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6.1 INTRODUCTION

In this chapter we will discuss the input and output of three-
mode principal component analysis. First we will treat general
issues in connection with means and variances of raw data, their
influence on the analysis, and their treatment so as to obtain the
'best' analysis for a particular data set. Then we turn to what
comes out of a three-mode analysis, how to interpret it, and how to
transform it to enhance interpretation. In this sense the present
chapter is the theoretical counterpart of the discussion in the
second part of Chapter 2, in which we described an example in
detail. A similarly detailed analysis of an example can be found in
Chapter 8.

The first part of this chapter deals with scaling of input,
and will lead us to consider mixed additive and multiplicative
models for raw data, i.e. models which have properties of both
analysis of variance and principal component analysis. It is also
necessary to consider the purposes of input scaling. By scaling we
mean any operation which transforms raw data into new data values
by subtracting and/or dividing the former by certain, often data
dependent, quantities, such as means, scale midpoints, standard
deviations, ranges, etc.

In the second part scaling of output is considered. The Tuck-
er2 and Tucker3 models are liable to what is sometimes called 'the
fundamental indeterminacy' (e.g. Kruskal, 1981, p.5), i.e. the
component matrices may be transformed non-singularly without chang-
ing the fit of the model to the data, provided the appropriate
inverse transformations are applied to other parts of the model.

Similarly, component matrices may be multiplied or divided by
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constants without affecting the fit of the model. Some such scal-
ings of the output, however, enhance our understanding of the
relationships underlying the data more than others, as we shall

presently see.

6.2 INPUT SCALING: GENERAL CONSIDERATIONS

Types of scaling. We will primarily discuss two basic kinds
of scaling: centring, i.e. "subtracting a constant term from every
element so that resulting data values have a mean 0" (Kruskal,
1981, p.15), and standardization, i.e. "dividing every element by a
constant term, so as to achieve this result: the 'scale' of the
resulting data values has some fixed value (often chosen to be 1).
'Scale' generally refers to some measures of variability, most
often the standard deviation" (Kruskal, 1981, p.17). The process of
centring and standardization, such that the resulting data values
have mean zero and standard deviation one will be called norma-
lization.

Although we primarily look at these three operations, it does
not always seem adviseable to revert to them. In the examples in
Chapters 9 and 11 we have subtracted the scale midpoints from the
data for reasons to be explained later. In Chapter 14 we adjusted

the range of all variables (tests) to become identical.

Selecting a type of scaling. The reasons why one should use a
particular type of scaling depend on the position one takes with
respect to data and their analysis. The first point of view is that
measurement characteristics, research questions, and research
design determine what ought to be done to the data before entering
a three-mode principal component analysis. A second point of view
is that the model determines also which kind of scaling or prepro-
cessing is appropriate, i.e. the model rules out certain scalings,
as they are considered to be inconsistent with its definition.

First, it is necessary to take a closer look at the question

why one should need to consider scaling at all. The answer to this
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is straightforward: to improve the understanding of the relation-
ships between elements of the three modes. It is believed that the
three-mode component model does not apply to the raw data, but to
some appropriately transformed or scaled form, and that certain
means and/or standard deviations obscure what is searched for, or
what is basic in the data. Thus it is expected that the model will
give an incorrect or imprecise description of the relationships in
the data, when applied to the raw data.

Why one might get an improper description when certain means
and/of standard deviations are not removed from the raw data fol-v
lows from the definition of component analysis. The components
derived by the technique represent directions in the space spanned
by, say, the variables, along which successively and orthogonally
the largest variations can be found. If the centroid, defined by
the means of the variables, is located at a considerable distance
from the origin of the variable space, then an important candidate
for the direction of the first component will be the one from the
origin through the centroid. If, however, the main purpose of an
analysis is to investigate the covariations of the variables from
the centroid, the means of the variables should be removed before
the component analysis, and should be modelled separately. Similar-
ly, when the structure of the variable domain is of interest, but
it is undesirable that variables with larger variations influence
the results unduly, something should be done towards equalizing
variations. It is equally possible, however, that objects or per-
sons with larger variations should dominate the outcome of an
analysis. For instance, it is not necessarily sensible to equalize
variations of persons who have no outspoken opinion and always tick
the midpoints of scales and those of persons who use scales effec-
tively and have mainly systematic variation.

Kruskal (1981, p.18) cites another purpose for standardization
in connection with his discussion of PARAFAC1. Paraphrasing his
argument we write the three-mode Tucker3 model as

s t u

z.., =2 2 2g.h.e c +e...,
ijk p=1 ¢=1 r=1 ip jq kr pqr ijk



6.2 131

where eijk is a random variable with mean zero. As least squares
fitting is used to solve the estimation of the model, it is impli-
citly assumed that the standard deviations of the error terms are
all equal. If one knew these standard deviations, one could scale
the zijk to make the error terms as nearly equal as possible. As in
practice one does not know the standard deviations of the error
terms, one has to fall back on the idea frequently used in princi-
pal component analysis, i.e. seeking to make the total standard
deviations of the elements of one of the modes equal [or a similar
type of standardization] instead of seeking to make the error
standard deviations equal. "This approach has a long tradition in
the bilinear methods, and is presumably as reasonable for trilinear
models [such as PARAFAC1] as bilinear models [such as principal
component analysis], though a satisfying rationale for it is not
known" (Kruskal, 1981, p.18).

Returning to the two points of view to input scaling, both
Kruskal (1981) and Harshman (cited in Kruskal) argue that certain
scalings are inappropriate for the three-mode model as the compo-
nents after centring and/or standardization bear no simple relation
to the components before transformation. Put differently: a scaling
should not "destroy the agreement with the model" (Kruskal, 1981,
p-18). As it is our contention that the principal component model
generally only applies after transformation of the data values it
is not necessary to compare components before and after transform-
ation. We cannot go into the question here in more detail, as
little discussion of this issue has appeared in print with respect
to three-mode models. The basic paper seems to be an informal and
incomplete paper by Harshman (cited in Kruskal, 1981). A final
draft is in preparation (Harshman, 1982, pers. comm.), and due to

appear in Law, Snyder, Hattie, & McDonald (forthcoming).

Types of three-mode data. In selecting an appropriate scaling
it is dimportant to distinguish between three general kinds of
three-mode data which we will designate as 'principal component
analysis data' or pca-data, 'multidimensional scaling data' or

mds-data, and 'analysis of variance data' or anova-data.
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Pca~-data have the format: subjects (i-mode) X variables (j-
mode) X conditions (k-mode). The terms are generic ones, e.g.
conditions may refer to points in time, occasions, experimental
conditions, replications, etc. The subjects may be considered a
(random) sample from a particular population, or a fixed group of
persons about which information on individual differences is sought.
The examples in Chapters 8 (Attachment study), 13 (Hospital study),
and 14 (Learning-to-read study) have this data format.

Mds-data have the format: variables, stimuli, or scales
(i-mode) X variables or stimuli (j-mode) X subjects (k-mode). Cha-
racteristic of this kind of data is that the subjects are not
considered mere replications, but nearly always their individual
differences are of interest, and they are seldom treated statisti-
cally as if they were a (random) sample from a particular popula-
tion. The examples in Chapters 2 (Party similarity study), 9 (Tri-
ple personality study), 10 (ITP study), 11 (Cola study), and 12
(Four ability-factor study) have this data format.

The third, not too common type of data (anova-data), generally
have the pca-format with the additional characteristic that the
variables (j-mode) form a highly consistent scale (high Cronbach's
a) and may be considered to measure the same variable. In such a
case the data may be described by a three-factor (£xmxn) analysis
of variance design without replications. The Perceived reality data
in Chapter 7 have this data format.

