , “transformation: or­
dinal” , “apply transformation within each source separately” , “no restrictions” , 
“options: multiple random sta rts=  10000” . The solution of the 10,000 random 
starts, with the smallest normalized raw stress (NRS) value of .081, equivalent 
to  a “dispersion accounted for” (DAF) of .919 (i.e., NRS= 1—DAF) was chosen.
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The fit of the SYSTAT solution, in terms of Kruskal’s STRESS 1 (S-l), equals
0.318 (which corresponds to  a proportion of variance explained (RSQ) of 0.202). 
The fit measures, however, should rather be seen as relative magnitudes as they 
are not directly comparable across algorithms; instead, the focus should be on 
the resulting geometrical representations. The la tte r are given in Figure 4.1; 
their interpretation is straightforward. The exact position of each face stimulus 
is at its left eye. Clearly, the first dimension represents factor Mouth, ordering 
face stimuli along the continuum negative vs. positive expression of emotion,
1.e., from ‘frowning’ to  ‘flat’ to  ‘smiling’. The second dimension distinguishes 
between ‘oval’ and ‘circle’ shaped faces, thereby capturing the factor Facial 
Shape. The most obvious distinction between the two combinatorial and the 
gradient-based SPSS PROXSCAL and SYSTAT routines is the reversed order 
of solid and open circled eyes. Both, bim onscalqa.m  and b isca lq a .m , place the 
solid eyed stimuli a t the extremes of dimension 2 , while faces with open circled 
eyes occupy the midrange. In contrast, SPSS PROXSCAL and SYSTAT dis­

play an interchanging pattern of solid and open circled eyes. It should be noted 
th a t the reversed order of solid and circled eyes, as produced by the two com­
binatorial algorithms, presumably represents an artifact (and disappears when 
a  three-dimensional solution is chosen).

Table 4.1 presents the fit measures for the 22 sources, indicating how closely 
the various individuals were actually represented by the group spaces (for ease 
of legibility the original fit scores were multiplied by 1 0 0 0 , thereby eliminat­
ing decimal points and leading zeros). It seems most instructive to  focus on 
the extremes, and to  consider only individuals who are exceptionally poorly 
or well-represented. To save space, only the top and bottom  three subjects as 
discovered by the bim onscalqa.m  routine are selected for further inspection. It 
was decided to choose bim onscalqa.m  as a point of reference because, overall 
it provides a higher fit than b isc a lq a .m  due to  the inclusion of an optimal 
monotonic transformation of the dissimilarities. Therefore, in the table be­
low, individuals are sorted according to  their VAF scores as obtained through 
bim onscalqa.m  (i.e., values in the second column from the left), with the top 
and bottom  three subjects marked by •, and by o, respectively. It should be 
noted th a t for subject 1  no VAF value is available because the solution is de­
generate, i.e., all stimuli lump together at the origin indicating maximal misfit. 
To facilitate tracking the bim onscalqa.m -top-bottom -three pattern  across the 
remaining columns, top and bottom  three subjects, in terms of the fit score for 
the other methods, are also highlighted. Thus, it becomes immediately obvious 
whether or not a  ‘bim onscalqa.m -top-or-bottom -three’ subject maintains its 
rank when a different method is used.

Comparing the ranks of the individual fit measures across the four algorithms 
shows th a t bim onscalqa.m  and SPSS PROXSCAL, apart from minor rank in-
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Figure 4.1: Group Spaces
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terchanges, produce almost identical results: Subjects 12, 20, and 3 form the 
top three group, while the bottom  three are represented by subjects 1, 14, and
2. The top and bottom  ranks as obtained through b isc a lq a .m  are very close 
to  those of bim onscalqa.m  and SPSS PROXSCAL, with the single exception 
of subject 13 now holding rank 3. The ranking of sources yielded by SYSTAT 
deviates from those of the other three algorithms. In particular, subjects 12 and 
2 0  no longer appear among the top three which instead is composed of subjects 
13, 3, and 11; subject 4 drops into the bottom  three category.

Figures 4.2-4.5 present the graphs of the private spaces, as obtained through 
the four methods. As sole representative of the top three group, subject 12 is 
chosen (see Figure 4.2), whereas the private spaces of subjects 1, 14, and 2 
(see Figures 4.3, 4.4, and 4.5, respectively) are completely documented because
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Table 4.1: Ranking of individual fit measures.

Combinatorial MDS SPSS SYSTAT
bimonscalqa.m biscalqa.m PROXSCAL

Ranked
Sources VAF _________VAF DAF S-l RSQ

1 2 945 • 767 • 940 • 302 289
2 0 903 • 722 • 947 • 313 238

3 824 • 522 935 • 297 • 299 •
13 817 6 6 6 • 935 285 • 359 •
5 812 631 931 305 263

2 2 799 567 925 324 167
16 789 573 930 307 262
1 1 782 562 929 298 • 295 •
17 776 604 928 309 246
15 771 576 927 300 289
1 0 764 516 921 313 229
19 756 486 922 310 240

8 749 512 920 316 2 1 0

18 743 502 917 323 177
7 731 465 910 317 209
9 696 467 911 332 129

2 1 684 448 921 311 234
6 617 358 907 334 116
4 608 386 907 346 o 53 O
2 580 o 301 O 881 o 352 o 18 0

14 571 o 257 o 905 0 340 87
1 _(i) o 18 o 877 o 349 o 35 o

(1) R ecall th a t  th e  b im onscalqa .m  so lu tion  for su b jec t 1 w as degenera te .
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they provide deeper insight into how the various algorithms handle sources with 
d a ta  of apparent ill-fit. Not surprisingly, the results of all four algorithms for 
subject 12 (see Figure 4.2) basically coincide with the group space. However, 
the two combinatorial routines seem to emphasize the second dimension less, 
distinguishing ‘oval’ and ‘circle’ shaped faces. It should be recalled th a t due 
to  degeneracy, no private space for subject 1 (see Figure 4.3) is available for 
the bim onscalqa.m  algorithm. The private space plot for subject 1 obtained 
through b isc a lq a .m  is clear. The configuration seems to  represent random  scat­
ter, whereas the two plots by SPSS PROXSCAL and SYSTAT do not provide 
any hint at the presumably problematic nature of subject 1. Similar findings 
can be stated  for subjects 14 (see Figure 4.4) and 2 (see Figure 4.5). The 
graphs yielded by bim onscalqa.m  display all stimuli collapsing into a  dense 
region about the origin; it seems fair to  conclude th a t for both sources, the ob­
tained solutions border on degeneracy. The b isc a lq a .m  plots are less dram atic, 
though on closer inspection the overlap among some stimuli reveals a  presum­
able lack of consistency in judgment or discrimination. The SPSS PROXSCAL 
as well as the SYSTAT plots, however, look unsuspicious.

4 .4  D iscussion  and C onclusion

4 .4 .1  D iscussion

To further explore the observed discrepancies between the combinatorial and 
gradient-based algorithms, additional insight into the exact nature of the judg­
ments given by the three bottom  subjects seems desirable. Therefore, their 
dissimilarity data  were re-analyzed within a non-confirmatory setting (i.e., re­
spondents 1, 14, and 2 were treated as singular sources with separate MDS 
models to be fit). The main objective is to  determine whether subjects ju st 
provided random judgments, or whether they applied idiosyncratic criteria th a t 
simply did not match the rest of the sample. It should be recalled th a t for all 
four algorithms, the most salient criteria associated with the two dimensions of 
the group spaces are emotional expression and facial shape.

Figure 4.6 presents the four exploratory spaces obtained for subject 1. The 
bim onscalqa.m  solution again is degenerate. Looking at the other three plots 
suggests an immediate explanation: the scatter of the face stimuli reveals no 
interpretable pattern. Obviously, subject 1 just made random judgments. The
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Figure 4.2: Private spaces for subject 12.
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situation is slightly different with subjects 14 (see Figure 4.7) and 2 (see Fig­
ure 4.8). The findings from all four algorithms reveal that both respondents 
obviously place different priority on the criteria for judging the face stimuli as 
compared to the group spaces. Subject 14 uses Facial Shape and Eye Shape to 
distinguish between the twelve schematic faces, while subject 2 (not too consis­
tently) utilizes emotional expression and Eye Shape.
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Figure 4.3: Private spaces for subject 1.
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4.4 .2  C oncluding C om m ents

An obvious conclusion seems th a t if one is interested in applying the city-block 
metric to  individual differences scaling (metric or non-metric), the combina­
torial MATLAB routines b isc a lq a .m  and bim onscalqa.m  would be natural 
alternatives to  consider. In particular, as widely available commercial software 
either does not support the city-block metric, or uses a deficient optimization 
routine prone to  local minima. In contrast, the combinatorial search strategy, 
as implemented in b isc a lq a .m  and bim onscalqa.m , elegantly avoids the noto­
rious difficulties of gradient-based fitting of city-block models by relying on a 
m athem atically different type of optimization scheme.

The indication tha t bim onscalqa.m , specifically, might have a slight diag­
nostic advantage in detecting idiosyncratic data  sources th a t otherwise would
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Figure 4.4: Private spaces for subject 14.
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have gone unnoticed, through producing a degenerate, or quasi degenerate so­

lution (as the cases of subjects 1, 14, and 2 imply), can so far only be based on 
incidental evidence, and deserves further systematic investigation. Besides, in 
playing devil’s advocate, one could simply reverse this suggestion to  its opposite: 
bim onscalqa.m  is simply more susceptible to  degenerate solutions. Upon closer 
inspection, however, such an argument seems hardly backed by available evi­
dence. As the additional exploratory MDS analyses of the critical d a ta  sources 
demonstrated, these subjects, indeed, applied criteria in judging the schematic 
faces th a t strongly disagreed with the communal perspective as captured by 
the group space. Thus, the flag raised with these ‘heretics’ by bim onscalqa.m  
appears justified.

A possible (post-hoc) explanation for this phenomenon could be the specific
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Figure 4.5: Private spaces for subject 2.

bimonscalqa.m (V A F -580) SPSS PROXSCAL (NRS=.119, DAF=.881)

biscalqa.m (VAF=.301)

©
© ©

© © ©

© © ©
© © ©

SYSTAT (SI =.352, RSQ=.018)

way of the combinatorial approach for generating a very general private space 
for each source, where the actual coordinates along axes are unique to  th a t 
source, subject only to  the object order constraints of the group space. This 
strategy offers an individual differences model generalization over the more re­
strictive weighted Euclidean model where the la tter allows only differential axes 
scaling (through stretching or shrinking) in constructing private spaces. Thus, 
within the weighted Euclidean model, the relative object spacings on each di­
mension are completely preserved, thereby confining the mapping of individual 
differences to  linear transformations of the group configuration. Moreover, as 
bim onscalqa.m , applies also an optimal monotone transformation to the in­
put proximities, the degrees of freedom for shifting around the coordinates are 
even further increased (again, as long as the order restrictions are not violated),
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Figure 4.6: Exploratory spaces for subject 1.
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which in tu rn  for an idiosyncratic data source, may cause points to  be moved 
until most or all lump into a single spot, i.e., a  degenerate result.

The critical reader may be tem pted to suggest further research to  explore 
the method of city-block combinatorial individual differences scaling, in com­
parison with dimension weighting models (for example, Heiser, 1989a). Such an 
evaluation is not particularly germane, however, as the two approaches repre­
sent different philosophies of how to scale individual differences. The approach 
adopted in this paper is guided by a principle common in statistics as well as of 
immediate intuitive appeal, namely, to  analyze individual variability within a 
deviation-from-the-mean framework: based on the aggregated individual prox­
imity matrices, a  reference space is identified representing the average structure, 
against which the individual data  are fit. Dimension weighting models, in con-
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Figure 4.7: Exploratory spaces for subject 14.
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trast, choose a  different route: instead of using the data  twice (i.e., once for 
constructing the reference structure, then for fitting the individual data  tha t 
beforehand have already been used to  establish the average representation), an 
‘all-in-one’ approach is done, simultaneously constructing the reference or group 
representation and modelling individual variation through estimating dimension 
weights.

Independent of methodological preferences, both approaches rest on the as­
sumption of the existence of a common space, albeit an abstraction, most faith­
fully representing the communalities of structural properties among the data 
a t individual source level. Tucker and Messick (1963) intended their points of 
view (POV) model as a compromise for preserving the concept of individual 
differences scaling when the common space assumption simply is no longer ten-
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Figure 4.8: Exploratory spaces for subject 2.
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able because the involved data sets are too heterogeneous. Briefly, POV tries to 
identify homogeneous groupings of sources in treating the vectorized individual 
proximity matrices as variables th a t are subjected to a  principal component 
analysis. The resulting linear combinations of the individual proximity d a ta  -  
the different points of view -  are analyzed by separate MDS. The procedure 
introduced by Tucker and Messick (1963) has been refined by Meulman and 
Verboon (1993) through combining the estimation of source weights and coor­
dinates for the points of view representations into an iterative alternating least 
squares algorithm utilizing majorization. An alternative approach to  detect 
homogeneous subgroups of sources in the sample was proposed by Winsberg 
and De Soete (1993) by augmenting the weighted Euclidean model by a latent 
class component such th a t for each class of subjects, different sets of dimension
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weights can be estimated. Most recently, Brusco and Cradit (2005) have pre­
sented a non-metric method for identifying clusters of sources with equivalently 
ordered proximity matrices. Specifically, for each pair of sources a  concordance 
measure is computed by counting the agreements and disagreements of dis­
similarity orderings among object triples, based on which a  partition of sources 
into homogeneous subgroups is constructed using a branch-and-bound algorithm 
(see Brusco & Stahl, 2005a). Subsequently, the individual proximity matrices of 
sources within each cluster are pooled and subjected to  independent MDS. As 
the Brusco-Cradit ConPar (CONcordance PARtitioning) procedure focuses on 
the ordinal structure in the data, it promises a  particularly viable complement 
to  the combinatorial individual differences scaling approach as developed in this 
paper.
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^  U nfolding

Unfolding has become a collective term  for a broad range of methods for analyz­
ing any rectangular two-way two-mode proximity matrix, Q, including distance- 
based metric and nonmetric approaches devised within a  multidimensional scal­
ing (MDS) framework. So far and unfortunately, distance-based unfolding mod­
els, cannot necessarily be regarded as an overwhelming success due to the un­
resolved issue of degeneracy. However, an efficient distance-based unfolding 
technique would be a highly desirable d a ta  analytic technique, because the 
inter-set dissimilarities of row and column objects, qrc, could be represented 
in a joint geometrical space, w ith an immediate and mathematically legitimate 
distance interpretation. Alternative methods such as correspondence analysis 
generate row and column object representations in separate spaces. To obtain 
a joint representation, the two configurations are then rescaled and superim­
posed. Thus, not w ithstanding their looks and wide-spread misunderstanding, 
joint correspondence analysis plots do not represent the relationships between 
objects from different sets as distances, and should not be interpreted as such.

Recently, to  reduce the risk of a degenerate solution, Busing, Groenen, and 
Heiser (2005; see also Busing, 2006) have introduced a  penalty function algo­
rithm  for fitting distance-based unfolding models (implemented as PREFSCAL 
in SPSS CATEGORIES since version 14). PREFSCAL can also perform three- 
way unfolding, based on the weighted Euclidean model. Hubert and his collabo­
rators reformulate unfolding as a genuine combinatorial d a ta  analytic problem, 
and develop an unfolding algorithm using discrete optimization, w ithout re­
lying on (sub)gradients nor penalty functions for minimizing the loss function 
(see H ubert et al., 2006). We will dem onstrate tha t combinatorial unfolding pro­
vides an alternative computational strategy for avoiding degenerate solutions. 
Remarkably, Hubert et al. (2006) do not mention at all the potential of combi­
natorial unfolding to successfully remedy degeneracy. In addition, we propose 
an extension of the combinatorial unfolding algorithm tha t also accommodates 
three-way data.

The next section provides a review of the theory and methods of unfolding, 
including the combinatorial approach. The second section covers degeneracy 
and reports the results from comparing the performance of PREFSCAL and 
combinatorial unfolding. In using the identical data  sets employed by Busing et 
al. (2005) for illustrating the effectiveness of their approach we show th a t com­
binatorial unfolding obtains non-degenerate representations and, in fact, almost
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identical solutions as presented by Busing et al. (2005). Three-way unfolding 
models are presented in the third section. The exemplary application to  the 
contraceptive d a ta  from Weller and Romney (1990) illustrates combinatorial 
three-way unfolding. We conclude with a discussion and suggestions for further 
study.

5.1 T heory and M ethod s o f  U nfolding

The typical d a ta  set of an unfolding problem can be characterized as a rect­
angular two-way two-mode proximity matrix, Q  =  {qrc}, of N r  x N c , with 
r  =  1 , . . . ,  N r  and c =  1 , . . . ,  N c ,  where rows and columns represent two dis­
tinct sets of entities, O r  =  { O i r , . . . ,  Owr r}  and O c  =  {O ic, •• • , 0 N c c } ,  
containing N r  and N c  elements, respectively. In M-dimensional (representa­
tional) space, let x rm denote the coordinates of objects in the row set O r  , with 
m  =  1 , . . . ,  M ,  while y c m  stands for the coordinates of objects in the column 
set O c ' ,  X  and Y  represent coordinate matrices for objects in O r  and O c ,  
respectively, of size N r  x M  and N c  x M .

In its original conception by Coombs (1950, 1964), the unfolding model was 
intended as a  geometric representation for ordinal preference and choice data, 
collected into a  rectangular data matrix, with rows representing subjects and 
columns stimuli. Unfolding attem pts to  jointly arrange the elements of both  sets 
along a continuum so the coordinates of locations induce interpoint distances 
reflecting the ordinal preference information as closely as possible. For an in­
dividual’s object preference representation, Coombs coined the term “I-scale” : 
the location of h is/her (imaginary) ideal object coincides with h is/her point on 
the line; manifest stimuli are positioned a t increasing distances from the subject 
point according to  the provided preference ranking. The computational chal­
lenge posed by the unfolding model is the construction of the so-called “J-scale” , 
a  simultaneous mapping of all I-scales onto the line minimizing the discrepan­
cies between the collective subjects-stimuli arrangements and the original rank 
order data. Hays and Bennett (Hays & Bennett, 1960; Bennett & Hays, 1961) 
prepared the theoretical grounds for generalizing the unfolding model to a  mul­
tidimensional setting, the multidimensional unfolding model.

To date, a plethora of models has been devised to  solve the task of multi­
dimensional unfolding including probabilistic models (see De Soete & Carroll, 
1992; MacKay & Zinnes, 1995; Marden, 1995; Marley, 1992; Van Blokland- 
Vogelesang, 1989, 1993; Zinnes & Griggs, 1974), external unfolding (Carroll, 
1972, 1980; Davison, 1983, Ch. 7; Meulman, Heiser, & Carroll, 1986), models 
within the dual/optim al scaling framework, in particular homogeneity analy­
sis/multiple correspondence analysis (see Gifi, 1990; Greenacre, 1984; Heiser, 
1981, Ch. 5; Nishisato, 1980), and adaptations of existing techniques for two- 
way one-mode data  to  suit the rectangular two-way two-mode format of, for 
example, preference judgments, namely scalar product (or projection) models
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based on principal component analysis, and distance-based approaches rooted 
in the tradition of multidimensional scaling, w ith the distinction between metric 
and nonmetric models (see Borg & Groenen,1997, Chs. 14-15, 2005, Chs. 14- 
16; Carroll & Arabie, 1980, 1998; Cox & Cox, 2001, Ch. 8 ; De Leeuw & Heiser, 
1982; Krzanowski, 1988, Chs. 4.3-4.4). The ideal point model of unfolding can 
be considered the prototypical distance model, while Tucker’s vector model of 
unfolding (Tucker, 1960) probably represents the most famous instance of scalar 
product/projection models. Our main concern here are MDS-related unfolding 
models, but we consider scalar product unfolding strategies when it benefits our 
presentation.

5.1 .1  Scalar P rod u ct versus D istan ce  M odels o f  
U nfolding

Scalar Product Models. The basic notion of a scalar product model for mul­
tidimensional unfolding involves approximating the observed dissimilarities in 
Q  through scalar products of the respective coordinate vectors. Sometimes, 
these models are referred to  as projection models “because the scalar products 
of a  set of points w ith a fixed point are proportional to the projections of these 
points onto a vector from the origin of the coordinate system to the fixed point” 
(Carroll & Arabie, 1980, p. 621). If Q, for example, contains subject-object 
preferences, with rows representing subjects and columns objects, then the qTC 
are usually reconstructed by projecting the object vectors, y c, onto the subject 
vector, x r , normalized to  unit length:

Q rc  ^  ^
m

= K y c  

=>- Q =  X Y '.

The actual coordinate vectors, collected into matrices X  and Y , are obtained 
through a singular value decomposition (SVD) of the original input data  matrix

Q:

Q =  U A V '

Q rc  — ^  '  Ur m Ucm Am , 
m

where M  equals the rank of Q. We obtain X  =  U, with unit-length restrictions 
imposed on (subject) vectors, x i , . . . , x N r , such tha t diag(X X ') =  diag(I); 
Y  =  VA.

Distance Models. Distance models of unfolding aim at translating the dis­
similarities, qrc, directly into distances in a geometrical representation of the 
underlying configuration of objects in psychological space. A general definition
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of distances between row and column points r and c of Q  is given by 

drc(X ,Y ) =  ( ^ | x rm - y cm|A) X;
m

the choice of A =  1 yields the city-block. and A =  2 the Euclidean distance, 
with the latter as the traditional and most often used option in unfolding 
analysis. The set coordinates are retrieved from the distances best fitting 
the observed proximities, qrc, operationalized through minimizing a given loss 
function. Common practice suggests to  transform the dissimilarities, q r c , into 
pseudo-distances, denoted d r c . If the dissimilarities are presumed to  possess 
interval scale properties, “the function relating the d a ta  to  distances is gener­
ally assumed to  be inhomogeneously linear — th a t is, linear with an additive 
constant as well as a slope coefficient” (Carroll & Arabie, 1998, p. 183) — in 
other words, the observed proximities are subjected to  a linear transformation

f { Q r c )  d r c  f l l  b q r c ,

typically, with 6 = 1 ;  the corresponding distance model is called metric. “In 
the case of ordinal data, the functional relationship is generally assumed to  
be monotonic” (Carroll & Arabie, 1998, p. 183), and the respective unfolding 
models are referred to  as nonmetric, where the transformation /(■) has only to 
satisfy the monotonicity condition

Q rc  — Q rf c '  =* f  { .Q rc) d TC ^  f  { Q r 'c ‘ ) ~  d T' c ‘ .

A clarification of a  technical detail concerning the difference between m et­
ric distance and scalar product unfolding seems in order here. Like Torgerson’s 
(1958) classic metric MDS model, most metric unfolding models require for com­
putational convenience the squared dissimilarities to  be transformed through 
double centering into a scalar product m atrix, B =  {6rc}, with

f ( Q r c )  =  >>rc =  - \ { Q l c  -  Q% - q I + Q 2 ) ,

where

2   ̂ \  '  2

q ° =

2 1 2
Qr' “  ^  Qrc  

c

2 1 2 

Q- ~  N RN c ^ qrc'
C
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Subsequently, B  is subjected to  an SVD to retrieve the coordinates:

B =  X Y '

=>• B =  U A V

=>X =  UA5

=s> Y =  VA5

We need to  re-emphasize th a t only employing a linear transformation of the 
proximities, dTC — a + bqTC, qualifies a model as metric. The transformation 
of the qrc to  scalar products, is motivated solely by computational ease, and 
is not a characteristic feature of the metric approach. O ther computational 
procedures, w ithout the scalar product transformation and through gradient- 
based optimization have been suggested to  fit the metric model (see Lingoes & 
Roskam, 1973). Although, the distinction between scalar product and metric 
distance unfolding models may be subtle, from a technical point of view it is 
not: scalar product models do not incorporate a transformation of the input 
proximities to, well, scalar products (although, preprocessing of the data  is 
required, e.g., transforming the subject vectors to  unit length). In addition, 
the geometric configuration derived from scalar product models does not lend 
itself to  an immediate interpretation in term s of distances between subjects 
and objects (because SVD generates row and column object representations in 
separate spaces). Rather, any inspection of between sets relations should be 
solely restricted to  the ordinal information extracted from the projection of the 
object onto the subject vectors. In contrast, metric distance models, while often 
employing the same mathematical device of an SVD, reconstruct between set 
proximities as genuine (Euclidean) distances th a t may be directly interpreted 
as such.

The definition of a  distance model accommodates conceptualizing unfolding 
as (metric or nonmetric) MDS of the between sets proximities qrc by the anal­
ogy of constructing a square-symmetric superm atrix with the off-diagonal 
blocks containing the between-sets proximities of Q, and within-sets proximi­
ties in the submatrices along the main diagonal of pfQ) missing. Ross and Cliff 
(1964), Schonemann (1970), Gold (1973), and Greenacre and Browne (1986), 
develop solutions for the metric unfolding of Q; Kruskal and Carroll extend 
nonmetric MDS to nonmetric unfolding by adapting STRESS-1, the loss func­
tion typically minimized in nonmetric MDS (see Kruskal, 1964a, 1964b, 1977; 
Kruskal & Carroll, 1969; Kruskal & Wish, 1978), for fitting an unfolding model:

«t1 ( d , x , y )  =  J
V Y.cWrc<Prc

w ith drc denoting Euclidean distances, the m atrix D  =  {drc) indicating a mono-
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tone transform ation of the original input proximities qrc, and fixed weights wrc 
of value 0  if qTC is missing, and 1  otherwise.

