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" ... statisticians have no fields of their 

own from which to ha'rvest their data. 

Statisticians get all their data from 

other fields, and from all other fields, 

wherever data are gathered 

Ours is a symbiotic way of life, a mar­

ginal and hyphenated existence. We re­

semble the professional harvesters of 

wheat and grains on [the] Great Plains, 

who own no field of their own, but har­

vest field after field, in state after 

state, and lead a useful, rewarding, and 

interesting life - as we do." 

Leslie Kish, JASA, 1978, 73, 1 





PREFACE 

The purpose of this book is three-fold. In the first place it 

is a monograph on three-mode principal component analysis. An at­

tempt has been made to discuss virtually all issues in connection 

with the technique, and to collect and evaluate the literature on 

the subject which has appeared since its introduction in the six­

ties by Ledyard R. Tucker at the University of Illinois. 

Secondly, this book introduces improved estimation procedures 

of the parameter in three-mode principal component models, and 

treats a number of consequences of these new procedures. Further­

more, some theoretical contributions with respect to transforma­

tions of core matrices are presented. 

Thirdly, this book aims to provide a guide for social scien­

tists and others who wish to apply three-mode analysis to their 

data. General issues with regard to what goes in and what comes out 

of a three-mode analysis are discussed, while some thirteen data 

sets from varying backgrounds and composition are analysed. This 

book also bring together almost the entire applied literature as 

part of the references, thus allowing researchers to compare their 

results with others from their own field of interest. A classifi­

cation of these applied papers has been included in the Appendix. 

Many people assited in the preparation of this book. The core 

of this book and many technical details were conceived by Jan de 

Leeuw. Leo van der Kamp, Wim van der Kloot, and Charles Lewis read 

various part of the book, suggested improvements, corrected errors, 

and helped clarify many ideas expressed here. Frits Goossens, Ineke 

Stoop, Jan Swaan, Albert Verbeek, Ron Visser, and Rien van IJzen­

doorn assisted with parts of the text. Jeanet Bus, Peter van der 

Heijden, Wim van der Kloot, Cor Lammers, Jan de Leeuw, and Tom van 

der Voort provided or suggested data sets for inclusion. Ineke Smit 

polished the English as far as was possible without specific know­

ledge of the subject matter; Siep Kroonenberg made the cover draw-



ing; Cora Jongsma expertly typed the text, and patiently included 

the many formulas and revisions; Piet Brouwer joined in the drudge­

ry of checking the manuscript; Lutgart Balfoort assisted in getting 

this book into print. 

Leiden, January 1983 
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2 I. 1 

1.1 INTRODUCTION 

Investigating the relationships between variables is a favou­

rite research activity of social scientists. They often want to 

explore the structure of a large body of data. To understand this 

organization the data have to be condensed in one way or another, 

and the raw data have to be combined to form summary measures which 

are more easily comprehended. 

Among the most popular methods to achieve such condensation 

and summarization are principal component analysis and multidimen­

sional scaling. Different variants exist in both cases, and their 

appropriateness varies with the research design. 'Standard'princi­

pal component analysis is applied when observations are available 

for a humber of variables, and it is desired to condense these 

variables to a smaller amount of independent 'latent' variables or 

components. Similarly, 'standard' multidimensional scaling is 

applied when similarity measures are available for a number of 

variables, in this context usually called stimuli, and insight is 

desired into their structural organisation. 

In many research designs, observations on variables have been 

made under a number of conditions, or at various points in time, or 

similarity measures have been produced by a number of persons, etc. 

In such cases, where the data can be classified by three kinds of 

quantities, or modes, e.g. subjects, variables, and conditions, the 

standard variants no longer suffice. 

The extra mode in the design requires an extension of those 

standard techniques. It is, of course, possible to mould the data 

into the standard two-mode (or two-way) format by rearranging them 
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into two-mode matrices, but this entails losing a part of the 

information which could be very important for the understanding of 

the organization of the data as a whole. 

Since the introduction of three-mode principal component 

analysis by Tucker in 1964, and of individual differences scaling 

by Bloxom (1968b), Carroll & Chang (1970), and Horan (1969), consi­

derable progress has been made in finding ways to confront the 

summarization and condensation of three-mode data. This has mainly 

been done by adapting the standard techniques to make them fit the 

problems created by the extra mode. That this introduces many 

complications will become clear in the sequel. 

1 .2 SOME EXAMPLES 

To get a general idea of the kind of research problems three­

mode principal component analysis can handle, we first give some 

examples of typical applications. 

Semantic differential data. A classical example of three-way 

classified data can be found in the work of Osgood and associates 

(e.g. Osgood, Suci & Tannenbaum, 1957). In the development and 

application of semantic differential scaling, subjects have to 

judge various concepts using bi-polar scales of adjectives. Such 

data used to be analysed averaged over subjects, but the advent of 

three-mode principal component analysis and similar techniques has 

made it possible to analyse the subject mode as well in order to 

detect individual differences with regard to the semantic organi­

zation of the relations between scales and concepts. An example of 

such a study can be found in Snyder & Wiggins (1970). In Chapter 9 

we present an example of this type of data. 

Similaritg data. Three-way similarity data consisting of 

stimuli x stimuli x subjects are generally analysed with individual 

differences scaling programs, such as INDSCAL (Carroll & Chang, 

1970) and ALSCAL (Takane,.Young, & De Leeuw, 1977). However, when 

the data are asymmetric and/or a more general model is required, 
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three-mode principal component analysis can provide useful insight. 

See Chapter 3 for details on individual differences scaling and its 

relation with three-mode component analysis, and Chapter 11 for an 

empirical comparison of the techniques on the same data. 

Asymmetric similaritg data. Van der Kloot & Van den Boogaard 

(1978) collected data from 60 subjects who rated 31 stimulus per­

sons on 11 personality trait scales. In the original report the 

data, which can be considered asymmetric similarity data, were 

first averaged over subjects, and subsequently analysed by canoni~ 

cal discriminant analysis using the stimulus persons as groups. Van 

der Kloot & Kroonenberg (1982) used three-mode principal component 

analysis on the original data to assess the individual differences 

and the extent to which the subjects shared the common stimulus and 

scale configurations. A summary of the results can be found in 

Chapter 10. The example in Chapter 2 on similarities between Dutch 

political parties also falls into this class of applications. 

Multivariate longitudinal data. In the social sciences, 

multivariate longitudinal data pose problems for many standard 

techniques. (See Visser (1982) for a detailed review of techniques 

useful for such data in psychology). There are often too few obser­

vations and/or too many points in time for the 'structural approach' 

to the analysis of covariance matrices (Joreskog & Sorbom, 1977), 

or too few points in time and/or too many variables for multiva­

riate analysis of time series by some kind of ARIMA model (see e.g. 

Glass, Wilson & Gottman, 1975, or Cook & Campbell, 1979, Ch. 6). In 

such situations three-mode principal component analysis can be very 

useful, especially for exploratory purposes. 

Lammers (1974) presented an example of longitudinal data with 

a relatively large number of variables (22), and only a limited 

number of points in time (11 years). The aim of the study was to 

determine whether some of the 188 hospitals measured showed differ­

ent growth patterns or growth rates compared to the other hospi­

tals. A re-analysis of these data is presented in Chapter 13. 

In Chapter 14 we present a three-mode analysis of typical 

learning data collected by Bus (1982). In this case there were only 
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six observational units (children), who had scores on five tests, 

but measures were available for 37 more or less consecutive weeks. 

Three-way contingency tables. One of the ways to study inter­

actions in large two-way contingency tables is by correspondence 

analysis. In its most common form, this technique is an analysis of 

the dependencies of the column and row categories of a contingency 

table by means of a so-called 'singular value decomposition' (see 

section 2.2) of the standardized residuals. A similar procedure can 

be defined for three-way tables using three-mode principal compo­

nent analysis instead of the singular value decomposition. This 

approach is outlined and illustrated in Chapter 15 with data from 

three different elections for the election wards or precincts of 

Leiden. 

1.3 ORGANIZATION OF THIS BOOK 

The aim of this book is to treat three-mode principal compo­

nent analysis with all its possibilities and limitations. We will 

pay attention to both theoretical and practical aspects of the 

technique, and therefore the level of the exposition will vary in 

mathematical sophistication. The theory is mainly dealt with in 

Chapters 3, 4, and 5, and the applications in Chapters 8 through 

15. Chapter 2 provides a quick run-through of the entire book, and 

Chapters 6 and 7 are intermediary in the sense that they treat the 

theory necessary for a detailed understanding of the technical 

aspects of the applications and their interpretation. 

The reader only interested in the technical aspects of three­

mode principal component analysis, (or three-mode analysis for 

short), and its relation to other models and methods of analysis, 

should follow PATH I in Fig. 1.1, reading only Chapters 1 (preli­

minaries), 2 (survey), 3 (models), 4 (methods and algorithms), and 

5 (transformations of core matrices). In Chapter 6 (scaling and 

interpretation) and 7 (residuals) some further technical informa­

tion on matters that precede and follow a three-mode analysis can 

be found. 
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4 
methods 

algorithms 

5 
transformations 

of . car. matrices 

1 
preliminaries 

6 
scaling 

interpretation 

7 
residuals 

Fig. 1.1 Organization of this book 

8-15 
applications 

1.3 

A reader only interested in the scope of the methods, and 

whose interest does not go beyond a basic notion of what three-mode 

analysis is about, should follow PATH III and read Chapters 1, 2, 

and the applications. However, in order to take full advantage of 

three-mode principal component analysis in practical situations it 

is best to read Chapters 6 and 7 as well, i.e. following PATH II, 

as in Chapter 6 the scaling of the input is discussed, as well as 

some interpretational aspects of the output which are helpful in 

understanding the peculiarities of the data at hand, and in Chapter 

7 methods are described to assess the quality of the solutions 

obtained. 

In order to facilitate the reading of single chapters, a 

three-mode glossary of the major terms used in this book has been 

included as next section. 
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For people looking for specific applications within their 

field of interest a large number of pertinent papers have been 

included in the references. To improve the usefulness of their 

inclusion these papers have been classified according to subject 

matter and data type. A list of papers referring to computer pro­

grams has been included as well. 

1.4 THREE-MODE GLOSSARY 

Basic terms 

combination-mode (ij) 

combination-mode matrix 

core matrix 

element (of a mode) 

extended core matrix 

frontal plane 

Cartesian product of two (elementa­

ry) modes i and j; "i outer loop, j 

inner loop"; see Tucker (1966a, p. 

281) 

two-mode matrix with one (elementary) 

mode (usually columns) and one combi­

nation-mode (usually rows). 

three-mode matrix, which contains the 

relations between the components of 

the various modes; its size is usual­

ly sXtXu, where s, t, and u are the 

number of components for the first, 

second, and third mode respectively. 

generic term for a variable (subject, 

condition, etc.) in a mode. 

three-mode core matrix, of which one 

of the dimensions is equal to the num­

ber of elements in that mode; its size 

is usually sXtXn, where n is the num­

ber of elements in the third mode. 

sXt-slice of an (extended) core ma­

trix, or .Q.xm-slice of a three-mode 

data matrix. 
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mode (or elementary 

mode); way 

reduced mode 

three-mode matrix 

(-array) 

Methods 

Covariance structure 

approach 

Alternating Least 

Squares (ALS) 

Partial Least Squares 

(PLS) 

1.4 

collection of indices by which the 

data can be classified; way and mode 

are here used as synonyms; for a dif­

ferent usage of the word t mode t in 

the same context see Carroll & Arabie 

(1980). 

mode of which principal components 

have been computed. 

collection of numbers which can be 

classified in three (different) ways. 

i.e. using three indices; the numbers 

can thus be arranged in a three-dimen­

sional block. 

In this method the subject mode is 

treated as a random variable, and the 

analysis is performed on the combina­

tion-mode covariance matrix of the 

other two modes. Solutions can be ob­

tained by maximum likelihood estima­

tion, or generalized least squares 

procedures. An a priori structure for 

the component matrix and the core ma­

trix can be specified. 

An iterative method to solve large 

and complex models by breaking up the 

total number of parameters in a num­

ber of groups, each of which can be 

estimated conditional on the fixed 

values of the parameters in the other 

groups. 

See Alternating Least Squares 



1.4 

Tucker's (1966a) Method I 

9 

Standard principal component analysis 

on each of the three combination-mode 

matrices, and subsequent combination 

of the three solutions to form the 

core matrix. 

Tucker's (1966a) Method II - Standard principal component analysis 

on two combination-mode matrices, 

combined with a clever juggling to 

compute 

and the 

an approximate core matrix 

third principal component 

matrix without resorting to solving 

the eigenvalue - eigenvector problem 

for the largest mode. Appropriate for 

data sets with one very large mode, 

usually individuals. 

Tucker's (1966a) Method 111- Method to analyse multitrait-multi­

methodlike covariance and correlation 

matrices. Forerunner of the covarian­

ce structure approach. 

Models 

CANDECOMP 

IDIOSCAL 

Carroll & Chang (1970). T3 with a 

three-way identity matrix as core ma­

trix, or equivalent to INDSCAL with 

different reduced modes. 

Carroll & Chang (1972). As T2, but 

the two reduced modes are equal, and 

thus the extended core matrix is sym­

metric in its frontal planes. Allows 

for both idiosyncratic rotations of 

axes in the common stimulus space, 

and individually different weighting 

of these axes. Component matrices are 

not necessarily orthogonal. 
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INDSCAL 

PARAFAC 

Three-mode Scaling 

Tucker2 model (T2) 

Tucker3 model (T3) 

Tucker's couunon factor 

model 

1.4 

Carroll & Chang (1970). As IDIOSCAL, 

but with the additional restriction, 

that the frontal planes are diagonal, 

i. e. no idiosyncratic rotations are 

allowed. The model can also be inter­

preted as having three reduced modes 

of equal numbers of components, and a 

three-mode identity core matrix. 

Harshman (1970, 1972a,b, 1976). Pa­

rallel profiles factor analysis. PA­

RAFACI is equal to CANDECOMP. PARA­

FAC2 is similar to IDIOSCAL, but it 

specifies a couunon weighting of the 

axes of the stimulus space. However, 

idiosyncratic rotations of these axes 

are allowed. 

Tucker (1972a). As the Tucker3 model, 

but two of three reduced modes are 

equal. Core matrix has syuunetric 

frontal planes. 

Israelsson (1969). Model specifies 

two unequal reduced modes with an un­

restricted extended core matrix. 

Tucker (1966a). Three unequal reduced 

modes with an unrestricted core ma­

trix. 

Tucker (1966a). As T3, but unique va­

riances are specified for the combina­

tion-mode covariance matrix. 

Terms with special definitions 

component 

component weight 

vector of loadings (e.g. g , h , e ) 
p q r 

eigenvalue, indicating the amount of 

variation explained by the component 

corresponding to the eigenvalue. 
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i-mode 

j-mode 

k-mode 

SS(Fit) 

SS(Res) 

SS(Tot) 

standardized component 

weight 

standardized sum of 

squares CSt.SS) 

variation 

1.5 NOTATION 

Matrices 

c 

c;liag (X) 

II 

first mode 

second mode 

third mode 

sum of squares of the estimated data 

values, derived from the fitted mo­

del 

residual sum of squares 

total sum of squares of the data 

component weight divided by the total 

sum of squares of the data 

sum of squares divided by the total 

sum of squares of the data. 

general term to indicate the sum of 

squares, generally of data values; 

depending on their scaling variations 

may be sums of squares, average sums 

of squares, or variances. 

set of real matrices with a rows and b 

col umns 

a b 
I(L LX •. ) 

i=1 j=1 ~J 
Euclidean norm 

a 
L x .. 

i=1 ~~ 
trace of X 

c = x .. Ykn ; m=I, ••• ,ac; n=I, •.. ,bd 
mn ~J Yv 

Kronecker product 

d .. 
~J 

X •• if i=j, and 0 otherwise 
~J 
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Data 

Z = {z. 'k} 
~] 

z {z 0 ok} 
~] 

Model 

first 
mode 

i 

s 

p 

G 

gp' gp 

A p 

C {c pqr 
} 

C {c } 
pqr 

'U {~ } C 
'U 

pqr 
C {i: } 

pqr 

second third 

1.5 

three-mode data matrix; i=l,ooo,£ (rows), 
j=I, •.. ,m (columns), k=l, ... ,n (frontal 
planes) 

three-mode matrix with data values esti­
mated from the fitted model 

mode mode 

m 

j 

t 

q 

h q' 

I1q 

{h 0 } E 
Jq 

{h. } E 
]q 

h e 
q 

v 

n 

k 

u 

r 

r' 

r 

number of elements 

index of elements 

number of components (£~s; m~t; n~u) 

index of components 

{ekt} component matrix (orthonormal for Tucker 
models); for definition see Theorem 4.1. 

{ekr } component matrix for Tucker Methods 
for defini tion see Theorem 4.2. 

e components, vectors of loadings 
r 

standardized component weights (eigen-
values of P(Dr p), Q (or Q), R (or R), 
respectively [for defini tion see Theorem 
4.1 (or Theorem 4.2) ] 

core matrix of Tucker3 model 

core matrix of Tucker 3 model for Tucker 
Methods 

extended core matrix of Tucker2 model 

extended core matrix for Tucker Methods 
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2.1 INTRODUCTION 

In this chapter we first present the three-mode principal com­

ponent model on a conceptual level by providing various informal 

descriptions of the model. Secondly, an outline of some technical 

aspects connected with analysing this type of model will be presented, 

and finally an example is used to illustrate some of the major aspects 

and possibilities of analysing three-mode data with the three-mode 

principal component model. In this way the chapter will serve as an 

introduction to the subject matter and terminology of this book. 

The chapter aims to be comprehensible for the relatively unini­

tiated, but a basic working knowledge of standard principal component 

analysis is essential, as is insight into eigenvalue-eigenvector 

problems. 

2.2 INFORMAL DESCRIPTIONS 

In this section we will present three more or less different ways 

of looking at three-mode principal component analysis: we start with 

questions a researcher might ask about three-mode data, and discuss 

the way these questions fit into the framework of a three-mode prin­

cipal component model. Next, we take a structural point of view, i.e. 

postulate some structural relationships, and investigate how real data 

might be described by a combination of structural parameters. Finally, 

we will take a methodologica) point of view, and demonstrate how 

three-mode principal component analysis is a generalization of stan­

dard principal component analysis and so-called singular value de­

composition. 
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Research questions arising from three-mode data. After collecting 

information from a number of subjects on a large number of variables, 

one often wants to know whether the observed scores could be described 

as combinations of a smaller number of more basic variables or so­

called latent variables. 

As an example one could imagine that the scores on a set of 

variables are largely determined by linear combinations of such latent 

variables as the arithmetic and verbal content. The latent variables 

- arithmetic and verbal content - can be found by a standard principal 

component analysis. 

Suppose now in the same example that the researcher has admi­

nistered the variables a number of times under various conditions of 

stress and time limitations. The data are now classified by three 

different types of quantities or modes of the data: subjects, varia­

bles, and conditions.· Again the researcher is interested in (1) the 

components of the variables which explain the larger part of the 

variation in the data. Moreover, he wants to know (2) if general 

characteristics can be defined for subjects as well. To put it dif­

ferently, he wants to know if it is possible to see the subjects as 

linear combinations of 'idealized subjects'. In the example we could 

suppose that the subjects are linear combinations of an exclusively 

mathematically gifted person and an exclusively verbally gifted per­

son. Such persons are clearly 'ideal' types. Finally a similar ques­

tion could arise with respect to conditions: (3) can the conditions be 

characterized by a set of 'idealized' or 'prototype' conditions? 

Each of the three questions can be answered by performing prin­

cipal component analyses for each mode. In fact, the same variation 

present in the data is analysed in three different ways. Therefore, 

the components extracted must in some way be related. The question is 

how? In order to avoid confusion in answering this question, we will 

call the variable components latent variables, the subject components 

idealized subjects and the condition components prototype conditions 

(see section 6.8 for a discussion of designating components in this 

manner). 

With respect to the relation between the components of the three 

modes one could ask questions like: "Do idealized subject 1 and idea­

lized subject 2 react differently to latent variable 2 in prototype 
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condition I?" Or one could ask: "Is the relation between the idea­

lized subjects and the latent variables different under the various 

prototype conditions?" By performing three separate component analy­

ses such questions are not immediately answerable, as one does not 

know how to relate the various components. The three-mode principal 

component model, however, explicitly specifies how the relations 

between the components can be determined. The three-mode matrix which 

embodies these relations is called the core matrix as it is assumed to 

contain the essential characteristics of the data. 

Structure: raw scores derived from idealized elements. It is 

often useful to look at three-mode principal components starting from 

the other end, i.e. starting with the core matrix. For example, we 

pretend to know how an exclusively mathematically gifted person scores 

on a latent variable which has only a mathematical content, and on a 

latent variable which has solely verbal content. We pretend to know 

these scores under a variety of prototype conditions. In other words, 

we pretend to know how idealized subjects react to latent variables 

under prototype conditions. As in reality we deal with real subjects, 

variables and conditions, we have to find some way to construct the 

actual from the idealized world. A reasonable way to do this is to 

suppose that a real subject is a mixture of the idealized individuals, 

and make an analoguous assumption for variables and conditions, so 

that the real scores can be thought of as combinations of mixtures of 

idealized entities. 

What is still lacking is some rule which indicates how the idea­

lized quantities can be combined into real values. One of the simplest 

ways to do this is to weight each, for instance, latent variable 

according to its average contribution over all subjects and condi­

tions, and add the weighted contributions. In more technical terms, 

each real variable is a linear combination of the latent variables. 

We will show how we may construct the score of an indivudual i on 

a test j under condition k from known idealized quantities. Suppose we 

have at our disposal 2 idealized persons (Pl,P2)' 2 latent variables 

(ql,q2)' and 2 prototype conditions (r1,r2), and we know the scores of 
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subject PI on variable ql under condition r l c or c lll ; 
PIqIr l 

subject PI on variable ql under condition r 2 c or c1l2 ; 
PI qI r 2 

subject PI on variable q2 under condition r l c or c121 ; 
PI q2r l 

subject PI on variable q2 under condition r 2 c or c122 · 
Pl q2r 2 

Similarly we know the scores of subject P2: c211 ' c212 ' c221 ' and 

c222 . In other words, we know all the elements of the core matrix. As 

mentjoned above we want to construct the score of real subject i, on a 

real variable j, under a real condition k. We will do this sequential­

ly, and assemble all the parts at the end. We start with the assump­

tion that the score O-f a real subject i on the latent variable ql 

under a prototype condition r l is a linear combination of the scores 

of the idealized persons PI and P2 ' using weights giP
I 

and giP
2 

Similarly, for variable q2 under condition r l : 

= gil cl21 + gi2c221 ' 

and the other variable-condition combinations: 

siI2 gilc l12 + gi2c212' 

si22 = gil cl22 + gi2c222' 

The weights gil and gi2 thus indicate to what extent the idealized 

subjects PI and P2 determine the real subject i. The assumption in 

this approach is that these gil and gi2 are independent of the test 

and the condition under which the subject is measured. All inter­

actions between subjects, variables, and conditions arise from inter­

actions between the idealized entities, as reflected in the core ma­

trix (see section 6.9). 
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Our next step is to construct subject its scores on a real varia­

ble j instead of on the latent variables qi and q2 analoguously to 

the above procedure for subjects: 

Subject its score on real variable j under prototype condition r 1 is 

Similarly, on real variable j under prototype condition r 2 we have 

v ij2 = hjISi12 + hj2Si22' 

where the weights hj 1 and hj 2 indicate to what extent the latent 

variables determine the real variable j. 

Finally we combine the prototype conditions. Subject its score on 

test j under condition k may be written as 

where the weights eki and ek2 indicate to what extent each prototype 

condition determines the real condition k. 

Assembling the results from the three steps we get: 

or 

2 2 2 

Zijk=r~IekrVijr= r~Iekr {!=IhjqSiqr} 

which can be compactly written as 

2 2 2 

Zijk=r!Iekr {q~Ihjq[P!IgiPCpqr]} 

linear combination of subjects PI and P2 L .... ___ .... ___ , 

linear combination of variables qi and q2 
'~ ______ ~.~ ___ ~. ________ J 

linear combination of conditions r l and r 2 

stu 
Z k= L L L g. h. ek c ,with s=t=u=2 
ij p=l q=I r=I 1p Jq r pqr 
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Fig. 2.1 Singular value decomposition and standard principal com­
ponent analysis 
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as it is usually written. Note that the order in which the linear 

combinations are taken is immaterial. 

As can be seen in section 2.3, this is the definition of the 

three-mode principal component model. In Bloxom (forthcoming) the 

three-mode model in its nested form is described as well, but there 

the model is developed as an example of a third-order factor analysis 

model, in which the s are the second order, and the v the third order 

factors. 

Methodology: extending singular value decomposition. From a 

methodological point of view three-mode principal component analysis 

is a generalization of standard principal component analysis, or 

rather, of singular value decomposition. Fig. 2.1 schematically shows 

the relationship between standard principal component analysis and 

singular value decomposition. In essence, singular value decomposition 

is a simultaneous analysis of both the individuals and the variables, 

in which the interactions between the components of the variables and 

the subjects is represented by the core matrix C. In Fig. 2.1 the core 

matrix is diagonal with s diagonal elements c (p=l, ... ,s). These c 
pp pp 

are equal to the square roots of the eigenvalues associated with the 

p-th components of both the variables and the subjects. When G and C 

are combined to form A, as shown in Fig. 2.1, we have the standard 

principal component solution, and when Hand C are combined we have 

what could be called in Cattell's (1966a) terms 'Q'-principal com­

ponent analysis. 

Fig. 2.2 shows the decomposition of a three-mode matrix according 

to the three-mode principal component modeL Comparison of Fig. 2.1 

and Fig. 2.2 shows the analogy between the singular value decompo­

sition and three-mode principal component analysis. The core matrix 

now has three modes, and the relationships between the singular values 

or elements of the core matrix and the eigenvalues of the various 

modes are less simple than in the two-mode case (see section 2.8, and 

section 6.9). 
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DATA 
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u 
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I J p=1 q=l.r .. ' Ip Jq r pqr 

Fig. 2.2 Three-mode principal component analgsis 

2.3 FORMAL DESCRIPTIONS 

In this section we present the Tucker3 and Tucker2 models; which 

form the basic working models for the rest of this book. The descrip­

tion here is rather superficial; a detailed treatment can be found in 

Chapter 4. Here we attempt to present just enough detail for under­

standing the main principles involved. 
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Tucker3 model. The general three-mode principal component model 

(or Tucker3 model) can be formulated as the factorization of the 

three-mode data matrix Z ={zijk} ,such that 

stu 
z. 'k= L L L g. h. ek c , 

1J p=l q=l r=l 1p Jq r pqr 

for i=l, .. ,.£; j=l, .. ,m; k=l, .. ,no The coefficients g. , h. , and ek 1p Jq r 
are the entries of the component matrices G (.£xs) , H (mXt) , and E 

(nXu); .£,m,n are the number of elements, and s,t,u are the number of 

components of the first, second and third mode respectively. We will 

always assume that G, H, and E are columnwise orthonormal real matri­

ces with the number of rows larger than or equal to the number of 

columns. The c are the elements of the three-mode core matrix C 
pqr 

(SXtXu). 

In practice the three-mode data matrix is not decomposed into all 

its components, as one is usually only interested in the first few. 

Therefore, one seeks an approximate decomposition Z that is minimal 

according to a least squares loss function, i.e one solves for a Z 
such that 

with 
stu 

Z 'k= L L L g. h. ek c , 
iJ p=l q=l r=l 1p Jq r pqr 

attains a minimum. The algorithm to solve this minimization problem is 

implemented in the program TUCKALS3. (Kroonenberg, 1981a). Details 

about the existence and uniqueness of a minimum, the algorithm itself, 

and its implementation can be found in Chapter 4. 

Tuck~r2 model. An important alternative version of the Tucker3 

model can be obtained by equating the component matrix E with the 

identity matrix. We will refer to this model as the Tucker2 model; it 

has also been called the generalized subjective metrics model (Sands & 
Young, 1980). It can be written as 
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s t 

z"k= 1 1 g, h, c k' 
1J p=l q=l 1p Jq pq 

or in matrix notation 

(k=l, .. ,n) 
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wher~ Zk (Qxm) is the k-th frontal plane or slice of the data matrix, 

and Ck (sXt) the extended core matrix, respectively. The core matrix 

is called extended because the dimension of the third mode is equal to· 

the number of conditions in the third mode, rather than to the number 

of components as is the case in the Tucker3 model. The Tucker2 model 

only specifies principal components for the Q subjects and m variables 

but not for the n conditions. The relationships between the components 

of the subjects and the variables can be investigated for all condi­

tions together as well as for each condition separately. 

The least squares loss function for the Tucker2 model has the 

form 

with 

Q m n 
1 1 1 (z, 'k - Z, 'k)2 

i=l j=l k=l 1J 1J 

s t 

z"k= 1 1 g, h, C k' 
1J p=l q=l 1p Jq pq 

and the algorithm to solve this minimization problem is implemented in 

the program TUCKALS2 (Kroonenberg, 1981c). 

One important advantage of the methods discussed in this paper 

over the standard procedures outlined by Tucker (1966a, p.297ff.) is 

that the estimates of the parameters are least squares, rather than 

estimates with ill-defined properties. Another advantage of the defi­

nition of loss functions is that it becomes possible to look at resi­

duals (see sections 2.4 and 2.9). A third advantage is that there 

exists a direct relationship between the eigenvalues of the configura­

tions and the size of the elements in the core matrix (see sections 

2.1 and 2.2; for an empirical demonstration see section 2.8). On the 

other hand, an advantage of Tucker's methods (which are described in 

section 4.2) is that they are cheap, and that their solutions are 

nested (see section 4.5 for a discussion of nesting). 
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2.4 INTERPRETATIONAL AIDS 

Various kinds of auxiliary information can be useful for the 

interpretation of results from a three-mode principal component analy­

sis. Some of the most important ones will be presented here, i.e. 

joint plots, component scores, use of residuals, scaling of input 

data, and rotations; some details will be taken up where needed in the 

example, and detailed discussions can be found in later chapters. 

Joint plots. After the components have been computed, the core" 

matrix will provide the information about the interactions between 

these components. For instance, it is very instructive to investigate 

the component loadings of the subjects jOintly with the component 

loadings of the variables, by projecting them together into one space, 

as it then becomes possible to specify what they have in common. The 

plot of the common space is called a joint plot. 

Such a joint plot of every pair of component matrices for each of 

the components of the third mode, say E, in the TUCKALS3 case, and for 

the average core plane in the TUCKALS2 case, is constructed in such a 

way that g (p=l, ... ,s) and h (q=l, ... ,t) - i.e. the columns of G and p q 
H respectively - are close to each other. Closeness is measured as the 

sum of all sXt squared distances d2 (g ,h ) over all p and q. In sec­
p q 

tion 6.10 we will discuss in some detail the construction of the joint 

plots. 

Component scores. In some applications it is useful to inspect 

the scores of all combinations of the elements of two modes on the 

components of the third mode. For instance, for longitudinal data the 

scores of each subject-time combination on the variable (j) components 

can be used to inspect the development of an individual's score on the 

latent variable over time. The component scores also express the 

closeness of the eiements from different modes in the corresponding 

j oint plot. In the example presented in Chapter 8 these component 

scores in fact turn out to be the most successful summary of the 

relationships involved. In section 2.10 we also give an example of 

their usefulness, and they will be described in detail in section 

6.10. 
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Residuals. In Chapter 4 it is shown that both for the Tucker3 and 

the Tucker2 model the following is true: 

Q m n Q m n 
l: l: l: z2 = 

i=l j=l k=l ijk 
+ l: l: l: (z. 'k- Z. 'k)2 . 
i=l j=l k=l 1.J 1.J 

where the Zijk are the data 'reconstructed' from the estimated para­

meters. This is, of course, a standard result in least-squares analy­

ses. Less numerically this part.itioning of the total sum of squares 

may be written as 

SS(Data) = SS(Fit) + SS(Residual). 

In addition, it is shown that for each element f of a mode 

By comparing the fitted sum of squares and the residual sum of squares 

for the f-th element one can gauge the correspondence of the f-th ele­

ment's configuration with the overall configuration. Large residual 

sums of squares indicate that a particular element does not fit very 

well into the structure defined by the other elements. 

The size of the SS(Residualf ) of an element f of a mode generally 

depends on its SS(Totalf ). Therefore, one should in general look at 

the relative residual sum of squares (or relative residual, for short), 

(= SS(Residualf)/SS(Totalf )) when assessing the role of a particular 

element in the final solution. Similarly, one could look at the rela­

tive residual (= SS(Resf)/SS(Totalf )). These two quantities convey 

essentially the same information. 

The SS(Res) and the SS(Fit) as well as their relationships can be, 

shown directly in a so-called sums-of-squares plot, which is explained 

and illustrated in Chapter 7. Section 2.9 (Fig. 2.5) also contains an 

example. 

Scaling of input data. In standard principal component analysis 

the input data are often transformed into standard scores without much 

thought about the consequences. In other words, correlation matrices 

are generally analysed with principal component analysis, rather than 

cross-product matrices or covariance matrices. In three-mode analysis 
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the question of scaling the input data must be approached with more 

care, as there are many ways to standardize or centre the data. 

Two general rules can be formulated with regard to the scaling of 

input data: 

those means should be eliminated (i.e. set equal to zero), which 

cannot be interpreted, or which are incomparable within a mode; 

those variances should be eliminated (i.e. set equal to one) 

which are based on arbitrary units of measurement, or which are 

incomparable within a mode. 

These rules do· not lend themselves to automatic application. For each 

and every data set it has to be assessed which kind of scaling is most 

appropriate. 

Very common procedures are (see section 6.5): 

centring and/or standardizing the variables over all subject-con­

dition combinations <i-centring), so that the grand mean of a 

variable over all subjects and conditions is zero, and/or its 

total variance over all subjects and conditions is one; 

centring and/or standardizing the variables over all subjects for 

each condition separately (jk-centring); 

double-centring, i.e. centring per condition over both variables 

and subjects (jk,ik-centring). 

As before, subjects, variables, and conditions here indicate first, 

second, and third mode elements, respectively. 

The decision which centring or standardization is appropriate 

with any particular data set depends on the researcher's assessment of 

the origin of the variability of the data, in other words, which means 

and variances can be meaningfully interpreted. In Chapter 6 a further 

discussion on this topic can be found. 

2.5 PARTY SIMILARITY STUDY: DESIGN AND DATA 

To familiarize the reader with some practical aspects of three­

mode analysis, and to illustrate the main points of the previous 

sections we will analyse some out-of-date data on similarities between 

Dutch political parties collected by De Gruijter (1967). 



2.5 27 

De Gruijter employed 82 members of political student organiza­

tions at the University of Leiden, of whom three were not included in 

the present analysis. On the basis of their preference for a particu­

lar party the students were divided into six preference groups, viz. 

into a PSP, PvdA, KVP, ARP, VVD, and a CHU group. Table 2.1 based on 

Wolters (1975), contains a short characterization of the parties 

involved in this study. 

The ten parties which were then in Parliament (1966) - CPN, PSP, 

PvdA, KVP, ARP, VVD, CHU, SGP, GPV, Boerenpartij (BP) - were used as 

stimuli. De Gruijter confronted the students with all possible triads 

of parties, and asked them to indicate for each triad which two par­

ties were most alike, and which two were least alike. For each pre­

ference group he computed the number of times (sununed over all stu­

dents in that group - n ) that in all triads with stimulus parties i g 
and j, the similarity between i and j was considered to be greater 

than that between i (the standard) and a third stimulus. As each party 

was compared with all combinations of the other parties, the sums for 

the standards over all parties are equal to ngx(;). Thus, the data 

have the form of 6 matrices (one for each preference group) of 10 

standards by 10 compared parties. 

Unlike De Gruijter we have divided the data of each preference 

group by the number of students in that group (cf. Table 2.1), to 

eliminate the uninteresting differences between the groups due to 

their different sizes. In addition, the main diagonal elements of each 

matrix, which were left blank in De Gruijter's analysis, were set to 9 

indicating that a party is more similar to itself than to any other 

party. Note that the data matrices can be, and are, asymmetric, as for 

a party there is no necessity to be as often considered alike to 

another party when compared with a standard as it is considered to be 

alike to that same party when the party itself is the standard. Note 
10 

also that all row sums are now ( 2) = 45. The data matrices were 

double-centred (see Chapter 6) before the analysis proper, as is 

customarily done with similarities. Table 2.2 gives, as an example, 

the data (adjusted for group size and rounded to whole munbers) for 

the KVP and PvdA groups. 



Table 2.1 Description of Dutch parliamentarg parties in 1966 and the numbers 
preferences for them among De Gruijter's student respondents 

Name of party, initials 

1 Communistische Partij 
Nederland .(CPN) 

2 Pacifistisch-Socialistische 
Partij (PSP) 

3 Partij van de Arbeid (PvdA) 
4 Ka·tholieke Volks Partij (KVP) 

5 Anti-Revolutionaire Partij 
(ARP) 

6 Vereniging voor Vrijheid en 
Demokratie (VVD) 

7 Christelijke Historische 
Dnie (CHU) 

8 Staatkundig Gereformeerde 
Partij (SGP) 

9 Gereformeerd Politiek 
Verbond (GVP) 

10 Boeren Partij (BP) 

Source: Wolters (1975) 

Description of party 

communists 

pacifists, radical left-wing 
socialists 
labo'r, social democrats 
roman catholics, Christian-Democratic 
party 
protestant Christian-Democratic party; 
adherents are mainly members of 
'gereformeerde' churches 
liberals, more conservative than 
British or German liberals 
protestant Christian-Democratic party; 
adherents are mainly members of 
'hervormde' churches 
protestant isolationist puritan cal­
vinist party; adherents are mainly 
members of 'oud-gereformeerde' churches 
protestant nationalistic puritan cal­
vinist party; adherents are mainly 
members of 'vrijgemaakt-gereformeerde' 
churches 
poujadist-type of protest party 

of first 

number of 
preference 

1 

8 

15 
11 

10 

9 

9 

0 

1 

N 
c:I> 

N 

I.JI 
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Table 2.2 Party similarity study: Data of PvdA and KVP groups 

PvdA group 
compared parties 

standards CPN PSP PvdA KVP ARP VVD CHU SGP GPV BP 

CPN 9 7 2 2 2 3 
PSP 8 9 3 2 2 2 
PvdA 6 7 3 2 1 1 
KVP 1 6 2 3 3 
ARP 1 !?il 4 ~ 2 
VVD 0 9 4 4 [5] 
CHU 0 6 ~ 5 3 
SGP 1 4 9 8 6 
GPV 1 4 8 9 6 
BP 1 1KI 6 6 9 

KVP group 
compared parties 

standards CPN PSP PvdA KVP ARP VVD CHU SGP GPV BP 

CPN 9 8 3 2 ~ 
PSP 7 9 4 3 ~ 
PvdA 5 7 2 2 2 
KVP 1 3 3 3 1 
ARP 1 1 ~ ~ 2 
VVD 0 1 3 4 [5] 
CHU 1 2 5 5 2 
SGP 1 3 9 8 ~ 
GPV 1 3 8 9 ~ 
BP 4 4 5 6 9 

m similarity out of line with the main pattern 

2.6 ANALYSES AND FIT 

Analyses. The main analysis reported here, is a TUCKALS3 (T3) 

analysis with three components each for the first and the second mode 

(standards and compared parties) , and with two components for the 

third mode (preference groups); this solution will be called the 

3x3x2-solution. It will sometimes be compared with another T3 analysis 

with two components for each of the modes, or the 2x2x2-solution, and 

also with a TUCKALS2 (T2) analysis with two components for the first 
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two modes, or the 2x2-solution. As mentioned in section 2.3 no compo­

nents are computed for the third mode in this model. 

Fit. From Table 2.3 it can be seen that with three components 

for the party modes the variability in the data accounted for is 92% 

of the total sum of squares. EVen the two component solutions are al­

ready satisfactory. The 'approximate fit' from the initial configura­

tion for each of the modes (which are derived from the standard Tucker 

(1966a) Method I solution - see section 4.2) are upper bounds for the 

SS(Fit) of the simultaneous solution. Obviously the smallest of the 

three is the least upper bound, in this case the one based on the 

second mode (.94) - see also section 4.5. The initial configurations 

are used as starting points for the main TUCKALS algori thms. The 

improvement in fit indicates how much the iterative process improves 

the simultaneous solution over the starting solution. In this case 

this improvement is negligeable, in other words, we could have settled 

for the Tucker method as far as fit is concerned, but the changes in 

the component matrices might have been substantial even with small 

improvement in fit. 

Table 2.3 Party similarity study: Characteristics of solutions 

Standardized total sum of squares -
SS(Tota1) 

Approximation of SS(Fit) 
separate PCA 

derived from 
on mode 1 
on mode 2 
on mode 3 

Fitted sum of squares from 
simultaneous estimation 

Residual sum of squares from 
simultaneous estimation 

Improvement in fit compared to initial 
configuration 

T3 
3x3x2 

1.00 

.94 

.94 

.97 

.92 

.08 

.001 

T3 
2x2x2 

1.00 

.83 

.83 

.97 

.82 

.18 

.004 

T2 
2x2 

1.00 

.83 

.83 

.82 

.18 

.000 
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Fig. 2.3 Party similarity study: Individual party spaces 
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I 
1 CPN 
2 PSP 
3 PvdA 
4 KVP 
5 ARP 
& VVD 
7 CNU 
8 SSP 
9 SPV 

10 BP 

Table 2.4 Party similarity study: Party spaces of mode 1 (standards) 

3x3x2 2x2x2 2x2 

1 2 3 1 2 1 2 

CPN .48 -.25 -.04 .48 -.25 .48 -.25 
PSP .48 - .17 .04 .48 -.18 .48 -.18 
PvdA .43 .18 .15 .43 .18 .43 .18 
KVP .01 .50 -.09 .01 .50 .01 .50 
ARP -.15 .30 .40 -.15 .30 -.15 .32 
VVD -.20 .22 -.62 -.20 .21 -.20 .20 
CHU -.22 .30 -.00 -.22 .29 -.22 .29 
SGP -.33 -.28 .34 -.33 -.27 -.33 -.27 
GPV -.33 -.33 .29 -.33 -.33 -.33 -.32 
BP -.17 -.46 -.47 -.17 -.46 -.17 -.47 

component .61 .21 .11 .61 .21 .61 .21 weight 
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2.7 CONFIGURATIONS FOR THE THREE MODES 

De Gruijter had to symmetricize his matrices due to the inability 

of earlier multidimensional scaling programs to handle asymmetric 

data. He analysed each preference group separately, rather than simul­

taneously as was done here. His results are displayed in Figure 2.3. 

The advantage of the present approach is that one space can be found 

for all groups together, and the fit of this common configuration for 

each group can be assessed. De Gruijter only extracted two dimensions, 

and concluded that a I horseshoe I could be found for each preference 

group separately. It came as no surprise that in the present analysis 

the first two components of the common space exhibit a horseshoe as 

l[ m 
.ARP .KVP .4 

I' 
SSP. 

.4 I .......... SPV· 
/ ..... 

VVDor..ARP ..... .2 .PVDA ..... 
CHt( 

..... 
.2 "'rVDA .PSP 

I .D .CHU + \ "ePN 
I ·KVP 

.D I + \ 

I \ -.2 

-.2 I \PSP 

S6P' 'ePN -.4 
BP. 

6VP' -.4 "-
Bp· -.6 VVD· 

-.4 -.2 .D .2 .4 .6 I -.4 -.2 .0 .2 .4 .6 I 

Fig. 2.4 Party similarity study: Party space tor standards 
(3x3x2-so1ution) 

well (see Figure 2.4). Table 2.4 shows that the first two components 

of all three solutions are virtually identical. As the differences 

between the fit of the models and the fit estimated from the separate 

principal component analyses on mode 1 is in all cases very small, the 

solutions should be similar. 

So far we have implicitly assumed that we could look exclusively 

at the first mode solution. Of course we get a solution for the second 

mode as well, but the solutions for the standards and the compared 

parties are hardly different. In other words, the asymmetry present in 

the data is very small; a conclusion also reached by De Gruijter using 

different meahs. 
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Horseshoes, often found in multidimensional scaling, always pose 

problems for interpretation. Often but not always both the projections 

of stimuli on the axes, and their positions along the horseshoe, are 

candidates for interpretation. Guttman (1954), Kruskal & Wish (1978, 

p. 88,89), Borg (1976), and Gifi (1981, p. 246ff.) discuss horseshoes 

and their interpretations. In the present example the interpretation 

of the positions of the parties along the horseshoe is very clear cut, 

viz. from left-wing (CPN) to right-wing (BP). 

The party space is open to a more complex interpretation than 

just the horseshoe. More particularly, the first dimension also shows 

a left-right distinction, so that we are now faced with the problem 

that we have not a priori scaled the parties on this dimension, and 

that we do not know which of the GPV, SGP, and BP the students consi­

dered the most right-wing party. Such information would have made it 

possible to choose between an interpretation on the basis of the 

horseshoe or the axis. 

The second axis separates the big and ideologically or politi­

cally flexible parties with governmental experience from the small and 

more dogmatic parties which have never borne governmental responsibi­

lity. Which of the three characteristics mentioned the students really 

used, or used more often, is not possible to determine without addi­

tional information. 

Finally the third axis, which is rather difficult to interpret, 

indicates that BP and VVD are alike, and both are unlike the ARP. It 

is possible that we are here fitting ideosyncracies of the data, but 

on the other hand the similarities mentioned can be observed in almost 

all data matrices. For each of the preference groups (for examples see 

Table 2.2) we see primarily a central band of high similarities which 

is responsible for the horseshoe. Not fitting into this pattern are 

exactly the relations represented by the third axis. 

A further point worth mentioning is that the bending back of the 

horseshoe to make the BP somewhat alike to the CPN (probably because 

of their similar extremist and unflexible approach to politics) can be 

seen in the data by the slight increase in similarities in the upper­

righthand and lower-lefthand corners of the data matrices. This effect 

is strongest for the KVP preference group, which is a party in the 

middle of the political spectrum, and least so for the PSP preference 
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group near the end of the horseshoe (for a corroboration of this point 

see De Leeuw & Heiser, 1980, p.516,517). The circumplex structure (see 

e.g. Guttman, 1954; Shepard, 1978) is clearly not complete. 

Table 2.5 Party similarity study: Space of preference groups 

party 3x3x2 2x2x2 

preference i 2 1 2 

PSP .42 .68 .42 .52 
PvdA .42 .34 .42 .22 
KVP .40 -.59 .40 -.79 
ARP .40 -.19 .40 -.09 
VVD .42 -.10 .42 .21 
CHU .38 -.18 .38 -.12 

\ 
component .91 .01 .81 .007 weight 

Finally we want to point out that the method used to solve the 

three-mode model precludes the solutions from being nested, i.e. the 

first two components of the 3x3x2-s01ution are not equal to the com­

ponents of the 3x2x2-s01ution. That the difference is very small in 

the present case is beside the point (see also section 4.5). 

The partg preference space (Table 2.5) is on the whole hardly 

interesting. As was to be expected from the similarity of the solu­

tions from the separate analyses by De Gruijter, the loadings on the 

first component are virtually equal. The second component accounts for 

only 1% of the total variation, and it probably reflects some very 

specific interactions which we will try to unravel in section 2.10. 

The importance of these interactions is slight, but it should be 

remembered that only the first and second modes were centred, and not 

the third. This means that the first component of the third mode still 

reflects the average s~oring level of the six groups. Technically 

speaking, the average frontal plane of the double-centred three-mode 

matrix is not. zero, while the average lateral and horizontal planes 

are (see also section 6.5; table 6.2). In the case under conside­

ration, the second component of the third mode seems to reflect rela­

tively unimportant aspects of the data, but with other data the second 
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component might contain valuable information about the differences 

between the elements of the third mode, even though it is far smaller 

than the first component. 

2.8 CORE MATRICES 

TUCKALS3 core matrix. (Table 2.6). In this subsection we will 

only discuss the interpretation of the first frontal core plane. The 

core matrix indicates how the various components of the three modes 

relate to one another. For instance, the element c111 (=19) of the T3 

core matrix indicates the strength of the relation between the first 

components of the three modes, and c221 (=11) the strength of the 

relation between the second components of the first and second modes 

in combination with the first of the third mode. The interpretation of 

the elements of the core matrix is facilitated if one knows that the 

sum over all squared elements of the core matrix is equal to the 

SS(Fit). In other words, the c2 's indicate how much the combination pqr 
of the p-th component of the first mode, the q-th component of the 

second mode, and the r-th component of the third mode contributes to 

the overall fit of the model, or how much of the total variation is 

accounted for by this particular combination of components. Thus· as 

Table 2.6 shows, 60% of the SS (Total) is accounted for by the combi­

nation of the first components of the three modes, another 21% by 

c~2]' and 11% by c331 . Together with the negligible contributions of 

the other elements of the first frontal plane these contributions add 

up to 91%, which is equal to the standardized weight of the first 

component of the third mode, as it should be. The core matrix thus 

breaks the SS(Fit) up into small parts, through which the (possibly) 

complex relations between the components can be analysed. It is in 

this way that we can interpret the core matrix as the generalization 

of eigenvalues or of the singular values of the singular value decom­

position (see also Section 2.2 and 6.9). It constitutes a further 

parti tioning of the ' explained' variation as is indicated by the 

eigenvalues of the standard principal component analysis. 

The present example is in a way too simple to make full use of 

the interpretational possibilities of the core matrix, as all off-
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diagonal elements are virtually zero. In later examples, especially 

Chapter 8, it will be demonstrated more fully how the core matrix can 

be used, and in Chapter 6 we will give a detailed discussion of pos­

sible interpretations of the core matrix. 

Table 2.6 Party similarity study: Core matrix (TUCKALS3) 

(frontal planes) 

3x3x2-solution core plane standardized standardized 
contribution contribution 

components to SS(Fit) of to SS(Fit) of 
compared parties c plane pqr' 

plane 1 (C1) 1 2 3 1 2 3 

components 1 19 -0.03 -0.01 .60 .00 .00 
2 0.06 11 -0.2 .00 .21 .00 .92 

standards 
3 0.01 0.03 8 .00 .00 .11 

plane 2 (C2) 

components 1 0.5 1.3 1.2 
2 1.1 -0.6 -0.4 < .003 .01 

standards 
3 0.9 -0.1 -0.4 

Note: The core matrix can be split up in two other ways, i.e. into 
horizontal and into lateral planes. The sums of the squared 
standardized e~ements of the horizontal planes are equal to 
the component weights or standardized contributions to the 
SS(Fit) of the standards. The analoguous sums of the lateral 
planes are equal to the component weights of the compared 
parties. 

TUCKALS2 extended core matrix. The extended core matrix can be 

interpreted in essentially the same way as the TUCKALS3 core matrix i~ 

terms of the amount of explained variation. Again t-he sum of the 

squared elements equals the fitted sum of ~squares, but now the sum of 

the squared el~ments of a frontal plane, C
k

, equals the contribution 

of the k-th element (party preference group) to this fitted sum of 

squares. 

In those cases ~here two modes are equal or the components define 

the same space, as in the present example, another interpretation of 

the core matrix is possible. Within the context of multidimensional 

scaling of individual differences (see section 3.2 and 3.3) the input 

similarity matrice::; typically satisfy these conditions, and within 
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Table 2.7 Party similarity study: Extended core matrix (ruCKALS2) 

Preference core plane standardized standardized relative 
contribution contribution fit 
to SS(Fit) to SS(Fit) 

c pqk plane k 

1 2 1 2 
=st. SS (Fitk) 

PSP 1 8.1 -0.8 .11 .00 
2 -0.8 4.4 .00 .03 .14 .82 

PvdA 1 8.0 -0.4 .11 .00 
2 -0.5 4.7 .00 .04 .14 .86 

KVP 1 6.9 0.9 .08 .00 
2 0.5 5.5 .00 .05 .13 .81 

ARP 
1 I 7.5 0.1 .09 .00 

2\ 0.2 4.5 .00 .03 .13 .80 

VVD 1 8.5 -0.1 .12 .00 
2 0.1 4.1 .00 .03 .15 .84 

CHU 1 7.5 0.5 .09 .00 
2 0.5 3.9 .00 .03 .12 .78 

1 7.8 0.0 
2 -0.0 4.5 .60 .12 .82 

average standardized overall 
core plane contribution relative fit 

to SS(Fit) of = st.SS(Fit) 
components of = 2st.SS(Fitk) 
1st and 2nd = 2st.SS(Fit ) 

mode = 2st.SS(FitP) q 
=s t. SS (Fit ) == 

P 
st.SS(Fit ) 

q 

this field an interpretation has been developed in terms of correla­

tions and direction cosines of the axes of the spaces common to two 

(generally the first and second) modes (see Tucker, 1972a, p. 7, and 

Carroll & Wish, 1974, p.91). 

Given that the component spaces are the same, as is the case 

here, it makes sense to speak about the correlation or the angle 

between the first and second component of the common space. This 

angle can be derived from the off-diagonal elements of the core plane, 

if we assume that the differences between cpqk and Cqpk are merely due 



38 2.8 

to random fluctuations. An off-diagonal element can be looked upon as 

a direction cosine or correlation between component p and component 
!" 1 

q, provided C k is scaled, by dividing it by c2 k and c~ pq pp qqk 

The direction cosines indicate the angles under which the k-th 

condi tion (party preference group) I sees I the axes or components ·of 

the common space. In the present example the largest deviation from 

orthogonality is found for the PSP-group (cos a 1 = ~(0.&392 + 0.7604)/ 
:k ~ 0 

8.1051 2 
X 4.4303 2 = .134; a 1 = 82 ). It seems safe to assume that the 

deviations from orthogonality are more or less chance fluctuations. 

2.9 FIT OF PREFERENCE GROUPS AND STIMULI 

In essence the analysis could stop with the above interpreta­

tions. All that the technique has to offer towards breaking down 

complex relationships into small intelligible pieces is contained in 

the analysis so far. However, it is good to have some auxiliary infor­

mation available to assess if there are no irregularities in the data 

such as outliers, unduly influential points, points which are not 

sufficiently accounted for, etc. An attractive way to investigate 

such questions is to inspect the residual sums of squares in conjunc­

tion with the fitted sums of squares (see section 2.4 and Chapter 7). 

Whereas the core matrix informs us about the contributions of the 

components and their interrelationships, the sums of squares broken 

down by the elements of the modes inform us about the contributions of 

these elements to the solutions. As it is our aim to show general 

principles we will only consider the TUCKALS3 solutions here. 

The smaller SS(Total)s for the ARP, CHU, and KVP groups in Table 

2.& show that they tended to give slightly less outspoken judgements 

than the VVD and PSP groups. Although very often elements with larger 

total sums of square~ tend to be fitted better than those with smaller 

sums of squares, this ~ffect is hardly present in these data, possible 

due to the small qifferences in the SS(Total)s. The SS(Fit)s or, 

better, the relative fits are high and have about the same value, 

indicating that the common solution is shared by all to the same 

extent. The sums of squares for the third mode thus tell us that no 

really deviant groups are present. In a later paragraph we will slight­

ly qualify this statement. 
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Table 2.8 Party similaritg studg: Standardized sums of squares 
broken down bg preference groups 

3x3x2-so1ution 

SS(Total) SS(Fit) SS(Res) 
Party 
prefe- standard- standard- relative standard- relative 
rence ized ized fit ized res . 

PSP .18 . 16 .93 .01 .07 
PvdA .17 .16 .95 .01 .05 
KVP .16 .15 .93 .01 .07 
ARP .16 .14 .91 .01 .09 
VVD .18 .16 .92 .01 .08 
CHU .15 .14 .91 .01 .09 

I 

overall 1.00 .92 .08 

st. SS (Total) = st.SS(Fit) + st.SS(Res) 

Note: st. = standardized 

Far more interesting is the comparison between the sum of squares 

for the stimuli (here shown for the first mode) in the 3x3x2-so1utions 

and the 2x2x2-so1utions (see Table 2.9). The total sums of squares 

sums of squares show that parties in the political centre have few 

high similarities with other parties, as one would expect for a party 

in the middle, and thus their total sums of squares are small. The 

parties at both ends of the spectrum are relatively more similar 

(remember that the similarities are centred) and thus have larger 

total sums of squares (see also the data matrices in Table 2.2). 

The SS(Fit)s for the 2x2x2-s01ution show that the relative fit of 

the \~, ARP, and the BP leaves much to be desired. The sums-of-squa­

res plot (Fig. 2.5) summarizes most of the information of Table 2.9, 

and makes it easy to spot especially the ill-fitting and the well-fit­

ting points. Furthermore, Table 2.9 shows that not much is gained by 

adding a fourth axis to the party space. Not only is the overall fit 

of the 3x3x2-s01ution very good, but all parties also fit more or less 

equally well. In other words, the third component was all that was 

needed to accommodate the remaining anomalies. 
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Table 2.9 Party similarity study: standardized sum of squares 
bk: d b'tdd' roo en own y s an ar s 

3x3x2 2x2x2 

5S SS(Fit) SS(Fit) Improvement 
Total) in relative 

p fit due to 
a stan- stan- rela- stan- rela- resi- third com-
r dard- dard- tive dard- tive dual/ ponent 
t ized ized fit ized fit fit 
y ratio 

CPN .16 .16 .95 .15 .94 .06 .01 
PSP .15 .15 .95 .15 .95 .05 .00 
PvdA .13 .12 .94 .12 .92 .09 .02 
KVP .06 .05 .84 .05 .82 .22 .02 
ARP .06 .05 .88 .03 .59 .71 .29 
VVD .08 .08 .93 .03 .41 1.43 .52 
CHU .06 .05 .83 .05 .83 .21 .00 
SGP .10 .10 .95 .09 .85 .17 .10 
GPV .10 .10 .95 .08 .82 .22 .13 
BP .09 .09 .90 .06 .66 .53 .24 

overall l.00 .92 .82 .09 .10 
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Sums-of-squares plot for standards (2x2x2-solution) 
(A): line at an angle of -450

; locus of points with equal 
total sums of squares; 

(B): line connecting (0,0) and (average SS(Fit), average 
SS(Res)); separating the well-fitting points (below the 
line) from the ill-fitting points (above the line) 

(C): line with equal Rel.SS(Fit), and equal residual/fit 
ratio 
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2.10 JOINT PLOTS AND COMPONENT SCORES 

Figure 2.6 shows a joint plot (see sections 2.4 and section 6.10) 

of the first and second mode, based on the first component of the 

third -mode. In this case, all it tells us is that the original dat~ 

are virtually symmetrical, which is by now no longer a surprise. The 

only thing worth mentioning seems to be that the discrepancy is larger 

for the KVP and the PvdA, but whether this is really important, it is 

difficult to assess. For many other data sets, however, in which the 

first and second component are different types of elements, these 

joint plots are a major aid in interpretation as can, for instance, be 

seen in almost all the examples in later chapters. 

VVDO* :ARP 

iCHU 

JlP 
6P'io 

etap 

~P 

+ 

~DA 

PSP~ 

CPNt 

o standards 
j}compared parties 

Fig. 2.6 Party similaritg studg: Joint plot of standards and com­
pared parties 

Component scores in three-mode analysis can sometimes serve as an 

intermediate level of condensation between the raw data and the model 

expressed in the component loadings and the core matrix. For the 

present data this is demonstrated in Figure 2.7A and B. The component 
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scores for each standard-preference group combination on the first and 

second component of the party space (here defined by compared parties) 

are shown for the 2x2x2-solution. The different orders for the prefer­

ence groups were chosen to achieve greater clarity of the figures. 

In Figure 2.7A we see the expected similarity in judgement of the 

preference groups with respect to the relative position and numerical 

values for the standards. However, we also see the interaction of BP 

with preference group (PSP, PvdA: BP ~ CHU, VVD; others: BP ~ ARP) on 

the first component. Furthermore, PSP, PvdA, and VVD emphasize the 

left-right axis somewhat more than the Christian Democrats (KVP, ARP, 

CHU). This difference corresponds to the differences in the first 

component of the party preference space. 

The important interaction between party preference and standards 

is the different treatment by the preference groups of the 'dogmatic, 

small' left-wing parties (PSP, CPN) , and to a lesser extent of the 

PvdA, as is shown in Figure 2.7B. In particular, the left-wing prefer­

ence groups (PSP, PvdA) make a clear distinction between the small 

left-wing (PSP, CPN) and the small conservative parties (GPV, SGP, BP) 

on the second component of the party space. Note also the profile 

similarity of the left-wing parties: the 'big, flexible' PvdA re­

sembles the 'small ,dogmatic' CPN and PSP. Especially these inter­

actions create the second component of the space of the preference 

groups as is clear from Table 2.5: the interaction is large for the 

PSP and PvdA groups on the positive side, and large for the KVP on the 

negative side. 

Reinspecting the core matrix of the TUCKALS3 solution (Table 2.6) 

we see that in the second plane (according to the second preference 

group component) a -be it slight- interaction is indicated between the 

left-right and the 'flexible,big' - 'dogmatic,small' dimensions, which 

demonstrates that this core plane contains information about the 

interactions. However, it is clear that unravelling and interpreting 

them is far from straightforward. 
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SUMMARY 

After presenting a survey of the organization of this book, 

its terminology, and notation in Chapter 1, and a survey of the 

subject matter of the book in Chapter 2, the main theory of three­

mode principal component analysis is presented in the three chap­

ters of Part I. 

Chapter 3 deals with various models commonly used for the 

analysis of three-mode data. Two basic types may be distinguished: 

component models and factor analysis models. In the former all. 

modes are considered fixed, whereas in the latter models the mode 

of observational units is considered stochastic. Within the class 

of component models two subclasses exist: models with three reduced 

modes (e.g. the Tucker3 model, three-mode scaling, PARAFACl, and 

INDSCAL), and models with two reduced modes (e.g. the Tucker2 

model, PARAFAC2, IDIOSCAL, CANDECOMP, and INDSCAL). These models 

are generally solved with alternating least squares procedures. The 

factor analysis models are generally solved within the context of 

the analysis of covariance structures. Chapter 3 ends with a number 

of extensions of the Tucker models, e.g. missing data facilities, 

optimal scaling procedures, facilities for external analysis, etc. 

Chapter 4 presents the main theory connected with alternating 

least squares (ALS) solutions for fitting the Tucker models. Topics 

discussed include: existence of exact and approximate solutions, 

construction of ALS algorithms, convergence of the algorithms, as 

well as a number of other technical details. Three small data sets 

are used to assess the accuracy and correctness of the algorithms, 

and to investigate the robustness with increasing error in the 

data. 

Finally, in Chapter 5 transformation procedures are considered 

which aim to find I simple I structures in core matrices. In par­

ticular algorithms for orthonormal and non-singular transformations 

are presented, illustrated, and evaluated. 
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3.1. INTRODUCTION 

In this chapter we will first give a survey of the plethora of 

models that have been proposed for the analysis of three-mode data 

(sections 3.2 through 3.6). We will restrict ourselves, however, to 

those models which explicitly or implicitly include a core matrix, 

and which primarily treat metric, unconditional data. Hereby we 

exclude such models or methods as simultaneous factor analysis 

(Joreskog, 1971), longitudinal factor analysis (Corballis, 1973; 

Joreskog, 1979; Joreskog & Sorbom, 1977), point-of-view analysis 

(Tucker & Messick, 1963), three-mode point-of-view analysis (Tzeng 

& Landis, 1978), and three-way unfolding (DeSarbo, 1978; DeSarbo & 
Carroll, 1979, 1981). 

In section 3.7 and following we will discuss a variety of 

extensions of the basic three-mode principal component models as 

well as a number of developments in related fields which have 

relevance for three-mode principal component analysis. We have 

grouped the extensions around three themes: 1. direct extensions of 

the basic models, viz. inclusion of missing data, extensions to 

other measurement levels, external analysis, and restrictions on 

the configurations (section 3.7); 2. three-mode causal modelling 

(section 3.8); 3. n-mode extensions (section 3.9). 

The models considered in this chapter (see Fig. 3.1) are 

either scalar-product or Euclidean distance models. The latter 

will, however, only be treated in their scalar-product form, but 

this entails no loss of generality as the (generalized) Euclidean 

distance between two vectors can be defined as the (generalized) 

scalar-product between the difference vector and itself (see Carroll 

& Wish, 1974, p.183, 186; De Leeuw & Pruzansky, 1978, p.480). 
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Fig. 3.1 Model trees 

Two basic types of models are distinguished: 

1. 'component' models or individual differences models, and 
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2. common factor (analysis) models or covariance structure models 

The first type of models is considered determinate or fixed in all 

three modes, whereas the second type has one mode (usually in­

dividuals) which is stochastic. In fact, Lohmoller & Wold (1980) 

briefly describe a third type with two stochastic modes, but we 

will not discuss this model. The 'component' models are generally 



Table 3.1 Component or individual differences models 

model 
number 

of modes 
diff. red. 

Tucker3 model 3 
Three-mode scaling 3 
PARAFAC1/CANDECOMP 3 

INDSCAL 3 

Tucker2 model 2 

IDIOSCAL 2 

PARAFAC2 2 

CANDECOMP/PARAFACI 2 

INDSCAL 2 

3 
2 
3 

2 

3 

2 

2 

2 

2 

f-symmetric = symmetric in all 
dir.cos.eq.= direction cosines 

size 
core 

matrix 

restrictions 
on 

core matrix 

number 
of data 
points 

three-way reduced models 

sXtXu ,Q,mn 
sXsXu f-symmetric !:i,Q,(.£+l)n 
SXsXs 3-way identity ,Q,mn 

sXsXs 3-way identi ty !:i,Q,(,Q,+1)n 

two-way reduced models 
-----------------------

sXtXn ,Q,mn 

sXsXn f-symmetric ~,Q,(.£+l)n 

sXsXn f-symmetric ~Q(.£+1)n 
dir.cos.eq. 

sXsXn f-diagonal ,Q,mn 

sXsXn f-diagonal !:i.£(.£+l)n 

number 
of 

parameters 

stu+,Q,s+mt+nu 
!:is (s+l)u+2.£s+nu 
,Q,s+ms+ns 

,Q,s+ns 

stn+,Q,s+mt 

~s (s+1)n+.£s 

~s (s-1)+ns+.£s 

ns+,Q,s+ms 

ns+,Q,s 

original 
proposers 

Tucker(1963,1964,1966a) 
Tucker(I972a) 
Harshman(1970), Carroll 
& Chang(I970) 
Carroll & Chang(1970) 

Israelsson(1969), 
Tucker (I 975) 
Carroll & Chang 
(1970, 1972) 
Harshman (1972a) 

Carroll & Chang(1970), 
Harshman(l970) 
Carroll & Chang(1970) 

frontal planes; f-diagonal = diagonal in all frontal planes; 
equal; red.= reduced; diff.= different. 

Ln 
o 

w 
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more 'data-analytic' and exploratory, while the factor analysis 

models are more statistical and confirmatory, but the distinction 

is not absolute. 

The term 'component' has been put between quotes so far, 

because the word is generally used for orthogonal vectors which 

result from an eigenvalue-eigenvector decomposition of a sums-of 

squares-and-cross-products matrix, covariance or correlation ma­

trix. In this chapter we will use the term loosely to refer to the 

columns of the matrices G, H, and E (see section 1.5 for the 

general notation in this book). In the Tucker3 and Tucker2 models 

which form the core of this book, these matrices are columnwise 

orthogonal, even orthonormal, but for other models in this chapter 

this is not necessarily the case. 

Maybe a word is in order about the use of the term 'model'. 

The word has many different meanings and connotations for different 

people. Here we will use it in a loose sense, mainly referring to a 

factorization of the data into a number of matrices, which describe 

in a parsimonious way relations between variables or sets of 

variables. It is not implied that there is always an underlying 

theory which prescribes the data generating process. Thus, in our 

usage of the term 'model' it is not only factor analysis but also 

principal component analysis which deals with models. 

In Table 3.1 most of the models proposed within the class of 

component models are given. They are arranged in two hierarchies 

running from the more general to the more specific. In the first 

set all models have three reduced ways, while in the second set 

they have only two. The most specific models, CANDECOMP and IND­

SCAL, fit into both sequences as they can be given two different 

representations, as follows from the formulas given below. Not all 

conceivable models within the classifications have been proposed, 

and it seems unnecessary to include them just for the sake of 

completeness. 
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3.2 COMPONENT MODELS WITH THREE REDUCED MODES 

Tucker3 model. The Tucker3 model is formulated as 

stu 
z .. k= L 2 L g. h. ek c 

1J p=l q=l r=l 1p Jq r pqr 

In his exposition, Tucker (1966a, p. 286) first developed this 

model with full column rank component matrices G, H, and E. Solving 

the model, Tucker used for G, H, and E columnwise sections of 

orthonormal matrices. The (columnwise) orthonormality of G, H, and 

E can be assumed without loss of generality. Given that a solution 

for orthonormal G, H, and E has been found, the component matrices 

may be transformed via non-singular transformations without addi­

tional loss in fit of the model, provided the core matrix C is 

counterrotated (see Chapter 5 for details). The orthonormality 

restriction on the component matrices has the advantage of simpli­

fying the algorithm to solve the models. 

The approach described here, i.e. finding the optimal solution 

for the Tucker3 model using the orthonormality for identification 

of the equations, and dealing with the transformation freedom 

afterwards, is a common one in principal component analysis. For 

instance, De Leeuw & Pruzansky (1978) advocated this approach to 

solve the INDSCAL model. Unless specifically mentioned otherwise, 

we will assume that G, H, and E are columnwise sections of ortho­

normal matrices when we refer to the Tucker3 (or T3) model. 

The component matrices here represent, as below, the loadings 

of the elements of the modes on their respective components. The 

core matrix gives the scores of each component of one mode on each 

component of a second mode for each component of the third one. In 

other words the core matrix tells uw how closely the various compo­

nents of the different ways are related. A more detailed discussion 

of the ways to interpret core matrices is given in the section 6.9. 

Three-mode scaling. The formulation of three-mode scaling 

s s 

zii'k= P~l P'!l 

u 

r~lgiPgi'p·ekrcpp'r 
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specifies that G and R of the general model should be equal. This 

equality forces the core matrix to be symmetric in its frontal 

planes, i.e. for each r cpp'r = cpp'r for all p and p'. As there is 

only one component space G for the first and second mode, a further 

interpretation of the off-diagonal elements (i.e. c , , pip') of 
pp r 

the frontal planes becomes possible in terms of direction cosines 

between the axes of the component space. More specifically, the 
~ ~ direction cosine is c ,/ (c ) 2( C , , ) , making it possible to 

pp r ppr p p r 
assess how the angles between the axes of the component space are 

'viewed' by each component of the third mode. In other words, the 

frontal planes can be interpreted as the transformation, each 

component of the third mode applied to the component space G, a 

transformation consisting of a non-singular transformation (non­

zero off-diagonal elements) and differential stretching or shrink-
!z ing (by c ) of the axes of G (see section 6.9 for further discus­ppr 

sion of this point). 