As in any classification scheme the allocation to one of the
formats is not always clear-cut. In fact, the Triple personality
data of Chapter 9 could be considered both pca-, and mds-data, but
treating them as mds-data seems to be more in line with the re-
search questions asked. Four-mode data will in many cases be mix-
tures of the pca- and mds-data, see e.g. the data collected by
Jones & Young (1972), when the two years in which mds-data were
collected, are considered as the fourth mode. The distinction
between pca-data and mds-data is especially useful in connection
with the decisions which of the modes should not be reduced in a
Tucker2 analysis. For the former this will be the condition mode,
for the latter the subject mode. It is, by the way, interesting to

note that the substantive distinction between the mathematically
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equivalent models PARAFAC1 and CANDECOMP (see section 3.2 and sec-
tion 3.3) is that the former was proposed with pca-data in mind,
and the latter with mds-data.

In section 6.5 we discuss recommendations for centring and

will return to these three data formats.

6.3 INPUT SCALING: ARBITRARY AND INCOMPARABLE MEANS AND VARIANCES

Arbitrary means and variances. Many social science variables
have interval properties, and thus no natural zero point. Often the
absolute size of the variances of these values is arbitrary in the
sense that it is dependent on the number of possible values chosen
rather than the 'true' range of the variable. It is undesirable to
have variation in the data due to arbitrary means (e.g. the mid-
point of five-point rating scales) influence the components of a
component analysis, so that they should be removed first - the more
so if they are different for different variables. In certain cases
with homogeneous variables (for instance, sets of similar rating
scales) the differences in the arbitrary means are of interest, and
should be retained in the analysis. In that case the midpoints of
the variables generally define some neutral point which can be used
for centring (see the examples in Chapters 9 and 11).

The situation with variances is similar. If variances are
arbitrary, and variables have different ranges, then in order to
avoid artefacts these variances should certainly be equalized
before a three-mode analysis is performed. In homogeneous sets with
arbitrary variances, in which the differences between the variances
are not of interest, they should be equalized as well. When the
differences are of interest, the variances probably should remain
untouched, as standardization per variable will remove some or all
of these differences. One could consider scaling the overall varian-
ce to unity over the entire data set, but this has no influence on
the outcome of the analysis because all the data values are divided

by the same constant. (see also Kruskal, 1981, p.17).
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Incomparable means and variances. Consider the situation in
which the scores of a number of subjects are available on a diverse
collection of variables, each of which has its own measurement
characteristics. The Hospital study in Chapter 13 may serve as an
example: 188 hospitals were measured on variables like number of
beds, presence or absence of a financial director, ratio of quali-
fied nurses to the total number of nurses, etc. In such data the
means of the variables are incomparable, as are the variances.
Therefore, it does not make sense to consider components which are
influenced by these means and variances. In other words, these
means and variances should be modelled separately, and not via a
principal component analysis.

The hospital data are, in fact, more complex than sketched
above, because the variables were measured in each of eleven con-
secutive years. The question thus arises whether one wants to
remove the incomparable means per year, or over all years together.
The argument for the scaling procedure in the previous paragraph
was based on the idea that within one year the means and standard
deviations across variables were incomparable. However, differences
in means and standard deviations over the years are comparable for
each variable, and one may decide to model the differences across
years by the principal component analysis, or model them separately
outside the model, depending on the research questions one has in
mind.

In this way one may have both incomparable and comparable
means in one data set, and the 'best' way to treat them depends on
one's view of the subject matter. It may, of course, happen that
one has to perform more than one kind of scaling due to lack of
insight in the data set itself.

In other situations all means and/or variances are both in-
terpretable and comparable, e.g. all variables are bipolar scales
as in semantic differential research (see Chapter 9). It is then a
question whether means and/or variances should be modelled separa-

tely or not.
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6.4 INPUT CENTRING: INTERPRETABLE MEANS

In this section we will investigate some of the substantive
considerations that go into selecting an appropriate centring for a
particular data set when the means are interpretable. It is not
possible to do so in a general way because different research
questions are asked of different data, and because different mea-
suring instruments and research designs are in use. It is possible
to make specific recommendations in specific research areas, as has
been demonstrated by Noy-Meir (1973), and Noy-Meir, Walker, &
Williams (1975) for ecological ordination data.

Notwithstanding the above we will try to tackle centring of
input data as generally as possible by discussing various ways in
which means can be treated and/or modelled. Our emphasis will be
primarily on centring as this kind of scaling is better understood,
and more extensively studied. We will discuss standardization in

some more detail in section 6.6.

Two~mode data. To facilitate the discussion let us assume that
we are dealing with scores of individuals on a series of tests
scored on the same scale. The means of these tests are comparable,
as are those of the individuals. Assuming that it makes semnse to
talk about the average performance of an individual over all tests,
the question arises as to how the average performance should be
modelled. Similarly, given that we have determined the averages of
all tests, the question arises how they should be included in an
analysis. One way to do so is to perform a standard principal
component analysis, or singular value decomposition (see section
2.2) on the original measures.

An alternative way to treat these means (and the means of the
individuals over tests) would be to model them according to a model
sometimes called the FANOVA (FActor ANalysis Of VAriance) model
(Gollob, 1968a,b,c). This model treats the grand mean, row and
column effects separately, i.e. removes them from the original
data, and specifies a singular value decomposition for the resi-
duals. The derived components are 'interaction-components' in that

they describe the interactions of the deviations from the means of
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the individuals and the tests respectively:

S
Z.. =p+ori+ Bj+ aij with e.. =3 g

i i h. ¢,
ij J p=p P ipPP

where y, ui, Sj, eij are the usual grand mean, row effect, column
effect, and residual from analysis-of-variance models, with the
standard zero-sum assumptions for the effects (see also Kruskal,
1981, p.6,7). One hopes, of course, that very few components are
necessary to describe the interactions. The FANOVA model is thus a
combination of an additive model (grand mean, row effect, column
effect), and a multiplicative model (componental decomposition of
the remainder term). The latter part is, however, still am ortho-
gonal decomposition, and in that sense the successive product terms
are also additive between them. One should also realize that the
model as specified is one without replication, i.e. with only one
observation per cell.

The main differences between the two ways of modelling, FANOVA
and singular value decomposition, are the treatment of the means
and the interpretational differences connected with the components.
Tucker (1968), for instance, contends that '"the mean responses to
various stimuli over a population of individuals are better con-
ceived as describers of the population than as simple, fundamental
describers of the stimuli" (p. 345), and continues that, therefore,
such means should be included in a principal component analysis,
i.e. the analysis should be performed on the original measures. In
this way the means are '"equal to the measures that would be obser-
ved for a person at the centroid of the factor score distribution
(p. 350). The components then determine the original measures.

In contrast, the FANOVA model sets the means apart first, and
only then looks at components in the residuals. It, therefore,
gives a special a priori status to those means. It is a moot point
whether this is just "a useful heuristic to use main effects as a
point of reference from which to describe individual differences in
patterns of subject responses" (Gollob, 1968c, p. 355), or whether
in the FANOVA model "the mean measure is considered as a basic
characteristic of the responses of the individuals" (Tucker, 1968,

P- 350). In the end the subject matter will determine which of the
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two is the more correct interpretation of the mean responses, and
the research questions will determine if it is more useful to model
the means a priori (Gollob) or a posteriori (Tucker). When the
means are expected to be the resultant of an agglomeration of
influences which have to be disentangled, Tucker's view seems to be
pertinent. However, when the means represent a 'primary psychologi-
cal construct', or have intrinsic meaning in another way Gollob's
view and model seem more appropriate.

Whereas Gollob and Tucker discuss the FANOVA model within the
context of the problems of removing or maintaining means before
performing a principal component analysis, the same model has been
considered from a different angle by Mandel (1969, 1971), and in
fact even earlier by Fisher & Mackenzie (1923) and Gilbert (1963).
Mandel was looking for a way to model the interactions in a two-way
analysis-of-variance design without replications, and attempted to
fit multiplicative interactions of row and column factors, ending
up with the same model as Gollob. He thereby extended the already
existing discussion on tests for non-additivity which started with
Tukey's (1949) 'single-degree-of-freedom test for non-additivity'.
Further work on testing this kind of interactions was carried out
by Corsten & Van Eijnsbergen (1972), Johnson & Graybill (1972),
and Marasinghe & Johnson (1981). Snee (1972) discusses the model
for growth studies (see also Chapter 14).