In the case of unfolding, however, STRESS-1 was soon discovered to  be 
extremely vulnerable to  degenerate solutions. An unfolding solution is called 
degenerate if it satisfies a given optim ality criterion perfectly, while a t the same 
tim e resulting in a substantively trivial, non-informative spatial representation 
(we cover degeneracy in detail in the second section). As a remedy, Kruskal and 
Carroll (1969) propose to  use a  modified loss function, called STRESS-2:

Unfortunately, STRESS-2 is also prone to  degeneracies (for detailed discussions 
of various degeneracy scenarios for unfolding, see Borg & Bergermaier, 1982; 
Borg & Groenen, 1997, 2005; Busing et al., 2005; De Leeuw, 1983; Heiser, 1981, 
1989b; Kruskal k. Carroll, 1969).

5.1.2 Combinatorial Unfolding

Combinatorial unfolding is based on the generalization of combinatorial uni­
dimensional scaling developed by Hubert, Arabie, and Meulman (Hubert & 
Arabie, 1986, 1988; H ubert et al., 2002, 2006 — see also Brusco, 2002b) tha t 
is presented in detail in Chapter 4. Recall the conceptualization of unfold­
ing as an MDS problem: the rectangular proximity matrix, Q, is embedded 
in a  2  x 2  square-symmetric superm atrix pW ) =  { p ^ } ,  resulting in a ma­
trix  of size N  x N ,  with N  =  N r  +  N c  (thus, merging the previous separate 
indices 1 , . . . , N r  and 1 , . . . ,  N q into one set, w ith the first N r  row objects 
subscripted as I , . . . , N r  and the remaining N c  column objects assigned in­
dices N r  +  1 , . . . ,  N r  +  N c  = N ) .  The off-diagonal blocks of contain
the between-sets proximities of Q, whereas the missing within-sets proximities 
between row and column objects in the main diagonal blocks are set to  zero:

Combinatorial unfolding is performed by fitting a single or multiple (city-block) 
unidimensional structure(s) to  p ( * - 0  yielding coordinates of the joint optimal 
arrangement of row and column objects of Q, along the dimension(s) of the 
geometric space.

The least-squares loss function for the unidimensional combinatorial unfold-

with

N r N c

p(Q) =  0  Q
Q ' 0
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ing problem is given by

L (*, C) = Y^ Wii ~  A1* ~ xi\ +  c))2>
i<j

where wtj  =  0  if both i and j  are row or column objects, and equal to  1  other­
wise. Of course, as in the MDS case, given a particular choice of transformation 
of the metric or nonmetric combinatorial unfolding can be performed.
Multidimensional combinatorial unfolding is performed through fitting multi­
ple unidimensional (city-block) structures through successive residualizations of 
p(Q)_

The search for the optim al perm utation p* of p(Q) is carried out through 
QA. In the context of fitting a single unidimensional structure, we let as before, 
p(-) =  p denote a feasible perm utation of the first N  integers. A brief comment 

for clarifying a technical detail of the QA-induced row and column reordering 
of might be helpful: were we to  apply the QA exchange/interchange al­
gorithm to  pb-D in its prim ary block structure, the reordering process would 
render plQ) in its initial partitioning, with only the partial nonzero rows and 
columns within Q and Q ' permuted because the entries in the zero blocks on 
the main diagonal of p ( Q) will not be picked up by the reordering mechanism as 
they cannot contribute to  any increase of the QA-criterion. As a consequence, 
the initial order of rows and columns of plQ ) will be completely preserved, keep­
ing the two sets strictly apart. Greater flexibility, however, could be gained were 
the QA search allowing for mixing the orders of row and column sets. Subtract­
ing the grand mean, q =  [ 1  / (N r N c )} )T]r Y2C 9 rci from the entries in Q  and Q ' 
of plQ l will tu rn  the zero blocks into meaningful entities, thereby inducing the 
desired mixing of row and column objects. W hether mean-deviation is the best 
strategy awaits further research; to  date the effect of certain transformations 
combined with specific patterning of plQ) on the reordering process has not 
been studied in detail (see Hubert & Arabie, 1995).

Additive constant and least squares optimal coordinates are estim ated through 
D ykstra’s IP algorithm. Due to  the complex structure of P (Q), however, the 
linear constraints deduced from a specific perm utation p of row and column 
objects are more involved than  in the MDS case and might be best explained 
through a  brief schematic representation of how these constraints are generated. 
Let OrR, Or'R and Occ ,  Oc'C denote two arbitrary row and column objects; 
drc, drcr, dT'c, and dT<c> in the 2 x 2  matrix below represent distances to  be fit 
to  the four proximity values observed for OrR, Ot>r , Occ , and Oc-c'

Occ Oc'C
OrR drc drc'
Or'R dr'c dr'c'

Detailed inspection of all possible perm utations of Otr , Or'r , Occ  and Oc>c
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reveals th a t the following set represents an exhaustive collection of all possible 
order constraints the entities drc. d rc' ,  d r ' c , and d r ' c’ have to  satisfy (see Hubert 
e t al., 2006):

1 . O t r  O t ' r  Ocq Oc>c implies drc -{- dT'c' — drc' +  dr'c!

2. O rR  < O cC < O r 'R  < O c' C  implies drc  "i“ d r fc +  d r ' c> — d TCf T

3. ^  ^^c'C  implies d rc  "t" d r 'c  — drc ' "1” d r 'c 't

4 . O rR  X  O r 'R  X  O cC implies d r ' c <  d r c ;

5. O rR  X  Occ  X  Oc'c  implies d rc <  d rc

5.2 D egeneracy

Recall the definition of a degenerate unfolding solution as satisfying a given 
optim ality criterion perfectly, while a t the same tim e resulting in a  substantively 
trivial, non-informative spatial representation. We also already mentioned th a t 
Kruskal’s (see Kruskal, 1964a, 1964b, 1977; Kruskal & Carroll, 1969; Kruskal & 
Wish, 1978) STRESS-1 loss function proved extremely susceptible to  degeneracy 
when applied to an unfolding problem:

f f l(D ,X ,Y ) =  l '£ r £ c ® r c ( d r e  ~  <*rc)‘
H r  ' H e  w r c d r C

For example, when identical within set coordinates are chosen, < ti(D ,X ,Y ) a t­
tains zero, w ith objects of both sets lumped together into two separate points. 
In technical terms, the possible inclusion of an intercept in the monotone trans­
formation /(■) allows for all drc to  take on equal values, which in tu rn  will lead 

to  identical within set coordinates: let /  | f ( q rc) = drc = & + bqTC denote an 
admissible monotone transformation, with the legitimate choice 6  =  0  for the 
slope, yielding drc = a = q, defined by

r  c

5.2.1 PREFSCAL: Avoiding Degeneracy by Penalizing 
the Loss Function

PREFSCAL by Busing et al. (2005; Busing, 2006) uses a  majorization algo­
rithm  for minimizing the least-squares loss function augmented by a penalty 
term  to maintain a sufficient level of variability among the transformed proxim­
ities, or pseudo-distances, which will prevent the distance estimates and asso­
ciated object locations from collapsing into a  single/few positions. Specifically, 
PREFSCAL (Busing, 2003, 2006; Heiser, 2004; Busing et al., 2005) employs 
a loss function modelled after Kruskal’s STRESS, but explicitly penalizing on

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



decreasing variability of the transformed proximities drc to  avoid degenerate 
solutions:

x ,Y )  =  +  “
V E  r T , c Wrcd2rc J V v 2( d ) '

with A and a; representing penalty parameters, and v(-) the Pearson coefficient 
of variation, defined by

- _  standard deviation(d) _  /  n ^ n c E r E c dlc 

m ean(d) V £ r E c  drcf
-  1

Thus, a large coefficient of variation ensures the penalty term  approaching one, 

while it grows to  infinity the less variability occurs among the drc. PREFS- 
CAL uses a subgradient approach for minimizing the loss function through an 
iterative m ajorization algorithm, combined with alternating least squares esti­
mation: starting with an arbitrary choice of dTC, a  monotone transformation 
of the given proximities is sought, f ( q rc) =  drc, best approximating the drc, 
followed by updating drc such th a t they optim ally fit the previously identified 
drc, and so on, until the estimates converge (see Busing, 2003; Heiser, 1981; 
Borg & Groenen, 1997, 2005). Monte Carlo results presented by Busing e t al. 

(2005) recommend penalized STRESS as a promising candidate for effectively 
avoiding degeneracies in unfolding.

5.2.2 Evaluation: PREFSCAL versus Combinatorial 
Unfolding

For a comparative assessment of performance, combinatorial unfolding models 
are fit to  the same data  sets th a t Busing et al. (2005) use to  dem onstrate the 
effectiveness of the PREFSCAL algorithm: the brewery data (Borg & Berg- 
ermaier, 1982) and the breakfast d a ta  (Green & Rao, 1972). Both have been 
studied extensively (see also Borg & Groenen, 1997, 2005) as tem plate examples 
of data  sets considered to  be particularly susceptible to  degenerate solutions. In 
addition, Busing et al. (2005) conduct a Monte Carlo simulation for studying 
various choices of the penalty param eters A and u> in their effect on avoiding 
degeneracy for error-free and error-perturbed data. The design of the study is 
inspired by previous work of Coombs and Kao (1960) and Kruskal and Carroll 
(1969), and employs synthesized random proximity matrices of a  30 x 15 rectan­
gular format, generated from the coordinates of 30 row and 15 column objects 
in two dimensions drawn from a standard normal distribution. As combinato­
rial unfolding does not incorporate any penalty parameters, we simply use the 
original random d ata  from Coombs and Kao (1960).

Metric and non-metric combinatorial unfolding of all data  sets are per­
formed by two MATLAB routines, b isca ltm ac .m  and bimonscaltmac.m, re-
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Table 5.1: Summary of unfolding models fit to  data  m atrices generated from the 
original Coombs and Kao (1960) random coordinates of 30 row and 15 column 
objects.

Perturbation Distances Unfolding Model Graph
Unperturbed City-Block

Euclidean

Metric
Nonmetric
Metric
Nonmetric

Figure 5.1

25% Error-Perturbed City-Block Metric Figure 5.2
Nonmetric

Euclidean Metric
Nonmetric

spectively (including calls of subroutines for QA and IP); b isca ltm ac .m  and 
bim onscaltm ac .m conveniently allow multiple random perm utations to  initial­
ize the input proximity matrix. For each data  matrix, 1000 random starts are 
used, yielding a frequency distribution of the associated VAF scores, from which 
the one with highest value is selected as the (at least) locally optim al unfolding 
solution, subsequently represented as a  geometric configuration displaying the 
structural relationship between row and column objects.

S yn th etic  D ata  (C oom bs & K ao, 1960)

Based on the first two column vectors from the original Coombs-Kao 45 x 3 
standard-norm al random coordinate m atrix, two rectangular 30 x 15 proximity 
matrices are computed, one containing Euclidean, the other city-block distances 
between the 30 row and 15 column objects. Following Busing et al. (2005), two 
variants for both matrices are computed, one unperturbed, the other with 25% 
random perturbation according to

^ij (perturbed) (d,j ) oxp{(.25)C{j }.

with eij ~  A f(0,1), resulting in a to ta l of four proximity matrices. The chosen 
procedure for generating random error perturbations is equivalent to  adding 
log-normal error, thereby ensuring th a t no negative perturbed distances occur. 
Table 5.1 summarizes the input distance matrices and combinatorial unfolding 
algorithms used.

The graphical representations of the unfolding solutions with largest VAF 
scores (ranging from .94-.98 for unperturbed and ,75-.84 for error-perturbed 
matrices) are shown in Figure 5.1 (unperturbed) and Figure 5.2 (error-perturbed); 
the original configuration based on the first two vectors of the Coombs-Kao 
(1960) standard normal coordinates is presented a t the top of both  graphs. In-
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specting Figures 5.1 and 5.2, we observe for all four d a ta  matrices exceptionally 
good recoveries of the original structure. Most remarkable, the choice of Eu­
clidean or city-block distance seems to  have only a negligible impact on recovery. 
Note th a t for ease of legibility only the column objects of the data  matrices are 
labelled from 1 to  15.

B rew ery D ata  (B org & i B ergerm aier, 1982)

Borg and Bergermaier (1982) collected a rectangular 26 x 9 proximity matrix, 
containing ratings of nine breweries on 26 brand image attributes. The original 
d a ta  represent similarities and, hence, were first transformed into dissimilarities. 
The graphs of the metric and non-metric unfolding solutions with highest VAF 
score ( . 8 6  and .90, respectively) are given in Figure 5.3. To avoid clutter, only 
the nine columns representing the breweries are labelled from 1 to  9. Apart 
from breweries 9 and 5 switching positions, the structural representation ob­
tained through combinatorial unfolding is almost identical to the PREFSCAL 
configuration presented by Busing et al. (2005, p. 8 6 , bottom  panel; with a  VAF 

value of .91).

B reakfast D ata  (G reen  &: R ao, 1972)

The d a ta  were collected from 42 subjects, W harton School MBA students and 
their wives, who, among other tasks had to  rank 15 breakfast food items accord­
ing to  overall preference and preference within the context of certain menus and 
serving occasions. Following Busing et al. (2005), we restrict our analysis to  the 
first 42 x 15 d a ta  m atrix consisting of overall preference rankings. The graphs 
of the spaces constructed through b isc a ltm a c  .m and bim onscaltm ac .m (VAF 
scores equal to  .57 and .6 8 , respectively) are presented in Figure 5.4; only the 
breakfast items are labelled. The combinatorial unfolding representations are 
almost indistinguishable from the one obtained through PREFSCAL by Busing 
et al. (2005, p. 90, bottom  panel; with VAF =  .81 — notice th a t Busing and his 
collaborators modelled the d a ta  as ’row-conditional’, employing separate trans­
formations of the proximities in each of the N r  row entries). Clearly, the first 
dimension represents a ‘to a s t’ factor, discriminating between to ast/h a rd  rolls 
and m uffin-/pastry-type breakfast items. The second dimension can be inter­
preted as a  ‘bu tte r’ factor, arranging toast or muffins garnished with butter 
or margarine a t the bottom  as opposed to  sugary, marmalade- or jelly-related 
items a t the top.
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5.3 E xtension s o f th e  U nfold ing M odel

Various attem pts have been made to  stretch the bounds of the unfolding paradigm. 
For greater flexibility in incorporating individual differences, consider Carroll’s 
(metric) weighted Euclidean unfolding model (see Carroll, 1972, p. 118):

drc(X, Y , W ) ^ )  ' Wrm(xrm l/cm) ^ )
m

W  denotes an N r  x  M  m atrix of weights, wrm, th a t account for differential 
‘salience’ or ‘importance’ of the m th dimension for object r  (typically, a subject 
within a  subjects-rate-objects context), through shrinking or extending dimen­
sion m  of the geometric representation.

In his model for individual differences scaling, Heiser (1989a) retains the 
concept of differential weighting of dimensions as a means for constructing the 
individualized psychological spaces, but the distances between objects are de­
fined within a city-block metric. A straightforward extension of Heiser’s model 
to a weighted city-block unfolding model would be given by

Y ,  ^ V )  =  ^ W r m l ^ r m  H cml-
m

One should note th a t the weighted Euclidean unfolding model of Carroll ba­
sically alters the original idea of a  joint display of all subjects and objects in 
a single graph. Rather, similar to  the individual differences scaling paradigm 
in MDS, separate private spaces for each subject would have to  be constructed 
displaying the objects only, w ith axes of the geometric space adjusted to  the 
respective weights as applied by a particular individual. An extension of the 
weighted unfolding model, called the IDIOSCAL model (see Carroll, 1972, 1980; 
Carroll & Arabie, 1998; Carroll & Wish, 1974), allows for differential axes rota­
tion of the representational space (as Euclidean distances are rotation invariant).

The second generalization of unfolding models is targeted a t analyzing tru- 
ely three-mode three-way data, with the th ird  way representing different data  
sources, such as situations, scenarios, experimental conditions, or time points. 
These data  can be characterized as a  cube, with multiples of the rectangular data  
m atrix Q  stacked as slices along the third dimension. As before, by introducing 
the source index s = 1, , S,  we derive as notation for the entire data  cube 
Q<s > =  {<7t-Cs}, with the layers of individual sources denoted by Q s =  {qrc(s)}. 
Scalar product and distance models have been developed to  analyze Q (s*. The 
former, like C A N  D E C O M P  (Carroll & Chang, 1970), P A R A F  A C  (see Harsh- 
man, 1970; Harshman & Lundy, 1984, 1994), or the Tucker models (Kiers, 1991; 
Kroonenberg, 1983, 1988, 1994; Kroonenberg & De Leeuw, 1980; Ten Berge, De 
Leeuw, & Kroonenberg, 1987; Tucker, 1966, 1972), are basically generalizations 
of Tucker’s (1960) original vector model for two-mode preference data. The sim­
plest generalization of the two-way vector (scalar product) model to  a three-way
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data  cube , is given by the following decomposition

m

m

=>Q (S). = ^ U A SV ',
s

the  CANDECOMP-PARAFAC model, independently discovered by Carroll and 
Chang (1970), and Harshman (1970; Harshman k. Lundy, 1984, 1994). For a 
comprehensive and state of the art presentation of multi-way analysis as a gen­
eralization of principal component analysis see Smilde, Bro, and Geladi (2004).

Three-way distance models, to  our knowledge, were first presented by Carroll 
(1980; DeSarbo & Carroll, 1981, 1985). For example, a straightforward exten­
sion of the weighted Euclidean model, including an additive constant for source 
s, was proposed by DeSarbo and Carroll (DeSarbo & Carroll, 1981, 1985):

Stimulus points ycm and subject ideal points x rm are supposed to  be fixed across 
sources; the latter affect the weighting of dimensions and the location of points 
differentially, as expressed through the wms and as .

tances and represent straightforward extensions of the weighted Euclidean model 
in (5.3), also used for three-way nonmetric unfolding in PREFSCAL: following 
th e  familiar logic of individual differences scaling, the private spaces represent­
ing the individual sources are derived from the group space through differential 
re-scaling of its coordinate axes. As an instructive PREFSCAL application to  
three-way data, Heiser and Busing (2004) report a re-analysis of the famous 
breakfast data, originally published by Green and Rao (1972).

Briefly, among other tasks, 42 subjects ranked 15 breakfast food items ac­
cording to  six preference (i.e., consumption) scenarios. The d a ta  form a three- 
way three-mode data  cube, with subjects, breakfast items, and preference sce­
narios representing the three modes. Following the familiar logic of individual 
differences scaling, a common or group space was constructed based on the data 
aggregated across all six consumption scenarios (=sources). In a second step, 
the individual scenarios were fitted against the representation of the common 
space, allowing only for shrinking or stretching the dimensions of the common 
space to  accommodate for unique features of the individual structures observed 
with each consumption scenario. The goal of the three-way unfolding analy-

m

All these models are metric and defined in term s of squared Euclidean dis-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sis was to  dem onstrate how priming respondents with different consumption 
scenarios causes a shift in the preference structure of the breakfast items.

5.3.1 Three-w ay C om binatorial U nfold ing

Combinatorial unfolding for three-way data  rests on analyzing individual vari­
ability within a deviation-from-the-mean framework: based on the individual 
proximity matrices aggregated across sources, Q a , a best-fitting M-dimensional 
‘average’ unfolding representation is generated, to  serve as frame of reference, 
against which the individual data  matrices Q s are fit in a  confirmatory m an­
ner. The object orderings obtained for P iQ'1 serve as frame of reference for 
constructing individual (‘private’) spaces. The coordinates of objects in the 
private space are estim ated using IP, w ith constraints defined by the identified 
object orderings of the reference representation. For the individual configura­
tions, the spacings between objects are free to vary such th a t the loss function 
attains a minimum, provided the order of objects from the reference structure 
be preserved. The VAF criterion computed for each source serves as a fit index 
quantifying how closely the data  reflect the properties of the reference space (for 
an M-dimensional solution):

recall th a t the grand mean of pfQ) equals zero.

5.3 .2  A pplication: T h e C ontraceptive D a ta  from  W eller  
and R om ney (1990)

M atrix T O T A L  was subjected to  bidimensional metric and nonmetric unfolding, 
employing two stand-alone MATLAB routines b isc a ltm a c  .m and b im onsca ltm ac. m, 
conveniently allowing for multiple runs with initial random perm utations of 
th e  input proximity m atrix. For each unfolding model, 1000 random starts 
were used; the metric and nonmetric solutions with the largest VAF values 
(b iscaltm ac.m : .927, bim onscaltm ac.m : .980) were chosen as reference struc­
tures, against which the F E M A L E  and M A L E  matrices were fit by confir­
m atory unfolding. Both input matrices were normalized by the sum of squares 
of the total data  m atrix prior to  the confirmatory analysis to  put all three 
matrices on the same scale, thereby adjusting for each of the gender split ma­
trices representing only half of the total number of respondents. The graphs of 
the T O T A L  reference as well as the individual (confirmatory) F E M  A L E  and 
M A L E  spaces are presented in Figures 5.5 and 5.6, respectively. The metric 
and nonmetric unfolding representations are essentially identical: Clearly, the 
first dimension of the T O T A L  reference spaces orders the fifteen contraceptive 
m ethods along a left-to-right continuum, with opposing poles of ‘behavioral’

VAFS =  1 -
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versus ‘surgical’ methods. In borrowing terminology from H ubert et al. (2001a, 
p. 1 1 0 ), the segments of this continuum, starting from the left, can be charac­
terized as “lottery” (Rhy, W it), “liquid” (Spe, Foa, Dou), “latex” (Con, Dia), 
“alternative (or no) sexual behavior” (Ora, Abs), “medical/female related” (Pil, 
Iud), “m edical/out-patient surgical” (Tub, Vas), and “medical/surgical” (Hys, 
Abo). The location of the criteria points S, A, C, and E span a  scale rang­
ing from (S)afety (in the sense of non-invasive)/immediate (A)vailability to 
(E)ffectiveness (through invasive surgical measures), w ith (Convenience ap­
proximately defining the midpoint. The second dimension appears to  introduce 
a distinction among behavioral methods by contrasting the “liquid” (Spe, Foa, 
Dou) with the “latex” (Con, Dia) and “alternative (or no) sexual behavior” 
(Ora, Abs) segments. The position of the “lottery” methods (Rhy, W it) implies 
th a t the ordinate captures a (secondary) evaluation, integrating effectiveness 
and convenience, of the behavioral contraceptive measures th a t do not demand 
medical consultation ( “home-grown” ; see H ubert et al., 2001a, p. 110). In 
comparing the (confirmatory) unfolding representations for females and males, 
the differential spread of points along the axis suggests th a t both  sexes differ 
markedly in their perception of the contraceptive methods. In particular, the 
segment of behavioral methods receives a finer grained evaluation by females 
than  males.

To further explore the differences between females and males, their data  
matrices were also analyzed as independent sources through (exploratory) two- 
way metric and nonmetric unfolding with 1000 random starts each. The so­
lutions with highest VAF scores were chosen (b isca ltm ac  .m: .892 and .878, 
bim onscaltm ac.m  .957 and .947 for F E M A L E  and M A L E ,  respectively). The 
graphs obtained (see Figures 5.7 and 5.8) confirm the distinction into behav­
ioral versus medical/surgical methods, w ith the la tte r considered to  be most 
effective. The previous conclusion of the two sexes profoundly disagreeing in 
their evaluations of the behavioral contraceptive methods is further substanti­
ated. Specifically, whereas females consider O ra and Abs as most convenient 
and effective, men choose Iud.

As an alternative to the previous independent (exploratory) analysis of the 
diverging perspectives of women and men, a confirmatory fitting of the M A L E  
d a ta  to  F E M A L E  was conducted utilizing the la tter as reference decomposi­
tion (with VAF scores for males equal to  .672 and .850). Given the observations 
from the exploratory analysis, the comparatively low VAF scores for males come
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as no surprise. The clutter of points representing the behavioral m ethods partic­
ularly indicates mediocre fit, and can be regarded as an immediate consequence 
of the specific way confirmatory spaces are constructed in combinatorial scaling: 
Object spacings are allowed to  vary freely as long as the imposed order from 
the reference space is not violated, which in the case of disagreement as with 
males and females, will result in points being shifted closer and closer together. 
Figures 5.9 and 5.10 present the graphs of the female reference and male con­
firmatory spaces. The configurations are in line with the  results of the previous 
analyses: females display greater sophistication in their judgm ents of the be­
havioral methods as opposed to  males who tend to  perceive most of them  as 
almost interchangeable; both groups agree in their evaluation of the (invasive) 
surgical measures. The nonmetric confirmatory plot for males provides an illus­
tration  of the possible need to  lim it the iterative fitting of an optim al monotone 
transformation (see Hubert et al., 1998a, p. 568).

5.4 D iscussion  and C onclusion

The findings of the analyses of the brewery and breakfast d a ta  raise the im­
mediate question of why two approaches mathem atically so very different like 
PREFSCAL and combinatorial unfolding, can yield almost identical results. 
Although, in general we cannot often easily draw a direct formal comparison 
between a continuous and a discrete optimization algorithm, we claim tha t 
PREFSCAL and combinatorial unfolding essentially attem pt to  optimize the 
same objective. Recall th a t any degenerate unfolding solution is first and fore­
most characterized by equal within-sets distance estimates for the elements in 
O r  and Oc,  implying th a t row and column objects in the extreme collapse into 
two strictly distinct locations — or more to  the point: no mixing occurs between 
the elements of those two sets. Both algorithms attem pt to  remedy exactly th a t 
particular feature of degenerate solutions. By inducing a thorough mixing of 
row and column objects, the estimation process is prevented from degenerating 
into a  configuration strictly separating the two sets. In PREFSCAL this goal is 
accomplished in an indirect way by penalizing the loss function for decreasing 
variability among the transformed proximities; in combinatorial unfolding this 
is done directly by mean-deviating the entries in enforcing a mixing of
row and column objects during the QA maximization of T(p).