PARAllel FActor analysis (PARAFACl). The formulation of this 

model 

shows that it can be obtained from the general Tucker3 model by 

deleting the core matrix from the model or, similarly, allowing for 

the three-way analogue of the identity matrix (sxsxs). In this form 

the model was formulated by Harshman (1970, 1976), while the same 

model (CANDECOMP) with a different rationale (see below) was pro­

posed by Carroll & Chang (1970); see also Carroll & Wish (1974, 

p.90-92, and section 6.2) for an exposition of the two approaches. 

The interpretation of the present form is taken from the idea of 

parallel proportional profiles (Cattell, 1944, p.84; Harshman, 

1970, esp. p.15-19). If we let z"k be the score of the i-th sub-
1J 

ject on the j-th variable in the k-th condition, then the contri-

bution of the p-th component to a given score is the product of the 

loadings of the respective subject, variable and condition on this 

component. Put differently, g. , h. ,ek indicate the proportional 
1p JP P 

influence of that loading on the score z"k' It is interesting to 
1J 

note that PARAFAC1 and the (general) Tucker3 model are the only 
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'symmetric' models, in the sense that all ways are treated in the 

same way. 

INDividual Differences SCALing (INDSCAL). When seen as a spe­

cialization of PARAFACI the model can be written as 

s 

zii'k= P!lgipgi'pekP 

In this form the model does not provide many additional interpre­

tations. It is simply a specialization of the parallel profile 

analysis with the first two modes equal. The model will be discuss­

ed in an alternative formulation in the next section. 

3.3 COMPONENT MODELS WITH TWO REDUCED MODES 

Typical for component models with two reduced modes is that 

the core matrix for the third mode has the same dimension as the 

original data matrix. For each element of the third mode (subjects, 

conditions, occasions, etc.) the relations between the components 

of the other two modes are given, i.e. the third mode is not redu­

ced in the sXtXn extended core matrix. The information for each 

element of the third mode is contained in its frontal plane Ck = 

{CPqk} . Tucker (1972a) calls the Ck's 'individual characteristic 

matrices', but they will be referred to here by a more neutral name 

as (frontal) core planes. The distinction between the models to 

follow lies mainly in the restrictions they impose on the extended 

core matrix. 

Tucker2 model. As the formulation 

s t 

Zijk= P~l q~lgiPhjqCpqk' 

shows, the difference between the Tucker2 model and the Tucker3 

model is the treatment of the third mode. Especially in those cases 

in which it does not make sense to compute components, over the 

third mode, the model may be fruitfully used. Unless specifically 
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mentioned otherwise, we will assume (without loss of generality) 

that the component matrices G and Hare columnwise sections of 

orthonormal matrices, when we refer to the 'Tucker2 (or T2)' model. 

Individual Differences In Orientation SCALing (IDIOSCAL). The 

main restriction on the IDIOSCAL model 

is that the component matrices for the first and second mode are 

equal. The model is thus particularly appropriate when the first 

two modes refer to the same variables, stimuli, etc. to classify 

the data. As a consequence, the frontal planes of the core matrix 

will also be symmetric. The interpretation of this model is that 

the private space of each individual k is an orthogonally rotated 

version of the common space G, in which the dimensions of its own 

coordinate system are weighted by the square root of the diagonal 

elements of the core plane, i.e. C k' also called saliences (Car-pp 
roll & Chang, 1970). 

PARAllel FACtor analysis (PARAFAC2). Restricting the core 

matrix even more by demanding that the off-diagonal elements should 

be equal, we get 

s s 

zii'k=p!l P'!lgiPgi'P,CPP'k' or Zk= GCkG' 

~'- -1\ 
with t' = C pp'k pp'k' 

",,·k 
for k,k' = l, ... ,n, and p ~ p' and cpp'k = 

1: 1: 
C 'k/C2 kC2, 'k. The interpretation of this 
pp pp P P 

model is that all ele-

ments of the third mode 'view' the common axes under the same ang-
.'-

les. The direction cosines of those angles, C;p'k' are estimates of 

the subjective intercorrelations as Carroll & Wish (1974, p.96) 

call them. Thus the possibly oblique orientation is fixed over all 

elements of the third mode, but the axes may be weighted different­

ly. Again the solutions for each third mode element are parallel, 

in the sense that the private spaces are all proportional to the 

common space but with different weights. Harshman (1972b) has made 

some claims about the uniqueness of the solution of this model, 
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which were questioned by Carroll & Wish (1974, p.96) and which 

according to Carroll & Arabie (1980) were not settled at the time 

they finished writing their general review of multidimensional 

scaling models. 

CANonical DECOMposition (CANDECOMP). Within the framework of 

extended core matrices CANDECOMP can be written as 

s 
z. 'k= L g. h. c k' or GCkH t , 

1J p=1 1p JP pp 

with Ck diagonal (k=l, ... ,n). It is mathematically equivalent to 

the PARAFACI model of the previous section (see also section 6.2). 

The interpretation of the CANDECOMP model is that the nwnber of 

components for the first two modes should be equal and that the 

core matrix is restricted to be diagonal in all its frontal planes. 

For all third mode elements a one-to-one relation is postulated 

between the components of the first two modes, and they only differ 

in the weights or saliences they attach to each of the common 

dimensions. It has been shown (Harshman, 1972b; Kruskal, 1976,1977; 

De Leeuw & Pruzansky, 1978) that under rather weak conditions, a 

normalization such that the centroid of the stimulus spaces is at 

the origin, and the sum of the squared projections on each dimen­

sion in that space is one, the solution of CANDECOMP is unique 

except for permutations followed by a diagonal transformation. The 

importance of this uniqueness theorem is that if the model fits 

well the good fit only refers to the solution found, and not to 

infinitely many of them, which could be found by non-singular or 

orthogonal transformations. 

INDividual Differences SCALing (INDSCAL). Although not gene­

rally written this way, our formulation of the model 

with Ck diagonal (k=1, ... ,n), exhibits most clearly the essential 

features of the scalar-product form of the model. As in CANDECOMP 

the frontal planes are diagonal, and the interpretation of the 

model is that the third mode elements share a common (stimulus) 
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space, the axes of which they may weight differently, viz. by a 
1 

factor ;:'2 k. The diagonality of the core planes implies that the pp 
private spaces of the third mode elements are not rotated versions 

of the common space, but that they are all orientated in the same 

manner. The uniqueness theorem mentioned above holds a fortiori for 

the INDSCAL model. 

3.4 GENERALITY OF THE TUCKER3 MODEL$ 

In this section we will discuss how general the Tucker3 model 

is compared to models like PARAFAC1/CANDECOMP and the Tucker2 

model. 

The standard matrix formulation of the Tucker3 model used in 

this book is 

Z = GC(H'0E'). 

Another way of presenting the model would be to specify it for each 

frontal plane Zk: 

u 
Zk = G {L ek C } H' 

r=l r r 
(k=l, ... ,n) 

Suppose that C1, ... ,Cu can be diagonalized simultaneously, i.e. 

there exist non-singular matrices A and E, such that 

D = AC E' r r (r=l, ... ,u) 

are diagonal at the same time (see Chapter 5 for a procedure to 

find such an A and E). If the number of components of the first and 

second mode, sand t respectively, are unequal then Dr is consider­

ed to be diagonal if all d~Q are zero unless k=Q. If s is not 

equal to t and Dr is diagonal in the sense described above, then 

one may assume without loss of generality that Dr is an axa matrix 

with a= min(s,t), as the (max(s,t)-a) components of one of the 

modes do not contribute to the fit of the model. Therefore, we will 

assume from now on that s=t in this section. 

$ This section is based on an informal note by Jan de Leeuw (1982) 
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We may now rewrite the model as 

u u 
Z = G{L e k C }H ' = GA- 1 {L ek AC B'} (HB- 1) I = 

k r=l r r r=l r r 

u 
U{L e k D J V' = UWkV ' 

r=l r r 
u 

with U = GA- 1 V = , and W = L ek D (k=l, ... ,n). 
r=l r r 

As all Wk are diagonal we may rewrite the model as 

s 

Zijk = P!luipVjPWPPk = 

s 
L u. v. wk p=l :tp JP P 

3.4 

with t:I ={wkpJ is an (nxs) matrix whose rows are the diagonals of 

the Wk' This equation has the form of the PARAFACI/CANDECOMP model 

(see section 3.2 and 3.3). In other words, if the core matrix from 

a Tucker3 model can be diagonalized, then the model has the same 

form as the PARAFAC1/CANDECOMP model. 

To our knowledge specific investigations into the possibili­

ties of diagonalizing the core matrix from a Tucker3 model have not 

been made. However, the procedures outlined for the Tucker2 model 

in Chapter 5 equally apply to the Tucker3 model. Most of the relat­

ed work has been carried out on the IDIOSCAL model ( = symmetric 

Tucker2 model; see section 3.3) by Cohen, (1974, 1975), MacCallum 

(1976b), De Leeuw & Pruzansky (1978). 

When the number of components for the third mode, u, is equal 

to 1, the Tucker3 model becomes 

Zk = ekGCH ' 

which means all Zk are proportional, and so are the Wk=ekD. In this 

case there always exist an A and B such that D=ACB I is diagonal, 

and A and B can be found from a singular value decomposition of C. 

If the number of components of the first two modes are equal to 2 

(s=t=2), then all points (wk1 ' wk2 ) will lie on a straight line 

through the origin because of the proportionality of wk1 and wk2 as 

wkp = ekdp ' 
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Meredith (1964) and Schonemann (1972) discuss the problem of 

simultaneously diagonalizing two symmetric matrices by a single 

transformation matrix, while De Leeuw (1982) discusses the same 

problem in greater generality, and gives conditions under which it 

is possible to find such transformation matrices. In case the first 

and second mode are identical and u=2, the two core planes of the 

Tucker3 model can almost always be diagonalized. If the modes are 

different such diagonalization also is possible under certain 

conditions (De Leeuw, 1982, pers. comm.) 

When u=2, Wk = ek1D1 + ek2D2 , or wkp = ek1dp1 + ek2dp2 ' and 

the weights in W lie in a two-dimensional subspace of the s-dimen­

sional space of W (i.e. the (nxs) matrix W has only rank 2). This 

is, of course, no restriction when s=2, but it is when s > 2, and 

in this sense the Tucker3 model with diagonal core matrix is a 

special case of the PARAFACI/CANDECOMP model. 

Summarizing, we may say that if the Tucker3 core matrix can be 

diagonalized (and it can be under relatively general conditions 

when u=1 or u=2) , the Tucker3 model is equal to, or a special case 

of the PARAFACl/CANDECm1P model. For most data sets we have analys­

ed so far, one or two components for the third mode sufficed (see 

Table 3.2). This is partly due to the kind of centring or standar­

dizations used, but the scalings employed are fairly typical (see 

Chapter 6). Thus in practice the Tucker3 model is not or hardly, 

more general than PARAFACI/CANDECOMP. 

Theoretically, the Tucker2 model is more general than the 

PARAFACI/CANDECOMP model, especially because it contains far more 

parameters. Whether in practice it is also more general is not yet 

completely clear. In order to investigate this properly, non­

singular transformation procedures are needed to transform the 

extended core matrix to a diagonal form. In Chapter 5 we present 

such a procedure, but there are still many unsolved problems con­

nected with this routine. Our impression so far is that in a number 

of applications it will be hard to find suitable transformations to 

transform the core matrices to diagonality. See for instance the 

Attachment study in Chapter 8 and the adjective set of the Cola 

study in Chapter 11. 
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Table 3.2 Standardized weights of 'third mode' components $ 

number standardized total type ~f £ 
Data set of ele- component weight= centr1ng 

ments in weights SS(Fit) 
mode 

De Gruijter 6 .92 .01 .93 ik,jk 
Hohn 4 .46 .27 .13 .86 j(norm.)1'< 
Van der Voort 5 .80 .05 .85 overall 
Van de Geer III .80 .02 .01 .83 ik,jk 
Bus 37 .70 .07 .77 jk 
Osgood & Luria I 6 .45 .24 .69 j 
Schiffman (sim. ) 10 .49 .13 .62 ik,jk 
Goossens 65 .50 .09 .59 j 
Lammers 11 .58 .002 .58 jk(norm. ) 
Lammers 11 .55 .01 .56 j (norm.) 
Van der Kamp 100 .48 .04 .01 .53 ik,jk 
Osgood & Luria 6 .43 .09 .52 ik.jk 
Van der Kloot 65 .50 .02 .52 ik,jk 
Schiffman (adj.) 10 .30 .13 .07 .50 ik,jk 

Schiffman (adj.) 10 .30 .10 .07 .47 scale 

I midpoint 
Jones & Young 19 .41 .04 .45 ik,jk 
De Leeuw I 11 .39 .02 .41 

I 
ik,jk 

Sjoberg (set 2) 100 .20 .13 .06 .01 .40 j 
Miller & Nicely i 17 .31 .01 .32 ik,jk 

£ the predominance of ik,jk centring (see Chapter 6) is the result 
of the many similarity sets analysed, and an earlier tendency to 
ik,jk centre all data sets. 

$ indicates the 'third mode', which may be considered to contain 
the replications or conditions. 

* norm. = normalized (see section 6.2). 

Although the Tucker3 model is in most cases no more general than 

the PARAFAC1/CANDECOMP model, it has a number of advantages over 

the latter. In the Tucker3 model the components in the matrices G, 

R, and E may be orthonormal. This means that in many cases the 

interpretation will be simpler for the Tucker3 model. 

3.5 FACTOR ANALYSIS MODELS OR COVARIANCE STRUCTURE MODELS 

Introduction. Together with his introduction of the component 

models for three-way data, Tucker (1966a) introduced a common fac-
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tor analysis model, i.e. a model which allowed unique variances as 

well as common factors. His way to solve this model was analoguous 

to the then standard procedure for the communalities before enter­

ing into the factor analysis proper. Snyder (1968) elaborated on 

Tucker's idea, and included more sets of unique variances. Via an 

exposition of Bloxom (1968a), Bentler & Lee (1978,1979) arrived at 

a formulation of three-mode factor analysis models which could be 

handled within the framework of the general theory of the analysis 

of covariance structures. They also showed how the estimation pro­

cedure works, and implemented their ideas in a number of programs. 

Law & Snyder (1981) showed how a very general formulation of the 

analysis of covariance structures by McDonald (1978) includes the 

three-mode factor analysis model, while Bentler & Lee (1979) did 

the same for a similar general model of Bentler (1976). Byembed­

ding the factor analysis model in covariance structure models it 

becomes possible to apply the whole machinery connected with these 

general models. If one is prepared to make the necessary assump­

tions, various statistical stability statements can be made about 

the analysis. Moreover, it becomes easy to include restriction 

almost everywhere in the model, so that the testing of specific 

hypotheses about the structure of the solution is possible. 

A general description of the models that have been proposed in 

this area is given below. A more detailed discussion would in fact 

entail an excursion into the general theory of covariance structure 

models, which would take us too far away from the mainstream of the 

present book. 

It is not possible to discuss all models proposed in this 

area, But only some general classes. As soon as it is possible to 

impose restrictions on some parameters to be estimated, the concept 

of what constitutes a different model becomes very vague. There­

fore, we will deal only with exploratory models on which no detail­

ed constraints have been placed, for instance at the level of the 

individual parameter. For the random variables we will use the 

third mode, more in line with the individual differences approach 

described above than with the custom in the analysis of covariance 

structures. 
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Tucker's three-mode common factor analgsis model. Tucker 

(1966a), p.301ff) suggested, especially when the number of indivi­

duals n is large, that it might be fruitful to look at the ij-com­

bination mode, and analyse the correlation matrix derived from that 

model. Directly extending from that, he suggested treating that 

correlation matrix as in common factor analysis by estimating the 

unique variances separately, removing them from the correlation 

matrix, and only estimate the three-mode model from the adjusted 

correlation matrix. This proposal can be formulated as 

stu 
z. 'k= L L L g. h. ek c + 
~J p=l q=l r=l ~p Jq r pqr 

with £. Ok the unique score for individual k on the i-th element of 
~J 

the first and the j-th element of the second mode. The correlation 

form of this model becomes 

r ij , i' j' = 
s t 
L L 

p=l q=l 

wit.h v rr ' = 

u s 
L L 

r=l p'=l 

n 

t 
L 

q'=l 

u 
L 

r'=l 

+ u .. . I" 
~J ,~ J 

L ekrekr , , the correlation between the third mode 
k=l 

factors rand r'. Tucker took these correlations to be zero, so 

that vrr ' drop out of the model. The Uij,i'j' are the unique varian­

ces, and they are assumed to be zero unless i=i' and j=j'. Further­

more, it has to be assumed that the third mode factors and the 

unique scores are uncorrelated, in order to avoid product terms in 

the model. Noteworthy about the model is that no direct factor 

loadings are available for the individuals, i.e. the ekr cannot be 

estimated from the data. The principal reasons for this are the 

extra restrictions put on the ek 's and the £ ° ok' s. By incorpo-
r ~J 

rating these restrictions into the model the dimensionality of the 

individuals' mode is greater than it would have been without these 

restrictions (see Tucker, 1966a, p.310). 

Sngder's unique variances model. Snyder (1968) proposed to 

extend Tucker's model by including unique variances for each of the 
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first and second modes as well. The model therefore gets a rather 

complex form: 

stu 
Z. 'k= L L L g. h. ek c + e. 'k+ £iJ'k+~iJ'k 

1J p=l q=l r=l 1p Jq r pqr 1J 

with a whole series of restrictions like the ones in the previous 

model, leading to a separable correlation form, which we will 

neither give nor discuss here. The usefulness of this approach is 

somewhat difficult to gauge as extensive studies with this model 

have apparently not been carried out, and the report itself never 

officially appeared in print. Our guess whould be that questions 

which necessitate the use of such a model might be better treated 

with some of the approaches outlined below. 

Bloxom's reformulation of Tucker's model. Bloxom (1968a) 

seems to be the first who explicitly formulated the three-mode 

factor analysis model using random variables (which we will under­

line) instead of a finite matrix of person parameters as Tucker 

did. Bloxom's model takes the form 

stu 
z .. = L L L g. h. c e +~ .. 
-1J p=l q=l r=l 1P Jq pqr-r -1J 

with z .. the ij-th element of the random vector z for the QXm-ob­
-1J 

servations, ~r the r-th element of the u-dimensional vector e of 

the factor scores, and ~ .. the ij-th element of the vector ~ of the 
-1J 

QXm-residual variates (or unique scores) _ In order to solve the 

model the (standard) assumptions are made that ~ and ~ are statis­

tically independent and that the residual variates !: are mutually 

independent. The covariance form of the model is 

stu stu 
qiJ-,i'J"= L L L L L L 

p=l q=l r=l p'=l q'=l r'=l 

with V = {v,} = E(ee'), the covariance matrix of the factor 
-rr --

scores, and U = {u .... } = E(~t) the matrix of unique variances of 
- -1J ,1J -

the residual variates_ 
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A curious thing about Bloxom's presentation of his model is 

that although he is clearly aware of the principal component ver­

sion in Tucker (1966a), he seems to neglect the factor analysis 

counterpart of that model in the same paper. As can be seen from 

the above formulas the models are effectively the same, only couch­

ed in different terms. 

The Bentler & Lee models. Bentler & Lee (1979) presented some 

three-mode models, the most general of which is a slight extension 

of Bloxom's proposal 

s t u 
z .. = I:! .. + L L L g. h. c e + E .. 
-1J 1J p=1 q=l r=1 1p Jq pqr -r -1J 

with ~ij the ij-th element of the random vector ~ of population 

means. In Bloxom's model ~ = o. The covariance form of Bentler & 

Lee's model is the same as that of Bloxom. It is suggested by the 

proposers (p.89) to impose a number of restrictions on the model. 

In an exploratory context these could take the form of assuming 

orthonormal factor scores for the individuals and requiring a 

special structure for G, H, and the core matrix. The purpose of all 

these res trictions is to make the model identifiable, and thus 

amenable to solving it by generalized least squares or maximum 

likelihood methods. Implicit in this procedure is, that the struc­

ture imposed by these restrictions is one that make sense within 

the context of the data. If a model can be found that fits the data 

well, then one possible model has been found, but, only within the 

limits set by the earlier restrictions. With the large number of 

parameters under consideration other structures induced by other 

sets of restrictions could have given entirely different sets of 

models. 

A special model, also treated in an earlier paper (Bentler & 
Lee, 1978), has the same form as the model above but has the ad­

ditional restrictions that S = {s "J is an identity matrix, 
pq,p q 

thus 

u u 

s ,,= L L Cpqr~rr,Cp'q'r'= 1 
-pq,p q r=1 r'=l 

if p=p' and q=q' 

=.0 otherwise 
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These restrictions are introduced without much explanation or jus­

tification and without an indication of the consequences for the 

interpretation of the model. The same model was proposed by Lohmol­

ler (1978, p.4), who called S={s "L the 'core covariance pq,p q 
matrix'. He indicated what the implications are when this matrix is 

equated to an identity matrix. In section 13.3 we give an extensive 

discussion of this latent covariation matrix, as we prefer to call 

it. 

The covariance form of the model, including the restrictions 

s t 
G ... ,.,=1 19.h.g.,h., +u ... ,., 
-~J,~ J p=l q=l ~p Jq ~ P J q -~J,~ J 

looks like a factor analysis analogue of the PARAFAC1 model with a 

random third mode (or E orthonormal), and an unequal number of 

components in the first two modes: 

s t u 

Zijk = 1 1 L g. h. ek 
p=l q=l r=l ~p Jq r 

which has as its covariance form under the assumption of orthonor­

mal components e r 
s t 

G ... ,. ,= L 1 g. h. g., h., 
~J,~ J p=l q=l ~p Jq ~ P J q 

In this way the specialized Bentler & Lee model has an interpre­

tation analoguous to PARAFAC1 in the sense of proportional profiles 

(see also Harshman, 1972, p.32-34; Harshman & Berenbaum, 1981). 

Three-mode factor analgsis as a covariance structure model. 

Both Bentler (1976) and McDonald (1978) have proposed very general 

models which probably subsume almost all conceivable models to 

analyse covariance matrices. Bentler & Lee (1979) show how the 

three-mode factor analysis model can be placed in Bentler's general 

model, while Law & Snyder (1981) show how the same model fits into 

McDonald's model. The attractive aspect of this embedding in gene­

ral models is that programs to solve the general model can be used 

to attack three-mode factor analysis as well. However, as Bentler 

& Lee point out, more specialized programs can handle the specific 
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models more efficiently, and produce output which is more geared 

towards the special application. Bentler & Lee (1979) also show 

that their (1978) model can be seen as a special case of Joreskog's 

(1973a) second~order factor model (see also Bloxom, forthcoming), so 

that a program like LISREL (Joreskog & Sorbom, 1978) can solve this 

particular problem as well (cf. section 2.2). 

3.6 INDIVIDUAL DIFFERENCES MODELS OR COVARIANCE STRUCTURE MODELS? 

Bentler & Lee (1979, p.79) contrast the two types of models by 

saying: "Tucker's development of his model is primarily consistent 

with a traditional approach towards data analysis rather than a 

statistical approach towards parameter estimation and model evalua­

tion". They continue to say that the standard machinery of statis­

tical evaluation of a model (standard errors for the estimators, 

goodness-of-fi t tests, etc.) is not available for Tucker's ap­

proach, and, in addition, the properties of the estimators are not 

known. 

Within the framework of the analysis of covariance structures, 

using maximum likelihood or generalized least squares estimation, 

evaluation is possible, and the properties of the estimators are 

known, at least asymptotically. All these advantages are bought by 

introducing (asymptotic) assumptions about the data and/or error 

structure, and by imposing a number of largely arbitrary restric­

tions on the model, espeCially in the exploratory context. Such 

restrictions are necessary to identify the model and to solve the 

estimation problem. The restrictions entail an a priori choice in 

favour of certain classes or kinds of models. With respect to the 

restrictions, Bentler & Lee (1979, p.99) admit that in an explora­

tory context the identification constraints can be viewed as tempo­

rary and arbitrary, and should be removed by appropriate transfor­

mations to meaningful solutions in the dimensional space. This 

suggestion has the flavour of a proposal to use INDSCAL because of 

its uniqueness property, and rotating afterwards because the sti­

mulus space is not really what was desired. The strength of the 

covariance structure approach lies in the confirmatory context 



3.6 67 

using (very?) large samples. In such situations it is possible to 

impose restrictions, which have substantive implications on the 

parameters that matter. In addition, multivariable-multicondition 

matrices can be analysed with covariance structure models, and not 

efficiently by individual differences models, as the latter can 

only be used for within-condition covariances matrices and not for 

between-conditions covariances. 

The Alternating Least Squares (ALS) approach towards solving 

the three-mode principal component model which forms the foundation 

of this book has some of the defects, but also some of the ad­

vantages of both approaches. We will treat most of the details in 

the chapters to come, and only point out some of the properties 

here. 

One of the problems Bentler & Lee quote for Tucker's approach 

is the unknown nature of the estimators of the parameters. However, 

although the estimators are not least squares ones and their pro­

perties not known, the Tucker methods are sufficiently simple so 

that, in principle, it should be possible to work out some statis­

tical stability statements, especially for the component loadings. 

In the alternating least squares approach, in which sets of para­

meters are estimated iteratively by conditional least squares 

procedures, the statistical stability of the estimators can be 

determined in principle, but the method is much more complex than 

Tucker's methods, and the task to determine the statistical stabi­

lity will be much more difficult. The properties of the estimators, 

of course, also depend very much on the distributional assumptions 

one is prepared to make, and specifying the appropriate assumptions 

for three-mode data is not an easy task. Assessing the fit of a 

model is possible within the covariance structure framework, but 

not for Tucker's approach. 

In section 4.3 it is shown that for the alternating least 

squares procedures the total sum of squares of the data can be 

partitioned up to the level of the individual data points making 

assessment of the fit of the model possible, be it still in an 

exploratory way. 

Finally, using a theorem of Kruskal (Carroll, Pruzansky & 

Kruskal, 1980), it is possible to show that the ALS framework can 
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be used to incorporate restrictions on the configurations or compo­

nents (see section 3.7). The details of incorporating such restric­

tions for three-mode principal component analysis still have to be 

worked out, but Lohmoller (1981b), for instance, has developed 

alternating least squares (or partial least squares, as he calls 

it) procedures which can handle succesfully all or most of the 

models the standard programs for the analysis of covariance struc­

tures, like LISREL (Joreskog & Sorbom, 1978) can handle. (For a 

comprehensive comparison, see Dijkstra, 1981). In other words the 

ALS approach serves most needs of exploratory approach, and has 

some confirmatory capabilities as well. 

3.7 EXTENSIONS OF THREE-MODE PRINCIPAL COMPONENT MODELS 

Missing data. In the present formulation of the Tucker3 and 

Tucker2 models no option has been provided for the inclusion of 

missing data. In all examples in this book the starting point is a 

completely crossed design with complete information. The alternat­

ing least squares approach to solving the estimation problem of the 

model makes it relatively simple to include facilities for handling 

missing data. 

All that is necessary is to include in the algorithm an extra 

phase in which the missing data points are estimated after each 

step of the main algorithm. The missing data points are initialized 

by an arbitrary or informed estimate, and the algorithm then esti­

mates the parameters of the model on the basis of these augmented 

data. Using these parameter estimates the missing data points are 

re-estimated in a regression-like fashion; then a new cycle of the 

iteration is started. In fact, such procedures are standard within 

the ALS-approach to most metric models (see, for instance, Young, 

De Leeuw, & Takane, 1980; Young, 1981). 

Extensions to other measurement characteristics. A further 

application of the same principle is to include a so-called optimal 

scaling phase in the ALS algorithm to accommodate data with various 

measurement characteristics. Young and De Leeuw, and their co-work-
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ers (e.g. Young, De Leeuw, & Takane, 1980; Young, 1981) distinguish 

three measurement characteristics to classify the types of data 

commonly found in social science research, viz. measurement process, 

measurement level, and measurement conditionality. The first of the 

three refers to the discreteness or continuity of the observed 

values, in other words, whether the observed numbers represent 

intervals or intrinsically discrete values. As for measurement 

levels one generally distinguishes between the nominal, ordinal, 

interval, and ratio levels. Finally, the measurement conditionality 

of data indicates which data points may be compared. For instance, 

in some applications, only comparison within elements of the third 

mode (i.e. within frontal planes) may be made but no comparisons 

can be meaningfully made across frontal planes without further 

scaling. A detailed discussion of these measurement characteristics 

can be found in the above references. 

The first inclusion of an optimal scaling phase in three-mode 

data was given by Takane, Young, & De Leeuw (1977) in their paper 

on scaling individual differences using ALSCAL, which treats a 

large number of the intricacies connected with this inclusion. 

Sands & Young (1980) discuss in a similar vein the combination of 

an optimal scaling phase with both the CANDECOMP-PARAFAC1 model 

(called "weighted model") and the "replicated-model" in which 

subjects are treated as true replications. From these two papers it 

is evident that a similar inclusion of optimal scaling into the 

TUCKALS algorithms is feasible. The inclusion or imputation of 

missing data can be incorporated in a natural way in the optimal 

scaling phase. 

External analysis. In the TUCKALS algorithms all component 

matrices are estimated, i.e. G, H, and E for the Tucker3 model, and 

G and H for the Tucker2 model. It is, however, also feasible to 

require that one or two of G, H, and E in the Tucker3 model, or G 

or H in the Tucker2 model remain fixed, while the other component 

matrix (matrices) are estimated via the ALS-procedure. Such an 

'external' analysis was proposed by Carroll (1972) in connection 

with unfolding. It is included in ALSCAL-4 (Young & Lewyckyj, 

1979), and in the ALSCOMP3 program devised by Sands & Young (1980). 
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In section 11.4 the usefulness of such an external analysis using 

the Tucker2 model is illustrated in principle, but not in practice, 

as the procedure is not yet included in the TUCKALS programs. 

Another possible application comes from an extension of the 

research reported in part in Chapter 10, and in full in Van der 

Kloot & Kroonenberg (1982). In the new experiment eleven hypothe­

tical stimulus persons characterized each by one personality trait 

descriptor were rated by 95 subjects on all of the same eleven des­

criptors, or scales. The derived scale configuration (from an 

11xllx95 TUCKALS2 analysis) thus indicates how the scales are 

related. In addition to the eleven single-descriptor stimulus 

persons, each subject also rated a number of two-, three-, four-, 

and/or five-descriptor stimulus persons, but not all of these 

stimulus persons were rated by all the subjects. 

If we assume that the scale space derived from the single­

description stimulus persons reflects the way the scales are orga­

nized, we can use this scale space to determine the way the sub­

jects arrange the more-descriptor stimulus persons in a coherent 

fashion. By performing external analysis for the subjects who rated 

the same more-descriptor persons, keeping the scale space fixed, it 

is possible to compare the groups which rated different combina­

tions of more-descriptor persons. The full analysis and more de­

tailed considerations of external analysis with three-mode princi­

pal component analysis can be found in Kroonenberg & Van der Kloot 

(Note 3), while a somewhat different approach to external analysis 

of t.he same data can be found in Van der Kloot, Bakker, & Kroonen­

berg (Note 4). 

Restrictions on configurations. In Chapter 5 we discuss 

transformations to obtain a simpler structure of the Tucker2 core 

matrix. Following the practice in standard principal component and 

common factor analysis, it is also possible to transform the compo­

nent matrices by some orthogonal transformation procedure such as 

Kaiser's (1958) varimax procedure, or by a non-singular transforma­

tion. Both these procedures aim at obtaining some kind of 'simple 

structure' in an exploratory fashion. In situations where there is 

considerable knowledge about the underlying theory, however, it 
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seems more appropriate to use some kind of confirmatory approach by 

specifying restrictions on the parameters of the model, although 

even in an exploratory context, methods to impose restrictions can 

be useful in finding simple structures (see Joreskog, 1978; Kroo­

nenberg & Lewis, 1982). 

The various models for treating three-mode data (as outlined 

in sections 3.3 to 3.6) were initially viewed as a series of pro­

gressively more specialized models. Possibly inspired by the deve­

lopment of covariance structure models, the three-mode models came 

to be seen as models which could be sequentially tested by increas­

ing or decreasing the number of constraints on the parameters. In 

fact, Bentler & Lee (1978, 1979), and Lohmoller & Wold (1980) 

indicate ways to do this for their restricted models. Especially in 

multidimensional scaling, minimization of loss functions under con­

straints using some type of alternating least squares procedure has 

been eminently succesful (Bentler & Weeks, 1978; Bloxom, 1978; Borg 

& Lingoes, 1980; De Leeuw & Heiser, 1980; Carroll, Pruzansky, & 

Kruskal, 1980). The latter prove a theorem which shows that solving 

the three-mode principal component model under constraints is 

possible (p. 10). The approach using constraints seems a more 

appropriate way to assess the adequacy of a model compared to a 

more general or a more restricted model than the approaches out­

lined in Chapter 5, and those given by MacCallum (1976a,b), Cohen 

(1974,1975), and De Leeuw & Pruzansky (1978), which attempt to 

transform the core matrix to a specified target. 

3.8 THREE-MODE CAUSAL MODELLING 

Recent years have seen an upsurge of the use of so-called 

'causal modelling'. Elaborate stochastic models are defined which 

describe causal networks in terms of latent variables (structural 

model) coupled with an explicit formulation of the relations be­

tween between the observed and latent variables (measurement mo­

del) . Especially Joreskog (e. g. 1973), Bentler (e. g. 1976), Mc 

Donald (e.g. 1978), and Wold (e.g. 1975) have proposed both general 

models as well as developed algorithms and programs to solve the 
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parameter estimation of these models. The main data to analyse are 

the variances and covariances of the observed variables, sometimes 

in conjunction with the means. 

The three-mode models specified by Bloxom (1968a), Bentler & 
Lee (1978,1979), and Lee & Fong (1982) belong to this class (as 

outlined in section 3.6), although they are only measurement mo­

dels. Lohmoller & Wold (1980) propose, and use a somewhat less 

elaborate measurement model in conjunction with a structural model, 

calling their proposal a three-mode path model: 

s t 

~iJ' = L L giphJ'q~pq 
p=l q=l 

s 
~ = L 
pq p'=l 

+L. 
-1.J 

measurement model 
(=Bentler & Lee, 1978) 

They augment their model by including for each parameter matrix a 

'pattern matrix' (design matrix is probably a better word) consis­

ting of zeroes and ones which specifies the parameters to be esti­

mated: 

s t 

~ij =P:l q:1(~iPgiP) (Vjqhjq) ~pq+ ~ij 

s t 

~pq =P':l q':l (app,app ') (~qq,bqq')~p'q' + 9pq 

with ~. , v. ,a "and ~ , zero or one, according to the design 1.p Jq pp qq 
specifications. In addition, restrictions may be imposed on the 

covariation (covariance or correlation) matrix of the ~ . 

In their report, Lohmoller & Wold outline an ALS (or PLS) 

algorithm to solve the three-mode path model, but few details are 

given with respect to the performance of the algorithm. However, a 

program description is announced. 

As mentioned before, the measurement model is somewhat less 

elaborate in the sense that no core matrix is specified explicitly. 

However, the covariation (covariance or correlation matrix) ~ = 

E(~') is the component analogue of the variance-covariance matrix 

of the random vector of observations E(~~'). If we conceive of the 

entries in the Tucker3 core matrix as the scores of idealized 

subjects on latent variables under prototype conditions (see sec-
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tion 2.2 and section 6.9), then ~ may be viewed as the covariation 

matrix of those scores, and will be referred to as the latent co­

variation matrix (see section 13.3 for a further discussion of this 

matrix). 

A final point, taken up again in Chapter 13, is that Lohmoller 

& Wold (1980) use a multivariate autoregressive model as their 

basic structural model, with which they analyse longitudinal data. 

3.9 n-MODE EXTENSIONS 

A number of extensions to n-mode individual differences sca­

ling and principal component analysis have been proposed. Carroll & 
Chang (1970), Harshman (1970), and Carroll & Wish (1974) mention 

extensions of the INDSCAL and PARAFAC1 models (see sections 3.2, 

and 3.3), Carroll & Chang (1970) have implemented their proposal in 

their CANDECOMP program for n up to 7 (p. 313). The only applica­

tions known to us of this model are Green, Carmone, & Wachspress 

(1976), and Carroll, Pruzansky, & Green (1977). 

Lastovicka (1981) discusses a direct four-mode extension of 

Tucker's (1966a) Method I by defining a standard principal compo­

nent analysis for the fourth mode, analoguous to the already avail­

able ones for the other three modes. Similarly the TUCKALS algo­

rithms can be extended by adding more substeps (see section 4.4). 

In prinCiple, the extension to n-mode data is straightforward, but 

it becomes increasingly more complex to keep track of the summa­

tions over the proper indices. Moreover, the description of such an 

n-mode -procedure becomes exceedingly cumbersome without new nota­

tion. 

Such a new notation based on permutation matrices was devised 

by Kapteijn, Neudecker, & Wansbeek (1982) who describe what amounts 

to a Tuckern model, and they describe a TUCKALSn algorithm. They 

also propose to use Tucker's Method I to initialize the algorithm 

just as we have done for TUCKALS algorithms. 

The number of published applications with n greater than three 

is very small. Primarily, because of the lack of programs to per­

form the analyses, but also because of the complexity of the inter-
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pretation. Furthermore, it is quite a task to generate the appro­

priate data in sufficient quantities to make such an analysis 

meaningful. It is no problem to conceptualize adequate data, after 

all Cattell's (1966a) data box has ten ways, but few investigators 

seem to have taken the trouble to collect such multi-mode data, and 

try to look at what are essentially four-mode and higher interac­

tions. 
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4.1 INTRODUCTION 

In the previous chapter we have reviewed a large number of 

scalar-product models for three-mode data. In this chapter we will 

concentrate on two of them, viz. the Tucker3 and Tucker2 models. 

Both are the most general in the class of component models with 

three and two reduced modes, respectively. As much of the develop­

ment of the solutions for the two Tucker models runs almost paral­

lel, we will treat only the Tucker3 model in detail, and the Tuck­

er2 model very briefly. After a discussion of the widely used 

methods developed by Tucker (1966a) to solve the three-mode princi-

pal component model and of their advantages and disadvantages, we 

will present in some (theoretical) detail an alternating least 

squares procedure for the Tucker3 model. This presentation will 

include theorems about the conditions for a unique solution, the 

development of an algorithm, and convergence properties of the 

algorithm. Furthermore two small examples using three-mode Hilbert 

matrices will be used to assess the accuracy of the algorithm, and 

a small Monte Carlo study will be reported which was designed to 

assess how increasing errors influence the recovery of a particular 

component space. 

4.2 TUCKER'S METHODS FOR THREE-MODE PRINCIPAL COMPONENT ANALYSIS 

Tucker (1966a, p.294-301) describes three methods to deal with 

the estimation of the parameters in the three-mode principal compo­

nent model. The last of these models belongs more to the covariance 

structure approach, and will not be discussed here. 
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The essence of Method I is that cross-product matrices P, Q, R 

are formed for the three modes: 

m n n Q 

Pii , = L L ZijkZi' jk ;qjj' = L L ZijkZij'k 
j=l k=l k=l i=l 

Q m 
r kk , = L L ZijkZijk' 

i=l j==l 

and that standard principal component matrices, say G, H, and E, 

are computed via an eigenvalue-eigenvector decomposition for each 

of them. In general one only wants to retain the first few eigen­

vectors, assuming that the other vectors correspond to random 

variation in the data rather than systematic variation. G, H, and E 

are thus columnwise orthonormal, rather than orthonormal. From the 

formulation of the model it can be derived, as Tucker does for his 

method (p.292) and we will do for ours below in section 4.3, that 

the matrices G, H, and E are all that is necessary to arrive at an 

estimate for the parameters of the core matrix: 

Q m n 
c == L L L g. h. ek z .. k 
pqr i=l j=l k=l ~p Jq r ~J 

As long as all eigenvectors corresponding to non-zero roots are re­

tained the estimators for c turn out to be least squares ones. pqr 
However, when G, H, and E are truncated to the eigenvectors corres-

ponding to the s, t, and u largest eigenvalues, then the estimators 

of the core matrix are no longer least squares ones, as the dele­

tions of the later eigenvectors in the component matrices affect 

the estimators of the core matrix in a complicated way. This im­

plies, for instance, that the relation 

Q m n 
L L L z~.k 

i=l j=l k=l ~J 

stu 
== L L L 

p==l q=l r=l 
c 2 
pqr 

which is true for the complete decomposition with s=Q, t=m, and 

r=n, no longer has a simple equivalence for the reduced decomposi­

tion, e.g. in the form of a separate sum of squares for the core 

matrix and one for the error. In section 4.3 and Chapter 7 it will 

be shown, that the partioning of the total sum of squares is a very 

powerful tool for interpretation. With Tucker's Method I it is not 
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clear how much of the total sum of squares of the data is accounted 

for by the reduced decomposition. Each of the modes will nearly al­

ways have different amounts of variation accounted for. It should, 

however, be noted that the better a model fits, the smaller the 

differences in amount of variation accounted for between the modes 

will be. 

In the complete decomposition each squared element, c 2 ,of pqr 
the core matrix indicates the amount of variation accounted for by 

that element, or the combination of components that this element 

stands for - here the p-th component of the first mode, the q-th 

component of the second mode, and the r-th component of the third 

mode. This interpretation cannot be maintained when the amount of 

variation accounted for is different for each mode. 

Tucker's Method II differs from Method I in the sequence of 

calculations. The components of the first mode are computed first, 

and they are immediately used to reduce the total data matrix to 

dimensions sXmXn. This reduced matrix is then employed for the 

computation of the component matrix for the second mode, and the 

resulting components are used to reduce the data matrix once again 

now to dimension sXtXn. A final singular value decomposition (see 

section 2.2) is used to find the core matrix, and the remaining 

components for the third mode. The purpose of this procedure is to 

circumvent the solving of the possibly large eigenvalue-eigenvector 

problem for one of the modes (usually individuals). The problems 

with discarding small roots are rather serious in this procedure, 

as the errors of approximation at one stage are passed on to the 

next stage. Incidentally, this way of solving the Tucker3 model 

demonstrates Bloxom's (forthcoming) point that the model is a 

third-order factor component model, and it fits nicely in the 

presentation of the model as three nested sets of linear combina­

tions (see section 2.2). 

Summing up it seems fair to say that, although Tucker's me­

thods are acceptable in case of a complete decomposition, and in 

case of a good fit, they introduce problems in the reduced case 

with respect to the properties of the estimators, the interpreta­

tion of the core matrix, and the amount of variation accounted for 

by the components. 
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In the following sections we develop procedures which do not 

suffer from these defects, but which are conceptually and compu­

tationally more complex. It will be possible with the results of 

these procedures to assess the quality of the fit of the model and 

to partition the total sum of squares (see Chapter 7). 

4.3 LEAST SQUARES SOLUTIONS FOR THE TUCKER3 MODEL 

Loss functions. In section 2.3 and 3.2 we introduced the 

Tucker3 model 

stu 
z .. k= I I I g. h. ek c 

1J p=l q=l r=l 1p Jq r pqr 

with the restrictions that the columns of G = {g. }, H = {h. }, and 
1p N 

E = {ekr } are orthonormal. A matrix formulation of the model can be 

given if we use Kronecker products, 8, of the components (Bellman, 

1960), and 'combination modes' (Tucker, 1966a, p.289) for the data 

matrix and the core matrix: 

Z = GC(H'8E') 

with the UXmn) matrix Z, and the (sXtu) matrix C written with 

combination modes. By symmetry other matrix formulations are pos­

sible by using different combination modes and other component 

matrices in the Kronecker product. By using summation notation we 

can avoid the use of Kronecker products. In doing so, one formu­

lation will suffice, and the symmetry of the model in the three 

modes is reflected by the formulation. 

If we were interested in exactly decomposing Z into all its 

components, Tucker's methods would suffice to provide a solution 

for the decomposition, as we remarked above. However, in practical 

applications one is interested only in the first few principal com­

ponents for each of the modes. In general this precludes finding an 

exact decomposition of Z into G, H, E, and C. One therefore has to 

be satisfied with an approximation Z = GC(H'8E'), i.e. finding G, 

H, E, and C such that the difference between the model and the data 

is minimal according to some loss function. In slightly diffe:ent 

terms, we have to look for the best approximate decomposition Z of 
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the three-mode matrix into G, H, E, and e according to the Tucker3 

model. 

In our case, as in many similar situations, we define a mean: 

squared loss function. Thus we search for an approximate solution Z 
such that 

Q m 
f(G,H,E,e) = [[Z_Z]]2 = 1 1 

i=l j=l 

Q m n stu 
1 1 1 (z. 'k- 1 1 1 giphJ'qekrCpqr) 2 

i=l j=l k=l 1J p=l q=l r=l 

is minimal. The minimization has to be carried out under the re­

strictions of the model, i. e. G, H, and E have to be columnwise 

orthonormal. The Z for which f attains its minimum will be desig-

nated as Z = {z. 'k}' with 
1J 

s t u 
Z. 'k= 1 1 1 gip Ii. ek C 

1J p=l q=l r=l Jq r pqr 

Existence of a best approximate solution. Our first task is 

to show that there exist indeed such G, H, E, and e that the loss 

function attains a (global) minimum. This can be done by showing 

first that for given G, H, and E a unique e can be found which 

minimizes the loss function, and which can be expressed in terms of 

G, H, and E. In this way we are left with a minimization over G, H, 

and E. 

A lemma due to Penrose (1955 - see also Kroonenberg & De 

Leeuw, 1977, p.3-3, 3-4) states that there exists a unique C, such 

that the function h, 

h(e) = [[Z_Z]]2 = [[Z-GCF,]]2 

is as small as possible. This C is equal to G'ZF, and the absolute 

minimum zero is reached only if Z = GG'ZFF'. By defining the (mnXqr) 

matrix F - {f } with f' k = h. ek , we may conclude that C = - jk,qr J ,qr Jq r 

Q m n 
c =1 L 1 g., h., ek , z""k' 
pqr i'=l j'=l k'=l 1 P J q r 1 J 

minimizes f for fixed G, H, and E, and that 
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f(Z) = 0 iff Zijk= 

stu Q m n 

= ~=1 ~=1 ;=1 i~=l j~=l k~=lgiPgi'phjq hj'qekr ek'rZi'j'k' 

The implication of this result is that we may minimize f over G, H, 

and E, after substituting the expression for C into the loss func­

tion. The optimal core matrix C can then be computed afterwards 

from the optimal G, H, and E by substitutirlg' their values in the 

above equation for C. 
The function f thus has to be optimized over the domain S 

S = {sis = (G,H,E), G,H, and E columnwise orthonormal} 

which is a compact subset in a finite dimensional real space. Fur­

thermore, f is a bounded continuous function on S, therefore there 

exists a point s = (G,H,E) in S, such that f attains its minimum. 

In other words the minimization problem always has a solution. 

Partitioning of total sum of squares. _Using the optimal C 
from the previous section we can thus write Z as 

stu Q m n 
Z. 'k= L L L 

1J p=l q=l r=l i~=l j~=l k~=lgiPgi'phjqhj'qekrek'rZi'j'k' 

Using this formulation we can rewrite the loss function as 

Q m n 
f'(G,H,E) L L L (z. 'k-z, 'k)2 

i=l j=l k=l 1J 1J 

= <: -2 + L Z"k 
i ,j ,k 1J 

2 

The last term can be shown to be equal after algebraic manipula­

tion, using the orthonormality of G, H, and E, - to 

2 <: <: <: h h 2 <: - 2 
L L L gipgi'p jq j'qekrek'r z. 'kz " "k' = L Zijk 

i ,j ,k p, q, r i' j , k' 1J 1 J i ,j , k 

In Appendix 4.1 we show that the orthonormality is not necessary 

for the above equation to hold but as we already assumed that G, H, 

and E are orthonormal, it is convenient to use this property. In a 

sense demanding orthonormality in a fixed model is thus analoguous 
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to assuming statistical independence between the model and the error 

vectors in models with one random vector (see the discussion in sec­

tion 3.5) 

Thus 
Q 

f' (G,H,E» == ~ 
i==l 

m 
L 

j==l 

n 

L (z. "k-i" "k)2 = L Z~jk 
k=l 1.J 1.J i,j,k 

" ~2 
L Zijk 

i,j,k 

A convenient way of expressing this is as follows 

SS(Residuals) == SS(Data) - SS(Model), or 

SS(Res) == SS(Total) - SS(Fit). 

Thus the total sum of squares may be partitioned into a residual 

sum of squares and a fitted sum of squares, and the above formu­

lation shows that the minimization of the SS(Res) is equal to the 

maximization of the SS(Fit). 

It is furthermore worthwhile to note that both the SS(Fit) and 

the SS(Res) can be further partitioned in many different ways, none 

of which involve cross-product terms. The sum of squares are after 

all built up from the squares of the contributions of each point 

(i,j,k) to the SS(Fit) and the SS(Res). We may therefore partition 

them in an analysis-of-variance way in order to find influential or 

ill-fitting elements in each of the modes, or even three-mode 

combinations which contribute too much or too little to the fit or 

residual. These matters will be taken up in Chapter 7. 

Nature of the approximate solution. As mentioned in the pre­

vious section we can either minimize the residual sum of squares, 

or maximize the fitted sum of squares to find G, ft, and E. It turns 

out to be more efficient to maximize the SS(Fit): 

Q m n 
p(G,H,E) = SS(Fit) = L L L iiJ"k 

i=l j==l k=l 

We have already shown that 

~ ~2 - ~ Zijk iijk and Zijk- , 
i,j ,k i,j ,k 

thus 

p(G,H,E) == L L L g" g", h" h", ek ek , z .. kZ . , " , k 
i,j ,k p,q,r i;j ;k' 1.p 1. P J q J q r r 1.J 1. J 

with the constraints that G, H, and E are columnwise orthonormal. 
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Incorporating these constraints into the maximization equation we 

get 

- 2: 2: 
p p' 

2: 2: 2: 
r r' k 

rr' v /ek ek ,-0 ) rr ~ r r 

which reads in matrix notation 

p' (G,H,E,A,M,N)=trG' {Z(H8E)(H'8E' )Z'} G - tr A(G'G-I ) 
s 

- tr M(H'H-I ) - tr N(E'E-I ) 
t u 

The maximum of p follows from the requirement that the first order 

partial derivatives of p' are simultaneously zero at the maximum of 

p, and the Hessian is negative. In Theorem 4.1 the nature of the 

solution of the maximization is given, while the proof can be found 

in the Appendix to Kroonenberg & De Leeuw (1980). 

Theorem 4.1 (Approximate solution) 

Let the following quantities be defined: 

Z is a three-mode data matrix 

p = tr G'{Z(HH'HEE')Z'} G 

S = {s I s = (G,H,E) G,H,E columnwise orthonormal} 

U is eigenvector matrix of P = {p .. ,}, 
11 

V is 

qjj' 

W is 

r kk , 

m m n n t u 
= ILL ~ L L h. h" ek ek, z. "kzi'Jo'k' 
j=l j'=l k=l k'=l q=l q'=l Jq J q r r 1J 

eigenvector matrix of Q = {qj j , } 

n n Q Q u s 
= 2: 2: 2: 2: 2: 2: ekrek'rgipgi'pZijkZi'j'k' 

k=l k'=l i=l i'=l r=l p=l 

eigenvector matrix of R = {rkk , } 

Q Q m m s t 
= 2: 2: 2: 2: 2: 2: gipgi'p hj qhj 'qZij k zi' j' k' 
i=l i'=l j=l j '=1 p=l q=l 

(U,V,W)£s. 
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Then 

a. (G,fi,E)&S is a stationary point of p if and only if G = U, 

fi = V, and E = W, or orthonormal rotations thereof; 

b. (G,fi,E)&S maximizes p if and only if their columns are eigen­

vectors corresponding to the largest s, t, and u eigenvalues 

of P(R,E), Q(E,G), and R(G,fi) respectively, or orthonormal 

rotations thereof. 

" In essence this theorem tells us that p can be maximized by simul-

taneously solving the eigenvalue-eigenvector problems of P, Q, and 

R. Not surprisingly this cannot be done analytically, but only itera­

tively. 

Nature of exact solution. Apart from knowing what the 

approximate solution looks like, it is also of theoretical and 

practical importance to know what the exact solution of the maxi­

mization problem looks like, if only the assess how well we have 

succeeded with our approximation. We will see that for the 

initialization of the algorithm for the approximate solution, the 

outcome of the theorem is relevant as well (section 4.5). As 

before we will only state the result here, the proof can be found 

in the Appendix to Kroonenberg & De Leeuw (1980). 

Theorem 4.2 (Exact solution) 

A: 

Let the following quantities be defined: 

Z is a three-mode matrix 

i m n stu 2 
- f(G,H,E,C) = L L L (z .. k- L L L g. h. e k C ) 

i=1 j=1 k=l 1J p=l q=1 r=1 1p Jq r pqr 

- (G,H,E)£S 
i 

- C = {c } with c 
pqr ' pqr 

= 1 
i'=1 

m 
1 

j '=1 

n 

1 gi'phJ.'qek'r 
k'=l 

Then the following statements are equivalent: 
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l. f(G,it,E,e) = 0, 

Q m n 
2. p(G,it,E) = l: l: l: 2 

i=l j=l k=l 
Zijk 

s t u Q m n 
3. Zijk l: l: l: l: l: l: gip&i'p fijqfij'qekrek'rZi'j'k' 

p=l q=l r=l i'=l j'=l k'=l 

4. (G,it,E,e) is an exact solution of the minimization problem. 

B.1: 

Let (G,H,E,C) be an exact solution of the minimization problem, 

Then 

G is the eigenvector matrix (or an orthonormal rotation thereof) 

corresponding to the s non-zero eigenvalues of 

m n 
p = {p--,}, with p- -, = l: l: ziJ-kzi'J-k 

1.1. 1.1. j=l k=l 

H is the eigenvector matrix (or an orthonormal rotation thereof) 

corresponding to the t non-zero eigenvalues of 

Q n 
Q = {q--,}, with q __ , = L l: ziJ-kziJ-'k 

JJ JJ i=l k=l 

E is the eigenvector matrix (or an orthonormal rotation thereof) 

corresponding to the u non-zero eigenvalues of 

Q m 

R = {rkk ,}, with r kk , =_L L ziJ-kZiJ-k' 
1.=1 j=l 

Q m n 

C = {c }, with c = L L L §i'pnJ-'qek'rZi'J-'k' 
pqr pqr i'=l j'=l k'=l 

B.2: 

On the other hand, if G, H, E, C are defined as in B.l, the eigen­

values associated with G, H, E are different for each matrix se­

parately, and A.3 is satisfied, then 

(G,H,E,C) is the exact unique solution. 

It should be noted that statement B_2 is not as strong as one 

would like to have it, as any set of columnwise orthonormal matri­

ces G,H,E, which satisfy A.3 determines an exact solution_ 
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4.4 ALTERNATING LEAST SQUARES ALGORITHM FOR THE TUCKER3 MODEL 

Introduction. Obviously we would like to construct an algo­

rithm for the maximization of the fitted sum of squares, P, that 

converges to a global maximum. Unfortunately p is the cross-product 

term of a multivariate polynomial of the sixth degree, and in 

general it is not possible to prove that methods to solve such 

nonlinear problems attain a global optimum. In the present case 

this also seems to be true. We will have to be satisfied with 

proving that the algorithm outlined below will converge to some 

stationary point which is not a minimum rather than to a global 

maximum. 

Alternating least squares approach. The method to be des-

cribed utilizes the so-called alternating least squares (ALS) 

technique, already referred to above. The essential feature of the 

ALS approach is that in solving optimization problems with more 

than one set of parameters, each set is estimated in turn by apply­

ing conditional least squares procedures holding the other sets 

fixed. After all sets have been estimated once, the procedure is 

repeated again and again until convergence. Further details and 

references to applications of the ALS approach can, for instance, 

be found in Young, de Leeuw, & Takane (1980), Young (1981). 

In order to see how the ALS approach can be applied in the 

present context, let us return to the definition of f: 

.£ m n s t u 2 
f (G,H,E,C) = L L L (zijk - L L L g. h. ek c ) 

i=l j=l k=l p=l q=l r=l l.p Jq r pqr 

The sets of parameters are here G, H, E, as C can be derived from 

the other three (see section 4.3). Minimizing f over G holding H 

and E fixed is identical to solving one conditional least squares 

problem, minimizing over H holding E and G fixed, and minimizing 

over E with G and H fixed are the two others. Although we are in 

practice maximizing over p the problem is still an ALS one. 

From the above discussion a rough outline for an algorithm is 

readily deduced. First choose an arbitrary Ho and Eo and maximize 

over G to get a new G1 , maximize subsequently over H with the just 
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computed G1 and Eo fixed to get a new HI' finally maximize over E 

with GI and HI fixed to get a new E1, and iterate the procedure 

until - one hopes - convergence. According to Theorem 4.1 the maxi­

mizations are essentially equal to searches for eigenvectors and 

eigenvalues of matrices of the order £,m, and n respectively. As 

£,m, and n can be quite large, while s,t, and u are typically very 

small, say 2,3, or 4, we want to use a technique for solving the 

eigenvector-eigenvalue problem (or eigenproblem for short) which is 

particularly efficient in finding only the first few eigenvectors. 

A very appropriate technique in this situation is the so­

called simultaneous iteration method (or Treppen Iteration) of 

Bauer-Rutishauser (Rutishauser, 1969). 

Thus, the maximization of p consists of an, in principle, in­

finite iteration process, in which at each step three eigenproblems 

have to be solved. Clearly, solving these eigenproblems by another 

infinite iteration process has its drawbacks. The whole procedure 

is likely to become computationally cumbersome. In order to avoid 

this we perform only one single step towards the solution of the 

eigenproblems, instead of complete iterations. A similar approach 

has been applied by De Leeuw and others in a number of cases when 

using an ALS technique. The experience has been that carrying out 

the complete iteration to solve the eigenproblem only serves to 

decrease the overall efficiency of the procedure, while using only 

one step has no effect on the eventual convergence point (Takane, 

Young, & De Leeuw, 1977, p.59). They suggest that the reason for 

this behaviour might be found in the same reasons that often cause 

relaxation procedures to be more efficient than non-relaxation 

procedures. 

Simultaneous iteration method. Let A be a real nXn symmetric 

positive definite matrix, and s the desired number of eigenvectors. 

Furthermore let X be defined as a real nXs matrix which has for its 

columns the iteration vectors. If we write X after a iterations as 

Xa , the method of Bauer-Rutishauser is defined as follows. 
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i. Choose an arbitrary orthonormal Xo. 

ii. Ya = AXa' and 

iii. B = Y'Y . a a a 

4.4 

iv. Solve the eigenproblem for Bi' i.e. determine an orthonormal 

T , and a diagonal matrix L with Q~;;;Qa2";;;··Qa , such that T' B T 
a a· s a a a 

= L , and T is the eigenvector matrix of Ba; then define 
a a 1 

v. X = Y T L-~. 
a+l a a a 

Schwartz et a1. (1968, p.182-187) 

converges to the matrix with the largest 

_!o 
show that for a-> 00, L 2 

a 
s eigenvalues of A on the 

diagonal, and the columns of Xa converge to the associated eigen­

vectors, provided A is positive definite, the columns of X are not 

orthogonal to one or more of the eigenvectors, and the s-th and 

(s+l)-th eigenvalues are different. We will write ii. through v. 

somewhat more concisely by postmultiplying v. with Ta: 

-~ 
Xa+1 = YaTaLa T; = AX B-~ = AX (X'A2X )-~ 

a a a a 

In practical applications we will not perform this postmultipli­

cation as it would yield a rotated version of the principal com­

ponents rather than the components themselves. For theoretical 

purposes the postmultiplication is immaterial, but convenient to 

work with. In Kroonenberg & De Leeuw (1980) the postmultiplication 

with T; for step v. was incorrectly included in the description and 

implementation of the algorithm presented in that paper. As stated 

above this does not affect the theoretical results, but in their 

example the components of what they called the 'unrotated' space 

were in fact rotated (by some T'), and their 'rotated' components 
a 

were approximately the principal components. 

We will define the following function to be used later. When 

we use in the sequel functions like $ we mean to say that 

-!o 
$ (X) = X = AX (X I A 2X ) 2 

a a+l a a a 

can be computed by carrying out one step of the Bauer-Rutishauser 
2 

method. It should be noted that the inverse square root of X' A X 

exists, and is uniquely defined, if the expression is positive 

definite. This implies that in such a case $ is well-defined, and 

it can be proven that $ is continuous as well (see the Appendix to 

Kroonenberg & De Leeuw, 1980).As will be shown below, rather strong 
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convergence theorems can be used for the algorithm to be described 

if <I> is continuous. It seems, therefore. worthwhile to take mea­

sures in constructing the algorithm to ensure the posi ti ve defi-
2 

niteness of X' A X. An inspection of the method to arrive at Xa+l 
shows that in fact only the inverse square root is taken of the 

eigenvalues of Ba. One therefore only has to check in each itera­

tion step if all eigenvalues are larger than zero, or in practice 

larger than some very small number. If one of the eigenvalues is 

too small, one can restart the iteration procedure with a smaller 

number' of components. There is, however, no guarantee that this 

will solve the singularity problem. On the other hand, if no sin­

gularities have occurred one knows that at each step <I> must have 

been uniquely defined and continuous. As we check for the posi­

tiveness of the eigenvalues in our programs we will from now on 

assume that expressions like X'A2X are positive definite. 

In Kroonenberg & De Leeuw (1977) the proofs of the algorithm 

for the Tucker2 model were formulated without the extra condition 

that X' A2X is always positive definite by using so-called point­

to-set maps. Although convergence could then be proven, the unique­

ness of the solution at each step is no longer assured. The addi­

tional complexity of working with point-to-set maps is, however, 

not really necessary as long as steps are taken to assure the posi­

tive definiteness. 

TUCKALS3 algorithm. In this subsection we will describe the 

algorithm to solve the maximization of p. Here Z is again defined 

as the J!.xmxn three-mode data matrix, and s, t, and u will be the 

desired number 'of components for the three component matrices. 

Furthermore the orthonormal matrices G, H, and E will be the ma­

trices whose columns are the iteration vectors. We will write G, H, 

and E as they are after a iteration steps as Ga , Ha' and Ea' One 

main iteration step of the TUCKALS3 algorithm is then defined as 

follows: 
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G-substep 

H-sustep 

a 
qjj' 

H a+! 

E-substep 

a r kk , 

m m n n 
2 2 2 E 

j=1 j '=1 k=1 k'=1 
_1 

P G (G'p2G ) 2 
a a a a a 

n n R. R. 
2 L; 2 2 

k=1 k'=1 i=1 i '=1 

Q H (H'Q2H ) 
_1 

2 

a a a a a 

R. R. m m 
L; 2 2 L; 

i=! i'=! j=! j '=1 
I 

E = R E (E'R2E )-2 
a+1 a a a a a 

1: 

" i-. 

q=1 

u 
2 

r=1 

s 
2 

p=1 

4.4 

u 

" h 
a a a a 

'-' h ~. q,Ok-c ek , rZijkZi ' j 'k' 
r=1 jq J 

s a+1 a+1 a a 
L; ek ek , g. gi'pZijkZi'j'k' p=! r r lp 

t 
~ a+1 a+1 ha+1 ha+! 
'-' g. g., . j"qZij'kzi'J"k' q=1 lp 1 P jq 

As mentioned before, each G, H, and E substep is one step of an in­

ner iteration to find the eigenvectors of P, Q, and R respectively, 

and together they define one step of the main iteration. 

Convergence of the TUCKALS3 algorithm. Before discussing the 

convergence of the algorithm itself, it is necessary to introduce 

some new notation. 

F: S ~ S is a function on S; and F defines a complete step of the 

main iteration; and S is defined as in section 4.3 and Theorem 4.1. 

F = F3F2Fl with Fi : S ~ S for i=1,2,3 such that 

F1(G ,H ,E ) = ($l(G ),H ,E ) = (G +l,H ,E ) a a a a a a a a a 
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Above we already remarked that $ as defined in the previous 

subsection was a continuous function. Because F is a composite of 

continuous functions F is continuous as well. 

It can be shown that at each step of the main iteration, and 

at each substep the value of p does not decrease (see the Appendix 

to Kroonenberg & De Leeuw, 1980). Thus 

p(F(sa)) = P(sa+l) ~ p(sa) 

If p is not increased strictly, i. e. p(F (s )) = pes ), the algo-
a a 

rithm stops. In that case (G,H,E) satisfies the necessary condi-

tions of Theorem 4.3. Consequently we can assume without loss of 

generality that the algorithm generates infinite sequences with 

p(F(s )) > pes ). a a 
The TUCKALS3 algorithm is a type of algorithm that has been 

described in the non-linear programming literature, and in that 

field various theorems about the convergence of algorithms such as 

ours exist. Appropriate to our case is the following "fixed point" 

theorem described and proven by d'Esopo (1959): 

Theorem 4.3 (d'Esopo's convergence theorem) 

Let F, p, S satisfy the following conditions. 

1. a. S is a subset of a finite dimensional space, 

b. F is a continuous function, 

c. p is a real function defined and continous for all seS, 

2. p(F(s)) ~ pes), 

3. if p(F(s)) = pes), then F(s) = s 

4. if the sequence so' sl' ..... satisfies P(sa+l) ~ pes) with. 

saeS, then for every accumulation point s of so' sl' ... F(s) 

= s. 

In the previous subsections we have discussed all the condi­

tions of Theorem 4.3, and we may therefore conclude that it applies 

to the TUCKALS3 algorithm. As S is a bounded real subspace, any 

infinite sequence so,sl"" is bounded, and thus the sequences 

generated by the algorithm are bounded as well. A theorem due to 

Weierstrass shows that such sequences have at least one accumu­

lation point. It is shown in the Appendix to Kroonenberg & De Leeuw 
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(1980) that every point s such that F(~) = s is a stationary point 

of p, and because we know that at every step p increases, we know 

that stationary points will not be minima. 

Still assuming the positive definiteness of expressions such 
2 

as X'A X we can use a theorem due to Meyer (1976, p.llO) to show 

that [[sa+1 sa)]-7 0, i.e. the normed difference between the 

component matrices in successive iterations becomes arbitrary 

small. It would go too far to present the theorem in detail as it 

is formulated in terms of point-to-set maps and related concepts 

(see, however, Kroonenberg & De Leeuw, 1977, p.48 for details). As 

has been shown by Ostrowski (1966) the set of accumulation points 

of {s } consists either of a single point or a continuum. The 
a 

latter case, however, is very unlikely in practical applications, 

as is the occurrence of equal eigenvalues in real data matrices. In 

order to be able to use Meyer's results, it seems sensible to con­

trol the convergence of the algorithm both by the objective func­

tion, and by the normed difference of all component matrices. In 

practice it generally turns out that the convergence for the compo­

nents (i.e. the quantities we especially are interested in) is far 

slower than the convergence for the objective function. 

4.5 NESTING OF COMPONENTS AND INITIALIZATION 

Two questions with respect to increasing the number of com­

ponents need to be answered. First, if we increase the number of 

components in the modes, does the SS(Fit) always increase as well? 

Secondly, are the solutions nested, i.e. is the configuration re­

SUlting from, say, just two components in the first mode the same 

as the two-dimensional configuration from the three component con­

figuration of the first mode ? 

Nested solutions? The configurations of three-mode principal 

component analysis in its alternating least squares formulation are 

in general not nested. This can readily be seen from the algorithm 

itself. When for instance, the number of components of the first 

mode is increased, then the functions Q and R in the other substeps 

are directly influenced by this increased number of components, and 
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therefore different eigenproblems have to be solved. Table 4.1 

gives an example of this lack of nesting. On the other hand, the 

better the fit, the better the nesting, and the more the alterna­

ting least squares solution resembles the initialization solution 

(=Tucker's method solution - see below), the better the nesting. 

Table 4.1 

solution 

2x2x2 
2x2x3 
2x2x4 
3x3x3 
3x3x4 

Attachment studg: Effect of increasing number of com­
ponents on percentages explained variation of com­
ponents 

1 

35 
37 
39 

1
36 

, 37 

episodes 

2 3 

23 
27 
27 
27 5 
28 8 

I 

components 

interactive 

1 

39 
41 
42 
41 
45 

scales 
2 3 

19 
22 
24 
25 2 
25 3 

I 
I 

I 
r 
\ 

1 

49 
49 
48 
49 
49 

children 

2 3 

8 
8 6 
9 6 

10 9 
10 8 

i 
I 

4 I 

! 
2 

6 

sum 

57 
63 
66 
68 
73 

Note: All analyses are based on 4 episodes, 4 interactive scales, 
and 53 children. 

When increasing the number of components for anyone mode, the 

SS(Fit) will in general increase. If the new solution is the global 

maximum of the SS(Fit) given the number of components, then the new 

SS(Fit) will never be smaller than the old one. If, however, the 

iteration stops at a local maximum, this is not necessarily so. 

Initialization. In the algorithm we need some Go' Ho' and Eo 

to initialize the procedure. It seems sensible to choose them in 

such a way that they are optimal in some sense. Given that an exact 

solution exists, an initialization procedure which finds this 

solution without even entering the main iteration seems a reason­

able choice. Theorem 4.2B.1 tells us that the eigenvectors of P, Q, 
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and R with 

m n n .2 

Pii' = I I ZijkZi' jk ;qjj' = I I ZijkZij'k 
j=l k=l k=l i=l 

Q m 
r kk , = I I ZijkZijk' 

i=l j=l 

should be used for Go' Ho' and Eo respectively to achieve this pur­

pose. Referring back to section 4.2, the initialization procedure 

is seen to be identical to Method I proposed by Tucker (1966a, 

p.297). It is, in general, not necessary to determine these eigen­

vectors very precisely, because they are only the starting points 

for the main iteration. Here also the Bauer-Rutishauser procedure 

is used to compute the eigenvectors. 

Upper bounds for SS(Fit). This particular initialization has 

an additional advantage, because it provides us with upper bounds 

for the SS(Fit) which is maximized in the main iteration procedure. 

Theorem 4.4 (Upper bounds for the SS(Fit) 

Let (a,H,E) maximize p as defined above, then 

p (C,H,E) ;;; min 
x x x 2 

(LA ,I~ ,Lv ) ~ I I I zl.0J'k 
P P q q r r i j k 

x x x 
wi th the 'A. 's, ~ 's, and v's the largest eigenvalues of P, Q, 

p q r 
and R respectively, or 

SS(Fit) ;;; min {SS(Fitl),SS(Fit2),SS(Fit3) ;;; SS(Total) 

The proof of this theorem can be found in the Appendix 4.2. In 

words the theorem says that the fitted sum of squares of the main 

iteration procedure, (SS(Fit) , can never be larger than the smal­

lest of the fitted sum of squares resulting from standard principal 

component analyses on the cross-product matrices from each of the 

modes SS(Fit ), m=1,2,3. These SS(Fit )s are in turn always smaller m m 
than or equal to the total sum of squares, SS(Total). 