Notice that within this context there is no problem as to
whether or not it is appropriate to remove means, as the primary
focus is on modelling interaction terms after the sums of squares
for the main effects have already been investigated. Another and
more fundamental difference between the two presentations of the
model is the kind of data involved. Whereas Gollob considers obser-
vations of subjects on certain variables, and therefore looks at
the relationships between variables (analysis of interdependence,
see e.g. Gifi, 1981, p. 2., and Kendall, 1957, p. 1-4), Mandel is
dealing with one response variable and two predictor variables
(analysis of dependence). Because of this fundamental difference
not all considerations, tests, etc. from the analysis-of-variance-

side are relevant to the Gollob-Tucker discussion, and vice versa.
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A parallel model crops up in the analysis of contingency
tables, where it goes under a wide variety of names, such as cor-
respondence analysis (see Chapter 15), dual scaling, and optimal
scaling. For general surveys, historical comments and extensive
references see Hill (1974), Gifi (1981) and Nishisato (1981).

Gabriel (1971) used the FANOVA model for so-called biplot
graphical analysis of multivariate data, and Gnanadesikan & Ketten-
ring (1972, p.97,102) also implicitly suggest the use of the model
when discussing ways to investigate residuals for outliers (see
also Chapter 7).

Reviewing the various discussions of the model in the above
papers as far as they are relevant to three-mode models, it seems
that the crucial aspects are the kind of research questions being
asked, and the research design used to collect the data. This
should determine what to do with the row and column means, or main
effects, be it that it is often far from easy in practical cases to
decide upon the proper way of centring. Only after this matter is
solved, one can turn to a multiplicative analysis of interactions
by using singular value decomposition, or its three-mode analogues
such as three-mode principal component analysis or simplified
versions thereof (see Chapter 3). In the next subsection we will

review some three-mode generalizations of the FANOVA model.

Three-mode data. Lohméller (1979) discusses additive and
multiplicative models for three-mode data, including some that fall
outside the present discussion. He suggests the following generali-
zation of the FANOVA model:

Zig = P T By T Y Dy T 0y X By

with the normal analysis-of-variance notation for the grand mean
(), the variable effect (Bj), the condition effect (yk), and the
combined variable/condition interaction effect (ij). The remaining
jk-normalized Eijk are to be decomposed with the three-mode princi-
pal component model. This model (called the standard reduction
equation by Lohmdller) specifies the data partly as an additive

function of a priori sources of variation (M,B,Y,(), with standar-
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dization constants O, and partly as a posteriori sources of varia-
tion through the components. The discussion in the previous para-
graph on the appropriateness of removing means before a multi-
plicative analysis directly applies to this proposal and the ones
discussed below.

Once it is realized that analysing interpretable means separa-
tely implies nothing but an analysis-of-variance model with multi-
plicative interaction terms, there is a large number of models that
may be proposed. One possibility is the three-way main effects
analysis-of-variance model for the additive part, and the three-
mode principal component model for the multiplicative part. The
triple-centring model shown in Table 6.1 could also be used in this
way, although it remains to be shown that it is a really useful
procedure. It may very well be that after the various means and
interactions have been removed, the residuals will not contain much
additional systematic information that can be described by three-
mode principal component analysis. The deviations from randomness
in these remainders might be better investigated by some kind of
residual analysis (see also Chapter 7).

Whereas in the above discussion three-mode models with multi-
plicative interactions have been approached from the component
analysis side, Gower (1977) follows the analysis-of-variance tra-
dition of Mandel. He describes three-way models which fit the
overall mean and main effects additively, and two-way interactions
multiplicatively:

Zigg S PO By Y b ey, with g4, = giho + Hiey FEE;
with in general different components 8;» gi and hj,ﬁj, and ek,ék,
which are derived from separate singular value decompositions of
the two-mode marginal matrices averaged over one subscript. It is
assumed that all effects and multiplicative components sum to zero,
and that there is no three-way interaction. The additive portion is
fitted by the standard least squares estimators, and the multipli-

cative part is based on the residuals,

ik = Zigk ~ 2.0 (7 7 ) 7 (2 g -2 ) -z ez )
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Gower proposes to use Mandel's (1971) formulas on degrees of free-
dom in the two-way case to compute mean squares, and to test the
significance. Note that in our discussion of Gower's and Mandel's
models the assumption is made that there are no replications in the
cells. When there are replications, their models would be four-mode
models in our terminology with one random mode.

Gower continues to show that the inclusion of three-component
products, for instance gihjek’ introduces further complications
when one wants to include the zero-sum restrictions on the multi-

plicative components. Including such restrictions leads to a model
like

zijk = Mt + 63. Yt sijk with

ik T Bily T By * o8y * peshiey

with zero-sum restrictions for all effects and multiplicative
components; p is a constant to be estimated. Note that there is now
only one type 8> hj’ and ek.An even more complicated three-factor
model is considered when separate two-way interactions are included
as well. Gower discusses estimation procedures for the above model
and the difficulties involved.

The analysis-of-variance approach colours the way the model is
conceived and the way restrictions are introduced. This is, for
instance, evident in the insistence on zero-sum restrictions, and
the inclusion of two-way interactions before introducing three-way
interactions. The component analysis approach decomposes three-way
interactions directly without necessarily fitting two-way interac-
tions first. The two approaches coincide when p=1 and two-way
interactions are ignored, i.e. gihj = g8 T hjek = 0 for all i,j,
and k. The remaining term has then exactly the form of the PARA-
FAC1/ CANDECOMP model (Harshman, 1970; Carroll & Chang, 1970; see
also sections 3.2 and 3.3) with one or s components:

s

= gihjek’ or eijk = 2 g. h. e

E.. ’
ijk p=1 1P Jpkp

depending on the numbers of multiplicative terms one wants to in-

clude. Furthermore, when the two-way interactions again are not
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explicitly modelled, a three-mode principal component model is
identical to Gower's model, when only one multiplicative term is
included. The Cpqr with p=q=r=1 is then the estimator of p .

De Leeuw (1982, pers. comm.) suggested an extension of the
Tucker3 model which bears some resemblance to the model with three-
component products proposed by Gower, and at the same time solves
the estimation problem via an alternating least squares algorithm.

Assume that all component matrices G, H, and E of a three-mode
principal component model have a constant first column, i.e. g.
1/42 for all i, h._ = 1/Jym for all j, e, . = 1/Jn for all k. Then we

i1 k1l
may write this modified version of the basic Tucker3 model as

Z.

ik = Cyqq/Vamn + (1/J£m) z ekr 11+ (1/48n) z h.

q=2 34 191"

s
(1/4Jmn) = g. + (1/42) Z z h. e
p=2 ip p q=2 r=2 iq ke 1qr

S s
1/4m) Z 1 z Z h. +
( /J )p=2 - zglp kr plr + ( /*/ﬂ)pzz - 2g1p iq qu

S t u

2 X 2 glPth ke par
P=2 q=2 r=2

The PARAFAC1/CANDECOMP version of this modified Tucker3 model can
be obtained by this setting all c = 0 except when p=q=r, and

par
absorbing the constants and the Cppp in the components:

s s
z..,. =c . .te._ +th._ +g..+Z h e +2 g e +
ijk 111 kl jl il p=2 p kp p=2 ip kp
s s
2g.h. + 2g 8; h. €rr?
p=2 ip Jp p=2 P jq

and this is Gower's model if s=2. The estimation of this model can
thus be solved by adapting the PARAFAC1/CANDECOMP algorithm. Simi-
larly the estimation of the modified Tucker3 model can be solved by
adapting the TUCKALS3 algorithm.
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6.5 INPUT CENTRING: TYPES, CONSEQUENCES, RECOMMENDATIONS

In the previous section we looked at substantive issues con-
nected with input centring, and at some models which could be used
for treating means separately from the component model. In this
section we will look at centring from a more technical point of
view by considering the kinds of centring which can be defined
within three-mode analysis, and the effects these centrings have on
the output. Finally, we will try to formulate some recommendations,

as well as discuss those of others.