The proposed combinatorial unfolding algorithm essentially fits multiple uni­
dimensional city-block structures to the input proximity m atrix Q  and one might 
immediately object th a t the city-block metric was merely chosen for the compu­
tational convenience of its additivity property. Indeed, so far, a combinatorial 
approach to  mathem atically accommodating a Euclidean model directly does
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not exist (and may never be implement able as the nonlinear nature of the Eu­
clidean metric poses severe computational obstacles). However, we would like 
to  point out th a t the task of fitting a  Euclidean structure, say with M  =  2, 
requires

Qrc ~  drc ~  2 / c l )  “k  (* £ r2  2/c2 )  ]  1

which can be rewritten as

Qr c  ~  d r c  =  ( x r l  ~  2 /c l)2 +  ( x r 2  ~  V c 2 ) 2 =  k r l  -  V c l \ 2 +  \x r 2  ~  2 /c2p ,

implying th a t we can approximate the squared entries in Q  by the sum of two 
squared unidimensional unfolding structures. Thus, the combinatorial frame­
work can also indirectly account for a  Euclidean model. The striking similarity 
between the unfolding models fit to the Euclidean and city-block distance ma­
trices from the Coombs and Kao random coordinates may serve as anecdotal 
evidence in support of our conjecture.

Nonmetric models have proven to  be extremely vulnerable to  degenerate so­
lutions because the monotonicity condition inherently facilitates a fitting process 
with all coordinates ultim ately converging. A certain amount of shrinkage in the 
coordinates was detected with the nonmetric model for the brewery d a ta  and 
the confirmatory fitting of the male contraceptive data, but not to  a degree th a t 
the resulting solution meets the degeneracy condition. Still, depending on the 
specific properties of a  particular d a ta  set, we should consider the possible need 
to  limit the iterative fitting of an optimal monotone transformation: “If carried 
through to  convergence, a perfect representation may be obtained, but only at 
the expense of losing almost all [structure] contained in the original proximity 
m atrix” (Hubert, Arabie, & Meulman, 1998a, p. 568) -  in other words, risking 
a degenerate solution.

From a more practical data  analytic point of view, we might also observe th a t 
the Euclidean metric does not appear to  be equally well-suited for all types of 
stimuli (see Arabie, 1991). Empirical evidence suggests th a t the Euclidean met­
ric tends to  underperform in approximating the distance structure of analyzable 
stimuli in psychological space in comparison to  the city-block metric. Following 
A ttneave’s (1950) phenomenological distinction, analyzable stimuli are postu­
lated to  be composed of perceptually separable dimensions; for example, forms 
varying in size and orientation. In contrast, integral stimuli, supposedly better 
accommodated by the Euclidean metric, represent a holistic mix of constituting 
dimensions th a t a t an observer’s perceptual level are assumed to  be extremely 
difficult to  decompose into well-defined, separate contributions; colors varying 
in lightness and saturation may serve as the standard example (see Arabie, 1991; 
Garner, 1974; Shepard, 1991). W ithin this context, a city-block unfolding model 
attains a unique status because widely available commercial software currently 
does not offer any viable implementation of city-block unfolding (SYSTAT offers 
the possibility to  carry out two-way unfolding within the city-block metric, but
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uses a  deficient algorithm extremely susceptible to  degeneracy).
As an obvious conclusion, if one is interested in using unfolding models (met­

ric or non-metric), then the combinatorial MATLAB routines b isca ltm ac .m  
and bim onscaltm ac .m would be natural choices to  consider. Particularly, if one 
wishes to  avoid tedious and time consuming experimentation to  determine the 
settings of PREFSCAL penalty parameters optimal for a specific d a ta  set. In 
fact, we observed many instances, where the default choices produce degenerate 
solutions. The combinatorial search strategy for solving metric and nonmetric 
unfolding elegantly avoids the difficulties of gradient-based approaches by u ti­
lizing a mathem atically different type of optimization scheme.
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Figure 5.1: Metric and non-metric combinatorial unfolding analysis of Eu­
clidean and city-block distance matrices computed from the Coombs-Kao (1960) 
standard-normal random coordinates — unperturbed.
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Figure 5.2: Metric and non-metric combinatorial unfolding analysis of Eu­
clidean and city-block distance matrices computed from the Coombs-Kao (1960) 
standard-norm al random coordinates — 25% error-perturbed.
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Figure 5.3: Metric and non-metric combinatorial unfolding analysis of the Brew­
ery D ata (Borg & Bergermaier, 1982).
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Figure 5.4: Metric and non-metric combinatorial unfolding analysis of the 
Breakfast D ata (Green & Rao, 1972): Toast Pop-up (TP), Buttered Toast (BT), 
English Muffin and Margarine (EMM), Jelly Donut (JD), Cinnamon Toast 
(CT), Blueberry Muffin and Margarine (BMM), Hard Rolls and B utter (HRB), 
Toast and Marmalade (TMd), Buttered Toast and Jelly (BTj), Toast and Mar­
garine (TMn), Cinnamon Bun (CB), Danish Pastry (DP), Glazed Donut (GD), 
Coffee Cake (CC), Corn Muffin and B utter (CMB).
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Figure 5.5: Metric Unfolding: reference space based on matrix T O T A L ,  and 
corresponding confirmatory spaces of matrices F E M  A L E  and M A L E .
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Figure 5.6: Nonmetric Unfolding: reference space based on m atrix T O T A L ,  
and corresponding confirmatory spaces of matrices F E M A L E  and M A L E .
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Figure 5.7: Metric Unfolding: exploratory spaces of matrices FEMALE  and
MALE.
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Figure 5.8: Nonmetric Unfolding: exploratory spaces of matrices FEMALE
and MALE.
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Figure 5.9: Metric Unfolding: reference space based on m atrix F E M A L E ,  and 
corresponding confirmatory space of m atrix M A L E .
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Figure 5.10: Nonmetric Unfolding: reference space based on m atrix F E M A L E ,  
and corresponding confirmatory space of m atrix M A L E .
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O rder-C onstrained M atrix  
D ecom position

Spectral decomposition of a square-symmetric matrix into a sum of identically- 
sized matrices is immediately deducible from eigenvalue factorization. The rank 
reduction theorem in linear algebra states th a t the original m atrix can be ap­
proximated by the sum of a small number of components, referred to  as the 
low-rank approximation. In applied statistics, eigenvalue decomposition, and 
its generalization to  rectangular matrices, singular value decomposition, (EVD, 
SVD, respectively) represent the major com putational devices for multivari­
ate techniques such as principal component and factor analysis (see Johnson & 
Wichern, 2007), correspondence analysis (see Greenacre, 1984), or in a wider 
context, the construction of biplots (see Gower & Hand, 1996) and optimal 
scaling (see Gifi, 1990, Nishisato, 1980).

Spectral decomposition of a m atrix ensures additivity through metric con­
straints on the components. Alternative non-metric additive m atrix decom­
positions have been developed. For example, Hubert and Arabie (1994; see 
also Hubert et al., 1998b, 2006) propose decomposing a square-symmetric prox­
imity m atrix into a sum of matrices of identical size, with components only 
constrained to  display a specific order pattern: either the Robinson form for 
proximity matrices containing similarities, or the anti-Robinson form for dis­
similarity matrices. A similarity (dissimilarity) m atrix is said to  be in Robinson 
(anti-Robinson) form —  in honoring the person who first introduced the concept 
(Robinson, 1951) — if for each row or column the cell entries never increase (de­
crease) when moving away from the main diagonal. Similar to the generalization 
of spectral decomposition to  an SVD-based representation of rectangular m atri­
ces, order-constrained (anti-)Robinson decomposition for square-symmetric ma­
trices extends to  rectangular two-way two-mode proximity matrices, the order- 
constrained (anti-)Q decomposition, such th a t the given matrix is represented 
exhaustively by a  sum of equally-sized matrices restricted to  having (anti-)Q 
form (Hubert & Arabie, 1995a; see also Hubert et al., 2006). The Q form of 
a rectangular similarity m atrix defines a specific order pattern for its rows and 
columns, characterized by entries nondecreasing up to  a maximum, and from 
there never increasing; conversely, a rectangular dissimilarity m atrix is said to  
be in anti-Q form if the row and column entries are nonincreasing to  a minimum 
and nondecreasing thereafter (see Kendall, 1971a, 1971b). Equivalent to  metric 
decomposition, the ultim ate objective of order-constrained m atrix decomposi­
tion strategies is to  identify an ‘order-constrained low-rank’ reconstruction of
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the original proximity m atrix, providing a parsimonious representation of its 
to ta l variability by the sum of a small number of order-constrained m atrix com­

ponents.
Due to  their specific patterning, the extracted components — either in (anti- 

)Robinson or in (anti-)Q form — lend themselves immediately to  displays of 
the relationships between their row and column objects through a continuous 
unidimensional scale, or a discrete non-spatial configuration in the form of an 
ultram etric tree diagram. Under substantive considerations, the two structures 
address distinct perspectives on how objects are mentally represented. For­
mally, both models involve the same number of estimates and are fit through 
least-squares to the exact same data  base. Thus, a direct comparison of their 

differential fit is legitimate to  decide which model provides the most faithful 
representation of the relationships among row and column objects of each com­
ponent matrix. In other words, we can determine whether the amount of vari­
ability associated which each component is better approximated by a discrete 
or a  continuous structure.

W ithin this context, order-constrained m atrix decomposition attains the sta­
tus of a combinatorial data  analytic meta-technique, when multiple discrete 
(non-spatial) or continuous (spatial) structures are fit to  a given proximity ma­
trix to  increase the information extracted about the relationships among row 
and column objects vis-a-vis a representation featuring only a single structure 
(see, for example, Carroll, 1976; Carroll & Pruzansky, 1980; Carroll, Clark, & 
DeSarbo, 1984; Hubert k. Arabie, 1995b; Hubert et al., 2006). In such instances, 
we are frequently confronted with inconclusive evidence as to  which representa­
tion to  favor, whether the proximity m atrix is more appropriately represented by 
multiple continuous or multiple discrete structures. To illustrate, assume th a t 
for a given proximity m atrix two (continuous) unidimensional scales provide 
superior overall fit as compared to  a  representation by two (discrete) ultra­

metric tree structures. At the same time, the first ultram etric tree structure 
attains substantially higher fit than the first unidimensional scale. We can only 
directly compare those two first structures. The second structures refer to  dif­
ferent d a ta  bases — so, which model should we ultimately choose? We propose 
to  resolve this ambiguity through order-constrained matrix decomposition th a t 
readily allows to  determine which structure provides a superior representation 
of the extracted m atrix components and the associated amount of total vari­
ability in the d a ta  — a feature not available when fitting multiple structures to 
a proximity m atrix w ithout order-constrained decomposition.

We develop a generalization of order-constrained m atrix decomposition to 
three-way data  for studying individual differences th a t provides the analyst with 
an instrum ent to  explore complex hypotheses concerning the appropriateness of 
continuous or discrete stimuli representations from an interindividual as well as 
an intraindividual perspective. We advocate an approach guided by the princi­
ple of analyzing individual variability within a deviation-from-the-mean frame-
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work. F irst, the individual proximity matrices are aggregated across sources into 
a single average matrix th a t is then fit by a small number of order-constrained 

components (say, two or three). The identified decomposition serves as a frame 
of reference against which the individual proximity matrices are decomposed 
in a confirmatory manner, informing us how well the various individuals are 
represented by the reference decomposition. In addition, for each individual 
source, the obtained (comfirmatory) order-constrained components themselves 
can be fit by unidimensional and ultram etric structures. Thus, we obtain (1) 
an interindividual assessment to  what extent the various sources conform to 
the strucutral reference representation, and (2 ) an intraindividual comparison 
whether the distinct (confirmatory) order-constrained m atrix components are 
better represented in terms of a (continuous) unidimensional or (discrete) ul­
tram etric model, with possible implications about the underlying individual 
cognitive representations of the stimuli.

The second section introduces order-constrained anti-Robinson m atrix de­
composition and its generalization to  accommodate three-way two-mode data; 
as an illustrative application, the Face D ata are analyzed in terms of structural 
individual differences in judgments of the schematic face stimuli. The exten­
sion of order-constrained anti-Q m atrix decompostion to  three-way three-mode 
data  is developed in the third section, including the exemplary analysis of the 
Weller-Romney (1990) contraceptive data. We conclude with a discussion and 
summary.

As we are concerned with dissimilarity matrices, in the following, w ithout 
loss of generality, we consider solely the anti-Robinson and anti-Q decomposition 
of proximity matrices, and their representation through sums of m atrices of 
the according pattern. To simplify notation, and the subsequent presentation, 
we denote matrices having anti-Robinson as well as anti-Q form by Z; the 
interpretation of Z =  {z,y}, with 1 <  i , j  <  Al, as a (square-symmetric) two- 
way one-mode matrix, or Z =  {zrc} , with r  =  1 , . . . ,  N r  and c =  1 , . . . ,  N c ,  as 
a  (rectangular) two-way, two-mode matrix will be apparent from the respective 
context.
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6.1 O rder-C onstrained A nti-R ob inson  M atrix  

D ecom p osition

6.1.1 D efin itions and Form al C oncepts

A square-symmetric m atrix Z =  {zXJ} is said to  have anti-Robinson (AR) form 
if

*ij < z i{j+1 ) for 1  <  i <  j  <  JV -  1,

Zij < Zi(j-1) for 2
z ij < z (i-i)j  f°r 2 < i < j  < N.

(6 .1)

In words, moving away from the main diagonal of Z, within each row or column, 
the entries never decrease.

A decomposition of P  is sought as the sum of matrices Z j +  • - ■+Z*+■ • •+ Z r  
such th a t the least-squares loss function is minimized, under the constraint of 
all Zfc having AR form (see H ubert fc Arabie, 1994):

{L(  Z 1, . . . , Z K )} =  min < £  £  ( ? y  -  X ^ (k )y
Zi K

min 
Zi , . . . , z k

( zi \

subject to

G/cz it 0 for 1 <  k <  K;

where t r  denotes the trace function and K  is a t most equal to  N;  p  and zjt stand 
for vectorizations of P  and Z k of size V  x  1, with V  =  N ( N  -  1 ), such th a t the 
main diagonal entries have been dropped; I  indicates a V  x  V  identity matrix; 
G k is a design m atrix of W  x V,  with W  = ( N  — 1)(7V — 2), representing the 
AR inequality constraints as defined in (6.1), given N  objects. A brief comment 
concerning the determination of W  might be helpful: the AR condition imposes 
for each row and column of Z k an a t least monotonically increasing pattern  
of consecutive cell entries in the off-diagonal sections. As Z* is symmetric 
and the main diagonal entries are zero, it suffices to  inspect only its upper (or 
lower) triangular part containing ( 1 /2 )N (N  — 1) elements. The monotonicity 
condition reduces the valid, non-redundant constraints to  the number of pairs 
of adjacent rows (columns) such th a t in each of the N —l  rows (columns) we are

V z K
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losing one element (by excluding comparisons with the zero entries along the 
main diagonal), resulting in ( 1 /2 )N (N  -  1) — ( N  — 1) constraints imposed on 
consecutive row (column) elements in the upper (lower) triangular m atrix of Z^, 
which can be rewritten as (l/2 )(iV —1)(1V —2) and reduces to  W  = ( N —1 ) ( N —2) 
when multiplied by 2  in taking into account rows and columns together.

The task  of identifying an additive decomposition of P  is addressed by fit­
ting Zjt through successive residualizations of P: Zi is fit to  P , Z 2  to  the 
residual m atrix P  — Z j, Z 3  to  the residual matrix (P  — Z i) — Z 2 , and so on. 
However, the given proximity data  matrix P  initially does not have AR form 

(otherwise, a decomposition attem pt were futile), posing a  substantial techni­
cal impediment to  the identification of a least-squares optimal AR m atrix Z i . 
Therefore, the rows and columns of P  need first to  be re-arranged into a form 
th a t matches the desired AR pattern  as closely as possible through identifying 
a suitable perm utation pi(-) s  pi,  where p(-) denotes a  perm utation of the 
first N  integers. Similarly, the estimation of each subsequent AR component, 
Z2, . . . ,  Zk ,  requires the preceding search for a perm utation P2 , ■.., Pk  , produc­
ing a rearrangement of rows and columns of the associated residual matrices, 
optimally approximating the AR form. Hence, conceptually, generating an op­
tim al AR decomposition of P  into Zjt represents a two-fold least-squares 
minimization problem, separating into the distinct operations of finding a col­

lection of permutations, p i , . . .  , p x ,  for attem pting to  reorder the matrices into 
AR form, followed by an estimation step to  actually numerically identify the 
desired AR components, Z i , . . . ,Z * - ,  conforming to  the order constraints as 

established through the respective permutations.

6.1.2 Optimal AR Decomposition: Algorithmic and 
Computational Details

The search for an optimal collection of permutations, Pi , . . . , p k , represents 
an NP-hard combinatorial optimization problem, addressable through a QA 
heuristic (see Hubert & Arabie, 1994; Hubert et al., 2006), where the target 
m atrix, B , is defined as 6 jj :=  |j — i |, with 1 < i < j  < N,  which provides a 
perfect and equally spaced AR structure. Estimation of the matrix components 
in perfect AR form, Z1 ;. . . ,  Z K , is carried out through IP.

Recall tha t, given the actual numerical entries in P , p* indicates the best 
possible reordering of the N  rows and columns of P  into a form matching an AR 
pattern. Our goal is to estimate an N  x N  least-squares approximation Z =  {ztJ } 
to  P p- , which has perfect AR form. In other words, the arrangement of objects 
in Z is determined by p" , while the numerical estimates have to  satisfy (6.1). 
Given N  objects, (6.1) expands into the collection of W  = ( N  — 1) (TV — 2) 
sets of order constraints, C i , , C w , each representing a single inequality of the 
form Zi(j+i) — > 0 or Z(i~i)j — Zij > 0. Formally, we need to  find a perfect
AR m atrix Z* =  z* e  C =  H!T=i ^  minimizing the least-squares loss function
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(pp. — z ) '(p p. — z), with p p* and z denoting vectorizations of matrices P p- and 
Q. After initializing z-0) zp. , the IP algorithm proceeds by checking for each 
adjacent pair of row or column objects whether the involved proximities conform 
to  the respective constraints in Cw. If a t iteration 1 - 1  a  violation is encountered, 
the vector is projected onto Cw, and the particular proximities are replaced
by their projections (see Dykstra, 1983); for example, if we observe —

< 0  the projections are given by:

A t )  _  7 (t-i)  _  I  ( A t - 1) _  _  I  ( J t - i )  A t - 1 ) \
z i j  _  ZH  2 \  i j  )  2  I

A t )  _  A t - i )  , l ( A t - i )  - A * - 1) )  -  I  ( }
H i + 1 ) _  zi(i+>)f  2 V i(j+1) b  )  2 \ ij 'O '+Pj '

Proceeding in this manner, IP  cycles through C\ , . . . ,  Cw until convergence to 
z* =  Z*.

The actual identification of the collection Z i , . . . ,  Z k  through successive 
residualizations of P  relies on engineering a complex interplay of the two opti­
mization routines, QA and D ykstra’s IP. The algorithm is initialized by subject­

ing P  to  a QA-based search for a perm utation pi providing a rearrangement of 
the rows and columns of P ,  matching the desired AR form as closely as possible 
(denoted by P Pl). Based on the order of row and column objects, as retrieved 
from p i , the least-squares optimal AR m atrix Z i is fit to  P Pl through IP, with 
constraints C(i)i , . . . , C(i)w defined by (6.1). By updating the target m atrix, B, 
through Z i , we initiate a second QA search for a possibly superior perm utation 
pi of P . The resulting P Pl will potentially even be closer to  optimal A R pat­
terning. Subsequently, Z i is refit through IP. The algorithm cycles through QA 
and IP  until convergence (i.e., updating B  by Zi does not result in any changes 

of p i). The residual m atrix {pPl(i)Pl(j) — z(i)»y} is submitted to  the search for 
the second AR component, Z 2 . The algorithm switches back and forth between 
QA and IP, until pi  and Z 2  have been identified, yielding the residual m atrix 

{{Pw(i)piO) -  (i)pa(i) -  z(2 )y} to  be forwarded to  a third QA-IP cycle
bearing p3  and Z 3 . The algorithm continues until a complete decomposition of 
P  has been attained, usually with K  N  as Hubert and Arabie (1994) report 
(see also H ubert & Kohn, 2006). Evidently, the ultim ate solution depends on 
the initial arrangement of rows and columns of P  (i.e., the particular order, in 
which P  is passed on to  the first QA search cycle); therefore, to  reduce the risk 
of detecting a purely locally optimal solution, a  common nuisance to  any heuris­
tic procedure, utilization of the algorithm with multiple starts on the randomly 
permuted input matrix P  is strongly recommended.
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6.1 .3  Low A R  R ank A pproxim ation  to  a P rox im ity  
M atrix

Given a square-symmetric proximity m atrix, P , of full rank N ,  the rank-reduction 
theorem in linear algebra suggests th a t P  can be approximated by a low-rank 
L  <?C N  sum of matrices of identical size as P . In an analogous manner, we can 
sta te our ultim ate analytic objective so as to  identify a  low AR rank decompo­

sition of P  such th a t

P  w Z j +  • • • -t- Zfc -I +  Z l  w ith l < k < L < K < ^ N .

W hen only L  AR components are retrieved, the algorithm capitalizes on repet­
itively refitting the residuals of the different Z E x p l i c i t l y ,  assume th a t the 
extraction of L  AR components has left us with a residual m atrix {py — 

Ylk=i z (k)i]}- In attem pting to  additionally improve the fit of the decompo­
sition obtained, the residuals {ptJ — Ylk=i z (k)ij} are added back to  Zj ,  suc­
ceeded by another run through the QA-IP fitting cycle, very likely detecting a 
more effective perm utation p \ , producing a revised Z\  to  recalculate residuals 
{Pij — 2 (i)y} th a t in tu rn  are restored to  the previously estimated Z 2  compo­
nent, to  be subjected then to  a new search for updating Z2, and so on. As an 
immediate consequence of repetitively refitting the residuals through subsequent 
Z k, unlike the spectral decomposition of a  matrix, the components Z \ , . . .  
are correlated.

6.1 .4  F it M easure

The quality of a  specific lower AR rank approximation to  P  is assessed through 
the VAF criterion defined by

(6.3)

(6.4)

(6.5)

w ith p  denoting the mean of the off-diagonal entries in P  =  {p^},  and Z(k)ij the 
fitted values of the k th AR component.

6 .1 .5  T h e R ep resentation  o f A R  M atrix  C om ponents  
T hrough Secondary S tructures

Each of the AR components Z i , . . . ,  Z k  lends itself immediately to  a more re­
stricted structural representation, either in the form of a  unidimensional scaling 
(see Brusco, 2002b; H ubert & Arabie, 1986, 1988; Hubert, Arabie, & Meul- 
man, 2002, 2006) of the set of row and column objects of the AR matrices,

VAF =  1 - J 2 i < j ( P i j  H f c = l  z ( k ) i j ) 2

E i c j i P a  - p ) 2

=  1 t r ( P - E t i  Z t ) ( P - E t i  z *)'
tr(P  -  P )(P  -  P )'
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O  =  { O i , . . .  ,Opf],  along a single axis, or through a discrete ultram etric tree 
diagram (see Barthelemy & Guenoche, 1991; Hubert & Arabie, 1995b; Hubert, 
Arabie, & Meulman, 2006).

For a specific AR component matrix Z* =  the unidimensional scale

representation can be constructed by estimating object coordinates X(k)j, x (k)i 
on the line minimizing the least-squares loss function (including an additive 

constant c/.), as was presented in detail in Chapter 4:

T (X k, Ck) =  ^   ̂ (z(k)ij ~  (\x (k)j ~  •r (fc)>l +
i<j

(6.3)

=  ^ t r (Z ,  -  (D t  +  C fc)) (Z* -  (Dfc +  C k))', 

subject to  constraints on the coordinate values implied by the triangle (in)equality:

0(k)i -< 0 ( k)j < 0(k)i

=b d(k)u = d(k)ij +  d(k)ji

^  — |nr(fc)j x (k)i\ “b | V i  <C j  < /,

where D*, =  {d(k)ij} = — x (k)j 1} denotes the matrix of (city-block) dis­
tances among objects Oi,Oj  £ O  defined as the absolute difference between 
object coordinates on the line.

An ultram etric tree structure can be characterized as a weighted acyclic 
connected graph with a natural root, defined as the node equidistant to  all leaves 
or terminal nodes. The terminal nodes of an ultram etric tree represent a set 
of N  objects, 0  =  { 0 1 , . . . , 0 jv } .  As a  necessary and sufficient condition for a 
unique ultram etric tree representation, the weights along the paths connecting 
objects O i ,Oj , typically with a distance interpretation and collected into an 
N x N  m atrix U  =  have to  satisfy the three-point condition or u ltram etric
inequality: for any distinct object triple O;, CJJy and Oi, the largest two path 
length distances among ut]y uu,  and must be equal. Fitting an ultram etric 
structure U  =  {tty} to  Z k also rests on minimizing a least-squares loss function:

L (U/c) =  ~  “ W o ) 2 =  2 t r ^ *  ~  ~~ ^ ) />
i <)

subject to  the constraints as defined by the ultram etric inequality:

U(k)ij < max {u(k)ihU(k)jl} for 1 < i , j , l  <  N

(see also the detailed description given in Chapter 3).
The choice of the unidimensional scale and ultram etric tree representation 

is justified by a remarkable result in combinatorial data  analysis (see H ubert & 
Arabie, 1995a; Hubert et al., 2006, Ch. 11), which links both models directly
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to  the A E  form of a square-symmetric data  matrix. Specifically, the matrices 
of estimated interobject (scale) distances and (ultram etric tree) path  lengths 
themselves can be permuted into perfect AR form. More to  the point, opti­
mal unidimensional scale and ultram etric tree structures induce the AR form 
on the matrices of fitted values. In other words, the AR form is a  necessary 
condition for identifying these two more restricted models, as defined by the 
triangle or ultram etric (in)equality constraints. We should re-emphasize tha t, 
for a given AR component, Z*,, both models involve the same number of least- 
squares estimates. Thus, their VAF scores — obtainable through normalizing 

the respective loss function by Y^i<.j(z {k)ij — Zk)2 — are on 3 1 1  equal scale and 
directly comparable as to  which structure provides a superior representation of 
Z k- A brief technical note will be helpful to  elaborate this claim. Recall th a t fit­
ting a unidimensional scale includes estimating an additive constant, c to  ensure 
th a t the obtained VAF fit criterion is equivalent to  the (bounded) B? measure 
in regression. Hence, one might object th a t fitting a unidimensional scale in­
volves an additional estimate in comparison with the ultram etric tree model. 
However, fitting an ultram etric structure through least-squares is translation 
invariant, thus not necessitating the explicit inclusion of an additive constant, 
c. More succinctly, models with or without intercept are identical due to  the 
special structural side constraints imposed by the ultram etric inequality:

Uij < m ax{uii,u ,(}  <=> Uy +  c <  max {uu +  c ,Uji +  c} .