The practical importance of this result is that it is possible 

to gauge how well the iteration procedure has succeeded in finding 
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an optimal solution, given the number of components for each mode. 

It can also point the way to improving the overall fit for the 

data, especially in the case where the choice of number of compo­

nents for one mode was such that the fit possible with that number 

of components is very much smaller than the fit for the other 

modes. Suppose, for example, that the relative fit for the first 

mode is only 0.50, while for the other two modes a relative fit is 

possible of 0.80. The overall relative fit will then be necessarily 

no greater than 0.50 according to Theorem 4.4. The only really 

effective way to increase the overall relative fit is to include 

more components for the first mode, as it provides the smallest 

upper bound. 

4.6 ALTERNATING LEAST SQUARES ALGORITHM FOR TUCKER2 MODEL 

After the extensive discussion of the solution for the Tucker3 

model, we can be very brief about the solution for the Tucker2 

model. Its estimation poses no new problems; all one has to do is 

delete the E substep from the TUCKALS3 algorithm, and insert the 

kXk identity matrix for E in the other substeps. With these pro­

visions the TUCKALS3 algorithm can be used for the Tucker2 model. 

Computationally it is, however, more efficient to solve the model 

by an analogue of the TUCKALS3 algorithm. The proofs for the 

TUCKALS2 algorithm are entirely parallel to those for the TUCKALS3 

ones, and therefore need not be discussed again. Explicit proofs 

have been given in Kroonenberg & De Leeuw (1977) using a more 

general formulation of convergence, as was already mentioned above. 

TUCKALS2 algorithm. We will only present the TUCKALS2 algo­

rithm, and we will not discuss it in any detail, nor will we do so 

with the model. We will return to the model in Chapter 5 when we 

discuss the problem of transformations of the extended core matrix, 

and the uses of such transformations. In later chapters we will 

present a number of examples of the Tucker2 model. 

n TIl m t 
G-substep: p~., 

1.1 

a a 
L: l: L: l:h.h"z"kZ""k 

k=! j=! j'=! q=! Jq J q 1J 1. J 

I 

G = P G (G'p2G )-2 
a+! a a a a a 



96 

a 
H-substep: qjj' 

4.7 COMPUTATIONAL ACCURACY AND PROPAGATION OF ERRORS 

4.6 

Developing formal expressions for the numerical accuracy of 

the programs is somewhat difficult considering the complexity of 

the algorithm. Especially modelling the propagation of rounding 

errors in successive iterations is not straightforward. The ortho­

normalization of the components at each iteration substep assures, 

however, that the errors of the components never run out of hand. 

In addition, the manipulation of very large or very small numbers 

is avoided by rescaling the overall variation of the data set to be 

analysed to QXmxn (= volume of the data cube). Such scaling does 

not affect the components themselves, but only the absolute sizes 

of the eigenvalues and the elements of the core matrix (see also 

section 6.6). However, those quantities are in generally best 

interpreted as percentages of the total variation (see section 

6.9), and in that respect the rescaling does not affect interpre­

tation. The rescaling has the additional advantage that the con­

vergence criteria are more or less equally strict for all problems. 

In the examples below we will give some indication of the 

numerical accuracy of the TUCKALS3 program, and of the effect of 

introducing error in data with a known structure. No attempt has 

been made to treat these problems analytically or exhaustively. 

Hilbert cubes and replicated Hilbert matrices. To our know-

ledge no three-way matrices with known eigenvalues have been pu­

blished; therefore we have taken some substitutes, i.e. the Hilbert 

cube and the replicated Hilbert matrix. 

The Hilbert matrix of the order n, H , is defined as H = {h~.} n n 1J 
with h~. = l/(i+j-l) i,j=l, ... ,n. Analoguously the three-mode Hil-

1J 
bert cube can be defined as H = {h~.k} with h~.k = 1/(l+j+k-2) 

n 1J 1J 
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i,j,k=l, ... ,n. This cube is three-way symmetric (i.e. symmetric 

around the body diagonal). The component matrices derived from it 

should, therefore, be identical, and the core matrix should be 

three-way symmetric as well, provided the same number of components 

is taken for every mode. The identities and symmetry were realized 

until at least the tenth decimal. Several tests have been carried 

out with the initialization procedure described in section 4.5, and 

with random start matrices. In both cases the same results were 

obtained, be it that a solution was found almost without using the 

main iteration procedure when the initialization routine was em­

ployed. In other words, as was pointed out in section 4.5, if there 

exists an exact solution, the initialization procedure will find it 

first. 

These results are, of course, no guarantee that the solutions 

are correct, they only have the desired form. But lacking analyti­

cal results it is the best we can do for the moment. For future 

reference the results for the Hilbert cube of order 4 are given in 

Table 4.2. 

Table 4.2 Hilbert cube of order 4 (with initialization procedure) 

component matrices and standardized weights 

1 2 3 

l. 0.7383 103 0.6429 093 -0.2009 515 
2. 0.4805 923 -0.3000 370 0.7458 193 
3. 0.3666 971 -0.4813 999 -0.0569 134 
4. 0.2991 024 -0.5146 839 -0.6325 606 

stand. 
0.9819 994 0.0179 479 0.0000 607 

weight 

standardized core matrix 

cO,l,l) = 0.9866 264 c(3,3,1) 0.0360 099 
c(2,1,1) = -0.0022 338 c(2,2,2) 0.0283 716 
c(3,1,1) = 0.0005 113 c(3,2,2) -0.0054 683 
c(2,2,1) = 0.0923 996 c(3,3,2) = 0.0010 898 
c(3,2,1) = 0.0008 774 c(3,3,3) -0.0023 065 

To have at least a partial check on the accuracy and the 

correctness of the algorithm and the program, a replicated Hilbert 

matrix of order 4 was used, i.e. Z = {z. 'k} with z"k = h~'k = 
1.J 1.J 1.J 

1/(i+j-1) i,j,k=l, ... ,n. Each frontal plane is thus equal to the 
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same Hilbert matrix, and there are n of them. It is simple to show 

that G = H = Kn' with Kn the eigenvector matrix of the Hilbert 

matrix of order n, in which the eigenvectors are standardized at 1. 
!.; 

E will be one dimensional with elements equal to (l/n)~. In Table 

4.3 the results for the replicated Hilbert matrix of order 4 are 

compared with the results given in Gregory & Karney (1969). 

Table 4.3 Replicated Hilbert matrix of order 4 

eigenvectors for mode 1 and 2 

1 2 3 

stem : G&K T3 stem I G&K T3 stem i G&K T3 I I 

l. 0.79260 : 829 832 0.58207 : 570 578 -0. 17918 : 629 597 
2. 0.45192 I 312 306 -0.37050: 218 262 0.74191 : 779 812 
3. 0.32241 I 639 641 -0.50957 1 863 853 -0.10022 1814 959 
4. 0.25216 : 117 119 -0.51404: 827 797 -0.63828 : 253 200 

stand. 
0.98742 : 851 902 0.01255 1 157 159 0.00001 : 992 992 weight I 

G&K = Gregory & Karney (1969); T3 = TUCKALS3j stem = same for both 

With the replicated Hilbert matrix, as with the Hilbert cube, it 

was not possible to find the smallest root (l.87x10-8). In fact 

this eigenvalue was so small that the 4x4 matrices Pa and Qa (see 

section 4.4), of which the eigenvectors had to be computed, were 

considered singular by the program. The restart procedure, which 

reduces the number of components by the number of eigenvalues con­

sidered to be too small (see section 4.4), took care of this situa­

tion, and caused the program to start again with .the reduced number 

of components. 

Propagation of errors in similarity judgements. A small l'Ionte 

Carlo experiment was conducted to gain some insight in the error 

propagation in the TUCKALS3 method. The data from the example 

presented in detail in Chapter 2 were subjected to various degrees 

of perturbation. More in particular, the data (unlike the real si­

tuation) were considered to be judgements on a nine-point scale of 

the similarity between the row and column points, with the row 

points serving as standards. To introduce error the observed simila-
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rities were taken as the means of symmetric discrete! distributions 

with varying heaviness of the tails. Thus if a stimulus combination 

(i,j) was scored, for instance z .. = 7, then in error condition el 
l.J 

a score is generated from the discrete distribution: 

Pr(zij 
Pr(z .. = 

l.J 

= 6) = Pr(z .. = 8) = .05; Pr(z .. = 7) = .90; 
l.J l.J 

or 2 or 3 or 4 or 5 or 9) = o. 

Table 4.4 shows how the end points were dealt with. 

Table 4.4 Error structures for the De Gruijter data 

generated score, Zg generated score, Z 

1 2 3 4 7 8 9 I 1 2 3 4 5 

1 95 5 0 0 0 0 0 1 75 10 10 5 0 

original 2 5 90 5 0 0 0 0 2 25 SO 10 10 5 

score 3 0 5 90 5 0 0 0 3 IS 10 SO 10 10 

Z 4 5 10 10 50 10 
0 

8 0 0 0 0 5 90 5 5 0 5 10 10 50 

9 0 0 0 0 0 5 95 

g 

6 

0 

0 

5 

10 

10 

condition el condition e5 

p .. = Pr (2 j I Z = i) 
l.J g 0 

7 

0 

0 

0 

5 

10 

The underlying idea in using this error structure was that a sub­

ject generally produces the number he intends (his 'true' score), 

but there is a non-zero probability that the similarity probably 

was meant to be higher or lower, and large differences from the 

intended score are less likely than smaller ones. Increasing er­

rors, i.e. distributions with longer tails, imply increasing vague­

ness of the judgments. The results of the effects of increasing 

error in the data is summarized in Table 4.5, and Figure 4.1. 
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Table 4.5 Effects of perturbations on the De Gruijter data 

Absolute differences with the unperturbed solution 

S~~E~~~~!~_~~E_~~~~_! 

1 

eO el e3 e5 e8 

48 0 3 1 2 
48 0 4 3 8 
43 0 1 2 8 

1 0 2 0 11 
-14 0 3 2 9 
-20 2 2 0 0 
-22 0 1 2 4 
-33 1 3 2 1 
-33 1 2 3 8 
-17 1 1 2 4 

MAD 0.5 2.2 1.8 5.5 

% 61 56 52 45 28 

1 

eO el e3 e5 e8 

42 0 2 3 4 
42 1 2 0 2 
40 2 2 0 3 
38 1 3 0 1 
42 0 3 0 2 
39 0 0 3 3 

MAD 0.7 2.0 1.0 2.5 

% 91 86 81 70 46 

Notes: 
eO: 
el: .05 
e3: .05 .10 
e5: .05 .10 .10 
e8: .10 .10 .10 .10 

2 

eO el e3 e5 e8 

-25 0 5 3 5 
-17 0 2 4 14 

18 3 2 4 2 
50 1 0 4 11 
30 2 1 3 4 
22 7 3 4 8 
29 1 1 11 4 

-33 0 4 2 14 
-28 3 4 6 3 
-46 3 3 4 3 

2.0 2.5 4.5 6.9 

21 20 20 17 14 

eO el e3 e5 e8 

68 6 9 44 67 
34 1 3 11 42 

-59 6 17 27 106 
-19 8 13 5 24 
-10 10 51 16 70 
-18 12 16 5 56 

7 18 18 68 

1 1 1 1 3 

1.00 
.90 .05 
.70 .10 .05 
.50 .10 .10 .05 
.20 .10 .10 .10 .10 

MAD: mean absolute difference 
% : percentage variation accounted for 

eO 

- 4 
4 

15 
- 9 

40 
-62 

1 
29 
34 

-47 

11 

3 

el e3 e5 e8 

0 5 4 13 
2 5 8 
4 1 8 5 
1 7 5 12 
0 0 1 4 
6 5 4 5 
1 10 5 11 
3 1 6 19 
0 7 3 11 
8 6 5 2 

2.5 4.3 4.6 9.0 

11 11 9 7 

% variation 
accounted for 

SS(Fit)/SS(Total) 

eO 98 
el 87 
e3 83 
e5 71 
e8 49 
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Fig. 4.1 Party similarity study: Perturbed first mode component 
loadings 

The overall spatial organization of the points in the first 

(and second) mode is not fundamentally altered by the errors in­

troduced, especially when the weights or percentages of variation 

accounted for by the components is sizeable. When they are not, the 

distortion can be very serious as the second component of the third 

mode shows. It is not unlikely that the data set and error struc­

tures chosen make a far better recovery possible than generally 

will be the case. The structure in the data is extremely well ac­

counted for by the solution. The error structures are very regular, 

and favour good recovery, but unlike in some other studies they 

bear some relation to reality. 
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4.8 CONCLUSION 

In this chapter we have shown that it is possible to solve the 

estimation problem of the Tucker3 and Tucker2 model both exactly 

and approximately by alternating least squares methods. The essen­

tial difference between the ALS methods presented in this chapter 

and Tucker's methods, is that the ALS procedures take into account 

the reduction over the other modes, while Tucker's methods do not. 

Furthermore, the use of least squares loss functions allows assess­

ment of the model, analysis of residuals, and provides a number of 

attractive interpretational possibilities as we shall see in later 

chapters. The examples show that the method as programmed is accu­

rate, and, for data with a well-defined structure, is robust a­

gainst errors which could have arisen during the production of the 

data. 
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APPENDIX 4.1 PROOF THAT SS(TOT) = SS(FIT) + SS(RES) 

Let Z be a three-mode data matrix, and G, H. and E arbitrary 

but fixed columnwise orthonormal matrices (see section 1.5). Let 

C, a three-mode core matrix, minimize the loss function 

[[Z - ZJJ2 '" 2 l: l: l: (z. ·k - z .. k) with 
i j k 1J 1J 

then C 

C pqr 

l: l: l: g. h . ek c , 
p q r 1p Jq r pqr 

{c } is equal to (see section 4.3) pqr 

l: l: l: g. h. ek z .. k' 
i j k 1p Jq r 1J 

The Z which minimizes the loss function (A4. 1) 1. s 

l:l:l:g.h.ekc 
p q r 1.p Jq r pqr 

l:{l: l: g. h. ek c } 
p q r 1p Jq r pqr 

In section 4.3 it was shown that c 1.S uniquely defined, pqr 
* for any c A C , (A4. I) attains it minimum only pqr p pqr 

for all p. Let z*.k be defined as 
1J 

* l: l: l: g. h. ek c 
p q r 1p Jq r pqr 

E l: E A g. h. ek c 
p q r P 1p Jq r pqr 

= l:A (l: E g. h. ek c ) = l: A t .. k . 
p P q r 1p Jq r pqr p p 1J P 

* The loss function (A4.1) becomes with Zijk 

* 2 E E E (Z··k - z .. k) 
i j k 1J 1.J 

if 

(A4.2) has a minimum if all A 
p 

simultaneously, thus 

(A4. I) 

thus 

A = I p 

(A4.2) 
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~, 0:, I: I:(z, 'k - z, 'k)2} 
UAp 1 j k 1J 1J 

o for all /. 
p 

L I: I:z, 'kt, 'k + I: I: l:(I: A ,t, 'k ,)t, 'k 0 for 
i j k 1J 1J P i j k p' P 1J P 1J P 

- I: I: I: Zijktijkp + I: I: I:(I: t, 'k ,)t. 'k 0 
i j k i j k p' 1J P 1J P 

I: I: I: Zijk t ijkp I: I: l:[ t. 'k 0: t, 'k ,}] for all p 
i j k i j k 1J P p' 1J P 

I: I: I: {L Zijktijkp} I: I: I: I: {t, 'k (I: t, 'k ,)}J 
i j k p i j k P 1J P p' 1J P 

I: I: I:z, 'k (I:t. 'k ) (I: t. 'k )2 
i j k 1J P 1J P 

P 
1J P 

Thus using this last result, we may conclude that 

A4,1 

A 
P 

simul taneously 

I: I: I:(z, 'k - z"k)2 = I: I: I:z? 'k - 2I: I: I:z, 'kZ"k + I: I: I:z? 'k 
i j k 1J 1J i j k 1J i j k 1J 1J i j k 1J 

SS(Res) 

or SS(Tot) 

I: I: I:Z?'k - I: I: I:Z?'k 
i j k 1J i j k 1J 

= SS(Tot) - SS(Fit), 

SS(Fit) + SS(Res), 

" 
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APPENDIX 4.2 BOUNDS FOR THE SS(FIT) 

Theorem 4.4 

Let G, H, and E maximize p as defined in Theorem 1, then 

p(G,H,E) :s; min 0: A l: lJ , L: vr ) :s; l: l: L: 2 

P 
p' q q r i j k 

Zijk 

with the A p' lJ q, and \) the largest eigenvalues of P, Q, and R r 

(see section 4.2 for definitions), respectively. 

Proof: 

p(G,H,E) tr G'{Z(HH'@EE')Z'}G 

~ tr Z(HH'@EE')Z' = tr l: H'Z.EE'Z!H 
~ 1 i 

tr H'{l: Z~EE'Z!}H 
i ~ ~ 

~ tr L: Z.EE'Z! 
i ~ ~ 

u 
~ l: \) 

r' with 
r=1 

n 
~ l: \) l: l: 

r=1 r i j 

\) 

r 

l: 
k 

tr E{l: Z.Z!}E 
i 1 1 

the u largest 

2 
Zijk' 

tr E'RE 

eigenvalues of R 

The inequalities follow from the so-called separation theorem, 

which states that the eigenvalues of an arbitrary section, say 

E'RE, of a symmetric matrix R separate the eigenvalues of R itself 

(cf. Householder, 1964). 

The analoguous results hold clearly for the other two formu­

lations of p(G,H,E), and combining these results establishes the 

theorem. 
" 
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5.1 INTRODUCTION 

In this chapter we will discuss the problem of diagonality of 

the extended core matrix of the Tucker2 model. As the subj ect is 

still being explored a definitive treatment cannot yet be given. In 

section 3.2 we indicated that the orthonormal restrictions put on 

the Tucker2 and Tucker3 model were necessary to identify the equa­

tions for solving the minimization problem, but that these restric­

tions could be made without loss of generality. In fact, we use the 

transformational freedom to choose such component matrices that a 

convenient and efficient algorithm could be devised. Once a solu­

tion is found we can drop the restrictions, and use any (non­

singular) transformation we like on the components or core matrix, 

provided the appropriate counter-rotations are performed as well. 

One way to use the transformational freedom in three-mode 

principal component models is to search for transformations that 

create "simple structures" in the component matrices. Another 

approach is to search for transformations that induce a simple 

structure into the core matrix. In this chapter we will look at 

transformation procedures which attempt the latter by searching for 

those transformations which diagonalize the core matrix. By doing 

this we will restrict ourselves to situations where the number of 

components is equal for the first and second mode (i.e. s=t). This 

is in itself no restriction as the procedures to be described are 

such that sand t will become equal in any event. 

The procedures outlined in this chapter can be applied to the 

frontal core planes from both Tucker2 (T2) and Tucker3 (T3) models. 

In section 3.4 we used the idea of transforming the T3 core matrix 

to diagonality to show that in specific cases the Tucker3 model has 
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the same form as the PARAFACI/CANDECOMP model. In this chapter we 

will not tre;>t these aJJ<l otber issu~!: cO>:'.necterl with the Tucker3 

model, but leave them for another study. We will concentrate on the 

diagonality of the extended core matrix of the Tucker2 model. 

We will discuss two transformation procedures to optimize 

diagonality: one using orthonormal transformations, and the other 

using non-singular transformations. One of the purposes of the 

transformations to diagonality is to investigate whether the data 

fit more restricted models such as INDSCAL, which require the 

extended core matrix to be diagonal. We will, however, not present 

detailed comparisons of solutions from TUCKALS2 plus transforma­

tions, and solutions from INDSCAL, as for instance MacCallum 

(1976a,b) did. In section 11.2 such comparisons are made for data 

from the Cola study (Schiffman, Reynolds, & Young, 1981), but the 

example is not very demanding. 

Another related aim of the transformations is to simplify the 

interpretation, as a diagonal core matrix with its zero off-diago­

nal elements displays a typical 'simple structure'. In the case of 

non-singular transformations, this simplicity is bought by the 

non-orthogonality of the components in the first and second mode. 

At present, it is not clear which of the two properties is more 

desirable in specific situations, the more so because especially 

the non-singular transformation still poses a number of unsolved 

interpretational problems. 

* An extended three-mode core matrix C = (C1, ... ,Cn) is defined 

to be diagonal if for each k (k=I, .. ,n) cpqk = 0 for all p~q. Note 

that we do not Lequire cppk to be unequal to zero, but not all cppk 
for all k and fixed p may be zero at the same time, because then we 

would have ended up with one component less in the first and second 

mode. From now on we will assume that for each p there is always a 

k, for which c k is not zero. pp 
The procedures outlined in section 5.2 ann 5.3, and compared 

in section 5.4, will be applied to two examples in section 5.5. 

The discussion of the theory and application of the trans­

formations will be rather incomplete, primarily because the expe­

rience with these methods is still very limited. 

~, For convenience, we will write in this chapter C instead of C 
for the extended core matrix. 
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5.2 ORTHONORMAL TRANSFORMATIONS 

Problem and solution. In this section we will outline a pro­

cedure to transform an extended core matrix to optimal diagonality 

- in a least squares sense - by using two orthonormal transforma­

tions. The procedure was first presented in Kroonenberg & De Leeuw 

(1977, Appendix One). 

) . sxs ( ) Let C = (C I ,C2 , ... ,Cn w1th CkER k=I, ... ,n be given. Find 

the (sxs) orthonormal matrices K and Land D = (D I ,D2, ..• ,Dn ) with 

Dk diagonal (k=I, ..• ,n), such that 

o(K,L,D) 
n 
Z tr (Dk - KCkL')'(Dk - KCkL') 

k=1 

is as small as possible. 

Theorem 5.1 

(5. I) 

Let C = (C I ,c2 , ••• ,Cn ) with GkER SXS (k=I, ... ,n), and the pro­

blem ON be given. Then 

-. .......... 1 n 
K U(U'U)-, with u z DkLCk, 

k=1 
;.. -1 n 
L V(V'V) 2 with V z DkKCk , and 

k=1 

solve the diagonality problem ON. 

Proof: 

The solution of problem ON 1S equivalent to the minimization 

of 

?i(K,L,D,M,N) 
n 

L tr (Dk - KCkL')'(Dk - KCkL') -
k=1 

-~ tr M(K'K - I ) -
S 

(5.2) 
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where M and N are symmetric matrices of Lagrange multipliers. Let 

o be rewritten in the two following ways 

n n n 
l.o(K,L,D) l: tr DkDk - 2 l: tr K'DkLCk + l: tr CkCk 

k=1 k=1 k=l 

n n n 
l: tr DkDk - 2 tr K' l: DkLCk + l: tr CkCk 

k=1 k=i k=i 

n n 
l: tr DkDk - 2 tr K'U + z:: tr CkCk 

k=i k=i 

n n n 
l: tr DkDk - 2 tr L' z:: DkKCk + l: tr CkCk 

k=i k=i k=i 
2. o(K,L,D) 

n n 
l: tr DkDk - 2 tr L'V + l: tr CkCk • 

k=i k=i 

Substituting these expressions succesively into (5.2) and diffe­

rentiating ~ with respect to K, M, L, N, D, and equating these 

partial derivatives to zero, we obtain the following set of equa­

tion from the stationary equations: 

U KM and K'K I (5.3) s 
i'K = I (5.4 ) s 
V = LN (5.5) 

L'L = I (5.6) s 
Dk = diag (KCkL' ) (k=i , ••. ,n) (5.7) 

Premultiplying (5.3) with its transpose, and using (5.4) we get 

(5.8) 

Substituting (5.8) into (5.3), and isolating K: 

K = U(U'U)-! 

Analoguously 

L = V(V'V)-!. 
Substituting these Rand L into (5.7) 1S sufficient to find Dk 

for k=i, •.• ,n. 

Algorithm. From the above theorem a computational procedure can 

easily be derived, resulting in an alternating least squares 
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algorithm similar to the TUCKALS2 algorithm. A main iteration step 

of the ON-algorithm will be defined as: 

n 
U = L 

a k=1 
_1 

K = U (U'U ) 2 
a+1 a a a 

n 
V = ~ 

a k=1 

n(a+1) 
k 

D (a}K C 
k a+1 k 

_!: -1: 
Both (U'U ) 2 and (V'V ) 2 can be computed in the same manner as in a a a a 
the equivalent expression in the TUCKALS2 algorithm, i.e. by solving 

the eigenproblem of U~Ua and V~Va' and taking the inverse square 

root of the eigenvalues. Problems of non-uniqueness occur here too, 

in the case of singularities in U~Ua and V~V a' but these can be 

overcome in the same manner as in the TUCKALS2 algorithm. 

For proof of the convergence one can adapt the proof for the 

TUCKALS algori thms given in section 4.4 and in Kroonenberg & De 

Leeuw (1980). 

5.3 NON-SINGULAR TRANSFORMATIONS 

Problem and solution. The procedure presented in this section 

is, in fact, nothing but the CANDECOMP procedure, as outlined in 

Carroll & Chang (1970). As set forward in section 3.3 the CANDECOMP 

model 



5.3 

n 
z. 'k= 2. g. h. c k 
~J p=1 ~p JP pp 
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is used to find the best approximate decomposition for certain 

scalar-product data. CANDECOMP can be used for non-singular trans­

formation of an extended core matrix with different first and 

second mode; a similar proposal has been made by Cohen (1974, 1975) 

to use INDSCAL on the extended core matrix from three-mode scaling. 

The problem of achieving optimal diagonality of the extended 

core matric using non-singular transformations can be formulated as 

the 

Let C = (C I 'C2 ' ••• ,Cn) with Ck E RSXS (k=I, ••• ,n) be given. 

Find the non-singular A E RSXS and B E RSxs , and D = 

(D I ,D2 ,···,Dn) with Dk is diagonal (k=I, •.• ,n) , such that 
n 

T(A,B,D) = ~=I tr (Ck - ADkB')'(Ck - ADkB') (5.9) 

is as small as possible. 

Theorem 5.2 

S xs (I ) and Let CI = (C I ,C2 ' ••• ,Cn) with Ck E R k= , ••. ,n , 

the diagonality problem NS be given. Then 

~ ~ -I ~ n n B'C' 
n 

DkB'BDk , A U~VA with UA l: and VA l: 
k=1 k k k=1 

~ U'V -I 
n 

DkA'Ck 
n 

DkA'ADk , and B with UB = l: and VB l: 
B B k=1 k=1 

..,k ~k ak s 
(B' C' A) (A'AxB'B)-I, 

Dk = (dl,···,ds ) with l: 
p q=1 k qq pq 

whe re "x" is the e lemen t-wise product of (p= I , •.• , s ; 

k=!, ••• ,n) two matrices, solve the diagonality problem NS, 

and the minimum is equal to 

~ - -) n tr C' C - tr BD' -r(A,B,D = ~=! k k B ¥ tr Ck'Ck - tr ADA'. 
k=! 
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Proof: 

n 
T(A,B,D) = f=1 tr (Ck - ADkH') , (Ck - ADk13!) can be ,vritten 

in two ways: 

n 
!. ·T(A,B,D) = ~=l tr Ck~ -

n 
2E 
k=1 

n 
tr ED A'C + 

f=i 
tr "RD .,' AD D' . k k il. k.!'"l. .I k .:,) 

2. 

n 
= E 

k=1 
tr C~Ck - 2 tr B{~ 

k=1 
DkA'Ck} + tr B{~ 

k=1 
D A'AD }B' k k 

n 
CkCk 2tr BUB tr BV B' = E tr - + 

k=1 B 
(5.10) 

n 
DkA'Ck , with UB = L and 

k=1 
n 

DkA'ADk VB = L 
k=1 

n 
CkCk -T(A,B,D) L tr 2 tr AUA + tr AVAA' 

k=1 
(5. 11) 

with 
n 

U = L 
A k=1 

DkB'Ck , and 

n 
DkB 'BDk V = L 

A k=1 

Differentiating T with respect to A, B, and D leads to 

~A T(A,B,D)i_ = -2U~ + 2AVAi_ = 0 
A A 

o 
~B T(A,B,D)i_ = -2U' + 2BV i = 0 
U B B B B 

~D T(A,B,D)i n = -2diag (B'Ck:A) + 2 diag (A'AD B'B)I- = 0 
k k k Dk 

(k=I, ..• ,n) 

which gives as solution of the stationary equations 

- - --1 
A = U~ VA 

B = U' V -1 and 
B B ' 

dk =! (B'C'A) (A'A B'B)-1 (I k I ) P q=1 k qq x pq p= , ... ,s; = , ••• ,n 

wi th "x" the elementwise matrix product. 

To obtain the value of the minimum substitute A,B, and D 

into (5.10): 

(5.12) 

(5. 13) 

(5. 14) 
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T(A,B,D) n 
C~Ck BUB BV B' = E tr -2tr + tr 

k=1 B 

using (5. 13) this gives 
n ~~ ~ -I~ T (A,B,D) = E tr C~Ck -Z tr BUB + tr BVBVB ·UB k=l 
n 
1: tr C~Ck -tr BUB' k=l 

which with the analoguous result for (5.11) and (5.IZ) 

the desired result. 

Standardization of transformation matrices 

Given a solution (A,B,D) has been found, any 

A* * * (* * * . A~, B = B~ and D = DI,DZ,···,D n) w1th 

liS 

gives 

" 

D: ~-I Dk K- 1 and ~,6 full-rank diagonal matrices also 

constitute a solution, as 

Without restricting the generality we may, therefore, fix the 

arbitrary scaling constants 0, and ° in such a way that the columns 

of A and B have unit length (see also Carroll & Chang, 1970, p.288-

289). Some such choice is necessary to identify the stationary 

equations, and this particular choice has the advantage that the 

orthonormal transformation procedure from the previous section is a 

special case of the non-singular one. 

As mentioned before, the solution given above is the same as 

that given by Carroll & Chang (1970), only the subject weights dk 
p 

are here treated per plane. In other words, we present CANDECOMP 

here as a procedure for a component model with two reduced modes 

with a diagonal extended core matrix, rather than a procedure for a 

component model with three reduced modes with body diagonal core 

matrix (see the discussion of these models in Chapter 3). 

Algorithm. Theorem 5.2 can be used to construct an alterna­

ting least squares algorithm to find the non-singular transforma­

tion A and B. One main iteration step of the NS-algorithm will be 

defined as: 
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~:~~!!.~!~E 

1. UA 
a 

2. VA 
a 

3. A 

~:~~!!.~!~E 

1. UB 
a 

2. VB 
a 

3. B 

-4. f1 

5. B a+! 

2. VD 
a 

UD 
a 

n D(a) B; s:: L 
k=1 k a _ 

n D(a) B 'B D (a) = L 
k=1 k a a k 

= UA' VA-I 
a a 

= /~ - ( ) wi th 6 v '" a p= 1 , ••• , s 
P q=1 pq 

n D (a) L A~+ICk k=1 k 

n D (a) A' A D(a) = L 
k=1 k a+1 a+1 k 

= UB' VB-I 
a a 

=e
l"'8J - =/t with Ii 

P q=! 

B[;-I 

(A' A ) x (B' B ) 
a a a a 

= B' C' A a -k a (k= I, •.• , n) 

b (p=I, •.• ,s) 
pq 

5.3 

3. 
d(a+l) 

pk 
~ (UD) (VD- 1) (p=I, ... ,s; k=l, ... ,n) 
q=1 a qq a pq 

5.4 COMPARISON OF TRANSFORMATION PROCEDURES 

Once the optimal transformation matrices have been found, they 

can be applied to the component matrices with the inverse trans­

formations applied to the core matrix. Thus, after having found the 
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optimal orthonormal transformations K and L, Zk = GCkH' may be 

decomposed as Z = G'~C ''<H*' with G* = GK' H*=HL' and C *=KC L' . . k k ' k k 
Similarly, after having found the optimal non-singular transforma-

tions A and B, Zk may be decomposed as Zk = G*C~H*' with G* = GA, 
- --1 - -1 H*=HB and C'\ =A Ck (B' ) . By using the transformations this way 

no additional loss is incurred and the transformed solution is just 

as adequate from the fitting point of view, as the original princi­

pal component solution. 

In comparing the two transformation procedures it should be 

realized that the two loss functions have a different character, 

and that this leads to a number of differences in behaviour. The 

orthonormal loss function is 

2 a(K,L,D) = [[Dk - KCkL'}] ,K, L orthonormal 

which leads to Dk = diag [KCkL'], thus a(K,L,D) is the sum of 

squares of the off-diagonal elements of the transformed c~ = KCki' , 

and because of that, ON is a true diagonalization procedure. The 

analoguous loss function in the non-singular case would be some­

thing like 

t(A,B,D) = [[Dk - ACkB']]2 , A, B non-singular with unit 
length columns. 

The problem with this loss function is that the restrictions do 

not identify the minimization problem. A stricter requirement would 

be that the determinants of A and B are equal to one, but this 

could lead to rather complicated algorithms, which still have to be 

investigated. 

The CANDECOMP loss function and solution described in section 

5.3 was chosen for our preliminary investigations into non-singular 

transformations of the core matrix 

t(A,B,D) = [[Ck - ADkB,]]2 A, B non-singular with unit 
length columns. 

Properly speaking this is not a diagonalization procedure, but a 

decomposition of the core planes into the transformation matrices 
,,< -1 -1 

and diagonal matrices. Dk is not the diagonal of Ck = A Ck(B') = 
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when there is no exact solution, but the difference will become 

smaller when the loss becomes smaller. The parallel of the non­

singular loss function for the orthonormal case would be the loss 

function for an orthonormal INDSCAL model, and the difference with 

the orthonormal transformation procedure in section 5.2 is that the 

definition of U and V is slightly differen~ 

and 

n 
U = L CkL'Dk , 

k=l 

n 
V = L C'K'D 

k=l k k 

For the non-singular case the difference in loss function im­

plies that there is a difference between (1) the results (in terms 

of sums of squares) from the transformation procedure to find A 

and B, and (2) the results from applying A and B to the core ma­

trix: 

(1) NS Zk - GCkH' - G{AD B'}H' = (GA)D (HB) , k k 
(2) NS Zk - GCkH' = (GA){A- 1C (B,)-l}(HB)' 

k 

For comparison in the orthonormal case these decompositions are: 

(1) ON Zk - GCkH' - G {K'D L} H' = (GK~D (HL')' k k 
(2) ON Zk - GCkH' = (GK'){KCkL'}(HL'). 

We will illustrate the differences between the two kinds of results 

for the non-singular procedure in section 5.5. 

For interpretational purposes, there is a distinct disadvan­

tage connected with the non-singular transformation when there is 

no exact solution to the diagonalization procedure NS. If there is 

no exact solution, A- 1Ck(B,)-1 is not diagonal, and the off-diago­

nal elements are no longer the sole expression of the relationships 

between components. Part of these relationships has been transfer­

red to the non-orthogonality of the components themselves. No such 

complications occur with orthonormal transformations. In other 

words, the strength of the relationships between the components is 

now divided over two quanti ties, and this poses as yet unsolved 

interpretational complications. Especially in those cases where the 

non-singular transformations become nearly singular as, for in­

stance, in the Perceived reality study (see section 5.5). 
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the solution of the non-singular transformation is not 

and one wants to avoid the complications of this splitting 

dependencies between components, one could settle for the 

extra loss from the transformation procedure, and use the values of 

Dk as the saliences or subject weights in combination with the 

correlated components G''< = GA, and H* = HB, which are the same for 

(1) and (2) anyway. The scalar products G''<' Gic and Hie' Hie which are 

equal to AlA and BIB respectively then indicate the covariations of 

the components, or correlations if the component matrix is centred; 

the singular values of scalar product matrices will indicate the 

degree of non-singularity. 

In section 5.5 we present some results of transforming the 

core matrix both by orthonormal and non-singular transformations. 

5.5 ILLUSTRATIONS OF TRANSFORMATIONS 

The main function of this section is to show numerical results 

illustrating the theory. Proper interpretation and assessment, 

especially of the non-singular transformation procedure, requires a 

more extensive investigation. For the orthonormal transformation 

procedure the situation is simpler, as it is a true diagonalization 

procedure, and the orthonormality of the transformation leaves the 

main characteristics of the TUCKALS2 solution unimpaired, and, 

therefore, poses no additional interpretational problems. 

Four ability-factor study. (Meyers, Dingman, Orpet, Sitkei, & 

Watts, 1964; see Chapter 12) From Tables 5.1 and 5.2, which show 

the various core matrices, it follows that the orthonormal trans­

formation of the core matrix does not improve the diagonality very 

much. Similar small improvements of diagonality can be observed in 

many other data sets, especially in those with symmetric frontal 

planes in the data block, like correlation and (dis )similarity 

matrices. 

The non-singular transformation procedure succeeds rather well 

with a mere increase in the standardized loss of .0064 compared to 

the TUCKALS2 loss. This means that it is possible to decompose the 
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Table 5.1 Four abilitg-factor studg: results of transformation 
procedures (4x4 solution) 

standardized sums of squares TUCKALS2 algorithm 

Total sum of squares 
Fitted sum of squares (=sum of squares of core mat.rix) 
Sum of squares of diagonal elements of core matrix 
Sum of squares of off-diagonal elements 

-SS(Total) 
-SS(Core) 
-SS(Dia) 
-SS(Off) 

standardized sums of squares of transformation procedure 

1.0000 
.9394 
.9247 
.0147 

ON NS 
Fitted sum of squares of the transformation 
procedure 
Sum of squares of the diagonal matrices Dk 

-SS(Proc-Fit.) 
-SS(Dia) 

.9250 

.9250 

standardized sums of squares after applging transfo=ations 
ON 

Sum of squares of core matrix -SS(Core) .9394 
Sum of squares of diagonal elements of 
core matrix -SS(Dia) .9250 
Sum of squares of off-diagonal elements 
of core matrix -SS(Off) .0143 

Transformation matrices 

Orthonormal case (K=L) non-singular case (A=B) 

lU.Qi)J .002 -.002 -.002 LOill! -.189 .464 
-.001 [:ill .091 -.003 -.012 G:mI -.349 

.002 -.090 ~ - .161 -.207 .060 ~ 

.002 -.012 .161 c:ID -.109 -.nl -.496 

Singular values of non-singular 
transformation 1.423 1.009 .814 

Average core matrices 

three-mode analysis orthonormal non-singular 

.9333 

.6652 

NS 
.6922 

.6749 

.0172 

LMll 
.238 
.330 
.357 

.528 

~ -.04 .10 .03 
.01 

-.03 

~ -.04 
-.04 IIl3l 

.11 -.04 

.06 .01 

.11 .06 ~ -.01 .01 -.11 
-.04 ~ .03 

.10 .03 o:::::b5I 

.03 .02 -.03 II3il 

-.04 .01 
[JI6l .02 

.01 II:lif 

-.01 [!3l .03 -.01 
.01 .03 IL:Q!!I .00 

-.11 -.01 .00 14.081 

frontal planes Ck of the core matrix into ADkB' (or ADkA' for the 

Meyers et al. data, as the input frontal planes are symmetriC) 

without any real loss compared to the original TUCKALS2 solution. 

Thus the diagonal elements (see column 4, Table 5.2) can be inter­

preted as the weights or saliences which the groups attach to the 

axes of the common transformed space. 

If one, in general, does not want to accept the additional 

loss, the core plane Ck should be transformed into 

C* = A-IC (B,)-I 
k k 
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Table 5.2 Four ability-factor study: core matrices (x 10) 

Diagonals from NS 
TUCKALS2 Orthonormal Non-singular transfonnation 

procedure 

79 79 6S 56 

R2 
-3 33 -3 33 - 4 28 30 

2 -2 26 2 -3 26 -12 -4 29 24 
7 3 1 13 7 2 1 13 -10 3 2 48 38 

135 135 98 103 

R4 3 20 3 20 -1 15 17 
-4 -0 15 -4 -1 15 -3 -3 15 15 

2 3 2 9 2 3 2 10 6 2 1 42 48 

116 116 65 75 

R6 
4 32 4 33 3 35 33 
7 4 8 6 2 7 9 2 11 13 
6 -5 2 17 7 -4 1 18 7 -2 -4 52 57 

- - - - - - - - - - - - - - - -
136 136 122 112 

N2 1 10 2 10 -2 10 9 
-11 1 19 -10 1 19 -3 4 20 19 
-8 1 -1 11 -10 1 -0 11 -2 -1 3 27 26 

84 84 56 55 

N4 
-5 26 -4 26 -3 22 23 

9 1 16 10 -0 16 8 0 25 29 
-3 3 -2 15 -2 3 -2 IS -6 2 -1 41 35 

98 98 72 71 

N6 0 26 1 2S 6 29 26 
3 -1 16 3 -2 16 2 3 22 22 

-2 -4 -2 16 -1 -5 -1 16 -1 5 -0 35 35 

as explained in sections 5.3 and 5.4. When the fit is not perfect 

the C~ will not be completely diagonal, and the diagonal elements 

of C~ will not be exactly the same as in Dk (compare columnns 3 and 

4 in Table 5.2), but the transformed component space G"'<=GA and 

H*=HB are the same as was set forth in section 5.4. The transformed 

components will in general no longer be orthogonal, and from Table 

5.3 it can be seen that substantial correlations (and scalar pro­

ducts) may arise. 

Table 5.3 shows the transformed components for Meyers et al. 

data. Whether one prefers the transformed components or the origin­

al ones, seems largely a matter of taste. The insight in the spa­

tial arrangement of the tests (see Fig. 12.1) is not greatly en­

hanced by the non-singular transformation. On the other hand, the 

comparisons between the various weights the groups attach to the 

components is somewhat simpler due to the (near)diagonality. One 
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Table 5.3 Four abilitg-factor studg: transformed component space 

(x 100) 

Tests 2 3 4 

A 1 32 [ill 7 14 component 
Hand-Eye 2 30 38 -10 23 correlations 
Psychomotor 3 32 41 -14 15 100 

- 3 100 
B 4 22 3 []] ~ 

-27 -16 100 
Perceptual 5 22 -1 48 43 1-91\ 18 0 100 
Speed 6 22 -0 44 40 

C 7 35 m 25 3 
Linguistic 8 32 -37 33 -3 
Ability 9 34 -30 18 -3 

D 10 22 -29 - 9 

~ Figural 11 29 -30 -20 32 
Reasoning 12 28 - 8 -15 34 

simpler due to the (near)diagonality. One of the reasons for the 

relatively small differences is that the core matrix was already 

reasonably diagonal to start with. 

Perceived realitg studg. Non-singular transformations of the 

core matrix of this study (Van der Voort, 1982), discussed in 

detail in section 7.5, show an entirely different picture (Table 

5.4). 

Although the fit of the non-singular transformation procedure 

was quite good (the additional loss was only .0050), the results 

are far from attractive. The smallest singular values of the trans­

formation matrices A and B are getting rather small, indicating 

that A and B are approaching singularity. Also noteworthy is the 

very large sum of squares of the core matrix. Note that the sum of 

squares of the core elements no longer adds up to the TUCKALS 

SS(Fit), because of correlations between components. The higher 

values in the core matrix after the non-singular transformation 

are the immediate consequence of these high correlations. It is, by 

the way, possible to scale the sum of squares of the transformed 
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Table 5.4 Perceived reality study: results of transformation 
procedures 

(3x3 solution) 

Standardized sums of squares 

Transformation Application of 
TUCKALS2 procedures transformations 

ON NS ON NS 

SS(Tot) 1. 0000 SS(Proc .Fit) .8538 .8966 SS(Core) .9016 5.1259 
SS(Core) .9016 SS(Dia) .8538 4.6836 SS(Dia) .8538 4.8062 
SS(Dia) .8468 SS(Off) .0478 .3197 
SS(Off) .0548 iterations 22 > 200 

Transformation matrices 

Orthonormal Non-singular 

K 

[WI -.142 -.012 
.142 ffiQJ .011 
.010 -.012 [.0001 

TUCKALS2 

r:::z::;:nJ .17 .05 
.32 ~ .31 
.09 - .27 [I]] 

L A B 

~ .087 .006 L:225J . 490 ~ .445 -.087 .030 
-.087 J::22ll. 089 

.002 -.090 ~ 
-.093 [lllJ .108 r::m:J ~ J::ml 
-.031 

singular values 1.46 

Average core matr.ices 

Orthonormal 

1-7.25\ .23 .01 
- .36!Lll -.04 
- .00 - .16 [IJ]( 

.482 .318 -.341 

.92 .16 1.63 

Non-singular 

Ell]] .22 .28 
.02 ~ -.05 
.01 .21 112.171 

.052 .467 

.48 .31 
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core matrix down to its original size, but only by mUltiplying the 

components with the reciprocal scaling constants. Inspection of the 

transformed core matrix (not shown) indicates that large off-diago­

nal elements exist, thus pointing to non-diagonality. On the other 

hand, the good fit of the procedure shows Lhat the Dk can be used 

as saliences for the transformed components. An adequate way to 

deal with this seeming contradiction still has to be developed. 

5.6 CONCLUDING REMARKS 

This chapter has been concerned with the problem of diagona­

lity of the extended core matrix. Especially the non-singular 

transformation procedure is still problematic both technically and 

interpretationally. From a technical point of view it is not clear 

if the CANDECOMP procedure is the most adequate procedure to use 

for the purpose, and how diagonali ty should be measured in the 
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presence of near-singularity of the transformation matrices. On the 

interpretational side the problem exists how to deal with large 

off-diagonal elements in a situation of good fit, and how to use 

the diagonality to its utmost advantage. The interpretation of 

highly related components is also somewhat difficult to deal with. 

The problem of interpreting ! oblique! components is, of course, 

partly conceptual and has been discussed extensively in the context 

of standard principal component analysis and factor analysis, a 

discussion we do not go into here. 

Further insight into the behaviour of the solutions and 

further evaluation of the results may be obtained by a direct 

comparison with the results of, for instance, an INDSCAL analysis 

on the data of the Four ability-factor study, and a CANDECOMP 

analysis on the data of the Perceived reality study. This, however, 

merits another study. 
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SUMMARY 

As Part I, Part II deals with theoretical issues, but now 

the focus is on those theoretical problems which arise out of 

applying three-mode principal component analysis to real data sets. 

Three main issues are tackled: preprocessing of input, postproces­

sing of output, and the analysis of the not-fitted part of the 

data. 

The first part of Chapter 6 reviews proposals which have been 

put forward to scale input data, such that they are fit for a 

(three-mode) principal component analysis. Procedures for handling 

means and variances are discussed. To this end a distinction is 

made between (un)interpretable and (in)comparable means and varian­

ces. A large variety of models exist for dealing with interpretable 

means, which generally consist of additive terms for the means (in 

an analysis-of-variance fashion), and mUltiplicative or product 

terms for the components. Some such models are discussed and eva­

luated. The problem of iterative standardization in three-mode 

models is discussed briefly. 

The second part of Chapter 6 deals with the interpretation of 

output, and ways to improve the interpretability of the results. 

Within this context the scaling of components and core matrices as 

well as their interpretation, joint plots, and component scores are 

treated in some detail. 

In Chapter 7 the focus is on that part of the data which is 

not accommodated by the three-mode model. After a general discus­

sion of residuals from principal component analysis, detailed 

recommendations and procedures are provided (and applied) for 

three-mode residuals, such as analysis of variance of the squared 

residuals, sums-of-squares plots, and the use of normal probability 

plots for the residuals. 
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6.1 INTRODUCTION 

In this chapter we will discuss the input and output of three­

mode principal component analysis. First we will treat general 

issues in connection with means and variances of raw data, their 

influence on the analysis, and their treatment so as to obtain the 

'best' analysis for a particular data set. Then we turn to what 

comes out of a three-mode analysis, how to interpret it, and how to 

transform it to enhance interpretation. In this sense the present 

chapter is the theoretical counterpart of the discussion in the 

second part of Chapter 2, in which we described an example in 

detail. A similarly detailed analysis of an example can be found in 

Chapter 8. 

The first part of this chapter deals with scaling of input, 

and will lead us to consider mixed additive and multiplicative 

models for raw data, i.e. models which have properties of both 

analysis of variance and principal component analysis. It is also 

necessary to consider the purposes of input scaling. By scaling we 

mean any operation which transforms raw data into new data values 

by subtracting and/or dividing the former by certain, often data 

dependent, quantities, such as means, scale midpoints, standard 

deviations, ranges, etc. 

In the second part scaling of output is considered. The Tuck­

er2 and Tucker3 models are liable to what is sometimes called 'the 

fundamental indeterminacy' (e.g. Kruskal, 1981, p.5), i.e. the 

component matrices may be transformed non-singularly without chang­

ing the fit of the model to the data, provided the appropriate 

inverse transformations are applied to other parts of the model. 

Similarly, component matrices may be multiplied or divided by 
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constants without affecting the fit of the model. Some such scal­

ings of the output, however, enhance our understanding of the 

relationships underlying the data more than others, as we shall 

presently see. 

6.2 INPUT SCALING: GENERAL CONSIDERATIONS 

Types of scaling. We will primarily discuss two basic kinds 

of scaling: centring, i.e. "subtracting a constant term from every 

element so that resulting data values have a mean 0" (Kruskal, 

1981, p.1S), and standardization, i.e. "dividing every element by a 

constant term, so as to achieve this result: the 'scale' of the 

resulting data values has some fixed value (often chosen to be 1). 

'Scale' generally refers to some measures of variability, most 

often the standard deviation" (Kruskal, 1981, p.I7). The process of 

centring and standardization, such that the resulting data values 

have mean zero and standard deviation one will be called norma­

lization. 

Although we primarily look at these three operations, it does 

not always seem adviseable to revert to them. In the examples in 

Chapters 9 and 11 we have subtracted the scale midpoints from the 

data for reasons to be explained later. In Chapter 14 we adjusted 

the range of all variables (tests) to become identical. 

Selecting a type of scaling. The reasons why one should use a 

particular type of scaling depend on the position one takes with 

respect to data and their analysis. The first point of view is that 

measurement characteristics, research questions, and research 

design determine what ought to be done to the data before entering 

a three-mode principal component analysis. A second point of view 

is that the model determines also which kind of scaling or prepro­

cessing is appropriate, i.e. the model rules out certain scalings, 

as they are considered to be inconsistent with its definition. 

First, it is necessary to take a closer look at the question 

why one should need to consider scaling at all. The answer to this 
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is straightforward: to improve the understanding of the relation­

ships between elements of the three modes. It is believed that the 

three-mode component model does not apply to the raw data, but to 

some appropriately transformed or scaled form, and that certain 

means and/or standard deviations obscure what is searched for, or 

what is basic in the data. Thus it is expected that the model will 

give an incorrect or imprecise description of the relationships in 

the data, when applied to the raw data. 

Why one might get an improper description when certain means 

and/of standard deviations are not removed from the raw data fol­

lows from the definition of component analysis. The components 

derived by the technique represent directions in the space spanned 

by, say, the variables, along which successively and orthogonally 

the largest variations can be found. If the centroid, defined by 

the means of the variables, is located at a considerable distance 

from the origin of the variable space, then an important candidate 

for the direction of the first component will be the one from the 

origin through the centroid. If, however, the main purpose of an 

analysis is to investigate the covariations of the variables from 

the centroid, the means of the variables should be removed before 

the component analysis, and should be modelled separately. Similar­

ly, when the structure of the variable domain is of interest, but 

it is undesirable that variables with larger variations influence 

the results unduly, something should be done towards equalizing 

variations. It is equally possible, however, that objects or per­

sons with larger variations should dominate the outcome of an 

analysis. For instance, it is not necessarily sensible to equalize 

variations of persons who have no outspoken opinion and always tick 

the midpoints of scales and those of persons who use scales effec­

tively and have mainly systematic variation. 

Kruskal (1981, p.18) cites another purpose for standardization 

in connection with his discussion of PARAFACI. Paraphrasing his 

argument we write the three-mode Tucker3 model as 

stu 
z;J'k = L L L g. h. ek c + ~"k' 

L p=l q=l r=l ~p Jq r pqr ~J 
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where i:ijk is a random variable with mean zero. As least squares 

fitting is used to solve the estimation of the model, it is impli­

citly assumed that the standard deviations of the error terms are 

all equal. If one knew these standard deviations, one could scale 

the z .. k to make the error terms as nearly equal as possible. As in 
~J 

practice one does not know the standard deviations of the error 

terms, one has to fall back on the idea frequently used in princi­

pal component analysis, i. e. seeking to make the total standard 

deviations of the elements of one of the modes equal [or a similar 

type of standardization) instead of seeking to make the error 

standard deviations equal. "This approach has a long tradition in 

the bilinear methods, and is presumably as reasonable for trilinear 

models [such as PARAFAC1) as bilinear models [such as principal 

component analysis), though a satisfying rationale for it is not 

known" (Kruskal, 1981, p.18). 

Returning to the two points of view to input scaling, both 

Kruskal (1981) and Harshman (cited in Kruskal) argue that certain 

scalings are inappropriate for the three-mode model as the compo­

nents after centring and/or standardization bear no simple relation 

to the components before transformation. Put differently: a scaling 

should not "destroy the agreement with the model" (Kruskal, 1981, 

p.18). As it is our contention that the principal component model 

generally only applies after transformation of the data values it 

is not necessary to compare components before and after transform­

ation. We cannot go into the question here in more detail, as 

little discussion of this issue has appeared in print with respect 

to three-mode models. The basic paper seems to be an informal and 

incomplete paper by Harshman (cited in Kruskal, 1981). A final 

draft is in preparation (Harshman, 1982, pers. comm.), and due to 

appear in Law, Snyder, Hattie, & McDonald (forthcoming). 

Types of three-mode data. In selecting an appropriate scaling 

it is important to distinguish between three general kinds of 

three-mode data which we will designate as 'principal component 

analysis data' or pea-data, 'multidimensional scaling data' or 

mds-data, and 'analysis of variance data' or anova-data. 
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Pea-data have the format: subjects (i-mode) x variables (j­

mode) x conditions (k-mode). The terms are generic ones, e. g. 

conditions may refer to points in time, occasions, experimental 

conditions, replications, etc. The subjects may be considered a 

(random) sample from a particular population, or a fixed group of 

persons about which information on individual differences is sought. 

The examples in Chapters 8 (Attachment study), 13 (Hospital study), 

and 14 (Learning-to-read study) have this data format. 

Mds-data have the format: variables, stimuli, or scales 

(i-mode) x variables or stimuli (j-mode) x subjects (k-mode). Cha­

racteristic of this kind of data is that the subjects are not 

considered mere replications, but nearly always their individual 

differences are of interest, and they are seldom treated statisti­

cally as if they were a (random) sample from a particular popula­

tion. The examples in Chapters 2 (Party similarity study), 9 (Tri­

ple personality study), 10 (rTP study), 11 (Cola study), and 12 

(Four ability-factor study) have this data format. 

The third, not too common type of data (anova-data), generally 

have the pea-format with the additional characteristic that the 

variables (j-mode) form a highly consistent scale (high Cronbach's 

0') and may be considered to measure the same variable. In such a 

case the data may be described by a three-factor (Qxmxn) analysis 

of variance design without replications. The Perceived reality data 

in Chapter 7 have this data format. 

As in any classification scheme the allocation to one of the 

formats is not always clear-cut. In fact, the Triple personality 

data of Chapter 9 could be considered both pca-, and mds-data, but 

treating them as mds-data seems to be more in line with the re­

search questions asked. Four-mode data will in many cases be mix­

tures of the pca- and mds-data, see e.g. the data collected by 

Jones & Young (1972), when the two years in which mds-data were 

collected, are considered as the fourth mode. The distinction 

between pca-data and mds-data is especially useful in connection 

with the decisions which of the modes should not be reduced in a 

Tucker2 analysis. For the former this will be the condition mode, 

for the latter the subject mode. It is, by the way, interesting to 

note that the substantive distinction between the mathematically 



6.2 133 

equivalent models PARAFAC1 and CANDECOMP (see section 3.2 and sec­

tion 3.3) is that the former was proposed with pca-data in mind, 

and the latter with mds-data. 

In section 6.5 we discuss recommendations for centring and 

will return to these three data formats. 

6.3 INPUT SCALING: ARBITRARY AND INCOMPARABLE MEANS AND VARIANCES 

Arbitrarg means and variances. Many social science variables 

have interval properties, and thus no natural zero point. Often the 

absolute size of the variances of these values is arbitrary in the 

sense that it is dependent on the number of possible values chosen 

rather than the 'true' range of the variable. It is undesirable to 

have variation in the data due to arbitrary means (e.g. the mid­

point of five-point rating scales) influence the components of a 

component analysis, so that they should be removed first - the more 

so if they are different for different variables. In certain cases 

wi th homogeneous variables (for instance, sets of similar rating 

scales) the differences in the arbitrary means are of interest, and 

should be retained in the analysis. In that case the midpoints of 

the variables generally define some neutral point which can be used 

for centring (see the examples in Chapters 9 and 11). 

The situation with variances is similar. If variances are 

arbitrary, and variables have different ranges, then in order to 

avoid artefacts these variances should certainly be equalized 

before a three-mode analysis is performed. In homogeneous sets with 

arbitrary variances, in which the differences between the variances 

are not of interest, they should be equalized as well. When the 

differences are of interest, the variances probably should remain 

untouched, as standardization per variable will remove some or all 

of these differences. One could consider scaling the overall varian­

ce to unity over the entire data set, but this has no influence on 

the outcome of the analysis because all the data values are divided 

by the same constant. (see also Kruskal, 1981, p.17). 
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Incomparable means and variances. Consider the situation in 

which the scores of a number of subjects are available on a diverse 

collection of variables, each of which has its own measurement 

characteristics. The Hospital study in Chapter 13 may serve as an 

example: 188 hospitals were measured on variables like number of 

beds, presence or absence of a financial director, ratio of quali­

fied nurses to the total number of nurses, etc. In such data the 

means of the variables are incomparable, as are the variances. 

Therefore, it does not make sense to consider components which are 

influenced by these means and variances. In other words, these 

means and variances should be modelled separately, and not via a 

principal component analysis. 

The hospital data are, in fact, more complex than sketched 

above, because the variables were measured in each of eleven con­

secutive years. The question thus arises whether one wants to 

remove the incomparable means per year, or over all years together. 

The argument for the scaling procedure in the previous paragraph 

was based on the idea that within one year the means and standard 

deviations across variables were incomparable. However, differences 

in means and standard deviations over the years are comparable for 

each variable, and one may decide to model the differences across 

years by the principal component analysis, or model them separately 

outside the model, depending on the research questions one has in 

mind. 

In this way one may have both incomparable and comparable 

means in one data set, and the 'best' way to treat them depends on 

one's view of the subject matter. It may, of course, happen that 

one has to perform more than one kind of scaling due to lack of 

insight in the data set itself. 

In other situations all means and/or variances are both in­

terpretable and comparable, e.g. all variables are bipolar scales 

as in semantic differential research (see Chapter 9). It is then a 

question whether means and/or variances should be modelled separa­

tely or not. 
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6.4 INPUT CENTRING: INTERPRETABLE MEANS 

In this section we will investigate some of the substantive 

considerations that go into selecting an appropriate centring for a 

particular data set when the means are interpretable. It is not 

possible to do so in a general way because different research 

questions are asked of different data, and because different mea­

suring instruments and research designs are in use. It is possible 

to make specific recommendations in specific research areas, as has 

been demonstrated by Noy-Meir (1973), and Noy-Meir, Walker, & 

Williams (1975) for ecological ordination data. 

Notwithstanding the above we will try to tackle centring of 

input data as generally as possible by discussing various ways in 

which means can be treated and/or modelled. Our emphasis will be 

primarily on centring as this kind of scaling is better understood, 

and more extensively studied. We will discuss standardization in 

some more detail in section 6.6. 

Two-mode data. To facilitate the discussion let us assume that 

we are dealing with scores of individuals on a series of tests 

scored on the same scale. The means of these tests are comparable, 

as are those of the individuals. Assuming that it makes sense to 

talk about the average performance of an individual over all tests, 

the question arises as to how the average performance should be 

modelled. Similarly, given that we have determined the averages of 

all tests, the question arises how they should be included in an 

analysis. One way to do so is to perform a standard principal 

component analysis, or singular value decomposition (see section 

2.2) on the original measures. 

An alternative way to treat these means (and the means of the 

individuals over tests) would be to model them according to a model 

sometimes called the FANOVA (FActor ANalysis Of VAriance) model 

(Gollob, 1968a,b,c). This model treats the grand mean, row and 

column effects separately, i.e. removes them from the original 

data, and specifies a singular value decomposition for the resi­

duals. The derived components are 'interaction-components' in that 

they describe the interactions of the deviations from the means of 



136 6.4 

the individuals and the tests respectively: 

s 
z .. = 1-1 + (1.+ (3.+ £. .. with £. .. = I g1.'phJ.pcpp ' 

1.J 1. J 1.J 1.J p=l 

where 1-1, (1., (3., £. •• are the usual grand mean, row effect, column 
1. J 1.J 

effect, and residual from analysis-of-variance models, with the 

standard zero-sum assumptions for the effects (see also Kruskal, 

1981, p.6,7). One hopes, of course, that very few components are 

necessary to describe the interactions. The FANOVA model is thus a 

combination of an additive model (grand mean, row effect, column 

effect), and a mUltiplicative model (componental decomposition of 

the remainder term). The latter part is, however, still an ortho­

gonal decomposition, and in that sense the successive product terms 

are also additive between them. One should also realize that the 

model as specified is one without replication, i.e. with only one 

observation per cell. 

The main differences between the two ways of modelling, FANOVA 

and singular value decomposition, are the treatment of the means 

and the interpretational differences connected with the components. 

Tucker (1968), for instance, contends that "the mean responses to 

various stimuli over a population of individuals are better con­

ceived as describers of the population than as simple, fundamental 

describers of the stimuli" (p. 345), and continues that, therefore, 

such means should be included in a principal component analysis, 

i.e. the analysis should be performed on the original measures. In 

this way the means are "equal to the measures that would be obser­

ved for a person at the centroid of the factor score distribution" 

(p. 350). The components then determine the original measures. 

In contrast, the FANOVA model sets the means apart first, and 

only then looks at components in the residuals. It, therefore, 

gives a special a priori status to those means. It is a moot point 

whether this is just Ita useful heuristic to use main effects as a 

point of reference from which to describe individual differences in 

patterns of subject responses" (Gollob, 1968c, p. 355), or whether 

in the FANOVA model "the mean measure is considered as a basic 

characteristic of the responses of the individuals" (Tucker, 1968, 

p. 350). In the end the subject matter will determine which of the 
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two is the more correct interpretation of the mean responses, and 

the research questions will deLerm1ne if it is more useful to model 

the means a priori (Gollob) or a posteriori (Tucker). When the 

means are expected to be the resultant of an agglomeration of 

influences which have to be disentangled, Tucker's view seems to be 

pertinent. However, when the means represent a 'primary psychologi­

cal construct', or have intrinsic meaning in another way Gollob's 

view and model seem more appropriate. 

Whereas Gollob and Tucker discuss the FANOVA model within the 

context of the problems of removing or maintaining means before 

performing a principal component analysis, the same model has been 

considered from a different angle by Mandel (1969, 1971), and in 

fact even earlier by Fisher & Mackenzie (1923) and Gilbert (1963). 

Mandel was looking for a way to model the interactions in a two-way 

analysis-of-variance design without replications, and attempted to 

fit mUltiplicative interactions of row and column factors, ending 

up with the same model as Gollob. He thereby extended the already 

existing discussion on tests for non-additivity which started with 

Tukey's (1949) 'single-degree-of-freedom test for non-additivity'. 

Further work on testing this kind of interactions was carried out 

by Corsten & Van Eijnsbergen (1972), Johnson & Graybill (1972), 

and Marasinghe & Johnson (1981). Snee (1972) discusses the model 

for growth studies (see also Chapter 14). 

Notice that within this context there is no problem as to 

whether or not it is appropriate to remove means, as the primary 

focus is on modelling interaction terms after the sums of squares 

for the main effects have already been investigated. Another and 

more fundamental difference between the two presentations of the 

model is the kind of data involved. Whereas Gollob considers obser­

vations of subjects on certain variables, and therefore looks at 

the relationships between variables (analysis of interdependence, 

see e.g. Gifi, 1981, p. 2., and Kendall, 1957, p. 1-4), Mandel is 

dealing with one response variable and two predictor variables 

(analysis of dependence). Because of this fundamental difference 

not all considerations, tests, etc. from the analysis-of-variance­

side are relevant to the Gollob-Tucker discussion, and vice versa. 
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A parallel model crops up in the analysis of contingency 

tables, where it goes under a wide variety of names, such as cor­

respondence analysis (see Chapter 15), dual scaling, and optimal 

scaling. For general surveys, historical comments and extensive 

references see Hill (1974),- Gifi (1981) and Nishisato (1981). 

Gabriel (1971) used the FANOVA model for so-called biplot 

graphical analysis of multivariate data, and Gnanadesikan & Ketten­

ring (1972, p.97,102) also implicitly suggest the use of the model 

when discussing ways to investigate residuals for outliers (see 

also Chapter 7). 

Reviewing the various discussions of the model in the above 

papers as far as they are relevant to three-mode models, it seems 

that the crucial aspects are the kind of research questions being 

asked, and the research design used to collect the data. This 

should determine what to do with the row and column means, or main 

effects, be it that it is often far from easy in practical cases to 

decide upon the proper way of centring. Only after this matter is 

solved, one can turn to a multiplicative analysis of interactions 

by using singular value decomposition, or its three-mode analogues 

such as three-mode principal component analysis or simplified 

versions thereof (see Chapter 3). In the next subsection we will 

review some three-mode generalizations of the FANOVA model. 

Three-mode data. Lohmoller (1979) discusses additive and 

mUltiplicative models for three-mode data, including some that fall 

outside the present discussion. He suggests the following generali­

zation of the FANOVA model: 

Z"k = ~ + ~. + Yk + t' k + cr' k x z--k 
1J J J J 1J 

with the normal analysis-of-variance notation for the grand mean 

(~), the variable effect (~j)' the condition effect (Yk), and the 

combined variable/condition interaction effect (t jk). The remaining 

jk-normalized z_ -k are to be decomposed with the three-mode princi-
1.J 

pal component model. This model (called the standard reduction 

equation by Lohmoller) specifies the data partly as an additive 

function of a priori sources of variation (~,~,Y,t), with standar-
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dization constants 0, and partly as a posteriori sources of varia­

tion through the components. The discussion in the previous para­

graph on the appropriateness of removing means before a multi­

plicative analysis directly applies to this proposal and the ones 

discussed below. 

Once it is realized that analysing interpretable means separa­

tely implies nothing but an analysis-of-variance model with multi­

plicative interaction terms, there is a large number of models that 

may be proposed. One possibility is the three-way main effects 

analysis-of-variance model for the additive part, and the three­

mode principal component model for the multiplicative part. The 

triple-centring model shown in Table 6.1 could also be used in this 

way, although it remains to be shown that it is a really useful 

procedure. It may very well be that after the various means and 

interactions have been removed, the residuals will not contain much 

additional systematic information that can be described by three­

mode principal component analysis. The deviations from randomness 

in these remainders might be better investigated by some kind of 

residual analysis (see also Chapter 7). 

Whereas in the above discussion three-mode models with multi­

plicative interactions have been approached from the component 

analysis side, Gower (1977) follows the analysis-of-variance tra­

dition of Mandel. He describes three-way models which fit the 

overall mean and main effects additively, and two-way interactions 

multiplicatively: 

with in general different components gi' gi and hj,fij , and ek,ek , 

which are derived from separate singular value decompositions of 

the two-mode marginal matrices averaged over one subscript. It is 

assumed that all effects .and multiplicative components sum to zero, 

and that there is no three-way interaction. The additive portion is 

fitted by the standard least squares estimators, and the multipli­

cative part is based on the residuals, 

- (z. -z ) - (z . -z ) - (z -z ). 
1... ••• .J.... ..k ... 
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Gower proposes to use Mandel's (1971) formulas on degrees of free­

dom in the two-way case to compute mean squares, and to test the 

significance. Note that in our discussion of Gower's and Mandel's 

models the assumption is made that there are no replications in the 

cells. When there are replications, their models would be four-mode 

models in our terminology with one random mode. 

Gower continues to show that the inclusion of three-component 

products, for instance g.h.ek , introduces further complications 
1. J 

when one wants to include the zero-sum restrictions on the multi-

plicative components. Including such restrictions leads to a model 

like 

g.h. + h.ek + ekg. + pg.h.ek 
1. J J 1. 1. J 

with zero-sum restrictions for all effects and multiplicative 

components; p is a constant to be estimated. Note that there is now 

only one type gi' hj' and ek.An even more complicated three-factor 

model is considered when separate two-way interactions are included 

as well. Gower discusses estimation procedures for the above model 

and the difficulties involved. 

The analysis-of-variance approach colours the way the model is 

conceived and the way restrictions are introduced. This is, for 

instance, evident in the insistence on zero-sum restrictions, and 

the inclusion of two-way interactions before introducing three-way 

interactions. The component analysis approach decomposes three-way 

interactions directly without necessarily fitting two-way interac­

tions first. The two approaches coincide when p=l and two-way 

interactions are ignored, i.e. gihj = giek = hjek = 0 for all i,j, 

and k. The remaining term has then exactly the form of the PARA­

FAC1/ CANDECOMP model (Harshman, 1970; Carroll & Chang, 1970; see 

also sections 3.2 and 3.3) with one or s components: 

s 

£ijk = gihjek , or £ijk = p!l giphjpekp' 

depending on the numbers of multiplicative terms one wants to in­

clude. Furthermore, when the two-way interactions again are not 
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explicitly modelled, a three-mode principal component model is 

identical to Gower I s model, when only one multiplicative term is 

included. The c with p=q=r=l is then the estimator of p . pqr 
De Leeuw (1982, pers. corum.) suggested an extension of the 

Tucker3 model which bears some resemblance to the model with three­

component products proposed by Gower, and at the same time solves 

the estimation problem via an alternating least squares algorithm. 

Assume that all component matrices G, H, and E of a three-mode 

principal component model have a constant first column, i.e. gil = 

l/JQ for all i, hjl = I/Jm for all j, ek1 = l/Jn for all k. Then we 

may write this modified version of the basic Tucker3 model as 

stu 
(l/Jmn) L g. c 11 + (l/JQ) L L h. e c + 

p=2 1p P q=2 r=2 Jq kr lqr 

sus t 
(l/Jm) L L g. ek c 1 + (l/Jn) L L g. h. c 1 + 

p=2 r=2 1p r p r p=2 q=2 Ip Jq pq 

stu 
L L L g. h. e k c 

p=2 q=2 r=2 1p Jq r pqr 

The PARAFACI/CANDECOMP version of this modified Tucker3 model can 

be obtained by this setting all c = 0 except when p=q=r, and pqr 
absorbing the constants and the c in the components: ppp 

s s 
ziJ'k = c1ll+ e k1 + hJ' l + gil + L hJ'pe kp + L g. ek + 

p=2 p=2 1p P 

s 
L g. h. 

p=2 1p JP 
+ 

s 
L g. h. e k ' 

p=2 1p Jq r 

and this is Gower's model if s=2. The estimation of this model can 

thus be solved by adapting the PARAFACI/CANDECOMP algorithm. Simi­

larly the estimation of the modified Tucker3 model can be solved by 

adapting the TUCKALS3 algorithm. 