Types of centring. In Table 6.1 an overview is given of cen-
tring possibilities for three-mode data matrices. Cattell (1966a,
p.115-119) has coined some terms for scaling of two-mode matrices.
Whenever his terms seemed applicable for three-mode data, we have
included them in italics in Table 6.1. Tucker (1966a, p.294), Bar-
tussek (1973, p.180-181), Van de Geer (1975, p.12), Lohmsller
(1979, p.156-158), Rowe (1979, p.78), Harshman (unpublished, quoted
in Kruskal, 1981), and Kruskal (1981, p.15-19) discuss the scaling
of input data for three-mode models, and most of the schemes for

centring have been proposed by at least one of them.

Some consequences of centring. In Table 6.2 an overview of
some consequences of centring with various schemes is given for
both the Tucker3 and Tucker2 models. The general effect for means
is that if centring takes place at a certain level, means at the
lower connected levels will also be zero. Especially noteworthy is
Case 5 (jk,ik-centring or double-centring) as the only non-zero
means remaining are those in the Zi'. two-dimensional marginal
plane (average frontal plane of the data matrix). Note, however,
that its one-dimensional marginal averages are both zero again. In
other words, the average frontal plane of the data matrix is itself
double-centred. For the triple-centring indicated, the grand mean
and all one-~dimensional and two-dimensional marginal averages are

zero.



144

6.5

Table 6.2 Consequences of centring

L P 2 k
Z. Zz .
i.. 3.
z

Z .y two-dimensional
J marginal averages

Z one-dimensional
- marginal averages

overall (grand)
mean

General rule: if means are removed at a level, they will also

have been

removed at a lower level.

case type means removed
type of centring

consequences

2 z

overall centring

no components centred

3 z . ik-combination-mode components centred
-3 (e.g. in Tucker's Method III)
Jj-centring component scores on j-mode components
centred
4 z jk T3: i-mode components centred
jk-centring T2: (k or j-mode unreduced): i-mode com-
ponents centred
T2: (i-mode unreduced): c, centred per
X - igr
gqr-combination
tuxXtu latent covariation matrix
becomes covariance matrix
5 z K’ z; ¢ T3: i-mode and j-mode components centred

jk, ik-centring

T2: (k-mode unreduced): j-mode and i-mode
components centred

T2: (i-mode unreduced): j-mode components
centred c, . centred per pr-combina-
tion 1

c(tuxXtu) latent covariance matrix

T2: (j-mode unreduced): i-mode components
centred c - centred per pr-combina-
tion PJ

(suxXsu) latent covariance matrix
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6 Z .., 2. ., Z.. T3: i-mode, j-mode, k-mode components
RS centred
triple-centring T2: components of reduced modes are cen-

tred. Core matrix is centred over
unreduced mode. Latent covariance
matrix for unreduced component combi-
nations.

cases as in Table 6.1

The last column of Table 6.2B indicates some effects of the
various ways of centring on the output of a T3 or T2 analysis. Par-
ticularly, it shows which component matrices and core matrices
become centred, and for which 'latent covariation matrices' the
entries will become covariances (see section 13.3).

Uncentred modes will have large first coﬁponents, due to the
presence of the means. This should be taken into account when
assessing the relative contributions of the components of such an
uncentred component. The first components are often highly corre-
lated with mean vectors, and also with the fitted sums of squares
of the elements of the mode.

When per variable (j-mode) is centred for each condition of
the k-mode (jk-centring) the i-mode components will be centred
after analysis. The algebraic correctness thereof follows directly
from:

25k " Z.jk = 2 giphjqekrcpqr - (/) 2 2 giphjqekrcpqr =

P>q,T i p,q,r
= 3 h.e c_ f{g. -(/2) 2g.}=
k i - °i
P,q,r Jq Kr pqr-"1p i P
= 2 h. e, c {g - é } ’
kr r°i .
P,a,T Jq Pq P P

with zijk the centred scores, such that z.jk = 0 for all j and k.
At the same time the algebraic derivation shows that it is more of
a terminological confusion than anything else, as both by the raw
data and in the model the centring is over the index i. In other
words, one should keep track of the index over which is centred.
Part of the confusion is due to our use of the word component, i.e.
in our terminology components refer to loadings (see section 1.4),
rather than component scores, as is more usual in standard princi-

pal component analysis. In standard principal component analysis
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the scores of subjects on the variables are deviation scores after
centring, and so are the scores om the variable components (see
also Figure 2.1).

Another problem which has been raised with respect to centring
is the relationship between components derived from various cen-
tring procedures. An extensive literature exists dealing with
two-mode matrices, but this discussion will not be repeated here.
The presence of three modes and thus three component matrices makes
the matter considerably more complex, and little work has been pu-
blished concerning this problem (see Kruskal, 1981). Whether an
investigation will be useful for practical applications is rather
doubtful, since just as in the two-mode case it is substantive
considerations which generally determine the kind of input scaling
that will be used (see section 6.2). Some relevant references for
the two-mode discussion are Harris (1953), Ross (1963, 1964),
McDonald (1967, especially p. 8-10), Gollob (1968b,c), Tucker
(1968), Corballis (1971), Nesselroade (1973), Noy-Meir (1973), and
Noy-Meir, Walker, & Williams (1975).

The consequence of removing any mean is that the amount of
variation explained by a particular amalysis will be smaller, and
sometimes dramatically smaller. (The sum of squares caused by
non-zero means is often the largest one present in the data.)
Overall centring (Case 2) can, for instance, be interpreted geome-
trically as moving the centroid of the data to the origin, and thus
the sum of squares caused by the overall mean (which is often not
meaningful, as in the case of many rating scales) is removed.
Therefore, the loss in (artificial) variation explained need not be
regretted in such a case.

A further problem in connection with centring has to do with
the interaction between centring and standardization, which we will

take up briefly in the next section.
P y

Recommendations. The recommendations presented here should be
seen as a first guide to what can be done with a particular data
set. Especially in situations in which means can be modelled, much

more content-specific information is needed.
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When means cannot be interpreted or when they are incomparable
within a mode, they should be eliminated, i.e. set equal to zero
via subtraction. Furthermore, when means are interpretable and
comparable within a mode, and when it is evident that the differen-
ces have been caused by influences not connected with the three-
mode data itself, they had best be modelled and explained sepa-
rately outside the three-mode model.

For pca-data (see section 6.2) one will generally use either
j-centring or jk-centring. The choice between the two will mainly
depend upon the evaluation of the causes of the differences in
means across conditions, and the need to relate these means to
other aspects of the data set.

For mds-data the most common procedure is double-centring (jk,
ik-centring). Since the subjects in the third mode are assumed to
be independent and we want to describe individual differences in
the way the stimuli (variables) are treated by the subjects, the
data should be centred per subject, or matrix-conditional (see,
e.g. Young, 1981). In the literature on multidimensional scaling
(see, e.g. Torgerson, 1958, p.258), the data values, which are
assumed to have distance-like properties, are often first squared
before double-centring, so that the double-centred values, Eijk’
can be interpreted as scalar products between i and j for each k.
Alternatively one could consider the observed values as being
already squared, as we have generally done in our examples (Chapter
10 and 11), and as Tucker (1972) did to demonstrate three-mode
scaling. One of the effects of squaring is that the larger numbers
carry even more weight than they already do in the least squares
fitting procedure. A practical and theoretical investigation into
the merits of squaring versus not-squaring has, to our knowledge,
not yet been undertaken.

For anova-data a good recommendation is difficult to give. One
could model as many means additively as one would deem interesting,
and analyse the anova residuals with three-mode principal component
analysis. Alternatively, one could set aside only the grand mean,
considering the remaining scores as deviations from this grand
mean, and analyse them with three-mode analysis, as we did in the

Perceived reality study in Chapter 7. Different ways of analysing
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will highlight different aspects of the data, and it is difficult
to say beforehand which way is the best.