However, note th a t translation invariance does not hold for the unidimensional 
structure di3 =  \xj — Xi\ to  be fit to  the pij as the triangle (in)equality constraints 
will be violated: let du +  c =  |x( — r ,j  +  c (and dl3 +  c, d]t +  c correspondingly), 
then

du T  c ^  d^  b e t "  dji -(- c

\xt - X i \  + c /  \xj -  Xi\ + \xi -  X j \  + 2c.

As a final comment, observe th a t fitting secondary structures to  the Z*, by a
least-squares intercept model implies the conjecture th a t the proximities have
interval (and not ratio) scale properties.

6 .1 .6  E xten d in g  A R  M atrix  D ecom p osition  to  
Three-W ay D ata

Our concern here will be three-way two-mode data, so the slices consist of 
square-symmetric two-way one-mode proximity matrices. Modelling three-way 
data  and individual variability follow the deviation-from-the-mean principle. 
First, the individual proximity matrices, P s , are aggregated across sources into 
m atrix P a , which is subsequently decomposed into a collection of L  AR com­
ponents through successive residualization. Second, the obtained AR matrices
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then serve as frame of reference, against which the individual data matrices, 
P , ,  are fit in a  confirmatory manner. Recall th a t the chosen reference AR 
structure, Z i , . . . , Z l , is well-defined through the associated object perm uta­
tions, p \ , . . .  , p l . Thus, for a confirmatory fitting of the individual proximity 
matrices, we do not need to identify object orderings: they are already given to  
us. Hence, we can skip the QA step and continue directly with IP  to  numer­
ically estim ate the cell entries of the individual confirmatory AR components. 
Notice th a t the IP  constraints are deducable from the known object perm uta­
tions associated with each of the AR matrices of the reference structure. In 
technical term s, assume th a t for P a the low AR rank approximation Z i , . . . ,  Zjr, 
was identified. Each component is characterized by a specific object ordering 
as expressed by the associated perm utations p i , . . .  , p i -  The componentwise 
object arrangements embodied in pk serve as a blueprint for (re)constructing 

the set of corresponding IP-constraints, C^)i ,  ■ ■ ■; C(k)w- They determine the 
specific AR form of the Z*, and provide a frame of reference for the confirma­
tory decomposition of the S  individual proximity matrices into a collection of 
L  matrices having AR form. As for each of the L  components the AR-optimal 
object order is fixed, the confirmatory decomposition of the individual sources 
precludes the QA step, and proceeds directly with fitting the L  source-specific 
AR components Zk(s) through IP  to  the given individual data  matrices, P s , 
employing the L  sets of constraints C(jt)i,. . . ,C(k)w-

For each source s, we can compute a  general fit measure, VAFS, indicating 
how closely the observed proximities, P 4  , conform to the imposed AR reference 
structure, Z j , . . . ,  Zx,. Specifically, J2k=i ^k(s) represents the confirmatory AR 
decomposition of P , .  Thus, we can compute VAFS as the normalized sum  of 
squared deviations between the observed proximities and the fitted confirmatory 
AR decomposition:

, r A T ?  ,  ~  Ylk=l Z(.k)ij(s))2
V A r  s  — I  ^  _ \2

22i<j(Pij(s) - P s )
(6.5)

1 tr(P, ~ E t i  Z*(.))(p« ~
t r ( P a -  P S)(P S -  P . ) '

In a subsequent analysis step, to  each of the L  confirmatory AR compo­
nents, estim ated for each source, a unidimensional scale and an ultram etric tree 
structure are fit. Hence, in addition to  the general VAF measure, VAFS, for 
each source, we obtain a collection of specific fit scores informing us whether 
the confirmatory AR components, identified for source s, are better represented 
by a continuous spatial or a discrete non-spatial structure. To summarize, the 
VAFS scores, enable us to  quantify the extent at which different sources reflect 
the properties of the reference structure. Moreover, the source-specific VAF 
measures for the continuous and discrete models, fit to  each AR component, al-
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Table 6.1: Frequency distributions of the VAF scores as obtained from 10,000 
random starts for TV =  {1,2,3,4}.

K  VAF freq perc max VAF increase K  —» K  +  1.
1 .54456550

.54456551
4888
5112

48.9
51.1 • _

2 .93474819 6987 69.9
.95931572 3013 30.1 • .41475021

3 .99892695 1817 18.2
.99963474 5160 51.6
.99981285 804 8 . 0

.99999319 2219 2 2 . 2 • .04067747

4 .99999764 5100 51.0
.99999928 1904 19.0
.99999950 2231 22.3
.99999970 161 1 . 6

.99999983 604 6 . 0 • .00000664

low for an in-depth inter- and intra-subject analysis, be th a t by comparing the 

fit scores between sources or within a given source s, to  determine whether the 
continuous or discrete structure provides superior representation, w ith possible 
implications about the underlying individual cognitive processes.

6 .1 .7  A pplication: Judgm ents o f Schem atic Face Stim uli

Matrix P Q was subjected to  a QA-IP-based search for an optimal AR de­
composition with K  =  {1,2,3,4) ,  employing a stand-alone MATLAB routine 
m ultiarobfnd .m , conveniently allowing for multiple runs with initial random 
perm utations of the input proximity matrix. For each decomposition into K  
components, 10,000 random starts were used. The frequency distributions of 
the VAF scores obtained for each K  are reported in Table 6.1; the number of 
decimal places used may seem excessive, bu t is done here to  make the distinct 
locally optimal solutions apparent.
Figure 6.1 presents the orders of facial stimuli as discovered for the Z* belonging 
to  the AR decomposition of P a into K  components with maximum VAF.

Both, the distribution results in Table 6.1 as well as the displays of the stimulus 
orderings in Figure 6.1 clearly suggest th a t the aggregated proximity m atrix P Q 
is of AR rank L  =  2: first, the VAF increment for K  >  3 is minimal; second, 
while the order of stimuli associated with the first two components reveals an 
obvious pattern  — Z\  : emotional appearance as captured by factor Mouth; Z 2 : 
‘circle’ shaped versus ‘solid’ eyes — the stimulus arrangements along the third
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Figure 6.1: The orders of schematic face stimuli obtained for the various Zk 
components of the AR decompositions into K  components w ith maximum VAF 
score.
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and fourth AR components, Z 3  and Z4, lack such pattern. Lastly, across all 
four decompositions the first two AR components maintain a  stable order of the 
stimuli (apart from a minimal inversion occurring on the second AR component 
concerning the two right-most faces), which does not hold for the third and 
fourth AR components. Thus, the biadditive solution with the largest VAF 
score (.9593) was chosen as reference AR decomposition, against which the 22 
individual rating matrices were fit.

The graphs of the unidimensional scale and ultram etric tree representation 
of the biadditive AR reference components Z t and Z 2  are shown in Figure 6.2; 
their interpretation is straightforward: the unidimensional scale constructed for 

Zj orders the face stimuli along the continuum negative to  positive expression 
of emotion, grouping them into three consecutive categories formed by the lev­
els ‘frowning’, ‘flat’, and ‘smiling’ of factor M outh (the exact position of each 
face stimulus is at its left eye). The corresponding ultram etric tree structure 
of Z i produces an almost perfectly balanced threefold segmentation of the face 
stimuli, also based on the primary criterion emotional appearance as expressed 
by the levels of factor Mouth. Notice th a t the three categories are not perceived 
as equally distinct; rather, ‘flat’ and ‘smile’ are merged, while ‘frown’ is still 
set apart. W ithin each group a secondary classification into faces according 
to  Facial Shape can be observed, whereas ‘open’ and ‘solid’ circled eyes differ­
entiate between stimuli a t the tertiary level (note th a t this pattern  is slightly 
violated by the ‘smile’ segment). The unidimensional scale representing Z 2  sep­
arates faces with ‘circle’ from ‘solid’ eyes, w ith ‘oval’ faced stimuli placed a t the 
extreme scale poles -  an arrangement of stimuli accurately reflected by the u ltra­
metric tree structure. The la tter also implies th a t Facial Shape and emotional 
appearance serve as subsequent descriptive features to group the stimuli (the 
tied triplet of ‘circle’ shaped faces having ‘solid’ eyes indicates a compromised 
fit such as the imposition of the ultram etric structure could only be accom­
plished by equating the respective stimulus distances). One might be tem pted 
to  conclude th a t the unidimensional scaling of the second AR component is de­
generate because the twelve stimuli are lumped into four locations only. Upon 
closer inspection, however, this appears as an absolutely legitimate representa­
tion: the scale appropriately discriminates between ‘solid’ and ‘circle’ shaped 
eyes, while incorporating a secondary distinction based on facial shape. Thus, 
the retrieved scale accurately reflects a subset of constituting facial features 
ordering the stimuli in perfect accordance.

F itting the biadditive AR reference structure for the 22 sources was con­
ducted through the MATLAB routine b ia xobf i t .m ,  performing confirmatory 
biadditive AR decomposition on each of the individual proximity matrices P s , 
w ith IP constraints derived from the object orderings detected when locating the 
biadditive reference structure. Table 6.2 presents the results for the 22 sources,
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Figure 6.2: Biadditive reference AR decomposition of P a (VAF=.959): unidi­
mensional scale and ultram etric tree representations.
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sorted according to  their VAF scores as defined by (6.10), indicating how closely 
the various individuals actually match the biadditive reference AR structure. A 
variety of additional diagnostic measures is provided for assessing the differen­
tial contribution of the AR components Z 1(sj and Z2(s). The VAF1 and VAF2 
scores indicate how well the two AR components actually fit the corresponding 
residualizations of P s ; they are defined similar to  the overall or individual VAF 
measures in (6.3) and (6.10), however, w ith minor modifications to  adjust for 
the respective residualization; for example:

y ^ p j  _  j ______ Z!i<j [(P»j(s) ~  z2ij(s)) ~  _____

<j [(Pp'(s) Z1 ij(s)) (Pij(s) ^2 y(«))]

where (pp(s) ~  z 2 i j ( s ) )  denotes the mean of the residual m atrix P  , — Z 2(s). Mea­
sures VAF(Zj) and VAF(Z2) are obtained by refitting the final estimates of the 
A R components Z 1(y  and Z2(s) as sole predictors to  the individual proximity 
m atrices P s to  assess their marginal variance contribution. The coefficients of 

partial determination R p Z l z 2 an^ R p z 2 Zi Quant'fy the marginal contribution 
of Z j(s) and Z2(s) in reducing the to tal variation of P s when Z2(s) or Z jy), 
respectively, has already been included in the model; for example:

s s e (z ; (s]) -  s s e (z Hs), z 2(s))
* P Zl.Za S S E ( Z 2(s))

w ith S S E  denoting the sum of squared errors. Thus, S S E ( Z2(s)) indicates the 

sum of squared errors when Z2(s) serves as sole predictor, while S S E ( Z \ ( s), Z2(s)) 
represents the sums of squares due to  error resulting when both AR components 
are in the model. Lastly, COV stands for the covariance of the two AR compo­
nents defined by

C 0V (Z i(5), Z2(s)) =  ^  ~  •^l(s))('2 lij(s) — z 2(s))-
•J

In term s of the overall VAF score, subjects 11, 19, and 21 form the top three 
group, while the bottom  three comprise subjects 1, 4, and 6 , w ith the top and 
bottom  three subjects marked by •, and by o, respectively (for ease of legibility, 
all original fit scores were multiplied by 1 0 0 0 , thereby eliminating decimal points 
and leading zeros). Table 6.3 reports the VAF scores obtained for the 22 sources 
when fitting unidimensional scales and ultram etric tree structures to  the indi­
vidual AR components ’Zi(s) and Z2(s); the VAF scores correspond to  normaliza­

tions of the least-squares loss criteria in (6 .6 ) and (6.9) by X!i<J (2 (ic)y (s)—zk(s) )2 ■ 
For all sources, except subject 1, the unidimensional scaling of Z 1(sj results in a 
much better fit than the corresponding ultram etric tree structure; however, for 
the second AR component, the ultram etric tree representation attains superior 
fit.

I t seems most instructive to  focus on the extremes, and consider for further
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Table 6.2: Ranking of Individual VAF scores plus various fit measures quanti­
fying the separate contributions of the two AR components Z j(s) and Z2(s).

Ranked
Sources VAF VAF1 VAF2 VAF(Zi) VAF(Z2) ^ P Z , Z , ^ P Z , Z , COV

11 963 • 941 957 365 549 992 957 -1378
19 951 • 926 939 385 500 995 939 -834
21 948 • 940 935 484 411 991 935 -1730
12 943 950 654 877 33 996 654 -365

5 932 931 864 648 237 990 864 -1224
13 914 907 846 602 242 983 846 -1088
20 885 894 590 777 99 981 590 -806

9 885 886 861 467 315 980 861 -1887
14 883 830 857 303 451 984 857 -785
8 874 862 784 559 283 983 784 -706

17 862 874 606 706 121 968 606 -1026
16 860 769 847 262 551 969 847 -1108
2 849 779 792 395 453 980 792 -622

22 841 771 858 212 533 973 858 -1793
10 838 785 759 424 350 975 759 -444
15 836 820 736 481 238 974 736 -893
18 813 732 767 328 473 969 767 -598
7 803 787 797 313 374 972 797 -988
3 793 701 759 267 433 964 759 -395
6 748 O 724 611 421 242 963 611 -505
4 747 o 693 643 354 248 952 643 -782
1 262 o 135 229 70 186 965 229 -53
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Table 6.3: Individual VAF scores for the unidimensional scale (US) and u ltra­
metric tree (UT) representations of the two AR components Z j(s) and Z2(s)

Ranked
Sources VAF(US 1) VAF(UT 1) VAF(US 2) VAF(UT 2)

1 1 914 619 2 2 2 832
19 870 719 2 2 1 684
2 1 914 671 196 716
1 2 900 776 208 583

5 918 861 227 774
13 941 754 240 687
2 0 940 878 246 552

9 914 697 265 769
14 855 693 264 650

8 927 664 251 730
17 962 723 2 2 2 818
16 883 796 233 745

2 852 737 241 602
2 2 882 737 194 745
1 0 893 800 284 782
15 892 723 203 679
18 861 734 261 715

7 899 599 2 2 2 811
3 885 728 237 729
6 896 684 148 641
4 878 763 170 839
1 768 818 204 797
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inspection only individuals who are exceptionally poorly or well-represented: the 
top  and bottom  three subjects. For succinctness, from the top three group only 
the  best fitting source, subject 1 1 , is chosen, whereas the results for the bottom  
group, subjects 1, 4, and 6 , are completely documented because they promise 
to  provide deeper diagnostic insight into how sources with data  of apparent 
ill-fit are handled by the AR decomposition. Figures 6.3 and 6.4 present the 
unidimensional scales and ultrametric tree graphs fit to  the two individual AR 
components Zi(s) and Z2(.s) (for the ultram etric dendrograms th e  face stimuli 
have been arranged to  m atch their order associated with the respective AR 

components; recall th a t for a  fixed ultram etric structure there exist 
different ways of positioning the terminal object nodes of the tree diagram).

Not too  surprising, the unidimensional scale as well as the non-spatial tree 
representations of Zj and Z 2  for Subject 1 1  are almost identical to  those of the 
reference structure, which by and large also applies to  the unidimensional scales 
constructed for subjects 6  and 4. However, the findings for the la tter two sources 
axe put into perspective by the their ultram etric dendrograms: wildly dispersed 
branches, accompanied by several misallocations of stimuli, particularly for the 
representations of the second AR component, indicate an at best mediocre fit 
of the d a ta  from respondents 6  and 4 to  the imposed AR structures. Such 
ambiguities do not pertain to  subject 1 , who is an obvious misfit: first, notice 
the equidistant alignment of stimuli along the unidimensional scale representing 
the first AR component, signalizing a presumable lack of differentiation in the 
judgments of this subject. Moreover, inspecting the remaining three graphs 

corroborates the notion of the problematic nature of the data  contributed by 
source 1  as the face stimuli appear to be arranged more or less in random order.

To further substantiate the tentative conclusions from the confirmatory anal­
ysis, the individual d a ta  matrices of respondents 11, 6 , 4 and 1 were reanalyzed 
through independent biadditive AR decompositions. Based on the logic th a t the 
confirmatory fitting could lead to  a compromised structural representation of the 
individual data  by imposing constraints inappropriate for a particular source, 
one might consider the obtained confirmatory configurations -  in a transferred 
sense -  as a  lower bound representation. In other words, we would expect a 
well-fitting subject to  profit from an independent analysis with the prospect of 
an only slightly better representation. For sources with poor fit, however, the 
independent analysis will either yield a substantial increase in fit because their 
idiosyncratic perspective, in disagreement with the majority of the sample, will 
no longer be distorted by an inadequate confirmatory reference frame, or these 
subjects will qualify as having provided just inconsistent, or random judgments 
not amenable to  any improved data representation. Each of the four individual
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Figure 6.3: Confirmatory biadditive AR decomposition for selected sources:
unidimensional scale and ultram etric tree representations for the first AR com­
ponent
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Figure 6.4: Confirmatory biadditive reference AR decomposition for selected
sources: unidimensional scale and ultram etric tree representations for the second
AR component Z2(s) •
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Table 6.4: Independent biadditive AR decomposition of selected sources: Indi­
vidual VAF scores plus various fit measures quantifying the separate contribu­
tions of the two AR components Z i(s) and Z2(s).

Ranked
:ces VAF VAF1 VAF2 VAF(Ch) VAF(Q2) ^PQ iC h Qi COV

1 1 981 980 966 624 332 996 966 -1494
6 967 968 955 568 283 995 955 -1237
4 924 932 912 541 349 986 912 -2485
1 970 964 913 754 483 999 913 -99

Table 6.5: Individual VAF scores for the unidimensional scale (US) and ultra- 
m etric tree (UT) representations of the two AR components Zq.,) and Z 2 (.s) 
from the independent analysis of selected sources.

Ranked
Sources VAF(US 1) VAF(UT 1) VAF(US 2) VAF(UT 2)

1 1 941 693 237 632
6 919 574 260 587
4 937 699 278 721
1 822 858 197 650

proximity matrices was subjected to  1 0 , 0 0 0  random starts of the appropriate 
MATLAB routine (biarobfnd.m ); the solutions with the highest VAF score 
were chosen as final representations. The key diagnostics for subjects 11, 6 , 4, 
and 1 are reported in Table 6.4. For all sources the overall VAF scores imply 
th a t their data  are exhaustively approximated by an AR decomposition of rank 
1 = 2. The VAF scores for the unidimensional scale and ultram etric tree rep­
resentations fit subsequently to  the two AR components are presented in Table 
6.5. As before, the unidimensional scale representations of the Z a t t a i n  much 
higher VAF values across all four sources than the ultram etric tree structures, 
while the latter provide superior representations of the second AR components 

Z 2 (* )•

For sources 11, 6 , 4 and 1, graphs of the unidimensional scales and ul­
tram etric tree structures for Z ^ j  and Z2(s) are given in Figures 6.5 and 6 .6 , 
respectively. The scale and dendrogram displays obtained for subject 11 afford 
an immediate interpretation: the arrangement of facial stimuli associated with 
the first AR component is dominated by the factor Eyes, with factors Facial 
Shape and Mouth as secondary and tertiary perceptual criteria; the ordering 
of faces identified with the second AR component is determined by the feature 
hierarchy Mouth, Facial Shape and Eyes. So, the independent analysis reveals 
th a t subject 1 1 , in comparison with the reference structure, utilizes the identi-
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cal feature hierarchies, but in reversed order: whereas the order of stimuli along 
the first AR reference component can be characterized in term s of the sequen­
tial utilization of criteria Mouth, Facial Shape and Eyes, subject 11 employs 
the exact same hierarchy on the second independent AR component, and vice 
versa. For subject 6 , the results are far less consistent. The independent anal­
ysis identifies M outh as the primary factor, followed by Facial Shape and Eyes, 

which is in agreement with the first AR component of the reference structure. 
But this order of criteria only applies to faces with ‘flat’ or ‘frowning’ m outh 

lines; for smiling faces we observe a  switch to  Eyes first, then Facial Shape — 
a  finding also evidenced by the dendrogram. Its branching pattern  indicates 
additional inconsistencies in the grouping of stimuli as exemplified by the mis- 
classifications of the two stimuli with ‘oval’ face, ‘solid’ eyes and ‘flat’ m outh, 
or ‘circle’ shaped face, ‘solid’ eyes and ‘frowning’ mouth line, respectively. The 
displays for the second AR component confirm these conclusions because both  
the unidimensional scale as well as the dendrogram are hardly interpretable and, 
rather resemble a non-systematic, ad hoc mix of factors Facial Shape and Eyes. 
Similar findings can be stated  for subject 4: the scale as well as the tree repre­
sentation of the first AR component appear to  be determined by an inconsistent 
combination of factors Eyes and Facial Shape, while the arrangement of stimuli 
in the representations of the second AR component, seems to  be governed by 
Mouth, but also in an inconsistent manner. In summarizing, remarkably and 
contrary to  our expectations, respondents 6  and 4, do not emerge as subjects 
with a  deviant, nevertheless well interpretable pattern  of perceptual criteria, 
bu t as sources with profound inconsistencies in their judgments. The fuzzy re­
sults for source 1  allow for only an obvious explanation: the arrangem ent of 
the face stimuli reveals no discernable relationship, implying th a t subject 1  ju st 
contributed random responses.

Under substantive considerations, the results suggest th a t the set of schematic 
face stimuli is best represented by a combination of continuous spatial and dis­
crete non-spatial structures: the first AR component, associated w ith factor 
Mouth and interpretable as emotional appearance, receives superior represen­
tation  through a unidimensional scale, whereas the second AR component, re­
flecting a mix of Facial Shape and Eyes, is better represented by a  discrete 
non-spatial structure — from hindsight not too surprising, given the specific 
manner the stimuli were generated. The most remarkable finding concerns the 
independent analysis of subjects 6  and 4, who, although attaining numerically 
satisfactory fit scores, do not gain from it in term s of a more meaningful stim ­
ulus representation. Instead, and contrary to  the initial hypothesis attributing  
their mediocre confirmatory fit to  the biadditive AR reference structure as too
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Figure 6.5: Independent biadditive AR decomposition for selected sources: uni­
dimensional scale and ultram etric tree representations for the first AR compo­
nent Z i(s).
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Figure 6.6: Independent biadditive AR decomposition for selected sources: uni­
dimensional scale and ultram etric tree representations for the second AR com­
ponent Z2(s).
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restrictive for their distinctive perception, the outcome of the independent anal­
ysis rather confirms the notion th a t these subjects simply entertained a weakly

elaborated, inconsistent mix of criteria.

6.2 O rder-C onstrained (A n ti-)Q  M atrix  

D ecom p osition

6.2.1 D efin itions and Form al C on cepts

Recall th a t the rows and columns of an N R x N c  rectangular two-way two­
mode proximity matrix, Q  =  {qrc}, represent two distinct sets of entities, O r  = 
{O i r , . . . , 0 NrR} and Oc  =  {Oxc , . . .  , 0 Ncc } ,  w ith N r  and N c  elements, 
respectively, and r  =  1 , . . .,  N r  and c =  1 , . . . ,  Nc', the within-sets proximities 
are not available. Generally, the anti-Q form of a rectangular m atrix Z =  
{zrc} is characterized by a pattern  of row and column entries nonincreasing to 
a  minimum, the inflection points, hr and hc, respectively, and nondecreasing 
thereafter. Formally, for each row r  “there exists a  (not necessarily unique) 
integer hr , 1 < hr < N c ,  such th a t”

Zr h ^  1) f^* f — h — hr 17

Zrh. <  Z r (h + 1) for hr <  h <  N c  -  1,

and for each column c “there exists a  (not necessarily unique) integer hc, 1  <  

hc < N r , such th a t”

Zkc ^  ^(h+i)c for 1  h ^  hc 1 ,

Zhc < Z(h + 1)c for hc < h < N r  -  1

(see H ubert & Arabie, 1995a, p. 576-577).
We seek to  decompose Q into the sum of matrices Z i H h Z*, -I h Z k ,

w ith K  a t most equal to  m in { N r , N c } ,  such th a t the least-squares loss function,

L ( Z u . . . , Z k ) — y  ] y  ](Qtc — Z(k)rc)
r c k

= t ^ Q - ^ Z ^ Q - ^ Z * ) ' ,
k k

is minimized, given the constraint of all Z/t having anti-Q  form.
The sum of anti-Q matrices is obtained through successive residualizations 

of Q, and proceeds in the exact same manner as order-constrained AR de­
composition. However, the specific patterning of anti-Q  matrices requires the 
identification of a collection of pairs of suitable row and column perm utations 
{tpi,ipi} , . . . ,  {<pk, ^ k } ,  with </>(•) =  ip and ip(-) = xp denoting perm utations of 
the first N r  and N c  integers, respectively, rearranging Q  and the subsequent
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residual matrices into a  form th a t matches the desired anti-Q pattern  as closely 
as possible. Thus, like order-constrained AR decomposition, finding a least- 

squares optim al anti-Q decomposition of Q into Ylk ^ k  involves the search for a 
collection of perm utations {<fii,ipi}, ■ ■ ■, {p k , ipx),  for rearranging the matrices 
into approximate anti-Q form, followed by estimating the anti-Q components, 
Z j , . . . ,  Z k , conforming to  the order constraints as established through the re­
spective row and column permutations.