Table 6.1 Tgpes of centring three-mode data 

type of possibilities + one-way means to be 

centring retained 

1. all 

2. over all overall all 
data points Zijk aentl'ing 

3. per element of one i-centring between subjects (1), 
oode over the other j-tJentl'ing between conditions (k) 
two TDOdes k-centring 

4. for each combination ij -centring I between subjects (i) 

of elements of two (abative) 
modes over the e1e- jk-centring 
ments of the third (ipsative) 
mode ki-centring 

(110Pmati ve) 

5. per element of one ij ,ik-centrin.1 between conditions (k) 

mode over the e1e- jk, ki-centl'ing 
ments of the other (per'formative) 
two mode separately: 
double- cen tr ing ki,ij-centring' 

6. triple-centring 

for selected possibility 

eliminated 
means 

Z.j. 

Z .jk 

z .jk'Z .l..k 

Z.jk,ZLk 

Zij, 

formula 

'" Zijk :!.Z1jk 

'" Zijk = Zijk 

'" z 1jk '" Zijk • z . . ). 

'" Zijk = Zijk - Z.ik 

0, 

Zijk "" Zijk W z.jk - zLk + z •• k 

'" z =z .z -z -z + 
iik ijk . ik 1. k ii. 

",2: +z +z -z 
i.. .i. ..k ••• 

+ The type of centrinq in itatics is the one worked out in the right hand part of the tkble. 
The (italicized terms) are Cattell's (19668). . 

t The arrows indicate the direction of averaging, 

data arrangement 
for centring 

1 •• ",. (ijk) ••••• ,. (lmn) 

I ' I 
j.' I' ..... (ik) ••••• (1n)1 
: . 

j=m 
'------...... 

k=1 ••• k=n 

:I: r(iTi ::: rt"iIl 
k=l .•• k=n 

:I:(F,:::fEI 
@ 

§ TUCKALS is the genpric name for two computer programs TUCKALS2 and TUCKALS3 developedj,y Kroonenberg & De LeeuW" (1980), Kroonenberg (1981 a c) 
Tucker (1966)-a means that this way of centring; was labelled a by Tucker in his 1966 'Itt. paper I 

references§ 

Tucker ( 1966)-a;V,d.Geer (Note 4) -1; 
TUCKALS-option 0, 

Bartussek (197 3) -a; V .d.Geer-2; 
TucKALS-aption 8. 

j- centring 
Tucker-b; Bartussek-b; 
V.d.Geer-J. 
k- centring: TUCKALS-option 4 

jk-rcentrinfl 
TUcker-a; Bartussek -c; 
V.d.Geer-5 ; Lohm6ller (1979) ; 
TUCKALS-option 2. 
ki-centt'ing 
Ba.rtussek-d;TUCKALS-optioll J. 

general: 
Gollab(1968b,c) ; Tucker (1968) . 
jkJki-aentrino 
TUCKALs-optio~ 1. 

~ 
N 

<3' 

V1 
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6.S INPUT CENTRING: TYPES, CONSEQUENCES, RECOMMENDATIONS 

In the previous section we looked at substantive issues con­

nected with input centring, and at some models which could be used 

for treating means separately from the component model. In this 

sect.ion we will look at centring from a more technical point of 

view by considering the kinds of centring which can be defined 

within three-mode analysis, and the effects these centrings have on 

the output. Finally, we will try to formulate some recommendations, 

as well as discuss those of others. 

Types of centring. In Table 6.1 an overview is given of cen­

tring possibilities for three-mode data matrices. Cattell (1966a, 

p.IIS-119) has coined some terms for scaling of two-mode matrices. 

Whenever his terms seemed applicable for three-mode data, we have 

included them in italics in Table 6.1. Tucker (1966a, p.294), Bar­

tussek (1973, p.180-IS1), Van de Geer (197S, p.12), Lohmoller 

(1979, p.lS6-lS8), Rowe (1979, p.78), Harshman (unpublished, quoted 

in Kruskal, 1981), and Kruskal (1981, p.1S-19) discuss the scaling 

of input data for three-mode models, and most of the schemes for 

centring have been proposed by at least one of them. 

Some consequences of centring. In Table 6.2 an overview of 

some consequences of centring with various schemes is given for 

both the Tucker3 and Tucker2 models. The general effect for means 

is that if centring takes place at a certain level, means at the 

lower connected levels will also be zero. Especially noteworthy is 

Case S (jk,ik-centring or double-centring) as the only non-zero 

means remaining are those in the Z.. two-dimensional marginal 
1.J. 

plane (average frontal plane of the data matrix). Note, however, 

that its one-dimensional marginal averages are both zero again. In 

other words, the average frontal plane of the data matrix is itself 

double-centred. For the triple-centring indicated, the grand mean 

and all one-dimensional and two-dimensional marginal averages are 

zero. 
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Table 6.2 Consequences of centring 

A. two-dimensional 
marginal averages 

one-dimensional 
marginal averages 

overall (grand) 
mean 

General rule: if means are removed at a level, they will also 

have been removed at a lower level. 

B. 

case type means removed 
tgpe of centring 

2 

3 

4 

5 

Z 

overall centring 

Z • 
. J. 

j-centring 

Z .jk 
jk-centring 

Z.jk' zLk 
jk, ik-centring 

consequences 

no components centred 

ik-combination-mode components centred 
(e.g. in Tucker's Method III) 

component scores on j-mode components 
centred 

T3: i-mode components centred 

T2: (k or j-mode unreduced): i-mode com­
ponents centred 

T2: (i-mode unreduced): c. centred per 
qr-combination lqr 

T3: 

T2: 

T2: 

tuXtu latent covariation matrix 
becomes covariance matrix 

i-mode and j-mode components centred 

(k-mode unreduced): j-mode and i-mode 
components centred 

(i-mode unreduced): j-mode components 
centred c. centred per pr-combina­lqr tion 

c(tuXtu) latent covariance matrix 

T2: (j-mode unreduced): i-mode components 
centred c. centred per pr-combina­

pJr tion 

(suxsu) latent covaIiance matrix 
--. --- .. _-------------------_.- .. _._---_._--------
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6 Z .jk' zi.k' Zij. 

triple-centring 

T3: i-mode, j-mode, k-mode components 
centred 

145 

T2: components of reduced modes are cen­
tred. Core matrix is centred over 
unreduced mode. Latent covariance 
matrix for unreduced component combi­
nations. 

cases as in Table 6.1 

The last colwnn of Table 6. 2B indicates some effects of the 

various ways of centring on the output of a T3 or T2 analysis. Par­

ticularly, it shows which component matrices and core matrices 

become centred, and for which 'latent covariation matrices' the 

entries will become covariances (see section 13.3). 

Uncentred modes will have large first components, due to the 

presence of the means. This should be taken into account when 

assessing the relative contributions of the components of such an 

uncentred component. The first components are often highly corre­

lated with mean vectors, and also with the fitted swns of squares 

of the elements of the mode. 

When per variable (j-mode) is centred for each condition of 

the k-mode Uk-centring) the i-mode components will be centred 

after analysis. The algebraic correctness thereof follows directly 

from: 

= 

= 

L 
p,q,r 

L 
p,q,r 

g. h. ek c - (l/Q) L L g. h. ek c 
1p Jq r pqr i p,q,r 1p Jq r pqr 

h. ek c {g. - (l/Q) L g. } = Jq r pqr 1p i 1p 

L h. ek c {g. -
Jq r pqr 1p g.p} 

p,q,r 

with z"k the centred scores, such that Z 'k = 0 for all j and k. 
1J .J 

At the same time the algebraic derivation shows that it is more of 

a terminological confusion than anything else, as both by the raw 

data and in the model the centring is over the index i. In other 

words, one should keep track of the index over which is centred. 

Part of the confusion is due to our use of the word component, i.e. 

in our terminology components refer to loadings (see section 1.4), 

rather than component scores, as is more usual in standard princi­

pal component analysis. In standard principal component analysis 
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the scores of subjects on the variables are deviation scores after 

centring, and so are the scores on the variable components (see 

also Figure 2.1). 

Another problem which has been raised with respect to centring 

is the relationship between components derived from various cen­

tring procedures. An extensive literature exists dealing with 

two-mode matrices, but this discussion will not be repeated here. 

The presence of three modes and thus three component matrices makes 

the matter considerably more complex, and little work has been pu­

blished concerning this problem (see Kruskal, 1981). Whether an 

investigation will be useful for practical applications is rather 

doubtful, since just as in the two-mode case it is substantive 

considerations which generally determine the kind of input scaling 

that will be used (see section 6.2). Some relevant references for 

the two-mode discussion are Harris (1953), Ross (1963, 1964), 

McDonald (1967, especially p. 8-10), Gollob (1968b,c), Tucker 

(1968), Corballis (1971), Nesselroade (1973), Noy-Meir (1973), and 

Noy-Meir, Walker, & Williams (1975). 

The consequence of removing any mean is that the amount of 

variation explained by a particular analysis will be smaller, and 

sometimes dramatically smaller. (The sum of squares caused by 

non-zero means is often the largest one present in the data.) 

Overall centring (Case 2) can, for instance, be interpreted geome­

trically as moving the centroid of the data to the origin, and thus 

the sum of squares caused by the overall mean (which is often not 

meaningful, as in the case of many rating scales) is removed. 

Therefore, the loss in (artificial) variation explained need not be 

regretted in such a case. 

A further problem in connection with centring has to do with 

the interaction between centring and standardization, which we will 

take up briefly in the next section. 

Recommendations. The recommendations presented here should be 

seen as a first guide to what can be done with a particular data 

set. Especially in situations in which means can be modelled, much 

more content-specific information is needed. 
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When means cannot be interpreted or when they are incomparable 

within a mode, they should be eliminated, i.e. set equal to zero 

via subtraction. Furthermore, when means are interpretable and 

comparable within a mode, and when it is evident that the differen­

ces have been caused by influences not connected with the three­

mode data itself, they had best be modelled and explained sepa­

rately outside the three-mode model. 

For pca-data (see section 6.2) one will generally use either 

j-centring or jk-centring. The choice between the two will mainly 

depend upon the evaluation of the causes of the differences in 

means across conditions, and the need to relate these means to 

other aspects of the data set. 

For mds-data the most common procedure is double-centring (jk, 

ik-centring). Since the subjects in the third mode are assumed to 

be independent and we want to describe individual differences in 

the way the stimuli (variables) are treated by the subjects, the 

data should be centred per subject, or matrix-conditional (see, 

e.g. Young, 1981). In the literature on multidimensional scaling 

(see, e.g. Torgerson, 1958, p.258), the data values, which are 

assumed to have distance-like properties, are often first squared 

before double-centring, so that the double-centred values, Z .. k' 
1.J 

can be interpreted as scalar products between i and j for each k. 

Alternatively one could consider the observed values as being 

already squared, as we have generally done in our examples (Chapter 

10 and 11), and as Tucker (1972) did to demonstrate three-mode 

scaling. One of the effects of squaring is that the larger numbers 

carry even more weight than they already do in the least squares 

fitting procedure. A practical and theoretical investigation into 

the merits of squaring versus not-squaring has, to our knowledge, 

not yet been undertaken. 

For anova-data a good recommendation is difficult to give. One 

could model as many means additively as one would deem interesting, 

and analyse the anova residuals with three-mode principal component 

analysis. Alternatively, one could set aside only the grand mean, 

considering the remaining scores as deviations from this grand 

mean, and analyse them with three-mode analysis, as we did in the 

Perceived reality study in Chapter 7. Different ways of analysing 
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will highlight different aspects of the data, and it is difficult 

to say beforehand which way is the best. 

Kruskal (1981, p. 7) criticized subtracting the grand mean, 

z ,from all data points on the grounds that a simultaneous least 

squares estimation of z and the components in a three-mode model 

does not yield the same solution as first estimating the grand mean 

by least squares, and subsequently the three-mode model. On the 

basis of this observation he objects to subtracting only the grand 

mean. His objection could be met as suggested by De Leeuw (1982, 

pers. comm.) , by adding an extra phase to the TUCKALS algorithm in 

which the grand mean is estimated. Admittedly this was not done in 

our example in section 7.5. 

For some data, such as scores on bipolar scales, considera­

tions connected with substantive theory may suggest choosing the 

scale midpoints as a 'neutral' zero point, e.g. the midpoint of the 

scales in semantic differential research (see section 9.4). Devia­

tions of the true means from this neutral point have substantive 

interest, as are their relationships with the concepts. In the 

adjective set of the Cola studg (section 11.2) we also chose this 

approach. 

An objection against removing means, unrelated to the issues 

discussed above, is their sensitivity, and of least squares estima­

tes in general, to outliers. Such outliers may so badly bias the 

mean vectors that the transformed data values will be severely 

biased as well, and their further analysis might not produce the 

intended results (see section 7.2, and Gnanadesikan & Kettenring, 

1972, p.I07). The solution in such cases is to deal with the out­

liers in an appropriate way by using robust measure'~ of centrality 

like medians. As multivariate outliers (see also Chapter 7), are 

difficult to detect, spotting' them before or after removing means 

can be a difficult task. 

Examples of the suggested centring procedures can be found in 

the applied chapters of this book, while some reasoned centrings 

(sometimes combined with standardization) can also be found in the 

literature, e.g. Gabrielsson (1979, p.162: j-centring, and i-cen­

tring; full details in Gabrielsson, & Sjogren, 1974, p.9-11), Hohn 

(1979, p.167; j-normalization), Graser (1977, p.83-87; ij-norma­

lization, and j-normalization)). 
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Finally, as different centrings lead to different solutions, 

it is preferable to determine a priori which centring is appropri­

ate. Although solutions based on different centring procedures can 

be inspected to decide a posteriori which scaling is appropriate, 

one can easily lose sight of the difference between a priori hypo­

theses and a posteriori conclusions. In the end it will be consi­

derations of research design and subject matter which should decide 

the appropriate scaling, but the choice is never an easy or automa­

tic one. 

6.6 INPUT STANDARDIZATION: COMPARABLE VARIANCES 

In comparison with input centring our discussion of standar­

dization will be rather brief, primarily because less research has 

been done in this aspect of scaling, and because standardization is 

more complex, and thus less well understood. 

A fundamental difference between centring and standardization 

is that combinations of different centrings do not influence each 

other, while standardizations do. For instance, double-centring 

(j k, ik-centring) is a combination of jk-centring and ik-centring. 

They can be done separately and in any order. For standardization 

the situation is, however, far more complex: standardization of one 

mode will generally destroy that of another mode. Iterative proce­

dures have been devised to arrive at stable standardizations for 

two modes, but the final solution depends on the mode one starts 

with (see Cattell, 1966a, p.1l8, and earlier references cited by 

him). Harshman has provided iterative standardization procedures in 

his three-mode factor analysis program PARAFAC1 (vide, Harshman & 

DeSarbo, Note 2, and Kruskal, 1981); but as far as we know techni­

cal details are not yet available in print. It seems that for 

three-mode data conditions can be formulated for unique solutions, 

but these are not known to us. 

The question of iterative standardization bears some resem­

blance to the problem of iterative proportional fitting for con­

tingency tables (e.g. Bishop, Fienberg, & Holland, 1975). After 

convergence of the algorithm to perform the proportional fitting 
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the properties of the residuals are known, while for iterative 

standardization the properties of the double-standardized data are 

not. 

Further complications arise as standardization over one mode 

may destroy the centring over another. This means that when one 

wants to have, for instance, a centring over one mode, a normali­

zation of another, and a standardization of a third as Harshman & 
DeSarbo [Note 2] do in an example, the centring has to become part 

of the iterative procedure. Harshman & DeSarbo report convergence 

for the procedure, but it is uncertain what the relationships are 

between the results of such a procedure and the raw data, the more 

so because in certain circumstances the order in which the various 

scalings are performed also seems to have an effect on the solu­

tion. 

In view of the very incomplete state of affairs in this res­

pect, it is difficult to recommend other standardizations than 

those in accordance with the centring used, and not requiring an 

iterative procedure. Considering the definition of the variance, it 

seems advisable to perform centring first and standardization next, 

when they are used in conjunction. 

In pea-data with variables in the j-mode, standardization will 

almost always be used together with centring, so as to achieve 

normalization. This, ,·f course, is the standard practice in stan­

dard factor analysis and principal component analysis. With three­

mode data, the question remains whether one wants to j-standardize 

or jk-standardize. Kruskal (1981, p.17, 18) favours j-standardiza­

tion, because it does not destroy agreement with the (PARAFACl) 

model, an argument we discussed above. 

An argument put forward by some authors (e.g. Lohmoller, 1979, 

1981a; Rowe, 1979) in favour of jk-normalization is that it makes 

1 fl.. 

rjk,j'k' = 1 2 ZijkZij'k' (j,j '=m;k,k'=l, ... ,n) 
i=l 

1 n fl.. 
r jj , =01 2 2 ZijkZij'k (j,j'=l, ... ,m) 

k=l i=l 

1 fl.. m 
rkk , =fl..iii 2 2 ZijkZijk' (k,k'=l, ... ,n) 

i=l j=l 
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correlations, with Zijk the jk-normalized quantities. It is argued 

that this normalization is advantageous because it allows for tithe 

usual interpretation of the loadings" (Lohmoller, 1979, p. 158). 

The statement that rjj , and r kk , are correlations is, however, in­

correct, as they are only averages of correlations, e.g. 

n 
1 I 
n k=1 

1 Q 
Q L [(z"k - z 'k)/s 'k x (z"'k - z "k)/s "k] i=l 1.J .J .J 1.J .J .J 

and averages of correlations are not necessary correlations them­

selves. This is only the case when the s . k are equal for each j 
.J 

across all k. With centring these problems do not occur as sums of 

covariances are again covariances, and can be interpreted as 'with­

in sums of squares'. 

In mds-data, irrespective of the often recommendable jk,ik­

centring, it is at times desirable to standardize matrix-conditio­

nally (k-standardization) for instance, in order to eliminate 

response styles. The k-standardization can be done without influen­

cing the results from the jk,ik-centring. The reason for this is 

that both centring and standardization are performed in the same 

matrix, and centring within a matrix is not influenced if every 

value in that matrix is divided by a constant. 

Our experience with anova-data is very limited, and it is 

difficult to make a well-founded statement about them. What can be 

said is that if one takes the anova character seriously, i.e. if 

the data form a homogeneous set which is assumed to be a very good 

indicator of one single variable, then overall standardization 

would be called for, but as mentioned before such standardization 

does not influence the outcome of the estimation of the parameters 

in the model. 

6.7 INTERPRETATION: GENERAL ISSUES 

Whereas the previous sections dealt with preprocessing of raw 

data, the following sections deal with postprocessing of 'raw' out-
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put and its interpretation. Proper handling of input and inter­

pretation of output are always intimately linked with subject mat­

ter, and as such difficult to treat generally. What is useful, 

sensible and clarifying in one case obscures matters in another 

case. Nevertheless we will try to remain at a level which is as 

general as possible, and primarily discuss the structural aspects 

of interpreting the output from three-mode principal component 

analysis. 

One restriction is built into the discussion from the begin­

ning: the fact that it is based on the output from the implemen­

tation of the TUCKALS2 and TUCKALS3 algorithms by Kroonenberg 

(1982a,c). Wherever possible we will make statements with wider 

implications than only these implementations. 

The matrices of component loadings, G, H, and E, together with 

the core matrix C from the Tucker3 (T3) model, 

stu 
z .. k = 2 2 2 g. h. ek c , 

1J p=1 q=1 r=1 1p Jq r pqr 

form the basic output from a three-mode principal component analy­

sis with three reduced modes, and G, H, and the extended core 

matrix C from the Tucker2 (T2) model, 

s t 

Zijk =p!1 q!l giI-hjlpqk' 

the basic output from a three-mode analysis with two reduced modes. 

Some of the characteristics of this output are the following; 

Principal components are columns of orthonormal matrices (G,H,E), 

i.e. they have length 1, and the scalar products of components 

within a mode are O. 

Component matrices are eigenvector matrices of the cross pro­

ducts of the data reduced by the components of the other modes, 

i.e. of P, Q, and R for the 1st, 2nd, and 3rd mode respectively 

(see Theorem 4.1 in section 4.4 for precise definitions). 

Components of a mode are arranged in decreasing order of im­

portance, as expressed by the eigenvalues. 

Eigenvalues or components weights corresponding to the eigen­

vectors indicate the contribution of the eigenvector or prin­

cipal component to the overall fit, as expressed by the 
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Q m n 
SS(Fit) = 2: 2: 

i=l j=l 
'" '2 h ~ ziJ-k' were 

k=l 

stu 

Zijk =p!l q!l r!l&ipfijqekrCpqr (T3), or 

s t 

= L L g. llJ-qCpqk 
p=l q=l 1.p 

(T2), 
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are the estimated data values based on the fitted model, and 

s t 
L AX = L 

p=l P q=l 

X 
J-l q 

u 
2: 

r=l 

with AX II
X and vXr the eigenvalues. p' r-q , 

Standardized 

A (p=l, ... ,s), 
p 

values divided 

SS(Total) = 

eigenvalues or standardized component weights, 

J.l (q=l, ... ,t), V (r=l, ... ,u), are the eigen-
q r 

by the total variation in the data expressed by 

Q m n 
L L 

i=l j=l 
L z~-k' 

k=l 1.J 

Core matrices are scaled such that 

s t u 
L L L c2 = or SS(Fit) (T3) , 

p=l q=l r=l pqr 

n s t 
L L L 

k=l p=l q=l 

this scaling 

components. 

;:2 = 
pqk SS(Fit) (T2) ; 

is in accordance with the orthonormality of the 

In some important aspects these characteristics differ from 

those of the conunon representation of the output from Tucker's 

(1966a) methods. 

Components in Tucker's methods are derived from cross products 

of raw data, i.e. without taking into account the reduction over 

the other modes. 
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Components in Tucker's methods have been scaled, oh.en by otne~ 

authors than Tucker, to the size of the eigenvalues. 

Eigenvalues have often been scaled so that the sum over all 

eigenvalues of a mode is equal to the number of elements in that 

mode. 

in lucker's methods the sum of the eigenvalues ot diiierenL 

modes generally add up to different values, and the core matr1X 

does not allow an interpretation in terms of sums of squares, 

unless all components are included. 

A discussion of similarities and differences between the ALS 

approach used here and Tucker t s can be found in section 3.6 and 

Chapter 4. 

6.8 INTERPRETATION: COMPONENTS 

Components as latent elements. The most common way of interpret­

ing principal components is as latent variables, or in our case 

also as idealized subjects or prototype conditions. In practical 

applications these interpretations are often given to all extracted 

principal components, implying mostly that they represent theore­

tical constructs in some substantive context. Bargmann (1969), 

however, rejects the notion that a case can be made in favour of 

such an interpretation for anything but the first component, be­

cause the other components only define directions in the variable 

space orthogonally to the first one, and this is not necessarily 

the same as a theoretical construct from some substantive theory. 

There are two ways around this - to our opinion correct - state­

ment. One way is to define latent variables, idealized subj ects, 

and prototype conditions, etc. to be the principal components, and 

to consider the labels attached to these components as convenient 

summaries of the elements with high loadings on the components 

without assuming that they necessarily correspond to theoretical 

constructs. The other way is to assert that the extracted compo­

nents together define what might be called the t latent space t , 

which contains the only relevant systematic variation. Then the 
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theoretical constructs which are held responsible for the loadings 

of the elements on the components, span the latent space. The 

spatial arrangement of the elements in the latent space is then the 

representation of the theoretical constructs. Whether one then uses 

the components or any other set of vectors to interpret the rela­

tionships between the variables is immaterial as long as the spa­

tial arrangement is adequately described. 

Scaling to the sizes of component weights. As mentioned in 

section 6.7, in our basic representation of the model the compo­

nents are scaled to unit length. Adjusting the components in such a 

way that their lengths are proportionate to their (standardized) 

weights has certain advantages 'for plotting the components against 

one another. Especially when the weights associated with the compo­

nents are very different, directly plotting them without adjustment 

might give a wrong impression of their relative importance. 

scaling according to Bartussek. Bartussek (1973) suggested 

scaling the orthonormal components of a three-mode principal compo­

nent analysis analoguously to the procedure often encountered in 

standard principal component analysis. Primarily this means analy­

sing the average cross-product matrices rather than the unaveraged 

ones, and multiplying the component loadings by the square root of 

the eigenvalues, as suggested for making plots in the previous 

paragraph. There it was purely a matter of convenience for plot­

ting, here it is an integrated part of the representation of the 

model. In order to keep the model essentially the same, the core 

matrix has to be adjusted with the inverse transformations of those 

components. The effects of this on the interpretation of the core 

matrix will be discussed in the next session. In Table 6.3 we have 

summarized the proposal of Bartussek (1973). 

Rotation of components. In standard principal component analysis 

it is customary to rotate the solution of the variables to some 

kind of 'simple structure', most often using Kaiser's (1958) vari­

max procedure. This and other rotational procedures have been 

extensively applied in three-mode principal component analysis. We 

will touch upon the rotation issue only very lightly as we have 
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Table 6.3 

component 
weights 
or 
eigenval ues 

components 

Scaling of output according to Bartussek 

Tucker Bartussek 

A* AX Iron 
p p 

)1* q 
)1xhn 

q 
\!* \!x/Q.m 

r r 

,., 
h* g. I(Ax/mn) gip gip p ~p p ,., 

h. Ill* h. 1()1x/Q.n) h. 
Jq ]q q ]q q 

* ekrl\!; ek I (\!x / Q.m) ekr r r 

* c /1(A*)1*\!*) = Q.ronxc /IAxllx\!x c pqr pqr p q r pqr p q r core matrix c pqr 

Note: gp' hq' and e r are orthonormal components; 

AX lJx and VX are unstandardized eigenvalues p' q' r 

6.8 

little to add to the standard practice of rotating separate compo­

nent matrices. 

Various authors have advocated particular rotations of component 

matrices for specific types of data. Lohmoller, for instance, 

(1981a) recommends rotation of time- mode component matrices to a 

matrix of orthogonal polynomials as a target, a proposal also put 

forward by Van de Geer (1974) - see section 13.3. Subject compo­

nents are often rotated in such a way that the axes pass through 

centroids of clusters of individuals. Tucker (1972, p.10-12) advo­

cated that the "first priority for these transformations should be 

given to establishing meaningful dimensions for the object space 

[of variables)". 

The emphasis in the literature on first rotating the component 

matrices is a consequence of the familiarity with such procedures 

in standard principal component analysis. In three-mode analysis 

the core matrix is most difficult to interpret. This suggests 

concentrating on simplicity of the core matrix rather than on that 
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of the component matrices. By simplicity is here meant a large 

number of zeroes or very small values in the core matrix, pre­

ferably in the off-diagonal elements. Transformations of core 

matrices to a simple structure were discussed in detail in Chapter 

5. 

6.9 INTERPRETATION: CORE MATRICES 

In this section we will discuss several ways in which the ele­

ments of the core matrices of the Tucker3 (T3) and Tucker2 (T2) 

models can be intepreted. There seem to be at least five, not 

unrelated ways to do this: (1) percentages of explained variation, 

(2) three-mode interaction measures, (3) scores of idealized or 

latent elements, (4) direction cosines, and (5) latent covaria­

tions. The last interpretation is far from completely developed and 

its discussion is deferred until section 13.3. 

Explained variation. The core matrix indicates how the com-

ponents of the three modes relate to one another. For instance, the 

element of the T3 core matrix (Table 6.4) indicates the 

strength of the relationship between the first components of the 

Table 6.4 Notation for T3 core matrices 

third mode components 

2 3 

second mode 
components 2 2 2 

first c III c l21 c l12 c l22 c l13 c l23 
mode 

2 c211 c221 c212 c222 c213 c223 compo-
nents 3 c311 c321 c312 c322 c313 c323 

Note: each rectangle is a frontal plane of the core matrix 

three modes, and c221 the strength of the relationship between the 

second components of the first and the second mode in combination 
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with the first of the third mode. The interpretation of the ele-

ments of the core matrix is facilitated if one realizes that 

s t u s t n 
L L L c2 = SS(Fit) (1'3), and L L L c2 = SS(Fit) (T2) 

p=l q=l r=l pqr p=l q=l k=l pqk 

In other words, each of the c2 indicates how much the combination pqr 
of the p-th component of the first mode, the q-th component of the 

second mode, and the r-th component of the third mode contributes 

to the overall fit of the model, or how the total variation -SS(To­

tal)- is accounted for by this particular combination of components. 

An analoguous interpretation holds for the 1'2 core matrix, but now 

a C~qk expresses how much of the total variation is explained by 

the combination of the p-th and q-th components for the k-th sub­

ject or condition. Sometimes it is useful to express c2 k as pro­pq 
portion L L ;:2 

P q pqk' in order to indicate the importance of that 

particular combination for the k-th condition or subject. 

In addition it can be shown that 

s t 
L L c2 /SS(Total) = v (r=l, ... ,u) 

p=l q=l pqr r 

t u 
L L c2 /SS(Total) = A (p=l, ... ,s) 

q=l r=l pqr p 

u s 
L L c2 /SS(Total) = J.lq (q=l, ... ,t) 

r=l p=l pqr 

with Ap' J.lq , and v r the standardized component weights for the 

first, second, and third mode respectively. Similar expressions can 

be derived for the T2 core matrix. Furthermore 

s t u s t u 
L L L c2 /SS(Total) = L A = L J.I = L v 

p=l q=l r=l pqr p=l P q=l q r=l r 

= SS(Fit)/SS(Tot) = Rel.SS(Fit) 

In this way the core matrix represents a partitioning of the 

overall fitted sum of squares - SS(Fit) - into small units through 

which the (possibly) complex relationships between the components 

can be analysed. In singular value decomposition (see section 2.2) 
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the squares of the singular values (=eigenvalues of standard prin­

cipal component analysis) partition the fitted variation into parts 

which can be attributed to each component. The core matrix does the 

same for the combination of three components, and in this sense 

three-mode principal component analysis is for three-mode data the 

direct analogue of what singular value decomposition is for two­

mode data. 

Three-mode interactions. In singular value decomposition of 

two-mode matrices, say, Z = GAR', the p eigenvectors in G and Hare 

pairwise identical, as can be seen from the sum notation 

s 
z.'k = I A g. h. 
~J p=l P ~p JP 

The matrix A contains the measures of the interactions between the 

components of the i-mode G, and those of the j-mode H. For two-mode 

data A ,=0 if p#p'; so there is no interaction between the vectors pp 
gp and hp " but only between gp and hp ' which thus have an exclusi-

ve interaction with one another. In the two-mode case it is, there­

fore, legitimate and customary to think of just one set of compo­

nents for which we have loadings for the j-mode elements H, and 

scores for the i-mode elements, GA (see also section 2.2, Figure 

2.1). The strength of the interaction is usually expressed as A~p' 

or amount of variation accounted for, as discussed above. 

The interaction structure between the components of three 

modes can be, and usually is far more complex. The parallel struc­

ture to the two-mode situation would be a body-diagonal (sxsxs) 

core matrix, so that gp' hg , and er would only have a non-zero 

interaction if p=q=r. This is in fact the situation postulated for 

the PARAFACI/CANDECOMP model 

s 
z .. k = L c g. h. ek ' 
~J p=l ppp ~p JP P 

A core matrix with only non-zero body-diagonal elements has the 

most 'simple' structure a core matrix can have, and the interpre­

tation can be relatively straightforward - from a technical point 

of view. 
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In a sXsxu core matrix a still relatively 'simple structure' 

is c ~ 0 if p=q, r=l, ... ,u, and zero elsewhere. In this case all pqr 
frontal planes, Cr , of the core matrix are diagonai (for an eXiI!1!ple 

see section 10.5, Table 10.2). When u=n, we have a T2 diagonal 

extended core matrix with diagonal frontal planes, Ck (for an 

example see section 2.8, Table 2.7). 

A similar simple structure is sometimes found for r=2: 

c ~ 0 for p=q, r=l; c ~ 0 for q=s-p+l, r=2; pqr pqr 

and zero elsewhere. 

Here the first frontal plane is diagonal, and the second is 'anti­

diagonal', i. e. the diagonal running from the bottom lefthand 

corner to the upper righthand corner is non-zero. For an example of 

such a core matrix see section 15.8, Table 15.5. 

The structure in a three-mode core matrix is often not simple, 

and thus interpretational complexities arise, as a component will 

have interactions with more than one component of another mode. One 

of the complications is due to the interpretation of the sign of a 

core element and the fact that the interactions refer to continuous 

rather than discrete entities, unlike interactions between levels 

of factors in analysis of variance, and categories in contingency 

tables. 

Suppose that c has a positive sign, so that the interaction pqr 
of the p-th, q-th, and r-th component of the first, second, and 

third modes respectively is positive. This positive interaction 

indicates that four different combinations of elements of the three 

modes tend to occur together in the data: 

(+,+,+); (+,-,-,); (-,+,-); (-,-,+), 

in which a plus (minus) on the p-th, q-th, and r-th place in (p,q,r) 

refers to positive (negative) loadings on the p-th component of the 

first mode, q-th component of the second mode, and the r-th compo­

nent of the third mode, respectively. A parallel formulation can be 

that "positive loadings on p occur together with loadings of the 

same sign of q and r: (+,+,+) and (+,-,-) negative loadings on p 

occur with loadings of opposite signs on q and r: C-,+,-) and 

(-,-,+). A negative sign of c corresponds with the joint occur-pqr 
rence of the combinations (+,-,+), (+,+,-), (-,+,+), and (-,-,-). 

The mental juggling with combinations of positive and negative 
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loadings of different components is what makes the interpretation 

very difficult in many cases. In some data sets certain components 

have only positive loadings which simplifies the interpretation, as 

the number of combinations reduces with a factor two. Sometimes 

certain core elements are so small that they need not be interpret­

ed, which also simplifies interpretation. In section 8.4 we have 

given a detailed analysis of a complex core matrix as an example of 

how to deal with the problem of interpreting the combinations of 

negative and positive loadings on different components. 

A good strategy to simplify the interpretation is to make 

'conditional' statements by only making statements about elements 

which have, for instance, positive loadings on a component. The 

core matrix then represents only the interaction between the load­

ings of the two other modes, 'given' the positive loading on the 

third. The joint plots and component scores discussed in section 

6.10 are examples of such an approach. In practice we have observed 

that it is most useful to use the third mode (subjects, conditions) 

for 'conditioning'. To carry the argument a bit further, one might 

say that the T2 extended core matrix is also an example of condi­

tioning as no components of the third mode exist, and one can deal 

with the interactions between the components of the first two modes 

one frontal plane (= one element of the third mode) at a time. 

Scores of idealized elements. This interpretation was the 

basis for the second explanation of the three-mode principal com­

ponent model in section 2.2, and is the one usually employed in the 

literature. Each element of the core matrix is assumed to represent 

the score of an 'idealized subject' on a latent variable in a 

prototype condition. The main difference with the interpretation in 

the previous subsection is that there the interpretation was based 

on interactions between loadings on components, while here we 

construct interpretations in terms of the components themselves. 

It depends on the applications which way will be easier to 

handle. When one rej ects the idea of labelling components the 

latter method is in fact not applicable. In examples with very few 

variables and conditions the labelling of components is in any case 

a rather risky business, and the former approach seems more help-
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ful. In other applications, especially when the labelling of the 

components is firmly established, the latter approach might be 

easier to use. 

Part of the purpose of Bartussek's (1973) proposal to scale 

the components (see section 6.8) was to allow an interpretation of 

the core matrix as scores of idealized quantities, as in the para­

graph above, but with the specific characteristic that the absolute 

size of the elements in the core matrix is independent of the 

amount of variation accounted for by the components. In this wayan 

element of the core matrix c* (see Table 6.3), reflects a score pqr 
of a real subject who has a loading of one on the p-th subject 

component and zero on the others for that real variable which loads 

one on the q-th component and zero elsewhere, in the condition 

which loads one on the r-th component and zero elsewhere. In this 

way the elements of the core matrix reflect a very 'pure' subject, 

variable and condition (see Bartussek, 1973, p.179). 

Notwithstanding the correctness of Bartussek's interpretation 

of his scaled core elements, it is doubtful whether his scaling 

procedure is really necessary. His argument centres around the 

independence of the core elements from the amount or variation 

accounted for by the respective components to which they refer. It 

is, however, exactly this dependence on the variation accounted for 

which makes it possible to assess the relative importance of these 

core elements. It is, by the way, a misnomer to call the adjusted 

core elements, c* 'factor scores' of idealized subjects, varia-pqr 
bles, etc., as Bartussek does. Just 'scores' is more appropriate, 

as the core elements are the scores of the idealized subjects on 

latent variables in prototype conditions, so that the word 'factor' 

or 'component' confuses the issue - the more so because in three­

mode analysis already a definition of 'component scores' exists 

(see section 6.10). 

Two more points should be mentioned with respect to Bartus­

sek's (1973) proposals. The 'real person' -' real variable '-' real 

condition' combination with a loading one for just one of the 

components of each mode might easily be a non-existent or impos­

sible combination in a particular data set, i.e. such a point might 

lie far away from all other points in anyone or all of the compo-
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nent spaces. Cliff (1968) and Ross (1966) raised objections against 

the use of such idealized quanti ties as was proposed by Tucker & 

Messick (1963), see also Tucker (1972, p.26). 

The second point is that the scaling can lead to some absurdly 

large values for those core elements associated with very small 

eigenvalues (see Table 6.3). 

Direction cosines. In those cases where two modes are equal or 

the components define the same space, an additional interpretation 

of the core matrix is possible. Within the context of multidimen­

sional scaling of individual differences, for instance, the input 

similarity matrices satisfy these conditions, and within this field 

an interpretation has been developed in terms of correlations and 

direction cosines of the axes of the spaces common to two (general­

ly the first and second) modes (see section 3.2, Tucker, 1971, p.7, 

and Carroll & Wish, 1974, p.91). 

In these situations it makes sense to speak about the angle 

between the first and second component of the common space. This 

angle can be derived from the off-diagonal elements of the core 

planes, as they can be looked upon as a direction cosine or corre­

lation between component p and component q, provided C k is scaled 
N\ N\ pq 

by dividing it by cppk and c qqk' and the components are standar-

dized. The direction cosine indicates the angle under which the 

k-th condition 'sees' the axes or components of the common space 

(for an example see section 2.8). 

This approach towards the core matrices follows Tucker's 

three-mode scaling (1972) and Harshman's PARAFAC2 (1972) as pointed 

out, for instance, in Carroll & Wish (1974) and Dunn & Harshman 

(1982). The joint plots, to be discussed in the next section, are 

more in line with Carroll & Chang's approach to treating the core 

matrix (see references above), in which the (extended) core matrix 

is decomposed by either eigenvalue-eigenvector or singular value 

decompositions. 
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6.10 INTERPRETATION: JOINT PLOTS AND COMPONENT SCORES 

Various kinds of auxiliary information can be useful for the 

interpretation of results from a three-mode principal component 

analysis. In this section we will discuss the what we will call 

joint plots, which display the elements of different modes in the 

same figure, and component scores, which are the scores of, for 

instance, each subject-condition combination on the components of 

the variables. 

Joint plots. After the components have been computed, the 

core matrix will provide the information about the relationships 

between these components as discussed in the previous section. It 

is very instructive to investigate the component loadings of the 

subjects jointly with the component loadings of, for instance, the 

variables, by projecting them together in one space, as it then 

becomes possible to display the interaction between variables and 

subjects. The plot of the common space will be called a joint plot. 

Such a joint plot of every pair of component matrices, say G 

and H, for each component of the third mode, say E, in the Tucker3 

case, and for the average core plane in the Tucker2 case, is con­

structed in such a way that g (p~l, ... ,s) and h (q~l, ... ,t) -i.e. p q 
the columns of G and H respectively - are close to each other. 

Closeness is measured as the sum of all sXt squared distances 

d2 (g ,h ) over all p and q. 
p q 

The plots are constructed as follows. For each component r of 

E, the components G and H are scaled by dividing the core plane 

associated with that component, Cr , between them (using singular 

value decomposition), and weighting the scaled G and H by the 

relative number of elements in the modes to make the distances 

comparable: 
!, \ \ ~N ~ 

Jl " D ~ GC H' = G(U A V' )H' =(-) (GU A ) (~) (HV A )' = G fI' 
r r r r r m r r Q r r r r 

with 

!, ~ 
JL " k k 

G =(-) GU A2 and fI = (~) HV A2 r=l, ... ,u. 
r m r r r Jl r r 
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For the rationale behind this construction, and a more detailed 

discussion, see Kroonenberg & De Leeuw (1977). When C is not 
r 

square only the first a = min(s,t) components can be used. The pro-

cedure can be interpreted as rotating the component matrices by an 

orthonormal matrix, followed by a stretching (or shrinking) of the 

rotated components. Similar procedures for plotting two sets of 

vectors into one figure have been developed by Schiffman & Falken­

berg (1968; see also Schiffman et a1., 1981, Ch. 14), Gabriel 

(1971; biplot), Carroll (1972; MDPREF), Benzecri (1973; corres­

pondence analysis; see also Gifi, 1981, Ch. 4). 

In practice joint plots have proved a powerful tool for dis­

entangling complex relationships between components, and nearly 

every example in this book uses joint plots in one way or another. 

If we designate the first mode element as subjects and the second 

mode elements as variables, then we may say that both the subjects 

and variables in a joint plot are vectors from the origin. Their 

distances, d:., are the scalar product between the vectors, i.e. 
l.J 

a 
d:. I i. ~. , with a = min(s,t). 

l.J p=l l.p JP 

By projecting, for instance, subjects on a particular variable the 

relative importance of that variable for the subjects can be asses­

sed from the size and the sign of the resultants. One of the advan­

tages of the joint plot is that the interpretation of the relation­

ships of the variables and the subjects can be made directly with­

out involving components or their labels, given the r-th component 

for conditions. Another feature of the joint plots is that via the 

core plane Cr the axes of the joint plot are scaled according to 

their relative importance, so that visually one obtains a correct 

impression of the spread of the components. 

Component scores. In some applications it is useful to inspect 

the scores of all combinations of the elements of two modes on the 

components of the third mode. For instance, for longitudinal data 

the scores of each subject-time combination (or ik-combination) on 

the variable (j) components can be used to inspect the development 

of an individual's score on the latent variable over time. In some 

examples, these component scores in fact turn out to be a very suc-
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cesful summary of the relationships involved (see Chapters 2 and 

8). They serve as an intermediate level of condensation between the 

raw data, and the three-mode model. 

The component scores on the r-th component of the third mode 

have the form 

s t 
d .. = L L g. h. c 
lJr p=l q=l lp Jq pqr 

or D 
r = GC H' r 

but by using other combinations of component matrices, three diffe­

rent sets of scores can be calculated. In general, only a few of 

these will be useful in a particular application. 

One of the interesting aspects of the component scores d.. is 
lJr 

that they are at the same time the inner products 

a 
L r hr 

gip J'p , 
p=l 

thus expressing the closeness of the elements from different modes 

in a joint plot. 

Sometimes it is not useful to display the component scores for 

different components in one plot, but it is clearer to plot the 

component scores of, for instance, the subjects for each of the 

conditions (see section 2.10, Fig. 2.7; and section 8.5, Fig. 8.4). 

Such plots are sometimes easier to use, explain, or present than 

joint plots in which one has to inspect projections on vectors. 

In case of a good approximation of the model to the data the 

component scores as described above will resemble the component 

scores from a standard principal component analysis on a data 

matrix in which the columns are variables, and the rows the sub­

ject-condition combinations. Other writers too, have suggested 

using such component scores (e.g. Hohn, 1979). 

Mixed-mode matrices. A somewhat different, to our mind ihcor­

rect, approach towards inspecting measures of elements of one mode 

on the component of another was taken by Wainer, Gruvaeus, & Zill 

(1973). They defined what they called mixed-mode matrices. If we 

designate M(e,f) as the mixed-mode matrix of 'loadings' (as Wainer 

et aI, called them) of the elements of the e-th mode on the compo­

nents of the f-th mode, and choose e=l, and f=2 for illustration 
12 sake, then M(1,2) = {m. }, or {m. } for short, is defined as lq lq 
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n m s u n m 
m. L L L L g. h. ek c L L h. d. k l.q k=l j=l p=l r=l l.p Jq r pqr k=l j=l Jq l.q 

S n 
with d. k = L L g. ek c l.q p=l r=l l.p r pqr 

The d. k are the component scores of the subject-condition combi­
l.q 

nations on the variable components, defined in the previous para-

graph. We may rewrite the m. further as l.q 
mIn 

= n L h. {- L d. k} 
j=l JP n k=l l.q 

nmd. ii l.q. .q 

m m 
= n L h. d. = nd. {L h. J = 

j=l Jq l.q. l.q. j=l Jq 

The righthand side is the product of the component score of subject 

i averaged over conditions, and multiplied by the average loading 

on variable component q. Thus the m. are weighted average compo-l.q 
nent scores. One of the problems with mixed-mode matrices is the 

average component loading h . For centred data entire mixed-mode .q 
matrices may become zero, because all h ,and/or analoguous compo-.q 
nent averages can be zero. In view of this, it seems better if one 

wants to have something like mixed-mode matrices to use the average 

component score directly. 
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7.1 INTRODUCTION 

Until now, three-mode principal component analysis has been, 

both in this book and elsewhere, primarily used for summarization, 

i.e. describing a large body of data with a small(er) number of 

more basic statistics. As Gnanadesikan & Kettenring (1972, p.81) 

state, it would be very desirable if a method would also be useful 

for exposure, i.e. not only detecting the anticipated, but also un­

anticipated characteristics of the data. In fact, they argue "from 

a data-analytic standpoint the goals of summarization and exposure 

ought to be viewed as two sides of the same coin". For general dis­

cussions on the role and use of summarization and exposure in data 

analysis see Tukey & Wilk (1966) and Gnanadesikan & Wilk (1969). 

In this chapter we will discuss exposure via the analysis of 

residuals from a three-mode principal component analysis. In sec­

tion 4.3 the basic equations for separating the fit of the model 

(summarization) and the residuals (exposure) were explained. Here 

we will first discuss the analysis of residuals in a more general 

(theoretical) framework. Then we will review existing proposals for 

two-mode analysis, and comment on their three-mode generalizations. 

Finally we will illustrate and evaluate the proposals with one 

particular data set. 

7.2 INFORMAL INFERENCE AND GOALS OF RESIDUAL ANALYSIS 

In the analysis of interdependence (see also section 6.4), 

such as, for instance principal component analysis and multidimen­

sional scaling, the fit of the model is generally inspected, but no 
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standard practice exists of examining the residuals as is usual in 

the analysis of dependence, especially in regression analysis. 

Loglinear analysis of multi-way tables forms a welcome exception. 

It should be realized that in three-mode analysis there may be a 

good fit of the model to the data, but a distorted configuration in 

the projected space (e.g. the space defined by the first principal 

components) due to some isolated points far away from the best 

fitting space. The examination of such isolated points is of inter­

est in practical work, and may provide an interpretation of the 

nature of the heterogeneity in the data (cf. Rao, 1964, p.334). 

"One of the most insightful processes for exposure [of such 

isolated points] in analysis of uniresponse data is the study of 

residuals in a variety of ways' [ .... ]. The development of [ .... ] 

methods for analyzing residuals and for detecting outliers for 

multivariate situations is very difficult, [ .... ]. A general point 

is that mUltiresponse models or modes of summarization are inherent­

ly more complex and ways in which the data can depart from the 

model are infinitely more varied than in the univariate case. 

Consequently, it is all the more essential to have informal, infor­

mative summarization and exposure procedures" (Gnanadesikan & 

Kettenring, 1972, p.82). 

A similar emphasis on using informal techniques for looking at 

residuals rather than formal statistical procedures can be found in 

Tukey (1968, p. 274): "Since residuals are mainly used to look for 

what might be going on beyond what is already in the model, we can 

go for this with first-order answers. Small corrections whether or 

not of higher order, are often negligible [, ... ]. The important 

thing is to look at 'residuals'; details of definition matter 

less". 

An informal analysis of residuals of three-mode analysis is, 

however, not without hazards. The specific structure of the data, 

i.e. the three-way design and the initial scaling may introduce 

constraints on residuals or subsets of residuals. Furthermore, the 

presence of outliers, in particular outlier interactions among the 

three modes, may affect more than one summary measure of the resi­

duals, and thereby distort conclusions drawn from them. In short, 

all the woes of the regular analysis also pertain to the analysis 
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of residuals, which is performed to detect inadequacies in the 

former (see also Barnett & Lewis, 1978, Ch. 6). 

There seem to be three major goals for which residuals are 

used, and which are relevant for three-mode analysis: 

(i) detection of outliers, i. e. points which appear to deviate 

relative to the chosen model from the other members of the 

sample; 

(ii) detection of influential points, i.e. points which determine 

for a large part the solution of the model; 

(iii) detection of unmodelled sgstematic trends, i.e. trends which 

are not (yet) fitted by the model, because not enough compo­

nents have been included, or because they are not in accord­

ance with the model itself. 

7.3 PROCEDURES FOR ANALYSING RESIDUALS 

In the major exposition on the treatment of multidimensional 

residuals (Gnanadesikan & Kettenring, 1972; reprinted in slightly 

revised form as section 6.4. in Gnanadesikan, 1977; summarized in 

Barnett & Lewis, 1978, Ch. 6, especially section 6.2) a distinction 

is made between residuals arising from principal component analysis 

and least squares residuals arising from multivariate linear mo­

dels. Below we will show that the distinction is not as clear-cut 

as claimed by Gnanadesikan & Kettenring, and that, therefore, 

procedures developed for both cases can be useful in (three-mode) 

principal component analysis. 

Principal component residuals from two-mode data. Standard 

"principal component analysis may be viewed as fitting a set of mu­

tually orthogonal hyperplanes by minimizing the sum of squares of 

orthogonal deviations of the observations from each plane in turn. 

At any stage, therefore, one has residuals that are perpendicular 

deviations of the data from the fitted hyperplane" (Gnanadesikan, 

1977, p.259). Thus, given that t principal components are necessary 

to describe a particular data set adequately, the proj ections of 

the m-dimensional data on the last i.e. (m-t) not-fitted principal 
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components will be relevant for assessing the deviation of a sub­

ject i from the t-dimensional fitted hyperplane or subspace. Rao 

(1964, p.334) suggested using the length of the perpendicular of 

each subject i on the best fitting space for detecting its lack of 

fit. 

2.1: 

If we write the standard principal component model as in Fig. 

t 
z .. = l a. h. 

1.J q=l 1.q Jq 
Ci=l, ... ,.Q.;j=l, ... ,m), or Z=AH' 

with a. the component score for the i-th subject on the q-th com-1.q 
ponent, and h. the loading of the j-th variable on the q-th compo­

Jq 
nent, then the component score a. can be written as 1.q 

a. 
1.q 

m 

= l 
j=l 

z .. h. 
1.J Jq 

(i=1, ... ,.Q.;q=l, ... , t). 

The squared length of the projection of the vector in the variable 

space representing subject i on the vector in the variable space 

representing component q is thus a~ , and Rao's proposal is to use 1.q 

for 

d~ = 1. 

d~ = 1. 

m 
l 

q=t+1 

m 
I z~.-

j=l 1.J 

assessing the 

= 

t 

m 
I 

q=t+1 

m 

m 
{ l z .. h. }2, or 
j=l 1.J Jq 

I { I z .. h. }2 
q=l j=l 1.J Jq 

fit of subject i. 

It is not difficult to show that the d~ are nothing but the 
1. 

sum of squares of the least squares residuals for the i-th subject 

as, for instance, is shown by Rao (1964). The solution of the 

standard principal component analysis can be found by the minimiza: 

tion of a least squares loss function. The approximate solution Z 

with t components follows from the minimization of 

.Q. m .Q. m t 
[[Z-Z] ]2 = L L (z .. -z .. )2 = L L (z .. - L a. h. )2 

i=l j=l 1.J 1.J i=l j=l 1.J q=l 1.q Jq 

As in section 4.3 we may rewrite the loss function at its minimum 

in separate sums of squares 
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.Q. m .Q. m .Q. m 
I I (zij-Zij)2 = I I z~.- I I -2 or 

i=1 j=1 i=1 j=1 1.J i=1 j=1 
Zij' 

SS(Res) SS(Total) - SS(Fit). 

The second term on the right hand side may be rewritten as 

.Q. m .Q. m t .Q. m t m 
I I -2 = I I I a. h. }2 = I I { I h. [ I z .. ,h., ]}2 z .. 

i=1 j=1 1.J i=l j=1 q=1 1.q Jq i=1 j=1 q=1 .lq j '=1 1.J J q 

which after some algebraic manipulation using the columnwise ortho-

normality of H becomes: 

Thus 

.Q. m 
I I 

i=1 j=1 
Z~. = 

1.J 

.Q. t 
I I 

i=1 q=1 

m 
{ I 
j=l 

z .. h. }2 . 
1..1 Jq 

.Q. m .Q. m t m 
I [ I (z .. -Z .. )2) = I [ I z~. - I { I z .. ,h., }2). 

i=l j=1 1..1 1.J i=l j=l 1.J q=l j' =1 1.J J q 

The expression between square brackets is exactly Rao's measure for 

assessing the fit of each subject. The squares in the expressions 

ensure that for each subject i 

d~ 
1. 

m 
= I 

j=1 
(Z .. -Z .. )2 . 

1.J 1.J 

The importance of the above results is that in standard prin­

cipal component analysis the difference between the least squares 

and the principal component residuals is not as clear-cut as sug­

gested by Gnanadesikan & Kettenring (1972). The major difference 

is that in principal component analysis the predictors are latent 

variables (see section 6.8 for a discussion of this interpretation 

of principal components), and in (multivariate) regression the pre­

dictors are measured quantities. The similarity of the two kinds of 

residuals implies that proposals put forward for least squares 

residuals should also be workable in principal component analysis. 
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Gnanadesikan & Kettenring (1972, p.98) supplemented Rao's pro­

posal by suggesting a gamma probability plot for the d~ to search 
J. 

for aberrant points. We have, however, no experience with the 

procedure and do not propose to go into it. They also suggested 

(p.99) using various plots involving the last few principal compo­

nents, but as in three-mode analysis in its alternating least 

squares form these are not available, we will not go into these 

proposals either. 

Jackson (with various co-authors) is one of the few next to 

Gnanadesikan, Rao, and Hawkins (1974, 1980) dealing explicitly with 

residuals from principal component analysis (Jackson, 1959,1980; 

Jackson & Bradley, 1966; Jackson & Morris, 1957; Jackson & Mudhol­

kar, 1979). Jackson & Mudholkar (1979) discuss a series of statis­

tics for testing the overall adequacy of a principal component 

model. Their main statistic is identical to Rao' s Id~, but they 
J. 

start from the residual sum of squares end, and fail to recognize 

the identity. In fact, they go to some length to expound the ad­

vantages of their own approach over Rao's. 

Least squares residuals from two-mode data. As noted above, 

least squares residuals are generally assumed to have arisen from 

(multivariate) linear models with measured predictors. Any review 

of the treatment of such residuals is outside the scope of this 

book. We will only discuss some proposals which could be of rele­

vance for linear models with latent predictors, such as principal 

component analysis. Again we will lean heavily on Gnanadesikan & 

Kettenring (1972) and Gnanadesikan (1977), as they seem to be the 

only sources for treatment of multivariate or multidimensional re­

siduals in this context. Barnett & Lewis (1978, Ch. 7) review me­

thods, mainly tests, for outlier detection in designed experiments 

and regression. Some of these might be useful in principal com­

ponent analysis, but on the whole they are too specific to be 

readily applied in a first-order investigation of residuals from 

three-mode principal component analysis, and they will therefore 

not enter our discussion. 
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There are two basic ways of looking at individual residuals, 

E .. = Z .. - Z .. (i=l, ... ,l;j=I, ... ,m), with Z .. the fitted value on 
~J ~J ~J ~J 

the basis of the model. (Note that in the previous paragraph we 

looked at summary measures for the residuals of an element of a 

mode, rather than at each residual E .• separately.) The first is to 
~J 

treat the residuals as an unstructured sample, and employ techni-

ques for investigating such unstructured samples, such as found in 

Gnanadesikan (1977, p.265): 

1. Plotting the 

components, time 

residuals against certain external variables, 

(if relevant), or predicted (=fitted) values 

(2 .. ). Such plots might highlight still existing systematic rela-
~J 

tionships [Goal (iii)], or show, for instance, an unusually small 

residual relative to the fitted values, possibly indicating that 

this residual is associated with an overly dominant point, or 

combination of points [Goal (ii)]. 

2. Producing one-dimensional probability plots of the residuals, 
2 

e.g. full normal plots for the residuals, or Xl plots for squared 

residuals. According to Gnanadesikan (1977, p. 265) "Residuals from 

least squares procedures with measured predictors seem to tend to 

be 'supernormal' or at least more normally distributed than origin­

al data". The probability plots may be useful in detecting outliers 

[Goal (i)], or other peculiarities of the data, such as heterosce­

dasticity. For a full explanation of probability plotting, see 

Gnanadesikan (1977, p.197-200), or Wilk & Gnanadesikan (1968). 

The second overall approach to residuals is to take advantage 

of the structured situation from which the residuals arose, i. e. 

from a design with specific meanings for the rows and columns, in 

other words to treat them as a structured sample. As mentioned in 

section 7.2, exploiting the specific design properties may intro­

duce problems, exactly because of the design, and because the con­

straints put on the input data which may influence the residuals. 

Three-mode residuals. So far we have only discussed the analy­

sis of two-mode residuals, but it should be clear from the above 

that a third mode does not introduce many new complications. The 

unstructured approach remains essentially the same. It might, 
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however, be useful in certain cases to consider several unstruc­

tured samples, for instance one for each condition. This might es­

pecially be appropriate in the case of so-called matrix-conditional 

or mds-data (see section 6.2), i.e. data in which the measures for 

each k-mode element have been generated. independently. (For a dis­

cussion on matrix conditionality see, for instance, Young, De 

Leeuw, & Takane, 1980, or Young, 1981.) For the structured approach 

it seems most useful to look at a three-way partitioning of the 

residuals into sums of squares for the elements of each mode sepa­

rately (a la Rao) (see Table 7.5). 

Wi th all proposals for carrying out a residual analysis it 

should be kept in mind that we are interested in rough, or first­

order results. Attempting to perfect such analyses by adding more 

subtlety carry with them the danger of attacking random variation. 

After all we are only dealing with measures from which, in princi­

ple, the main sources of variation have already been removed. 

7.4 SCHEME FOR THE ANALYSIS OF THREE-MODE RESIDUALS 

In this section we will present an analgsis scheme for the 

treatment of the residuals from a three-mode principal component 

analysis. I t is felt that by following this scheme a reasonable 

insight will be gained into the nature of the residuals, so that 

decisions can be made about the quality of the three-mode solution 

obtained, and about the need for further analysis. The use of the 

scheme will be further explained and illustrated in section 7.6 in 

connection with the data from section 7.5. 

Table 7.1 presents the scheme for the analysis of three-mode 

residuals. A distinction is made between analysing regular residu­

als and squared residuals. For the first step the use of squared 

residuals via Rao's distance function is preferred, because fewer 

numbers have to be investigated, and use is made of the structure 

present in the residuals. Moreover, the resulting numbers have a 

direct interpretation in terms of variation accounted for, and the 

sums of squares can directly be compared with the overall (average) 

fitted and residual sums of squares. Finally, any irregularity is 
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Table 7.1 Analgsis scheme tor three-mode residuals 

Given an ~xmxn block of residuals, e" k = z. 'k - Z. 'k' and 
1.J 1.J 1.J 

an ~mxn block of squared residuals, e~'k = (z"k - Z. 'k)2 
1.J 1.J 1.J 

Step 1 (structured approach) 

Investigate the squared residuals per element of a mode, i.e. 

look at 

A. Inspect the distributions of the 

• SS(Total)s of the elements per mode, to detect elements with 
very large SS(Total)s which might have a large influence on 
the overall solution, and elements with a very small SS(Total), 
which do not playa role in the solution, 

• SS(Res)s of the elements per mode to detect ill-fitting and 
well-fitting points, 

• Relative SS(Res)s to detect relative differences between ele­
ments; e.g. ReI. SS(Res.) = SS(Res.)/SS(Tot.) (i=l, ... ,~). 

1. 1. 1. 

by using histograms, stem-and-Ieaf displays, probability or 
quantile plots, etc. 

B. Use sums-at-squares plots for each mode to facilitate the eva­
lutation of well-fitting and ill-fitting points. 

C. Use an analgsis-ot-variance decomposition of the squared resi­
duals to compare the residual sums of squares across modes. 

Suggested action: 

• IF no irregularities AND acceptable fit STOP, OR for surety 
GOTO step2. 

• IF no irregularities AND unacceptable fit GOTO step2 AND/OR 
increase number of components AND redo the analysis. 

• IF one element of each mode (say, i,j,R) BOTH fits badly AND 
has a very large SS(Total) , check for clerical error at 
data point (i,j,R). 

• IF some elements of any mode fit badly GOTO step2. 

• IF one element f of a mode has a very large SS(Total f ), AND 
a very small SS(Res f ), delete this element AND redo the 

analysis to assess the influence of this element on the 
overall solution, OR rescale input, especially equalize 
variation in that mode, AND redo the analysis. 
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Table 7.1 (cont'd) 

Step2 (unstructured approach) 

Investigate the residuals as an unstructured sample 

A. Examine the distribution of the residuals via a normal probabi­
lity (or quantile) plot. 

B. Examine plots of the residuals, £ijk' versus 

• fitted values, zo Ok' for trend, systematic patterns or unusual 
1J 

points, 

• data for remaining trends, 

• external variables for identification of systematic pattern 

in the residuals. 

Suggested action: 

• IF 

• IF 

• IF 

trends, or systematic patterns have been found THEN re­

examine the appropriateness of the model AND STOP, OR 

describe these patterns separately AND STOP, OR increase 

the number of components AND redo the analysis. 

a few large residuals are present AND no systematic pat­

tern is evident THEN check the appropriate data points, 

AND/OR STOP. 

no large residuals or trends are present STOP. 

enhanced by the squaring, and no cancellation due to opposite signs 

occurs during summing. For the second step the regular residuals 

are preferred, especially because at the individual level the signs 

are important to assess the direction of the deviation and to 

discover trends. 

The problem of examining the individual residuals can, how­

ever, be considerable. In the first place, the number of points to 

be examined is exactly as large as before the three-mode analysis, 

i.e. no reduction has taken place in the number of points to look 

at. Secondly, when attempting to use a technique such as analysis 

of variance with a standard statistical package which uses a gener-
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al linear model approach with a design matrix, the storage problems 

can easily run out of hand as in the MANOVA subprogram of SPSS 

(Hull & Nie, 1981). 

A partial solution might be to examine the residuals matrix­

conditional as suggested above. 

7.5 AN ILLUSTRATIVE DATA SET: PERCEIVED REALITY STUDY 

In this section we describe briefly the three-mode analysis of 

the data set we use to illustrate the procedures for the analysis 

of three-mode residuals. 

The data were collected from primary school children, to 

acquire information on the way children perceive reality as shown 

in TV serials. The children rated 8 film types on 11 three-point 

rating scales, each of which attempted to measure some aspect of 

the perceived reality of the film types (see Table 7.2). Scores 

were aggregated per grade, so that averages were available for the 

grades three, four, five and six. Similar scores were available for 

students of a teacher training college (an 'adult' control group), 

so that the complete data set consisted of 11 aspects (i-mode), 8 

film types (j-mode), and 5 "grades" (k-mode). Before analysis the 

overall average (1.67) was subtracted from each data point in order 

to keep the contribution of the overall average to the total sum of 

squares outside the analysis (see also section 6.5). The size of 

the overall average indicates, by the way, that the perceived 

reality over all film types, aspects, and grades is below the 

midpoint of the scale (2), and thus on the unrealistic side. 

As the aim of the present chapter is to examine residuals 

rather than give detailed substantive explanations and interpreta­

tions, we will bypass the original research questions and their mo­

tivations. These can be found in Van der Voort (1982). Here we will 

mainly give a summary description of the three-mode results. 

The way the grades used the relationships between aspects and 

film types is the primary focus of this analysis. The aspects were 

divided into two classes called neighbourhood or agreement items, 

and realism items (see Table 7.2) on the basis of a standard prin-
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Table 7.2 Perceived realitg studg: Data description 

Aspects* 

I. Was the film based on a real story? 

2. Could these events occur in realitg? 

3. Could these characters occur in realitg? 

4. Could these fights occur in realitg? 

5. Could these crimes occur in realitg? 

6. Could these events occur in the US/UK? 

7. Could these events occur in your neighbourhood? 

8. Could these characters occur in your neighbourhood? 

9. Could these fights occur in your neighbourhood? 

10. Could these crimes occur in your neighbourhood? 

II. Could these events occur in The Netherlands 

Film tgpes 

1. Cowbogfilms 

realism 

aspects 

neigh-

bour-

hood 

aspects 

2. Films like the Hulk 

3. Cartoons 

unrealistic 

films 

4. Chivalry films 

5. Children's adventure films 

6. Detective films with male detectives 

7. Detective films with female detectives 

8. Police films 

Grades 

I. Third grade primary school 

2. Fourth grade primary school 

3. Fifth grade primary school 

4. Sixth grade primary school 

5. Teacher training college 

realistic 

films 

The scale points used were: (1) no, (2) maybe, (3) yes. 
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cipal component analysis (see Van der Voort, Vooij s, & Bekker, 

1982, p.61-85). Similarly, the film types were also divided into 

two categories, realistic and lUlrealistic films (see again Table 

7.2). 

Table 7.3 Perceived reality study: Grade space 

grade component scaled 
component 

1 2 1 2 

Third .41 .51 .37 .11 
Fourth .49 .35 .44 .08 
Fifth .48 .01 .43 .00 
Sixth .47 -.20 .42 -.04 
Teacher training .38 -.76 .34 -.17 

length of component 1.00 1.00 .JVI .JV2 

standardized weight VI = .80 V2 = .05 

The 'grade space' (Table 7.3) is largely one-dimensional (vI = 
.80) showing the strong similarity in judgement over grades. On the 

second component (V2 = .05) the grades were ordered with respect to 

age. The common structure for all grades is depicted in the joint 

plot (see section 6.10) in Fig. 7.1A. The following conclusions can 

be drawn from this figure: 

1. on all aspects the order of reality of film types is roughly 

the same (horizontal axis); 

2. irrespective of film type the order of the aspects with res­

pect to realism is by and large the same (vertical axis); 

3. both divisions show up clearly with a complete separation of 

the film categories on the horizontal axis, and an overlapping 

one for aspects on the vertical axis; note that the order 

(Events < Fights < Characters < Crimes) with "<" meaning 'less 

realistic', is the same for both aspect categories; 

4. the scoring on the aspects events in US/UK and crimes in rea­

lity on the one hand, and events in the neighbourhood on the 

other hand, are largely responsible for the neighbourhood-rea­

lism distinction. 
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A: FIRST 'GRADE COMPONENT' 

COWBOY 
~ 

HULK 
~ __ ~~~MM ___________ _ 

\jj 
CARTOON 

I 

I ·us/uk 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DETECTIVE Q ... I 
I DETECTIVE If 

-.----------~---------
crimes·: "'PoLlCE 

: 1:HILD AoV 
I 
I 
I .characters 

stories I.fights 
. iii I 

crimes I 

: ,netherlands 
I events 

fights I 
liI'characters 

I 

~vents 
I 
I 

B: SECOND 'GRADE COMPONENT' 

... REALISTIC FILM 

crimes COWBOY 

characters 
• ~HULK 

CHIVALRY 

.us/uk 

~ UNREALISTIC FILM 

.REALITY ASPECT 

(j)NEIGHBOURHOOD ASPECT 

Fig. 7.lA and B Perceived realitg studg: Joint plots of film 
tgpes and aspects 
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Fig. 7. IB shows the configuration of aspects and film types 

which corresponds to the ordered grades. From Table 7.3 it can be 

seen that third graders score more positively and students from 

the teacher training college more negatively on the second compo­

nent for grades. Thus positive scores for aspect-film type 

combinations ( i. e. !1 g;~ h': , see section 6.10) are associated 
p= l.p JP 

with positive contributions to the overall score for the third 

grade and negative contributions for the teacher training grade. In 

the present example this means that the realism items, especially 

events in US/UK, in combination with unrealistic films, especially 

cowboy films, are responsible for the differentiation between 

grades. Thus in the third grade especially events in US/UK, crimes 

in reality, and characters in reality in unrealistic films are 

judged to be more realistic than in the middle grades, and the 

teachers-to-be judged those aspects as less realistic than the 

middle grades. 

7.6 RESIDUAL ANALYSIS FOR PERCEIVED REALITY STUDY 

In this section we will give a more detailed discussion of the 

use of the analysis scheme and demonstrate the way in which it can 

be used. 

Distributions of total and residual sums of squares. In Table 

7.4 we have presented the distributions of the total and residual 

sums of squares (or sums of squared residuals), as suggested in the 

analysis scheme (step I-A; Table 7.1). For grades we have presented 

'regular' tables, while for film types and aspects we have chosen 

to use Tukey's (1977) stem-and-leaf displays. The advantage of 

these displays is that they contain the complete information about 

the data, and show outlying points more clearly. 

From Table 7.4 a number of conclusions can be drawn with res­

pect to the data of the study. First the grades fit on the whole 

equally well. It is, however, worthwhile to note that the middle 

grades (fourth, fifth and sixth) have the lowest SS(Res) and the 
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Table 7.4 Perceived reality study: 
Distributions of total and residual sums of squares 

Grades 
total sums of squares 

SS(Totalk) SS(Totalk)/ 

grade 

G3 
G4 
G5 
G6 
TT 

overall 

mean 

Film types 

SS(Total) 

raw standardized 

79 .18 
101 .23 
90 .21 
91 .21 
79 .18 

--------------------------
440 1.00 

88 .20 

$) 

residual sums of squares 

SS(Resk) SS(Resk)/ 

SS(Totalk) 

raw ReI. SS(Resk) 

15 .19 
14 .14 
10 .11 
11 .12 
16 .21 

-----------------------------
69 .15 

13 .15 

total sums of squares residual sums of squares 

SS(Total.) SS(Res.) ReI. SS(Res.) 
J J J 

2':( 6 Cartoons 5 55 Chivalry, Police (.07;.07) 
3 6 
4 1568 7 7 Cartoon ( .27 ) 
5 8 88 Hulk,Detective cr (.11; .19) 
6 9 9 Detective <:;> ( .19 ) 
7 58 Police ,Hulk 10 0 Cowboy ( .25 ) 
8''<- 0 Chivalry 11 
------------------------ 12 
Mean = 55 

Aspects $) 
total sums of squares 

SS(Total.) 
1. 