Kruskal (1981, p.7) criticized subtracting the grand mean,
z , from all data points on the grounds that a simultaneous least
séﬁéres estimation of z and the components in a three-mode model
does not yield the same.éélution as first estimating the grand mean
by least squares, and subsequently the three-mode model. On the
basis of this observation he objects to subtracting only the grand
mean. His objection could be met as suggested by De Leeuw (1982,
pers. comm.), by adding an extra phase to the TUCKALS algorithm in
which the grand mean is estimated. Admittedly this was not done in
our example in section 7.5.

For some data, such as scores on bipolar scales, considera-
tions connected with substantive theory may suggest choosing the
scale midpoints as a 'neutral' zero point, e.g. the midpoint of the
scales in semantic differential research (see section 9.4). Devia-
tions of the true means from this neutral point have substantive
interest, as are their relationships with the concepts. In the
adjective set of the Cola study (section 11.2) we also chose this
approach.

An objection against removing means, unrelated to the issues
discussed above, is their sensitivity, and of least squares estima-
tes in general, to outliers. Such outliers may so badly bias the
mean vectors that the transformed data values will be severely
biased as well, and their further analysis might not produce the
intended results (see section 7.2, and Gnanadesikan & Kettenring,
1972, p.107). The solution in such cases is to deal with the out-
liers in an appropriate way by using robust measures of centrality
like medians. As multivariate outliers (see also Chapter 7), are
difficult to detect, spotting them before or after removing means
can be a difficult task.

Examples of the suggested centring procedures can be found in
the applied chapters of this book, while some reasoned centrings
(sometimes combined with standardization) can also be found in the
literature, e.g. Gabrielsson (1979, p.162: j-centring, and i-cen-
tring; full details in Gabrielsson, & Sjogren, 1974, p.9-11), Hohn
(1979, p.167; j-normalization), Gridser (1977, p.83-87; ij-norma-
lization, and j-normalization)).
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Finally, as different centrings lead to different solutions,
it is preferable to determine a priori which centring is appropri-
ate. Although solutions based on different centring procedures can
be inspected to decide a posteriori which scaling is appropriate,
one can easily lose sight of the difference between a priori hypo-
theses and a posteriori conclusions. In the end it will be consi-
derations of research design and subject matter which should decide

the appropriate scaling, but the choice is never an easy or automa-

tic one.

6.6 INPUT STANDARDIZATION: COMPARABLE VARIANCES

In comparison with input centring our discussion of standar-
dization will be rather brief, primarily because less research has
been done in this aspect of -scaling, and because standardization is
more complex, and thus less well understood.

A fundamental difference between centring and standardization
is that combinations of different centrings do not influence each
other, while standardizations do. For instance, double-centring
(jk,ik-centring) is a combination of jk-centring and ik-centring.
They can be done separately and in any order. For standardization
the situation is, however, far more complex: standardization of one
mode will generally destroy that of another mode. Iterative proce-
dures have been devised to arrive at stable standardizations for
two modes, but the final solution depends on the mode one starts
with (see Cattell, 1966a, p.118, and earlier references cited by
him). Harshman has provided iterative standardization procedures in
his three-mode factor analysis program PARAFAC1 (vide, Harshman &
DeSarbo, Note 2, and Kruskal, 1981), but as far as we know techni-
cal details are not yet available in print. It seems that for
three-mode data conditions can be formulated for unique solutions,
but these are not known to us.

The question of iterative standardization bears some resem-
blance to the problem of iterative proportional fitting for con-
tingency tables (e.g. Bishop, Fienberg, & Holland, 1975). After

convergence of the algorithm to perform the proportional fitting
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the properties of the residuals are known, while for iterative
standardization the properties of the double-standardized data are
not.

Further complications arise as standardization over one mode
may destroy the centring over another. This means that when one
wants to have, for instance, a centring over one mode, a normali-
zation of another, and a standardization of a third as Harshman &
DeSarbo [Note 2] do in an example, the centring has to become part
of the iterative procedure. Harshman & DeSarbo report convergence
for the procedure, but it is uncertain what the relationships are
between the results of such a procedure and the raw data, the more
so because in certain circumstances the order in which the various
scalings are performed also seems to have an effect on the solu-
tion.

In view of the very incomplete state of affairs in this res-
pect, it is difficult to recommend other standardizations than
those in accordance with the centring used, and not requiring an
iterative procedure. Considering the definition of the variance, it
seems advisable to perform centring first and standardization next,
when they are used in conjunction.

In pca-data with variables in the j-mode, standardization will
almost always be used together with centring, so as to achieve
normalization. This, cof course, is the standard practice in stan-
dard factor analysis and principal component analysis. With three-
mode data, the question remains whether one wants to j-standardize
or jk-standardize. Kruskal (1981, p.17, 18) favours j-standardiza-
tion, because it does not destroy agreement with the (PARAFAC1)
model, an argument we discussed above.

An argument put forward by some authors (e.g. Lohmdller, 1979,

1981a; Rowe, 1979) in favour of jk-normalization is that it makes

Tik,j'k' 1 igl Zijkzij‘k' (i,j'=m;k,k'=1,...,n)
N =1 lzl é 5 .3 Gl o
iy’ ng oy i Lk ij'k ’ yeees
;02 om
S " 22 HKTiK (k,k'=1,...,n)
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correlations, with Eijk the jk-normalized quantities. It is argued
that this normalization is advantageous because it allows for "the
usual interpretation of the loadings" (Lohméller, 1979, p. 158).
The statement that Ejj’ and fkk’ are correlations is, however, in-

correct, as they are only averages of correlations, e.g.

1o 2
Gy Ta 2, 25 G T Z g0/ g Gage T 20075 5
= i=1
n
.1
Tn 2 Tikik

and averages of correlations are not necessary correlations them-
selves. This is only the case when the S.jk are equal for each j
across all k. With centring these problems do not occur as sums of
covariances are again covariances, and can be interpreted as 'with-
in sums of squares'.

In mds-data, irrespective of the often recommendable jk,ik-
centring, it is at times desirable to standardize matrix-conditio-
nally (k-standardization) for instance, in order to eliminate
response styles. The k-standardization can be done without influen-
cing the results from the jk,ik-centring. The reason for this is
that both centring and standardization are performed in the same
matrix, and centring within a matrix is not influenced if every
value in that matrix is divided by a constant.

Our experience with anova-data is very limited, and it is
difficult to make a well-founded statement about them. What can be
said is that if one takes the anova character seriously, i.e. if
the data form a homogeneous set which is assumed to be a very good
indicator of one single variable, then overall standardization
would be called for, but as mentioned before such standardization
does not influence the outcome of the estimation of the parameters

in the model.

6.7 INTERPRETATION: GENERAL ISSUES

Whereas the previous sections dealt with preprocessing of raw

data, the following sections deal with postprocessing of 'raw' out-
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put and its interpretation. Proper handling of input and inter-
pretation of output are always intimately linked with subject mat-
ter, and as such difficult to treat generally. What is useful,
sensible and clarifying in one case obscures matters in another
case. Nevertheless we will try to remain at a level which is as
general as possible, and primarily discuss the structural aspects
of interpreting the output from three-mode principal component
analysis.

One restriction is built into the discussion from the begin-
ning: the fact that it is based on the output from the implemen-
tation of the TUCKALS2 and TUCKALS3 algorithms by Kroonenberg
(1982a,c). Wherever possible we will make statements with wider
implications than only these implementations.

The matrices of component loadings, G, H, and E, together with
the core matrix C from the Tucker3 (T3) model,

S t u
z.., =2 2 2g.h.

ijk p=1 g=1 r=1 ip qukrcpqr’
form the basic output from a three-mode principal component analy-
sis with three reduced modes, and G, H, and the extended core
matrix € from the Tucker2 (T2) model,

s t .
%ijk =p§1 qil 831" paK’

the basic output from a three-mode analysis with two reduced modes.
Some of the characteristics of this output are the following:
- Principal components are columns of orthonormal matrices (G,H,E)
i.e. they have length 1, and the scalar products of components
within a mode are 0.
Component matrices are eigenvector matrices of the cross pro-
ducts of the data reduced by the components of the other modes,
i.e. of P, Q, and R for the 1st, 2nd, and 3rd mode respectively
(see Theorem 4.1 in section 4.4 for precise definitions).
Components of a mode are arranged in decreasing order of im-
portance, as expressed by the eigenvalues.
Eigenvalues or components weights corresponding to the eigen-
vectors indicate the contribution of the eigenvector or prin-

cipal component to the overall fit, as expressed by the
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2 m n
SS(Fit) =i§1 jil kil 2§jk , where
s t u
zijk =p§1 qzl rilgipﬁjqékrepqr (T3), or
s t -
2k = 2 2Bt (T

are the estimated data values based on the fitted model, and

s x t u

3 AN=3 3 v:= SS(Fit)
p=1 P q=1 9 =1

with A:, p:, and v; the eigenvalues.