6.2.2 Optimal Anti-Q Decomposition: Algorithmic and 
Computational Details

The search for {<pi, ip i} , . . . ,  {p k i H’k } presents a major technical challenge 
to  order-constrained anti-Q m atrix decomposition. Distinct from a square- 
symmetric N  x N  proximity m atrix P  =  {pij}, with Py =  Pj,, pa = 0 and 
1  <  i , j  <  N ,  where a single perm utation p simultaneously rearranges the  rows 
and columns of P  (for example, into AR form), the rectangular format of Q 
requires separate permutations of rows and columns, <p and ip. However, a 
(presumably) iterative search procedure interchanging row and column permu­
tations, even though transforming Q into anti-Q form would place the inflection 
points hr and hc a t ambiguous and not necessarily optimal positions. Instead, 
the specific nonincrease-nondecrease patterning about the minima of row and 
column entries of an anti-Q form, requires the incorporation of inflection point 
locations, hr and hc, explicitly into the search for optimal perm utations p  and 
ip, posing a further complication.

H ubert and Arabie (1995a) devised an ingenious solution to  this problem 
by embedding the two-way two-mode proximity matrix Q  into a 2 x 2 square- 

symmetric superm atrix P (Q) =  { p [^} , resulting in a  matrix of size N  x  N ,  
w ith N  = N r  -1- N c  (thus, merging the previous separate indices 1 , . . . ,  N r  and 
1 , . . . ,  N c  into one set, with the first N r  row objects subscripted as 1 , . . . ,  N r  

and the remaining N c  column objects assigned indices N r  +  1 , . . . ,  N r  +  N c  =  
N ).  The off-diagonal blocks of p ( Q) contain the between-sets proximities of 
Q, whereas the missing within-sets proximities (i.e., between row and column 
objects) in the submatrices blocks along the main diagonal are set to  zero:

0 Q
0

Given the specific block structure of P (Q\  the task of identifying separate row 
and column permutations, p  and ip, of Q can be condensed into the search for 
a single perm utation, p — ipUtp, of in “an attem pt to  find a row/column 
reordering as close as possible to  an anti-Robinson form in its nonmissing entries. 
In turn , any reorderings of p(Q) must also induce separate row and column 
reorderings for the optimal N r  x  N c  proximity m atrix Q ” (Hubert et al., 2001a,
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p. 69-70). For a given perm utation of the first N integers, p(-) =  p, the AR 
form of P i9 )  is defined by

P p f iu )  ^  P % U + 1 ) for l < i < j < N  — 1,

P pfiU ) ^  p S U - D  for 2 < j  < i < N.

“If p ( Q) can be placed in a  perfect anti-Robinson form for the objects in O = 
O r  U O c  the reordered m atrix Q would also display a perfect order pattern  for 
its entries within each row and within each column. Explicitly, the entries within 
each row (or column) would be nonincreasing to  a  minimum and nondecreasing 
thereafter. Such a pattern  can be called an anti-Q  form” (Hubert et al., 2001a, 
p. 69-70 — notation modified for consistency).

In addition, embedding Q into and subsequently perm uting the latter 
into a particular row/column arrangement p  such th a t the magnitude pattern  
of nonzero cell entries best approximates the AR form, denoted by P ^  =  

{PpO)p(t)) ’ 8 8  a  byproduct yields optimal positions for the row and column in­

flection points of Q, located about the main diagonal of Pp^K W hen reordering 
p(Q) in search for p. we keep track of the positions of the entries qrc. Thus, after 
p has been identified, we can locate and extract them  from P ^  to  construct the 

reordered matrix, =  {<?v(r)v>(c)}’ satisfying the anti-Q form as faithfully
as possible. The search for the optim al perm utation p* of plQ) is carried out 
through QA.

A brief comment for clarifying a technical detail of the QA-induced row 
and column reordering of piQ) might be helpful: were we to  apply the QA 
exchange/interchange algorithm to  piQ) in its primary block structure, the 
reordering process would render pO-D in its initial partitioning, w ith only the 
partial nonzero rows and columns within Q and Q' perm uted because the entries 
in the zero blocks on the main diagonal of p(Q) will not be picked up by the 
reordering mechanism as they cannot contribute to  any increase of the QA- 

criterion. As a consequence, the initial order of rows and columns of pfQ) will 
be completely preserved, keeping the two sets strictly apart, and so amounting 
to  performing (simultaneously) separate perm utations for the row and column 
sets of Q. However, as already mentioned, such a  procedure is not particularly 
germane as the resulting locations of the inflection points might not be optimal. 
Specifically, although the patterning of Q (or Q(j,^), retrieved in such a 
manner, will match an anti-Q form as closely as possible, it may not represent 
the best one for any given Q because the AR form imposed on p ( Q) confines 
the inflection points hr and hc to  locations within the first column and last 
row of the permuted m atrix Q ^ ,  respectively. Greater flexibility for choosing 
the position of the inflection points, however, could be gained were the QA 
search allowing for mixing the orders of row and column sets. Subtracting 
the grand mean, rh =  [l/(A'/{Afc')] )Cr X)c from the entries in Q and Q' 
of will tu rn  the zero blocks into meaningful entities, thereby inducing the
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desired mixing of row and column objects, leading to  a variable placement of the 
inflection points at any most suitable row or column positions of Q. W hether 
mean-deviation is the best strategy awaits further research; to  date the effect 
of certain transformations combined with specific patterning of p(Q) on the 
reordering process has not been studied in detail (see Hubert & Arabie, 1995a, 

1995b).
The second optimization task of estimating a least-squares approximation 

Z (in perfect anti-Q  form) to  Q^*,,!* is carried out through IP. For com puta­
tional convenience, the IP  estimation step is conducted directly on P p ? \  not 

on Q(p* ,0 +.
Recall th a t, given the actual numerical entries in p* indicates the best 

possible reordering of the N  rows and columns of p ( Q) into a  form matching 
an AR pattern . O ur goal is to  estim ate an N  x N  least-squares approximation 
Z° =  {z°j} to  P p ? \  which has perfect AR form. Subsequently, the desired 
perfect anti-Q  least-squares approximation Z* to  Qp.-^* is extracted from Z°. 
In other words, by using p(Q) as a vehicle for the successive residualization of
Q  and the actual identification of the sum Zj H b Z k , the decomposition of
Q  relies on the exact same algorithm as order-constrained AR decomposition of 
a  square-symmetric proximity m atrix P .

6.2 .3  L ow -A nti-Q -R ank A pproxim ation  to  a P roxim ity  
M atrix

The ultim ately desired low-anti-Q-rank approximation to  Q can be formalized 

as

Q  »  Zj +  b Zfc +  • • • +  Til  with 1  <  1: <  L «  K  <  min{R, C}.

W hen only L  anti-Q components are retrieved, the algorithm capitalizes on 
repetitively refitting the  residuals of the different Z^, yielding correlated anti-Q 
components Z i , . . . ,  Zr,.

6 .2 .4  F it  M easure

The quality of a specific low-anti-Q-rank approximation to  Q  is assessed through 
the VAF criterion defined by

VAF — 1 ^ c (9 rc  ~  £fc= l Z(k)rc)2 _  t r ( Q  — J2k=l (Q ~  £fc=l
£ r £  M r c - q ) 2 ~  t r ( Q - Q X Q - Q ) '

w ith q denoting the mean of the entries in Q, and Z f^ rr the fitted values of the 
k th anti-Q  component.
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6 .2 .5  T he R epresentation  o f  A nti-Q  M atrix  C om ponents  
T hrough Secondary Structures

The relationship among the elements in Or  and O c  of each anti-Q  compo­
nent Zjt can be represented either in (continuous) form through unidimensional 
unfolding (see Hubert & Arabie, 1995a; H ubert et al., 2001a, 2006), or as a (dis­
crete) two-mode ultram etric tree diagram (see Barthelemy & Guenoche, 1991; 
De Soete, DeSarbo, Pumas, & Carroll, 1984; Hubert k. Arabie, 1995a; H ubert 
et al., 2006).

For a specific anti-Q component m atrix Z*, =  {z(k)rc}, the unidimensional 
unfolding representation can be constructed by estimating object coordinates 

X(k)r and y(k)c on the line for objects in the row set and column sets, O r  and 
O c,  respectively, minimizing the least-squares loss function (by including an 

additive constant c*,):

£(x*,y*,Cfc) =  ^ 2 ^ 2 ( z (k)rc -  |X(fc)r -  2/(fc)cl ~  Cfc)2 , (6.6)
r  c

subject to  order constraints on the coordinate estimates for row and column 
objects imposed by pk associated with Zfc:

1 . OrR X OriR -< Occ  -< OdC implies dye dytct   drc• + dr,c;

2 . OtR  -< OcC < O t,r  -< Oc’c  implies drc -(- ddc +  dr,d  =  dr d ;

3. O r R  -< Occ  Od c  Otir  implies drc +  dd c — d rc f +  d T' c' \

4. OtR -< Or'R -< Occ  implies dr,r_ < drc,

5. OrR -i Occ  Od c  implies dTC < drc,,

with the interobject distances defined as drc := \xT — yc\ (see Hubert et al., 2006, 
p. 50, and the detailed technical description in Chapter 5).

In the special case of a two-mode proximity m atrix Q, a  joint (or two-mode) 
ultram etric tree representation U  =  {ttrc} of the two sets of objects, O r  and 
O c,  is sought. Specifically, for a given anti-Q component Z* =  {z(k>rr} we want 
to  minimize

A(Ufc) =  ^ ( 2 (fc)rc -  u ^ r c ) 2, (6.7)
r  c

subject to  two-mode ultrametric constraints such th a t, for all distinct quadru­
ples of objects (OtR , Or!R , Occ ,  Oc>c), with path length distances urc, uTd, 
uT,c and u r 'c, , the two largest must be equal (see Fumass, 1980; H ubert et al., 

2006).
For a detailed technical description of how to  construct a unidimensional 

unfolding or a two-mode ultram etric tree representation, the reader may want 
to  refer to  the cited references. Like in the AR case, the continuous and discrete 
models fit to  the anti-Q components are on an equal scale and immediately com­
parable as to  which structure provides a superior representation of TZ,k. Lastly,
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recall th a t fitting the unfolding model also includes estimating an additive con­
stant, c; yet, the two-mode ultram etric structure is translation invariant and
does not necessitate the explicit inclusion of an additive constant, c:

urc <  m ax {urci , u r/c, i v c'} <=> urc +  c <  m ax {urci +  c, uric +  c, i v c/ +  c} .

The unfolding model, however, is not invariant to  translation: the second or­
der constraint, drc +  dr/c +  dT>c> =  drr>, will be violated if all distances are 

incremented by c:
drc ~f- dr'c -(- dT'C> -f- 3c C?rc' +  c.

6.2 .6  E xten d in g  A nti-Q  M atrix  D ecom p osition  to  
T hree-W ay D ata

The slices of the three-way data cube consist of rectangular two-way two-mode 
proximity matrices, so the entire data  set is characterized as three-way three­
mode. The three-way extension of order-constrained anti-Q decomposition to  
the analysis of individual differences follows exactly the procedure outlined for 
three-way AR m atrix decomposition within a  deviation-from-the-mean frame­
work. First, the individual proximity matrices, Q s , are aggregated across 
sources into m atrix Q a , which is subsequently decomposed into a  collection 
of L  anti-Q  components. Second, the obtained anti-Q matrices then serve as 
frame of reference, against which the individual data matrices, Q s , are fit in a 
confirmatory manner.

For each source s, we can compute a  general fit measure, VAF,,, indicat­
ing how closely the observed proximities, Q s , conform to the imposed anti-Q 
reference structure, Z i , . . . ,  Zr,:

Y /v p  1 _  S Z r S Z c(? rc (s) ~  1 ( k ) r c ( s ) )

(6.8)

=  J _  t r (Q s  -  E fc= I  z k ( s ) )  ( Q s  -  E fc= l  Z fc(s)) 
tr (Q s -  Q S) (P S -  Q , ) '

Subsequently, the L  confirmatory anti-Q components, estim ated for each 
source, are fit by a unidimensional unfolding and two-mode ultram etric tree 
structure. The resulting collections of specific VAF scores inform us whether 
the confirmatory anti-Q  components, identified for source s, are better repre­
sented by a continuous spatial or a discrete non-spatial structure and allow for 
a complex inter- as well as intraindividual analysis.
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Table 6 .6 : Frequency distributions of the VAF scores as obtained from 10,000
random  starts on T O T A L  for K  =  {1,2}.

K VAF Frequency Percent Maximum VAF Increase K  —> K  + 1.
1 .58522531 1187 11.9

.62487195 723 7.2

.89237372 8090 80.9 • —

2 .99168640 1214 1 2 . 1

.99507188 1758 17.6

.99682924 884 8 . 8

.99866220 501 5.0

.99869583 1566 15.7

.99869657 1504 15.0

.99926377 1790 17.9

.99980678 215 2 . 2

.99991288 83 . 8

.99998761 37 .4

.99998967 448 4.5 • .10761595

6 .2 .7  A pplication: T he C ontraceptive D ata  from  W eller  
and R om ney (1990)

M atrix T O T A L  was subjected to  a QA-IP-based search for an optimal and 
exhaustive anti-Q decomposition, employing a stand-alone MATLAB routine 
m ultiarobfndtm .m , conveniently allowing for multiple runs with initial random 
perm utations of the input proximity matrix. For each decomposition into K  
components, 10,000 random starts were used. The frequency distributions of 
the VAF scores obtained for different K  are reported in Table 6 .6 ; the number 
of decimal places used may seem excessive, but is done here to  make the distinct 
locally optimal solutions apparent.
The distribution results in Table 6 . 6  suggest th a t m atrix T O T A L  can be ex­
haustively decomposed into K  =  2 anti-Q components. The VAF increment, 
however, for K  > 1 is relatively small. In addition, subsequent analyses, not 
reported here, revealed th a t the order of evaluative criteria and contraceptive 
measures associated w ith the second anti-Q component, Q2, was not inter­
pretable a t all. Obviously, component two represents an instance of overfitting, 
and T O T A L  can be regarded as having anti-Q rank L  =  1 . Therefore, the 
single anti-Q component solution with the highest VAF score (.8924) was cho­
sen as reference structure, against which the F E M A L E  and M A L E  matrices 
were fit by confirmatory anti-Q decomposition (utilizing the MATLAB routine 
a ro b fittm .m ), with IP  constraints derived from the object ordering detected 
when locating the uni-componential reference structure. The VAF scores as 
defined by (6 .8 ) —  for F E M A L E  =  .8802 and M A L E  =  .7341 — indicate a 
satisfactory fit for females, whereas the male data  match the reference anti-Q
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Table 6.7: VAF scores for the unidimensional unfolding (UU) and two-mode ul­
tram etric tree (UT) representations of the fitted anti-Q  components of TOTAL,
FEMALE  and MALE.

Source VAF(anti-Q) VAF(UU) VAF(UT)
T O T A L .8924 .8916 .6967

F E M A L E .8802 .8930 .7459
M A L E .7341 .8613 .6838

structure only mediocrely. Table 6.7 reports the VAF scores obtained when fit­
ting unidimensional unfolding and two-mode ultram etric tree structures to  the 
anti-Q  components estimated for T O T A L ,  F E M A L E  and M A L E ; the VAF 
scores correspond to  normalizations of the least-squares loss criteria in (6 .6 ) 

and (6.7) by £ r E c i ^ c - g ) 2, or £ r £ c(g(s)rc — 9 ( s ) ) 2  for the female and male 
sources; for all three anti-Q components the unidimensional unfolding provides 
superior fit in comparison with the two-mode ultram etric tree structure.

Figure 6.7 presents the unidimensional unfolding and two-mode ultram et­
ric tree graphs obtained for the anti-Q component of T O T A L  as well as for 
its confirmatory counterparts of F E M A L E  and M A L E ;  the two-mode ultra­
metric dendrogram nodes have been re-arranged to  match the joint order of 
criteria and contraceptive measures associated with the reference anti-Q com­
ponent as closely as possible (recall th a t for a fixed ultram etric structure, there 
exist different ways of positioning the term inal N  object nodes of the
tree diagram). The unfolding of the reference component Q of T O T A L  orders 
the fifteen contraceptive methods along a  continuum, with opposing poles of 
‘behavioral’ versus ‘surgical’ measures. In borrowing terminology from Hubert, 
Arabie, and Meulman (2001b, p. 1 1 0 ), the segments of this continuum, starting 
from the  left, can be characterized as “lottery” (Rhy, W it), ad hoc/ubiquitously 
available (Dou, Con, Foa), “alternative (or no) sexual behavior” (Abs, Ora), 
“medical/female related” (Dia, Spe, Pil, Iud), “m edical/out-patient surgical” 
(Vas, Tub), and “medical/surgical” (Hys, Abo). The location of the criteria 
points S, A, C, and E span a scale ranging from (S)afety (in the sense of non- 
invasive)/immediate (A)vailability to  (E)ffectiveness (through invasive surgical 
measures), with (C)onvenience approximately defining the midpoint. The corre­
sponding two-mode ultram etric tree diagram categorizes the contraceptive mea­
sures into three groups: behavioral, medical/surgical and Abo, forming a group 
by itself as it can, indeed, barely be considered a contraceptive method. As one 
might expect perception to  relate anything in tablet form or any foreign object 
placed inside the body with pharmaceutical preparations, the medical character 
of Pil and Iud is emphasized by placing them  into the same group with the 
surgical methods. The two-mode tree diagram, however, displays inferior fit 
as it contains several ties, indicated by horizontal bars joining more than two
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Table 6.8: VAF scores for the unidimensional unfolding (UU) and two-mode
ultram etric tree (UT) representations of the fitted anti-Q components from the
independent analysis of FEMALE  and MALE.

Source VAF(anti-Q) VAF(UU) VAF(UT)
F E M A L E  .8947 .8823 .7603
M A L E  .8141 .8644 .7898

branches at a time. Ties can occur as a result of remedying violations of the  ul­
tram etric condition through averaging the involved distances —  in other words, 
conformity to  the given anti-Q  component could only be attained through tied 
distance estimates (see P il and Iud; Dou, Con with the S-Wit-Rhy-A cluster).

In comparing the (confirmatory) unfolding representations for females and 
males, the differential spread of points along the axis suggests th a t both sexes 
differ markedly in their perception of the contraceptive methods. In particular, 
the segment o f  behavioral m ethods (W it/R hy to  Spe, Pil, Iud) receives a  finer 
grained evaluation by females than  males. The two-mode ultram etric tree dia­
grams provide additional evidence for such an interpretation: the frequent ties 
for the behavioral measures observed w ith the  male diagram indicate a lack of 
differentiation in their judgments. Underscoring their different perception from 
th a t of women, men do not include Pil and Iud w ith the surgical methods, while 
a t the same time Hys is moved into its own cluster, receiving a singular position 
much like Abo.

To further explore the differences between females and males, their data  ma­
trices were also analyzed as independent sources through (exploratory) anti-Q 
decompositions (by the MATLAB routine b ia ro b fn d .m  with 1 0 , 0 0 0  random 
starts for each m atrix). For both  sources, the VAF scores imply th a t their data 
are exhaustively represented by a biadditive anti-Q  decomposition (the VAF 
distributions are not reported due to  space lim itations), and a  low anti-Q rank 
approximation C =  1  is considered satisfactory: the obtained VAF scores are 
.8947 and .8141 for F E M A L E  and M A L E ,  respectively. Table 6 . 8  reports 
the VAF scores for the unidimensional unfolding and ultram etric tree struc­
ture fit subsequently to  the anti-Q components. As before, the unidimensional 
unfolding of the Qpq attains higher VAF values than the ultram etric tree rep­
resentation. The graphs (see Figure 6 .8 ) confirm the distinction into behavioral 
versus medical/surgical methods, with the la tte r considered to  be most effec­
tive. The previous conclusion of the two sexes profoundly disagreeing in their 
evaluations of the behavioral contraceptive m ethods is further substantiated. 
The ordering of stimuli observed with the females (Figure 2, first panel) mostly 
coincides with the solution for T O T A L ,  w ith the exception of “alternative/no 
sexual behavior” switching positions with Foa and Con (i.e., moving the for-
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mer next to  the “lottery” segment). Males (Figure 2, last panel) arrange the 
behavior-related measures in a slightly different manner, most notable position­
ing Con in-between W it and Rhy, followed by Dia, Foa, Pil, Iud, Dou, Abs, Ora 
and Spe, which, as one might speculate, could represent an order determined by 
’convenience in application’ in the sense of ’least technical/preparatory effort’. 
The corresponding tree diagrams are more or less in line with this interpreta­
tion; again, the many ties in the male dendrogram in the mid section, comprising 
behavioral methods requiring ‘preparatory effort’, may be considered as an in­

dication of an uninformed evaluation.

As an alternative to  the previous independent (exploratory) analysis of the di­
verging perspectives of women and men, a confirmatory fitting of the M A L E  
d a ta  to  F E M A L E  was conducted utilizing the la tter as reference decomposition 
(with a VAF for males equal to  .6917). The second panel in Figure 2 presents 
the graphs of the secondary structures fit to  the retrieved (confirmatory) anti-Q 
component for males; both graphs support the results of the previous analy­
ses: females display greater sophistication in their judgments of the behavioral 
methods as opposed to  males who tend to  perceive most of them  as almost 

interchangeable; both groups agree in their evaluation of the (invasive) surgical 
measures.

Lastly, we would like to  emphasize th a t none of the unidimensional unfold­
ings produced a degenerate solution (i.e., a configuration with perfect fit, but 
completely uninformative structure) — in considering th a t unfolding models, in 
particular, have been plagued by degeneracy for ages, a most remarkable result.

6.3 D iscussion  and C onclusion

In contrast to  (traditional) calculus-based data representation techniques, com­
binatorial data  analysis attem pts to  construct continuous spatial or discrete 
non-spatial representations based on optimal perm utations of the data, where 
‘optim al’ is operationalized within the context of a specific method. For exam­
ple, Defays (1978) demonstrates th a t constructing a unidimensional scale of a 
set of objects from their pairwise proximities can be accomplished solely by per­
muting the rows and columns of the data matrix such th a t a certain patterning 
among cell entries is satisfied. The desired numerical scale values can be imme­
diately deduced from the reordered matrix. Similarly, for hierarchical clustering 
problems, in their more refined guise as searches for ultram etric or additive tree 
representations, optimal solutions correspond to  a specific patterning of the 
input proximity matrix, obtainable by means of simultaneous row and column 
permutations. To summarize, combinatorial techniques for data representations 
rely on identifying optimal permutations of the input data.
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We emphasized th a t within this context, order-constrained m atrix  decom­
position attains the status of a combinatorial data analytic m eta technique: the 
to tal variability of a given proximity m atrix  is approximated by a minimal num­
ber of order-constrained additive components, capturing distinct ‘meaningful’ 
(i.e., order-related) aspects of variation. Each component in tu rn  is associated 
w ith a unique optim al order of objects th a t can be translated into a continu­
ous or discrete representation. As the two models involve identical numbers of 
param eters and are fit through least-squares to  the same data  base, they are 
directly comparable formally in term s of fit as well as interpretability. In other 
words, we can immediately determine whether a given order-constrained m atrix 
component is more suitably represented by a continuous spatial or a  discrete 
non-spatial structure. Thus, order-constrained m atrix decomposition elegantly 
resolves the ambiguities in assessing differential fit, particularly encountered 
when a proximity m atrix is fit by multiple continuous or discrete structures (as 
a means to  increase the variability accounted for) w ithout initial decomposition. 
So far, order-constrained matrix decomposition was only available for two-mode 
data. The extension of the m ethod to  accommodate three-way d a ta  provides 
the d a ta  analyst with an instrument to  explore complex hypotheses concerning 
the appropriateness of continuous or discrete stimuli representations from an 
interindividual as well as intraindividual perspective.

In conclusion, we would like to  raise the technical issue —  definitely deserving 
future study — whether an inconsistent, incomprehensible representation ob­
served with a confirmatory order-constrained decomposition (see, for example, 
the AR representations of the data of subjects 6  and 4) provides sufficient diag­
nostic evidence to  generally discredit the respective data  set. More succinctly: 
is a questionable representation obtained from a confirmatory order-constrained 
decomposition the incidental effect of an inappropriate structural frame of ref­
erence, or does it in general hint at d a ta  of poor quality, notwithstanding the 
context of a confirmatory or independent analysis? We may conjecture th a t the 
analysis of individual structural differences through order-constrained decom­
position is far less restrictive in its reliance on purely ordinal constraints, and 
therefore, is not so susceptible to  masking actual inconsistencies hidden in the 
d a ta  by the imposition of a more rigid (continuous) reference configuration.