1* 9 Crime. R 
2 4889 
3 478 
4 1 Events.N 
5 
6 
7 
8 
9 

10 
11"( 7 US/UK.R 

Mean =44 (Median =31.5) 

13 3 Child Adventure .29 ) 

Mean = 8 Mean = .18 

residual sums of squares 

SS(Res.) 
1. 

4 444 
5 5 
6 6 
7 777 
8 
9 
10 
11 
12 
13 3 Real story? 

Mean = 6 

.0''<­

.1 

.2 

.3 

.4 

49 
3557 
234 

.5* 5 

Mean =.19 

US/UK.R 
Events.R 

Real 
story? 

$) stem-and-leaf displays (Tukey, 1977: Chapter 1); '*' indicates 
the leaf is the next digit, i.e. 1* 9 = 19; in unstarred dis­
plays leaf = stem 
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extreme grades (third grade and teaching training college), the 

largest ones, showing that the joint plots of aspects and films re­

present the views of the middle grades better than those of the 

extreme grades. 

With respect to films, it can be noted that the total sums of 

squares for cartoons is small, in other words, the variation around 

the overall mean value is small. Apparently this type of film is 

judged alike over all aspects by all grades with an about average 

reality value. On the other hand chivalry films are judged rather 

differently either over aspects or grades or both. The SS(Res) of 

children's adventure films is larger than the other film types, and 

thus this film type does not fit as well. 

Finally, with respect to aspects, events in US/UK has a large 

SS(Total) , 26% of the overall total sum of squares being associated 

with this aspect alone. According to our analysis scheme, one might 

consider eliminating this aspect and redoing the analysis to assess 

its influence on the overall configuration. This was done and the 

structures of Fig. 7.1 still showed up, though not as clearly. 

Based on a real story does not fit well in the overall pattern with 

about 55% of its total variation not accounted for by the model, 

compared to a maximum of 24% for any of the other aspects. 

Analysis-of-variance decomposition of sums of squares. In the 

previous paragraph we have looked at the three modes separately, 

and not comparatively. It is, however, useful to investigate the 

relative sizes of the differences between the sums of squares of 

the modes. One way of doing so is to make an analysis-of-variance 

decomposition of the squared residuals. The relevant quantities for 

the present example are given in Table 7.5. As the constant is the 

estimate of the amount the squared residuals (£~ 'k) differ from 
1.J 

zero, its contribution to the total variation of the squared resi-

duals is an indication for the overall size of these residuals. 

Over and above this contribution of 27%, the sizes for the main 

effects are only marginally important: 5% for aspects, 2% for 

film types, and 1% for grades. The only sizeable contribution which 

might be worth investigating further seems to be that of aspects. 

From our previous analysis we know that based on a real story is 

largely responsible for t.he variation in the residual sums of 



Table 7.5 Perceived reality study: analysis-oE-variance decomposition Eor squared residuals 

source formula interpretation SS % 

R. m n 1 .l m n 
Constant E E E {r- E I: E d, "k,)2 = variation estimate for deviations from 10.1 27 

i=1 j=1 k=1 nm i'=1 j'=1 k'=1 'J zero of the squared residuals, or varia-

tmn{t- SS(Res»2 = t-{SS(Res»2 
tion due to the mean squared residual 

mn mn 

R. m n m n 
Aspects E I: E {.l. E E g~., , _ SS(Res»2 = variation estimate for deviations of the 1.8 5 

i=1 j=1 k=1 mn j'=1 k'=1 'J k tmn residual sum of squares of the aspects 

t m n 
from the mean squared residual 

I: I: E {SS(Resi2 - SS(Res»)2 = 
i=1 j=1 k=1 mn £mn 

I t I 
- E {SS(Res.) - i:SS(Res»2 
mn i""l 1 

R. m n n t 
Film types E E I: {.l. I: E g~,. , _ SS(Res»)2 = idem for film types 0.9 2 

i=1 j=l k=l nR.. k'=l i'=1 1 Jk lmn 

I m I 
~ I: (SS(Res.) - -SS(Res»)2 
n j=1 J m 

!l, m n R. m 
Grades I: I: E {.l. I: E g.,., _ SS(Res»)2 = idem for grades 0.3 I 

i=1 j=1 k=1 £m i'=1 j'=1 'J k £mn 

I n I 
f E {SS(Resk ) - -SS(Res»)2 
m k=l n 

t m n 
Remainder E E E {8?'k}2 - {above contributions} remaining variation after fitting the 24.0 65 
(ANOVA-Res. ) i=1 j=1 k=1 'J three-way main effects model 

t m n 
Total I: I: I: {E~'k)2 37. I 100 

, i=1 j=1 k=1 1J 

...., 

'" 

OJ ...., 
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squares for aspects, and that to a lesser extent the same can be 

said for children's adventure stories with respect to films. One 

could attempt at this stage of analysis to look at interactions 

after all the ANOVA-residuals account for 65% of the sum of squares 

of the e~'k' but we prefer to look at the individual residuals via 
~J 

step 2 of Table 7.1. 

SUlIIs-of-squares plots. To assess the quality of t.he fit of the 

elements of a mode, it is particularly useful to look at the resi­

dual sums of squares in conjunction with the total sums of squares 

of the elements. One way to do this is to investigate the relative 

residual SUlIlS of squares [Rel.SS(Res) ~ SS(Res)/SS(Total)]. Or one 

could look at the Residual/fit ratio, i.e. SS(Res)/ SS(Fit) , from 

which the relative performance of an element can be gauged. Of 

course, the two measures carry the same information. 

The SS(Res) and the SS(Fit) as well as their relationships can 

be shown directly in a so-called sUlIls-of-squares plot. For the as­

pects of the Perceived reality study such a plot is shown in Fig. 

7.2A. By plotting the sums of squares directly, rather than the 

relative sums of squares, the total sums of squares are also con­

tained in the plot and unusually large elements can be spotted 

immediately. Moreover, it can be seen if the larger SS(Fit) result­

ed only from larger total sums of squares as is to be expected from 

least squares procedures. This will be evident in the plot when 

elements lie on a line with an angle acuter than -45 0 (see Fig. 

7.2B). Furthermore, when the variations (variances or total sums of 

squares) of the elements have been equalized, this is evident from 

the arrangement of the elements on a line at an angle of -45 0 with 

the positive x-axis (see Fig. 7.3 for a sums-of-squares plot of the 

standardized variables in the H?spital study (Chapter 13). Note 

that because the axes represent sums of squares, the total sums of 

squares are obtained by directly adding the x-value and the y-value. 

Another interesting feature of these plots is that they show 

which elements have equal residual sums of squares with different 

total sums of squares. In other words, it becomes possible to sepa­

rate points which have large residual sums of squares because they 
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do not fit well, from the points which have a large SS(Res) because 

they have a large total sum of squares. Without a residual analysis 

it is uncertain whether a point in the middle of a configuration on 

the first principal components is an ill-fitting point or just a 

point with little overall variation. 

Finally, by drawing the line through (0,0) and (av.SS(Fit) , 

avo SS(Res)), and appropriate similar lines above and below it, 

something akin to confidence bands can be constructed around the 

former line to assess the extremity of certain elements. The lines 

are the loci of points with equal Res/fit ratios (or equal Rel. 

SS(Res), which comes down to the same thing). A guideline for what 

is 'appropriate' in this case, i.e. how much the individual element 

may deviate in relative residual sum of squares from the overall 
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one, has not been developed yet. The lines in Fig. 7. 2A are the 

lines "overall Rel.SS(Res) ± .08" and they seem reasonable bounds 

for the present data. 

Wi th respect to the aspects, both the Rel. SS (Res) of events 

in US/UK and based on a real story deviate considerably from the 

overall Rel.SS(Res) or Res/fit ratio. We already noticed this 

above, but the advantage of the plot is that these points can be 

also easily recognized with a large number of elements. 

Individual residuals (unstructured approach). In the Perceived 

reality study the largest anomaly is the very large total sum of 

squares of events in US/UK. The not entirely acceptable ReI. 

SS(Res)'s for children's adventure films and based on a real story 

suggest that it might be worthwhile to look at the individual resi­

duals to gain some further insight. 

According to our analysis scheme of Table 7.1, we should first 

have a look at the distribution of the residuals. The total sample 

consists of 440 points (llx8x85), and if Gnanadesikan' s remark 

(1977, p.265) is true that residuals tend to be 'supernormal', or 

at least more normal than the data, it seems worthwhile to compare 

both the data and the residuals with the normal distribution (Fig. 

7.4). Most standard statistical packages, such as SPSS and BMDP, 

have options to produce normal probability plots, generally accom­

panied by detrended normal plots (i.e. plots of deviations from the 

expected normal distributions against the residuals). Bock (1975, 

p.155-160) and Meerling (1980, p.131-137) provide discussions of 

these plots and their interpretation. Comparison with Bock's fi­

gures show the data to be reasonably normally distributed (except, 

maybe, for a few points at the far ends of the distribution) with a 

slight right skew. The residuals bear some resemblance to a lepto­

kurtic distribution with a higher concentration around the mean 

(here: about zero) and heavier tails than the normal density. The 

higher concentration around the mean of a leptokurtic density is 

rather attractive for residuals, as this is just what is desired; 

the heavier tails, however, are somewhat less desirable as they 

indicate the presence of outliers. In the present data there is 

some evidence that the residuals are more normal than their data. 
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Table 7.6 Preceived realitg studg: extreme residuals 

aspectS) film type residual* 

4 
5 
4 
4 
3 
3 
4 
5 
T 
3 
6 
T 
3 
6 
T 
4 
5 
4 

T 
T 
3 
3 
6 
3 
5 
T 

right-hand tail 

characters -N 
characters -N 
fights -N 
real story? -R 
characters -R 
real story? -R 
characters -R 
events -N 
crimes -R 
in US/UK -R 
events -R 
in Netherlands -N 
events -N 
fights -R 
real story? -R 
events -R 
characters -N 
fights -R 

events 
in US/UK 

-R 
-R 

crimes -N 
in Netherlands -N 
real story? 
real story? 
real story? 
characters 

-R 
-R 
-R 
-R 

children's adventures 
children's adventures 
children's adventures 
chivalry 
cowboy 
chivalry 
cowboy 
female detectives 
male detectives 
children's adventures 
hulk-like 
male detectives 
female detectives 
children's adventures 
chivalry 
cowboy 
cartoons 
cowboy 

left-hand tail 

children's adventures 
children's adventures 
cowboy 
cowboy 
hulk-like 
cartoons 
hulk-like 
female detectives 

£ T students from teacher training college 
$ N = neighbourhood, R = reality 
* + residual involving based on a real storg 

o = residual involving children's adventure film. 

1.30 0 

1.17 0 

1.09 0 

1.05 + 
1.03 
1.02 + 
1.02 
1.02 
1.01 

.97 0 

.96 

.90 

.87 

.82 0 

.82 + 

.81 

.81 

.80 

- .81 0 

- .82 0 

.83 
- .84 
- .96 + 
-1.03 + 
-1.11 + 
-1.25 

Both at the lower and upper end of the density of the resi­

duals there are some irregularities that might be worth investiga­

ting; they are listed in Table 7.6. There does not seem to be very 

much system in the larger residuals, except that children's advent­

ure films (indicated in Table 7.6 with a "0") produces some big 

residuals, which is consistent with its position in Fig. 7.2B. The 

first two positive residuals indicate, for instance, that grades 4 
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and 5 considered the occurence of characters in this film type far 

more likely in the neighbourhood than the model would predict. The 

large residual sum of squares for based on a real story is the 

result of various large, both positive and negative, residuals in 

connection with unrealistic films (indicated in Table 7.6 with a 

"+"). On the whole the larger residuals are a rather mixed bag, in 

which various individual residuals are open to interesting, but 

maybe spurious, interpretations. A nice case in point is the rela­

tive disbelief of the students from the teacher training college in 

the reality of the female detectives (probably especially in "Char­

lie's Angels"). As suggested in our analysis scheme the residual­

versus-data plots were also inspected, but no systematic trends 

were found. 

In summary it can be said that the analysis of the residual 

sums of squares and the residuals themselves provided some useful 

insight in the quality of the solution found for the data in the 

Perceived reality study. It pointed towards the large influence of 

the perceived reality of events in the US/UK (for Dutch children!). 

Furthermore, both children's adventure films and adventures in 

reality (especially for realistic films) did not fit the model as 

well as the other films and aspects respectively. However, it is 

clear that the data set as a whole, and the data points individual­

ly, conformed quite well to the model fitted. 

7.7 THREE-MODE ANALYSIS AND THREE-WAY ANOVA DECOMPOSITION 

The structured approach towards analysing residuals in this 

chapter is in some sense the counterpart of that in the previous 

one (especially section 6.4). There we discussed fitting a three­

way analysis-of-variance model to the data, and investigating the 

residuals with three-mode prinCipal component analysis. In this 

chapter we proposed, among other things, to look at residuals from 

three-mode component analysis by an analysis of variance decompo­

sition of the squared residuals, i. e. by looking at the residual 

sums of squares for each of the three modes in the same way as 

looking at main effects. 
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The duality extends to the kind of data and their appropriate 

analysis. With multi response data without independent variables, it 

is more appropriate to perform principal component analysis first. 

The residuals from this analysis can then be treated as a set of 

measures on one dependent measure, i.e. badness-of-fit, in an QXmxn 

completely crossed factorial design without replications, and thus 

balanced as well. On the other hand a set of original observations 

on one dependent variable from an QXmxn factorial design is best 

handled within an analysis of variance framework. Augmenting such 

an analysis by a principal component analysis of the residuals may 

shed light on correlations of residuals of the combined original 

variables, or indicate inadequacies in the fit of the dependent 

variable by the (latent) predictors or design variables (see also 

Gnanadesikan, 1977, p.259). 

A nice aspect of the data from the Perceived reality study is 

that they may be used in both ways, which is the reason why we 

classified them as anova-data in section 6.2. If one considers the 

data as scores on one single dependent variable - perceived reali­

ty - the ANOVA-first approach is appropriate. If one looks upon the 

data as multiresponse data, the PeA-first approach (followed in 

this chapter) is the logical choice. Of course, the purpose of the 

analysis in the first place determines what is appropriate. 

As a final remark about the differences of the two approaches, 

it should be mentioned that from a statistical point of view the 

analysis of variance as a first step seems to be a more manageable 

situation. For instance, as Mandel (1969) showed for the two-way 

case, tests can be derived for the principal components after the 

analysis of variance, of course under certain assumptions. Using an 

analysis of variance after principal component analysis runs into 

difficulties in this respect, as the observational units (usually 

subjects) generally have residual scores in an entire matrix, 

rather than in just one cell, thus suggesting a factorial design 

with repeated measures on two factors without replications, which 

might be difficult to handle. But even if this were manageable (as 

in prinCiple it is), the (possible) input scaling and the principal 

component analysis itself introduce additional dependencies which 

might be extremely hard to define and handle. 
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SUMMARY 

After the general and theoretical discussion in Part II of 

issues connected with applying three-mode principal component 

analysis, a number of applications are presented in Part III. The 

applications were chosen to be representative for a particular 

class of applications. In this way they may serve as a guide for 

the analysis of similar data. 

Chapter 8 (Attachment study) contains a relatively detailed 

account of a data set from development psychology. It deals with 

the reaction of young children to a standardized procedure designed 

to measure the attachment of those children to their mother figure. 

In a way this set is typical of the kind of data for which three­

mode principal component analysis can be useful. 

Chapter 9 (Triple personality study) contains an example from 

research using the semantic differential technique with a special 

focus on individual differences. In addition, the concept-scale 

relationships are a major focus of the enquiry. The data used have 

been produced by a single person in three different personalities, 

Eve White, Eve Black, and Jane. The handling of the data may stand 

as an example for many studies which include comparable rating 

scales or tests. 

Chapter 10 (ITP study) contains an example with asymmetric 

similarity data on implicit theories of personality, but the ana­

lysis of the data is not presented in full. The focus is on an 

interpretation aid, called the theoretical subject, who turns out 

to be helpful in assessing subject spaces. 

Chapter 11 (Cola study) contains a re-analysis of data from 

sensory perception, and investigates whether direct comparisons of 

similarities between colas have anything in common with ratings of 

the same colas on a number of adjectives. The data set, at least 

the similarity part of it, is a typical example of the kind of data 

usually treated by techniques for individual differences scaling. 
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An extensive comparison with such techniques is given as well. 

Chapter 12 (Four ability-factor study) is an example of the 

use of three-mode principal component analysis for the analysis of 

correlation matrices. Typically cross-sectional data can be handled 

in this way, as well as a re-analysis of published material not 

available as raw data. The example is taken from the field of 

intelligence testing, and the structure of a series of tests is 

investigated for various age groups of normal and retarded child­

ren. 

Chapter 13 (Hospital study) contains an example from organiza. 

tional sociology. In this study the structura: organization of 

Dutch hospitals is investigated over a number of years. Various 

issues with respect to the analysis of multivariate longitudinal 

data are treated, in particular the relationship between three-mode 

analysis and autoregressive models. 

Chapter 14 (Learning-to-read study) contains an extension of 

Tucker's work on generalized learning curves by analyzing the data 

of a study investigating the process of learning to read. A brief 

comparison is made with results from linear logistic modelling on 

the same data. 

Chapter 15 (Leiden electorate study) contains an example 

rather different from the rest in that it deals with counted rather 

than measured data. The data consist of the results from three 

different elections held in Leiden, The Netherlands. The three-way 

contingency table is analyzed by loglinear methods to determine the 

relevant interactions, and subsequently the residuals are analyzed 

with three-mode principal component analysis. The procedure used is 

a three-mode extension of correspondence analysis. 
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8.1 DESIGN AND DATA DESCRIPTION 

In this chapter we present a relatively straightforward analy­

sis of data collected by Goossens (Note 1) on the reactions of 

two-year old children to a stranger and to their mothers in an un­

familiar environment within the context of a standardized observa­

tion procedure called the strange Situation (Patterns of Attachment 

(POA) , Ainsworth, Blehar, Waters, & Wall, 1978). The practical 

aspects and theoretical considerations which form the foundation of 

the strange situation are covered in many publications including 

the above, as the measurement procedure has become a standard one 

in developmental psychology. Therefore we will not dwell in detail 

on the strange situation, but only treat those aspects necessary to 

an understanding of the data and their analysis. 

In the course of the strange situation the child is subjected 

to increasingly stressful circumstances (i.e. arrival of a strang­

er, leaving of the mother, being left alone) in order to elicit 

'attachment behaviours'. Attachment itself is defined as "the 

affectional bond or tie that an infant forms between himself and 

his mother figure - a bond that tends to be enduring and indepen­

dent of specific situations", and attachment behaviours are defined 

as "the class of behaviours that share the usual or predictable 

outcome of maintaining a desired degree of proximity to the mother 

figure" (Ainsworth et al., 1978, p. 302). 

As Ainsworth et al. point out (p.33), the sequence of episodes 

is very powerful both in eliciting the expected behaviours, and in 

highlighting individual differences. The major purpose of the 

procedure is to assess the quality of the attachment relationship 

of a child to its mother-figure. A summary of the procedure is 
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given in Table B.1A. The major types of attachment are secure 

attachment (B-children), anxiouslg resistant attachment (C-chil­

dren) , and anxiouslg avoidant attachment (A-children). 

Table 8.1 Attachment studg: Description of strange situation, 
interactive scales, and classification sgstem 

A. strange situation, (POA, p.37) 

Episode 

1 

2 

3 

4 

S 

6 

7 

8 

Persons 

mother, 
child, 
observer 

mother, 
child 

stranger, 
mother, 
child 

stranger, 
child 

($4) 

mother, 
child 

eMS) 

child 
alone 

stranger, 
child 

(S7) 

mother, 
child 

(M8) 

Duration 

30 sees. 

3 min. 

3 min. 

3 min. or 
less 1) 

3 min. or 
more 2) 

3 min. or 
less 1) 

3 min. or 
less 1) 

3 min. 

Brief description of action 

Observer introduces mother and 
baby to experimental room, then 
then leaves. 

Mother is non-participant while 
child explores; if necessary, 
play is stimulated after two 
minutes 

Stranger enters. First minute: 
stranger silent. Second minute: 
stranger converses with mother. 
Third minute: stranger approach­
es child. After three minutes 
mother leaves unobtrusively. 

First separation episode. 
Stranger's behaviour is geared 
to that of the child. 

First reunion episode. Mother 
greets and/or comforts child, 
then tries to settle it again in 
play. Stranger leaves unobtrusi­
vely in the meantime. Mother 
leaves saying "bye bye". 

Second separation episode. 

Continuation of second separa­
tion. Stranger enters and gears 
behavior to that of the child. 

Second reunion episode. Mother 
enters, greets child, then picks 
it up. Meanwhile stranger leaves 
unobtrusively. 

1) Episode is curtailed if the child is unduly distressed. 
2) Episode is prolonged if more time is required for the 

child to become reinvolved in play. 
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Table 8.1 (cont'd) 

B. Interactive scales (POA, p.53, 54) 

• Proximity (or contact): a measure for the degree of active ini-
seeking (PROX) tiative a child shows in seeking physical 

contact with or proximity to an adult. 

• Contact maintaining 
(CM) 

• Resistance (RES) 

• Avoidance (AVOI) 

: a measure for the degree of active ini­
tiative a child exerts in order to maintain 
physical contact with a person, once such 
contact is achieved. 

: a measure for the degree of angry and/or 
resistant behaviour to an adult. It is shown 
by physically rejecting an adult who tries 
to come into contact or initiate interaction 
with the child. 

: a measure for the degree of avoiding proxi­
mity and interaction with an adult, for in­
stance by ignoring or looking away. 

• Distance interaction : a measure for the degree in which a child 
(DI) interacts with an adult from a distance, 

for instance, by showing toys and talking. 

C. Ainsworth Classification Categories (based on POA, p. 59-63; 
Sroufe & Waters, 1977) 

Behaviour towards the mother 

PROX CM RES AVOI Dr 

Al ++ 
A2 +(+) - (+) ++ 

Bl (+) ++ 
B2 +(+) (+) (+) +C+) 
B3 ++ ++ -/++ 
B4 ++ ++ (+) 

C1 ++ ++ ++ 
C2 (+ ) (+) ++ (+) 

- low; (+) low to moderate; 

most salient 
feature 

disinterested 
mixed feelings 

secure 
secure 
very secure 
secure 

angry ambivalent 
passive 

+ moderate; +(+) moderate to high; 
++ high. 

behaviour towards 
stranger 

treatment more or 
less like mother 

friendly towards 
stranger but mo-
ther is clearly 
preferred and 
sought after 

treatment more or 
less li~e mother 

POA: Patterns of attachment, Ainsworth et al. (1978) 
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Ainsworth et al. (1978, Ch.3) have developed a more detailed clas­

sification system, which is presented in Table 8.1C. The classifi­

cations of the children are made by trained judges on the basis of 

the children's scores on so-called interactive scales which range 

from 1 to 7. The child's behaviour corresponding to each of the 

seven categories has been explicitly defined, and can be summarized 

as going from 1 (virtually non-existent) to 7 (very often, very 

intense). The scores are awarded by trained observers, while 

viewing videotapes of the strange situation. In the present ana­

lysis the following scales were used: proximitg seeking (PROX), 

contact maintaining (CM) , resistance (RES), avoidance (AVOI), and 

distance interaction (DI) (see Table 8.1B). 

The data consisted of observations on 65 two-year old children 

on the 5 interactive scales during 4 episodes (84, MS, 87, M8), 

where 8 indicates the presence of the stranger and M that of the 

mother. Details on the data and the reasons for discarding the 

earlier episodes can be found in Goossens (Note 1). One might argue 

that a three-mode analysis is not a proper technique for these 

data, as for instance proximity seeking towards the stranger might 

not be the same variable as proximity seeking towards the mother. 

Moreover, the relationships between the scales in the stranger 

episodes might be different from those in the mother episodes. 

However, as the basic purpose of the strange situation is to assess 

children on the basis of their reactions to the entire strange 

situation, and not to specific parts of it, it seems justified to 

treat a scale as the same variable regardless of the adult towards 

whom the behaviour is directed. 

Before analysis, the overall scale means were removed, i. e. 

the scales were centred over all children-episode combinations 

(j -centring - see section 6.5). No equalization of variances was 

performed. This decision was based on the consideration that not 

the overall scoring levels of the children on the interactive 

scales were of interest, but the individual differences between 

children. This centring ensures that the meaningful differences in 

scoring levels between episodes which carry important information 

are retained. A disadvantage of using the mean values for generali­

zation is that they are sample dependent. For more extensive stu­

dies some standard norm for centring the scales should be devised. 
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8.2 ANALYSIS AND FIT 

The main analysis reported here is a Tucker3 (T3) analysis 

with two components each for the first mode (episodes), second mode 

(interactive scales), and third mode (children). It will be refer­

red to as the 2x2x2-solution, and will be compared with a 3x3x3-

solution on the same data. At times we will also refer to a Tucker2 

(T2) analysis with two components for the first two modes, or the 

2x2-so1ution. 

Table 8.2 shows that with an increasing number of components 

the fit increases, but that the increase in fit in going from the 

2x2x2-solution (fit :: .59) to the 3x3x3-solution (fit:: .68) in­

volves estimating an additional 93 parameters. At least three-fifth 

of the variation in the (j-centred) data is accounted for by the 

three-mode model. Considering the relative difficulty of reliably 

measuring children's behaviour, and the variability inherent in it, 

this seems quite satisfatory. 

Table 8.2 Attachment study: Characteristics of the solutions 

Standardized total sum of squares - SS(Total) 1.00 1.00 

Approximation of SS(Fit) from separate PCA 
on mode 1 .77 .91 
on mode 2 .83 .92 
on mode 3 .63 .71 

Fitted sum of squares from simultaneous .59 .68 
estimation - SS(Fit) 

Residual sum of squares from simultaneous .41 .32 estimation - SS(Res) 

Improvement in fit compared to initial .03 .01 
configuration 

Parameters to be estimated 156 249 

T2 
2x2 

1.00 

.77 

.83 

.67 

.33 

.001 

278 

When using the Tucker2 model, i. e. computing only components 

for episodes and interactive scales, a better overall fit is possi­

ble than with the Tucker3 model with the same number of components 
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(.67 for the 2x2-solution versus .59 for the 2x2x2-solution). But 

due to leaving the third mode unreduced there are more parameters 

in the former model (278 versus 156). Comparing the two T3-solu­

tions, it is difficult to decide which is the 'best' solution to 

look at in detail. No goodness-of-fit tests are available, and, in 

addition, it seems largely a content-specific problem in how much 

detail one wants to describe the relations. 

8.3 CONFIGURATIONS OF THE THREE MODES 

The (common) component spaces for each mode are given in Table 

8.3A,B,C. In Fig. 8.1 the components for scales and episodes are 

plotted, and in Fig. 8.2 those for the children. In Fig. 8.1 A,B, 

but not in Fig. 8.2, the components have been multiplied by the 

square root of their component weights, so that the plots reflect 

the relative importance of the axes (see section 6.8). 

The general remark can be made that on the whole the choice of 

a particular solution is not very crucial with respect to inter­

active scales and episodes. The first two components of both the 

scale space and the episode space are the same within reasonable 

bounds (roughly ± .05; the order is preserved in all but two 

cases). 

Table 8.3 Attachment study: Component spaces 

A. Episodes (mode 1) 

nr. adult 

4 stranger S4 
5 mother M5 
7 stranger S7 
8 mother M8 

component weight 
(1\ ) 

p 

T3: 

E1 

.26 

.47 

.38 

.75 

.37 

Labels for components: 

2x2x2 T3: 3x3x3 

E2 E1 E2 E3 

-.44 .25 -.37 .45 
.25 .52 .28 .68 

-.77 .41 -.80 -.23 
.39 .71 .38 -.53 

.22 .41 .21 .07 

E1, stress of situation 
E2, mother versus stranger 
E3, early versus late 

T2: 2x2 

E1 E2 

.26 -.45 

.48 .27 

.44 -.73 

.71 .43 

.42 .25 
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Table 8.3 (cont.d) 

B. Interactive scales (mode 2) 

Scales T3: 2x2x2 T3: 3x3x3 T2: 2x2 

Sl S2 Sl S2 S3 Sl S2 

Proximity seeking PROX .32 .69 .37 .68 .04 .35 .67 

Contact CM .26 .35 .26 .34 .14 .28 .34 maintaining 

Resistance RES .33 -.41 .30 -.39 .85 .30 -.39 

Avoidance AVO I .27 -.48 .25 -.50 -.46 .25 -.53 

Distance inter-
DI -.81 .07 -.80 .12 .24 -.80 .10 action 

component weight .37 .22 .43 .24 .02 .40 .27 
( tJ q) 

Labels for components: Sl, intensity of reaction 
S2, security seeking 
S3, interest in adult 

EPISODES INTERACTIVE SCALES 
.4 En .4 sn 

.3 .3 ·PRox 

.2 .MS .2 .CM 
.1 .M5 .1 

EI 01 S1 • 
·1 ·2 .3 .4 .5 ." -.5 .4 -.3 -.2 -.1 ., . 2 ·3 '4 

-.1 -.1 

-.2 - .2 .RES 
·S4 ·AVOI 

-.3 -.3 

-.4 
"$1 

-·4 

Fig. 8.1 Attachment study: Component spaces (scaled) 

A point which should be made at the outset of the interpreta­

tion is that it is rather difficult to link the details of our 

results to those in FOA as the latter refer mainly to one-year 

olds, and Goossens t s study deals with two-year olds. Previous 
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research (summarized in PDA) shows that the reaction of older 

children in the strange 1"itu~tion is different from that of the 

one-year olds it has been validated for (see also Goossens, Swaan, 

Tavecchio, Vergeer, & Van IJzendoorn, 1982). 

One of the aims of the present analysis is to investigate how 

individual differences between children can be traced back to their 

different behaviour in the various episodes, on the basis of the 

interactive scales. These results will then be compared with the 

classification (sub)categories resulting from the scoring instruc­

tions in PDA (see Goossens, Note 1). One qualification should be 

made in advance, as the research project from which these data 

have been derived is not yet finished. Both the scoring of the data 

and the results presented here should be seen as a first explora­

tion, not yet as definite. The final version will be published 

elsewhere at a later date. 

Episodes. With only four episodes there is really no need to 

label the axes, but for further reference we will try to name them 

anyway (see section 6.8). The first axis (E1) reflects the overall 

variability of the scores in the episodes, and it does not seem 

unreasonable to associate increasing variability with greater 

stress put onto the child. The second axis (E2) contrasts the 

behaviour towards the mother and that towards a stranger. The third 

axis (E3), finally, contrasts the early and late episodes, i. e. 

those episodes before and after episode 6, in which the child has 

been left alone. If desired two oblique axes could be chosen as 

well, one for the mother episodes, one for the stranger episodes. 

Interactive scales. The first axis (Sl) reflects the overall 

variability of the children-episode combinations around the overall 

scale mean. This variability is approximately equal for PROX, eM, 
RES and AVOI, and considerably larger for DI. High scores on dis­

tance interaction reflect an opposite reaction compared to high 

scores on the other scales, and the same holds for low scores. This 

is to be expected as proximity seeking more or less precludes 

distance interaction and vice versa. The special position of dis­

tance interaction has been noted before, and a number of research-
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Table 8.3 (cont'd) 

C. Children (mode 3) 

nr. ACC Cl C2 

55 B4 .34 .08 
39 B4 .33 .12 
38 B4 .30 .07 
18 B4 .28 .09 
62 B4 .27 -.03 
20 B4 .25 -.03 
48 B4 .22 .14 
61 B4 .22 -.02 
24 B4 .20 .05 

3 B4 .19 .08 
44 B3 .19 -.02 

2 B4 .18 .06 
41 Cl .18 -.01 
11 B3/4 .15 .07 
13 B3 .14 .14 
34 B3 .08 .10 

14 B3 .08 .26 
57 B3 -.04 .21 

4 B3 .01 .20 
12 B3 -.01 .19 
27 B3 .04 .19 
22 B3 -.01 .18 
50 B3 -.04 .18 
65 B3 .01 .18 
28 B3 .02 .17 

9 B3 -.00 .17 
25 B3 -.09 .16 
5 B3 -.09 .16 

58 B3 -.07 .16 
46 B3 -.03 .15 

1 B3 -.07 .15 
36 B3 -.08 .14 
23 B3 -.10 .15 
45 B3 -.00 .15 
52 B3 -.03 .14 
32 B3 -.02 .14 
40 B3 -.05 .14 
19 B3 -.07 .14 

7 B3 -.07 .14 
33 B3 -.06 .13 
64 B3 -.06 .13 
42 B3 -.05 .13 
59 B3 -.08 .12 

nr. 

60 
17 
47 
30 
56 
16 
29 
43 
26 

6 
63 
15 
21 
10 
31 
35 

8 
49 
53 
51 

54 
37 

component 
weight 
( v r) 

Notes: 

ACC 

B3 
B2 
B3 
B2 
B3 
B3 
B2 
B3 
Bl 
Bl 
B2 
B2 
B3 
B2 
B3 
Bl 
Bl 
? 
B2 
B2 

Al 
Al 

Cl C2 

-.08 .11 
-.04 .11 
-.06 .10 
-.02 .09 
-.04 .09 
-.05 .09 
-.09 .08 
-.09 .07 
-.03 .07 
-.00 .06 
-.03 .05 
-.05 .04 
-.07 .04 
-.04 .00 

.04 -.01 
-.02 -.02 
-.02 -.04 

.07 -.06 
-.04 -.08 
-.01 -.09 

-.03 -.17 
.08 -.21 

.50 .09 

ACC = Ainsworth's classifi­
cation category 

? = unclassified 

B3/4 = B3 or B4 
C1 = first child component 
C2 = second child component 

8.3 
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ers therefore do not include it in their analyses (see e.g. Waters, 

1978; Grossmann, Grossman, Huber, & Wartner, 1981). In POA, for 

instance, it is noted that for one-year olds distance interaction 

is a low-stress behaviour of low intensity, and that it differen­

tiates less among the classification (sub) categories (p.246). 

Whether this is true for two-year olds is still a matter for inves­

tigation. We will come back to this point later. An acceptable 

label for the first scale component seems to be intensity of the 

reaction. 

n 

057 

.13 d l 

11 0 3 . 
0 2 024 

® .&1 

.44 

Fig. 8.2 Attachment study: Child spaee (unsealed) 

0 '8 

0 38 

0 20 062 

0 39 

.. , 
rJ I 1 
,. .2 

0 55 

• • 3-dist 
.. B 3-.rll 

0" 
DCl 

I 
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The second component (S2) distinguishes between attachment 

behaviours, proximity seeking and contact maintaining, and behavi­

ours antithetical to attachment, i.e. avoidance and resistance. It 

might be labelled as the security seeking. We will not discuss the 

third axis (33) due to the small amount of variation explained by 

it (2%), even though it shows a theoretically important contrast 

between resistance and avoidance. It is, by the way, equally legi­

timate to define a PROX,CM-axis, and a RES,AVOI-axis by rotating 

the scale space. 

Children. Table 8. 3C and Fig. 8.2 show the two-dimensional 

child space for the 2x2x2-solution. The children have been labelled 

both by a sequence number and their Ainsworth classification sub­

category (see Table 8.1C). These classifications are based on the 

same interactive scales as those in the present analysis. For the 

scoring, however, it is mainly the behaviour towards the mother 

which has been taken into account, instead of that towards both the 

mother and the stranger as in our analysis. The classification in­

structions are contained in PAO (p. 59-62; see also Swaan & Goos­

sens, 1982), and require extensive training. One of the aims of 

applying three-mode principal component analysis to these data is 

to assess the adequacy of the scoring instructions. Psychological 

and medical research, for instance, have shown that people do not 

necessarily combine multivariate information in a very reliable way 

(see e.g. Sawyer, 1966; Linschoten, 1964, p.142ff.; Einhorn, 1972). 

With respect to these data we will try to answer two ques­

tions. The first is whether the classification system is consis­

tent, i.e. whether the children who occupy the same region in the 

child space, have the same Ainsworth classification . The second 

question is, whether the same scales to the same extent, are res­

ponsible for the grouping of the children, as specified in the 

scoring instructions. The grouping observed in our analysis may be 

the result of different combinations of scores. In other words, the 

present analysis is an attempt to validate the classification 

rules. 

Ainsworth et a1. (Ch. 6) applied discriminant analysiS to 

check the adequacy of the classification system, but this involves 
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the interactive scales twice: once to make the classification, and 

then to evaluate this classification by using the interactive 

scales as predictors in the discriminant functions. Here we use the 

interactive scales to group the children and to assess their con­

tribution to this grouping simultaneously, and only after that we 

check the grouping against the classification. This provides a more 

adequate check of the appropriateness of the classification proce­

dure. 

The first impression from Fig. 8.2 is that on the whole a 

reasonable separation is possible between the B-subcategories, 

although on the basis of our analysis alone the divisions could not 

have been made. In addition, the two AI-children are in their 

proper places, as their score patterns on the interactive scales 

should be the mirror-image of the B3-children (see Table 8.IC). 

Furthermore, the one C1-child does not occupy a separate place. 

Finally, there are some B3-children seemingly belonging to the 

B4- children; they have been labelled I B3-prox I for reasons to be 

discussed in section 8.7, where we will also try to provide the 

answers to the above questions. In the meantime we will use the 

Ainsworth classification to label the children, pretending we have 

already established its appropriateness. 

8.4 INTERPRETATION OF THE CORE MATRICES 

Explained variation. The core matrix indicates the relations 

between the various components of the three modes. For instance, 

the element c ll1 (=19.9) of the T3 core matrix (Table 8.4) indi­

cates the strength of the relation between the first components of 

the three modes, and c221 (=13.5) the strength of the relation 

between the second components of the first and second modes in 

combination with the first of the third mode. As Table 8.4 shows, 

30% of the SS(Total) is accounted for by the combination of the 

first components of the three modes, another 14% by c~21' and 3% 

each by ci21' and c~ll (see section 6.9 for an explanation of this 

interpretation of the core matrix). We see that the differences 

between the children on the first component (el) explain half of 

the fitted variation. This 50% can be partitioned as follows: 
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Table 8.4 Attachment studg: TUCKALS3 core matrix 

2x2x2-so1ution 

(frontal planes) 

child component (C1): 
B4 versus RE8T 

components of 
episode: 

stress of situation E1 

mother versus stranger E2 

child component (C2): 
B3(dist) versus Al 

stress of situation E1 

mother versus stranger E2 

components 
of interactive 

scales 
81 82 

inten­
sity of 

reaction 

19.9 

-5.8 

-6.7 

-2.1 

secu­
rity 

seeking 

5.8 

13.5 

3.0 

7.7 

3x3x3-so1ution 

(frontal planes) 

C1 C2 
81 82 S3 Sl S2 S3 

E1 20.1 4.5 .6 E1 -6.5 2.8 2.6 
E2 -4.8 13.7 -2.2 E2 -2.0 6.8 0.1 
E3 -2.0 -2.3 -0.5 E3 -7.1 -0.3 0.6 

VI = .50 V2 = .12 

proportion 
variation 
explained 

.30 .03 

.03 .14+ 

VI = .50 

cll1 c121 
c211 c221 

.03 .01 

.00 .05-1 

v2 = .09 

C3 
Sl 

E1 1.1 
E2 -1.7 
E3 -4.9 

va = 

S2 S3 

-6.7 -2.7 
-0.8 0.0 
-1.3 0.0 

.06 

(a) due to cll1 (30%): intensity of reaction (Sl) due to the 

stress of situation (E1) for B4-children versus REST (C1); 

(b) due to c221 (14%): security seeking (S2) with the mother 

versus stranger (E2) for B4-children versus REST (C1); 

(c) due to cl2l ( 3%): security seeking (S2) with stress of situa­

tion (E1) for B4-children versus REST eC1); 
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Cd) due to cZll ( 3%): intensity of reaction (S1) with mother 

versus stranger CEZ) for B4-children versus REST (Cl); 

The differences between the children on the second component 

(CZ) contributes the remaining 9% explained variation, which can be 

broken down as follows 

(e) due to cllZ ( 3%): intensity of reaction (Sl) due to the 

stress of the situation (El) for B3-dist children versus 

AI-children (CZ); 

CO due to czzz ( 5%): level of attachment (SZ) with mother -

stranger (EZ) for B3-dist children versus AI-children (CZ); 

(g) due to c122 ( 1%): security seeking (S2) with stress of the 

situation (El) for B3-dist children versus AI-children (C2). 

Three-mode interactions. The percentages of explained varia­

tion only point to the important combinations, but do not indicate 

the direction of the relationship. This information can be found in 

the original (i.e. not-squared) core matrix. For the most important 

element of the core matrix the three-mode interaction between 

loadings on components is c lll (= +19.9). The plus sign indicates 

that 

a. positive loadings on Cl, S1 and El occur together: 

the more B4-like children are, the more intensely they react 

(= the higher above average their scores are on all scales 

except Dr) in more stressful situations (= MS/S7 and M8); 

b. negative loadings on Cl and S1 occur together with positive 

loadings on El: 

the more negative a child loads on Cl the less intensely it 

reacts (= scores below average on all scales except Dr) in 

more stressful situations (= M5/87 and M8). 

Or in slightly different terms: 

o for B4-children (i.e. with positive loadings on Cl) 

o 

intensity of the reaction (81) and stress of the situation 

(El) are positively related; 

for children with negative loadings on Cl intensity of the 

reaction and stress of the situation are negatively related. 
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For the Goossens data the interpretation in terms of scores of 

idealized quantities (see section 6.9) is that an 'ideal' B4-child 

reacts intensely in stressful situations (c lll = 19.9), seeks much 

security with its mother-figure (c221 = 13.5), seeks moderate 

security in stressful situations (c 12l = 5.8), reacts with modera­

tely low intensity to the mother-figure (c211 = -5.8), and similar-

ly for the other elements of the core matrix. 

Extended core matrix. 80 far we have only looked at the 

interpretation of the core matrix of the Tucker3 model. As noted in 

section 6.9 the extended core matrix can be interpreted in essen­

tially the same way as the TUCKAL83 core matrix in terms of the 

amount of explained variation. 

We already noted the near equality of the components for the 

interactive scales and the episodes in the 2x2-so1ution and 2x2x2-

solution in connection with Table 8.3A,B, consequently interpreta­

tions of those spaces are the same as before. The relationships 

between these components, as embodied in the frontal planes of the 

T2 core matrix, are given for a few selected children in Table 8.5. 

Four of the children were chosen because they are relatively close 

to one of the axes in the child space (i.e. 38, 57, 29, 37), and 

they can be considered 'idealized individuals' in the sense of e.g. 

Tucker & Messick (1963). 

The frontal planes thus indicate how, for each child, the axes 

of the common space are related, just as was the case in the Tucker3 

model for 'ideal' children. For instance, for child 38 (a B4-child) 

intensity of reaction (81) and stress of the situation (El) are 

positively related (see Table 8.5), as are security seeking (82) 

and the mother versus stranger distinction (E2), while the other 

combinations are immaterial. For child 35, by comparison (a Bl­

child), none of the relationships seem very relevant (see section 

8.7 for a discussion of this phenomenon). Note also that the two 

AI-children (37 and 54) have very different patterns of relation­

ships, notwithstanding their similar position in the child space 

(Fig. 8.2). 

Roughly one can conclude that children on the first child 

dimension (Cl) weight the intensity eEl) - stress (81) combination 
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Table 8.5 Attachment study: TUCKALS2 core planes for selected 
children 

E1 
E2 

E1 
E2 

B4 (38) 

51 52 

5.7 0.9 
-0.5 5.1 

.30 .07 

Al (54) 

51 52 

0.6 -2.2 
2.3 -0.8 

-0.3 -.17 

B3 (57) 

51 

-2.1 
-0.7 

-.04 

52 

-0.7 
1.4 

.21 

Al (37) 

51 

3.0 
-0.1 

.08 

52 

-3.2 
0.4 

-.21 

B2 (29) 

51 

-2.4 
0.4 

-.09 

52 

-0.2 
-0.6 

.08 

C1 (41) 

51 

3.7 
-1.0 

.18 

52 

-.07 
2.9 

-.01 

B1 (35) 

51 

-0.2 
1.1 

-.02 

52 

-1.0 
0.1 

-.02 

B2 (51) 

51 

0.5 
0.2 

-.01 

52 

-0.0 
-0.9 

-.09 

'i,) T3 component loadings (5ee Table 8. 3C) 

Notes: B4 (38): 

51 (52): 
E1 (E2): 

child nr. 38 - Ainsworth classification 
category B4 
first (second) scale component 
first (second) episode component 

and the mother versus stranger (E2) - security seeking (52) combi­

nation with a ratio similar to the ratio of c l11 to c221 in the T3 

analysis, and that the overall size of the elements determines 

their position on the C1 component: high positive numbers on the 

diagonal of the TUCKAL52 core plane (e. g. for child 41 and child 

38) lead to highly positive loadings on C1, and moderately negative 

numbers (e.g. for child 29) lead to moderately negative loadings. 

On the negative side of the second child component (C2) there are 

children who emphasize the (E1, 51) combination, but not or hardly 

the (E2, 52) combination (child 37), and on the positive side of C2 

(child 57) the situation is reversed, i.e. (E2, 52) is high and 

(El, 51) low. This distinction corresponds with the opposite signs 

in the second frontal plane of the T3 analysis. 
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8.5 JOINT PLOTS 

With joint plots (see section 6.10) we can examine in some 

detail the relationships between the interactive scales and the 

episodes for each ideal-type child or child component. In Fig. 

8.3A,B we present the joint plots for the two child components. The 

following characterization for the children loading on the positive 

side of the first component C1, i.e. B4-children, can now be made: 

(a) they have high scores on proximity seeking and contact main-

taining towards the mother (in episodes MS, M8), and they 

score about twice as high in M8 as in MS. With a high score we 

mean relatively to the overall scale means, as we have removed 

these means for all interactive scales. 

(b) they have high scores on resistance and avoidance towards the 

stranger (in S4 and S7), and nearly twice as high in S7 as in 

S4. 

(c) they show roughly average resistant and avoidant behaviour 

towards the mother in MS and M8, even somewhat below average 

on avoidance. Similarly, proximity seeking and contact main­

taining towards the stranger have average values. 

(d) the scores on distance interaction do not discriminate between 

the mother and the stranger, and they are below average. There 

is less distance interaction in the later episodes. 

These interpretations are derived from the fact that the 

scales can be seen as points and the episodes as vectors or direc­

tions in the common space, or vice versa. In this case the former 

approach is to be preferred because the episodes are fixed, i. e. 

they are elements of the design. The relative importance of the 

various scales at any episode can then be assessed from their 

perpendicular projections on the vectors as is shown for MS and M8 

combined. 

For the positive scores on the second child component, i.e. 

the B3-dist children, the characterization is (see Fig. 8.3B): 

(a) low scores on resistance and avoidance towards the mother, 

coupled with average contact maintaining and proximity seek­

ing. High distance interaction increasing further in M8. 
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(b) low scores on proximity seeking and contact maintaining to­

wards the st.raneer, with lower scores on proximity seeking. 

Average resistance, avoidance, and distance interaction with a 

slight increase in the avoidance measures in S7. 

For 37, an AI-child, the mirror image of the above observations is 

true as he/she lies on the negative side of the second child compo­

nent (C2). These relationships are displayed in Fig. 8.4, where the 

component scores are given for the 'ideal' B4-child, and the 'ideal' 

B3-dist child. 

8.6 FIT OF THE SCALES, EPISODES, AND CHILDREN 

In Table 8.6 the sums of squares for the scales and episodes 

are shown. From the SS(Total)s for episodes we see that the varia­

bility as expressed by the sums of squares increases with the later 

episodes, as children deviate more from the scale means, or proba­

bly show more variation among themselves. With respect to the 

scales we see that contact maintaining has relatively little varia­

bility, while distance interaction has considerably more. From the 

residual sums of squares we note that the scales fit more or less 

equally well, irrespective of their total sum of squares, but that 

the configurations derived and discussed above are for a large part 

determined by the last two episodes. The structure described is, 

therefore, more representative of the later behaviours than the 

earlier ones. This explains, for instance, why an added third 

episode component shows an early versus late character; primarily 

the earlier episodes will then be fitted better. 

Fig. 8.5 is the sums-of-square~ plot which shows the residual 

smns of squares versus the fitted sums of squares for the children 

from the 2x2x2-so1ution. 

A number of features are particularly noteworthy. The B4-

children fit well, have large sums of squares, and dominate the 

solution. Furthermore, there is a large group of B3-children (main­

ly B3-dist) which have small total sums of squares (thus they score 

about average on all scales), and most of their variation is fitted 

well. On the other hand, none of the BI- and B2-children fit very 
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Table 8.6 Attachment studg: Sums of squares 

A. Episodes (mode 1) 

2x2x2-solution 3x3x3-solution 

epi- SS(Total) SS(Fit) 88(Res) 8S(Res) 
sode stand. stand. re!. stand. rel. stand. re!. 

84 .16 .07 .40 .10 .60 .10 .59 
M5 .21 .09 .44 .12 .56 .06 .27 
87 .29 .18 .63 .11 .37 .09 .30 
M8 .33 .24 .74 .09 .26 .08 .23 

over- 1.00 .59 .41 .32 all 

B. Interactive scales (mode 2) 

2x2x2-solution 3x3x3-solution 
S8(Total) 88(Fit) 88(Res) 88(Res) 

scale stand. stand. re!. stand. re!' stand. rel. 

PROX .23 .14 .61 .09 .39 .06 .27 
eM .10 .05 .54 .05 .46 .04 .41 
RE8 .15 .08 .52 .07 .48 .06 .41 
AVOI .17 .08 .44 .09 .56 .08 .46 
Dr .35 .24 .68 .11 .32 .07 .21 

over-
1.00 .59 .41 .32 all 

Notes: stand. = standardized or divided by the overall 88(Total). 
reI. = relative sum of squares, which is defined as: 

relative 88 (Res) of episode 84 = 88(Residual) of episode 84 
88 (Total) of episode 84 

well into the overall pattern, but we have to remember that there 

are only few of them. Their total sums of squares are not very 

large, but their relative residual sums of squares are. Finally, 

there is a number of children which couple considerable sums of 

squares with little fit, indicative of either another organization 

of the scale and episode relationships, or large amounts of random 

variation. In fact, the two AI-children (37 and 54) belong to this 

group. 
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8.7 DISCUSSION 

Keeping in mind the provisional character of the data, there 

are some conclusions that can be drawn with respect to the example. 

In the first place, we note that three-mode principle component 

analysis has succeeded in showing individual differences between 

the children, and characterizing the kind and degree of these 

differences. Furthermore, the analysis presented here supports to a 

large degree the consistency of the classification procedures as 

described by Ainsworth et al. in POA, especially for the B-child­

reno The consistency follows from the grouping of children belong­

ing to the same category. The presence of only two A-children and a 

single C-child precludes any serious statements about these classi­

fication categories, apart from the observation that their position 

in the child space (Fig. 8.2) agrees with what one would expect. 

In section 8.3 we noted the presence of two groups of B3-

children. In Fig. 8.2 they were labelled B3-prox and B3-dist. The 

classification instructions in POA (p. 61) for B3-children (see 

also Swaan & Goossens, 1982) also suggest that there are two types 

of B3-children: those who actively seek physical contact with their 

mothers (B3-prox), and those who seem especially 'secure' in their 

relationship with their mother, and are content with mere interac­

tion from a distance with and proximity to the mother without 

seeking to be held (B3-dist). It is possibly due to the greater 

ability of communicating at a distance on the part of two-year olds 

that there are more children in the B3-dist than in the B3-prox 

group in Goossens' sample. For one-year olds the reverse seems to 

be true (see Goossens, Note 1, for further details). 

In Table 8.7 the characterizations of the children ( derived 

from Fig. 8.4), occupying the extremes of the axes in Fig. 8.2 

(child space) are presented. Comparing this table with Table 8.lC 

(reproduced in part here) shows global agreement and disagreement 

in detail. The most conspicuous differences are related to resis­

tance and distance interaction. The comparison for resistance is 

probably biased by the absence of extremely resistant (C)-children, 

and 'high resistance' in Goossens' sample might be average when 
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compared to the resistant behaviour of C-children. The differences 

between distal behaviours are, most likely related to the age 

differences. 

Table 8.7 Attachment studg: Comparison of Ainsworth's and 
TUCKALS classifications 

AINSWORTH 

PROX CM RES AVOI 

Al ++ 

B3-prox ++ ++ 
B4 ++ ++ (+) 

low +(+) moderate to high 
(+) low to moderate 
+ moderate ++ high 

DI 

TUCKALS 

PROX CM RES AVOI DI 

Al 0 0 H H 1 
B3-dist 0 0 1 1 H 
B3-prox H H 0 0 1 
B4 HH HH 0 0 11 

11 = low H = average to high 
1 = low to average 
o = average HH = high 

A number of problems remain. One is the low number of A-child­

ren compared to the number found in samples of one-year old child­

ren. One of the explanations might be that this is due to less 

avoidant behaviour of two-year old children. Another, by now more 

likely explanation is that it is due to a somewhat non-standard 

scoring procedure for avoidance (see Goossens, Note 1). 

A further possible problem are the ill-fitting BI- and B2-

children. Two reasons might be put forward in this respect. One is 

that they have approximately average scores on all scales so that 

we are trying to fit their individual error, rather than any mean­

ingful variation; otherwise it might be that their way of reacting 

to the strange situation cannot be fitted very well together with 

the other children. Their small number might preclude finding a 

separate dimension for themselves. Clearly these conjectures could 

and will be further investigated. 
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9.1 INTRODUCTION 

In this section we will present an example of the power of 

three-mode principal component analysis in constructing one unified 

description of data collected under different circumstances, and 

(possibly) referring to the same underlying structure. Specifical­

ly, we will analyse data from probably the most famous case of a 

mUltiple personality: Eve White, Eve Black, and Jane (Thigpen & 

Cleckley, 1954). Osgood & Luria (1954)1 published scores on seman­

tic differential scales for each personality at two occasions 

(testings I and II). In essence the data set is a four-mode one, 

i.e. personality x testing x concept x scale. We will, however, 

treat them as three-mode data, and the 6 administrations (k-mode) 

of 10 scales (j-mode) by 15 concepts (i-mode) are the material on 

which this re-analysis is based. Besides presenting a unified 

analysis of these data, the example sets out to show how individual 

differences in the use of semantic differential scales can be 

analysed with three-mode principal component analysis. Other ex­

amples of three-mode analysis on semantic differential data can be 

found in the references , via the subject classification of appli­

cations in the Appendix (see also Kroonenberg, 1983, in press). 

9.2 THE SEMANTIC DIFFERENTIAL TECHNIQUE2 

The semantic differential technique is a combination of asso­

ciation and scaling procedures designed to give an objective mea-

1. Page references are to the reprinted version in Snider & 
Osgood (1969). 

2. This subsection is at times an almost literal citation from 
Osgood & Luria (p.505). 
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sure of connotative meaning. A linguistically complex assertion 

such as "My father has always been a rather submissive person", can 

be at least partially represented on bi-polar seven point scales 

MY FATHER active 

MY FATHER soft x 

x 
passive 

hard 

The greater the strength of association, e.g. "extremely submis­

sive, a regular doormat", the more polarized towards 1 or 7 the 

check mark on the scales. Since many scales of judgement are highly 

intercorrelated (e.g. good-bad, fair-unfair, honest-dishonest, 

kind-cruel, and so forth, all reflect mainly the single "evalua­

tive" factor in judgements), a limited number of dimensions can be 

used to define a semantic space within which the connotative mea­

suring of any concept can be specified. Factor analytic studies of 

semantic differential data consistently show that there are three 

major dimensions of rating response: Evaluation, Activity, and 

Potency (see e.g. Heise, 1969, p. 412-415). 

Table 9.1 Triple personality study: concepts and scales 

concepts 

LOVE 
CHILD 

my DOCTOR 
ME 

my JOB 

Scales ,h'c 

valuable - worthless 
clean - dirty 
tasty - distasteful 

E 
E 
E 

mental SICKNESS 
my MOTHER 
PEACE of mind 
FRAUD 
my SPOUSE 

fast - slow 
active - passive 

hot - cold 

relaxed - tense 

A 
A 
A 

self-CONTROL 
HATRED 
my FATHER 
CONFUSION 
SEX 

large - small 
strong - weak 

deep - shallow 

E,a 

The abbreviations used for the concepts are in upper case 

P,a 
P 
P,e 

E = evaluation, A = activity, P = potency; upper case let­
ters indicate high loadings on a factor (in 'standard' set­
tings); lower case letters indicate medium loadings on a fac­
tor (in 'standard' settings). 

Source: Osgood & Luria (1954; 1969, p. 506). 
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The form of semantic differential used in the study of the 

triple personality of Eve White. Eve Black. and Jane is given in 

Table 9.1 (adapted from Osgood & Luria, p.506). 

9.3 OSGOOD & LURIA'S ANALYSIS 

Osgood & Luria. lacking a technique for simultaneously treat­

ing all their data. obtained measures of semantic similarity and 

structure by computing generalized distances between each pair of 

concepts for each of the six administrations of the scales. This 

generalized distance dii'k between concept i and i' for adminstra­

tion k summed over the m(=10) scales is defined as 

i.i'= 1 •...• Q ;k=l •... ,n 

For the justification of this measure they refer to Osgood & Suci 

(1952; see. however. Torgerson. 1958. pp. 294-296). The d"'k used l.l. 
by Osgood & Luria were derived from factor scores which were the 

result of factoring the concept by scales matrices for each person 

(omitting relaxed-tense). rather than the raw data. As they used 

only three factors their Dk = {dii , kJ matrix has rank 3 as well. 

and it can. therefore, be plotted 'error-free' in three dimensions 

which are found by factoring the Dk matrices (see Osgood & Suci, 

1952). These three factors were computed by Osgood & Luria for all 

six administrations, and were presented as 'ball-diagrammes' (see 

Figure 9.3). 

In order to compare the six administrations the intercorre­

lations of the Dk were computed. The concept distances between 

testings (t,t') for each personality p (p=1,2,3) over all scales, 

i.e. 

m 
= L (z .. t- z .. t') 2, 

j=l l.JP l.JP 

and between personalities (p,p') for each testing t 

m 
d. , = L (z.. t- Z.. t t) 2 

l.PP t j=l l.JP l.JP 
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were also computed, to assess the differences between and within 

personalities. These concept distances are given in Table 9.2. From 

this table we see that the largest differences are between Eve 

Black on the one hand and Eve White and Jane on the other. The 

differences between Eve White and Jane are so small that concepts 

singled out by Osgood & Luria as most discriminating between them 

have concept distances of the same order of magnitude as the test­

retest concept distances, except for sex. 

Table 9.2 Triple personality study: concept differences between 
personalities and testings 

Between personalities Within personalities 

Within testings Between testings 

DW_B 
DJ _B DW_J D1_II 

Concepts 
I II I II I II B W J 

Child 1.65 1.40 1.47 1.41 .68 .54 .96 .71 .37 
Love 1.58 1.44 1.62 1.81 .35 .57 .67 .42 .23 
Hatred 1.54 1.31 1.37 1.19 .51 .23 .19 .51 .44 
Fraud 1.46 1.35 1.29 1.22 .73 .34 .12 .64 .40 
Job 1.30 1.43 1.19 1.54 .49 .43 .62 .27 .42 
Sickness 1.24 1.38 1.30 1.47 .40 .32 .45 .45 .19 
Me 1.21 1.40 .83 .77 .60 .88 .32 .36 .42 
Sex 1.10 .62 1.45 1. 76 .63 1.20 .34 .62 .47 
Father 1.06 .60 1.06 .43 .25 .43 .71 .53 .09 
Confusion .86 .96 .98 .88 .71 .42 .67 .64 .44 
Peace .86 .66 .81 .61 .21 .28 .35 .40 .41 
Control .78 .80 .92 1.01 .34 .39 .25 .32 .24 
Mother .71 .78 1.02 .68 .66 .23 .78 .54 .46 
Spouse .67 .96 1.04 1. 75 .61 .89 .62 .30 .47 
Doctor .23 .23 .30 .12 .28 .25 .05 .15 .27 

Note: numbers in italics indicate the concepts that (accord­
ing to Osgood & Luria) serve best to characterize dif­
ferences between Eve White and Jane 

Adapted from Osgood & Luria (1954; 1969, p.513). 

The most conspicuous aspect of Osgood & Luria I s analysis is 

its indirect way in arriving at a geometric representation of the 

concepts. Furthermore, no goodness-of-fit is reported for their 

three-dimensional solution of concepts, nor is information given on 

the acceptability of a three-dimensional solution for the scales. 
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In a later discussion of this paper Osgood, Suci & Tannenbaum 

(1957) present the three (rotated) factors for the scale spaces of 

the first testing (I) of Eve White, Eve Black, and Jane. These 

factor loadings show a strong first rotated factor (49%, 59%, and 

48% explained variation for the personalities respectively) on 

which nearly all scales load positively and which is interpreted as 

a 'general' evaluative factor. The second and third factors resem­

ble each other far less (as shown by their Spearman correlations 

.56, .14, and .59 for the second factors, and .87, .24, and .21 for 

the third factor respectively), but Osgood et a1. see sufficient 

similarities in them to state "we have evidence, then, for essen­

tially the same three major factors operating in the several per­

sona] ities of this disturbed patient, although there is consider­

able shifting in meanings of specific scales between personalities 

" (p. 262). Inspecting their factor loadings and the correla­

tions between them we tend to think they overstate their case. In 

addition, it is questionable how useful the statement about shift­

ing scales is without reference to the concepts to which the dimen­

sions and scales apply. Because of this it should be useful to look 

at the data in their entirety using a less arbitrary method for 

their analysis, and attempt to answer the question: "In which way 

do the three personalities differ, and in which way do they re­

semble each other ?" 

9.4 PREPROCESSING OF THE DATA 

Before analysis the scales valuable-worthless, tasty-distaste­

ful, deep-shallow, active-passive, were recoded, so that they also 

were scored in a 'positive' manner analoguous to the presentation 

in Table 36 in Osgood et al. (1957). 

As in our other examples, a central question is the treatment 

of the means before the analysis proper. As it is assumed in seman­

tic differential research that the centre of the scale (here :4) is 

the neutral point, and that a concept which has a 4 on all scales 

is a "meaningless" concept (cf. Osgood & Luria, p. 507), it seems 

most proper to subtract the scale midpoint 4 from all values. An 
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alternative would be to subtract the scale averages at each admini­

stration, as was probably done during the factor analysis performed 

by Osgood & Luria. The disadvantage of the latter approach would 

have been that shifts in overall level of scoring between persona­

lities and testings would have been eliminated from the analysis. 

9.5 THREE-MODE ANALYSIS 

After investigating solutions with varying numbers of compo­

nents for the three modes, it was decided to report the details of 

the 3x2x2-solution, i.e. 3 concept components, 2 scale components, 

and 2 personality components. In passing we will refer to compo­

nents from other solutions. 

Scale space. In contrast to most analyses of semantic dif­

ferential data only two scale components were deemed necessary. 

With these two components most similarities and differences between 

the personalities can be described. A third scale component ex­

plains, by the way, another 3% of the total variation; this con­

trasts fast versus large, clean, and valuable. Table 9.3 and Fig. 

9.1 show the two-dimensional scale space. Conspicuous is the ab-

A active Table 9.3: Triple perso-
.4 Pdeep nality study: 

scale space 

A fast scale SI S2 
.2 valuable E 42 1 

EClnn clean E 39 12 
largep tasty E 38 -23 

.0 Ible 
.2 .4 fast A 5 25 

active A 31 45 
hot A 25 -18 

-.2 bDtA 

~t~D:I:tY 
large P 34 8 
strong P 33 -26 
deep P 30 42 

-·4 relaxed E,a 21 -62 

% explained 

*relilld 
variation 59 11 

-.6 
Note: decimal points 

Fig. 9.1 Triple personality study: omitted 

scale space 



234 9.S 

sence of an EPA-structure. It seems a matter of taste what to call 

the axes, clearly the standard terminology is only partly helpful. 

Osgood et a1. (1957) labelled their first (rotated) axes, which 

resemble somewhat ours -81, evaluation. They referred to the second 

axes of Eve White I, Eve Black I, and Jane I as potency axes. The 

differences between their second axes, and their differences with 

ours preclude such a label in this case. Our second component (82) 

is dominated by relaxed (E,a), active (A), and deep (P), and seems 

difficult to interpret within the standard framework. We will come 

back to this later in connection with the discussions about con­

cepts and personalities. 

Concept space. In comparison with Osgood & Luria's complicated 

way to derive the concept space, the configuration of concepts 

emerges naturally in three-mode analysis, and its dimensionality 

can be assessed more or less independently of the dimensionality of 

the scale space. Three dimensions were necessary to give a reason­

able representation of the concept space (Table 9.4) 

Table 9.4: Triple personality study: concept space 

doctor 
peace 
father 
control 
mother 

child 
love 
job 
spouse 
sickness 
sex 
confusion 
me 

hatred 
fraud 

% explained 
variation 

C1 

23 
19 
26 
28 
24 

31 
39 
30 
25 
23 
26 
11 

- 8 

-27 
-30 

38 

Note: decimal points omitted 

C2 

53 
45 
31 
19 
17 

- 6 
-14 
-16 
-17 
-23 
-25 
-23 

30 

11 
8 

21 

C3 

- 1 
20 

-21 
1 

-32 

-13 
5 

- 8 
8 

-38 
5 

-50 
-24 

-43 
-38 

10 
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Fig. 9.2 Triple personality study: Concept space 

It is very instructive to compare the first two dimensions of 

the concept space (Fig. 9.2) with the ball-diagrammes of Osgood & 

Luria reproduced here in Fig. 9.3. The arrows in Fig. 9.2 roughly 

correspond to the longest axis in the concept spaces for each of 

the personalities in the Osgood & Luria analysis (Fig.9.3). The 

TUCKALS concept space thus represents the characteristics of all 

three personalities simultaneously. The large differences between 

Eve White and Jane on the one hand, and Eve Black on the other hand 

are also evident in the personality space (Table 9.5), the TUCKALS3-

core matrix (Table 9.6), and the TUCKALS2-core matrix from a 3x2-

solution (Table 9.7). These tables give a coherent, quantitative 

indication of the differences between the personalities at diffe­

rent levels of summarization, in contrast with Osgood & Luria, who 
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JANE I EVE WHITE I 

EVE BLACK I 

Fig. 9.3 Triple personalitg study: Osgood & Luria's concept spaces 
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interpret largely on the basis of qualitative comparisons between 

the personalities. It is especially the compactness of representa­

tion and the simultaneous portraying of the relationships between 

administrations which makes a three-mode analysis attractive in 

this case. 

Table 9.5: Triple personality study: 
personality space 

PI P2 

Eve Black I -11 62 
Eve Black II -l3 76 

Eve White I 47 10 
Eve White II 44 16 

Jane I 51 6 
Jane II 54 3 

% explained variation 45 24 

Table 9.6.: Triple personality study: TUCKALS3 core matrix 

personality component 1 personality component 
(Eve White & Jane) (Eve Black) 

81 82 81 82 

concept Cl 18 0 

I I 
- 4 2 

compo- C2 3 - 1 l3 1 
nents C3 0 - 9 - 0 - 4 

% explained variation by combinations of components 

concept Cl 
compo- C2 
nents C3 ~_3_i _________ ~ __ ~11 ~ __ 2_~ _________ ~ __ ~ 

Table 9.7.: Triple personality study: TUCKALS2 core matrix 

Eve Black Eve White Jane 
Testings 81 82 81 82 81 82 

Cl l[] D D I C2 8 0 3 - 1 2 0 
C3 - 1 - 1 2 - 5 - 1 - 5 

Cl D D [[] II C2 10 1 4 - 1 3 0 
C3 o 2 0-5 - 1 - 4 

2 
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Concept-scale interactions. In this subsection we will turn 

to a description of the relationships between the scales and con­

cepts for each of the personalities. For the moment we will treat 

Eve White and Jane as one personality, and only comment on their 

differences later on. 

Eve Black's scale and concept relationships are given by a 

joint plot in Fig. 9.4, and they are swmnarized in Table 9.7 by her 

T2-core planes. The location of the concepts is a good compromise 

of the figures for Eve Black I & II as presented by Osgood & Luria. 

Insight into the scale-concept relationships is especially import­

ant in this case as the scale space does not show the usual EPA­

structure, so that these labels are not applicable here. Swmna­

rizing the relationships in a few words one could say that all 

concepts related to day-to-day life (job, spouse, child, sex, love) 

are evaluated negatively, and are considered neutral with respect 

to scales as active, deep, and relaxed. Those concepts related to 

Eve Black's mental make-up (confusion and mental sickness) are also 

evaluated negatively, but somewhat active and deep and rather tense 

as well. Eve Black regards with favour her therapist, herself, 

peace of mind, hatred, and fraud, and has a moderately favourable 

opinion of her parents, as well as a moderately active and deep, 

and a rather tense judgement of them. 

From Tables 9.2 and 9.5 it is clear that Eve White and Jane 

are very much alike, as illustrated in Fig. 9.5 and reasonably 

'normal'. All concepts related to day- to-day life and therapy are 

positively evaluated, while hatred and fraud are not. Me is seen as 

a neither good nor bad concept and somewhat fast, weak and distaste­

ful, as well as rather tense, active and deep. Noteworthy is fur­

thermore that confusion and sickness are neutrally evaluated, and 

are very tense, active, weak, distasteful and cold. 

The differences between Eve White and Jane, as perceived by 

Osgood & Luria, do not show very clearly here. It is possible to 

derive a third personality component which contrasts Eve White and 

Jane, but it explains less than 1% of the total variation. An 

analysis of the concept-scale relationships for this third perso­

nality component shows that Eve White compared to Jane finds con­

fusion and sickness more distasteful, weak, and -tense. In other 
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words, Jane apparently thinks less unfavourable of the concepts 

related to her mental state. The effect is, however, rather small. 

These differences can be discerned, by the way, in Osgood & Luria's 

ball-diagrammes, but the different reactions to these concepts do 

not show up in Table 9.2, probably due to summing over scales. 

9.6 DIFFERENCES WITH OSGOOD & LURIA 

There are differences between our analyses, and those of 

Osgood & Luria. In the first place we find a far stronger simila­

rity between Jane and Eve White than Osgood & Luria suggest, and 

the differences we do find are not those they mention as important. 

Their conclusion that "Jane is becoming less diversified 

semantically (more 'simple-minded') rather than the reverse" (p. 