Standardized eigenvalues or standardized component weights,
Ap(p=l,...,s), pq(q=1,...,t), Vr(r=1,...,u), are the eigen-
values divided by the total variation in the data expressed by
£ m n )
SS(Total) =2 2 2 z<. .
i=1 j=1 k=1 13K

Core matrices are scaled such that

s t u
Pil qil rzlcgqr = 88(Fit) (T3), or
n s t ” -
o1 pil qil g™ S8(Fit)  (T2);

this scaling is in accordance with the orthonormality of the

components.

In some important aspects these characteristics differ from

those of the common representation of the output from Tucker's
(1966a) methods.

Components in Tucker's methods are derived from cross products

of raw data, i.e. without taking into account the reduction over

the other modes.
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- Components in Tucker's methods have been scaled, ofien Ly otner
authors than Tucker, to the size of the eigenvalues.

- Eigenvalues have often been scaled so that the sum over all
eigenvalues of a mode is equal to the number of eiements in that
mode .

- in lucker’s methods the sum of the eigenvalues of diiterent
modes generally add up to different values, and the core matrix
does not allow an interpretation in terms of sums of squares,

unless all components are included.

A discussion of similarities and differences between tne ALS

approach used here and Tucker's can be found in section 3.6 and
Chapter 4.

6.8 INTERPRETATION: COMPONENTS

Components as latent elements. The most common way of interpret-
ing principal components is as latent variables, or im our case
also as idealized subjects or prototype conditions. In practical
applications these interpretations are often given to all extracted
principal components, implying mostly that they represent theore-
tical constructs in some substantive context. Bargmann (1969),
however, rejects the notion that a case can be made in favour of
such an interpretation for anything but the first component, be-
cause the other components only define directions in the variable
space orthogonally to the first one, and this is not necessarily
the same as a theoretical construct from some substantive theory.

There are two ways around this - to our opinion correct - state-
ment. One way is to define latent variables, idealized subjects,
and prototype conditions, etc. to be the principal components, and
to consider the labels attached to these components as convenient
summaries of the elements with high loadings on the components
without assuming that they necessarily correspond to theoretical
constructs. The other way is to assert that the extracted compo-
nents together define what might be called the 'latent space’,

which contains the only relevant systematic variation. Then the
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theoretical comnstructs which are held responsible for the loadings
of the elements on the components, span the latent space. The
spatial arrangement of the elements in the latent space is then the
representation of the theoretical constructs. Whether one then uses
the components or any other set of vectors to interpret the rela-
tionships between the variables is immaterial as long as the spa-

tial arrangement is adequately described.

Scaling to the sizes of component weights. As mentioned in
section 6.7, in our basic representation of the model the compo-
nents are scaled to unit length. Adjusting the components in such a
way that their lengths are proportionate to their (standardized)
weights has certain advantages for plotting the components against
one another. Especially when the weights associated with the compo-
nents are very different, directly plotting them without adjustment

might give a wrong impression of their relative importance.

Scaling according to Bartussek. Bartussek (1973) suggested
scaling the orthonormal components of a three-mode principal compo-
nent analysis analoguously to the procedure often encountered in
standard principal component analysis. Primarily this means analy-
sing the average cross-product matrices rather than the unaveraged
ones, and multiplying the component loadings by the square root of
the eigenvalues, as suggested for making plots in the previous
paragraph. There it was purely a matter of convenience for plot-
ting, here it is an integrated part of the representation of the
model. In order to keep the model essentially the same, the core
matrix has to be adjusted with the inverse transformations of those
components. The effects of this on the interpretation of the core
matrix will be discussed in the next session. In Table 6.3 we have
summarized the proposal of Bartussek (1973).

Rotation of components. In standard principal component analysis
it is customary to rotate the solution of the variables to some
kind of 'simple structure', most often using Kaiser's (1958) vari-
max procedure. This and other rotational procedures have been
extensively applied in three-mode principal component analysis. We

will touch upon the rotation issue only very lightly as we have
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Table 6.3 Scaling of output according to Bartussek

Tucker Bartussek
x * %
component AB Ap = Ap/mn
weights X % = X
us = n
or Yq a =¥/
eigenvalues VX v¥ = v /om
r r r
* *
S = g. =g. /(XX
&ip g glp/kp 8ip (Ap/mn)
* *
components h. h. = h. Yu_ = h. Y(uX/&
P ja jq = Pyq'tg T By g/t
* * _ %
Cxr Cxr eerQr ekr%(vr/ﬁm)
. *
core matrix c c =

. * ¥ Ok
c IO u v = smxe [/ AXpXvX
par par = Spar’” Pplgr) par’ " "pqr

Note: gp, hq, and e, are orthonormal components;

A;, uz, and v; are unstandardized eigenvalues

little to add to the standard practice of rotating separate compo-
nent matrices.

Various authors have advocated particular rotations of component
matrices for specific types of data. Lohmdéller, for instance,
(1981a) recommends rotation of time-mode component matrices to a
matrix of orthogonal polynomials as a target, a proposal also put
forward by Van de Geer (1974) - see section 13.3. Subject compo-
nents are often rotated in such a way that the axes pass through
centroids of clusters of individuals. Tucker (1972, p.10-12) advo-
cated that the "first priority for these transformations should be
given to establishing meaningful dimensions for the object space
[of variables]".

The emphasis in the literature on first rotating the component
matrices is a consequence of the familiarity with such procedures
in standard principal component analysis. In three-mode analysis
the core matrix is most difficult to interpret. This suggests

concentrating on simplicity of the core matrix rather than on that
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of the component matrices. By simplicity is here meant a large
number of zeroes or very small values in the core matrix, pre-
ferably in the off-diagonal elements. Transformations of core
matrices to a simple structure were discussed in detail in Chapter
5.

6.9 INTERPRETATION: CORE MATRICES

In this section we will discuss several ways in which the ele-
ments of the core matrices of the Tucker3 (T3) and Tucker2 (T2)
models can be intepreted. There seem to be at least five, not
unrelated ways to do this: (1) percentages of explained variation,
(2) three-mode interaction measures, (3) scores of idealized or
latent elements, (4) direction cosines, and (5) latent covaria-
tions. The last interpretation is far from completely developed and

its discussion is deferred until section 13.3.

Explained variation. The core matrix indicates how the com-
ponents of the three modes relate to one another. For instance, the
element 111 of the T3 core matrix (Table 6.4) indicates the
strength of the relationship between the first components of the

Table 6.4 Notation for T3 core matrices

third mode components

1 2 3
second mode !
components 1 2 1 2 1 2
first 1 |e c c c c c
mode c1]] c]21 112 7122 113 7123
compo- 211 ©221 €212 ©222 €213 %223
nents 3 jC3;y C3yy 312 322 | |®313 323

Note: each rectangle is a frontal plane of the core matrix

three modes, and c the strength of the relationship between the

221
second components of the first and the second mode in combination
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with the first of the third mode. The interpretation of the ele-
ments of the core matrix is facilitated if one realizes that
s t u 5 s t n s .

pil qzl ril cpqr = SS(Fit) (T3), andpil qil kzl cqu = SS(Fit) (T2)
In other words, each of the ngr indicates how much the combination
of the p-th component of the first mode, the q-th component of the
second mode, and the r-th component of the third mode contributes
to the overall fit of the model, or how the total variation -SS(To-
tal)- is accounted for by this particular combination of components.
An analoguous interpretation holds for the T2 core matrix, but now
a quk expresses how much of the total variation is explained by
the combination of the p-th and q-th components for the k-th sub-
ject or condition. Sometimes it is useful to express Esqk as pro-
portion % % quk’ in order to indicate the importance of that
particular combination for the k-th condition or subject.