As a final comment, given the extreme importance of the VAF criterion in 
selecting the order-constrained reference decomposition as well as in assessing 
source-specific fit, it seems m andatory to  conduct a separate large-scale sim­
ulation study to  systematically investigate the behavior of the VAF measure 
vis-a-vis different data  settings. For example, can different object orders lead 
to  identical VAF scores? To what extent do different stimuli orders effect sub­
stantial alterations in VAF values, and so on?
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Figure 6.7: Unidimensional unfolding and two-mode ultram etric tree graphs
of the reference anti-Q  component extracted from TOTAL,  with confirmatory
counterparts for FEMALE  and MALE.
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Figure 6 .8 : Unidimensional unfolding and two-mode ultram etric tree graphs 
of the anti-Q components extracted through the independent analyses of 
F E M A L E  and M A L E  and confirmatory anti-Q component from fitting the 
male data set against the female reference structure.
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7 M ult iob j ect i ve 
Program m ing

Our initial interest in multiobjective programming was inspired by the question 
of whether it might offer an alternative to  established procedures for construct­
ing structural representations of three-way proximity d a ta  for the  study of in­
dividual differences. As we will observe later on, the work of Brusco and Stahl 
provides definite encouragement, even though the number of matrices consid­
ered is much smaller than the typical sample size in the social sciences. The 
survey to  follow focuses on multiobjective programming strategies as employed 
to  solve problems in quantitative psychology. The first section summarizes a few 
theoretical key concepts; practical applications of multiobjective programming 
to  optimizing psychometric test assembly and structural data  representations 
are reviewed in the second section. Evolutionary multiobjective programming 
will not be discussed, because, to  our knowledge, it has not been used in quan­
titative psychology; detailed presentations and reviews can be found elsewhere 
(see, Coello Coello, 1999, 2000; Coello Coello & Romero, 2002; Coello Coello, 
Lamont, & Van Feldhuizen, 2007; Deb, 2001).

7.1 T heory and C oncepts

Decisions confronting us with the choice among alternatives serving conflicting 
goals are ubiquitous (not just) in daily life. Consider the numerous options we 
are tem pted to  explore when we wish to  buy a new car —  we might easily feel 
like the proverbial donkey caught between multiple haystacks. Flashy and fast 
cars are loved, but we are also concerned with gas economy. We value luxury 
amenities, but a t the same time, definitely do not want to  spend a fortune on 

a new vehicle. Unfortunately, a car with a 400 hp engine, running a thousand 
miles on a gallon, offering the highest level of comfort, and available for a price 
a t $500, does not exist. The antagonistic nature of our decision objectives poses 
a  dilemma we are forced to  resolve by compromises: less hp, but higher economy 
on gallons per miles; trading luxury for a lower price; and so on.

M ultiple decision making, a collective term  for the study of rational strategies 
for identifying the best possible compromise among conflicting objectives, first 
gained wide attention within public planning. How to  deal with the extremely 
complex decisions involved with tasks such as securing water supplies for a large 
city, determining the optimal location of a power plant, or devising a land-use 
plan for a community? Soon, multiple decision making developed into a highly
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active, interdisciplinary research area, with main contributions from m athe­
matics and operations research, computer science and psychology. Today, the 
most accepted categorization of the field distinguishes between multiobjective 
programming and multicriteria decision analysis. The la tter is concerned with 

developing a rational calculus for maximizing the gain of the decision maker 
vis-a-vis an idiosyncratic preference structure and a decision problem defined 
by multiple objectives with explicitly given alternatives. M ulticriteria deci­
sion analysis has strong ties with psychological utility and m athem atical game 
theory. Multiobjective programming, in contrast, represents a discipline in op­
erations research th a t aims a t devising efficient mathematical algorithms for 
identifying optimal solutions to  decision problems characterized by multiple ob­
jectives. The set of feasible alternatives is only implicitly defined by constraints 
in the form of mathematical functions. The decision maker and preference 

structure are a t best of secondary interest.

7.1.1 Single- versus M u ltiob jective  Program m ing

The single-objective linear program in canonical form is given as:

w ith Cj denoting fixed coefficients and Xj real-valued decision variables, subject 
to  a set of m  linear inequality constraints

and where x3 >  0 V) =  1, ■ ■ ■ , n. The m  + n  restrictions define the set of 
feasible solutions (sometimes referred to as the feasible region), X ,  from which 
the set of values of the decision variables is chosen minimizing the objective 
function, denoted {x(, . . . , ! * } .  In recalling the conversion, min y =  m ax (-y ), 
we will express all m athem atical programs as minimization problems and regard 
‘optim ization’ and ‘minimization’ as synonyms. In compact m atrix notation, the 

SOLP is expressed as:

n

[SOLP]

^ 1 1 ^ 1  +  ' * ’ +  0,\n X n  k l :

OiiXi ' ' ' “h

Q'mn.'En ^  ^ m j

mm{y =  c'x}

subject to

Ax > b.

x  > 0.
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For succinctness, we will henceforth only use the general functional notation
encompassing nonlinear programs as well (characterized by nonlinearity of the

objective function and constraints):

[SOP] min{y =  /(x )} ;xGA:

X  denotes the feasible set, defined as X  :=  (x  e  R> : p,(x) > 0 ,  i = 1 , . . . ,  m}; 
R> represents the nonnegative orthant of Rn , {x €  R> : x  ^  0} — as we will 
discuss in greater detail later, x  ^  0  denotes Xj >  0  Vj =  1 , . . .  , n,  w ith the 
possible inclusion of x  =  0 (i.e, Xj =  0 V) =  1 , . . . ,  n ). The functions /  and gt 
are commonly assumed to  be continuously differentiable. The decision vector, 
x, minimizing y  is indicated by x* such th a t min{p =  /(x )}  =  y* =  /(x * ).

A multiobjective programming problem consists of multiple objectives, typ ­

ically w ritten as a p-dimensional vector function:

[MOP] min j y  =  f (x)  =  ( / i ( x ) , . . . ,  /„ (x )) '} .

The conflicting nature of the objectives to  be solved simultaneously, not their 
multiplicity, represents the essential characteristic of multiobjective programs; 
non-antagonistic objective functions would render the optimization problem 
trivial, because it can be condensed into a single-objective program (see Mi- 
ettinen, 1999, p. 5).

7.1 .2  T h e N otion  of ‘O p tim ality ’

M ultiobjective programs represent vector optimization problems, w ith a  far 
more complex structure than single-objective programs. We must emphasize, 
in particular, the conceptually crucial distinction between ^-dimensional de­
cision space, R " , embedding the feasible region as a  subset, X  C R " , and 
p-dimensional objective, or criterion space, Rp, th a t contains the image of the 
feasible set under f  =  ( / i ,  • . . ,  f p)', i ( X )  = y  C Rp. We seek to  solve the mul­
tiobjective optimization problem through identifying a feasible decision vector, 
x* € X ,  th a t will minimize the resulting criterion vector, y  =  f (x)  e y .

Yet, the connotation of ‘minimization’, well-defined in case of a single­
objective optimization problem, needs further specification within the context 
of multiobjective programs since a solution vector x* yielding a  joint optimum 
for all p  objectives generally does not exist. Therefore, the exact interpre­
tation of ‘optim um ’ depends on the convention adopted as to  how objective 
function vectors, y  =  f(x) e  y ,  for different alternatives x  e  X  should be 
compared. Specifically, the evaluation of y  =  ( / i ( x ) , . . . , / p(x))' , based on 
one objective function, / a , ( x ) , k  =  l , . . . , p ,  might contradict the comparison 
with regard to  another, fk' (x), k' A k. As an example, consider three ob­
jective functions, f(x)  =  ( / i (x) ,  / 2 (x), / 3 (x))', and three candidate solutions,
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x^1). x^2\  and x (3). We must compare th e  vector quantities jd1) =  f ( x ^ )  =  
( / i ( x (1)) , / 2 (x<1) ) , / 3(x(1)))', y<2> = f ( x ( 2>) =  ( / i  (x (2)), / 2(x (2)), / 3 ( x ( 2 ) ) ) ' ,  and 
y (S) =  f ( x (3 ) )  =  ( / 1 ( x ( 3) ) , / 2 ( x ( 3) ) , / 3 ( x ( 3 ) ) ) '  on a component-by-component 

basis, a  rather complex task, as we will demonstrate. First, consider the  obvi­
ous case, where, say, vector x ^  provides an unequivocally better solution than 
x ®  or x ®  if and only if y d ) <  y -2i f \  y d )  < y ( 3) ,  with strict inequality hold­

ing a t least once for objective function /*, such th a t < y ^  f \  y ^  < y ^ \  
As an illustration, w ith arbitrary figures and unspecified decision vectors, x d ) ,  

x^2), and x^3), the following table presents a collection of objective function 
vectors, y d )  and y d ), all consistently inferior to  yd):

k y ( D y (2) CO

1 1 2  1 1 2 2 1 2 2  1 1 2 2 1 2

2 2 2  3 2 3 2 3 3 2  3 2 3 2 3 3

3 3 3  3 4 3 4 4 4 3  3 4 3 4 4 4

More likely, however, we will observe a constellation such as

k y ( D y W y ( 3 )

1 2 1 2

2 2 3 3

C
O 3 3 1

M athematically, the three y-vectors are equally acceptable. But, the choice of 
the  ‘b est’ solution clearly poses a dilemma, as any improvement in one objective 
is inevitably contradicted by the decrement of another. Thus, y d ) ,  y d ) ,  and 
y d )  are incomparable and no final conclusion can be drawn regarding whether 
xO), x (2 i , or x d ) qualifies as ‘th e ’ optimal solution. More to  the point, unlike 
R, the multiobjective criterion space, Rp, w ith p  >  2, lacks an ordering th a t 
would allow for the immediate identification of an unambiguous ‘b est’ solution. 
Thus, to  guide the evaluation of competing y  vectors (and associated decision 
vectors x) alternative concepts must be employed th a t invoke a weaker notion 
than  implied by the criterion ‘best’. Instead, we seek to  identify a set of ‘most 
preferred’ solutions (in alluding to  the hypothetical preference structure of a 
fictitious decision maker). As we will discuss in the next section, ‘most preferred’ 
in multiobjective programming is commonly operationalized through the Pareto 
relation th a t induces a  (strict) partial order on the set of feasible solutions y  
(or, correspondingly, X ).
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7.1.3 Efficiency and Nondominance

The French-Italian economist Pareto was among the first to  address the poten­
tial dilemma arising from optimization involving conflicting objectives: “We will 

say th a t the members of a collectivity enjoy maximum ophelimity [= the capac­
ity to  satisfy a need, desire, or want] in a certain position when it is impossible 
to  find a way of moving from th a t position very slightly in such a manner th a t 
the ophelimity enjoyed by each of the individuals of th a t collectivity increases 
or decreases. T hat is to  say, any small displacement in departing from th a t 
position necessarily has the effect of increasing the ophelimity which certain 
individuals enjoy, and decreasing th a t which others enjoy, of being agreeable 
to  some and disagreeable to  others” (1896; as quoted by Ehrgott, 2005, pp. 
3-4). In honor of Pareto, such a  collection of objective function vectors is often 
term ed Pareto-optimal, efficient or nondominated. We will use ‘nondom inated’ 
only in reference to  objective function vectors, y  e  y  C  and reserve the 
a ttribu te  ‘efficient’ for a characteristic of the corresponding vectors in decision 
space, x e l C  Rn ; ‘Pareto-optim al’ will be used solely when the distinction 

between X  and y  is irrelevant.
Notation. To benefit clarity in defining the concepts of efficiency and non­

dominance, we use E hrgott’s (2005) notation for vector inequalities:

1 . y*1) <  y^2) stands for Vk =  1 , . . .  ,p.

2 . y^b ^  y(2) indicates < y ^  for k — 1 , . . .  ,p; notice the possible 

inclusion of yW  =  y ^  (i.e., = y ^  Vk =  1 , . . .  ,p).

3- y (1) <  y (2> denotes however, y 'b  ^  y(2\  hence, a t least for

one k € {1 , . . .  ,p}, y ^  < must be satisfied.

As an arbitrary  numerical example with p  =  4, Figure 1 summarizes the hierar­
chical relationship between the sets oLy vectors, S,  determined by the different 
inequality operators, <S< C  <S< C  S< (in fact, w ith p  =  4, for the three columns 
in <S<, we can generate (3 ) =  4, (*) =  6 , and (j) =  4 different patterns, respec­
tively, all satisfying y^b <  y(2)).

Efficiency. Ehrgott (2005) defines three different levels of efficiency:

1. Weak efficiency: a  feasible solution x  €  X  is called weakly efficient if there 
is no x  € A such th a t f(x ) <  f(x ) (i.e., /it(x) <  /jt(x) Vk =  1 , . . .  ,p).

2. Efficiency: a feasible solution x  € X  is called efficient if there is no x  € 
X  such th a t f(x ) < f(x); alternatively: there is no x  6  X  such th a t 
/fc(x) < /k(x) for k -= 1 . . . .  .p  and no f k ‘(x) < /^<(x) for at least one 
k' € { 1 , . . .  ,p}.  In words, no solution is at least as good as x  for all p  
objectives and strictly better for a t least one. Observe th a t the subscript
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Figure 7.1: Example: Notation

y<l>

m

k  =  1 , . . .  ,p  in the first part of the alternative definition, //t(x  ) <  /* (*), 
refers to  scalars; hence, different from the previous vector context, the 
operator <  denotes strict inequality or equality. The second part, /* '(x )  <  
/ i '( x ) ,  is necessary to  impose the additional strict inequality constraint 
th a t must hold for at least one of the p  objectives, k ' t  {1 , . . .  ,p}.

3. Strict efficiency: a  feasible solution x e i f i s  called strictly efficient if there 
is no x  € X ,  w ith x  /  x  such th a t f(x ) ^  f(x ). Recall th a t the operator 
^  includes the possibility f(x ) =  f(x ). The negation, however, further 
tightens the definition of strict efficiency by even precluding the possibility 
of candidates, x  =£ x , yielding an identical objective function vector, y , 
such th a t f  (x) =  f(x ). In other words, a  strictly efficient solution is usually 
unique.

The weakly efficient, efficient and strictly efficient sets are denoted X w e , X e  

and X s e , respectively; they are hierarchically nested so X se  C  X e  C  X w E  C  

X  C  R > .  The definitions of levels of efficiency of x  conceptually all rely on 
the previous identification of y  =  f(x ) and y  =  f(x ). The efficiency of x  is 
determined post hoc, from its image under f  in R p .

Nondominance. The corresponding definitions of levels of nondominance of 
criterion vectors, y e ^ ,  are given by:

1. The objective function vector y  =  f(x) e  T  is called weakly nondominated 
if the vector x  6  X  is weakly efficient.

2. The point y  =  f(x ) 6  y  is called nondominated if the vector x  € X  is 
efficient.

The weakly nondominated and the nondominated sets are denoted y wN and 
T n ; they are also nested: Tw C  Tw/v C  T  C  R p .

The table below provides illustrations of the nondominance definitions for 
p  — 4, based on arbitrary numbers, with unspecified criterion vectors, x  and 
x. Vectors y  in the columns labelled “nonadmissible y ” represent objective 
function vectors th a t would jeopardize the (weakly) nondominated status of
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y =  f(x ), whereas those listed under “admissible y ” do not. The column to 

the right provides examples of objective function values, y* =  f(x*), dominated 
by y  =  f(x ), as an illustration of the concept of dominance (see Deb, 2005) 
discussed later. As an im portant detail, observe the implication of the efficiency 
definition: a  nondominated vector, y, might result from two different decision 
vectors, x ^  and x^2\  such th a t y  =  f (x (1 )̂ =  f(x<2)); both, x ^  and x ® , 
would qualify as efficient. Also, there is no such concept as ‘strict nondominance’ 
(even though this label is used in the table for consistency), because we cannot 
distinguish in y  among identical y  derived from different x.

S tatus of y non-admissible y admissible y y dominated y*

weakly nondominated 1 2 2 2 2 2 2 2 2 3
(weakly efficient 2 2 3 3 3 3 3 3 4 4

3 3 3 4 4 4 4 5 5 5
4 4 4 4 5 5 6 6 6 6

nondominated 1 2 2 2 2 2 2 2 2 3
(efficient) 2 2 3 3 3 3 3 3 4 4

3 3 3 4 4 4 4 5 5 5
4 4 4 4 5 5 6 6 6 6

“strictly 1 2 2 2 2 2 2 2 2 3
nondominated” 2 2 3 3 3 3 3 3 4 4
(strictly efficient) 3 3 3 4 4 4 4 5 5 5

4 4 4 4 5 5 6 6 6 6

The fundamental importance of efficiency and nondominance as operational­
izations of the preference construct can be summarized as follows: no feasible 
nonefficient x, no dominated y  can represent a most preferred solution, because 

there exists at least one other feasible solution such th a t ijk =  /fc(x) <
Vk  =  f k  (x) for k  =  1, . . .  ,p, where strict inequality holds a t least once, so tha t 
x  should clearly be preferred over x. Hence, the concepts of efficiency and non­
dominance enable us to  determine when exactly a feasible solution qualifies as 
‘most preferred’.

Relations and Order. A preference comparison establishes a binary rela­
tion among th e  pairs of solutions and induces a partial order on the sets y  
and X  (in the subsequent discussion, we focus on y  e  T)- In general, a par­
tial order is characterized by certain properties th a t the constituting binary 
relation satisfies, namely, incompleteness, reflexivity, antisymmetry, and tran ­
sitivity. Formally, let y  x y  represent the set of all possible pairs of feasible 
solutions y ^ \  y (2), . . . ,  y^‘\  . . . ,  y ^ ,  . . . ;  any evaluation of elements in y  x y  
establishes a  binary relation 7Z between objective function vectors yW and y  ■fy
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denoted y ^ T Z y ^ i . If 7Z is derived from a preference comparison, y ^ T Z y ^  is 
read as “y ^  is preferred over y 1-1'1” , or, alternatively, y ^ T Z y ^  as “y i s  pre­
ferred over y*1*” . The completeness axiom (sometimes also referred to  as the 
linearity, totality, or connectedness axiom) requires th a t a relation 1Z m ust exist 
for each solution pair in the set y  x y  such th a t either y <l'>lZy< 3'1 or y ^ T Z y ^  
holds; the relation is then said to  possess ‘comparability’. Apparently, 7Z based 

on the efficiency/nondominance concept is incomplete, or ‘partial’, because no 

7Z can be established for elements in y N (or X E) due to  incomparability. A 
relation 1Z is reflexive if y ^ l Z y ^  is legitimate; in words, the underlying prefer­
ence concept allows a solution to  be preferred over itself. Note th a t reflexivity 
can only be postulated if 1Z is based on a ‘weak preference’ evaluation tha t, 
loosely speaking, allows for indifference towards two alternatives. The negative 
definition of efficiency and nondominance (i.e., .. there is no x  such th a t . . . ”)
implies a  relation 7Z interpretable as weak preference. Antisymmetry of 1Z is 
defined as y ^ l Z y ^  / \  y D fty W  => y(0 =  y(7) Vy(l), y (:,) € y .  Lastly, if 
y (') 7 2 y (j) yy y(7)72y(fc) => yb ) 7 £y(k), the relation 1Z is said to  be transitive.

Deb (2005), for example, gives a positive definition of the Pareto condition 
in term s of dominance. Consider two feasible decision vectors, x  and x  € X: 
the criterion vector y  dominates y  if y  =  f(x ) <  y  =  f(x ) — verbally stated, 
solution y  is not inferior to  y  in any objective, and y  is strictly better than  y  in 
a t least one objective. Different from the preference concept based on efficiency 
or nondominance, dominance implies ‘strict preference’ not allowing for ties, 
and consequently, induces a strict partial order on y  possessing the following 

properties:

1. Incompleteness

2. Irreflexivity: dominance is not reflexive, because no objective function vec­
tor y  can dominate itself (recall: an objective function vector y  dominates 
y  if it is strictly better in a t least one objective, /*,, such th a t ijk <Vk)-

3. Asymmetry: dominance implies asymmetry; either yM dominates y W , or 
vice versa.

4. Transitivity: obviously, a relation based on dominance is transitive.

Domination Cones. Dominance can be represented geometrically in the cri­
terion space Rp (see Yu, 1974, 1985). Specifically, := {y € Rp : y  > 0}, 

defines a  cone C C Rp (recall, in general, a set C C Rp represents a  cone if 
a y  6  C, whenever y  e  C and a  e  R>).  Given C, the objective function vector 
y  6  y  dominates an alternative vector y  6  y  if and only if y  — y  G C, or 
equivalently, there exists a  direction d  6  C, d  ^  0, such th a t y  =  y  +  d  (note 
th a t the latter expression corresponds to  a translation of C such th a t y  becomes 
its vertex). Nondominance can be represented in a similar manner. If we define 
C C Rp as the nonnegative orthant of Rp, R?, := {y £ Rp : y  = 0 ), then y  is 
nondominated by y  if and only if y  — y  € C.
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Steuer (1986, pp. 150-154) presents a detailed description of the geometric 
representation of efficiency through domination cones in the decision space, R n , 
where C C R n is defined as the polar cone generated by the gradients of the p  
objective functions (a polar cone of a cone C is the set of vectors forming angles 
w ith all vectors of C of less than  or equal to  90°). For more details see Chankong 
and Haimes (1983, pp. 114-115), Ehrgott (2005, pp. 12-16), M iettinen (1999, 
pp. 23-25), and Sawaragi, Nakayama, and Tanino (1985, pp. 28-29).

7 .1 .4  P roper Efficiency and N on dom inan ce

Recall th a t the definition of nondominated solutions explicitly precludes the 
possibility of improving one objective function, while retaining the same values 
for the others. Any improvement is always bound to  come a t  the expense of 
the deterioration of at least one other criterion. The ratio  of the rate  of gain 
in one objective function, f k, over the corresponding ra te  of loss in another 
objective function, is often referred to  as trade-off. Kuhn and Tucker (1951) 
were the first to  observe th a t under certain conditions, nondominated objective 
function vectors, y , infrequently can possess unbounded trade-off ratios; this is 
an undesirable property, essentially preempting the definition of nondominated 
objective function vectors.

The narrower concept of properly nondominated solutions eliminates un­
bounded trade-offs between objective functions. We only present Geoffrion’s 
(1968) definition of proper efficiency (of course, also applying to  proper non­
dominance), as it is conceptually most closely related to  the intuitive idea of 
establishing bounded trade-offs as a tighter selection criterion for admissible, 
‘proper’ solutions. According to  Geoffrion (1968), a feasible decision vector 
x  € X  is a properly efficient solution of the multiobjective optim ization prob­
lem if x  e  X e , and if there exists M  >  0 such th a t for each k  =  1, ,p  and 
each x  e  X  satisfying /jt(x) <  f k (x)  there exists a k'  ^  k  w ith f k' (x) >  f k-(x) 
and

A ( x ) - A ( x )
/fc'(x) -  /jfc'(x)

Alternative definitions of proper efficiency have been proposed by Borwein 
(1977), Benson (1979), Henig (1982), and Kuhn and Tucker (1951) — for more 
details, the reader is encouraged to  consult Ehrgott (2005, Ch. 2.4), M iettinen 
(1999, Ch. 2.9), or Sawaragi et al. (1985, Ch. 3.1.2).

7.1 .5  P rop erties  o f Efficient and N on d om in ated  S ets

Chankong and Haimes (1983, Ch. 4), Ehrgott (2005, Ch. 2), M iettinen (1999, 
Chs. 2.10 and 3), and Sawaragi et al. (1985, Chs. 3 and 4) provide very detailed 
theoretical presentations and discussions of the structural properties of T/v and 
X e , including existence theorems (i.e., conditions for Tat or X E /  0) such as 
first-order conditions for the efficiency of x  (Fritz-John, Kuhn-Tucker condi-
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tions). We only summarize a few key facts characterizing T;v in more practical 
terms.

As an intuitive result, the nondominated solutions, y  € T n , m ust lie on the 
boundary of y  ( “southwest” rule in case of a minimization problem, see Cohon, 
1978, p. 71). Lower and upper bounds, on the set of nondominated objective 
function vectors, T n , indicating the  range of values nondominated vectors y  € 
y N can attain , are given by the ideal and nadir point, respectively. The ideal 
point y*7 ) =  (y[!>, . . .  .Up1)' of the multiobjective optimization problem is given 

by
Vk ’ ■= m i n / fc(x) =  mill yk .

y e y

Observe the minimization over y  and not Tw: as T v  C T, there will always be
a feasible nondominated vector, y  € Tat, w ith yk =  m inyk — in other words,

yey
the (componentwise) minima of T v  and T  are identical. The ideal point is 
computed by solving p  separate single-objective optimization problems; hence, 

the ideal point, y ^ ,  is usually infeasible.
The upper bound on Tat — the worst possible, but still nondominated ob­

jective function vector — is called the nadir point, y W  =  (y \N ,̂ . . . ,  ypN^)', and 

defined as
y[N) := max /* (x) =  max yk . 

x € X e  y e y N

Notice th a t the numerical identification of y W  requires maximization over T v  

(recall th a t max T v  #  m ax T  as T v  C T )  — “a very difficult problem. No 
efficient method to  determine y W  for a general multiobjective optimization 
problem is known” (Ehrgott, 2005, p. 34). Pay-off tables provide a  common 
heuristic for obtaining a basic estimate of the nadir point. Essentially, the pay­
off method can be regarded as the “inverse” procedure of computing the ideal 
point: based on the p  decision vectors, x*(b , . . .  yielding individual min­
ima, yk = m in/jt(x ), a square p  x p  pay-off table is constructed, with rows

xeA'
and columns representing objective functions, / i , . . . ,  f p, and optim al vectors, 
x * W , . . .  ,x ’ (p\  respectively. The entries along the main diagonal are given by 
the values y l ,  whereas the off-diagonal cells contain the objective function val­
ues computed for a specific fk ,  based on the minima vectors, x*<k \  with k' i=- k, 
the trade-off values. Subsequently, from each row, the maximal value is selected 
as an estim ate of the upper bound of objective fk ,  yielding a  heuristic approx­
imation to  y(N). Ehrgott (2005), however, cautions th a t pay-off tables might 
provide grossly misleading under- or over-estimates, when the multiobjective 
optimization problem involves more than two objectives.