516), with " ... all of her judgments tending to fall along a single 

factor of good-strong vs. bad-weak" (p. 514), is only very weakly 

supported by our analysis. If we take 'simple-mindedness' to mean 

that one of the combinations of scale and concept axes increases at 

the cost of the others, then indeed we observe from Jane's T2-core 

planes (Table 9.7) that cC1 Sl increases from 9 to 10, and the , 
other large element cC3 ,S2 decreases (in absolute size) from -5 to 

-4. Thus the evaluative-like first scale component becomes more 

important with respect to day-to-day concepts, therapy, and hatred 

and fraud, while active, deep, tense judgements of mother, sick­

ness, confusion, hatred and fraud become less. If this change 

warrants the strong statement of Osgood & Luria is rather doubtful. 

The statement that there is an "increasing simplification in 

structure characteristic of all three personalities" (p. 517) 

cannot be supported in the same manner (see Table 9.7). A more 

detailed analysis, and possibly a replication of their analysis 

coupled with separate analyses via singular value decomposition for 

each of the personalities might show how these differences arise -

a course which we will not pursue here. 
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9.7 CONCLUDING REMARKS 

In this example we showed how three-mode principal component 

analysis can fruitfully be used to provide a unified description of 

the scale and concept usage in the case of a mUltiple personality. 

At the same time this study can serve as an example of how indivi­

dual differences can be handled in semantic differential research 

far more easy than was customary in the early stages of its devel­

opment. 
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10.1 INTRODUCTION 

The main purpose of this section is to show how theoretical 

subjects may serve to aid the interpretation of subject spaces. A 

theoretical subject is defined as the collection of scores (or res­

ponse pattern) on the variables in a study which has been derived 

on the basis of theoretical considerations. In other words, sub­

stantive knowledge is used to derive how a subject should score if 

he conformed to (a particular aspect of) the theory. The particular 

illustration used here is taken from Van der Kloot & Kroonenberg 

(1982). 

10.2 THEORY, DESIGN, AND DATA 

Theory. The notion that people use naive, common sense, or 

implicit theories of personalitg (ITP's) when they form impressions 

of another person's personality was introduced in 1954 when Bruner 

and Tagiuri proposed a cognitive approach to the study of person 

perception. In its original meaning, a person's ITP is a set of 

perceived or expected relations among personality traits; these 

perceptions and expectations may vary from person to person. Since 

then, numerous studies have been conducted on various aspects of 

the concept of the ITP. These studies were reviewed by Schneider 

(1973) . 

Van der Kloot & Van den Boogaard (1978) conducted an experi­

ment to gain insight in the way people process information about 

other persons. Experiments in this field usually follow Asch' s 

(1946) original paradigm in which a stimulus person is described by 
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a number of personality trait adjectives. The subjects have to 

express their impressions of a stimulus person by either checking 

similar adjectives in a checklist, or by giving numerical judg­

ments on one or more rating scales. 

Design and data. Van der Kloot and Van den Boogaard used 11 

personality trait adjectives: Likeable, cooperative, intelligent, 

industrious, dominant, aggressive, unreliable, pessimistic, pas­

sive, submissive, and modest. These traits were selected because 

earlier research had shown that these stimuli lie on a circle in 

the order in which they are presented above. These stimuli were 

used in two experimental tasks. 

In the first task, subjects had to rate 11 stimulus persons. 

Each stimulus person was described by one of the adjectives men­

tioned above (for instance: somebody is aggressive). In the second 

task the subjects had to rate 20 stimulus persons, each described 

by combinations of two personality trait adjectives (see Table 

10.1). For further details see Van der Kloot & Kroonenberg (1982). 

Table 10.1 Combinations of adjectives in experimental task 

Likeable-cooperative (LI-CO) Unreliable-intelligent (UN-IN) 

Cooperative-dominant (CO-DO) Unreliable-pessimistic (UN-PE) 

Intelligent-cooperative (IN-CO) Pessimistic-aggressive (PE-AG) 

Intelligent-dominant (IN-DO) Pessimistic-passive (PE-PA) 

Intelligent-pessimistic (IN-PE) Passive-intelligent (PA-IN) 

Dominant-aggressive (DO-AG) Passive-dominant (PA-DO) 

Dominant-pessimistic (DO-PE) Passive-aggressive (PA-AG) 

Dominant-submissive (DO-SU) Passive-unreliable (PA-UN) 

Aggressive-unreliable (AG-UN) Passive-submissive (PA-SU) 

Unreliable-cooperative (UN-CO) Submissive-pessimistic (SU-PE) 

The descriptions of the stimulus persons were presented in two 

booklets, each preceded by an instruction page. The descriptions 

were printed on top of each page, and were followed by 11 ten-point 

rating scales. These rating scales were labelled with the 11 per-
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sonality traits mentioned before, including the adjective (or 

adjectives) used in the description of the stimulus person. The 

rating scales ranged from 1 to 10, with end points denoted by 

"extremely not ... " and "extremely ... " (e.g. "extremely not coope­

rative" and "extremely cooperative"). In the two tasks subjects 

rated a total of 31 stimulus persons on 11 criterion variables. 

The data were re-analyzed by Van der Kloot and Kroonenberg 

using three-mode principal component analysis. The solutions were 

based on double-centred subject matrices (see section 6.5). Thus 

the subjects were made identical with respect to scale and stimulus 

means, leaving the configurational aspects of the ITP's (i.e. the 

stimulus x scale interactions) as the data to be analysed. 

10.3 THEORETICAL SUBJECTS *) 

The data set was extended with six theoretical subjects in 

order to improve the interpretability of the solutions. The first, 

or average subject (AI), consists of the mean ratings of the stimu­

li averaged over the 59 real subj ects. The second, or dominance 

subject (A2), has been constructed as if the stimuli were judged 

only with respect to their apparent dominance. The third, or eva­

luation subject (A3), was constructed as if the subject only judged 

the evaluative content of the stimuli. The fourth, or random sub­

ject (A4), consists of uniform random error superimposed on the 

overall scale means. The data of the fifth, or uniform scorer (AS), 

are equal to the grand mean, i.e. the average over stimuli, scales 

and subjects. The ratings of the sixth, or extreme scorer (A6) , 

consists of either 2 or 9 scores. His scores are equal to 9 when 

the ratings of the average-subject (after being centred) are larger 

than O. His scores are 2 when the average-subjects's double-centred 

ratings are smaller than O. 

*) Van der Kloot & Kroonenberg (1982) used the term artificial 
subjects, but theoretical subjects seems to be a better term. 



10.3 247 

We will use the theoretical subjects as some other authors 

have used 'conceptual individuals' or 'idealized individuals' (e.g. 

Tucker & Messick, 1963; Cliff, 1968; Tucker, 1972). The advantage 

of our theoretical subjects is that they were created on the basis 

of possible scoring behaviours of individuals from, or in analogy 

with, the original data. When included in the analysis they there­

fore provide a priori information about the subject space which is 

not the case with 'conceptual individuals'. The interpretation on 

the basis of theoretical subjects thus rests on more solid ground. 

10.4 SCALE AND STIMULUS CONFIGURATIONS 

The two-dimensional TUCKALS3 configuration of the scales 

explained 51.3% of the total sum of squares. Since the addition of 

a third dimension reduced the residual sum of squares by only 4.0%, 

we found the two-dimensional solution quite satisfactory, especial­

ly because the first two dimensions of the three-dimensional solu­

tion were virtually identical to those of the two-dimensional 

configuration. The configuration of the rating scales is pictured 

in Figure 10.1. It should be noted that each dimension explains an 

almost equal amount of variation: respectively 26.2% and 25.2%. 

This means that they are of equal importance for the group as a 

whole. The shape of the T3 configuration is roughly circular, and 

the horizontal and vertical dimensions can be interpreted as a 

dominance-submission and an evaluation dimension. 

The T3 configuration of the stimuli for the 2x2x2-s01ution is 

represented in Figure 10.2. The 11 stimuli, consisting of single 

adjectives, lie on a polygon which is more or less the same as that 

of the scales in Figure 10.1, with the exception of intelligent and 

industrious which have switched places. Notwithstanding this differ­

ence, one may conclude that the stimulus space and the scale space 

are virtually identical; these spaces and their respective dimen­

sions seem to have the same cognitive structure. Moreover, the two 

dimensions of the stimulus space also account for an almost equal 

proportion of the sum of squares (resp. 26.1% and 25.2%). Therefore 
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Figure 10.1 and Figure 10.2 may directly be superimposed (after re­

'flection) without further standardization of the projections, and 

we will refer to both the scale and the stimulus space as the 

(personality) trait space. 

10.5 SUBJECT SPACES 

The eigenvalues of the two components of the subj ect space 

from the T3 analysis (based on 65 real and theoretical subjects) 

were .498 and .015 respectively. Since the first component, which 

reflects the covariance of the individuals, is much larger than the 

second, it may be concluded that the subject space is largely 

one-dimensional (Fig. 10.3). 
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The usefulness of introducing theoretical subjects now becomes 

clear, as they mark the end-points of the axes. The uniform scorer 

(AS) and the extreme scorer (A6) demarcate the first axis, and the 

dominance subject (A2) and the evaluation subject (A3) take on the 

extremes of the second axis. The average subject (AI) is located in 

the middle of the configuration. The random subject (A4) differs 

only marginally from the uniform scorer (AS). The conclusions 

(drawn on the basis of the theoretical subjects alone) are that 

subjects along the first axis of the subject space emphasize the 

dominance and evaluation axes of the personality trait space equal­

ly strongly with increasing emphasis going from left to right, and 

that subjects along the second axis of the subject space emphasize 

dominance at the cost of evaluation or vice versa. 

The T3 core matrix tells the same tale (see Table 10.2). The 

diagonal elements of the core plane belonging to the first subject 

component have equal sizes and the same sign, and indicate there­

fore that both dominance and evaluation are weighted equally. The 

diagonal elements of the second subject component also have equal 

Table 10.2 ITP studg: T3 frontal planes (two subject components 
and average frontal plane) 

71.89 
2.19 

- 2.18 
70.39 

component 1 

- 9.20 
- 1.78 

- 2.14 
9.39 

component 2 

131.34 
.20 

- 2.16 
39.89 

average plane 

sizes, but opposite signs, indicating that either dominance or 

evaluation is emphasized. The larger size of the elements of the 

first core plane is a direct reflection of the larger eigenvalue of 

the first subject component. 

Although the T3 core matrix supplies information how dominance 

and evaluation are weighted in relation to each other, it does not 

tell the size of such weightings for individual subjects. Such 

information is present in the loadings of the subjects on the two 

subject components. The extended core matrix from a TUCKALS2 (T2) 

solution supplies additional and more detailed information: the 
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diagonal elements of each T2 core matrix indicate the amount of 

stretching and shrinking each subject applies to the axes of the 

common personality space, and the off-diagonal elements indicate 

the angle under which these axes are I seen I (see section 6.9). It 

appears that all subjects see these axes as more or less orthogonal 

because the off-diagonal elements are never really large. Subjects 

with small and equal diagonal elements in their T2 frontal plane 

lie on the left hand side of the first axis of the subject space. 

Subjects with large and equal diagonal elements lie on the right 

hand side of the first axis, etc. Of the subjects who score most 

extremely (23, 37, 41 and 55) the core planes are shown in Table 

10.3, along with an average subject (47), and the average core 

plane. 

Table 10.3 ITP study: T2 frontal planes (five subjects and 
average frontal plane) 

14.83 -.61 6.45 -2.79 3.30 .57 
.03 13.34 -1. 78 11.23 .04 2.14 

subject 23 subject 37 subject 41 

10.13 .36 7.79 .13 

I I 
9.10 .02 

-.58 9.99 -.36 -.57 .00 8.67 

subject 47 subject 55 average plane 

The most important feature of the T3 subject space is thus 

that most individuals emphasize the dominance and evaluation axes 

equally but with varying values of the weights. This implies that 

for most subjects the recovered personality trait configuration (or 

ITP) is circular, and that some have larger circles than others. 

The subjects with large. weights (wider circles) have large sums of 

squares and thus use most of the ten-point scales. Of secondary 

importance is that some subjects emphasize either dominance or 

evaluation. Extreme examples are 55 and 37, who seem to use either 

the dominance or the evaluation axis as is confirmed by their T2 

core plane in Table 10.3. 
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10.6 RESIDUAL/FIT RATIOS 

Theoretical subjects can also assist in checking the assump­

tion that all subjects only applied the transformations allowed by 

the model to the personality trait space. Subj ects who do not 

conform to the model, or at least less so than other subj ects, 

should have a smaller residual/fit ratio than the average indivi­

dual. In the sums-of-squares plot for subjects (Figure 10.4) the 

contributions to the fit are plotted against the residual sums of 

squares for all real and theoretical subj ects. The heavy line in 

this figure connects points with the overall residual/fit ratio 

(.49/.51). The other two lines connect points with ratios .39/.61 

and .59/.41 respectively. These lines serve as a kind of confidence 

bands for the overall residual/fit ratio (see section 7.6). 
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Twelve real subjects (9, 14, 24, 26, 28, 35, 37, 41, 55, 56, 

58, and 59) have rather large residual/fit ratios, and probably do 

not meet the assumptions of the model. Inspection of their scores 

on the subject components showed that: (a) the two subjects who 

have the most extreme scores on the second component space are 

ill-fitting points; (b) the majority of the 'bad' points have small 

values for the diagonal elements of their T2 core planes (for some 

examples see Table 10.3); (c) there are points which do not conform 

to this pattern, notable 35, 56, and 59, the 'best' of 'bad' points. 

The 'good' points (2, 19,21,23,31,33,36,39,42, and 45) 

generally have large scores on the first component of the subject 

space, and thus large overall sums of squares. It is, of course, no 

surprise that subjects with large sums of squares fit better than 

subjects with small sums of squares. 

In Figure 10.3 the theoretical subjects also lie on the boun­

dary of the configuration, and can thus be used to evaluate the 

real subjects. The random subject (A4) has practically no fit, as 

it should be. The average subject (AI) has roughly the same fit as 

a real subject (i.e. 17 in the centre of the subject space), but 

due to the averaging procedure, a smaller residual than such an 

individual. The dominance subject (A2) and the evaluation subject 

(A3) were created from the average subject (AI) with comparable 

sums of squares, which explains their position in Figure 10.3. The 

uniform scorer (AS) has fit nor error as his sum of squares is 

necessarily zero. The extreme scorer (A6) has understandably a very 

large sum of squares, and also a smaller residual/fit ratio 

(.36/.64) than the overall one (.49/.51), which indicates his 

scoring pattern is admissable in terms of the model. In fact, his 

private trait space is almost a perfect circle. 

10.7 CONCLUSIONS 

In conclusion one may say that it is especially useful to 

specify 'ideal' response patterns of theoretical subjects on the 

basis of a substantive theory, instead of the results of the analy­

sis.· By assessing the difference between the real and 'idealized' 
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subjects, it is possible to accept or reject the models underlying 

the construction of the latter, and simplify the interpretations of 

axes. 
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11.1 INTRODUCTION 

Schiffman, Reynolds, & Young (1981) discuss and apply a wide 

variety of multidimensional scaling programs and methods (e. g. 

INDSCAL, Carroll & Chang, 1970; SINDSCAL, Pruzansky, 1979; ALSCAL, 

Takane, Young, & De Leeuw, 1977; to a variety of data sets from 

sensory perception of smells and tastes. Two of these data sets, 

given in full by Schiffman et al. (p.33-36) , refer to 10 different 

colas which have been compared with another (similarity set), and 

which have been rated on 13 adjectives (adjective set) by 10 sub­

jects. Thus the similarity set has dimensions: 10xI0xI0 (colas x 

colas x subjects) and the adjective set has dimensions: 10x13x10 

(colas x adjectives x subjects). 

Schiffman et a1. derive stimulus spaces for the colas under 

various assumptions using a number of programs, and in their Chap­

ter 11 they compare the solutions found. In a later section, 12.4, 

they use the adjective set to establish a relationship between the 

cola space from the similarity set and some of the adjectives. The 

latter is done in a rather roundabout way. In section 11.4 we will 

provide a proper analysis of the adjective set, and discuss ways to 

compare the results from the two sets. But first we will compare 

TUCKALS2 results on the similarity set with the results from other 

programs, and make a number of comments with respect to analysing 

(dis)similarity data via three-mode principal component analysis. 

In contrast with most of our other examples we will not show 

many results graphically, since Schiffman et al. have already done 

so, especially for the similarity set. Furthermore, we will not go 

into the experimental procedures followed to collect the data; they 

are described in Schiffman et al.'s section 3.1. Finally, we will 
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frequently use the terminology connected with multidimensional in­

dividual differences scaling and optimal scaling without explaining 

their meaning in detail. For this we again refer to Schiffman et 

al.( p.14-17). 

11.2 SIMILARITY SET 

Data. The similarity set is presented by Schiffman et al. 

(p.34) as 10 lower triangular matrices of dissimilarities, which we 

have converted to similarities; the diagonal elements of each ma­

trix were given a similarity of 100. In three-mode principal com­

ponent analysis it is preferable to analyse similarities rather 

than dissimilarities. If we assume that we have symmetric input 

data, in a Tucker2 analysis G and H will necessarily be the same. 

However, if high values indicate dissimilarities, the first compo­

nents of G and H are inversely related, because highly positively 

loading stimuli are very 'not dissimilar'. This means that the 

points indicating the same stimulus have diametrical positions when 

constructing a joint plot for the first and second modes. This is, 

of course, rather confusing for interpretation. This becomes even 

more so when the data are slightly asymmetric, because in that case 

one is explicitly interested in the closeness of the stimulus as 

row and as column variables. Therefore, in other kinds of data, 

too, high values should indicate that the row and column object 

have much in common. 

After the conversion to similarities the data were double­

centred (jk,ik-centring, see section 6.5) to make them resemble the 

scalar-product input used, for instance, in INDSCAL. One could 

argue from the point of view of classical Torgerson (1958) multi­

dimensional scaling that first squaring the entries would be more 

appropriate, but as the loss function is already quadratic, squar­

ing the entries would emphasize the larger distances overly much. 

Cola spaces. In line with the Schiffman et al.' s analyses a 

Tucker2 solution with 3 components each for rows and columns, was 

determined. It was attempted to improve diagonality of the core 
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matrix by orthonormal and non-singular transformations (see Chapter 

5), but the improvements in diagonality were rather small, mainly 

due to the near-diagonality of the original core matrix. 

Table 11.1 Cola study (sim): comparisons between cola spaces 

component 1 (diet - nondiet)* 
1 2 3 4 5 6 7 8 9 10 

(S)INDSCAL -.35 .29 .21 .21 .31 .21 -.32 -.39 .31 -.47 
ALSCAL f -.34 .29 .12 .21 .38 .18 -.24 -.44 .33 -.46 

TUCKALS2 $ -.35 .28 .22 .19 .31 .24 -.33 -.38 .30 -.47 
TUCKALS2 £ -.35 .27 .21 .21 .31 .23 -.31 -.39 .30 -.47 
TUCKALS2 -.31 .32 .18 .08 .33 .24 -.42 -.36 .35 -.42 

component 2 (cherry-regular)* 

(S)INDSCAL .18 .24 -.10 -.63 .16 .12 -.57 .14 .27 .20 
ALSCAL f .25 .28 -.33 -.53 .18 .08 -.53 .08 .31 .21 

TUCKALS2 $ .20 .26 -.17 -.60 .18 -.05 -.56 .09 .31 .23 
TUCKALS2 £ .20 .24 -.15 -.62 .17 .07 -.55 .12 .29 .24 
TUCKALS2 .21 .13 -.10 -.69 .10 .09 -.48 .25 .18 .32 

component 3 (manufacturer's flavour)* 

(S)INDSCAL .36 .32 -.55 .29 -.04 -.36 .10 -.41 .26 .03 
ALSCAL f .35 .26 -.48 .35 -.13 -.47 .25 -.35 .16 .07 

TUCKALS2 $ .24 .28 -.51 .42 .02 -.44 .14 -.40 .23 .01 
TUCKALS2 £ .29 .31 -.55 .32 .03 -.45 .07 -.36 .26 .08 
TUCKALS2 .33 .34 -.57 .22 .05 -.44 -.01 -.33 .30 .13 

f interval-continuous and scaled to unit length (i.e. divided by 
1/~10), component 2 and 3 interchanged. 

$ after non-singular transformation of core matrix: TUCKALS2-NS. 
£ after orthonormal transformation of the core matrix: TUCKALS2-ON 
"k for an explanation of the labelling of the axes see Schiffman 

et a1., p. 218. The colas are ordered as in Schiffman et al. 
(Table 3.2). 

In Table 11.1 comparisons are given between the transformed 

and untransformed TUCKALS2-solutions and those from three indivi-
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dual differences techniques. The conclusion from this table is 

straightforward: all solutions are virtually identical with the 

largest differences in the last component. That the much less 

res tricted T2 model hardly improves the fit to the data, is the 

result of the very nice agreement of the data to the more restrict­

ed models. This follows, for instance, from a mere loss of 4% 

variation accounted for when the off-diagonal elements from the T2 

core planes are set to zero. 

Importance of dimensions. Difficulties arise when we try to 

assess the relative importance of the dimensions. (S)INDSCAL uses 

an approximate percentage of variance accounted for, ALSCAL offers 

the average subject weight per dimension, and TUCKALS provides a 

variation accounted for, and an average subject weight. Schiffman 

et al.'s comparison (p.243) of ALSCAL average subject weights with 

(S)INDSCAL variation (or variance) accounted for is inappropriate, 

as it amounts to comparing something like a variance with someting 

like a standard deviation. In TUCKALS the component weights (after 

double-centring) are comparable with (S)INDSCAL and ALSCAL approxi­

mate variance accounted for, and the TUCKALS average subject 

weights, i.e. the diagonal elements of the average T2 core plane, 

are comparable to the ALSCAL average subject weights (provided the 

former are divided by n, the number of subjects). After all, the 

total rescaled variation present in the TUCKALS2 analysis is 1000 

(Qxmxn = 10x10x10), while in ALSCAL (and in (S)INDSCAL) this varia­

tion is 10 (nx1 = 10x1) due to the matrix-conditional equalization 

of subjects' variances to 1 (k-standardization; see section 6.6). 

In Table 11.2 the various comparisons are given. Note that the 

ALSCAL values are now in far better agreement with (S)INDSCAL than 

in Schiffman et al. 

Subject weights. The comparison of the subject weights or 

saliences (Table 11.3) is relatively straightforward, and most of 

the analyses agree. The largest discrepancies are to be found in 

the ALSCAL analysis in which the subject weights lie generally 

below those found with TUCKALS and (S)INDSCAL. 
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Table 11.2 Cola-study (sim.): importance of components 

(S)INDSCAL 
ALSCAL f 

TUCKALS2 
TUCKALS2-0N 
TUCKALS2-NS 

"approximate variation 
accounted for" 

.29 

.22 

.32 

.31 

.31 

.23 

.11 

.22 

.21 

.21 

.11 

.11 

.11 

.11 

.11 

f interval-continuous 

average subject 
weight 

.48 

.44 

.49 

.49 

.49 

.42 

.33 

.39 

.39 

.38 

.32 

.31 

.31 

.31 

.32 

11.2 

ALSCAL (appr. variance accounted for) = 1(subj.weight)2/10 
TUCKALS2 average subject weights have been divided by 10 (see 
text) 

The TUCKALS2 weights are the diagonal entries of the TUCKALS2 

core planes, in other words the off-diagonal entries are disre­

garded, but this is of little importance as they were small anyway. 

The loadings of the TUCKALS3 subject space are included in Table 

11.3 to allow comparison with the TUCKALS2 results. I t is clear 

that the TUCKALS3 loadings more or less follow the sizes of the 

diagonal elements, but the agreement is not perfect. We will not 

attempt a detailed analysis of these here. 

According to Schiffman et a1. the subject weights for the 

first and second stimulus components (i.e. diet vs. non-diet, and 

cherry vs. regular, respectively) discriminate almost perfectly 

between PTC-tasters and non-tasters (p.lSl, and p.306 respectively) 

"PTC is a compound which tastes bitter to some and is tasteless to 

others" (p.lS!), and "The ability to taste PTC is related to one's 

perception of artificially sweetened drinks (Four of the colas 

[i.e. the Diet ones] are artificially sweetened)" (p.30S). 

With respect to the third component, it is not clear why 

subjects 2,4,7 and 9 are especially sensitive to 'manufacturer's 

flavour' . 

Fit of subjects. Comparing the fit of a subject from different 

programs is not an easy task, mainly because each program has its 

own definition of fit, or at least its own terminology. 
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Table 11.3 Cola study (sim.): subject weights 

(S)INDSCAL 
ALSCAL f 

TUCKALS2-NS 
TUCKALS2-0N 
TUCKALS2 

TUCKALS3 -1 

(S)INDSCAL 
ALSCAL f 

TUCKALS2-NS 
TUCKALS2-ON 
TUCKALS2 

TUCKALS3 -2 

(S)INDSCAL 
ALSCAL f 

TUCKALS2-NS 
TUCKALS2-0N 
TUCKALS2 

5 

component 1 
PTC tasters 

641 

.81 .80 .66 .64 

.62 .60 .57 .44 

.88 .82 .69 .67 

.88 .82 .69 .66 

.83 .80 .65 .70 

.34 .33 .36 .35 

(diet - nondiet)* 
non-PTC tasters 

9 • 3 7 2 10 

.62 : .20 .21 .19 .21 

.47 ; .29 .38 .33 .32 

.64 ; .21 .22 .17 .20 

.65 : .21 .22 .17 .20 

.65 ; .22 .28 .16 .24 

.33 : .28 .30 .28 .26 

component 2 (cherry-regular)* 

.07 .09 .25 .35 

.18 .20 .24 .26 

. 25 . 27 . 44 . 26 

.03 .06 .22 .32 

. 10 . 10 .28 .31 

.20 : .74 .65 .58 .69 

.22 : .54 .36 .35 .37 

.41 : .26 .38 .35 .26 

.19 : .68 .67 .65 .62 

.19 : .65 .61 .62 .61 

-.44 -.39 -.19 -.11 -.19: .39 .36 .39 .33 

component 3 (manufacturer's flavour)* 

.24 .27 .43 .24 

.30 .31 .37 .28 

.25 .27 .44 .26 

.23 .26 .42 .24 

.20 .24 .40 .21 

.40 .29 

.33 .38 

.41 .26 

.41 .27 

.40 .29 

.33 .39 

.33 .33 

.38 .35 

.37 .39 

.37 .43 

.22 

.30 

.26 

.23 

.21 

f interval-continuous 

8 

.43 

.43 

.37 

.37 

.39 

.30 

.56 

.38 

.34 

.45 

.46 

.13 

.40 

.37 

.34 

.31 

.29 

(S)INDSCAL computes correlations between computed scores and 

the scalar products derived from the individual subjects' data; 

these are equal to the square root of the sum of squared subject 

weights, although the program does not say so. As such they can be 

seen as a measure of fit, because the total sum of squares of the 

scalar products of each subject has been scaled to one. Schiffman 

et al. are very vague as to the exact nature of these correlations. 

ALSCAL likewise computes (squared) correlations which are 

equal to the sum of the squared subject weights for matrix-condi­

tional data, which is the only case treated here. Note that also in 
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ALSCAL the total sum of squares of the scalar products for each 

subject has been scaled to one. Thus the ALSCAL and (S)INDSCAL 

correlations should be comparable. 

However, Schiffman et al. (p.175) state with respect to ALSCAL 

that "the squared correlations RSQ show the proportion of variance 

of the disparaties accounted for by the MDS model", which sounds 

like something different from the definition given above for (S)IND­

SCAL. They continue to say that "ALSCAL correlations are not cal­

culated in the same way as INDSCAL correlations. This point is 

discussed in Chapter 16", but a comprehensive treatment of this 

point cannot be found in that chapter. 

TUCKALS has as its measure of fit for subjects the fitted sum 

of squares per subj ect, which can be normed by (1) the average 

SS(Tot) per subject giving us the Proportional SS(Fit), or (2) a 

subject's total sum of squares, giving us the Relative SS(Fit) (see 

Chapter 7). The two are different because in TUCKALS no equaliza­

tion of variation per subject (or elements of the third mode) is 

performed internally. 

Table 11.4 Cola study (sim.): fit of subjects 

6 5 4 3 

(S)INDSCAL ss .71 .71 .69 .67 
ALSCAL f,ss .49 .51 .52 .52 

TUCKALS2 p .74 .74 .70 .66 
TUCKALS2 r .75 .84 .72 .60 
TUCKALS2 d .70 .74 .66 .56 

ALSCAL s,f .78 .78 .80 .78 

f= interval-continuous 
ss =sum of squared subject weights 
p = proportional SS(Fit) 

8 

.67 

.46 

.61 

.46 

.45 

.79 

over-
1 7 9 10 2 all 

.59 .58 .59 .57 .53 .63 

.34 .38 .38 .33 .34 .43 

.62 .61 .62 .60 .57 .65 

.66 .67 .65 .51 .64 

.62 .59 .62 .47 .60 

.76 .77 .77 .75 .76 .77 

s = 1 - stress 
r = relative SS(Fit) 
d = relative SS(Fit) from 

diagonal elements only 
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Table 11.4 shows that in general both the Prop. SS(Fit) , and 

the ReI. SS(Fit) are higher than the (SJINDSCAL SS(subj .weight)s, 

as one would expect with a less restricted model. Due to the lower 

subject weights in ALSCAL, the fit of the subjects is also lower 

than those in the other analysis. In Table 11. 4 we have included 

'l-stress' for each subject but this is unlikely to be a correct 

measure for comparison, because it has a non-linear relation to the 

squared correlation RSQ. 

11.3 ADJECTIVE SET 

Data. As mentioned in section 11.1 the 10 subjects also rated 

the colas on 13 continuous scales by checking a 5-inch line of 

which the end points were marked. The positively marked adjectives 

were placed at the left hand side, scored as 0, and their negation 

at the right hand side, scored as 100 (see Schiffman et al., p.3l). 

For our analysis the scores were inverted. In this way the scoring 

remained in line with the similarity set, where the dissimilarities 

were converted in similarities. Furthermore, the data were centred 

by subtracting the midpoint of the scale (50) from the inverted 

scores. By this centring overall differences between judgements of 

subjects with respect to, for example, the sweetness of colas were 

maintained in the analysis, as well as any differences between the 

colas themselves. 

Schiffman et al.'s analgsis. Schiffman et al. did not present 

an analysis as such of the adjective set, but they reduced the set 

directly by averaging over subjects, and by computing correlations 

between the adjectives over colas. On the basis of these correla­

tions they chose a subset of 6 adjectives for their further analy­

ses. Via a canonical regression procedure (using BMDP6M, cf. Dixon, 

1981) they derived three canonical variates for the loadings on the 

cola dimensions from the similarity set jointly with the scores of 

the colas on the six selected adjectives. 

The procedure contains clearly a number of ad-hoc decisions, 

e.g. exclusion of certain adjectives, and averaging over subjects. 

It bypasses the structure in the adjective set itself, and possible 
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individual differences with respect to the usage of adjectives. The 

latter is somewhat strange as one of Schiffman et al.'s main con­

clusions from the comparisons of various techniques for dealing 

with three-way similarity data is that individual differences 

analyses are recommended whenever possible (p.251). For the adjec­

tive set the three-mode principal component model can be used to do 

justice to individual differences, as we will demonstrate shortly. 

Tucker2 analysis. To stay in line with Schiffman et al. we de­

cided to report a 3x3-solution for the Tucker2 model, i.e. 3 com­

ponents each for the colas and the adjectives. Although for pre­

sention some reordering of the colas would be preferable, we chose 

to maintain the original order in Table 11.5 to facilitate compa­

risons with the Schiffman et al.'s analyses. 

Table 11.5 Cola study (sim.): TUCKALS2 Cola space 

Manu -
Cola 1 2 3 Diet Type facturer 

Diet Pepsi .08 .30 .17 + regular PC 
Royal Crown Cola -.17 .42 .56 - regular RC 
Yukon .36 -.01 .19 - regular Y1J 
Dr. Pepper -.34 .46 -.16 - cherry Dr.P 
Shasta .39 .25 .18 - regular SH 
Coca Cola .04 .38 -.68 - regular CC 
Diet Dr. Pepper .22 .24 -.21 + cherry Dr.P 
Tab .48 .16 .15 + regular CC 
Pepsi Cola -.19 .47 .09 - regular PC 
Diet Rite .51 .12 -.18 + regular RC 

% explained variation .25 .17 .11 

The most surprising fact about the cola space is that it 

hardly resembles the cola space from the similarity set. The major 

axes of the latter set were labelled by Schiffman et al. as 'diet/ 

non-diet', 'cherry/regular', and 'manufacturer's flavour', but 

these axes are not to be found here. Closest to the earlier axes 

seems to be the first one here, which contrasts regular colas with 

diet colas plus the local ones (Yukon, Shasta). We will compare the 

solutions in more detail in the next subsection. 
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Table 11.6 Cola study (adj.): Adjective space 

Adjectives f components components $ 
1 2 3 1 2 3 

good (bad) -.27 .34 .05 
strong (weak) .18 -.15 .41 
sweet -.32 .03 .47 
bitter .38 .19 -.22 
sour .33 .27 -.24 .53 .18 -.50 
fruity -.12 .37 .32 -.08 .53 .42 
spicy .10 .64 .18 .25 .67 .28 
coats mouth .28 .07 .15 
sharp .35 .11 .14 
puckers mouth .36 .09 -.08 .58 .02 -.22 
fresh -.22 .38 -.06 -.28 .44 -.47 
chemical .33 -.13 .38 .48 -.22 .48 
complex (simple) .17 -.12 .41 

% explained variation .35 .13 .04 .30 .23 .04 

f between brackets other marker; otherwise: not ..... . 

$ results from TUCKALS2 analysis with Schiffman et al.'s selection 
of adjectives; note that these loadings are larger because all 
components have unit lengths. 

The adjective space shows a first axis which is more or less 

evaluative (good, fresh, sweet versus bitter, sharp, puckers mouth, 

chemical). The second component is marked by spicy, fruity, good, 

and fresh, and has only three slightly negative loadings. The third 

component is actually too small to consider it a valid descriptor 

for all the colas together and/or all subjects together. Table 11.6 

also shows the results of a separate analysis using only the six 

adjectives selected by Schiffman et al. The loadings and the asso­

ciated cola space (not shown) support the contention that the 

subset of six adjectives is representative of the entire set of 

adjectives. 

For a proper insight into the nature of the adjective set it 

is necessary to investigate how the cola and adjective spaces are 

related. One way to do this would be to plot them jointly on the 

basis of the average TUCKALS2 core plane (internal averaging; see 

section 6.10), or one could average over subj ects externally as 
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Schiffman et al. did. Both averaging procedures presuppose that all 

subjects use the adjectives to describe the colas in more or less 

the same way. In this data set this is definitely not the case. In 

fact, the differences between the subjects are probably larger than 

in any other example in the present book (see Table 11. 7). To grasp 

the extent of these differences between the subjects in the adjec­

tive set, it is worthwhile to look back at Table 11.3. 

Table 11.7 Cola study (adj.): subjects 

T3 sub- T2 ReI. 
elements of T2 core planes .'- (x10) jects com- SS(Fit) 

£ ponents 

Sub- (xl00) ~100) 

ject 1,1 2,2 3,1 2,1 1,2 2,3 3,3 3,2 1,3 1 2 3 

9 '65 -12 1-431 - 2 -12 22 0 - 5 5 33 -17 -46 55 
8 45 -23 -33 6 - 7 12 -12 -18 -11 27 -18 -26 46 
5 91 21 26 -11 -15 1 0 - 2 4 42 46 -12 64 
2 64 ~ rn 1-34

1 

7 3 - 4 -20 - 4 30 42 - 9 48 
7 ~ -36 -43 -49 - 7 7 1-341 4 - 2 36 -39 l3 40 
1 10 -32 -55 -18 -24 9 -12 13 - 6 21 -55 5 31 
6 Illi -61 4 - 1 -22 - 4 - 6 9 -13 33 - 3 21 47 
4 66 -33 13 1-311 -76 -15 - 2 -16 -21 42 25 19 59 
3 7 ~ 12 -44 1-401 12 -10 -11 2 29 -12 58 51 

10 mJ - 1 -21 19 1 elm - 5 -11 7 15 -l3 -51 38 

%explained variation 
21 9 8 5 3 2 2 2 1 30 10 7 

$ i,j = c .. k = relation for kth subject. 
* the cor~Jelements are arranged in decreasing order of importance 
£ the subjects were grouped as far as possible with respect to their 

pattern in the core matrix. 

For the Similarity set (Table 11.3) the off-diagonal elements 

were not given as they were too small; the diagonal elements in­

cluded in the table vary, but not dramatically so. For the adjec­

tive set these same subjects are practically all different. Sur­

prising is also that now the distinction between PTC and non-PTC 

tasters is nowhere to be found, while this difference dominated in 

the similarity set. As the average core plane is not representative 

of any subject, we present here joint plots for subject 1 (Fig. 

11.1A) with a relatively bad fit of .30, and subject 4 (Fig. 11.1B) 
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with a relatively good fit of .60. 

By looking at the projections of the colas on the adjective 

vectors, or vice versa, we see that: 

1. To subject 1 only Dr. Pepper, Pepsi Cola, and Coca Cola, and to 

subject 4 only RC Cola taste moderately good. This is hardly 

surprising, for who likes colas which have been standing around 

for two hours (Schiffman et al., p.31). Similarly one cannot 

expect them to taste very fresh. 

2. Subject 1 and 4 disgree absolutely about the taste of Coca Cola. 

To 1 it tastes very chemical, strong, and complex, and definite­

ly not good, fresh, fruity, or sweet. To 4 it tastes sweet, 

good, not sharp, sour, or bitter. Similar differences can be 

found with respect to other colas, and other subjects. 

3. On the whole (looking at the first axes only), one might say 

that 1 likes RC Cola, Pepsi Cola, Diet Pepsi, Yukon, and Shasta, 

while 4 likes Dr Pepper, Coca Cola, Pepsi Cola, and RC Cola, and 

abhors Diet Colas and local brands. The appreciation might, of 

course, be different when the colas are not served tepid and 

decarbonated. 

Overlooking the analysis as a whole, one wonders if the data do 

not contain too much error. Only half (.52) of the variation of the 

centred data could be explained in the TUCKALS2 analysis, and 

noting the vast differences in usage of the adjectives, one cannot 

help wondering if the adjectives meant the same thing to all sub­

jects. The fact that no two subjects agreed in their use of the di­

mensions of the cola and adjective spaces, while they reacted con­

sistently on the similarity rating task also points in the same 

direction. 

11.4 SIMILARITY AND ADJECTIVE SETS 

Schiffman et al. used the adjective set in a canonical cor­

relation analysis to find out whether the structure in the cola 

space from the similarity set (or similarity cola space, for short) 

could be associated with specific adjectives. The difficulty with 



270 11.4 

their approach to this problem is that the adjective set had to be 

moulded to fit the analysis. 

Above we already remarked that their procedure is rather ad-hoc, 

and we also noted that there are such large individual differences 

in usage of the adjectives that one might doubt if a valid answer 

can be obtained with Schiffman et al.'s procedure for the subjects 

as a group. 

Our first solution to the problem as described in the previous 

section, was simply to analyse the adjective set itself to find out 

how the subjects used the adjectives to describe the colas. This 

led to a space for the colas considerably different from the simi­

larity cola space, and to a different evaluation of the subjects. 

One might argue that our approach is, however, not an answer to the 

question posed. After all, we did not use the similarity cola space 

at all. 

In principle it is possible to tackle the problem directly 

within the TUCKALS framework by a so-called external analysis (see 

section 3.7, and Carroll, 1972, for a discussion of external ana­

lyses in multidimensional scaling). For such an analysis a three­

mode principal component analysis would be performed on the adjec­

tive set with the components of the cola mode fixed at the loadings 

of the similarity cola space. By using the TUCKALS approach due 

regard is paid to the individual differences, in contrast with 

Schiffman et al. In a sense one can look upon such an analysis as 

an individual differences canonical regression analysis. Unfortu­

nately the TUCKALS programs have not yet been adapted for such 

analyses, but this will be done in the future. Incidentally, simi­

lar options for external analysis are included in ALSCAL-4 (Young & 
Lewyckyj, 1979), and ALSCOMP3 (Sands & Young, 1980). 

A second less direct approach would be to link the cola space 

from the adjective set (or adjective cola space) to the similarity 

cola space by a procrustes rotation (see e.g. Gower, 1975). The 

correlations between the similarity cola space and the rotated 

adjective cola space may then serve as measures of agreement. The 

results of such a procedure are given in Table 11.8. At the outset 

it was not clear to us whether an adjective cola space based on 

ratings centred at 50, or one based on double-centred ratings would 
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Table 11.8 

axes of 
similarity 
cola space 
(SCS) 

Cola study (sim. + adj.): correlations between cola 
spaces 

rotated axes of adjective cola space (ACS) 

centred at 50 double-centred 

1 2 3 1 2 3 

1 .50 .16 .49 .44 .18 .37 
2 .23 .43 .07 .18 .62 -.09 
3 .55 .05 .71 .37 -.09 .69 

271 

Note: The correlation between the un rotated axes 1 and 2 of ACS 
is -.88; the correlation between the rotated axes 1 and 2 
of ACS is .92 for the data centred at 50. In the double­
centred set all such correlations are less than 1/10000. 

be best to use for comparison; therefore, both are included. The 

conclusion from the correlations between the axes of the two spaces 

is that their structures are different, even after rotation, irres­

pective of the centring used. 

In sharp contrast with this conclusion is the result of Schiff­

man et al. (p.297) which shows via canonical correlation analysis 

that their reduced set of adjectives and the similarity cola space 

are rather strongly related. It turns out that this result is 

Table 11. 9 Cola study (sim. + adj.): canonical correlation 
analysis 

loadings 

centred at 50 double-centred 
1 2 3 1 2 3 

axes of 1 .56 -.25 -.79 .60 -.23 -.77 
similarity 2 .11 -.92 .37 .10 -.93 .36 
cola space 3 .82 .29 .49 .79 .30 .53 

can.corr. .88 .69 .08 .95 .69 .10 
redundancy .26 .16 .00 .30 .16 .00 
significance .22 .47 .85 .04 .47 .81 
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partly a method effect. This can best be illustrated by applying a 

canonical correlation analysis (BMDP6M; Dixon, 1981) to our two 

cola spaces (Table 11.9). We here present only the canonical vari­

ate loadings for the similarity cola space, as this space is the 

target. From Table 11.9 we certainly observe more 'promising' 

results than from the procrustes rotations, although still only in 

the double-centred case one of the axes reaches significance. Note, 

however, that Schiffman et a1. (p .191), advise using procrustes 

rotations for comparisons of .stimulus (or distance) spaces, rather 

than canonical correlation analysis. 

The better fit of Schiffman et al. thus seems to result from 

the use of canonical correlation analysis, and from their more 

direct approach to their own question whether the adjectives can be 

associated with the axes of the similarity cola space, provided it 

is correct to use the averaged ratings. The problem is that they 

bypass the structure of the adjective set itself. Thus, although on 

the average adjectives can be associated with the axes of the si­

milarity cola space, the wide differences between the two cola spa­

ces and between the importance which subjects attach to the axes, 

stand out as a major result of the comparison. 

11.5 CONCLUSION 

In conclusion it seems fair to say that although the ten sub­

jects perceived the colas in the same way when judging their simi­

larities (except for the easily explained PTC-nonPTC difference), 

they were unable to give descriptions of the colas that were con­

sistent with their similarity judgements. 

This conclusion almost echoes a conclusion reached in another 

experiment on sensory perception, namely on distortion of sound. In 

the words of Kruskal (1978): 

The most significant aspect of her [Mc Dermott's, 1969] 
article was the unequivocal evidence it provided that 
listeners differ strongly on the evaluation of distor­
tion, even though (as indicated by the multidimensional 
scaling) they perceive the distortion in much the same 
way. This raised serious questions about the previously 
conventional method of averaging preferences across 
listeners, and ignoring individual differences. (p.320). 
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12.1 INTRODUCTION 

In 1976, Glass issued a plea for a moratorium on data collec­

tion in favour of performing 'meta-analyses' on published research 

already available. His argument was that much information was 

available on many subjects, but that very few attempts had been 

made to integrate the available results. Review papers generally 

aim at citing research, rather than at re-analysing and integrating 

findings. In this chapter we will show how three-mode principal 

component analysis can be used for 'meta-analysis' on correlation. 

matrices taking data from Meyers, Dingman, Orpet, Sitkei, & Watts 

(1964) as an illustration. 

Especially in the field of intelligence tests, correlation 

matrices are computed for the groups used for calibrating the 

tests. For test developers it should be important to know whether 

the relationships between the subtests are the same for each cali­

bration group. However, Wechsler (1974) for instance, published in 

his test manual eleven correlation matrices of subtests of the 

revised Wechsler Intelligence Scale for Children (WISC-R), one for 

each age group, without investigating the correlation matrices in a 

systematic fashion. In a later paper we hope to turn to an analysis 

of these and other correlation matrices of the WISC-R. 

12.2 THREE-MODE ANALYSIS OF CORRELATION MATRICES 

Using correlation matrices as direct input for a three-mode 

analysis introduces some complications compared to regular raw 

data. By taking correlation matrices, we treat the correlations as 
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we do any raw input data, except that the input scaling poses no 

problems: no scaling is desirable or necessary. In fact, the data 

have already been scaled Uk-normalized; see section 6.5). One 

could treat all correlations matrices as equally important, or 

according to the number N of individuals in the sample. In the 

latter case one should multiply the correlations with ~N. 

Particular to the analysis of (published) correlation matrices 

is that one generally wants to compare the three-mode analysis with 

separate (two-mode) ones to assess their similarities and differen­

ces .. The comparisons cannot be made directly as in three-mode 

analysis of correlation matrices the eigenvalues, or weights for 

the components, are quadratic functions of the eigenvalues from a 

standard principal component analysis. In other words, it is the 

square root of the standardized three-mode weights which should be 

compared with the proportion of explained variance of a regular 

principal component analysis. 

We will only employ the Tucker2 model and not reduce the third 

mode, as we wish to compare the results from a three-mode solution 

with those of separate principal component analyses. Comparisons to 

assess how well the three-mode solution agrees with the separate 

analysis for each group can be made using the T2 core plane of that 

group. How this works follows from the observation that in a sepa­

rate principal component analysis the correlation matrix of the 

k-th subgroup can approximately be decomposed as 

and in a three-mode analysis 

with $k diagonal, and ~~ the j-th 

eigenvalue, j = 1, ... ,q , 

with Ck the k-th frontal plane, 

which is not necessarily diagonal. 

Given that Hand Hk are similar enough to allow comparisons, 

the importance of the re,:;pective axes in the two spaces can be 

assessed using $k and Ck · It should be kept in mind that the 

absolute size of the entries in $k and Ck depend on the lengths of 

the vectors in Hand Hk . In TUCKALS H is columnwise orthonormal, 

and in many principal component analyses Hk has columns of lengths 
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y <Pi. In other words, the values for the loadings in a standard 

principal component analysis correspond to a decomposition 

R = k RkHk' with Hk = H ~~ k k 

Furthermore, in the TUCKALS programs the input data are generally 

rescaled such that the total sum of squares is ~xmxn. In that case 

some adjustment is necessary before the actual comparison can be 

carried out. 

12.3 OTHER APPROACHES 

A number of other ways exist to deal with sets of correlation 

matrices. Within the general framework of analysis of covariance 

structures, Joreskog (1971) has developed a method which he calls 

simultaneous factor analysis for several populations. Given a 

theoretical model for the factor loadings the correlation matrices 

may be analysed jointly to see if they all fit the same hypothe­

sized structure. For the Meyers et al. data this seems an attrac­

tive alternative to the one presented here, as a clearly defined a 

priori structure is available. In studies in which this is not the 

case, the approach seems less easy to apply. 

A second way to deal with this kind of data is to perform 

separate component analyses for each of the correlation matrices, 

and compare the component loadings or weights via the perfect con­

gruence approach (Ten Berge, 1977; 1982). This approach assumes, as 

the previous one, that a target structure is available, either from 

a previous study or from theoretical considerations. 

Finally, the approach taken by Meyers et al. in the analysis 

of their data may be employed, i.e. using the same transformational 

procedure on the component solutions, and hope that they point in 

the same directions. Alternatively, all components may be trans­

formed via a procrustes rotation (see, e.g. Gower, 1975) to a 

common target. The former approach gives little guarantee that the 

desired result will be obtained, the latter is shown to be sub­

optimal by Ten Berge (1982). 
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12.4 FOUR ABILITY-FACTOR STUDY: DATA, HYPOTHESES, AND ANALYSES 

In their monograph Meyers et al. (1964) state that their 

purpose is "to explore for the presence of a factorial structure in 

abilities of children of preschool age", and their general hypothe­

sis was that "at all the preschool ages investigated (i.e. 2, 4, 

and 6 years old), some factor differentiation has occurred" (p.7). 

Their way to tackle this problem was "to hypothesize four group 

factors and to build suitable instruments and tests for them". In 

addition they hypothesized increasing differentiation with increas­

ing age, which should lead to a more detailed' factorial structure 

at later ages, and should allow for decreasing correlations between 

oblique factors for the older children. Finally they put forward 

-tentatively- that there should be a greater factor differentiation 

in normal than in retarded children of the same mental age. 

Table 12.1 gives an overview of tests used for the three age 

groups (2, 4, and 6 year olds), and detailed descriptions can be 

found in the original publication (p. 9-16). The normal children 

(85, 89, and 100 for the age groups respectively) were all "Anglo­

White" Californians, and the retarded children (56, 40, and 46 for 

the age groups respectively) were selected from institutions prima­

rily for their testability and for falling within desired mental 

age brackets (p. 19). Note that the designation "two years old" for 

the retarded children refers only to their mental ages (MA), and 

not their chronological ages (CA). The chronological age for the 

two-year old retarded children ranged from 49 through 175 months, 

for the four-year olds from 81 through 211 months, and for the 

six-year olds from 118-214 months. 

For each group the Pearson product-moment correlations of the 

twelve tests were determined from the raw scores (for these corre­

lations see Meyers et al., 1964, p.24,25), the correlation matrices 

were subjected to a principal component analysis, and subsequently 

rotated with the biquartimin procedure of Carroll (1957), and with 

a procrustes rotation to a target loading matrix (Hurley & Cattell, 

1962). 

We performed a three-mode principal component analysis using 

the TUCKALS2 program on the six correlation matrices, which will be 
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Ta"ble 12.1 Four ability-factor study; hypotheses and test 
names 

Two Years Four Years Six Years 

Hypothesis A - Hand-Eye Psychomotor 

2-1 BeaCi stringing 
(large beads) 

2-2 Disk stacking 
(same as 4-2) 

2-3 Cube stacking 
(same as 4-3) 

4--1 Bead stringing 
(small beads) 

4-2 Disk stacking 
(same as 2-2) 

4- 3 Cube stacking 
(same as 2-3) 

5-1 Bead stringing 
(same as 4-1) 

6-2 PHA motor 

6-3 Circle dotting 

ligpothesis B - Perceptual Speed 

2-4 Form-color-size 
matching 

2-5 Form-color 
matching 

2-6 Form matching 

4-4 Pacific color­
form matching 

4-5 Pacific figure 
matching 

4-6 Pacific design 
discrimination 

6-4 PHA picture match­
ing 

6-5 PHA figure ma tch­
ing 

6-6 Pacific form 
matching 

Hypothesis C - Linguistic Ability 

2-7 Pacific expressive 
vocabulary and ex­
pressive language 
check list 

2-8 Pacific receptive 
vocabulary and re­
cepti ve language 
check list 

2-9 Pacific identifi­
cation by-use 

4-7 

4-8 

4-9 

Pacific expressive 6-7 
vocabulary (ob-
j eets and pictures 
continuous with 
2-7 and 6-7) 

Pacific receptive 6-8 
vocabulary with 
Ammons FRPV (con­
tinuous with 2-8 
6-8) 

Response to pic- 6-9 
tures and Monroe 
ideational fluen-
cy 

Pacific expressive 
vocabulary (pic­
tures only) 

Pacific receptive 
vocabulary with 
Ammons FRPV (con­
tinuous with 4-8) 

Monroe ideational 
fluency 

Hypothesis D - Figural Reasoning 

2-10 Pacific pattern 
completion 

2-11 Pacific form and 
picture comple-

2-12 Design copying 
(same as 4-12) 

4-10 Pacific object 
classification 

4-11 Pre-Raven pattern 
completion 

4-12 Design copying 
and Pacific pat­
tern copying (con­
tinuous with 2-12 
6-12) 

Source: Heyers et a1. (1964). p.14" 

6-10 IPAT classifica­
tion 

6-11 Raven matrices 

&-12 Pacific pattern 
copying and des ign 
copying (conti­
nuous with 4-12) 

labelled N2, N4, N6, R2, R4, R6 (N = normal; R = retarded; i = age) 

and we also used BMDP4M (Dixon, 1981) to obtain separate prinCipal 

component analyses (Method = PCA) for each of the correlation 

matrices. Even though Meyers et al. used a fore-runner of BMDP4M, 

i.e. BIMED17, we were not able to reproduce their loadings exactly; 

nor did a principal factor analysis (Method = PFA), be it that the 

latter results were somewhat closer. In the sequel we will use the 

PCA results from our analysis with BMDP4M rather than those of 

Meyers et al. 
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12.5 FOUR ABILITY-FACTOR STUDY: THREE-MODE ANALYSIS 

Test components. In order to follow Meyers et al.'s analysis 

as closely as possible, four components were determined for the 12 

tests, the loadings of the common space for all groups together are 

given in Table 12.2, and in Fig. 12.1 a visual impression is 

given of the spatial arrangements of the tests in the subspace 

spanned by the second, third, and fourth components. It is clear 

Table 12.2 Four abilitg-factors studg: test loadings 

components 
general 

intelligence A-C B D 

1 2 3 4 

A 1 27 lID -15 -31 
Hand-Eye 2 27 44 -19 -10 
Psychomotor 3 25 45 -30 -19 

B 4 32 3 

~ 
-10 

Perceptual 5 33 2 49 - 2 
Speed 6 32 2 43 - 4 

C 7 30 

~ 
-18 -18 

Linguistic 8 26 -44 -14 -29 
Ability 9 26 -34 -27 -24 

D 10 28 - 5 - 6 [ill Figural 11 30 - 9 -22 46 
Reasoning 12 30 9 -14 33 

% explained 
variation 48 11 8 7 74 

Note: decimal points omitted 

that by a non-singular transformation of the component space a set 

of oblique axes can be found, each of which represents one of the 

test groups A, B, C and D (see Table 12.1). It is equally clear 

that not many new insights will be gained by such a procedure. 

From Table 12.1 and Fig. 12.3 it may be concluded that for two 

through six year old normal and retarded children a common structu­

re of the tests is present, and that it conforms to the four (obli-
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/ 

A II 

Fig. 12.1 Four abilitg-factor: Spatial arrangement of test groups 

(A: Hand-eye Psychomotor; B: Perceptual Speed; C: Lin­

guistic Ability; D: Figural Reasoning) 

que) factors hypothesized by Meyers et al. It is equally acceptable 

to describe the structure as consisting of a general ability (in­

telligence) component, and a three-dimensional subspace in which 

the tests form a tetrahedron. The eigenvalues of the second, third, 

and fourth components are of the same order of magnitude, and the 

orientation of the axes is thus relatively arbitrary. As we shall 

see below, the six groups vary with respect to the order of import­

ance of these three components. 

Assessing differentiation via the core matrix. From the common 

component loadings no detailed statements can be made about increas­

ing differentiation with increasing age, or the differences between 

retarded and normal children. How relevant the components are for 

each group, can be seen from the extended core matrix (Table 12.3). 

At this point we only discuss the diagonal elements of the core 

planes, and we neglect the possible interactions between the com-
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Table 12.3 Four ability-factor study: differences between groups 

A: T2 scaled diagonal core elements (approximate percentages 
explained variation) 

normal retarded over-
mental age 2 4 6 2 4 6 all 

general 
intelligence 1 59 37 43 35 59 51 48 
A vs C 2 4 11 11 14 9 14 11 
B 3 8 7 7 12 6 3 8 
D 4 5 6 7 6 4 8 7 

sum 76 61 68 67 78 76 

B: Separate analyses (percentages explained variation) 

normal retarded 
mental age 2 4 6 2 4 6 

1 60 38 43 35 59 51 
2 9 12 15 15 10 16 
3 6 9 10 12 7 8 
4 5 7 6 7 6 7 

sum 80 66 74 69 82 82 

ponents in specific groups. The off-diagonal elements are small, 

and never larger than the corresponding diagonal elements. The 

complete core matrix can, by the way, be found in section 5.5, in 

which these data were used to illustrate procedures for diagonali­

zation of the extended core matrix. For comparison we have included 

the proportions explained variation of the separate principal 

component analysis for each group in Table 12.3. 

The first thing to notice is that the three-mode analysis 

provides a fair representation for the structure in each group. The 

differences in amount of explained variation between the joint and 

the separate analysis of a group is between four to six percent. In 

other words, the separate analyses never succeeded in explaning 

more than six percent over and above the joint analysis. Even the 

importance attached to the various components tends to be the same 

in the joint analysis and the separate analyses. Note that the 

weights or saliences in the three-mode analysis always refer to the 
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same axes (the rows of Table J.2.3A), while in the separate analyses 

the axes may and do have different orientations. To illustrate the 

latter point the planes spanned by the second and third components 

for each of the separate analyses are presented in Fig. 12.2. 

4 G 
R2 R4 R6 

f;~ G 3 4 % 
87 1 

9 

N2 N4 N6 

Fig. 12.2 Four ability-factor study: Subtests spaces from separate 
analyses. 

(Second versus third components; 1,2,3: Hand-eye Psycho­

motor; 4,5,6: Perceptual Speed; 7,8,9: Linguistic Ability; 

10,11,12: Figural Reasoning; details see Table 12.1) 

This figure also illustrates the difficulty of comparing solutions, 

and of performing rotations to search for similarities between 

solutions. 

The problem with finding suitable rotations is that, except 

for target rotations, there is no guarantee that even if the same 

structure is present this structure will actually emerge from the 

rotated solutions. The results from the biquartimin procedures in 

Meyers et al. are a case in point. Target rotations are useful in 

as far as one knows a priori what the structure should be, which 
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was the case for Meyers et al. . Otherwise one could take one of 

the solutions as target, but then tne problem arises which is the 

best for this purpose. 

On the basis of Table 12.3 the question whether there is an 

increasing component differentiation can be answered. It is useful 

to discuss the question separately for normal and retarded child­

ren. Furthermore, as also remarked by Meyers et al., this question 

can only be answered within the limitations of this study, one of 

which is that four groups of abilities were tested, and secondly 

that the tests for the various ages were not the same but adapted 

to the specific age level. This introduces some unknowable test-age 

interactions. 

Differentiation for normal children. Keeping this in mind, 

the impression is that for the normal children differentiation of 

abilities as measured by the tests occurred between ages two and 

four, and no further differentiation occurred between ages four and 

six. This conclusion is based on the 59 percent explained variation 

by the first component for the two-year olds, and the 37 and 46 

percent for the older children. Furthermore, the distinction be­

tween linguistic abilities (C) and hand-eye psychomotor (A) on 

component 2 is not present for the two-year olds, but is for the 

older children. Note that the distinctness or coherence of percep­

tual speed tests (B) and figural reasoning tests (D) is the same 

for all age groups. 

Meyers et al. did not reach the same conclusion from their 

analyses (p. 46,47) . In our opinion this is mainly due to their 

pre-occupation with normal-retarded comparisons at the same age 

levels. Furthermore they disregarded the information in the com­

ponent weights or eigenvalues, and concentrated solely on loadings. 

Differentiation for retarded children. The situation for 

retarded children is quite different from that of the normal ones, 

but one has to keep in mind that the chronological ages of the 

retarded children are far higher than those of the normal children. 

Their comparability is, in fact, an assumption by Meyers et a1., 

which need not be true or be the same at each age level. For in-
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stance, the differentiation for the retarded two-year olds is quite 

as large as that for any other group, possibly suggesting that with 

respect to differentiation the retarded two-year olds are not 

comparable to normal two-year olds. On the other hand, the situa­

tion is reversed for the retarded four and six year old children. 

They show less differentiation than their normal counterparts. A 

possible explanation might be that differentiation is a different 

phenomenon for retarded than for normal children. The retarded four 

and six year old children confirm, by the way, Meyers et al. IS 

hypothesis that retarded children show less differentiation than 

normal children. 

Again we do not reach exactly the same conclusions as Meyers 

et al., who state that they cannot find any differences in factor 

differentiation. As before they only looked at (rotated) loadings, 

and disregarded amounts of explained variation. 

12.6 CONCLUSION 

From our analyses it follows that most of the hypotheses of 

Meyers et al. received some (differentiation) or considerable (four 

factor structure) support. The difficulty for Meyers et a1. was 

that their level of condensation was simply not high enough. For 

each correlation matrix with 66 data points they looked at 4 to 5 

components, i.e. 48 to 60 loadings, or at 288 to 360 parameters for 

396 data points. In our three-mode analysis, the information on 

which we based our conclusions was contained in 48 loadings and 24 

core elements, or 72 parameters in all. This lack of condensation 

is not really Meyers et al. IS fault. The art was not as developed 

as it is now, and techniques for dealing with their data in a 

unified fashion were still being developed. 

The gain of using three-mode principal component analysis in 

comparison with separate analyses and analytic rotation procedures 

can be considerable. Whether in this particular case even more 

insight can be obtained via a covariance structure approach is a 

matter for further investigation. 
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13.1 INTRODUCTION 

In this and the following chapter we turn to the analysis of 

multivariate longitudinal data. Such data introduce a number of 

complications not present in 'standard' three-mode data. Whereas in 

the standard case the main dependence is between variables, in 

longitudinal data the serial dependence or autocorrelation between 

observations on different occasions is important as well. The in­

teractions between the two kinds of dependence introduce further 

complications. 

Here we do not attempt to give an in-depth treatment of the 

subject, but we will try to show that three-mode principal compo­

nent analysis can assist in making meaningful statements about 

multivariate longitudinal data. 

For the analysis of such data two major approaches may be 

distinguished. The first approach deals with data from a design in 

which there are few or no replications, and in which many observa­

tions in time are needed to make meaningful statements about the 

observational units. The time series produced are, generally, 

analysed by fitting specific stochastic models, such as autore­

gressive and/or moving average models (ARIMA-models). Especially in 

the field of econometrics this approach is taken to describe and 

predict the behaviour of national economies or individual firms. An 

introduction to this approach can be found in Chatfield (1975), or 

with a view to applications in the social sciences in Glass, Wil­

son, & Gottman (1975). 

In the second approach one usually has a design with many 

variables, many observational units, and rather fewer points in 

time. The main interest with such designs focuses on analysing 
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correlational or covariance structures of the variables at each 

occasion, between occasions, or for all occasions simultaneously. 

Wohlwill (1973, p.240) goes as far as stating that "a good case 

could be made for the proposition that correlational analysis, 

however denigrated in certain quarters, is the method par excel­

lence for developmental study." On the other hand, Anderson (1963) 

considers factor analysis (i. e. the correlational approach) only 

really useful in reducing large numbers of variables to a small 

number of factors (similar to forming indicators in econometrics), 

the scores on which can then be subjected to a time series analy­

sis. However valid Anderson's point of view is in the presence of 

large numbers of repeated measurements on the same observational 

units, for many social science data the number of occasions is too 

small tC' consider fitting the kind of functions Anderson has in 

mind. In addition, the amount of variation accounted for by the 

factors will in many cases be too small for reliable estimation of 

the factor scores anyway. Finally the difference in emphasis 

remains: in the first approach the stress is on modelling serial 

dependence for each of the variables, in the second approach on 

modelling the interrelationships of the variables over time. 

Within the correlational approach the distinction between the 

'classical' approach to the analysis of cross-product (or correla­

tion) matrices treating all modes fixed, and the 'statistical' 

approach using the theory of covariance structures treating one 

mode stochastically, is particularly relevant (see section 3.6 for 

a discussion of this distinction). In fact, in situations with suf­

ficient knowledge of substantive theory, given enough observational 

units and no interest in individual differences, the covariance 

structure approach as advocated and developed by Joreskog (1978, 

1979), Joreskog & Sorbom (1977), and Bentler (1978,1980), or three­

mode path analysis (Lohmoller & Wold, 1980,1982), seem ideal ways 

to proceed. Lacking the prerequisites, i.e. sufficient substantive 

theory and observations, one has to make do with less powerful 

methods which approach longitudinal data in a more exploratory 

fashion, such as CODUDon factor analysis and principal component 

analysis. Visser (1982), and especially Bentler (1973), discuss the 

many proposals in this field, and Hakstian (1973) and Corballis 

(1973) also provide valuable contributions. 
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13.2 SCOPE OF THREE-MODE ANALYSIS FOR LONGITUDINAL DATA 

Wohlwill (1973, p.275-283) and Bentler (1973, p.161-162) 

mention briefly that three-mode factor analysis and principal 

component analysis have some potential for treating multivariate 

longitudinal data, but both authors indicate that very little 

experience with these techniques is available, and find the real 

potentialities therefore difficult to assess. 

The promise of three-mode principal component analysis and its 

analogues in the covariance structure approach lies in the simulta­

neous treatment of serial and variable dependence. The serial 

dependence can be assessed from the component analysis of the time 

mode, the variable dependence from the variable mode, and their 

interaction from the core matrix or the latent covariation matrix 

(see section 13.3). By analysing variables over subjects and occa­

sions with standard principal component analysis (e.g. Vavra, 1972; 

Visser, 1982, p.63,172), or by treating variables at each occasion 

as separate variables, and analysing these with standard principal 

component analysis (e.g. Visser, 1982, p.64, 151ff,172), the varia­

ble and serial dependence, and their interactions may become con­

founded. 

Multivariate longitudinal data have been analysed with three­

mode principal component analysis or its covariance structure 

analogues by Tucker (1967), Love & Tucker (1970), Inn, Hulin, & 

Tucker (1972), Lammers (1974), Van de Geer (1974), Lohmoller (1978, 

1981a), Hanke, Lohmoller & Mandl (1980), Snyder, Bridgman, & Law 

(1981), Haan (1981), Skolnick (1981), and Harshman & Berenbaum 

(1981) . 

Lohmoller (1978, 1981a) has made some progress towards the 

interpretation of serial and variable dependence in three-mode 

analysis; his contribution will be discussed in the next section. 

13.3 ANALYSIS OF DATA FROM MULTIVARIATE AUTOREGRESSIVE PROCESSES 

Introduction. In this section we will review, discuss and 

amend proposals by Lohmoller (1978, 1981a) to interpret the results 
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from a three-mode principal component analysis of longitudinal 

data. Basic to his approach is the assumption that the changes in 

the variables and scores of the subjects on these variables can be 

modelled by multivariate autoregressive processes. Given that the 

assumption is tenable, Lohmoller shows how one can get an indica­

tion of the size of the parameters of the assumed autoregressive 

process from the results of the three-mode analysis. In other 

words, once a three-mode analysis has been performed, an interpre­

tation of its results can be given in terms of the parameters of 

the autoregressive process. 

Lohmoller's procedure to arrive at these indicators or 'esti­

mators' is rather indirect. Some 625 data sets were first generated 

according to specific autoregressive processes, and then analysed 

wi th three-mode principal component analysis. Empirical 'estima­

ting' equations were derived for the parameters of the autoregres­

sion parameters by regressing these parameters on parameters in the 

three-mode analyses. Lohmoller himself recognized that the proce­

dure has serious drawbacks, as for each new kind or size of data 

set new simulation studies have to be performed. On the other hand, 

via his simulation studies Lohmoller was able to investigate which 

results in a three-mode analysis are particularly sensitive to 

changes in specific parameters in the autoregressive models, and 

which results reflect the general characteristics of the autore­

gressive models. Lohmoller (1981a, p.70) pointed out that, in fact, 

three-mode path models (see section 3.8) are to be preferred, 

because in those models the autoregressive processes can be mo­

delled directly. The example in section 13.4 is, however, too large 

to be handled by such an approach, as it would require the analysis 

of a 242x242 covariance matrix. 

Component analysis of time modes. One of the problems in 

three-mode analysis of longitudinal data is the interpretation of 

the decomposition of the time mode, as its correlation matrix is 

more often than not a (quasi-) simplex. Entries of a simplex are 

such that the correlations between two time points are a decreasing 

function of their difference in rank order. Typically the bottom­

left and top-right corner of the correlation matrix have the lowest 
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entries (for examples see Table 13.2). As Guttman (1954) has shown, 

simplexes have standard principal components. In particular, the 

components of equidistant simplexes can be rotated in such a way 

that the loadings on the first component are equal, those on the 

second component are a linear function of the ranks of the time 

points, those on the third component are a quadratic function of 

the ranks, etc. After extraction of the first two principal compo­

nents all variables have roughly the same communalities, and the 

configuration of time points resembles a horseshoe or "e", the 

opening of which is increasing with the relative size of the first 

eigenvalue (see Borg, 1976; see section 2.7 for an example of a 

horseshoe). 

The problem is not so much the standard solution as the fact 

that there are many different processes which could have generated 

the simplex (for an amusing example see Fischer, 1967). It is, 

therefore, next to impossible to interpret the results of a compo­

nent analysis of a time mode without a substantive theory about the 

underlying processes which generated the data. 

One kind of change which produces correlation matrices with a 

(Markov) simplex structure (see e.g. Joreskog, 1970,1974; and 

Morrison, 1976, section 9.11) are first-order autoregressive pro­

cesses, to be discussed below. Thus a simplex-like correlation 

matrix mag be explained by such an autoregressive process. Further­

more, a process of steady growth with a level and a gain component 

produces a correlation matrix with a (Wiener) simplex form (see 

Joreskog, 1970,1974, and Morrison, 1976, section 9.11). Thus one 

mag describe the underlying change process, at least approximately, 

by a level and a gain component. In the case that one has a sim­

plex-like correlation matrix, the results of a component analysis 

on this correlation matrix mag, therefore, be interpreted both in 

terms of parameters of the autoregressive process, and in terms of 

a level and a gain component, provided the subject matter warrants 

the use of such models. 

Autoregressive processes. In Fig. 13.1 an example is given of 

the kind of autoregressive models one might consider. The model was 

suggested by Lohrnoller (1978) in the context (and we will follow 
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his description) and presented in some detail by Roskam (1976, p. 

126-130), who also used it to model change processes, and discussed 

the merits of this and similar models. 
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Fig. 13.1 A multivariate autoregressive model 

The structural part of the model (see also section 3.8) has 

the form of a multivariate regression equation; it is assumed that 

the state of the latent variables Dk at occation k depends on only 

two influences, viz. the state of the variables at occasion k (i.e. 

it is a first-order process), and the state of the external varia­

bles kk at occasion k: 

k=l, ... ,n 
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where Q}: and Qk-: are the 'lectors of all t latent variables. In 

the model it is assumed that the external variables S~: and ~k' 

(kik') are uncorrelated, ~lhich is almost always an oversimplifica­

tion as it implies that all time dependent influences are included 

in the model. Maybe somewhat incorrectly" we have written the 

external variables as latent rather than manifest ones. Finally, 

it is assumed in this model that the latent and external variables 

are normalized. 