In addition it can be shown that

S t
2 = =

Pil qilcpqr/SS(Total) = v, (r=1,...,u)
t u )

2 2Xc SS(Total) = A =1,...,s
2 LSSt = A @ )

uos

5 03 SS(Total) = =1,...,t
r=1 p=1cpqr/ (focal) = Hq (o )

with Ap’ “q’ and v, the standardized component weights for the
first, second, and third mode respectively. Similar expressions can

be derived for the T2 core matrix. Furthermore

S t u S
S X xe2 /S8(Total) = 3
P= 1 q= 1 r=1 P P=

t u
A=32 =2 v
P H

q=1 Q=) T

1
= SS(Fit)/SS(Tot) = Rel.SS(Fit)

In this way the core matrix represents a partitioning of the
overall fitted sum of squares - SS(Fit) - into small units through
which the (possibly) complex relationships between the components

can be analysed. In singular value decomposition (see section 2.2)
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the squares of the singular values (=eigenvalues of standard prin-
cipal component analysis) partition the fitted variation into parts
which can be attributed to each component. The core matrix does the
same for the combination of three components, and in this sense
three-mode principal component analysis is for three-mode data the
direct analogue of what singular value decomposition is for two-

mode data.

Three-mode interactions. In singular value decomposition of
two-mode matrices, say, Z = GAH', the p eigenvectors in G and H are

pairwise identical, as can be seen from the sum notation

The matrix A contains the measures of the interactions between the
components of the i-mode G, and those of the j-mode H. For two-mode
data App,=0 if p#p'; so there is no interaction between the vectors
gp and hp,, but only between gp and hp’ which thus have an exclusi-
ve interaction with one another. In the two-mode case it is, there-
fore, legitimate and customary to think of just one set of compo-
nents for which we have loadings for the j-mode elements H, and
scores for the i-mode elements, GA (see also section 2.2, Figure
2.1). The strength of the interaction is usually expressed as A;p’
or amount of variation accounted for, as discussed above.

The interaction structure between the components of three
modes can be, and usually is far more complex. The parallel struc-
ture to the two-mode situation would be a body-diagonal (sXsXs)
core matrix, so that gp, hq’ and e would only have a non-zero
interaction if p=q=r. This is in fact the situation postulated for
the PARAFAC1/CANDECOMP model

s

Z,.. =2
ijk p=1

c . h. e

ppp®ip ip kp’

A core matrix with only non-zero body-diagonal elements has the
most 'simple' structure a core matrix can have, and the interpre-
tation can be relatively straightforward - from a technical point

of view.
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In a sXsXu core matrix a still relatively 'simple structure’
is cpqr # 0 if p=q, r=1,...,u, and zero elsewhere. In this case all
frontal planes, Cr’ of the core matrix are diagonai (for an example
see section 10.5, Table 10.2). When u=n, we have a T2 diagonal
extended core matrix with diagonal frontal planes, Ck (for an
example see section 2.8, Table 2.7).

A similar simple structure is sometimes found for r=2:

cqu # 0 for p=q, r=1; Cpqr # 0 for g=s-p+l, r=2;

and zero elsewhere.
Here the first frontal plane is diagonal, and the second is 'anti-
diagonal', i.e. the diagonal running from the bottom lefthand
corner to the upper righthand corner is non-zero. For an example of
such a core matrix see section 15.8, Table 15.5.

The structure in a three-mode core matrix is often not simple,
and thus interpretational complexities arise, as a component will
have interactions with more than one component of another mode. One
of the complications is due to the interpretation of the sign of a
core element and the fact that the interactions refer to continuous
rather than discrete entities, unlike interactions between levels
of factors in analysis of variance, and categories in contingency
tables. .

Suppose that cpqr has a positive sign, so that the interaction
of the p-th, q-th, and r-th component of the first, second, and
third modes respectively is positive. This positive interaction
indicates that four different combinations of elements of the three
modes tend to occur together in the data:

(+,4,4)5 (4,-,-,)5 (=,+,-)5 (-,-,1),
in which a plus (minus) on the p-th, q-th, and r-th place in (p,q,r)
refers to positive (negative) loadings on the p-th component of the
first mode, q-th component of the second mode, and the r-th compo-
nent of the third mode, respectively. A parallel formulation can be
that "positive loadings on p occur together with loadings of the
same sign of q and r: (+,+,+) and (+,-,-) negative loadings om p
occur with loadings of opposite signs on q and r: (-,+,-) and
(-,-,%). A negative sign of cpqr corresponds with the joint occur-
rence of the combinations (+,-,+), (+,+,-), (-,+,+), and (-,-,-).

The mental juggling with combinations of positive and negative
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loadings of different components is what makes the interpretation
very difficult in many cases. In some data sets certain components
have only positive loadings which simplifies the interpretation, as
the number of combinations reduces with a factor two. Sometimes
certain core elements are so small that they need not be interpret-
ed, which also simplifies interpretation. In section 8.4 we have
given a detailed analysis of a complex core matrix as an example of
how to deal with the problem of interpreting the combinations of
negative and positive loadings on different components.

A good strategy to simplify the interpretation is to make
'‘conditional' statements by only making statements about elements
which have, for instance, positive loadings on a component. The
core matrix then represents only the interaction between the load-
ings of the two other modes, 'given' the positive loading on the
third. The joint plots and component scores discussed in section
6.10 are examples of such an approach. In practice we have observed
that it is most useful to use the third mode (subjects, conditions)
for 'conditioning'. To carry the argument a bit further, one might
say that the T2 extended core matrix is also an example of condi-
tioning as no components of the third mode exist, and one can deal
with the interactions between the components of the first two modes

one frontal plane (= one element of the third mode) at a time.

Scores of idealized elements. This interpretation was the
basis for the second explanation of the three-mode principal com-
ponent model in section 2.2, and is the one usually employed in the
literature. Each element of the core matrix is assumed to represent
the score of an ‘'idealized subject' on a latent variable in a
prototype condition. The main difference with the interpretation in
the previous subsection is that there the interpretation was based
on interactions between loadings on components, while here we
construct interpretations in terms of the components themselves.

It depends on the applications which way will be easier to
handle. When one rejects the idea of labelling components the
latter method is in fact not applicable. In examples with very few
variables and conditions the labelling of components is in any case

a rather risky business, and the former approach seems more help-
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ful. In other applications, especially when the labelling of the
components is firmly established, the latter approach might be
easier to use.

Part of the purpose of Bartussek's (1973) proposal to scale
the components (see section 6.8) was to allow an interpretation of
the core matrix as scores of idealized quantities, as in the para-
graph above, but with the specific characteristic that the absolute
size of the elements in the core matrix is independent of the
amount of variation accounted for by the components. In this way an
element of the core matrix cgqr (see Table 6.3), reflects a score
of a real subject who has a loading of one on the p-th subject
component and zero on the others for that real variable which loads
one on the g-th component and zero elsewhere, in the condition
which loads one on the r-th component and zero elsewhere. In this
way the elements of the core matrix reflect a very 'pure’' subject,
variable and condition (see Bartussek, 1973, p.179).

Notwithstanding the correctness of Bartussek's interpretation
of his scaled core elements, it is doubtful whether his scaling
procedure is really necessary. His argument centres around the
independence of the core elements from the amount or variation
accounted for by the respective components to which they refer. It
is, however, exactly this dependence on the variation accounted for
which makes it possible to assess the relative importance of these
core elements. It is, by the way, a misnomer to call the adjusted
core elements, ngr 'factor scores' of idealized subjects, varia-
bles, etc., as Bartussek does. Just 'scores' is more appropriate,
as the core elements are the scores of the idealized subjects on
latent variables in prototype conditions, so that the word 'factor’
or 'component' confuses the issue - the more so because in three-
mode analysis already a definition of 'component scores' exists
(see section 6.10).