7.1 .6  Solution  M ethods: G eneration o f  P areto-O ptim al 
Sets

The small-scale numerical examples presented earlier taught th a t multiobjec­
tive programs, even with just three or four objective functions easily possess
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multitudinous efficient or nondominated solutions due to  the vast number of 
possible outcome combinations. M athem atical theory provides powerful tools 
to  determine the Pareto optim ality of a  candidate solution, x  or y  (for details, 
see the earlier references, Chankong & Haimes, 1983, Ch. 4; Ehrgott, 2005, Ch. 
2; M iettinen, 1999, Chs. 2.10 and 3; Sawaragi et al., 1985, Chs. 3 and 4). From 
a practical point of view, the biggest challenge to  any attem pt at solving a mul­
tiobjective optimization problem, represents the actual generation of the sets 
y N and X E — recall, mathematically, the problem is considered solved when 
the Pareto-optim al sets are identified. Any particular choice among these solu­
tions as ‘th e ’ optimum can only be justified in reference to  the (idiosyncratic) 
preference structure of an external decision maker.

Two categorizations of solution techniques for generating Pareto-optim al 
sets, X e  and Tat, of multiobjective programs can be found in the literature. 
M iettinen (1999), for example, characterizes solution methods by the level of 
involvement of the (manifest) decision maker and the amount of consideration 
her or his idiosyncratic preference structure receives. Accordingly, ‘a priori’ 
m ethods such as goal-programming (not covered here — see Steuer, 1986, Ch. 
10) require complete information about all preferences beforehand. ‘A posteri­
ori’ techniques first a ttem pt to  generate an exhaustive set of efficient solutions; 
subsequently, the most suitable solution is selected in close cooperation with 
the decision maker. ‘Interactive’ strategies alternate between purely computa­
tional steps and consultation with the decision maker to  achieve a satisfying 
compromise. Ehrgott (2005) distinguishes between ‘exact’ and ‘approxim ation’ 
methods, referring to  the degree of accuracy of the solutions obtained. Heuristics 
and meta-heuristics provide appealing alternatives to  exact methods, yet, with 
a  satisfactory level of precision in situations where the exhaustive generation of 
Pareto-optim al sets would require prohibitive computational investments. We 
will follow E hrgott’s (2005) categorization and focus on exact methods, but will 
briefly introduce some heuristic approaches later within the context of combi­
natorial multiobjective programming.

Exact Methods. The class of exact solution methods for generating y N and 
X E, divides into scalarization and nonscalarization techniques. Both approaches 
rely on conversions of the original multiobjective optimization problem either 
into a  (sequence of) single-objective program(s) or into a  multiobjective program 
employing a different optimality concept. Under certain assumptions, these 
transformed programs will yield optimal solutions to  the original multiobjective 
problem.

Scalarization Methods. Numerous scalarization methods have been devised; 
their common denominator consists in transforming the multiobjective program 
into a  real-valued scalar function of the original objectives, solvable by tradi­
tional single-objective optimization methods. Ideally, the single-objective ver­
sion of a  multiobjective optim ization problem should have the following prop­

erties:
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1. The scalarized problem is not harder to  solve than the original problem.

2. An optimal solution of the scalarization is efficient.

3. Every efficient solution of the original multiobjective program is an effi­
cient solution of the scalarized problem for appropriately selected param ­
eters.

We will concentrate on the weighted-sum and the e-constraint m ethods as the 
most commonly used scalarization strategies. Im portant variations of scalar­
ization techniques such as the elastic constraint approach, Benson’s method, 
reference point or compromise approaches, including the achievement function 
technique and goal programming, attem pting to  solve the problem through min­
imizing the deviation from an (ideal) reference vector, will not be covered here 
due to  space limitations. Detailed descriptions and further references can be 
found in Ehrgott (2005), Ehrgott and Wiecek (2005), M iettinen (1999) and 

Sawaragi et al. (1985).
The weighted-sum method. The original multiobjective program is re-expressed 

as a  weighted sum of the objectives, solvable as a single-objective program:

p
[ W S ]  m i n  j y  =  ^  Afc/ fc( x ) } ,

X k=l

V

where A € R> ; usually, the coefficients are normalized such th a t ^  A* =  1
k= 1

(then, the weighted sum represents a convex combination). Sometimes, the 
weighted-slim m ethod is presented such th a t zeros as weighting coefficients are 
not acceptable. Indeed, a t first glance, zero weights might not appear as a  sen­
sible choice, essentially indicating the inclusion of a  completely insignificant ob­
jective function. On the other hand, as M iettinen (1999, p. 84) points out, zero 
coefficients allow for exploring potential solution changes when particular objec­
tive functions are dropped. If the coefficients axe all positive or if the solution is 
unique, then the solution of the weighted-sum m ethod is always Pareto-optimal, 
w ithout any further assumptions (see M iettinen, 1999, p. 79). However, unless 
the problem is convex, the weighted-sum method is incapable of detecting all 
Pareto-optim al solutions — its m ajor disadvantage, as we will discuss in more 
detail within the context of multiobjective combinatorial programming. If the 
multiobjective optimization problem is convex, then any Pareto-optim al solu­
tion can be found through the weighted-sum m ethod by systematically altering 
the weighting coefficients consecutively. Observe the option to  convexify a non- 
convex multiobjective program by raising the objective functions to  a sufficient 
power (also known as weighted t th power m ethod). Lastly, we should emphasize 
the computational convenience of the weighted-sum method, as the scalarized 
problem is not harder to  solve than the original multiobjective program. Par-
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ticularly, for problems with a linear structure, param etric programming (see 
Chvatal, 1983, p. 162-166) offers additional computational economy.

The e-constraint method.. The multiobjective program is scalarized by se­
lecting one of the objective functions for optimization, whereas the other p — 1  

objectives are converted into constraints by defining an upper bound to  each of 
them  — formally

[C£] min [ y k- = /W x ) j ,

subject to
/* (* ) <  ek Vfc € {1, . . .  ,p } , k  /  k'.

The solution of the e-constraint method is always at least weakly Pareto-optimal. 
If one can identify e-constraints such th a t the solution is unique, then it is 
Pareto-optimal, regardless of whether the problem is convex or not. Hence, 
given appropriate choices of £&, one can identify an efficient decision vector, x, 
by solving eC (p times) for all f k‘ objective functions. More formally, the deci­
sion vector x  is efficient if and only if it is a solution of CV for every k' = 1 , . . .  ,p, 
where £*, =  /jt(x) Vfc £ {1 , . .. ,p], k  /  k ' . The m ajor problem remains the de­
term ination of the e-constraints; as Ehrgott (2005, p. 100) concludes: the “e* 
values are equal to  the actual objective values of the efficient solution one would 
like to  find. A confirmation or check of efficiency is obtained rather than the 
discovery of efficient solutions” . To summarize: theoretically, the set of Pareto- 
optimal solutions of a  multiobjective optimization problem can be found by the 
^-constraint method, but only with tremendous computational effort. Chankong 
and Haimes (1983) present a particularly detailed account of the e-constraint 

method.
Lastly, as an interesting aside, we mention a result due to  Chankong and 

Haimes (1983; see also Miettinen, 1999, p. 8 8 ) linking the weighted-sum and 
the e-constraint method. Suppose x  £ X  is an optimal solution of WS, with 

corresponding weight vector A. If A*/ >  0, then there exists a vector e such 
th a t x  is an optimal solution of objective function /*,/, while the k = 1 , ,p ,  
k ^  k ' constraints satisfy £k = fk  (k) ■ Also, assume X  is convex and /*, are 
convex functions. If x  is an optimal solution of Cc for some k ' , then there exists 
a weight vector A G R> such th a t x  is an optimal solution of WS.

Nonscalarizing Methods. Instead of an explicit scalarizing function, non- 
scalarizing techniques rely on optimality concepts not based on the Pareto condi­
tion. We will only review two methods: the lexicographic and the max-ordering 
approach.

The Lexicographic Method. The lexicographic approach requires an initial 
ranking of the objective functions according to  their importance. Subsequently, 
the most im portant objective function is minimized, subject to  the original con­
straints. If a  unique solution can be found, then the entire multiobjective opti-
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mization problem is solved. Otherwise, we proceed with minimizing the second 
most im portant function, by adding a new constraint to  the original restrictions 
to  guarantee the previous most im portant objective function retains its opti­
mal value. If a  unique solution is identified a t the second step, then it solves 
the original problem. Otherwise, the process continues. A lexicographically 
optim al solution is Pareto-optimal. Note th a t instead of a preference ranking, 
systematic perm utations of the objective functions can be analyzed to  benefit a 
broader defined solution strategy.

The Max-Ordering Method. The max-ordering approach (sometimes also 
referred to  as “min-max”) only considers the objective function /*, th a t has the 
largest value (i.e., within a minimization context the worst value). The solution 

with the smallest maximum across / i , . . . ,  f p is chosen as the  max-ordering 
optimal solution; it is weakly Pareto-optim al — in formal notation,

7.2 A p plications o f M u ltiob jective

P rogram m ing in Q u an titative  P sych ology

M ultiobjective programming strategies have been used in quantitative psychol­
ogy for solving combinatorial optimization problems related to autom atized test 
assembly, and in data  analytic tasks arising in the general field of classification 
involving the identification of structural representations such as object group­
ings, partitions, or sequences. The specific nature of combinatorial problems 
affects certain properties of the general multiobjective program encountered so 
far. We provide a brief discussion of these pitfalls before presenting the actual 
applications.

7.2.1 Combinatorial Optimization Problems

Distinct from continuous, real-valued optim ization problems, combinatorial op­

tim ization is characterized by non-smooth functions, through integer (partic­
ularly, binary) restrictions placed on at least some of the decision variables. 
Combinatorial optimization problems are discrete, the set of feasible solutions 
is finite, and an optimal solution always exists, inviting the misconception th a t 
these problems are “easy” and solvable by complete enumeration. The num­
ber of feasible solutions, however, grows exponentially with problem size, and 
nice optim ality conditions are not in existence to  verify, analytically, guaran­
teed optimality. Instead, discrete optimization problems require the explicit or 

implicit search of the entire solution space to  locate the global optimum. Even 
for small-scale problems, the com putational effort of an exhaustive enumeration 
of all feasible solutions is prohibitive. Because of this, most current algorithms 
for solving combinatorial optimization problems of substantial size are heuristic,
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with no guarantee of identifying a  global optimum but often producing solutions 
a t least within a close neighborhood of the desired global optimum. Partial enu­
meration strategies such as dynamic programming and branch-and-bound can 
often provide guaranteed globally optimal solutions w ithout the need for explicit 
enumeration of the entire feasible solution set but do face serious lim itations on 
th e  sizes of problems th a t can be handled.

7.2.2 Combinatorial Multiobjective Programming

Publications on extensions of the multiobjective programming paradigm for ac­
commodating the discrete nature of combinatorial optimization problems roughly 
date from within the last two decades (for reviews see Ehrgott, 2005, Ch. 8 , 2006; 
Ehrgott & Gandibleux, 2000, 2002, 2003, 2004; Ulungu & Teghem, 1994a).

Nonsupported Efficient Solutions. Distinct from continuous multiobjective 
programs, combinatorial counterparts possess efficient solutions th a t cannot be 
identified by weighted-sum scalarization (due to  the nonconvex nature of com­
binatorial problems), calling for a distinction between supported and nonsup­
ported efficient solutions. For a formal defintion, let x  € X e \ if there exists 
some A € R> such th a t x  e  X e  is an optimal solution of WS, then x  is called 
a supported efficient solution and any objective function vector, y  =  f(x ), is 
called supported nondominated (the corresponding vector sets are denoted X s e  
and ysN )-  Otherwise, x  and y  are called nonsupported, with the respective 
sets indicated by X e e  and n-  Notice th a t nonsupported Pareto-optim al 
vectors are m athem atically legitimate solutions; they typically outnumber the 
supported decision or criterion vectors by far, which constitutes their immense 
practical importance.

Proper Efficiency. As  another special feature of multiobjective combinato­
rial programs, the distinction between efficient and properly efficient solutions 
disappears due to  y  representing a finite set. Objective function values can as­
sume only finitely many integer values; thus, the trade-off ratio has a guaranteed 
bound and because the denominator can never be less than one, the required 

M  always exists.
Solution Techniques. The weighted-sum and the e-constraint m ethod both  

have serious lim itations when applied to  multiobjective combinatorial programs. 
As already mentioned, the former suffers from the incapability of detecting non­
supported solutions — Ehrgott and Gandibleux (2002, p. 377) indignantly com­
ment on the host of publications where “the existence of nonsupported efficient 
solutions was either not known or ignored” . Yet, the weighted-sum scalariza­
tion is not harder to  solve than  the original multiobjective program, its most 
advantageous feature. In contrast, e-scalarizations of multiobjective combina­
torial programs almost inevitably turn  into AfP-hard problems due to  the large 
number of constraints (even though, in theory, this approach allows for identi­
fying all Pareto-optim al solutions). A comprehensive presentation of scalariza-
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tion techniques for multiobjective combinatorial programs is given by Ehrgott 
(2006). For biobjective combinatorial programs, Ulungu and Teghem (1994b) 
propose the two-phase method, a general framework for generating the exact 
set of efficient solutions. The supported efficient solutions are identified through 
scalarization; in the second phase, the nonsupported efficient solutions are found 
by problem-specific methods, using bounds, reduced costs, and so on. A dapta­
tions of single-objective combinatorial techniques such as dynamic programming 
and branch-and-bound can only handle problems of limited size. In addition, 
branch-and-bound algorithms require tight and carefully defined bounds th a t in 
case of multiobjective combinatorial programs involve the identification of ideal 
or nadir points for subproblems. Given these obstacles, (meta-)heuristics such 
as evolutionary algorithms and neighborhood search strategies, including simu­
lated annealing and tabu  search, have become popular alternatives to  traditional 

methods for generating X e  and Vn of multiobjective combinatorial programs 
(for an in-depth review, see Ehrgott & Gandibleux, 2004).

7.2.3 Applications

Test Assembly Problems. The implementation of computerized adaptive tests 
requires the technical capacity to  choose a  sequence of items from an item bank 
th a t constitutes a  flexibly tailored response to  the estim ated ability level of an in­
dividual test-taker. The selection process itself is constrained by considerations 
of item content as well as formal psychometric criteria such as test information, 
test length, and so on. M athematical programming techniques offer a  viable 
approach to  th e  intricate task  of selecting an optim al item sequence (see van 
der Linden, 2005, for a  comprehensive presentation). Van der Linden (2005, Ch. 
3 .3 .4 ) also, in very general terms, discusses the option to  employ multiobjective 
optimization strategies. For details, he refers the reader to  Veldkamp (1999), 
who investigates the performance of six multiobjective programming techniques 
(including the weighted-sum and e-constraint method, goal programming, and 
the lexicographic and max-ordering method) in solving a biobjective autom ated 
assembly of a test for measuring two traits, restricted to  a length of 25 items. 
The two objective functions incorporating the two tra its  are solved through a 

simulated annealing heuristic.
Identification of Structural Data Representations. Combinatorial optimiza­

tion m ethods have been used for identifying structural representations of the 
relationship between row and column objects of d a ta  matrices, either in the 
form of partitions or sequential arrangements of objects along a  continuum. 
Independent of the specific form of structural representation, two prototypical 
applications of combinatorial multiobjective programming are reported in the 
literature: finding a structural representation of multiple data matrices in ac­
cord w ith a  single criterion and constructing representations of a single data  

m atrix using multiple competing criteria.
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Partitioning Problems. A most concise survey on multiobjective combina­
torial optim ization for constructing partitions of objects is given by Brusco 
and Stahl (2005a, Ch. 6 ). W ith the exception of Ferligoj and Batagelj (1992) 
— essentially, introducing a predecessor of later multiobjective programming 
heuristics —  the studies reviewed by Brusco and Stahl (2005a) all employ the 
weighted-sum method for solving scalarizations of biobjective programs. Br­
usco, Cradit, and Tashchian (2003), and DeSarbo and Grisaffe (1998) present 
biobjective approaches to  market segmentation for identifying a compromise 
partition in situations where incongruous cluster solutions arise from different 
subsets of variables th a t capture incommensurable aspects of the objects — 
in technical terms: a  single criterion is fit to  multiple data  matrices. Brusco, 
Cradit, and Stahl (2002) suggest a  biobjective simulated annealing k-means clus­
tering heuristic for identifying a compromise partition; a  companion algorithm 
performing biobjective branch-and-bound fc-means clustering is introduced in 
Brusco and Stahl (2005a).

Brusco and Stahl (2005a), and Brusco and C radit (2005) propose a multiob­
jective optim ization strategy to  address the practical issue of appropriate choice 
when a partition criterion produces numerous, bu t significantly different optimal 
solutions for a  single data m atrix. For example, minimization of the partition 
diam eter index is prone to  yield a  plethora of optim al solutions (note th a t the 
diam eter of a  given d a ta  cluster is defined as the largest dissimilarity value for 
any pair of objects within th a t cluster; the partition diam eter represents the 
maximum cluster diameter across all clusters). Brusco and his collaborators 
(Brusco & Cradit, 2005; Brusco & Stahl, 2005a) propose biobjective program­
ming to  support an educated choice among optim al partitions. Initially, an 
optimal diameter is identified using either a  neighborhood search (Brusco & 
Cradit, 2005) or a  branch-and-bound algorithm (Brusco & Stahl, 2005a). In a 
subsequent step, a  secondary partition criterion, the within-cluster sums index, 
is minimized subject to  the constraint th a t the partition  diameter criterion does 
not deteriorate by more than  a  pre-determined limit. The biobjective program 
is solved through weighted-sum scalarization. In conclusion, we would like to  
observe th a t a  lexicographic strategy might also be possible, particularly as the 
inclusion of the diameter constraint implies a  ranking among objective criteria.

Object Seriation and Sequencing. Brusco and Stahl (2005a, Ch. 11) pro­
vide an excellent review of multiobjective programming applications to  object 
seriation and sequencing problems. Brusco and Stahl (2001) devise bi- and tri­
objective dynamic programming as well as quadratic assignment routines for 
detecting an optimal (simultaneous) perm utation of the row and column ob­
jects of a  single asymmetric proximity m atrix, based on three different indices 
of m atrix pattern . Brusco (2002c) adapts multiobjective quadratic assignment 
and dynamic programming for identifying a  single optim al perm utation for mul­
tiple proximity matrices, representing different d a ta  sources (i.e., subjects, time 
point, experimental conditions, and so on). Analogous to  the conflicting objec-
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tive functions, / i ,  • • •, / p, the individual perm utation scores of each proximity 
matrix must be simultaneously optimized by a particular arrangement of rows 
and columns applied across all matrices. The paradigm is further extended by 
Brusco and Stahl (2005b) so as to  incorporate multiple criteria and multiple 
data  matrices. All applications of multiobjective programming to  seriation and 
sequencing problems employ scalarizations through the weighted-sum method; 
the objective functions are normalized by the individual optim a obtained sepa­
rately for each data  m atrix (an option also discussed by Miettinen, 1999, p. 18). 
Brusco and Stahl (2005a) contains a detailed outline of replacing the dynamic 
programming and quadratic assignment components in the multiobjective pro­
grams by branch-and-bound implementations.

7.3 C onclusion and O utlook

As we mentioned a t the beginning, our interest in multiobjective programming 
was initiated by the question of whether it might offer an alternative to  es­
tablished procedures for constructing structural representations of three-way 
proximity data. The work of Brusco and Stahl provides definite encourage­
ment, even though the number of matrices considered — mostly two, w ith the 
exception of Brusco (2002c) fitting four different matrices — is much smaller 
than the typical sample size in the social sciences. A most notable example of 
traditional approaches to  analyzing three-way data  is offered by the INDSCAL 
implementation of the weighted Euclidean model for scaling individual differ­
ences by Carroll and Chang (1970). Individual variability is modelled through 
shrinking or extending a reference structure constructed from the entire sam­
ple. The individual configurations fit the respective data  matrices as closely as 
possible. In a  similar vein, Kohn (2006) employed a strategy for modelling three- 
way data, guided by a  principle common in statistics as well as of immediate 
intuitive appeal, namely, to  analyze individual variability within a deviation- 
from-the-mean framework. The individual proximity matrices are aggregated 
across sources, followed by generating a best-fitting ‘average’ representation 
to  serve as frame of reference, against which the individual data  matrices are 
fit in a confirmatory manner. Remarkably, the deviation-from-the-mean s tra t­
egy closely resembles the scalarization of a  multiobjective program through the 
weighted-sum method, with equal weights attached to  each objective function. 
Recall the analogy between the structural representation of an individual d a ta  
m atrix and an objective function. Let Sk =  f ( P k )  denote the structural repre­
sentation of the data  m atrix of the k th observation, k  =  1 , . . .  ,p  (for consistency 
with the previous notation, here and against convention, p  indicates the to tal 
sample size). Finding representations for the entire sample can be expressed as
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a multiobjective program

Si ' / ( P i ) '

SP . . / ( p p) .

subject to  constraints defined by the specific nature of the desired structural rep­
resentation. Notice th a t in multiobjective programming typically the same de­
cision vector, x , is used for all objective functions. However, in our adaptation, 
the same function /  is applied across varying data  matrices. The scalarization 

yields

s° =  E  w ( p *) =  Ai / ( p i ) + •  • • + w ( p P).
k = l

We claim th a t s° equals s =  / ( P ), where P  is defined as the average proximity 
m atrix across observations:

1 p  p  1 

p  =  1 E p  ̂ =  E l p ^n ^ z '  n
k=  I

Now,

• -
fc=l y

=  J / ( p 1) +  - "  +  J / ( p P)

=  s° for Afc =  -  Vfc,
P

assuming /  to  be linear.
Of particular interest is the question whether adapting multiobjective pro­

gramming to  the analysis of three-way d a ta  would require the evaluation of a 
large set of A weights. Specifically, as data  sources represent undivisible entities, 
assigning fractional weights from a  substantive perspective does not seem too 
reasonable (as opposed to  standard applications involving objective functions). 
On the other hand, fractional A-values might be justifiable in term s of a differ­
ential weighting scheme, indicating the level of idiosyncrasy of individual data  

sources.
In conclusion, P  could also be interpreted as representing an additional, 

imaginary subject. In agreement with the aforementioned analogy between the 
structural representation of an individual d a ta  m atrix and an objective function, 
we regard s =  / ( P ) as the highest ranking objective, creating the option to 
reformulate three-way d a ta  analysis as a multiobjective program relying on a
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lexicographic optim ality concept. Of course, these conjectures await further 
empirical evaluation.
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A ppendix I: G u ttm an ’s 
(1968) G radient-Based  
A lgorithm
Constructing a  unidimensional scale of objects O i , . . . ,  On , based on their prox­
imities collected into an TV x N  square-symmetric m atrix, P  =  {pij},  with 
Pij =  Pji and pa  =  0, 1 <  i , j  < N ,  aims a t arranging the N  objects along a sin­
gle continuum such th a t the induced N ( N  — l ) / 2  interpoint distances between 
the objects approximate the proximities in P  optimally. The N  coordinates, 
x \ , . . . ,  x n  have to  be chosen such th a t the least squares criterion is minimized

L(x ) = ~  ixi  “  X*D2'

In addition, and without loss of any generality, the sum of the coordinates, 
x,, is restricted to  zero, which does not affect the value of the loss function 

(i.e., any set of values x \ , . . . ,  xjv can be replaced by x \  — x , . . .  — with x  =
(1 /N )  x i)- The standard calculus approach to  finding a numerical optimum
consists of taking first partial derivatives of L(x)  w ith respect to  each of the 
coordinates x \ , . . .  , x n ■
First, we rewrite L(x) as

£(x) = Y L & i  ~  ^ _ Xii)2
i<3

N  N

= - \ X3 ~ Xil ) 2

i=1 j  = X

/  N  N  N  N  N  N

y 1= 1 j=l i= l j = 1 i—l j = 1

Notice if Xj > x t , then Xj — x, >  0  => \xj — x t | =  x j  — x,; also, if Xj <  x,, 
then Xj — x t < 0 => \xj -  x; | =  - ( x j  — Xi) = x t — x3. In addition, (Xj — x , ) 2  =
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(xi — xj)2. Therefore,

N  N  * n  N  N  N

=  ^ E E p u  +  ^ E E ^ j  ~ x ^)2 - J 2 Y , p a \ x j - x i\
t = i j = i  i = i j = i  i = i j = i

AT N  1 N  AT AT n

= o E Ê b + o EE(l? + ̂  _ 2x3'Xi) " EE^K _
1 = 1  J = 1 1 = 1  j —\ 1 = 1  j = 1

.  JV JV 1 AT AT N  N  N  N  N  N

= ? E I>b + ? E E +o E X>? - E E ̂  - E E '̂i  ̂- x*i2  Z -^ /L ^ rt3 ‘ 3  2 ‘
i = l J = 1  i=l j=l t = l j  = l i=l j  = l 1 = 1  j  = l

,  JV W \  N  N  N  N  N  N

2  E E 4  + 2 N  E x? + 2JVE ii - E^E^ -EEft n -*<1
1 = 1  j  = l J= 1  i=l i=l j = l 1 = 1  j  = l

Af JV N  N  N

2 E E 4 +̂  E x* - E Epyixi - x*i
due to

1 =  1 J =  1 1 =  1 1 =  1 j  — I

N  N  AT

J 2 x i = H x j 3 1 1 ( 1  E x- =  E ^  =  0-
i=l j= l i=l J= 1

Taking derivatives and equating to  zero yields

N

= 2 x * - 2 'Y ^ p ij sign(xj -  ar;) =  0,dh(x) 
dx ■1 j - l

with

! 1  if Xj — Xi < 0

0  if Xj -  Xi =  0

— 1  if Xj — Xi >  0

due to  the case distinction already introduced above: if Xj > x ,,  then Xj — x t > 
0  => |Xj — X{\ = Xj — xp, also, if Xj <  x t , then Xj — x t <  0  => \xj — x,i\ =
— (xj  — X j )  =  X i  — X j .  Solving for X i  gives

1  N
x i  =  J j ■ Y ^ P i i  s i S n (a:t  -  x 0 ,

3

the necessary condition th a t any optimal solution m ust satisfy.
G uttm an (1968) suggested — as what later should become known as the gradient-
based approach to  scaling — the iteration