The matrix <1>, called the transition matrix, describes how 

strongly the latent variables at occasion k-I influence those at 

occasion k. When <I> is diagonal, as is the case for the model in 

Fig. 13.1, the latent variables only influence themselves, and no 

other latent variables (i.e. $ , = 0, qiq'). When <I> is diagonal, 
qq 

the changes in the component structure of the variables are entire-

ly due to external influences. 

The matrix ~ describes the influences of external variables on 

occasion k on the latent variables on occasion k. The external 

variables represent the entire influence of the environment on the 

latent variables. When ~ is diagonal, as in the model on Fig. 13.1, 

then each external variable only influences one latent variable 

(i.e. t/Jqq' = 0, qiq'). Note that here the matrixes <I> and IV are 

assumed to be independent of k, so the model assumes that the 

first-order influences remain identical over time. Differences in 

influence over time of both latent and external variables cannot be 

accounted for by this particular autoregressive process, and as 

such it is almost always an oversimplification of reality. 

The structural part discussed until now has been entirely in 

terms of latent variables, and therefore we also need a measurement 

model to link the data with the structural model. In the present 

case, the measurement model is simply the three-mode principal 

component model itself, in which the components are the latent 

variables of the autoregressive model. 

Latent covariation matrix. Before entering into a discussion 

of the role autoregressive models can play in three-mode analysis, 

it is necessary to look at what we will call the latent covariation 

matrix S, called 'core covariance matrix' by Lohmoller (1978). The 

covariation s "are the inner-products of the elements of the 
pq,p q 
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Tucker2 core matrix: 

n 

s ,,= I Epq,kEp'q,'k' pq,p q k=1 

where we assume that the n observational units or subjects consti­

tute the third unreduced mode (k-mode) in a Tucker2 model with a 

first i-mode of variables, and a second j-mode of occasions of 

conditions. 

The core elements E k may be interpreted as scores of the pq 
observational units on the sXt combination components of the first 

and second mode. In this context the a-th combination 
a a 

an ~xm vector fa with elements f ij , and f ij = giphjq , 

and a=1, ... ,st. In the example of section 13.4 one of 

component is 

ij=1, ... ,~m, 

the combina-

tion components is, for instance, labelled as 'gain (=trend or time 

component) in degree of specialization (= latent variable or varia­

ble component)'. In that case a E k represents the score of the pq 
k-th hospital on the combination component 'gain in degree of 

specialization' . 

The value of s (= s ") thus indicates the covariation aa pq,p q 
of the a-th (=pq-th) and a'-th (=p'q'-th) combination components. 

Within the analysis of covariance structures (see section 3.5), in 

which the mode of observational units is stochastic, the latent 

covariation matrix arises in a 'natural way. If we define 1a 

(a=1, ... ,st) to be the random vector of scores on the combination 

components, then the three-mode model can be written as 

st s t 
z .. = If.. )( = I I gip h. )( with ij=l, ... ,fu 
-1.J a=1 1.J,a a p=l q=1 ]q pq 

and the covariance matrix * = 
E(~~') is 

s s t t 
(J •• = I I I L gipgi'p hjqhj'q' s = 
-1.J , ij p=l p'=1 q=l q'=1 

-pq,p' q' 

st st 
= I I f.. f.,., ,a'~aa' 

a=1 a'=1 1.J,a 1. J 

with S= E(n') = {~pq,p'q'} = {~aa'} the latent covariation ma­

trix. Loosely speaking one may say that the latent covariation 
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matrix underlies the observed covariation matrix, and embodies the 

basic covariations present in the data. Lohmoller scaled the 

latent covariation matrix, analoguous to Bartussek's (1973) method 

of scaling the core matrix (see section 6.9); we have also done so 

in the example in section 13.4 for comparability with his results 

(see Table 13.5). 

It is, by the way, also possible to develop the latent covari­

ation matrix from a Tucker3 model, but scores on combination com­

ponents must then be interpreted as produced by 'idealized sub­

j ects' rather than real ones. This, at times, might be less con­

venient than referring to the subjects themselves. 

The major purpose in discussing the latent covariation matrix 

from a Tucker2 model is that it provides a means of investigating 

the relationships between autoregressive processes and three-mode 

analysis. It is especially the structure of the latent covariation 

matrix which can be used 

autoregressive 

to investigate the parameters of the 

process underlying the observations. postulated 

Lohmoller (1978, 1981a) uses the latent covariations to derive 

empirical estimation equations for the parameters of the autore­

gressive parameters. We will not follow him in directly applying 

these equations to our example in section 13.4, as it does not 

conform to the restriction built into Lohmoller's simulation stu-

dies. On the other hand, from these studies Lohmoller derived more 

general relationships between the latent covariations and general 

characteristics of the autoregressive processes, which seem to be 

applicable outside the specific design of his simulation studies. 

It is equally possible to interpret the variations and covari­

ations directly. The latent variations, saa' of the combination 

components may be divided by the total variation present in the 

data - SS(Tot)-, and can then be interpreted as the porportion 

variation explained by the combination component in question. After 

all 

s aa = s pq,pq 

n 
= I 

k=l 
c2 
pqk 

and in section 6.9 we showed that the squared elements of the core 

matrix can be interpreted as explained variation. The covariations 

s ,can be transformed into direction cosines between the combina-
aa 
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tion components a and a': 

S '1( __ ~ . Is!z ._.!z, . \ ~ • ( ~:-;: 1 " .• st. 
aa i aa" aa a a' 

In section 6.9 we discussed a similar interpretation for the compo­

nents themselves when the first and second mode elements refer to 

the same quantities. Interpreting latent covariations in this way 

is more direct, and has a wider applicability than the interpre­

tation via parameters of autoregressive processes. On the other 

hand, the latter interpretation gives more specific and more sub­

stantive information because of the postulated model. 

Linking autoregressive parameters to three-mode results. In 

the introduction we referred to two major sources of dependence in 

multivariate longitudinal data: variable and serial dependence. It 

is of interest to know if, and if so, in which way these kinds of 

dependence influence each other. One may have a structure between 

variables (variable dependence), which is stationary, i.e. not 

changing in time. It is also possible that the subjects maintain 

their relative positions on the variables, irrespective of the 

structure of the variables, i.e. there is stabilitg of the varia­

bles or high autocorrelations (serial dependence). Finally, varia­

bles and subjects may change simultaneously in which case there is 

stability nor stationarity. 

In the above paragraph one may also read 'latent variables' 

instead of 'variables'. In general we will discuss latent varia­

bles as the autoregressive processes were formulated in those 

terms. 

So, we will refer to a set of latent variables as being sta­

tionary when the same component structure is present on all occa­

sions. In particular we will call the set homogeneous when the 

variables are highly correlat.ed, and can be represented in a low­

dimensional space, i. e. by a few components. In autoregressive 

processes the homogeneity is indicated by the covariations of the 

latent variables at each time point (the n k in Fig. 13.1), qq 
In three-mode analysis we derive one set of orthonormal varia-

ble components over all occasions simultaneously, and the dimensio­

nality of the component space is thus an indication of the overall 

homogeneity. As there is only one component matrix for the varia-
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hles, one could get the impression that the model does not allow 

for non-stationarity. This is, for instance, indeed the case in a 

model without a core matrix like PARAFAC1 (see Harshman & Beren­

baum, 1981), but not in the Tucker2 model, in which the deviations 

from stationarity show up in the core matrix and the latent cova­

riation matrix. Lohmoller's contribution is t.hat he attempted to 

invest.igate how and what kind of st.ationarity could be inferred 

from the latent covariation matrix. He claims that for an auto­

regressive process as shown in Fig. 13.1, increasing and decreasing 

homogeneit.y, ceteris paribus, can be gleaned from t.he size and the 

signs of the covariations between the latent variables in the 

lat.ent covariation matrix. We will return t.o this point in some 

detail when discussing the example in section 13.5. 

A (latent) variable will be called stable when t.he relative 

positions of the observat.ional units on t.hat. (latent) variable 

stay the same in time, and the st.ability of a (latent.) variable may 

be judged from the covariations of the lat.ent variables on differ­

ent occasions. A set of variables will be called stable when all 

variables are stable. In aut.oregressive processes t.he stabilit.y of 

a latent variable, !l, is given by cp ; cp2 indicates t.o what 
q qq qq 

extent the latent variable is determined by its predecessor. Stable 

variables are somet.imes called trait-like, i. e. mainly determined 

by the defining construct or trait, and unstable variables are 

somet.imes called state-like, i. e. mainly determined by the time 

they are measured (see Cattell, 1966b, p.357). The size of cova­

riations of a latent variable between t.ime point.s is thus an indi­

cation for the stability of a variable with high values indicating 

a trait-like and low values a state-like variable. The overall sta­

bility of a set of variables, $, may be determined from the first 

eigenvalues of t.he t.ime mode, given that first-order autoregressive 

processes underlie the data (Lohmoller, 1981a, p.29). When a se­

cond-order model holds, the stability will most likely be over­

estimat.ed using the first eigenvalue. A global check on the appro­

priateness of the 'estimat.e' may be made by comparing its value to 

t.he lag-one correlations. 

Lohmoller also investigated the st.ructure of the latent cova­

riation matrix for autoregressive models like those in Fig.I3.1 in 
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case of different stabilities of the latent variables, and in case 

of equal stabilities on changing dimensions. We will, however, not 

go into that part of his study. 

Finally, it is interesting to consider the situation in which 

all latent variables have equal stability (i.e. uniform autocorre­

lations) the set of latent variables is stationary, and no partial 

cross-lag correlations exist. For this situation Lolunoller (1978, 

p.4) showed that the latent covariation matrix is an (stXst) iden­

tity or diagonal matrix, depending on the particular scaling of the 

components. This means that the three-mode model for the observed 

covariation matrix reduces to 

s t st 

Uij,i'j' = p!l q!lgiPgi'phjqhj'qVpq,pq =a!l fij,afi'j',aVaa 

with v = v equal to one or non-zero depending on the scaling 
pq,pq aa 

of the components. This model may be used as a kind of 'null-hypo-

thesis' to evaluate latent covariation matrices (see also section 

3.5). 

Discussion. The above approach to evaluating change phenomena 

in multivariate longitudinal data depends very much on the appro­

priateness of the multivariate autoregressive models. It is also 

still very sketchy from a mathematical point of view, and therefore 

requires further investigation. Further practical experience is 

also necessary to assess its potential. It seems that in some cases 

the assumption of an underlying autoregressive process is not 

unreasonable, as in the example in section 13.4. In connection with 

this example we will discuss rough and ready ways to assess whether 

the assumption of the autoreggressive model is tenable. 

Lolunoller's major contribution is that he provides a framework 

for the interpretation of multivariate longitudinal data, which 

cannot easily be handled directly by causal modelling or time 

series analysis. In addition, he gives yet another possibility of 

interpreting the core matrix (and the latent covariation matrix) 

(see also section 6.9). 
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13.4 GROWTH AND DEVELOPMENT OF DUTCH HOSPITAL ORGANIZATIONS 

.Research questions. In order to gain some insight into the 

growth and development of large organizations, Lammers (1974) col­

lected data on 22 organizational characteristics (variable or 

j-modej of 188 hospitals in the Netherlands ('subject' or i-mode) 

from the annual reports of 1956-1966 (time or k-mode). His main 

questions with respect to these data were: 

1. whether the organizational structure as defined by the 22 varia­

bles was changing in time; 

2. whether there were different kinds of hospitals with different 

organizational structures and/or different trends in their 

structures. 

These two questions will be taken up in this section. 

In the next section we will also look at such questions as: 

3. do the latent variables have different stabilities; 

4. is the latent variable domain stationary? 

5. is an interaction present between serial and variable depen­

dence, i.e. do the latent variables and the trends interact; 

In other words, in section 13.5 we will try to assess the para­

meters of a possibly underlying autoregressive process. 

Data. Prior to the three-mode analysis, the majority of the 

variables were categorized into roughly ten intervals of increasing 

length for practical reasons (removing skewness of the counted 

variables, easing visual inspection, preparing the data for other 

analyses, etc.). The variables were normalized over all year-hospi­

tal combinations (i.e. j-normalization, see section 6.2), thus 

removing incomparable means and standard deviations, while main­

taining the trends over the years. In Table 13.1 the variables are 

given with their categorizations and mnemonics. 

Results of three-mode analysis. To answer the first question 

with respect to the changes in organizational structure it is 

necessary to examine first of all the structure itself. We will do 

this by inspecting the joint plot (see section 6.10) of the hospi­

tals and variables using the first trend core plane (Fig. 13.2). 
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Table 13.1 Hospital study: variables, their mnenomics, and 
categorizations 

mne­
nr monic variable 

1 TRAl training capaci tg 
2 RESC research capacity 

3 FIND financial director 
4 FACl facilitg index 

WARD ratio qualified nurses 
in outside wards 

6 QUAN ratio qualified nurses/ 
total pumbeL9...(. nurses 

7 FUNC number of ftmctions 

STAFF total staff 

RUSH Rushing index 

10 EXEC 

11 NMPR 

12 ADMl 

13 PARA 

executive- (managerial 

and supervising) staff 
non-medical professio­
nals 
administrative Ii. e. 
clerical) staff 
paramedical staff 

categories 

number of. training facilities 
1: no research or experiments 
2: radio-active isotope research or 

animal experiments 
3: radio-active isotope research and 

animal research 
present or absent 
number of facilities such as laborato­
ries and libraries 
1:0.00-0.99 5:4.00-4.99 
2:1.00-1.99 6:5.00-5.99 

8:7.00-7.99 
9:8.00-8.99 

3:2.00-2.99 7:6.00-6.99 10:none out-
4:3.00-3 .. 99 ._._ .... ~~!!e. wards 
1:0.01-0.30'3:0.41-0:50 5:0.61-0.70 
2:0.31-0.40 4:0.51-0.60 6: > 0.70 
1: 1-10 3:16~20 5:26-30 7:'-> 35 
2:11-20 4:21-25 6:31-35 
1: 1- 50 5:201-250 9:401-450 12:551-650 
2: 51-100 6:251-300 10:451-500 13:651-750 
3:101-1507:301-350 11:501-550 14: 750 
4.: 1_5.1~~OO_~.351..::400 . 
spread of work: 

a 2 / (a)2 
RUSH = 1 - 1 - (l/N) 

(x = number of people having 
N = number of functions) 
1: .00<R<.80 4: .84~<.86 

a function, 

6: . 88:ffi<.90 
7:G; .90 2: .80:ffi<.82 5: .86:ffi<.88 

1: 1- 5 3:11-15 5:21-25 7: 31-35 9: >40 

2: 6-10 4: 16-20 6:26-30 8:36-40 
number of phamacists, psychologists, 
etc. 
1: 0 3: 6- 10 5: 16- 20 7:> 30 
2: 1- 5 4: 11- 15 6: 21- 30 
1: 0 4: 11- 15 7: 26- 30 10: 51- 60 
2: 1- 5 5: 16- 20 8: 31- 40 11:>60 

14 NMED 
3: 6-106: 21- 25 9: 41- 50 

other non-medical staff 1: 1-10 3: 31- 50 5: 71- 90 
2: 11-30 4: 51- 70 6: 91-110 

7:111-150 
8:>150 

10:>300 15 NURS 

16 BEDS 

17 PATI 

18 OPEN 

19 CMSP 

20 PMSP 

21 CSUB 

22 PSUB 

total number of nurses 1: 1-254: 76-100 7:151-175 

total n.:.m,er of beds 

total number of 
patients 

openness 

main clinical specia-
lizations 
main polgclin. specia-
lizations 
clirllcal subspeciali-
zations 
polgclin. subspeciali -
zations 

2: 26-50 5:101-125 8:176-200 
3: 51-756:126-150 9:201-300 
1: 1-50 4:151-200 7:301-400 
2: 51-100 5:201-250 8:401-600 
3:101-150 6:251-300 9:>600 
1: 1-1000 5:4001-5000 8:7001-8000 
2:1001-20006:5001-6000 9:8001-9000 
3:2001-3000 7:6001-7000 10:> 9000 

4:3QOJc4oQlL .. _._ ... ._ ..... . 
closed/partly closed/open to consulting 
physians from 'National Health I and pri­
vate patients 

number of specializations 

number of specializations 

number of specializations 

number of specializations 

299 
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This trend or time component contains most of the variation in the 

time domain, and reflects the overall characteristics of the compo­

nents of the variable and hospital domains (see also below), 

;04 
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5' 

WARD o 

.c:: ... 

.c:: 

'132 
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OPENO FAc~D ' ,B~~:~ 
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EXECO o~~~~ , 
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Fig. 13.2 Hospital study: Joint plot of hospitals and variables 

The joint plot shows that the latent variables may be inter­

preted as size and degree of specialization, where the former is 

not only indicated by the variables intended to measure size (see 

Table 13,1), but also by most of the other variables, The degree of 

specialization is primarily indicated by a deficit of main spe­

cializations (PMAIN,CMAIN), a larger research capacity (RESC), and 

greater proportions of qualified nurses (QUAN) and qualified nurses 
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on the wards (WARD). The hospital components or prototype hospitals 

will be designated as general hospitals and specialized hospitals 

respectively. From the relative sizes of the standardized component 

weights (AI ~ III ~.50; 1.2 ~ 112 ~ .06) we may conclude that the 

first components are by far the most important ones. The second 

components essentially arise from the fact that some 15-20 hospi­

tals have sizeable deficits in main specializations compared to the 

other hospitals. Incidentally, the sharp boundary of the hospitals 

on the negative Y-axis in Fig. 13.2 is caused by ceiling effects 

due to the fact that a large number of hospitals have all the main 

specializations a hospital can have. 

en 
c::a 
Z 
c:t 
C 

~ .3 

.2 

_____ -4 .... -tI---I-----... -. 1evel 

Fig. 13.3 Hospital study: trends (scaled) 

For the inspection of the time mode components (Fig. 13.3.) it 

is advantageous to scale the components in accordance with their 

eigenvalues (VI = .55; v2 = .006), as an assessment of their rela­

tive importance is crucial (see also section 6.8). The figure shows 

that the overall structural organization remains the same, except 
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fable 13.2 Hospital studg: correlations between the various gears 

time mode 
(based on 188 x 22 observations) 

I 1 2 3 4 5 6 7 8 9 10 11 

" 100 
2 I 96 100 
3 94 97 100 
4 93 95 98 100 
5 89 92 94 95 100 
6 87 90 92 93 97 100 
7 86 88 90 91 94 95 100 
8 85 88 90 91 94 95 97 100 
9 83 85 87 89 91 93 94 96 100 

10 81 84 86 87 90 91 93 95 97 100 
11 80 82 85 86 89 90 92 94 95 97 100 

number of beds 
1 2 3 4 5 6 7 8 9 10 11 

1 100 
2 97 100 
3 97 98 100 
4 96 98 99 100 
5 95 96 98 98 100 
6 94 96 97 98 99 100 
7 94 95 97 97 98 99 100 
8 93 95 96 97 98 98 99 100 
9 92 94 95 95 97 97 98 99 100 

10 92 " 93 94 94 96 96 96 98 99 100 
11 91 92 93 93 95 95 95 97 97 99 100 

main polgclinical specializations 
1 2 3 4 5 6 7 8 9 10 11 

1 100 
2 94 100 
3 90 92 100 
4 87 90 98 100 
5 79 82 90 90 100 
6-1< 70 72 79 80 89 100 -7- --72---74---82---83---86---791 100 
8 74 77 84 86 89 83 : 93 100 
9 70 72 79 80 82 76 : 88 93 100 

10 66 68 77 78 80 75 I 86 90 96 100 
11 65 66 75 77 79 72: 84 89 95 98 100 

-1< Note the curious break in the simplex by years 6 and 7 

for a slight increase in the first years (say, '56-'61), as the 

first trend shows a very strong stable level. The second trend, 

gain, shows a very steady increase, but is relatively unimportant. 
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From section 13.3 we know that we may expect such components from 

longitudinal data showing a simplex structure in the time mode. 

Table 13.2 shows the correlation matrix of the time mode, and of 

two of the variables. Thus, the answer to the first research ques­

tion is that the overall organizational structure is stable, i.e. 

the relative position of the hospitals remained unaltered, but 

there is a steady but small increase or decrease in overall level 

or size, depending on the signs of the loadings on other components 

(see e.g. Fig. 13.4). 

Some authors (Van de Geer, 1974; Lohmoller, 1981a) suggest 

that it is advantageous to rotate the components from a simplex to 

orthogonal polynomials, leading to a first component which has 

equal entries, a second component with entries increasing linearly 

over time when the time points are equidistant, and a third compo­

nent which shows a quadratric function of time, i.e. first an acce­

leration and then a deceleration, or vice versa. For the present 

data, it was attempted to rotate the time mode to such a matrix of 

orthogonal polynomials, but the rotation matrix was practically an 

identity matrix (rll = .9996; r 12 = r 2l = .0294; r 22 = .9996). Not 

surprisingly, it only transferred a very small amount of the growth 

in overall level from the first component to the second component. 

We will, therefore, continue to use the unrotated time components. 

To answer the second research question a decomposition in 

terms of components alone does not suffice, and the core matrix 

must be inspected as well. First of all, Table 13.3 confirms the 

answer to the first research question. The combination of the first 

components of all three modes (general hospitals, size, and level), 

clll ' explains most of the fitted variation [SS(Fit) due to c ll1 )/ 

SS(Fit overall) = .49/.56 = .88; see section 6.9]. The gain in size 

of the general hospitals, c1l2 ' is negligible over and above the 

increase already contained in the level component. 

The second important combination (c221=53) indicates that the 

specialized hospital also maintain their overall level of speciali­

zation. There is a slight tendency (c222 = -5) to become less spe­

cialized, and to grow in overall size (c212 = 10). Similarly the 

large general hospitals tend to become somewhat less specialized 

(c221= -7). The standardized contributions to the SS(Fit) show that 

these effects are very small, leading to the conclusion that the 
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specialized hospitals do not have a very different growth pattern 

fromtnat of the other hospitals. 

Tallle 13.3 Hospital study: core matrix 

raw core matrix 

general hospitals specialized hospitals 

degree of degree of 
size speciali- size speciali-

zation zation 

level 150 1 level -1 53 
gain 2 -7 gain 10 -5 

standardized contribution* 
to the fitted sum of squares 

level .49 .000 level .000 .06 
gain .000 .001 gain .002 .000 

The standardized contribution of a core element c is pqr 
c2 /SS(Total). SS(Total) = 45496 pqr 

A more detailed inspection of the time mode is given in Fig. 13.4, 

where the elements of the extended core matrix with years as un­

reduced third mode of a TUCKALS2 analysis on the same data (hospi­

talXvariablesXyears as first, second, and third mode respectively) 

have been plotted against time. The patterns are, of course, in 

accordance with the TUCKALS3 analysis, but the development of the 

relations between the hospital and variable components over time is 

shown more explicitly. 

13.5 INTERPRETATION IN TERMS OF AUTOREGRESSIVE PROCESSES 

'Estimation' of change phenomena and methods of analysis. When 

'estimating' the values of the parameters in autoregressive proces­

ses a difference must be made between the 'estimators' derived from 
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Fig. 13.4 Hospital study: Trends for prototype-latent variable 
combinations (based on extended core matrix) 

the classical Tucker approach, and those from the alternating least 

squares (ALS) approach to solving the three-mode model (see Chapter 

4 for a discussion of the two approaches). In the former approach 

the eigenvalues reported for each of the modes are based on the 

cross-products of the raw data, while in the latter approach the 

eigenvalues belong to the data, which have been simultaneously 

reduced over the two other modes. This implies that in the Tucker 

approach the amount of variation accounted for by each mode can be 

different, and larger than the amount of variation accounted for by 

the simultaneous ALS approach. In the latter case the amount of 

variation accounted for is more or less the intersection of those 

of the three modes of the Tucker approach (see also the discussion 

in section 4.5). As argued in section 3.6 the ALS approach seems 

more appropriate, exactly because a precise amount of variation can 

be ascribed to the 'three-mode solution. 
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As Lohmoller 0978, 1981a) uses the Tucker method, his de­

tailed estimation equations and his tables should be used with some 

~aution when employing the outcomes from an ALS analysis. Of cour­

se, when the differences are small no real problems arise. At first 

glance it seems best to inspect, for instance, the correlation 

matrices based on the reconstructed data estimated from the model 

rather than the raw score correlation matrices themselves, because 

it is on the model part of the data that the substantive conclu­

sions are based, but this approach has not yet been investigated. 

Here we will only derive rough and ready indications of some para­

meters of the multivariate autoregressive models, and not rely on 

the details of Lohmoller's studies. 

Checking the order of autoregressive process. Before attempt­

ing to estimate the parameters of an autoregressive process it 

should be established whether it is reasonable to postulate such a 

process for the data, and if so, whether it is of the right order. 

There seem to be a number of ways to do this. 

Firs t, check whether the time mode is a simplex, as we know 

that autoregressive processes generate simplexes. Formal methods 

are referenced in Morrison (1976; section 9.11). Inspection of the 

hospital data shows the correlation matrix to be a simplex (see 

Fig. 13.3), moreover the points in time (years) are equidistant. 

Secondly, perform a multiple regression of zk for the data at 

time k on zk-1' zk-2' ... (zk is the (~mx1) vector of for the k-th 

occasion). When the autoregressive process is a first-order one, 

only zk_1 should have a sizeable regression weight. Although ordi­

nary least squares estimation will lead to incorrect standard 

errors for the estimators of the regression weights, they are in 

general unbiased (see e.g. Visser, 1982, p. 71). Table 13.4 shows 

the standardized regression weights, and the hospital data seem to 

follow at least a second-order autoregressive process with a domi­

nant first order. This implies, that, for instance, the lag-one 

correlations will underestimate the overall stability of the pro-

cess. 

Combining the above information, the assumption of a second­

order autoregressive process with a rather strong first-order seems 
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plausible. However, as pointed out in section 13.3, Lohmoller' s 

procedures were only developed for first-order autoregressive 

processes, because higher-order autoregressive processes turned out 

to be unmanagable. For illustration's sake, we will follow him in 

his proposal and continue as if the process is first-order. In 

other words, we pretend that the autoregressive process is a first­

order one, keeping in mind this is only an approximation. 

Table 13.4 Hospital study: Standardized regression weights for 
predicting an occassion from earlier occasions 

t t-l t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t-10 

2 96 
3 79 19 
4 85 14 
5 75 14 7 
6 87 10 
7 63 19 10 
8 70 16 8 5 
9 75 13 12 2 

10 76 15 4 4 
11 75 11 8 

-all values have been multiplied by 100. 
-analyses were performed with BMDPIR; Dixon, 1981. 
-standard F-to-enter of 4.00 was used, and a tolerance of .01. 

Assessment of change phenomena in the Hospital study. In this 

subsection we will apply Lohmoller's proposals for assessing change 

phenomena to the hospital study. In order to remain compatible with 

his discussion, we will use the results from the jk-normalized data 

(i.e. normalized per variable on each occasion), instead of those 

from the j-normalized data (i.e. normalized per variable over all 

occasions together). None of the substantive results reached so far 

are seriously affected; the relatively minor differences are caused 

by the small differences in means of the variables between the 

eleven years of the study. Of course, this will not be so in all 

data sets. Our major tool will be the latent covariation matrix, 

discussed in section 13.3. 

The overall stability of the variable domain, ~, may be asses­

sed in two different ways. First, Lohmoller gives tables to link 



308 13.5 

the overall stability to the eigenvalues of the first two compo­

nents from the time mode. With these tables the overall stability 

is estimated between .85 and .95. This estimate may be compared 

with the correlations between adjacent occasions (i.e. rk,k-l of 

the lnxn) correlation matrix R of the time mode). The comparison of 

the lag-one correlations in Table 13.2 shows good agreement. In ad­

dition, it should be observed that the lag-one correlations do not 

vary much. This leads us to accept the assumption that $ is inde­

pendent of time, and that by and large the hospitals maintain their 

overall rank order on the variables over the years. 

With a high overall stability the variable components should 

be very stable as well. 

infer from sll,ll = 1.71, 

tion matrix (Table 13.5A) 

Following Lohmoller's guidelines we may 

and s21 21 = 1.70 of the latent covaria-, 
that both latent variables are equally 

stable and trait-like. One may seek confirmation for this by in­

specting the cross-lag correlations for representative variables 

(see Table 13.2). Taking the variable beds as indicator for size, 

the stability is obvious j taking the variable main polyclinical 

special~zations to indicate degree of specialization, the stability 

is still clearly visible but rather irregular between year 6 and 8. 

The cause of the latter is a matter for separate investigation. 

The zero value of the covariation between size and degree of 

specialization for level, s21 11' indicates that no cross-lag co­

variations exist between the' latent variables (<jl I = 0, Ph> '), pp 
i.e.~ is diagonal. 

The interaction between level and gain of the two latent 

variables (s22,11~Oj s21,12~O) shows that the set of variables is 

not stationary. There is a negative covariation between level of 

size and gain in degree of specialization (s22 11=-2.57), thus , 
hospi tals which are large through the years tend to lose, or at 

least not gain in degree of specialization, and vice versa. Fur­

thermore, there is a positive covariation between gain in size and 

level of degree of specialization (s21 12 = 1.57) very specialized , 
hospitals tend to become larger, and vice versa. 

The importance of the deviations from stationarity are, how­

ever, relatively small; This can be assessed from the direction 

cosines between the combination components as explained in section 
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Table 13.5 Hospital study: component covariation matrix 

A. Lohmoller scaling degree of specia-
size (01) lization (!12) 
level gain level gain 

level 1. 71 0.01 .00 -2.57 
size 

gain 0.01 1.44 1.57 -0.10 

degree level .00 1.57 1. 70 -0.09 
of specia-
lization gain -2.57 -0.10 -0.09 3.86 

B. standardized degree of specia-
size (~h ) lization (!}z) 
level gain level gain 

level .50 .00 .00 - .02 
size 

gain .00 .00 .01 .00 

degree level .00 .01 .06 .00 
of specia-
lization gain .02 .00 .00 .00 

c. Labelling of elements 
degree of specia-

size (1) lization (2) 

level(l) gain(2) level(1) gain(2) 

level(l) s11,11 sl1,12 sl1,21 sl1 ,22 
size(1) gain(2) s12,11 5 12 ,12 s12,21 s12,22 

degree of level(1) s21,11 s21,12 s21,21 s21,22 
speciali-
zation (2) gain(2) 5 22 ,11 s22,12 s22,21 s22,22 

13.3. From Table 13.SB it follows that the direction cosine between 

level of size and gain in degree of specialization is -0.02 (a=91 o), 

and the direction cosine between level of degree of speciali±tion 

and gain in size is 0.01 (a=890 ). In other words, the deviations 

from stationarity do not succeed in introducing substantial non­

orthogonalities between the combination components. 
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These small direction cosines may seem strange, when consider­

ing the sizes of the elements in Table 13.SA. It should, however, 

oe realized that the Bartussek (1973) scaling of the latent cova­

riation ma~rix has eleminated the dependency of the elements on the 

importance of the components they refer to (see also section 6.9). 

ThlS means that all components are treated on the same level, which 

was done partly to fit in with the assumption that all latent 

variables were normalized per occasion. This presentation has some 

advantage in highlighting the interactions, but at the same time 

gives a rather incorrect impression of their sizes. 

13.6 CONCLUSION 

The following (methodological) conclusions can be drawn from 

the application of three-mode principal component analysis of mul­

tivariate longitudinal data. 

Insight in growth and developmental processes in multivariate 

longitudinal data can be acquired by inspecting relationships 

between the components of the three modes: observational units, 

variables, and occasions. A detailed analysis of the latent cova­

riation matrix can supply information on differential growth pat­

terns if they exist, and the extended core matrix can help to 

inspect the changes in the interrelationships between the compo­

nents over time. In fact, the entries in the extended core matrix 

can be seen as the scores of observational units on combination 

components of the latent variables and trends. A further level of 

detail could be introduced by using the extended core matrix to 

obtain scores on the latent variables for the observational units 

at each point in time, and by plotting these scores against time, 

but this suggestion is not pursued here. 

A description of data in terms of an autoregressive model has 

been shown to be acceptable for certain data sets, but first-order 

processes might be difficult to find. Our example and most of 

Lohmoller's needed a second-order term. Furthermore, the theory is 

still very much underdeveloped; only in specific cases detailed 

statements are possible, and the proper usage of the proposals in 
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three-mode principal components analysis based on alternating least 

squares methods has not yet been worked out. Nevertheless certain 

rough results can be obtained which add to the interpretation. At 

present the most useful aspect is the interpretational framework 

that an autoregressive model can provide for three-mode analysis of 

multivariate longitudinal data. 
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14.1 INTRODUCTION 

In this chapter we will discuss the three-mode analysis of 

growth curves. Various proposals to deal with growth curves (re­

ference, learning, or response curves) have been made. Either the 

exact form of the curve is of interest, or the differences in 

parameters to describe these curves in different sub-populations 

which are central to an investigation, or both. For instance, Snee, 

Acuff, & Gibson (1979) discuss a series of models to deal with 

univariate growth curves in several populations using Mandel t s 

(1971) proposals. The essence of these proposals, as discussed in 

section 6.4, is that they consist of an additive main effect model 

with multiplicative interactions. 

The growth curve proper can be analysed by postulating a 

functional model, and fitting it to the data. After fitting the 

curves, an analysis-of-variance procedure on the parameters can be 

used to assess differences between groups, a procedure already 

proposed by Wishart (1938). For the data to be described logistic 

regression models (Le. regression models with a binary counted 

variable as response variable) with time as independent variable 

and slope and intercept as parameters can be fitted to the indivi­

dual learning curves (Jansen & Bus, 1982); we will relate some of 

their results to the outcome of the three-mode analysis. 

The analysis performed here can best be seen as a multivariate 

generalization of the growth (learning) curve approach tackled by 

Tucker (1958, 1966b and Weitzman, 1963). They performed a singular 

value decomposition (see section 2.2) on the observed raw data. 

Applications of this approach can, for instance, be found in Kouwer 

& Hartong (1961), Van Egeren, Headrick, & Hein (1972), McCall, 
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Appelbaum, & Hogarty (1973), Hamel & Netelenbos (1976), Svendsr~d & 
Ursin (1974). Van de Geer (1962) showed how orthogonal polynomials 

can be used instead of singular value decomposition, and Van Maa­

nen-Feijen (1968) gives a theoretical and empirical comparison 

between the latter two approaches. That three-mode principal com­

ponent analysis is a generalization of this approach to learning 

curves, follows from the observation that the technique is a gene­

ralization of singular value decomposition. 

14.2 DATA AND PREPROCESSING 

In a study to investigate the process of learning to read 

seven first-grade children were tested weekly (except for holidays) 

with five different tests (see Table 14.1 for a description), which 

were designed to measure different aspects of reading ability. We 

will not discuss the theoretical rationale behind the test the 

details of the design, the testing procedures, and the overall 

quality of the data (see Bus, 1982, Jansen & Bus, 1982, and Bus & 
Kroonenberg, 1982). Of the seven children which took the tests, 

one is not included in the present analysis, as he was added to the 

study at a later moment, and accounted for a large part of the 

missing data. 

Table 14.1 Learning to read studg: Description of tests 

Test Description 

P regular orthographic short words 
Q regular orthographic long words 
R irregular orthographic long and short words 
S regular orthographic long and short words 

within context 
L letter knowledge test 

Because the tests had different ranges, either 10, 15 or 47 

items, the data were rescaled so that all the tests ranged from 0 

to 1. In this way all the differences in variation were maintained 

in the data, while making the tests comparable. Subsequently we 
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constructed t.he average learning curve by averaging over pupils 

and tests for each occasion. Thus, in effect, we will use a mixed 

a.dditive and multiplicative model for the data (see section 6.4 for 

a discussion of such models) analysing the common part of the 

learning curve addi tively, 

tively: 

and the residuals, g. 'k' multiplica-
1.J 

(i=l, ... ,.£;j=l, ... m;k=l, ... n) 

stu 
= ~ + Yk + L L L g. h. e k c 

p=l q=l r=l 1.p Jq r pqr' 

with ~ the overall average, and Y the occasion main effect with the 

restriction LYk = O. 

for Y = Z - Z k .. k ... 
of linear models. Thus 

j=l, ... ,m;k=l, ... ,n). 

The least squares estimates for ~ =z and 

(k=l, ... ,n) according to the standard theory 

the residuals g"k = z"k - Z k (i=l, ... ,.£; 
1.J 1.J .. 

An advantage of the above model is that the (cor)relations 

between pupils and tests are no longer influenced by the average 

growth curve, and the interactions between tests and pupils over 

time can be analysed separately. Of course, averaging and inter­

preting the average growth curve is only meaningful if the indi­

vidual curves more or less resemble one another (see e.g. Tucker, 

1966b, p.480-483, and the references therein for a discussion of 

problems around average learning curves). Furthermore, averaging 

over tests is only meaningful if all tests measure essentially the 

same variable to a different extent. In the present case this is 

not unreasonable considering the high intercorrelations (average = 

o. 88; taken over all time-pupil combinations). 

A study by Jansen & Bus (1982) on the same data suggests that 

per test a logistic regression model with the same slope for all 

individuals is not an unreasonable model. The slopes are, however, 

different across tests. This implies that the average learning 

curve, ~ + "lIk (k=l, ... ,n) does not necessarily represent anyone 

test in particular. Nevertheless, it serves as a baseline for 

comparisons between tests and pupils. 
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Removing only the time main effect has the advantage that the 

difference in complexity between tests, and differences in reading 

ability between pupils remain in the analysis of the interactions. 

One could, of course, remove the pupil and test main effects as 

well, and analyse the remaining residual with three-mode principal 

component analysis, but this course is not pursued here. 

14.3 AVERAGE LEARNING CURVE 

In Fig. 14.1 the z .. k (k=l, ... ,n) have been plotted against k 

(time) to give a general impression of the shape of the learning 

curves. There is a rapid increase in the test scores until about 

week 16, and a gradual growth until the ceiling of one, i.e. all 

... 10 

.... 

.., 
a: 8 
0= 
U 
en .., ... 
ell: 6 a: .., 
> 
ell: 

4 

2 

O+---~-----.----r----.----,----,-----r----r----.---
o 4 8 12 16 20 24 28 30 36 

WEEKS 

Fig. 14.1 Learning-to-read study: average learning curve 

items of the tests correct. The actual process of learning-to-read 

thus roughly takes place in roughly those first 16 weeks; the later 

weeks are used to perfect the reading of the better pupils, and 

remedy that of the weaker ones. 
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i4.~ GEi{ERA~ ClUUtACTERISTICS OF THE SOLUTION 

~'jie pEi.mary research questions in this study were centred 

aiOUnG questions like: Was the performance of the pupils uniform 

over tests, did the tests cause uniform differentiation between 

pupils, VJ.: were certain pupils better on some tests, while others 

wet"", bet-eer on other tests? 

To answer these questions we will have to look at joint plots 

(see section 2.4, and 6.10) of the pupils and the tests. Before we 

can do this it is necessary to investigate how many dimensions are 

necessary for each of the three modes. At least two are needed for 

the pupils and the tests each (see Table 14.2). The table also 

shows that for occasions one component is sufficient, especially if 

one remembers that the most important source of variation (Le. due 

to the average learning curve) has already been removed. Thus the 

Table 14.2 Learning-to-read study: proportions explained 
var.iation 

mode 

1 pupils 
2 tests 
3 occasions 

proportion explained variation 
of components 

1 2 

.44 

.43 

.70 

.33 

.34 

.07 

first time component already explains about 70% of the interac­

tions. Fig. 14.2 shows the curves of the first and second compo­

nents (scaled according to their relative weight). The second 

component seems to exhibit little (interesting) variation, and we 

will, therefore, not discuss it further. 

The first component has a nearly perfect rank correlation with 

the variation per occasion measured by the fitted sum of squares. 

In other words, high loadings correspond to large differences be­

tween 'tests and/or pupils (the individual curves show that both is 

the case), and small loadings to small differences. From Fig. 14.2 

we may conclude that in the first 12 weeks large differential 

growth exists between pupils on the tests and that the differences 
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.2 

.1 

Fig. 14.2 Learning-to-read studg: Trends 
C* = first trend; • = second trend) 

have largely disappeared at the end of the schoolyear. Inspection 

of the individual curves and observations in the classroom show 

that the decreasing differences are largely a ceiling effect, in 

other words, that further progress was impossible to measure with 

these tests as the better (quicker) pupils already obtained maximum 

scores on one or more tests. 

14.5 ANALYSIS OF INTERACTIONS 

With respect to the interactions between the tests and pupils, 

the foregoing shows that we only need to look at their interrela­

tionships in the first core plane of a TUCKALS3 analysis (see Table 

14.3), which shows the combinations of the components of tests and 

pupils responsible for the differential growth curves. The severe 

non-diagonality of this plane suggests that the relationships are 
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radl~r complex. However, rhe near equality of the absolute values 

ol.:he oli-aiagonal elements shows that the two sets of axes (0£ 

~CS':';;;, alia of pupils) are rotated with respect to one another over 

an angLe of approximat:ely 45 0 (see note of Table 14.3 and section 

0.9). 

Table 14.3 Learning-to-read study: relationships between 
test and pupil components 

first frontal plane of Tuckers3 core matrix 

pupil 
components 

1 
2 

test 
components 

17.3 
11.2 

-11.4 
14.7 

proportion ex­
plained variation 

.27 

.12 
.12 
.70 

sum .70 

Note: direction cosine between pupil and test comgonents 
cos a = 11.2/ ~ 17.3 x 14.7 = .70 7 a ~ 45 . 

In the joint plot corresponding with the first TUCKALS3 core 

plane (Fig. 14.3) the approximate positions of the original axes 

are drawn. How may we interpret Fig. 14.3 as far as the interac­

tions of tests and pupils is concerned, or how do the combinations 

of components contribute to the differential growth? The inter­

pretation is simplest when we take the component axes of the tests 

as reference. On the first axis we find a large differentiation 

between the tests, but not between pupils. In other words, the 

first test axis shows that all pupils have a positive differential 

growth (i.e. have curves above the average learning curve, see Fig. 

14.1) for tests with positive loadings on this component (S,P,L), 

and a negative differential growth (i.e. curves below the average 

learning curve) for tests which have negative loadings there (R,Q). 

Thus, for all pupils with only minor deviations, S,P,L,Q,R are 

ordered from simple to difficult. 

On the second test axis the situation is exactly reversed. 

There the tests have about equal loadings, but there are large 

differences between pupils. Pupil 4 is best on all tests followed 
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Fig. 14.3 Learning-to-read studg: Joint plot for tests and pupils 

by 5, 6, 1, 2 & 3. We see that 4 and 5 show positive differential 

growth on virtually all tests, while 6 lies more or less on the 

average curve for all tests, and 1, 2, and 3 show a negative diffe­

rential growth on all tests. The slight variation in the loadings 

of the tests on this axis indicates that the spacing of the pupils 

is not exactly the same on all tests, but only approximately so. In 

particular, Q and L are somewhat different from the other tests. 

In summary, there seems to be more or less independence of the 

differential growth due to differences in tests, and the differen­

tial growth due to differences in pupils. In other words, a test is 

easy or difficult for all pupils, and a pupil is better or worse 

than another pupil on all tests. This independence is nicely con-
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Il.rlIied oy Table 4 of Jansen & Bus (1982), which shows the estimated 
> (~) pOl.nl.s on Lile time a~as, t ij , at which a performance level of .50 

lio! the range 0-1) 1S reached. The estimates are based on logistic 

regreSSl.on curves fitted to the scores of each pupil on each test 

{except f0r ... , which was not included in their study). In Table 

14.':' W<:: have :reproduced her table in rearranged form, as well as 

tne 

Table 14.4 Learning-to-read studg: estimated half-wag scores 
(in \-leeks) 

residuals from 
two-way main 
effects model 

tests I row tests 
pupils S P Q R I mean effect S P Q 

4 4 4 2 15 6 -11 3 2 -2 
5 9 11 12 24 14 - 3 6 1 0 
6 12 12 19 27 18 + 1 -1 -2 3 
1 14 15 19 28 19 + 2 0 1 2 
3 14 17 24 33 22 + 5 -3 -1 4 
1. 

I 16 il 23 34 23 + 6 0 -2 2 I 
mean I 12 13 15 27 17 

column 
effect -5 -4 -2 +10 

R 

-1 
0 

-1 
-1 

1 
1 

residuals r~~) after we have fitted a two-way main effect model to 

these half-~;y scores t~~): 
1J 

r~~) = t~~) - t(~) - (t(~) - t(~)) - (t~~) - t(~)), 
1J 1J .J.. 1. 

(~) with t.. the time at which pupil i scores .50 on test j; the ". II 
1J 

indicates averaging over the index it replaces. The residuals do 

not seem to behave in a systematic way except that Q has maybe to? 

many positive scores, confirming the slightly different behaviour 

of Q which we noted above. From the lack of pattern in the resi­

duals we may therefore conclude that no interactions exist between 

pupils and tests with respect to the half-way scores. 
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14.6 CONCLUSION 

In conclusion we may say that the difference in the scores of 

the pupils and the tests can be ascribed to two more or less inde­

pendent factors: the varying degrees of difficulty of the tests, 

and the differences in ability of the pupils. Furthermore, the re­

lationships between tests and pupils are time-independent, and the 

time aspect is contained in the loadings of the first time component. 

In other words, the structural relationships are invariant over 

time. 

On a methodological level the example shows how three-mode 

principal component analysis can be used to analyse learning cur­

ves. It also gives a demonstration of the use of mixed additive and 

mul tiplicative models. Finally, the individual curve fitting as 

performed by Jansen & Bus (1982) and the three-mode analysis pre­

sented here, as well as a similar three-mode analysis by Bus & 

Kroonenberg (1982) nicely supplement each other. A more precise 

statement about the ways the two techniques can be used in con­

junction requires another study. 
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15.1 INTRODUCTION 

Contingency tables turn up in many research projects in many 

contexts, and there exists an extensive collection of techniques 

for their analysis. Especially in recent years the development of 

loglinear models for contingency table analysis has enabled re­

searchers to make more detailed statements about association in 

mUlti-way tables than just reporting descriptive levels of signi­

ficance or p-levels. Notwithstanding, or because of, the refined 

machinery connected with loglinear models there are serious pro­

blems with their application to large tables, and/or to higher 

dimensional tables. These problems centre around (1) the null 

distribution and power of test statistic when the numbers of ob­

servations per cell is low, (2) the difficulty of interpreting the 

interaction terms when there are very many of them (as is the case 

with large tables), and (3) the complexity of interpreting high­

order interaction terms, especially if there are a lot of observa­

tions. 

Here we will specifically pay attention to interactions of 

large three-way contingency tables. 

15.2 LOGLINEAR MODELS, INTERACTIONS, AND CHI-TERMS 

A saturated model for two-way contingency tables is a model 

which completely accounts for the data by specifying all effects 

and interactions. It has the form 

log f ij = £++ + (Qi+ - £++) + (£+j - £++) + log r ij , 

(i=I, ... ,£;j=I, ... ,m) 
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with f .. the observed cell count; Q._ = log f .. ; r .. is the residu-
1J· ] J 1J 1J 

al and the "+" indicates summation over the index it replaces. 

Using Bishop, Fienberg & Holland's (1975) notation, this can be 

written as: 

There are two main effect vectors u l and u2 ' and one two-way inter­

action matrix u12 . The formula for a non-saturated model has a 

combination of one or more of these terms on the right hand side. 

The most common model for a two-way table is the model of indepen­

dence between rows and columns: 

log eij = u + ul(i) + u2 (j). 

This model may be tested against the data by assessing the size of 

the residuals r .. = f .. -e .. via Pearson's X2-test, 
1J 1J 1J 

X2= L (f..-e .. )2/e .. , 
1J 1J 1J 

or the -2Ioglikelihoodratio, 

LR= -2f. .log(f. ./e .. ). 
1J 1J 1J 

The values of the test statistics are evaluated against percentage 

points of the X2-distribution with (Q-l)(m-l) degrees of freedom. 

Given non-independence, one can inspect the residuals for specific 

patterns. While these patterns are easily visible in small tables, 

visually analysing more or less subtle relationships from a large 

table can become too difficult. In addition, the residuals them­

selves suffer from differences in size due to original differences 

in size of the frequencies, and for comparing the residuals it is 

more appropriate to standardize them in some way. One obvious way 

is to use standardized residuals or as we, somewhat inappropriate­

ly, will call them chi-terms: 

- ~ X .. - (f. .-e .. )/e ... 
1J 1J 1J 1J 

A more subtle kind of standardization leads to Haberman's adjusted 

residuals (Haberman, 1976). Here we will deal exclusively with the 

chi-terms, or X ... 
1J 

When confronted with a two-way contingency table a reasonable 

procedure for analysis can be summarized as follows: 
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a) construct a model; 

b) test for appropriateness of the model (optional); 

c) interpret the terms of the model; 

d) compute the chi-terms; 

ej analyse the chi-terms for specific patterns. 

For three-way tables Lhe procedure is essentially t.he same, but the 

situation is more complex as there are now three main effects, 

three two-way interactions and one three-way interaction: 

log f ijk = u+ul(i)+u2(j)+u3(k)+uI2(ij)+u13(ik)+u23(jktuI23(ijk). 

Again a model consists of a subset of terms from the right hand 

side. A simple model is the three-Illag independence model consisting 

of u, uI' u2 , and u3 . In this case we obtain the chi-terms: 

x .. 
1J 

Looking a-t these chi -terms or standardized residuals implies in­

specting all two-way and three-way interactions simultaneously. One 

can also use the chi-terms from other loglinear models ~"hich in­

clude more u-terms, and we will de so in our example. 

15.3 CORRESPONDENCE ANALYSIS FOR CONTINGENCY TABLES 

In this section we will first give a short summary of corres­

pondence analysis of two-way contingency tables, and then show how 

it can be generalized to three-way tables. Further extensions to 

higher-way tables are possible but will not be discussed here. 

Two-wag tables. The aim of correspondence analysis (Benzecri, 

1976; Gifi, 1981, Ch. 3) for two-way contingency tables is to 

quantify or scale the column and row categories in such a way that 

the nature of the interaction both within and between rows and 

columns becomes directly visible, for example via a combined plot 
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of the row and column categories. The way to arrive at such a 

combined plot is via the singular value decomposition G A H', (see 
!" 

section 2.2), of the matrix X with chi-terms (X .. = Cf .. -e .. )/e~.). 
~J ~J ~J ~J 

This procedure has close links with the joint plots considered in 

section 6.10. The columns of G are the quantifications (or sca­

lings) of the rows, and columns of H are the quantifications of the 

columns of the table. The combined configuration may be interpreted 

as follows (see e.g. Israels, et al., 1981): 

a. the origin represents the marginal distributions for both rows 

and columns, and thus has the same meaning for both, i.e. it 

is the centre of gravity for each row (column); 

b. the distance of a row (column) point to the origin shows to 

what extent the distribution within that row (column) deviates 

from the marginal distribution. Thus the origin is the point 

indicating independence between the row and column variables; 

c. the direction emanating from the origin indicates the kind of 

deviation; 'when row (column) categories are close together 

their conditional distributions resemble each other; 

d. when rows and columns deviate in opposite directions they are 

negatively related; 

e. the size of the deviation from independence is indicated by 

the distance from the origin. 

Central to these interpretations are the ideas of distance, 

direction, and the role of the centre of the configuration. For 

instance, Gifi (1981, p. 134-137) gives precise definitions of the 

distances both in terms of deviations from the marginal propor­

tions, and in terms of "X2-distances" between rows (columns) of the 

contingency table. The role of the origin, as the point represen­

ting the marginal distributions and as the point indicating inde­

pendence, can be seen directly from the fact that the analysis is 

performed on the matrix of chi-terms rather than on the original 

frequencies. 

Three-wag tables. The generalization to three-way tables is 

based on the observation in section 2.2 that three-mode principal 
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component analysis is a generalization of singular value decomposi­

tion. A Lhree-mode principal component analysis on a matrix of 

chi-terms aer1ved from some three-way contingency table is, there­

tore, a ~nree-way analogon of correspondence analysis, as was 

p01liteti OUL by De Leeuw (1981, pers. comm.). Another kind of appli­

ca1:ioll vi: mUiti-moae models to contingency tables can be found in 

Carroll (1975), Green, Carmone, & Wachspress (1976), Carroll, 

Pruzansky, & Green (1977). They used the CANDECOMP procedure (Car­

roll & Chang, 1970; see also section 3.3) to estimate the parame­

ters of Lazarsfeld's latent class model (Lazarsfeld & Henry, 1968). 

In Carroll et al. (1977) it was shown that their procedure is also 

a generalization of correspondence analysis. 

It is possible to make another fruitful generalization within 

the context of correspondence analysis to three-way tables. One may 

analyse a table of chi-terms not only from an independence model, 

but from any model. Deviations from the origin are then interpreted 

as deviations from this model. 

It is not the intention to develop the mathematics of this 

proposal. Inst.ead, we will show via an example of the voting be­

havlOur 1n i.eiden ~t.he Netherlands) during three elections how the 

procedure works. 

15.4 LEIDEN ELECTORATE STUDY: DATA 

In the Netherlands there are three kinds of elections: natio­

nal, provincial and municipal, which follow each other mostly at 

irregular intervals. Although different issues play different roles 

in these elections, each has a national overtone. Popularity and 

impopularity of political parties at the national level invariably 

have their impact on the local elections, and on the other hand, 

results from local elections are seen as a measure for the popula­

rity of parties on the national level. 

The data for the present study consist of the results for the 

wards of Leiden in these three different kinds of elections: the 

1981 national parliamentary elections, the March 1982 provincial 

elections, and the June 1982 municipal elections. Data are avail-
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able for the 58 wards or precincts of the city and 9 parties or 

combinations of parties who participated in all 3 elections. Van 

der Heijden (1982) analysed the first two elections (with 10 rather 

then 9 parties) using correspondence analysis as implemented in 

ANACOR (Gifi, 1981 (Ch.3), 1982). In particular, he performed 

regular correspondence analysis on the three-way table by rearrang­

ing the table as an (58+58)xlO table, a 58x (10+10) table, and an 

(incomplete) (58+10+2)x(58+10+2) bi-marginal table. See also Gifi 

(1981, section 4.4.4) for similar correspondence analyses on three-

way tables. Here we will analyse the 58X9x2 table in its three-way 

form. The three zero cells of the 1982 municipal elections were set 

equal to one to facilitate comparison with other analyses. 

15.5 LOGLINEAR ANALYSIS 

Before embarking on a three-mode correspondence analysis, it 

is useful to investigate first a three-way contingency table with 

loglinear models. This kind of analysis gives insight in the rele­

vance of the various interactions present in the data, and makes it 

possible to decide which interactions should be investigated fur­

ther. 

Only those models are appropriate or permissible for the Lei­

den electorate data which include the ward, election, and ward x 

election effects, as their marginal distributions are fixed by the 

design (see e.g. Fienberg, 1980, p.95,96 for a discussion of mar­

gins fixed by the design), as the size of the wards and the total 

number of eligible voters in each election are known a priori. As, 

in addition, the sizes of the wards in each election were almost 

the same, the variables ward and election are independent as well. 

According to Theorem 2.4-1 of Bishop, Fienberg & Holland (1975, 

p.39; see also Fienberg, 1980, p.49) this implies (together with 

the negligeable three-way interaction; see below) that we may 

collapse either over wards to investigate the partyXelection inter­

action, or over elections to investigate the partyXward interac­

tion. In other words, inspecting and interpreting these two-dimen­

sional margins is all that is necessary for these data, possibly 
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with a quick look at the three-way interaction to make sure every­

thing is in order there. 

All possible models were generated by BMDP4F (Dixon, 1981, 

p.143ff), and for each the -210g1ikelihood ratio statistic with the 

appropriate degrees of freedom was determined. In Fig. 15.1 we have 

summarized the results of all possible hierarchical models, and in 

Table 15.1 we have given some details for the permissible models. 

major 
effects 

250 eE 246 E 

II: \\On}: 228 W ... 
N W+E 

I 

200 

15°1 
100, 

P 
ep+E ~~PI 

50 
P+WE*- ~+\~PE 46PE 

P+W+E 

PE+WE* eW+PE ~28P1'. pw+WEl} ~+E 18 PW 

0 PWE P .PW+PE 1 PW+i'E 
0 500 1000 1500 OF o PWE 

l}permissible model 

• other model 

Fig. 15.1 Leiden electorate study: Fit of loglinear model 

The huge values of the test statistic ensure the significance of 

each and every model, i. e. no model fits the data well. With a 

total of roughly 232 thousand observations and 1566 cells this is 

hardly surprising. The large number of observations even ensures 

that uninteresting small differences between models lead to signi­

ficant test results, especially between the levels indicated in 
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Table 15.1 Leiden electorate study: permissible loglinear models 

-2 loglike 

models 
degrees lihood ra-

of tio (in 
freedom thousands) 

W+E 1480 228 
WE 1368 228 
P+WE l360 45 Model I (three-way independence) 
PE+WE l344 28 Model II (PW+PWE interactions) 
PW+WE 912 19 Model II (PE+PWE interactions) 
PW+PE+WE 896 1 (PWE interaction) 
PWE 0 0 saturated model 

Note: The models are designated by the highest order interactions 
present. Implicit in the notation is the inclusion of the 
hierarchical lower-order interactions, e.g. WE indicates the 
model W + E + WE. 

Fig.ls.l. In other words testing is an uninteresting, but especial­

ly unnecessary exercise in this case. What is interesting, is the 

relative magnitudes of the -2loglikelihood ratios themselves. 

Fig. 15.1 shows that the major effects are party, partyxward, 

and partyxelection. It also shows that the three-way interaction 

can be neglected, i.e. set to zero, for most practical purposes. In 

other words, we may here assume that the three-way interaction re­

flects random variation. After all, it takes 896 degrees of freedom 

to reduce the test statistic from 1264 to zero, when going from the 

model including all two-way interactions to the model which also 

includes the three-way interactions, i.e. the saturated model. 

Inspecting the wardXparty (s8x9) two-dimensional margin is 

clearly something that cannot be done properly without an adequate 

graphical represention. In fact an ordinary two-way correspondence 

analysis on the partyxward margin is already sufficient (see Van 

der Heijden, 1982). A visual inspection of a table of the partyX 

election interaction is, on the other hand, quite feasible as 

Table 15.2 shows. The most salient features are the decline of the 

PvdA (and the CDA and D'66 to a lesser extent), the relative sta­

bili ty of the VVD, and the other smaller parties, and the 150% 
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Table 15.2 

party 

PvdA 
CDA 
VVD 
Abstentions 
D'66 
Small left 
Small right 
Invalid 
Soc. Party 

15.5 

Leiden elec~Qrate 6tudg: Model III: partgxelection 
" .. 

':'~i(:.f..:'.~··.c..:Ct:l :;.:; 

I Average number of votes 
per party over all warOs 
------_ .. _-----_ .. -. - -

Natio- Pro- Munici-
nal vincial pal 

1981 1982 1982 

404 245 250 
221 180 178 
211 207 193 
187 468 506 
146 93 55 
114 113 111 

20 21 18 
9 9 6 
8 10 26 

I standardized residuals 
4 (obs-exp)/sqrt(exp) 

-.-._-- .----- .. ---------
I N P M 

1981 1982 1982 

6.3 - 3.3 - 2.9 
2.2 - 1.0 - 1.1 
0.7 0.1 - 0.8 

-10.0 4.0 5.9 
5.0 - 0.6 - 4.4 
0.3 - 0.0 - 0.2 
0.1 0.3 0.4 
0.4 0.3 - 0.7 

- 1.7 - 1.2 2.9 

Note: small left: CPN, PSP; small right: BP, GPV, SGP 

increase in abstentions. After the provincial and municipal elec­

tions the abstainers were by far the largest party, and the S(ocia­

list) P(arty) also increased its support considerably. Furthermore, 

in absence of a sizeable three-way interaction, the conclusion may 

be drawn that the abstainers came from especially the PvdA wards. 

The great decline of the PvdA in the provincial, and the slight 

increase in the municipal elections follow the popularity of this 

party on the national level quite closely. 

For the purpose of illustrating three-mode correspondence ana­

lysis, and in order to compare its results with the loglinear re­

sults we will investigate the chi-terms (or standardized residuals) 

of a number of models via this technique. This does not imply that 

for these data all the models should be investigated in this way, 

if it was the subject matter which was of primary importance. We 

will, however, investigate the chi-terms from the models I, II, and 

III in Tabel 15.1. 

Determining an appropriate model for the data, and inspecting 

the chi-terms or standardized residuals from such a model is, by 

the way, directly analoguous to the problem of determining the 

appropriate centring for numerical data treated in detail in Chap­

ter 6. 
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15.6 MODEL III: POLITICAL ALIGNMENT OF THE CITY OF LEIDEN 

In this section we will look especially at the partyXward 

interaction. In other words, we want to find out how people in the 

various wards voted. This can be accomplished by looking at the 

partyXward margin, i.e. summed over elections (external averaging), 

or by using Model III: 

log e ijk = u + ~(i) + up(j) + ~(k) + ~(ik) + uPE(jk) , or 

with W=ward, P=party, and E=election. In this case only the partyX 

ward interaction, ~(ij)' (i.e. which parties acquire their votes 

from which wards) and the three-way interaction ~E(ijk) remain to 

be analysed via a correspondence analysis of the chi-terms. By 

looking at the joint plot from a Tucker2 analysis using the average 

4 

17 3 

Fig. 15.2 Leiden electorate study: Model III - partyxward interac­
tions (labelled by ward number) 
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core plane linternal averaging) we can display the relationships 

between Ule wards and the parties (fig. 15.2). This plot can be 

interpreted uS1ng the guiaeL1nes given in section 15.j. 

Invalid vOLes occur apparently randomly over Lhe city, and are 

theretore locaLed near tne zero point or the plot. Wards 55 and 56 

both vote predominantly VVlJ,c.he rign't-wing conservative party, 

more than the Leiden average. The inner C1ty (wards 1 through 8j 

votes more than other wards for the small left-wing parties, but, 

in addition, the VVD receives an excess of votes in ward 1, the 

PvdA in ward 3. Similarly, in a typical labour district such as 

'De Kooi' (wards 18 to 26) the labour party PvdA receives more 

votes than its marginal distribution WOUld predict. A number of 

interesting details can be discerned, but these are probably only 

meaningful for people familiar with Leiden itself, and they \.ill 

not be covered here. 

9S~~:~} 
80 90 c:,,~ 

\",(,\\COt 

110 

Fig. 15.3 Leiden electotate studg: Model III - real estate values 
and partg alliances (in thousands of guilders; aug. 1982) 
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In Fig. IS.3 the wards are labelled according to the estimated 

average value of the real estate in these wards. From this plot it 

is clear that average real estate value is a reasonable global pre­

dictor of voting behaviour, but it should be kept in mind that in 

some wards the variance of real estate values is very large. 

So far we have concentrated on the partyXward interaction, and 

have disregarded the three-way interaction on the assumption that 

it was not overly large. From the TUCKALS2 core matrix (Table IS.3) 

we are able to assess, whether this is indeed a valid assumption. 

In all elections the wardxparty relationships turn out to be vir­

tually the same, as do the relative SS(Fit) of each election, and 

thus the lack of a substantial three-way interaction is confirmed. 

Table IS.3 Leiden electorate studg: T2 core matrix for Model III 

election 

national I provincial municipal average 
(1981) (1982) (1982) 

components parties parties for: 
1 2 1 2 1 2 1 2 

1 -18 0 -17 1 -18 - 1 -18 0 
wards 

2 0 11 - 1 10 1 10 - 0 10 

Relative .78 .79 .79 Overall=.79 
SS (Fit) 

IS.7 HODEL II: DECLINE OF SUPPORT FOR THE PvdA 

As mentioned before, the partyXelection interaction can easily 

be inspected from the two-dimensional margin as we did in Table 

IS.2. For illustrative purposes, however, we very briefly report 

the analysis of chi-terms from Hodel II: 

log e ijk = u + ~(i) + up(j) + ~(k) + uwp(ij) + ~(ik)' or 

with again W=ward, P=party, and E=election. The chi-terms contain 

the two-way interaction between party and election, and the three-
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way interaction, as they are the only interactions not included in 

the model. In a TUCKALS2 analysis, the unimportance of the three­

way interaction now should follow in a TUCKALS2 analysis from the 

unidimensionality of the ward space, with all entries approximately 

equal to 1/~58 = 0.13. The real average of the first component was 

also 0.13 with a standard deviation of 0.03. All wards were within 

± 2 standard deviations from the average. The overall SS(Fit) was 

0.940, and that of the first ward component 0.933, confirming the 

uni-dimensionality of the ward space. 

Before reporting the results for the partyXelection inter­

action we will show the consequence of the uni-dimensionality of 

the ward space (G), and the equality of all gi: 

s t 
2 L g. h. C k = 

p=l q=l lP]q pq 

in other words, for each ward i we obtain the same values for the 

partyXelection interaction. Adjusted with a constant scaling factor 

these values are given in Table 15.4. 

Table 15.4 

party 

PvdA 
CDA 
VVD 
Abstentions 
D'66 
Small left 
Small right 
Invalid 
Soc. Party 

Leiden electorate studg: Model II - partgxelection 
interactions 

National Provincial tlunicipal 
1981 1982 1982 

6.3 -3.4 -2.9 
2.2 -0.9 -1.3 
0.7 0.2 -0.8 

-9.9 3.9 6.0 
5.1 -0.7 -4.4 
0.3 0.0 -0.3 
0.1 0.4 -0.5 
0.2 0.4 -0.6 

-1.7 -1.2 2.8 

Note: The values supplied by the program were divided by 2.3. 

Comparison with the standardized residuals in Table 15.2 shows that 

the two are identical. 
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15.8 MODEL I: SIMULTANEOUS ANALYSIS OF ALL NON-FIXED INTERACTIONS 

Model I is the independence model, i.e. it postulates that the 

expected values of the cell counts can be reconstructed from the 

one-dimensional margins, and all fixed margins. This results in 

independence between party and wardxelection. Model I has the form: 

log eijk = u + ~(i)+ up(j) + ~(k) + ~(ik)' or 

with W=ward, P=party, and E=election. The chi-terms for this model 

consist of the wardxparty and the partyXelection, and the three-way 

interactions. If we neglect the three-way interaction, the corres­

pondence analysis of the chi-terms allows us a simultaneous analy­

sis of the most important interactions in the data. 

Let us first inspect the party space (Fig. 15.4) independently 

of the wards and the elections, as a proper interpretation of its 

structure is crucial for the remainder. The space is dominated by 

the position of the VVD, the PvdA, and the abstentions. In other 

words these are the 'parties' with conditional distributions sub­

stantially deviating from those expected under Hodel I. From the 

previous analyses we know the party space to be a resultant of the 

partyxward and the partyXelection interactions. However, from this 

party space alone we may conclude that the VVD, PvdA, and the abs­

tentions are all negatively related and in the same way, as the an­

gles between their vectors emanating from the origin are all rough­

ly equal, i.e. 120°. In Fig. 15.4 the first component of the party 

space for Model II and Model III are drawn on the basis of a pro­

custes rotation (see e.g. Gower, 1975). 

Table 15.5 

components 
for: 

1 

wards 

2 

Leiden electorate study: TUCKALS2 core planes 

elections 

national (1981) provincial (1981) municipal 

parties 

1 2 1 2 1 

- 1 -16 -13 - 1 -16 

-17 3 - 4 -18 1 

(1982) 

2 

- 1 

- 9 
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............... e. ... 
Abstent Ion ............. 

.................. 
...... 

SP ...... 

.2 

PvdA 

15.8 

S r small right 
SI small left 

Fig. 15.4 Leiden electorate study: Model I - party space 

The angles between the first components of Models I, II, and 

III (computed from separate procrustes rotations) are aI,II = 

290 6; ar III = 310 8; all III =49 0 9. The correlations between , , 
the first components after the separate rotations are rI,II = 

.77; rI,III = .82; rll,III = .45. 

The TUCKALS2 core matrix (Table 15.5) shows how for each 

election the configurations of parties and wards are connected. 

Note that the minus signs indicate that the components of the wards 

and parties are inversely related. 

If we neglect the two smaller values in each frontal plane, we 

can see the dramatic change which took place between the national 

elections of 1981 and the provincial elections in 1982. Whereas in 

1981 party component 1 (2) was related to ward component 2(1), in 

the 1982 elections the situation is completely reversed. To see 

what this means we will produce a combined joint plot for the three 
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elections (Fig. 15.5). In this plot the most influential parties 

are shown as directions in the ward space. The directions were 

produced by postmultiplying the party space with each core planes 

in turn, and interpeting the resulting coordinates as vectors in 

the ward space. 

.t :::: ::: ... ... : 

32 16 

56 
55 

abstentions 

VVD 

PvdA 

-+ 1981 national 

.... 1982 provincial 

-.. 1982 munici pal 

89 ward number 

Fig. 15.5 Leiden electorate studg: Model I - changing partg allian­
ces 
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The conclusions from Model I are the same as those from Models 

II and III combined, but the graphical representation in Fig. 15.5 

makes it easier to formulate certain conclusions. It can be seen 

that the VVD has a stable electorate, e.g. in wards 56, 33, 55, 16, 

1 etc. the VVD scored above expectation in all three elections, and 

in 20, 24, 21, etc. it scored below expectation. 

Abstention in the national elections of 1981 is almost unre­

lated with party preference in the wards for the VVD and PvdA, as 

its direction in 1981 is nearly orthogonal to the main axis of the 

wards. In addition, abstention was below expectation. This reflects 

the very high abstention rate in the other two elections; after all 

the interaction effects should sum to zero. 

Abstention in the provincial elections of 1982 is very strong­

ly related to PvdA-voting in 1981. In other words, a high propor­

tion of the wards which scored above expectation for the PvdA in 

1981, abstained above expectation for the provincial elections in 

1982. The same is true for the municipal elections, only less so. 

There is a considerable projection of the absentions in the munici­

pal elections in the direction perpendicular to the main ward axis, 

indicating that also for other than PvdA wards abstention was above 

expectation in that election, but unrelated to the party preference 

of the wards. Note, by the way, that no statements can be made in 

terms of individual voters, as we have only the data available 

aggregated at the ward level. 

The projections of all wards on the common PvdA82 direction 

are small, but generally higher for those wards which voted PvdA in 

1981. Note, however, that only thirteen wards scored above expec­

tation on this vector, so that the most stable support for the PvdA 

can be found there. 