Two more points should be mentioned with respect to Bartus-
sek's (1973) proposals. The 'real person'-'real variable'-'real
condition' combination with a loading one for just one of the
components of each mode might easily be a non-existent or impos-
sible combination in a particular data set, i.e. such a point might

lie far away from all other points in any ome or all of the compo-
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nent spaces. Cliff (1968) and Ross (1966) raised objections against
the use of such idealized quantities as was proposed by Tucker &
Messick (1963), see also Tucker (1972, p.26).

The second point is that the scaling can lead to some absurdly
large values for those core elements associated with very small

eigenvalues (see Table 6.3).

Direction cosines. In those cases where two modes are equal or
the components define the same space, an additional interpretation
of the core matrix is possible. Within the context of multidimen-
sional scaling of individual differences, for instance, the input
similarity matrices satisfy these conditions, and.within this field
an interpretation has been developed in terms of correlations and
direction cosines of the axes of the spaces common to two (general-
ly the first and second) modes (see section 3.2, Tucker, 1971, p.7,
and Carroll & Wish, 1974, p.91).

In these situations it makes sense to speak about the angle
between the first and second component of the common space. This
angle can be derived from the off-diagonal elements of the core

planes, as they can be looked upon as a direction cosine or corre-

lation between component p and component q, provided quk is scaled
1

e s . ~% ~% _

by dividing it by cppk and ¢ qqk’ and the components are standar

dized. The direction cosine indicates the angle under which the
k-th condition 'sees' the axes or components of the common space
(for an example see section 2.8).

This approach towards the core matrices follows Tucker's
three-mode scaling (1972) and Harshman's PARAFAC2 (1972) as pointed
out, for instance, in Carroll & Wish (1974) and Dunn & Harshman
(1982). The joint plots, to be discussed in the next section, are
more in line with Carroll & Chang's approach to treating the core
matrix (see references above), in which the (extended) core matrix
is decomposed by either eigenvalue-eigenvector or singular value

decompositions.
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6.10 INTERPRETATION: JOINT PLOTS AND COMPONENT SCORES

Various kinds of auxiliary information can be useful for the
interpretation of results from a three-mode principal component
analysis. In this section we will discuss the what we will call
joint plots, which display the elements of different modes in the
same figure, and component scores, which are the scores of, for
instance, each subject-condition combination on the components of

the variables.

Joint plots. After the components have been computed, the
core matrix will provide the information about the relationships
between these components as discussed in the previous section. It
is very instructive to investigate the component loadings of the
subjects jointly with the component loadings of, for instance, the
variables, by projecting them together in one space, as it then
becomes possible to display the interaction between variables and
subjects. The plot of the common space will be called a joint plot.

Such a joint plot of every pair of component matrices, say G
and H, for each component of the third mode, say E, in the Tucker3
case, and for the average core plane in the Tucker2 case, is con-
structed in such a way that gp (p=1,...,s) and hq (g=1,...,t) -i.e.
the columns of G and H respectively - are close to each other.
Closeness is measured as the sum of all sXt squared distances
dz(gp,hq) over all p and q.

The plots are constructed as follows. For each component r of
E, the components G and H are scaled by dividing the core plane
associated with that component, Cr’ between them (using singular
value decomposition), and weighting the scaled G and H by the
relative number of elements in the modes to make the distances

comparable:
A Y o~
r

RONCASIEEE ]

[t

1
= 6CH' = N =3
Dr = GCrH = G(urArvr)H —(m) (GUIA
with
170 1 % b
e 2 . -
G —(m) GU AZ and Hr =(3) HVAZ r=1,...,u
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For the ratiomale Dbehind this construction, and a more detailed
discussion, see Kroonenberg & De Leeuw (1977). When Cr is not
square only the first a = min(s,t) components can be used. The pro-
cedure can be interpreted as rotating the component matrices by an
orthonormal matrix, followed by a stretching (or shrinking) of the
rotated components. Similar procedures for plotting two sets of
vectors into one figure have been developed by Schiffman & Falken-
berg (1968; see also Schiffman et al., 1981, Ch. 14), Gabriel
(1971; biplot), Carroll (1972; MDPREF), Benzécri (1973; corres-
pondence analysis; see also Gifi, 1981, Ch. 4).

In practice joint plots have proved a powerful tool for dis-
entangling complex relationships between components, and nearly
every example in this book uses joint plots in one way or another.
If we designate the first mode element as subjects and the second
mode elements as variables, then we may say that both the subjects
and variables in a joint plot are vectors from the origin. Their
distances, dij’ are the scalar product between the vectors, i.e.

as. = ; E. h. , with a = min(s,t).

1] p=1 ip Jp
By projecting, for instance, subjects on a particular variable the
relative importance of that variable for the subjects can be asses-
sed from the size and the sign of the resultants. One of the advan-
tages of the joint plot is that the interpretation of the relation-
ships of the variables and the subjects can be made directly with-
out involving components or their labels, given the r-th component
for conditions. Another feature of the joint plots is that via the
core plane Cr the axes of the joint plot are scaled according to
their relative importance, so that visually one obtains a correct

impression of the spread of the components.

Component scores. In some applications it is useful to imspect
the scores of all combinations of the elements of two modes on the
components of the third mode. For instance, for longitudinal data
the scores of each subject-time combination (or ik-combination) on
the variable (j) components can be used to inspect the development
of an individual's score on the latent variable over time. In some

examples, these component scores in fact turn out to be a very suc-



166 6.10

cesful summary of the relationships involved (see Chapters 2 and
8). They serve as an intermediate level of condensation between the
raw data, and the three-mode model.

The component scores on the r-th component of the third mode
have the form

s t
d.. =2 2 g.

i rD,_=GCH ,
It p=1 ¢=1

ip"jq°par °* r
but by using other combinations of component matrices, three diffe-
rent sets of scores can be calculated. In general, only a few of
these will be useful in a particular application.

One of the interesting aspects of the component scores di'r is
that they are at the same time the inner products
a ~ ~
2 g? ht ,

p=1 1P P

thus expressing the closeness of the elements from different modes
in a joint plot.

Sometimes it is not useful to display the component scores for
different components in one plot, but it is clearer to plot the
component scores of, for instance, the subjects for each of the
conditions (see section 2.10, Fig. 2.7; and section 8.5, Fig. 8.4).
Such plots are sometimes easier to use, explain, or present than
joint plots in which one has to inspect projections on vectors.

In case of a good approximation of the model to the data the
component scores as described above will resemble the component
scores from a standard principal component analysis on a data
matrix in which the columns are variables, and the rows the sub-
ject-condition combinations. Other writers too, have suggested

using such component scores (e.g. Hohn, 1979).

Mixed-mode matrices. A somewhat different, to our mind incor-
rect, approach towards inspecting measures of elements of one mode
on the component of another was taken by Wainer, Gruvaeus, & Zill
(1973). They defined what they called mixed-mode matrices. If we
designate M(e,f) as the mixed-mode matrix of 'loadings' (as Wainer
et al, called them) of the elements of the e-th mode on the compo-
nents of the f-th mode, and choose e=1, and f=2 for illustration

sake, then M(1,2) = {m}é}, or {miq} for short, is defined as
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n m S u n m
"iq :kzl jzl pzl rilgiphjqekrcpqr =k§1 jzlhjqdiqk ’
S n
with diqk =le rilgipekrcpqr

The diqk are the component scores of the subject-condition combi-
nations on the variable components, defined in the previous para-
graph. We may rewrite the m, further as

m ;0
m, =nZh, {ﬁ zd; k} =
a5yt Dt

The righthand side is the product of the component score of subject
i averaged over conditions, and multiplied by the average loading
on variable component q. Thus the miq are weighted average compo-
nent scores. One of the problems with mixed-mode matrices is the
average component loading h . For centred data entire mixed-mode
matrices may become zero, beéause all h.q’ and/or analoguous compo-
nent averages can be zero. In view of this, it seems better if one
wants to have something like mixed-mode matrices to use the average

component score directly.






	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