Xit+1) =  E Pb  S'Sn(Xf > _  ^N
3

th a t upon convergence after t  iterations would yield an optimal set of coordi­
nates arl t . . . ,  xpj. Unfortunately, G uttm an’s conjecture proved to  be untenable 
as the algorithm regularly displays rather erratic behavior. F irst, often the iter-
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ative process does not converge, but cycles through a repetitive set of solutions 
indefinitely (see Hubert, Arabie, and Hesson-Mclnnis, 1992). More im portant, 
the solution for the set of coordinates, a q , . . .  , x j v ,  provided by ‘G uttm an’s up­
date algorithm’, as it is also referred to, is not unique. The set of coordinates, 
X], . . .  , i W] identified by the gradient procedure, obviously creates a specific 
order of the N  objects along the continuum, which, if rows and columns of P  
are simultaneously re-arranged accordingly, permutes the proximity m atrix into 
‘monotonic form’. More succinctly, iterative application of G uttm an’s update 
algorithm transforms any given P  into a monotonic matrix. In general, a matrix 
is said to  be in monotonic form if for consecutive rows i and i + 1  the  differences 
between the sums of row entries to  the left, and right of the main diagonal are 
monotonically increasing. A more precise definition requires notation already 
introduced in Chapter 4 — recall:

; - i
U{ :=  ^  for i >  2

i =i

and
N

Vi :=  for i < N ,
j = i +1

w ith tii =  vn  =  0. Any monotonic m atrix satisfies the condition tj  <  . . .  <  tjv, 
with ti defined for each row of P  as f, :=  j j ( u t — Vi), hence, j j (iq — iq) <

. . .  <  j j ( u N  — v n ) -  Recall th a t the coordinates obtained through the G uttm an 
update algorithm satisfy the necessary condition; in addition they posses the 

remarkable property

Xj — t i  ^  “  1-N-

To re-iterate, G uttm an’s update algorithm transforms any given proximity ma­
trix  P  into monotonic form with object coordinates =  ti as a ‘byproduct’ 
of the re-ordering process. A distinctive aspect of unidimensional distances is 
th a t they are additive, and thus the triangle inequality becomes an equality for 
such distances. This property underlies the use of the U as estimates of the 
coordinates. However, the monotonic form of a  m atrix, generally, is not unique, 
and as a consequence neither are the obtained coordinates. Thus, for a  given 
proximity m atrix a multitude of ‘optim al’ gradient solutions exists in term s of 
coordinates x i , . . . , x jv -  They all fulfill the necessary condition, which alone, 
however, does not guarantee a global minimum of L(x).
Defays (1978) found a surprisingly simple, and elegant solution to  this problem. 
Essentially, we are looking for a monotone perm utation of P  th a t will also turn  
JA  <? into a maximum. Assume th a t we had identified this particular perm uta­
tion, which is equivalent to  knowing the optimal order of objects, O ] , . . . ,  On , 
along the continuum. Under this condition, as Defays (1978) dem onstrates, the 
minimization of L (x )  can be re-expressed as a least squares problem with a
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closed form solution for the spacings between objects, from which the actual 
coordinates can be deduced. Let s; denote the distance between objects Oi and 
Oj on the continuum. The least squares solution for s, is given by

S i  =  (u< -  Vi  -  ( i t i + 1  -  v i + i ) )

— —

which, as an aside, implies x t = ti. In addition, Defays (1978) could also verify 
th a t L (x), indeed, is minimized by

i  i
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A ppendix  II: R e-E xpressing  
th e Scaling Loss Function

The least-squares loss function to  be minimized in unidimensional scaling of a 
set of N objects through the appropriate choice of coordinates a q , . . .  , aw (or 
distance estimates dy = \xj — aq|), w ith 1 <  i , j  < N  is defined as:

N  2

£(x) =  E  (PlJ “  \'Xi ~ Tl0
*<J
N  N  N

= Y p%+E \xj - x;i2 -2Y pn fa ~ Xii
i < j  i < j  i < j
N

=> L ( x )  =  Y p i j + A ~ B -
i < j

We prove that:

N  /  N  N  \

L (* )  =  Y , P i j + N [ Y X^ ~ 2 Y X i t i )
i < j  V t i /
N  /  N  N  N  N  \

= IX-+JV( Y x*-2Y Xiti+Y t2i -E*?)
i < j  \  i i i i  /

= Y Pii + N Y  ((Xi +ti~ 2Xit̂  ~ *i)
=  E 4 + ^ B x. - ^ ) 2 - i v E ^

i < j  i  i

N  /  N  N  v

=  Y p % + N [ Y ^ X i - t ^ 2 ~ Y t2i
i < j  V t i  j

As Pij ^  obvious, we begin with<j rij

N  .  N  N

A = Y fa_ Xii2 = \ Y  Y fa_ Xti2-
i<j i j

For utm ost detail, we observe the case distinction required by the absolute value
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function:

1. For j  > i, Xj — Xi >  0 => \xj — Xj\ =  Xj — Xj

2. For j  < i, x j  — Xi <  0 =4> \ x j —Xi\ = - ( x j - X j )  = Xi — Xj.

Thus, in breaking up the j-index accordingly (and dropping j  = i as \x: — x ,| 

0 ) we write

^  /  N  i - l  N  N

3
i j  i

/  N  i —1 JV JV

= M  Y .  Y j ( Xi - x Y ,  &  -
\  i  j  i  j = i + 1

and show

?
( X j  -  X j ) 2 ' ( Xj  -  X j ) 2

x 2  4- x 2  — 2 XjXj =  x f  + x 2  -  2 XjXj

= x 2  + x f  — 2  XjXj

T j )( X j  — X j ) 2 □

Hence,

-  /  JV t - 1  JV Pi

A  = ?( + J 2  ( x j - x j f
\  i  j  i  j = i + 1

(  N  t - 1  JV JV

2

JV JV

i  3 
N  N

2 * j

1  

2 '

=  ^  X !  X X j  +  x i  ~  2 x i x ^>
'■ 3

JV JV JV JV JV JV \

X X s 2+ X X ^ - 2X X ^ ' )
i  j  i  j  i  j  /

N  N  N  N  JV JV

i  j  i  j  i  j

JV N  N  N

= 2 ^ X xr +  2 ^ X X? ~ X XiX ;
j

N

=

due to

Y ^ x j  =  Y 1 x ? >and X X  =  Y l x i = 0 -
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A = ’5 2 \X3~ Xi\2 = N Y l Xi D
i<j i

Given the solution for A, we conclude we need to  dem onstrate th a t

N  N

i<j

Now,
N  N

B  — 2 y  ' | Xj Xi\ (2) 2  ^   ̂ Pij I Xj Xi\,
i<j i j

again, for utm ost detail, we proceed by first inspecting the case distinction, 
which, in following the same steps as for A, gives

B  — 2 y  ' pij\xj Xi\ 
i<j

= (2) \ ' 5 2 '52 Pij\X) ~ Xi\
' 2

* 3
N  i —1 N  N

=  E Ep^ -  X i \  +  Y 2  E P a ~ ~
i j  i  j = i + 1

N  i —1 N  N

= EE pa(*< - **)+E E Pi> (xi ~
i  j  i j = i + 1

N  i —1 N  i—1 N  N  N  N

=  E E p ^ - E E p ^  +  E  E  P i j  -£j E E  P i j X i
i  j  i  j  i  j = i + 1 t  j = t + l

JV t - 1  N  N  N  i—1 JV AT

i  ji i  j = i + l  i  j  i  j = * + l

JV / i - I  AT \  N  1 - 1  ^  ^

= E x*( E p*j ~ E ^ r E Z KJi' +E E
i  \  j  j = i + l  /  i  j  i  j = t  +  l

N  N  i—1 N  N  i - l

= Y1X{ (Ut - ̂  - E E pyxJ+E E Piixi’ with u> = Ep*j> vi =
i  i  j  i  j = i + l  j

N  N  t - 1  AT JV ^

= E x>^ _E E ftrt+E E  ̂= ~ Vj)-
i  * 3 * j = i + l
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More compactly, we write

N

B  = N ^ y ' x j t j  — a +  b
i

N

= 1V ^  x(ti — (a — b).
i

In other words, we need to  prove

N

a — b =  - N ' E xA
i

to  obtain the desired result

N

B  =  2N
i

Note th a t one might be tem pted to  re-express a and b (and subsequently inter­
change subscripts i j )  through

JV i —1 N  JV j  JV JV

a  = 5Z 5Z Pi] x 3 =  2 53  = 2 5^ X;J 53
i j  t  j  j  i

and

J V J V  j  N  JV ^ JV JV

=E E p'ixi = 2 E*^- = j 53̂  E^-
i  j = i + 1 • j  3 '

B o th  transform ations are N O T  leg itim ate as for a and b th e  term s xj 

have differing su bscript indices:

JV i - I  JV JV

o :  J <  i => j  =  {1,2,3,4} hence, 2 ^ E ^ i  + E E ^ t
i  j  i  j

N  N  N  N

b: j > i  => j  =  {2,3,4,5} hence, 2 E E  P i j X j  ^  EE P i j X j .

i .7 = 1 + 1  i  j
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In all detail (and choosing as example JV =  5) we observe th a t

N  i — 1

a - b  =
N  N

Pij^j ~f~ o
i  j = i + 1

'v'

3 < i j  > i

2 3 4 5 3
0 0  a b c d
a 0 0 e / 9
b e 0 - 0 n i

c / n 0 0 j
d 9 i 3  0 0

3 1 2 3 4
y

bl

Moreover, notice th a t the difference between the sums of p l3  (i.e., a +  • ■ ■ +  j )  
associated with a j  and bj  equal zero, but the difference between sums of the 
PijXj does not! In  other words, transforming a and b such th a t we can switch 
from Xj to  Xi requires two ‘Cool Hand Luke’ moves; in symbolic notation:

(aj  - b j )  = (a j  + a j  -  a j  -  b j  + bj  -  b j )

=  ( a j  + a j  -  bj  -  b j  -  a j  +  b j )

=  (a — b — a j  +  b j )

=  K  +  a.+ —b j  — a j  +  6 , )

K  ~ bt  + ai
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Therefore, we proceed with

N  i —1 N  N

a - b  =  Y Y P ^ x i ~ Y Y  P i j X j  
i  j  i  j = i + 1

N  i —1 N  N  N  N

Y Y p»xi + Y Y PiJxo~Y Y piixi
i  j  i  j —i+ 1 i j —i+1

N  N  N  i - 1 N  i - 1

~ Y Y  Piixi + EE Pioxi “EE Piixi
i  j = i + l  i  j  i  j

N  N  N  N  AT t - 1  N  N

Y Y p ^ ~ " Y s ' Y j b j x ] + Y Y Y p ^ X:> —Y-,  Y 1  p ^ i
i  j  i  j  i  j  i  j —i+1

The previous line confirms the two ‘Cool Hand’ substitutions are correct.

N  N  N  N  N  j - 1 N  N

Y Y piiXi- Y Y piiXi+Y Y piiXi- Y Y p̂ Xi
j  i  j  i  j  i  j  i = j + 1

N  i —1 N  N  N  i —1 N  N

Y XiY pi'+ Y Xi Y p̂  ~YXiY pi' ~YXi Y p* +
i  j  i  j —i + 1  i  j  i  j = i + l

N  j ' - l  N  N

YYpjiXi~Y Y piiXi
j  i  j  i = j + 1

N  / i - 1  N  \

- E ^ l  Y pi'- Y  f t ' d +
i  \  j  j = t + l  /

E*E P j i  E *E  ft.+EE^>-E E paXi-
i  j  i  j —i+ 1  j  i  j  i = j + l

Next, we will show graphically tha t

AT i - l  N  N  N  j - 1  N  N

0 = Y XiYpji~YXi Y p̂ +YYp̂ - Y  Y p̂ Xi■
i  j  i  j = i + l  j  i  j  i = j + l

or in more compact notation:

0 =  1  - I I  + I I I  - I V .
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To illustrate, let again N = 5:

i

I

i

I I

i

I I I

i

I V

0 1 0 •  •  • • 1 0 o  • o • 0

2 0 0 2 0  o  o o 2 0  • o • 2 • 0

3 • •  0 3 0  • • 3 0 o • 3 • o 0

4 o

Ooo 4 0 o 4 0 • 4 • O • O

5 • •  •  •  0 0 0 5 • o•0

The patterns of • and o, indicating the directions of summation, clearly implying 
th a t I  and I V  as well as I I  and I I I  cancel out:

?
I  IV

N  i - 1  ?  N  N  N  N

x' 22pp _ 22 22 Pj'xi = 22 x% 22 pv
i j  —  j  i = j + 1 i = j + 1 j

j - 1 i - 1  N  i - 1  N  i - 1  N  N

22Xi22^i+ 22 xi22p̂  = 22 x*2pii + 22 Xi 22 pa
i  j  i = j  + 1 j  i = j + 1 j  i = j  + 1 i  =  i + l

N  i - 1  N  i - 1

0 +  2 2  x ' 2 2 pj' =  2 2  x ' 2 2 p^  +
i = j + 1 j  i —1 + 1  3

due to  contradictions j  > iU  j  < i and i > j u i  < j .  □

I I  I I I

N  N  ?  N  j - 1 i —1 N

22x' 22 pp _  2222piiXi = 22Xi22pii
i  j = i + l  j  i  i  j

j —1 N  N  N  j  — 1 i —1 j  — 1 N

22 pT +  2  Xi 2  = 2 Xi2 pii+2 Xi 2  ^
i  j = i + 1 i = j + 1 i = i + l  i  3 i  3 = ' + 1

' ----------------------v  '  ' ---------------- v ---------------- '

i  — 1 N  j —1 N

22 xi y Pji t  o = o +2^xi y ' Pji-*
i  i = i + 1 i  i —i + 1

d u e  t o  c o n t r a d i c t i o n s  i  >  j  U  i  <  j  a n d  i  <  j  U  i  >  j .  □
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Hence,

JV / i - 1  N  \

a  — b =  — X{  I P j i  ~  $ 3  P J< )

i  V j  j = i + l  /

N
=  -  y :  x,(u, -  Dj)

t
AT

=  - Y , X i ( N ) t i
i

N

=  —Ny x̂jtj.

Substituting gives

N

L(x ) =
i<j

= J 2 pi i + N l L x t -  ( N Y l X it i- ( a - b )
i < j  i \  i  -

=  Y ^ p l + N H x2i - ( N Y , x i t i - ( - N J l Xi t '
i < j  i \  i  V i

N  N  N

= J 2 p l + N Y l x? - 2Nl L Xiti
i < j  i  *

N  /  N  N  \

= X>?i + ^ ( X > ? - 2X > m
i < j  \  i • /

□
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A ppendix  III: D efays’ 
(1978) Short N ote  on a 
M ethod  o f Seriation
The following section summarizes the key results of Defays’s (1978) presentation, 
in a  more elaborate manner. In particular, detailed m athem atical derivations 
are given, often illustrated by means of a small scale example. The data  collected 
are represented by an N  x N  m atrix P  =  {p,j} where p,j is a dissimilarity index 
between objects Oi and O j in a set O. By assumption, P  is symmetric, positive, 

and defined on O x O .  Largest indices correspond to  the most dissimilar object 
pairs; pa =  0 for all Ot 6 O. A sequencing of objects of O  along a continuum 
m ust be constructed such th a t the interobject distances dy on this continuum 
are not too far from the initially observed dissimilarities P y . In other words, if 
X i  is the coordinate of O i  on this axis, the problem is to  find the coordinates 

which minimize the measure of loss

N - l  N

L(x) =  ^ 2  "^2 ( P x j  -  d i j ) 2  with d i j  = \ X j - X i \

i = l  j = i + 1

N - l  N

=  (Pij -  \Xj — aril)2.
i = l  j = i + l

Assume for now, we know the order of the objects along the continuum. Let 

si =  d i2 , S2  =  ^ 2 3  i ■ • •, Si =  d ij, , . . ,  s/v_i =  dw-i,iv- The distances dy on the 
continuum are linear functions of the st — hence, we write in m atrix form

d  =  As,
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which can be expanded into

d i 2 ’ 1 0 0 0  . . 0 0  "

d u 1 1 0 0  . . 0 0

<Jl4 1 1 1 0  . . 0 0

d i N 1 1 1 1 . . 1 1

d23 0 1 0 0  . . 0 0

d24 = 0 1 1 0  . . 0 0

d 2 N 0 1 1 1 . . 1 1

d f t —2,AT—1 0 0 0 0  . . 1 0

d N - 2 , N 0 0 0 0  . . 1 1

d N - l , N 0 0 0 0  . . 0 1

si =■ d. 1 2

52 = d,23
53  — d .34

S% =  d t , i + l

S N - 2  =  d , M - 2 , N - l  

S N - 1 =  d l V - l , N

Notice th a t d  is of (%) x 1, and A  is of (^ )  x (N  — 1), while s is of (JV — 1) x 1. 
Minimizing the least-squares loss function requires to  identify a vector s yielding 
a minimum for

£ (x ) = || p - d  ||2= || p -  A s ||, 

where p  represents the vectorization of the upper triangle m atrix of P :

p '  =  \ p i 2 P 13 P 14 P i j  • • •  P a t - i , i v ] -

We can re-express the least-square loss function as

II p -  d II2 =  I I P - A s  f

=  ( p -  A s ) '( p - A s )

=  p 'p  — p 'A s  — s 'A 'p  +  s 'A 'A s  

=  p 'p  +  s 'A 'A s  — 2 s 'A 'p

due to  (p 'A s) ' =  s 'A 'p . Taking derivatives with respect to  s, and equating to  
zero yields the familiar set of normal equations to  be solved for s:

O
(p 'p  +  s 'A 'A s  -  2 s 'A 'p ) =  2A 'A s — 2 A 'p  =  0

A 'A s  =  A 'p

s =  (A 'A )_1A 'p .

For a given solution s =  (A 'A ) 1A 'p , it can be shown tha t the term  s 'A 'A s
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minimizes || p  — A s ||2. Recall

We can rewrite

P -  d  I I 2 =  II P -  A s ||2

=  p 'p  +  s 'A 'A s  — 2 s 'A 'p .

s 'A 'A s  =  s 'A 'A (A 'A ) *A 'p 

=  s 'lA 'p  

=  s 'A 'p .

Substituting yields

p  -  d  ||2 =  || p  -  A s |

=  p 'p  +  s 'A 'p  — 2 s 'A 'p  

=  p 'p  — s 'A 'p  

=  p 'p  — s 'A 'A s

due to  A 'p  =  A 'A s.
Defays (1978). gives general expressions for (A 'A )- 1 , and A 'p :

( A 'A ) - 1 =
N

2 - 1 0 0 0 . . . .  0 0 0 0 0
- 1 2 - 1 0 0 . . . .  0 0 0 0 0

0 - 1 2 - 1 0 . . .  0 0 0 0 0

0 0 0 0 0 . . . .  0 - 1 2 - 1 0

0 0 0 0 0 . . . .  0 0 - 1 2 - 1
0 0 0 0 0 . . .  0 0 0 - 1 2

For the general representation of A 'p , Defays (1978) introduces as notation:

Pi- ■= v  *
j > i

P -j -=  V  3-

More explicitly we can write

Pi- =  ^ 2  P i j  V * =  { 1 , 2 , . . . . J V }

i<3

N

j

p - j =  V j  =  {1,2, . . . ,A } .
i —1
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Now, by interchanging i and j  we can rewrite the last expression as

P-j =  V j  =  { 1 ,2 , . . . ,AT}
i=1 

i
P-i = J ^ P j i  V * =  {1,2,

3= 1

p.i =  ^ p y  V i =  { 1 ,2 ,.. .  ,7V} d u e t o d j i = d y .
3=1

In words, is the sum of the entries within the ith row of m atrix P  from 
the main diagonal to  the extreme right, whereas p.i denotes the sum from the 
extreme left up to  the main diagonal of P . Thus, Defays: (1978) notation is 
equivalent to  th a t introduced in Chapter 4:

N

Pi. «  Vi :=  ^  p ^  for i < N
3='+l

i-1
P-j — P i +=> Ui :=  ^  pij for i > 2.

3=1

Defays (1978) arrives a t the following compact expression for A 'p :

(Pi- -  P i)
(Pi - P i )  +  (P2 -P - i)
(Pi- “ P i)  +  (P2- - P - 2 ) +  (P3- -P -3)

(Pi- -  P i) +  (P2- ~  P-2> +  (P3- -  P-3) +  H (P(JV—2)- -  P-(JV—2))
. (Pi- -  P-l) +  (P2- -  P-2) +  (P3- -  P-3) + -----1" (P(N—2)- -  P-(W-2)) +  (P(iV-i;

In case of i  — 1, for instance, (pt. — p.i) expands into

(Pi- -  P-i) =  (P12 +  P13 +  P14 +  • ■ • +  P i n ) ~  0),

because poi does not exist, and has been set to  zero. For i =  3, as another 
example, (p3. -  p.3 ) yields

(P34 +  P35 +  P36 H f P3w) — (Pl3 +  P2 3 ))-

In addition, notice th a t the last row of the vector A 'p  reduces to  p.at. Also, 
observe tha t p.j =  pjv- =  0. Using terms p*. and p.;, Defays (1978) also derives 
general formulae for

Si =  ~ \ p i  -P - i  -  (Py+i). - P (i+i).)] for i =  1 , . . . ,  JV — 1,

A 'p =
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and
N

s'A 'A s =  ^ ( Pi. -  p.i)2.
A  ■i=i

Observe th a t Ip*. — p.j| =  |u, — u, | (i.e., pf. — p.i and u t — vt simply have reversed 
signs). W ith regard to  the above expression of s 'A 'A s, we would like to  point 
out th a t generally

(a — b)2 =  (b — a)2 

=  ( - a  +  b)2

=  [ ( - l ) ( a - 6 ) ] 2

=  l(a  — b)2 

=  (a — b)2.

Therefore, (pi. — p.i)2 =  (p.; — Pi )2. Hence, by interchanging the order of pj. 
and p.i in (p,. — p.i)2 to  (p.i — p^)2 we have derived

A  t p ( i )  =  ( u p ( i )  — v p ( i ) )  >

as it is given, for example in Hubert et al. (2002), with

1 - 1

u p (0 =  f°r * >  2
r=i

N

Vp(i) =  £  pp(i)pW for i < N .
j = i + 1
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A  sm all Scale E xam ple W ith  N  =  4
Let us assume the following dissimilarities have been collected on N  = 4 objects

.0 .2 .1 .4

.2 0.0 .3 .2

.1 .3 0.0 .5

.4 .2 .5 0.0

By vectorizing the upper triangle m atrix of P  we obtain

p ' =  [.2 .1 .4 .3 .2 .5].

M atrix A  has the form

A  =

1 0 0 
1 1 0 
1 1 1
0 1 0  
0 1 1
0 0 1

thus, A 'A  equals

' 1 1 1 0 0 0 '
A 'A  = 0 1 1 1 1 0

0 0 1 0 1 1

1 0 0 
1 1 0 
1 1 1

0 1 0 
0 1 1

0 0 1

3 2 1 
2 4 2 
1 2  3

and

(A 'A )-

For A 'p  we obtain

.5 - .2 5 0.0 2 - 1 0 '
1 11 _ - .2 5 .5 - .2 5 ~  4 - 1 2 - 1

0.0 - .2 5 .5 0 - 1 2

' 1 1 1 0 0 0 '
A 'p  = 0 1 1 1 1 0

0 0 1 0 1 1

2 +  .1 +  .4 .7 '
1 +  .4 +  .3 +  .2 = 1.0
4 + . 2 +  .5 1.1

.2

.1

.4

.3

.2

.5

In employing the general formula for A 'p  in term s of (pt. — p.i), we can re-write 
the R H S  vector of the previous equation. The px. and p., are given by
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Pi- p -i

pi. =  .2 +  .1 +  .4 =  .7 p.i =  0.0
p2. =  .3 +  .2 =  .5 p. 2 =  .2
Pz- =  -5 p.z =  .1 +  .3 =  .4
P4 . — 0.0 p .4  =  .4 +  .2 4- .5 =  1.1,

yielding

' .2 +  .1 +  .4 ' .2 +  .1 +  . 4 - 0
.1 +  .4 +  .3 + .2 = (.2 +  .1 +  .4 — 0) +  (.3 +  .2 — .2)

.4 +  .2 +  .5 (.2 +  .1 +  .4 — 0) +  (.3 +  .2 — .2) +  [.5 — (.1 +  .3)]

Finally, as an estimate of s =  (A 'A ) 1A 'p , we obtain

.5 - .2 5 0.0 .7 ‘ .1

- .2 5  .5 - .2 5 1.0 = .05
0.0 - .2 5 .5 11 .3

resulting in the following estimate, d  =  A s

d ' =  (A s)' =  [.1 .15 .45 .05 .35 .3],

yielding a value of L(x) =[| p — d  ||2=  .14; and recalling th a t || p — A s ||2 is 
minimized by s 'A 'A s  we compute

p'p -  s 'A 'A s  =  .59 -  .45 =  .14 =  L(x).

Lastly, we also want to  verify

s; =  j j \P i-  - P - i  ~  (P(i+i)- - P ( i + 1)-)1 for i  =

and

s 'A 'A s  =  i  Y liP i- - P  i)2-
i= 1

Compute (p i . — p . i ) 2 as

__________ (Pi- ~  P  i ) 2

(.7 — 0.0)2 =  .49 
(.5 -  ,2)2 =  .09 
(.5 -  ,4)2 =  .01 

(0 .0 -  1 .1)2 =  1 .2 1 ,
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w h ic h ,  in d e e d ,  y ie ld

Si ' .1
s = S2 = .05

.  S3 _ .3

a n d

s'A 'A s =  ( i)1 .8  =  .45.
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