15.9 CONCLUSION 

From the above discussion and example it can be seen that 

three-mode principal component analysis can be fruitfully used to 

study interactions in large three-way contingency tables. At the 

same time it is clear that it is helpful, and may be essential, to 
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precede the analysis by a loglinear analysis to gain insight in the 

importance of the various interaction effects, and to decide for 

which model the chi-terms have to be evaluated. Without such in­

sight it is difficult to attribute the observed interactions to 

particular effects. 

In a sense the example is easier to interpret than data with a 

sizeable three-way interaction. On the other hand, particularly in 

the case of three-way interactions a three-mode correspondence 

analysis has much to offer that is not easily available in other 

techniques. 
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APPENDICES 

A.l CLASSIFICATION OF THEORETICAL THREE-MODE PAPERS 

Primarilg three-mode analgsis 

ALS (PLS) 

Constrained T3 

Covariance structure 
approach 

Exposition of T3 

Rotation of core matrix 

Scaling of input data 

T2-model 

T3-model 

Three-mode scaling 

Unique variances 

- Kroonenberg & De Leeuw (1977,1978, 
1980), Lohmoller & Wold (1980), 
Sands (1978), Sands & Young (1980). 

Carroll, Pruzansky & Kruskal (1980). 

Bloxom (1968), Bentler & Lee (1978, 
1979). 

- Van de Geer (1975), Levin (1965), 
Lohmoller (1979a), Hohn (1979). 

Cohen (1974,1975), MacCallum (1974a, 
1976b), De Leeuw & Pruzansky (1978), 
Kroonenberg & De Leeuw (1977). 

Kroonenberg (1981b). 

Israelsson (1969), Jennrich (1972), 
Carroll & Chang (1972), Kroonenberg & 
De Leeuw (1977,1978,1980), Tucker 
(1975). 

Tucker (1964,1965,1966a,1975), Levin 
(1963, 1965), Bartussek (1973), Jaf­
frennou (1978), Kroonenberg & De 
Leeuw (1980). 

Tucker (1972a,b, 1975). 

- F.W. Snyder (1968). 

Weighted model (ALSCOMP3) - Sands (1978), Sands & Young (1980). 

Closelg related models/methods 

CANDECOMP Carroll & Chang (1970), Harshman (1970). 

CANDELINC Carroll, Pruzansky & Kruskal (1980). 
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INDSCAL Carroll & Chang (1970), De Leeuw & 
Pruzansky (1978), Jaffrennou (1978). 

IDIOSCAL Carroll & Chang (1970, 1972), De 
Leeuw & Pruzansky (1978). 

PARAFAC - Harshman (1970, 1972a,b, 1976). 

PINDIS Lingoes & Borg (1978). 

Point-of-viewanalysis Tucker & Messick (1963). 

Review Carroll & Arabie (1980), Carroll & 
Wish (1974), Lohmoller & Wold (1980), 
Law & Snyder (1979). 

Taxonomy Carroll & Arabie (1980). 

Three-mode path analysis - Lohmoller & Wold (1980). 

Three-mode point-of-view - Tzeng & Landis (1978). 

Three-way unfolding - DeSarbo (1978), DeSarbo & Carroll 

Vaguely related models 

Double principal 
component analysis 

Extension of 'binary 
method of Faverge' 

(1979, 1981). 

Bourouche & Dussaix (1975). 

- Karnas (1975). 

A.2 CLASSIFICATION OF APPLICATIONS: SUBJECT MATTER 

Advertising 

Buying behavior 
Effectiveness for 

specific groups 
Product perception 
Viewer perception of 

advertising 

Developmental psychologg 

Changes in inkblot 
technique factors 

Changes in semantic 
differential 

Education 

Achievement concepts 
Aviation students 

- Belk (1979) 

- Vavra (1972) 
- Vavra (1973) 

- Lastovicka (1981) 

- Witzke (1975) 

- Lilly (1965) 

- Knobloch (1972) 
- F.W. Snyder (1969) 



Computer assisted 
instruction 

Educational careers 
Media usage 
Multiple-cue learning 
Novelty 
Progress in school 

subjects 

Serial learning 
Stressful university 

situations 
Task learning 
Task solving strategies 

Evoked potentials; EEGs 

Evoked potentials 
Various basic aspects 

of EEGs 
Activity situations 

and EEGs 
Personality factors 

sensu Eysenck 

Geology 

Organic extracts and 
elements 
Cations 

Geography 

Changes in land use 
Changes in location of 

manufacturing 
Spatial-temporal analysis -

Law 

Juvenile delinquents 

Moonen (1978) 
Stoop (1980) 
Lohmoller & Oerter (1979) 
Montanelli (1972) 
Bernstein & Wicker (1969) 
Lohmoller (1978,1979a,1981a), Loh­
moIler & Wold (1980), Hanke, Loh­
moIler & Mandl (1980) 
Love & Tucker (1970) 

Kjerulff & Wiggins (1976) 
Tucker (1965, 1967), Fruchter (1969) 
Rowe (1979) 

Donchin et al. (1972) 

Bartussek (1980) 
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Bartessek & Graser (1980), Bartussek 
et a1. (1972) 

RosIer (1972, 1975) 

Hohn (1979) 
Hohn & Friberg (1979) 

Bearwald (1976) 

Cant (1971) 
Chojnicki & Czyz (1976) 

Meijs (1980) 

occupational and organizational psychology; business administration 

Administrative tasks 
Airline reservation 

agents 
Hospital organization 
Job classification 
Job satisfaction 
Organizational behaviour 

F.W. Snyder (1969) 

Inn, Hulin & Tucker (1972) 
Lammers (1974), Van de Geer (1974) 
Cornelius, Hakel & Sackett (1979) 
Algera (1980), Zenisek (1980) 
Frederiksen (1972), Frederiksen et al. 
(1972) 

Personality and social psychology 

Abstract paintings Baltink (1968,1969), Frey (1973), 
Litt (1966) 



356 

Achievement concepts 
Anxiousness 
Assertiveness 

Disjunctive conceptual 
behavior 

Functional relations 
Gift giving 
Implicit theories of 
personality 

Life events 

Manual expression 
Perception of social 

environment 
Person stimuli 
Personality trait 

profiles 
Personality traits 
Reversible figures 
Self-conception 
Self-report/peer-report 
Social judgment 
Social perception 
Social structure 
Subjective culture 

Phonetics 

Confusion of consonants 

Politics 

American 

Dutch 

German 
Swedish 
US Senate 

Psgchiatry 

Heart conditions 
Neuroticism 
Schizophrenicity 

Psgchophgsics 

Psychomotor learning 
Size-weight illusion 
Synesthetic thinking 
Sound quality 

Knobloch (1972) 
Levin (1965), Tucker (1965) 
Firth & Snyder (1979), Leah, Law & 
Snyder (1979) 

Snyder (1970, 1976) 
Groves (1978) 
Belk (1979) 

Wiggins & Blackburn (1976), Van der 
Kloot & Kroonenberg (1982) 
Redfield & Stone (1979), Saile (1979), 
Graser, Esser & Saile (1981) 
Gitin (1970) 
Triandis (1976, 1977), Triandis 
et al. (1967, 1975) 
Davis & Grobstein (1966) 

Stewart (1971,1974) 
Schmitt, Coyle & Saari (1977) 
Graser (1977) 
Tzeng (1977b) 
Bentler & Lee (1978) 
Hirshberg (1980) 
Imada & London (1979) 

- MacCallum (1974b) 
Triandis (1972) 

Kroonenberg & De Leeuw (1980) 

Sands (1978), Sands & Young (1980), 
Shikiar (1974a,b) 
Kroonenberg (1981a,c), Kroonenberg 
& De Leeuw (1977,1978,1980) 
RosIer (1979) 
Sjoberg (1977) 
Wainer, Gruveaus & Zill (1973) 

Walter (1976) 
Leichner (1975) 
Mills & Tucker (1966) 

Fruchter (1969), Tucker (1965,1967) 
Groves (1978) 
Wicker (1966,1968) 
Gabrielsson & Sjogren (1974/75) 



Religion 

Religious attitudes Muthen et al. (1977) 

Semantic differential studies 

Affective meaning systems - Snyder & Wiggins (1970) 
Affective and deno-

tative meaning 
Cross-cultural 
Thesaurus 
Self-concept description 
Developmental changes 

Stimulus scaling 

Adjective similarity 
Confusions of consonants 
Personality traits 
Soft drinks 
Sound quality 

Various psychology 

Tzeng (1972,1975,1977a) 
Tzeng & Landis (1978) 
Snyder (1967) 

- Hentschel & Klintman (1974) 
Lilly (1965) 

- Tucker (1972), MacCallum (1976b) 
- Kroonenberg & De Leeuw (1980) 
- Van der Kloot & Kroonenberg (1982) 

Cooper (1973) 
Gabrielsson & Sjogren (1974/75) 
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Adjective similarity 
Leisure 
Road research 
Soft drinks 

- Tucker (1972a), MacCallum (1976b) 
London, Crandall & Fitzgibbons (1977) 
Snyder & Law (1981) 
Cooper (1973) 

Word association - Rychlak, Flynn & Burger (1979) 

A.3 CLASSIFICATION OF APPLICATIONS: DATA TYPES 

Semantic (or behavioral) differential scales 

Baltink (1968,1969), Bernstein & Wicker (1969), Davis & Grobstein 
(1966), Frey (1973), Gitin (1970), Hentschel & Klintman (1974), Imada 
& London (1979). Leichner (1975), Levin (1964,1965), Litt (1966), 
MacCallum (1976b), Meijs (1980), Muthen et al. (1977), Redfield & 
Stone (1979), Snyder, F.W. (1967), Snyder F.W. & Wiggins (1970), 
Triandis (1972, 1976), Triandis et al. (1967,1975), Tzeng (1972,1975, 
1977), Tzeng & Landis (1978), Wicker (1966,1968), Wiggins & Blackburn 
(1976) . 

Multitrait multimethod matrices analysed with Tucker (1966a) Method 
III or Bentler & Lee (1978,1979). 

Bentler & Lee (1978,1979), Firth & Snyder, (1979), Hoffman & Tucker 
(1964), Leah, Law & Snyder, C.W. (1979), Schmitt, Coyle & Saari 
(1977), Snyder, C.W. (1970,1976), Snyder, F.W. (1967), Tucker (1965, 
1966a,1967). 

Time series data 

Baerwald (1976), Bourouche & Dussaix (1975), Cant (1971), Graser 
(1977), Hanke, Lohmoller & Mandl (1980), Inn, Hulin & Tucker (1972), 
Lammers (1974), Lohmoller (1978,1979a,1981a), Lohmoller & Wold (1980), 
Love & Tucker (1970), Van de Geer (1974). 
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Similaritg type data 

Cooper (1973), Kroonenberg (1981a,c), Kroonenberg & De Leeuw (1977, 
1978,1980), MacCallum (1976b), RosIer (1979),Shikiar (1974a,b), Tucker 
(1972a, b). 

A.4 REFERENCES TO COMPUTER PROGRAMS 

ALS/PLS Kroonenberg (1981a,c), Kroonenberg & 

Analysis of Covariance 
approach 

Orlik's Summax method 

Three-mode scaling 

Tucker's (1966a) 
Method I 

Tucker's (1966a) 
Method II 

Tucker's (1966a) 
Method III 

De Leeuw (1980), Lohmoller & Wold (1980), 
Sands (1978), Sands & Young (1980) 

Bentler & Lee (1978, 1979) 

Kohler (1980) 

SOUPAC (1973), Redfield (1978) 

Graser (1977), Kouwer (1967), Loh-
moIler (l979b), McCloskey & Jackson 
(1979), Redfield (1978), SOUPAC (1973), 
Teufel (1969), Van de Geer (1975), Walsh 
(1964), Walsh & Walsh (1976). 

Gruvaeus, Wainer & Snyder (1971), 
Lohmoller (I979b), Redfield (1978), Van 
de Geer (1975), Wainer et al. (1973) 

Lohmoller (1979b), Redfield (1978), 
C.W. Snyder & Law (1979), C.W. Snyder, 
Law & Pamment (1979), SOUPAC (1973), 
Zenisek (1978). 
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A 
Abative centring, 142 
Absolute difference, mean, 100 
Accumulation point, 91,92 
Additive 

models, 136,322 
mixed models with - terms, 128,136-142,314-

316,323 
Additivity, tests for non-, 137 
Adjective ratings, 263-269 
Adjective set, Cola study, 148,256,259,269 
Adjusted residuals, 327 
Algorithm, 

alternating least squares, 8,72,73,89-92, 
95,96, 111,112,115,116 

CANDECOMP, 115 , 116 
non-singular transformation, 115,116 
orthonormal transformation, 111,112 
TUCKALS2, 96-96,112 
TUCKALS3, 73 ,89-92 

ALS (see alternating least squares) 
ALSCAL, 3,69,256-263 

average subject weight, 259 
comparison with TUCKALS (S)INDSCAL, 257-263 
external analysis, 69,270 
-4, 270 

ALSCOMP3, external analysis, 69,270 
Alternating least squares, 

advantages, 23,67,68,153,154 
algorithms, 8,72,73,89-92,95,96, 111,112, 

115,116 
and analysis of covariance structures, 67 
confirmatory, 68 
exploratory, 68 
inclusion of extensions, 68-71 
Tucker2, 95,96 
Tucker3, 76,86-92 

ANACOR, 331 
AnalysiS of covariance structures, 4,8,9,60-

66,276,284,287,293 
advantages, 67,68 

Analysis of variance, 179,314 
data (anova-data), 130-132,151,195 
decomposition of squared residuals, 82,178, 

186-189,194,195 
-first approach, 195 
interactions, 137-140,160,195 
models, 138 
repeated measures, 195 
residuals from, 136,147,172,187,194,316, 

317 ,322 
and three-mode pea, 194-195 
three-way main effects model, 139,187 
two-way main effects model, 322 
without replications, 136-142,195 

Angles between components, 55,109,118,119,122-
124,278-281,340 

Anova (see analysis of variance), 
Approxima t.e 

decomposition of data matrix, 22,79,80,173 

best, 79,80,113 
fit,30 
solution, 79,80,82-84 

ARlMA model, 4,286 

389 

Artificial subjects (see theoretical subjects, 
246 

Aspects of perceived reality, 180 
AsymmetriC similarity data, 3,4,27,32,41,243-

254,257 
Attachment study, 59,93,132,202-225 
Autocorrelation, 286,287 
Autoregression, 

first-order, 290,292,296,306,307,310 
models, processes, 73,286,288-298,304-307 
second-order, 296,306,307,310 
as structural model, 73,292 
and three-mode analysis ,294-297 ,304-310 

Average frontal plane in extended core matriX, 
34,37,143,164,266 

Average subject weight (in ALSCAL, INDSCAL, 
TUCKALS) 259,260 

B 
Badness-of-fit, as dependent variable, 195 
Bartussek scaling, 155,156,162,163,294,310 
Bauer-Rutishauser method 87-89 t 94 
Bentler & Lee models, 49,64 
Between conditions covariance matriX, 67 
Bilinear methods, 131 
Bi -marginal table, 331 
Binary variable response variable, 314 
Biplot graphical display, l38, 165 
Bipolar scales, 3,134,148,229 
Biquartimin rotation, 277,282 
Bloxom's model, 49,63,64 

covariance form of I 63,65 
BIIDP, 

BIMED17 , 278 
4M, 278 
4F, 332 
6M, 263,272 
1R, 307 

Body diagonal core matrix, 53,115,159,297 
Bounded function, 81 

c 
CANDECOMP, 9,10,49-51,56,57,112,113 

algorithm, 115,116 
and correspondence analysis, 330 
loss function and diagonalization, 112-117, 

123 
and mds-data, 132 
n-mode, 73 
and PARAFAC1, 57-60,69,109,140-141,159 
versus PARAFAC1, 53,132 
Tucker3 special case of t 58-60 
uniqueness of solution, 56 

Canonical discriminant analysis, 4,212,213 
Canonical correlation, 269,271,272 
Canonical regression, 263 

indi vidual differences, 270 
Canonical variates, 263,272 
Cartesian product, 7 
Causal modelling, 297 

three-mode path analysis, -models, 72,287 
289 

Ceiling effect, 301,319 
Centring, 26,59,129,135-149 

combinations of, 149 
comparing different, 149 
consequences, 143-146 
double, 26,27, 142,143,147,149,246,257, 

259,270,272 
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interaction with standardization, 
j-, jk-, jk, ik-, etc., q.v. 
and loglinear models, 334 
and outliers, 148 
overall, 142,146,148,180 
reasoned, 148 
reasons for, ]30 
recommenda t ions, 146 
and st.andardization, 148 t 149,151 
types of, 142-144 

Centroid, 130,146 
Change processes. estimation of, 304 
Changing dimensions, 247 
Children, 5 

normal, 277,283 
pre-school, 277 
primary school, 5,180,315 
retarded, 277 ,283,284 
two-year oIds, 205 

X2 -distance, 329 
X2-distribu1.10n, 327 
X2 -plots of residuals, 176 
Chi-term, 327-330,334-339 
Chronological age, 277 
Circular configuration, 247,251,253 
Circumplex, 34 
Classical MIlS, 257 
Clusters of individuals and rotation, 156 
Cola study, 109,132,155-272 

adjective set 59,148,256,263-269 
and similarity set, 269-272 

similarity set, 257-263 
Columnwise orthonormal, 22,52,55,77,82-85,152, 

174,275 
Combination components, 293-295,308-310 

variation explained by, 294 
Combination mode t 7,79,144 

covariance matrix, 8,10 
matriX, 7,9 

Combining multivariate information, 209 
Common factor analysis, 70,287 

model, 49 
three-mode, q.v. 

Communalities, 61, 290 
Compact set, 81 
Completely crossed design, 68,195 
Component(s), 10,12,51,145 

analogue of covariance matrix, 72 
correlations between (see components, 

oblique) 
derived from different centrings, 146,149 
interpretations, 154-156,254 
labelling, 154,161,162,209 
models, 49,52-57 

two-way reduced, 49-51,54-57,76,152 
three-way reduced, 49-54,76,152 

nwnber of, 12,22 
oblique, 55,109,118-124,277-281,340 
scaling, of, 155,310 
simple structure in, lOB, 155 

Component scores, 24,41,42,162,165-167 
in applications, 42,219,220 
and joint plots, 24,166 
and longitudinal data, 24,165,310 
and mixed-mode matrices, 167 

Component weights, 10,152-154 
standardized, 11,12,35,154, 158 

Concept (semantic differential), 228,229 
distances, 230 
-scale interaction, 238-240 

Conditional approach to interpreting core ma-
trices, 161 

Conditional least squares, 67,86 
Confidence bands in joint plots, 190-192,252 
Confimatory models, 51,66,71 
Constraints on parameters, 61,64,7],72 
Contingency tables, 325-343 

analysis of, 138,326 

correspondence analysis of, 138,325-343 
independence models for, 327,339 
interact ions in, 160,326-343 
loglinear analYSiS, 326-343, q.v. 
mUlti-way, 171,326,330 
three-way, 326-341 
two-way, 327 

Continuity of measurement, 69 
Continuous function, 81,88,89,91 
Continuous rating scale, 263 
Contribution to SS(Fit) of, 

combination components. 294 
components, 152 
COL'e elements, 35,158 

Convergence, 
criterion, 96 
iterative standardization q.v. 
theorem, 91,92 
TUCKALS algorithms q.v. 

Core covariance matrix (see latent covaria­
tion matriX), 65,293 

Core matrix, 7,12,16,22,35,50,153 
in applications, 36,214,237,250,304,320 
Bartussek scaling, 162, ]63,294 
body diagonal, 53,115,159,297 
conditional approach to interpretation, 161 
diagonal, 50,57-60,160 
and di.rection cosines, 157 
estimation of, 77 
explained variation, 35,78,157-159,213 
extended, q. v. 
idealized elements, 16,17,157,161-163,216 
interpretation of, 36,157-163,213-216,297 
off-diagonal elements, interpretation of, 

53,157,25 
latent. covariations, 157,194 
restrictions on, 64 
scaling, 35,36,153,158,159,162,163,294 
signs of elements, 160 
simple structure, ]08,156,157, ]59,160 
and Singular values, 20 
size of, 50 
sums of squares interpretation. 35, ]58-]59 
(three-mode) interactions 17,43,157,159,215 
three-way identity, 50 
three-way synunetric, 97 
Tucker2 (see extended core matrix) 
uniqueness of, 80 

Core plane, 
anti -diagonal, 160 
diagonal, 50,57-60,160 
diagonal ization 

Tucker2 model, 108-120 
Tucker3 model, 58,59,108 

Correlation(s) 
averages of, 15] 
between components y 55,109,1]8-124.,277-281, 

304 
Correlation matrices, 25,119 

th·ree-mode analysis of, 119-122,273-284 
and simplex structure,289 

Correlational approach to longitudinal data, 
287,288 

Correspondence analysis, ]65 
and CANDECOMP, 330 
interpretation of, 329 
and jOint plot, 329 
three-mode, way generalization, 329-343 
two-mode, 5,328-329,333 

Counted variables, 298,3]4 
Counter-rotations, 52,108 
Covariance matrix, 25,289 

observed, 294,297 
of combination mode 8,10 
component analogue, 72 
latent 144,145 



Covariance structure models, 4,49,60-66,71-
73,76,288 

compared with component models, 66-68 
Cronbach's alpha, 132 
Cross-lag correlation, -covariation, 297,308 
Cross-product matrices, 77,94,155 

and input scaling, 25,155 

o 
Data box, 74 
Data, n-mode 
Data points, number of in three-mode models, 

50 
Da ta, three-mode, 15,48 
Data types, 130-133,147,150,151,177,195 
Degrees of freedom in 

loglinear models, 327,332-333 
three-mode models, 140 
two-mode interactions, 140 

Dependence, analysis of, 137,171 
Design 

matrix, 72,180 
variables, 195 

Detrended normal plot, 191 
Developmental processes, 287,310 
Deviation scores, 146 
Diagonal frontal planes, 50,57-60,160 
Diagonality problem ON, 109 

algorithm, 111,112 
definition, 110 
proof, 110, III 
solution, 110,111 
special case of MS, 115 

Diagonality problem NS, 109 
algorithm, 115,116 
definition, 113 
proof, 114,115 
solution, 113-116 
standardization of transformations, 115 

Diagonality problem, true, 117-119 
Diagonalization 

core matrix, 58,59,108 
extended core matrix, 107-124,281 
loss due to, 119,120 
and generality Tucker3 model, 57-60 

Differential growth, 310,318-321 
Differential growth curves, 310,319-321 
Direction in correspondence analysis, 329 
Direction cosines, 37,38,163,294,295,308-310, 

320 
and angles, 37,38,53,55,56,163,320 
and combination components, 294,295,308-

310 
and correlations, 37,38,163 
equal, 50,55,56 

Discreteness of measurement, 69 
Discriminant analysis, 4,212,213 
Discriminant functions, 213 
Dissimilarities disadvantages for three mode 

analysis, 257 
Distant concept, 230 
Distance in correspondence analysis, 329 
Distance in joint plots, 24,164,166 
Distance models, 48 
Distributional assumptions and three-mode 

analysis, 67 
Double centring, 26,27,34,142,143,147,149,246, 

257,259,270,272 
Double standardized data, 150 
Dual scaling, 138 

E 
Ecological ordination data, 135 
Eigenproblem, 9,14 
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Eigenvalues, 12,20,23,155 
and component weights, 153,154 
non-zero and ALS algorithms, 89,112 

Eigenvalue-eigenvector decomposition, 9,14,51, 
77,78,87,163 

Elections, 330 
Element of a mode, 7 

number of, 12,22 
Elementwise matrix product, 113,114 
EPA-structure, 229,234,238 
Equal direction cosines in PARAFAC2, 50,55,56 
Error(s) 

increasing influence of (propagation), 96, 
98-102 

standard deviation of, 131 
structure, 99-101 
vectors, 82 

Estimated (fitted) data, 153,179 
Estimating unique variances separat.ely, 62,63 
Euclidian distance, 48 

models, 48 
Euclidian norm, 11 
Exact solution of Tucker3 model, 79,84,85,93 
Existence of minimum of Tucker3 loss function, 

80,81 
Expected normal distribution, 191,192 
Explained variation, 10,78,93,146,177 

and combination components, 293,308,310 
and core elements, 35,78,157-158,213 
and eigenvalues, 153 
in Tucker methods, 78 

Exploratory 
thrc.ugh confirmatory analysis, 71 
models, 51,61 

Exposure, 170,171 
Extended core matrix, 7,10,12,23,36,54,56,216 

in applications, 37,217,237,251,266,281, 
304,305,337,339 

average frontal plane, 34,37,143,164,266 
conditional approach to interpretation, 161 
diagonal, 109,115 
diagonal elements, 37,38,251,260,280 
diagonalization of, 107-124,281 
and direction cosinps, 37,38,163,294,295 
explained variation, 36,153,216 
interpretation of, 216-218,297 
and latent covariation, 293 
off-diagonal elements, 50,157,251,259,266, 

280,281 
simple structure, 70,108,109 
size of, 50 

External analYSiS, 48,69,70 
ALSCAL, 69,270 
ALSCOHP3, 69,270 
multidimensional scaling, 270 
TUCKALS2, 70,270 
TUCKALS3 , 70 
unfolding, 69,270 

External averaging, 265,335 
External variables, 176,179,291,292 

F 
Factor analysis 

analogue of PARAFACl, 65 
common 70,287 
longi tudinal, 48 
second-order models, 66 
simultaneous in several poupulations, 48, 

276 
third-order models, 20,78 
three-mode, q.v. 
and time series analysis, 287 

Factor analysiS of variance, 135-138 
three-mode generalization of, 138-142 

Factor differentiation, 277,280-284 
Factor scores 63,287 
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FANOVA (see factor analysis of variance) 
Film types, 180 
Fit, 38-40 

of a model, assessment of, 67 
of subjects (INDSCAL, ALSCAL, TUCKALS), 

260-263 
of elements of a mode, 38 
relative, 37,95 
average subject weight, 259,260 

Fitted swn of squares - SS(Fit), 11,25,30,38, 
82,94,145,206 

maximization of, 82 
partitioning of, 35,82,158,159,213 
proportional, 262,263 
relative, 25,262,263 
and SS(Res), 25,38 

Fixed point theorem, 91 
Four ability-factor study, 119-122, 124, 132, 

272-284 
Four-mode, 73,74 

data, 73,74,132,140,228 
extensions, 73 
interactions, 74 
principal component analysis, 73 

Frontal plane, 7,11,23,35,54 
core matrix, 54,216 

anti -diagonal, 160 
decomposition, 119,120,163 
diagonal, 50,57-60,160 
plane, 35 
symmetric, 10,50,53,55,97,119 

extended core matrix, 216 
average of, 34,37,143,164,266 
diagonal, 217 
decomposition, 119,120,275 

Full colwnn rank, 52 
Fundamental interminacy, 128 

G 
Ga ... a probability plot, 175 
Generality 

Tucker2 model, 59 
Tucker3 model, 57-60 

Generalized Euclidean distance model, 148 
Generalized subjective metrics model (see 

Tucker2 model), 22 
Glossary, three-mode, 6 
Goodness-of-fit. tests, 66 
Growth curves, 313-323 
Growth studies, 137 

H 
Half-way scores, 322 
Hessian, 83 
Heterogeneity, 171 
Heteroscedasticit.y, 176 
Hierarchical loglinear models, 332 
Hilbert matrix, -cube, 96-98 
Histogram, 178 
Homogeneity, 133,295,296 
Horizontal core plane J 34,36 
Horseshoe, 32-34, 290 
Hospital study, 132,134,189,190,298-311 

I 
Idealized 

elements of a mode, 16,17,157,161-163,216 
subjects, 15,19,154,161,162,216,247,294 

Identification, 52,64,115 
Identity matrix, three-mode, -way, 9,10,50 

IDIOSCAL, 9,10,49,50,55,58 
Idiosyncratic rotations, 9,10,55 
Ill-fitting points, 39,40,82,178,188 
i-mode, 11 
Implicit theory of personality, 244,245 
Improvement in fit, 30,40,206 
Independence 

in cont.ingency tables, 327,329 
of core matrix from sums of squares, 162, 

163 
deviation from, 329 
of errors and components, 62-64 
origin as point of, 329 
unique variances and components, 62-64 

Independence models for contingency tables, 
327,339 

Index for 
elements of a mode, 12 
components, 12 

Individual characteristic matrix, 54 
Individual differences, 49,61,132,205,224,228, 

241,264,270,272 ,287 
canonical regression, 270 
scaling, 3,4,36,50,54,163,257 

and covariance structure models, 66-68 
programs, 3,256 

INDSCAL 3,9,10,49,50-57,66,73,109,256-263 
and ALSCAL, 256-263 
average subject weight, 259,260 
as diagonalization procedure, 113,124 
rotated cormnon space, 57,66 
orthonormal, 118 
and SINDSCAL, 256-263 
as three-mode reduced component model, 54 
as two-mode reduced component model, 56,57 
and TUCKALS2, 256-263 
uniqueness of solution, 57,66 

Influential points, 38,172 
Initialization of TUCKALS, 30,84,85,92-94,97 
Input scaling 

in applications, 27,180,232,246,257,263, 
275,298,307 

and correlatiolls, 275 
and cross-product matrix, 25,155 
inappropriate for model, 129,131 
preprocessing of data, 126,151 
recoamendations, 146,150 
and research design, 129,149 
and research questions, 129,137 
(see also: 

centring, 
standardization, 
normalization) 

Intelligence tests, 274 
Interact.ions 

between centring and standardization, 146, 
149,151 

of components, 20,24,34,135,160-162 
concept-scale, 238-240 
in contingency tables, 160,326-343 
in core mat.rix, 17,43,157,159,215 
and outliers, 171 
modelling, 137 
n-mode, 73,74 
stimulus-scale, 246 
three-mode, 17,43,157,159,215 

in anova, 137-140,160,195 
Interact.ive scales, 203 
Interdependence, analysis of, 137,170 
Internal averaging, 265,336 
Interpretation, 151-167 

aids for, 24-26 
components, 154-156,254 
core matrix, 36,157-163,213-216,297 
extended core matrix, 216-218,297 
joint plots, 164,165,219,269 
problems for Tucker Methods, 23,78,79 

Interval properties, 69 



Inverse transformation, 52,108,118 
Ipsative centring, 142 
Isolated points, 171 
Iterative standardization, 149,150 

and centring, 149,150 
and iterative proportional fitting, 149 
unique solutions, 149 

ITP study, 132,243-254 

J 
j -centring, 26,60,142,144,147,205 
j-normalization, 60,298,307 
j-standardization, 150 
jk-centring, 26,60,142,144,147 
jk-normalization, 60,150,307 
jk-standardication, 150 
jk, ik-centring, 26,60,142-144,147,149,151 
j-mode, 11 
Joint plots, 24,41,163-165,257 

in applications, 41,182,183,218,219,239, 
265,267,268,300,321, 
335,336,339-341 

and component. scores, 24,166 
construction of, 24,164,165 
and correspondence analysis, 329 
and dissimilarities, 257 
distances in, 24,164,166 
interpretation, 164,165,219,269 
measuring closeness, 24,164,166 
in TllCKALS, 24, 164 
vectors in, 165,219,269,339,341 

K 
k-mode, 11 
k-standardizatioD, 151,259 
Kronecker product., 11,79 

L 
Labelling of components, 154,161,162,209 
Lag-one correlation, 296,308 
Lagrange multipliers, 111 
Latent class model, 330 
Latent covariance matrix, 144,145 
Latent covariation matrix, 65,72,73,144,145, 

288,292-297,307-310 
and autoregressive models, 294-297 
null hypothesis for, 297 
observed covariation matrix, 297 
restrictions on, 72 
and longitudinal data, 294-297,304-310 

Latent predictors, 174,175,195 
Latent space J 154,155 
Latent variables, 2,15,16,19,154,161,162,292-

295,307-310 
labelling of, 154,161,162,209 
and theoretical constructs, 154,155 

Lateral plane, 34,36 
Learning curves, 314-323 

average 316-318,323 
Learning-to-read stUdy, 4,5,132,315-323 
Least squares 

alternating, 8,72,73,89-92,95,96, 111,112, 
115,116 

conditional (see alternating), 67,86 
estimates, 23,77,139,306,316 
generalized, 64,66 
loss functions, 22,23,71,79-81,110,113,117, 

118,173 
partial (see alternating), 8,68 
residuals, 172-176 
simultaneous estimation With, 30,148 

Least upper bound of SS(Fit), 30 

393 

Leiden, 5,2/,330 
Leiden electorate study, 330-343 
Length components, 152-155,163,265,297,301 
Leptokurtic distribution of residuals, 191 
Level of condensation of input data, 41 
Linear combinations 

of latent elements, 15,16-18,20 
nested sets of, 78 

Linear models, 180 
LISREL, 66,68 
Loading, 10,52,145,155 
Local minimum, 93 
Logistic regreSSion, 314,316,322,323 
Loglikelihoodratio, 327,332,333 
Loglinear models, 171,343 

hierarchical models, 332 
interactions, 326-343 
main effects, 328 
margins fixed by deSign, 331 
non-saturated, 327 
notation for effects, 326,327 
permissible models, 332 
saturated, 326,328,331 

Longitudinal factor analYSiS, 48 
Longitudinal multivariate data, 4,73,285-311 

autoregressive models, 73 
and component scores, 24,165,310 
c~rrelational approach, 287,288 
three-mode analysis, 288,292-298 
time series, 4,287,297 

Loss due to diagonalization, 119-122 
Loss functions, 173 

minimization, 71,80,81 
of orthonormal diagonalizatioD, 110,117,118 
of non-singular diagonalization, 113,117, 

118 
of Tucker2 model, 23 
of Tucker3 model, 22,79-81 

M 
MANOVA, 180 
Matrix-conditional, 147,151,177,180,259,261 

centring, 151 
data, 151 
standardization, 151 

Marginal distribution, 331 
Maximization of SS(Fit), 82 
Maximum likelihood estimation, 8,64,66 
MDPREF, 165 
liDS (see multidimensional scaling) 
Mean absolute difference, 160 
Means 

a posteriori, 137 
a priori, 136,137 
arbitrary, 133,134 
comparable, 134 
incomparable, 26,133,134,147 
influence on components, 133 
interpretable, 135-142 
modelling separately, 134-142 
population means in covariance structure 

models, 64 
as primary psychological constructs, 137 
scaling off, 133-149 
uninterpretable, 26 

Measured predictors, 174-176, 195 
Measurement characteristics, 68,129,134 
Measurement conditionality, 69 
Measurement levels, 48,69 
Measurement models, 71 J 72,292 

and structural models, 71,72,292 
Measurement process, 69 
Mental age, 277 
Meta-analysis, 274 
Met.hod of Bauer-Rut.ishauser, 87-89,94 
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Metric data, 48 
Midpoints of scale, centring of, 60,129,130, 

148,180,232,263 
Minimization 

of loss functions, 22,70,80,81,111,114 
of SS(Res), 82 

Missing data, 48,68,69 
Mixed additive and multiplicative models, 

128,136-142,314,316,323 
Mixed-mode matrices, 166,167 
Mode, 8,15 

number of dif ferent, 50 
number of reduced, SO 

Model (see - model) 
Modelling interactions, 137 
Modified Tucker model, 141 
Monte Carlo study, 76,98 
Moving average models J 286 
Multidimensional scaling (MDS), 32,33,71,170 

classical, 257 
data (mds-data), 130-133,147,151,177 
individual differences, q.v. 
methods for, 256 
review of models for, 56 
under const~aints, 71 

Multi-mode data, 74 
Multiple personality, 228 
Multiplicative interactions, 137,139,314 
Multiplicative models with additive terms, 

128,136-143,314,316,323 
Muititrait-multimethod matrix, 9,67 
Multivariable-multiconditin matrix, 9,67 
Multivariate ..., (see ..... ) 
Multi-way tables, 171,326,330 

N 
Neutral scale point, 133,148,232 
Nesting of components, 23,34,92,93 
n-mode, analysis, data, etc., 73,74 
Nominal measurement level, 69 
Non-additivity, tests for, 137 
Non-linear problems, 86 
Non-linear programming, 91 
Non-relaxation procedure, 87 
Non-Singular transformations (rotations) 

in applications, 119-124,257-262 
of components, 52,70,121,128,279 
of core matrix, 57 
of extended core matrix, 59,112-124 
interpretational problems, 109,118 

Non-stationarity, 296,308 
Non-uniqueness of solutions, 89,98,112,119,122 
Non-zero eigenvalues and ALS-algorithms, 89, 

112 
Normal children, 277 ,283 
Normal distribution, 191,192 
Nomal probability plot, 176,191 
Normalization, 60,129,148,150 
Normative centring, 142 
Notation of book, 11 
Not-fitted principal components, 172,173,175 
NS-algori tlun, 115,116 

o 
Oblique components, 55,109,118-124,277-281,340 
Off-diagonal core element, 53,117 ,251,259,266, 

280,281 
ON-algoritlun, 111,112 
Optimal scaling, 138,257 

pbase in ALS, 68,69 
Ordinal level of measurement, 69 
Organization of book,S, 6 
Origin as nulhypothesis in correspondence 

analysis, 329 
Orthogonal transformation of components, 70 

Orthogonal polynomials, 156,303,315 
Orthonormal(ity), 81 

columnwise, q.v. 
transformations of components (rotation), 

84,85 
core matrix, transformations of diagonality, 

58,59,108 
extended core matrix transformations to 

diagonality, nO-1l2, 
116-124 

in applications, 119-124,257-262 
algorittun, 111,112,115,116 

and statistical independence, 81 
Orthonormal INDSCAL, 118 
Orthonormalization in ALS algorithm, 96 
Outliers, 38,138,148,171 

and centring, 148 
in designed experiments, 171,175 
detection of, 172,175,176,191 
interactions between, 171 

Output 
interpretatio:l of, 151-167 
postprocessing, 126,151,152 
scaling, 155,156,158,162,163 

Overall 
centring, 142,146,148,180 

critique on, 148 
standardization, 96 J 133,151 

p 
PARAFAC!, 10,49,50,53,54,73,130,131,296 

and Bentler & Lee models, 65 
CANDECOMP model, 57-60,69,109,140,141,159 
versus CANDECOMP 53,132 
covariance form, 65 
factor analysis form, 65 
and longitudinal data, 296 
pea-data, 132 
three-mode identity matrix, 53 
Tucker3 as a speCial case of, 58-60 
uniqueness solution, 56 

PARAFAC2, 10,49,50,55,56,163 
parallel solutions, 55 
proportional private spaces, 55 
uniqueness of solution, 55 
direction cosines, 50,55,56 

Parallel proportional profiles, 53,65 
factor analysis (see PARAFAC) 

Partial Least Squares (PLS) (see alternating 
least squares), 8,68 

Party preference group, 27 
Party similarity study, 26-43, 132 
Partitioning 

of fitted sum of squares, 35,82,158,159,213 
of residual sum of squares, 82, 177 
of'total sum of squares, 25,67 J 77,79,81,82 

PATH I,II ,III, 5,6 
Pattern matrix, 72 
PCA (see prinCipal component analysis) 
Perceived reality study, 118,122-124,132,147, 

180-195 
residual analysis for, 184-194 

Perfec~ congruence approach, 276 
Performative centring, 142 
Personality, 228 

trait adjectives, 245 
traits, 70,224 

Perturbation, 99-101 
PLS (see partial least squares) 
Point of view analysis, 48 

three-mode, 48 
Point-to-set map, 89,92 
Political parties, 4,26-43,330 
Polynomials 

multivariate, 86 
orthogonal as target, 156,303,315 



Positive definite, 88,89,92 
Postprocessing of output, 126,151,152 
Precincts, 331 
Predictors 

latent, 174,175,195 
measured, 174-176,195 

Principal component analysis 
data (pea-data), 131-133,147,150 
-first approach to three-mode data, 194,195 
not-fitted principal components, 172,173, 

175 
in ALS, 175 

'Q'-PCA, 19,20 
residuals from, 172-175 
separate, private, individual peAs, 240, 

275,278,281-284 
standard, 2,9,14,15,19,20,25,35,70,73,77, 

94,135,145,155,156,159, 
172-174,275,276,287,288 

three-mode, q.v. 
Procrustes rotation, 270,272,276,277,339,340 
Probability plotting 

X2, 176 
normal, 192 
and residuals, 176,178,179 

Profile similarity, 43 
Proportional SS(Fit), 262,263 
Prototype conditions, 15,16,154,161,162 Q'''' ','"",m 

'Q' -PCA, 19,20 
Quality of fit, 79,94,189 

of three-mode solution, 177 
Quantification, 329 
Quan~ile plot, 178,179 

R 
Random 

mode, 8 
start matrices, 97 
variable vector, 8,61 
vector, 82,293 

Range equalization of, 129,133,315 
Rank correlation, 232,318 
Rao's distance measure, 174,177 
Rating scales, continuous, 263 
Ratio level of measurement, 69 
Real estate values in Leiden, 336,337 
Real matrices, 11 
Reduced mode, 49,50 
Reference curves, 314 
RegreSSion, 171,174,175,291,306,307,314,316, 

322,323 
missing data, 68 

Relative SS(Fit), 25,37,95,262,263 
Relative SS(Res), 25,178,188-191 
Repeated measures 

in ANOVA, 195 
in time series, 286,287 

Replicated model, 69 
Residual(s), 23-25,170-195,316 

adjusted, 327 
analysis scheme, 177-180,184,186,191 
from ANOVA, 136,147,172,187,194,316,317,322 
in contingency tables, 327 
versus data plots, 179,194 
distribution of, 191,193 
first-order analysis of, 171,175,177 
goals of analysis, 171 
informal analysis of, 171 
least squares, 172-176 
multidimensional, multivariate, 172,175 

plots of, 176,179 
from principal components, 172-175 
and probabilityplots, 176,178,179 
from regression, 171 
squared, 176-178,194 
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ANOVA of, 82,178,186-189,194,195 
standardized, 327,328,334,338 
statistical analysis of, 171 
structured samples of, 176-178,194,195 
summary measures for, 176 
three-mode, 170,176,180,194,195 
two-mode, 135,170,172-175 
unstructured samples of, 176,179,191 
variates, 63 

Residual/fit ratio, 189-191,252,253 
Residual sum of squares - SS(Res), 11,175,178, 

194 
distribution of, 178,184-186,223 
minimization of, 82 
parti tioning, 82,177 
re!;-tive, 2.5,178,188-191 
and SS(Fit), 25,38 
in sums-of-squares plot, 25,178 

Response curves, 314 
Restrictions on 

configurations, 48,64,68,70,71 
core matrix, 64 
models, 66, 
parameters, 61,64,71,72 

Retarded children, 277 ,283,284 
RSQ (squared correlations in ALSCAL), 262,263 
Robustness, 99-101 
Rotation (see transformation) 

s 
Salience, 55,120.259,281 
Saturated loglinear model, 326 
Scale midpoints, 60,129,130,148,180,232,263 
Scalar product, 48,147 

form of distance models) 48 
Scalar product models, 76 
Scaling, 128 

Bartussek, 155,156,162,163,294 
centring, q.v. 
of components, 155,156 
constant, 115 
of core matrix, 35,36,153,158,159 J 162,163, 

294 
of input, q.v. 
multidimensional, q.v. 
overall variation, 96 
reasons for, 130 
standardization, q.v. 
types of, 129 

School grades, 180 
Second-order factor model, 66 
Selection of type of scaling, 129-131 
Semantic differential, 3,134,148,227-241 
Serial dependence, 286-288,295 

modelling of, 287 
and variable dependence, 228,295,298 

Sensory perception, 272 
smell and tastes, 255-272 
sounds, 272 

Separate pea 1 s, 240,278 
Similari ty, -ties 

advantage over dissimilarities, 257 
data, 2,3,26,98-101,163,255-272 

asymmetric, 3,4,27,32,41,243-254,257 
three-mode, 3,264 

dissimilari ties, 257 
Similarity set, 257-263 
Simple structure, 108,109 

of components, 108,155 
in core matrix, 108,156,157,159,160 
in extended core matrix, 70,108,109 
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Simplex, 289,302,303,306 
correlation matrix, 289 
equidistant, 290 
Markov, 290 
and principal components, 290 
quasi, 289 
similarity matrix, 32,33,34 
Wiener, 290 

Simulation studies, 289,294 
Simultaneous diagonalization of core planes, 

57-58,107-124 
Simultaneous iteration method, 87-89 
Simultaneous least squares estimation, 30,148 
Simultaneous factor analysis in several popu-

lations, 48,276 
Simultaneous solution of eigenproblems, 84 
SINDSCAL, 256,258-263 
Single-degree-of-freedom test for non-addit.i-

vity, 137 
Singular matrices, 89,98,112,119,122 
Singular value(s) 

and component weights (eigenvalues), 20, 
35,159 

and core matrix, 20 
and extended core matrix, 20 

Singular value decomposition, 14,19,20,35,58, 
78,135,136,158,159,163, 
240,314,315,329 

and principal component analysis, 20 
and correspondence analysis, 330 
mixed additive and multiplicative models, 

139 
learning curves, 314 
three-mode principal component analysis, 35 

Skewness, 298 
Snyder's unique-variances model, 49,62,63 
SPSS, 180,191 

MANOVA, subprogram, 180 
Stability, 295-298,303,306-308 

overall, 296 
Standard errors, 66 
Standard principal component analysis, q.v. 
Standard reduction equation, 138 
Standard scores, 25 
Standardization, 26,59,129,130,135,138,139, 

148 
in combination with centring, 148,149,151 

normalization, 150 
order, 149,150 

interaction with centring, 146,149,151 
iterative, 149,150 

problems with, 149,150 
reasons for, 130 
recoDDendations for, 150 

Standardized 
core matriX, 35,36,153,158,159 
component weights, ll, 12,35,153,158 
data, double-, 150 
extended core matriX, 36,153,216 
residuals, 327,328,334,338 
sum of squares, 11,30,40 

State-like, 296 
Stationarity, III ,295-298 ,308 

non-, 296,308 
Stationary point, 86,86,92 
Statistical 

analysis of residuals, 171 
models, 51 
package, 179 
stahility, 61,67 

Stem-and-1eaf display, 178,184,185 
Stimulus-scale interaction, 246 
Stochastic 

mode, 49,287,293 
models, 71,72 
two modes, 49 

Strange situation, 202 
Stress in ALSCAL, 263 
Stretching and shrinking of common space, 53, 

165,251 

Structural model, 71,73,292 
autoregressive model as, 73,292 
and measurement model, 71,72,292 
and three-mode path model, 72,287,289 

Structured samples of residuals, 176-178,194, 
195 

Subject weights, average (in INDSCAL, ALSCAL, 
TUCKALS), 259-261 

Subjective intercorrelations, 55 
Sum of squares 

fitted, 11 ,25 ,30 ,38 ,82, 94,145,206 
partitioning, 25,82 
residual 25,30,82,174,206 

and fitted, 25,82 
standardized, 11,30,40 
total, 25,30,38,82,174,206 

Summarization, 170,171 
Sums-of-squares plot, 25,30,39,40,188-191,221-

223 
in applications, 41,188-191,222,252 
'confidencp bands' in, 190-192,252 

Supernotmal distri~ut ion c!: residuals, 176,191 
Symmetric 

discrete distribution, 99,100 
frontal planes of extended core matriX, 10, 

50,53,55,97, 119 
similarities, 257-263 
three-mode models, 53,54 

Symmetrization of matrices, 32 
Systematic trends, unmodelled, 172 

T 
Tails of distribution of residuals, 191-194 
Target matrix for rotation, 71 

with procrustes rotation, 270,272,276,277, 
339,340 

with orthogonal polynomials, 156,303,315 
Testing of hypotheses, 137 

non-additivity, 137 
significance of prinCipal components, 140, 

'95 
about structure 

in analysis of covariance structures, 61 
in latent covariation matrix, 297 

Theorem 
approximate solution of Tucker3 model, 83,84 
due to d'Esopo, 91,92 
exact solution of Tucker3 model, 84,85 
fixed point, 91 
due to Meyer, 92 
non-singular transformation extended core 

matriX, 113 
orthonormal transformation extended core 

matriX, 110 
separation, 105 
SS(Tot) = SS(Fit) + SS(Res), 81,103,104 
upper bound SS(Fit), 94,105 
due t.o Weierstrass, 91 

Theoretical constructs and latent variables, 
154,155 

Theoretical subjects, 244-254 
as aid to interpretation, 250,253 
as a priori information, 247 

Third-order factor analysis, 20,78 
Three-mode causal modelling, 48,71-73 
Three-mode data, 15,48 

matrix, 7,11,20,22 
types of, 131-133 

Three-mode factor analysis, 49,60-66 
Bentler & Lee models, 49,64 
Bloxom's model, 49,63,64 
co .... on (Tucker's model), 10,60-62 
as covariance structure model, 60,61,65 
versus principal component models, 66-68 
Snyder's model, 49,62,63 

Three-mode matrix (-array), 8,20 



Three-mode models without core matrix, 48 
Bentler & Lee model, 49,64 
PARAFAC1, 65 

Three-mode path models, 72,287,289 
algorithm, 72 

Three-mode point of view model, 48 
Three-mode principal component model (-analy­

sis) 
and autoregressive models, 294-297,304-310 
comparison with separate peA s, 240,275, 

281-284 
and correlation matrices, 273-284 
and correspondence analysis, 329-343 
extensions, 68-74 
external analysis, 69-70 
versus three-mode factor analysis, 66-68 
-first approach vs ANOVA-first, 194,195 
formal descriptions of, 21-23,76-85 
as generalization of singular value decom­

position, 20,21,35,158, 
159,315,330 

and generalized learning curves, 315 
informal descriptions of, 14-21 
and individual differences scaling, 48 
and longitudinal data, 285-311 
number of parameters, 50 
under constraints, 71 

Three-mode scaling, 10,49,50,52,53,113,147,163 
Three-way ANOVA, 139,187 
Three-way contigency tables, 5,326-343 
Three-way main effects model, 139,187 
Three-way unfolding, 48 
Time-mode 

component analysis of, 289,290,296 
components (= trends), 156,298,300,301,308, 

319 
gain component, 290,302 
level component J 290,302 

Time series, 4,287.297 
and factor analysis, 287 

Total sum of squares - SS(Tot), 11 ,25,178 
distributions, 178,184-186,223 
equalization of 189,205,259,262 
influence of large, 130,147,189 
partitioning of, 25,67,77,79,81,82 
and standardization of 5S, 25 

Trace, 11 
Trait-like, 296,308 
Transfomational freedom, 52 

CANDECOMP, PARAFAC1, 56 
INDSCAL, 57,66 
PARAFAC2, 55 
Tucker2 model, 108 
Tucker3 model, 108 

Transformation procedures (rotations) 
core matrix, 58,59,108 
components, 24,70,108,155,209,231,282 
extended core matrix, 95 

comparison ON and NS, 116-124 
orthonormal (ON), 117 
non-singular (NS), 108,117 

Transition matrix, 292 
Trends (= time components), 298 
Treppen Iteration, 87 
Triad, 27 
Trilinear models, 131 
Triple centring, 139,142,143,145 
Triple personality study, 132,227-241 
TUCKALS2 (T2), 23,29,95,96,142 

algorithm, 95,96 
core matrix (see extended core matrix) 
external analysis, 70,270 
implementation, 152 
and individual differences scaling, 256-263 
optimal scaling, 69 

TUCKALS3 (T3), 22,29,142,143 
algorithm, 89-92 

accuracy, 76,96-98 

convergence, 76,90-92 
correctness, 97-98 
definition, 90 
extimation of overall mean, 148 
external analysis, 70 
global minimum, 86 
initialization, 84,85,92-94 
implementation, 22,30,152 

average subject weight, 259,260 
core matrix (see core matrix) 

397 

for longitudinal analysis, 305,306,311 
optimal scaling, 69 

TUCKALSn, 73 
Tucker methods, 12,76-79,152-154 

Method I, 9,30,73,77,78 
Method I!, 9,78 
Method II!, 9,76,144 
advantages over ALS, 23,67 
coounon factor method, 62,76 
compared to ALS, 23,67,153,154 
and covariance slcucture models, 67,68 
disadvantages 01, 23,67,78,79,305 
initialization for ALS, 30,73,94 
and length components, 154 
and longitudinal data, 305,306 
scaling components, 23,154 
scaling component weights, 154 

Tucker2 model, 10,12,21,23,51,54,55,57-59,76, 
153,293 

alternating least squares, 95,96 
formal description, 22,23 
generality of, 59 

Tucker3 model, 10,12,21-23,51,52,54,76,79-92, 
130-141 

with constant first components, 141 
exact solution, 79,84,85,93 
formal descriptions, 21,22,76-85 
generality, 57-60 
informal descriptions, 14-21 
least squares solution, 71,79-85 
mOdified, 141 
special case of PARAFAC1/CANDECOMP, 58-60 
unique exact solution, 76,85,89 

Tuckern model, 73 
Tucker's common factor analysis model, 10,60, 

61,65 
TV violence, 180 
T2 (see Tucker2 model, TUCKALS2 algorithm) 
T3 (see Tucker3 model, TUCKALS3 algorithm) 

u 
Uncentred modes, influence on components, 145 
Uncondi tiona 1 da ta, 48 
Unfolding 

external analysis t 69,270 
three-way, 48 

Unidimensionality and lack of interaction, 338 
Unique variances, 10,49,61,63 

separate estimation of, 62,63 
Uniqueness 

CANDECOMP, 56 
core matrix, 80 
INDSCAL, 57,66 
PARAFAC1, 56 
PARAFAC2, 55 
Tucker3 solution, 76,85,89 

Unmodelled systematic trends, 172 
Unstructured sample of residuals, 176,179,191 
Upperbounds of SS(Fit), 30,94-95,105 

v 
Variable dependence, 287,288,295 

modelling of, 287 
and serial dependence, 288,295,298 
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Variances (see also variation) 
arbitrary, 133,134 
comparable, 149-151 
equalization of, 189,205,259,262 
incomparable, 26,133,134 
influences of large, 130,147,189 
interpretable, 149-151 
scaling of, 133,134,149-151 
uninterpretable, 26 

Variation (see also variances), 11 
accounted for (see expla~ned variation) 
a priori sources, 138 
a posteriori sources of, 139 
approximate percentage of (in INDSCAL, ALS-

CAL), 259,260 
due to arbitrary means, 133 
explained (see explained variation) 
rescaling of overall, 96 

Varimax rotation, 70,155 

w 
Wards (elections), 331 
Way, 8 

usage, 8 
Weighted model (see PARAFAC1, CANDECOMP), 69 
Well-fitting point, 39,40,178,188 
WISC-R, 274 
Within 

condition covariance matrix, 67 
sum of squares, 151 

x 
X2 -test, 327 

y 
Years, 298 

z 
Zero-sum 

assumption, 136,139,140 
restrictions, 140 
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SAMENVATTING 

Met dit boek worden drie doelen nagestreefd. In de eerste 

plaats is het een monografie over drieweg-hoofdassenanalyse, en er 

is gepoogd aIle belangrijke aspecten van deze techniek te bespre­

ken. Verreweg het grootste gedeelte van de literatuur op dit ter­

rein, alsmede aanverwante gebieden uit de meerdimensionale schaal­

methoden worden (kritisch) besproken. 

In de tweede plaats worden verbeterde methoden gepresenteerd 

om drieweganalyse uit te voeren, alsmede de consequenties hiervan 

doorgelicht. Ook worden theoretische bijdragen gepresenteerd over 

het transformeren van kernmatrices naar wat t simpele structuren t 

worden genoemd. 

Het verschaffen van een handleiding van de methoden in de 

praktijk van het sociaal-wetenschappelijk onderzoek kan worden 

aangemerkt als een derde doel bij het schrijven van dit boek. Zowel 

in- als uitvoerproblemen en interpretaties worden in het algemeen 

besproken en in detail toegelicht bij de analyse van een dertiental 

voorbeelden. Om de bruikbaarheid voor de praktijk te verhogen is 

een (vrijwel compleet) overzicht gemaakt van toepassingen van 

drieweganalyse, die bovendien geclassificeerd zijn naar inhoude­

lijke onderwerpen, zodat een ieder aansluiting kan zoeken bij 

vakgenoten die eerder deze techniek hebben toegepast. 

De eerste twee hoofdstukken hebben een algemeen karakter. 

Hoofdstuk 1 is een organisatorische wegwijzer voor het boek. Het 

bevat een leeswijzer, een woordenlijst en een overzicht van de 

gebruikte notatie. Hoofdstuk 2 is het boek zelf in een notedop en 

kan worden opgevat als een geannoteerde inhoudsopgave of als een 
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handreiking voor diegenen die geen zin of tijd hebben om het hele 

boek door te lezen. 

De hoofdstukken uit Deel I richten zich op de theoretische 

aspecten verbonden met drieweg-hoofdassenanalyse. In Hoofdstuk 3 

worden de modellen (het Tucker3 en Tucker2 model) die de basis 

vormen voor de rest van het boek in de context geplaatst van andere 

modellen die op dit terrein zijn voorgesteld. Deze laatste modellen 

kunnen in twee klassen worden onderverdeeld, namelij k hoofdassen­

modellen en factoranalyse-modellen, waarbij de laatste een stochas­

tische weg hebben en bij de eerste klasse aIle wegen niet-stochas­

tisch zijn. De klasse van hoofdassen-modellen kan weer worden 

onderverdeeld in twee subklassen, namelijk die met drie 'ingedikte' 

wegen, zoals het Tucker3 model, drieweg-schaling, PARAFACI en 

INDSCAL, en die met twee ingedikte wegen zoals het Tucker2 model, 

PARAFAC2, IDIOSCAL, CANDECOMP en INDSCAL. Dit soort modellen wordt 

doorgaans geanalyseerd met behulp van alternerende kleinste-kwadra­

tenmethoden, terwijl de factoranalyse-modellen worden geanalyseerd 

met technieken uit het domein van covariantie-structuurmodellen. 

Hoofdstuk 3 besluit met de bespreking van een aantal mogelij ke 

toevoegingen aan de Tucker modellen, zoals schattingsprocedures 

over ontbrekende gegevens, optimale schaalprocedures voor gegevens 

van lagere meetniveaus, faciliteiten om externe analyses uit te 

voeren, uitbreidingen naar n wegen, etc. 

Hoofdstuk 4 bevat de (technische) kern van het boek. Alterne­

rende kleinste-kwadratenmethoden (ALS) voor de Tucker modellen 

worden gepresenteerd. Daarbij komen aan de orde: het bestaan van 

exacte en benaderende oplossingen, constructie van ALS-algoritmen, 

hun convergentie, alsmede een aantal andere technische details. 

Drie bestandjes worden gebruikt om de nauwkeurigheid en de correct­

heid van de algoritmen te bestuderen en om na te gaan hoe gevoelig 

de oplossingen zijn voor toenemende toevalsfluctuaties in de gege­

vens. 

Deel I eindigt met een bespreking in Hoofdstuk 5 van methoden 

om kernmatrices zo te transformeren dat ze een eenvoudige structuur 

krijgen, bijvoorbeeld met veel nullen. Twee algoritlllen om dit te 

bereiken worden besproken; de ene gebaseerd op orthonormale trans-
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formaties en de andere op niet-singuliere transformaties. De pro­

blemen wat betreft de laatste methode worden gesignaleerd. Twee 

bestanden worden gebruikt om de methoden te illustreren en te 

evalueren. 

Ook Deel II bevat voornamelijk theoretische verhandelingen, 

maar nu ligt de nadruk op die problemen die voortkomen uit het 

toepassen van drieweg-hoofdassenanalyse in de praktijk. Drie gebie­

den worden benadrukt: het voorbewerken van de oorspronkelijke 

gegevens zodat ze geschikt zijn voor een drieweganalyse, het be­

werken van de ruwe uitvoer zodat die gemakkelijk te interpreteren 

valt, en het analyseren van het gedeelte van de gegevens wat niet 

overeenkomt met het gebruikte drieweg-model. 

Het eerste deel van Hoofdstuk 6 geeft een overzicht van voor­

stellen die gedaan zijn om ruwe gegevens zo te bewerken dat ze 

geschikt zijn voor een (drieweg- )hoofdassenanalyse. Met name me­

tho den om verschillen in gemiddelden en varianties te elimineren 

worden behandeld; hierbij wordt een verschil gemaakt tussen (on) 

interpreteerbare en (on)vergelijkbare gemiddelden en varianties. 

Een aantal modellen die gebruik maken van interpreteerbare gemid­

delden en varianties worden besproken, met name die welke bestaan 

uit additieve termen voor de gemiddelden, multiplicatieve termen 

voor de varianties en product-termen voor de componenten. Ook wordt 

het probleem van iteratieve standaardizatie aangestipt. 

In het tweede deel van Hoofdstuk 6 wordt er aandacht geschon­

ken aan het interpreteren van de resultaten van een drieweganalyse 

en aan methoden om deze interpretatie te vergemakkelijken en te 

verbeteren. Hierbij passeren het schalen en interpreteren van 

componenten en de kernmatrix de revue, alsmede het gebruik van 

'gezamenlijke componentenruimtem' en hun afbeeldingen, en verder 

het gebruik van component scores in drieweganalyse. 

In Hoofdstuk 7 wordt de functie en het nut van residuenanalyse 

besproken voor (drieweg- )hoofdassenanalyse. Ook worden procedures 

en gedetailleerde aanbevelingen voor het behandelen van drieweg­

residuen gepresenteerd en geillustreerd. Met name komen aan bod: 

variantieanalyse op gekwadrateerde residuen, kwadratensommengra­

fieken, en het gebruik van normale kansverdelingsgrafieken. 
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In Deel II wordt de theorie uit de voorgaande delen toegepast 

en toegelicht met behulp van diverse bestanden. Elk van de geana­

lyseerde bestanden is opgenomen als een vertegenwoordiger van een 

bepaalde klasse toepassingen; onderzoekers met soortgelijke gege­

vens kunnen mogelijk hieruit inspiratie putten voor een geschikte 

aanpak voor hun eigen analyse. 

Hoofdstuk 8 (Attachment study) bevat een gedetailleerde ana­

lyse van de reactie van kleine kinderen op een gestandaardiseerde 

procedure die de aard en de mate van gehechtheid van die kinderen 

aan hun moeder poogt te meten. De gegevens, scores van individuen 

op een aantal variabelen onder verschillende condities, zijn ken­

merkend voor het soort gegevens dat met vrucht via drieweganalyse 

kan worden onderzocht. 

Hoofdstuk 9 (Triple personality study) bevat een voorbeeld van 

gegevens verzameld met behulp van semantische differentialen, waar­

bij met name de individuele verschillen van groot belang zijn. Ver­

schillen in gebruik van de relaties tussen schalen en begrippen 

staan centraal in deze analyse. De gegevens zijn afkomstig van een 

vrouw met drie verschillende persoonlijkheden: Eve Black, Eve White 

en Jane. De behandeling van de gegevens kan als voorbeeld dienen 

voor andere onderzoeken waarbij vergelijkbare beoordelingsschalen 

of testen worden gebruikt. 

Hoofdstuk 10 (rTP study) bevat een voorbee1d van wat asymme­

trische gelijkenisgegevens zou kunnen worden genoemd. In plaats van 

een gedetailleerde behandeling van de gegevens wordt dit hoofdstuk 

gebruikt om de 'theoretische proefpersoon' te introduceren, dat wil 

zeggen een proefpersoon geconstrueerd op basis van theoretische 

inzichten. Zo' n persoon is met name nuttig om als leidraad te 

gebruiken bij de interpretatie van de hoofdassen in een proefper­

soonsruimte. 

Hoofdstuk 11 (Cola study) bevat een heranalyse van gegevens 

over de smaak van cola's, waarbij met name aandacht wordt besteed 

aan de vergelij king van gelij kenisoordelen en oordelen verzameld 

met beoordelingsschalen. De resultaten van de drieweganalyse op de 

gelijkenisoordelen worden vergeleken met die van een drietal schaal­

methoden voor individuele verschillen, aangezien dit soort gegevens 

doorgaans met deze methoden wordt geanalyseerd. 
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Hoofdstuk 12 (Four ability-factor study) laat zien hoe drie­

weganalyse kan worden gebruikt om correlatiematrices te analyseren. 

Hiermee wordt een mogelijkheid aangegeven om transversale gegevens 

eventueel uit verschillende bronnen te onderzoeken. Vooral in die 

gevallen waarin slechts de correlatiematrices gepubliceerd zijn, 

maar niet de oorspronkelij ke gegevens kan een dergelij ke analyse 

nuttig zijn. Het voorbeeld behandelt de analyse van matrices met 

correIa ties tussen verschillende intelligentietesten, die afkomstig 

zijn van normale en zwakzinnige kinderen van verschillende leeftij­

den. 

Hoofdstuk 13 (Hospital study) behandelt de analyse van multi­

variate longitudinale gegevens met behulp van drieweganalyse, geil­

lustreerd met een voorbeeld uit de organisatiesociologie. In de 

studie worden de structuren in de organisatie van Nederlandse 

ziekenhuizen bekeken over de jaren heen. Verschillende problemen 

met betrekking tot de analyse van dergelijke gegevens worden be­

sproken, met name de relatie tussen drieweganalyse en autoregres­

sie-modellen. 

Hoofdstuk 14 (Learning-to-read study) bevat een uitbreiding 

van Tucker's werk over leercurven. De leercurven in deze studie 

zijn afkomstig van kinderen die in de loop van een jaar leren lezen 

en ze worden gevormd door de scores op een aantal testen die hun 

leesvordering meten. Een vluchtige vergelijking met resultaten van 

een lineaire logistische analyse op dezelfde gegevens wordt ge­

maakt. 

Hoofdstuk 15 (Leiden electorate study) bevat een wat afwijkend 

voorbeeld, aangezien het gaat om de analyse van residuen uit kruis­

tabellen met frequenties, in plaats van een analyse van gemeten 

gegevens. De uitslagen van Leidse kiesdistricten in drie verschil­

lende verkiezingen vormen de basis voor de analyse. Allereerst 

worden de relevante interacties in de gegevens bepaald met logline­

aire analyse; vervolgens zijn de residuen van een aantal loglineai­

re modellen onderzocht met behulp van drieweganalyse. De gebruikte 

procedure is een drieweg-generalisatie van correspondentieanalyse. 
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"Three-mode Principal Component Analysis: Theory and Applications" 

(including a very selective list of new three-mode papers) 

Pieter M. Kroonenberg 

DSWO Press, Wassenaarseweg 52, Leiden, The Netherlands 
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Page Line Correction 

10 

18 

19 

25 

25 

25 

26 

26 

48 

48ff 

49 

49 

50 

12ff 

6 

8 

10 

-12 

15 

19 

- 1 

-5 

2-4 

These lines should read: 'but it specifies common 

angles between the axes of the stimulus space. 

However, differential weighting of these axes is 

allowed. ' 

Formula should read: hjlSill + hj2Si21. 

In Figure 2.1 The labels 'Standard PCA' and 'Q-PCA' 

should be interchanged. 

'SS(Data)' should read 'SS(Tota1)'. 

'SS(Dataf)' should read 'SS(Tota1f )'. 

Delete two sentences: 'Similarly [ •. J information'. 

'j-centring' should read 'i-centring /standardi­

zation' . 

'lk-centring' should read 'lk-centring /standardi­

zation' • 

'183, 186' should read '83,86'. 

Chapter 3. Kiers (in press-a, in press-b) has 

presented two new taxonomies for three-way models. 

His treatment incl~des several models from the 

French school (see also Carlier, et al., 1989, and 

Lavit, 1988). 

Figure 3.1. The statement for going from IDIOSCAL to 

PARAFAC2 is incorrect. The proper expression can be 

found on p. 55. 

modeU 

The 'number of parameters' indicated in the table 

are not corrected for dependence between the 

parameters. e.g. for the Tucker3 model, the number 

4 



50 

50 

51 

53 

53 

56 

57 

58 

58 

61 

62 

64 

65 

68 

70 

80 

4 

7 

10-13 

3 

-10 

18,19 

13 

4 

12,13 

3 

8 

- 4 

4 

-10,-12 

- 2 

of independnet parameters should be decreased by 

's2+t2+u2 ', and the Tucker2 model by 's2+t2 ,. 

In the table stubs 'diff.' and 'red.' should be 

interchanged. 

Three-mode scaling: '2ls' should read 'Is'. 

The Tucker2 and Tucker3 models are not necessarily 

orthonormal, in fact Tucker did nor require this. 

The orthonormality is an expedient constraint for 

solving the estimation problem, and may be dropped 

later, as can for instance be seen in Chapter 5. 

'cpp'r = cpp'r' should read 'cpp'r cp'pr'. 

'p.90-92, and section 6.2)' should read 'p.90-92), 

and section 6.2'. 

The 'weak conditions' mentioned here are too 

strongly formulated, see the references mentioned. 

In contrast to what is implied in the text, the 

expression Z = GC(H'.E') refers to a 'lateral plane' 

representation, I.e. both Z and C are juxtaposed 

lateral planes. The proper expression for a 

'frontal plane' representation as used verbally in 

the text and in the next formula is Z = GC(E'.H'). 

'W =' should read 'Wk =' 
Such procedures have been recently discussed by 

Harshman, Kruskal, and Lundy in various permutations 

(see reference list). 

'for the. communalities' should read 'for factor 

analysis by estimating the communalities'. 

'estimate' should read 'estimating'. 

Sand s should be underlined. 

Sans s should be underlined. 

Section 3.7. One of the reviewers missed a section 

on resampling plans, such as the bootstrap (Efron, 

1982). One application using this approach is 

contained in Kroonenberg & Snyder (1989). 

The papers referred to in this section have now been 

published: Van der Kloot & Kroonenberg (1985) and 

Van der Kloot, Kroonenberg, & Bakker (1985). 

'cpqr ' should read 'cpqr • 
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80 

82 

83 

83 

83 

84 

84 

86 

87-89 

103 

20 

5 

- 6 

11 

15 

- 2 

'Penrose (1955 -' should read 'Penrose (1956 -', and 

the reference given on p. 376 is incorrect (see 

below) • 

It has been shown in Brouwer (1985) that the 

SS(Fit)/SS(Total) R2, given the data have been 

centred such that the overall mean is zero. 

Formula should start with a minus sign. 

Index of last summation sign should be 'r' rather 

than" q' " 

The statement 

applicable for 

'the Hessian is negative' is not 

the present maximization with 

restrictions. Correct approaches may, for instance, 

be found in Luenberger (1973, p. 226). 

'only the assess' should read 'only to assess'. 

Add" Zi'j'k' " to the end of the formula. 

Two alternatives have been proposed for the TUCKALS 

algorithm. Weesie & Van Houwelingen (1983) 

constructed an algorithm based solely on regression 

techniques, rather than on eigenvalue-eigenvector 

decompositions, by including the estimation of the 

core matrix into the iterative process. The 

advantage of their approach is that missing data can 

be handled in a natural straightforward way. 

Murakami (1983) produced an ALS algorithm for the 

Tucker2 model which uses the multivariable­

multioccasion matrix as its starting point. This 

gives the possibility of analysing published 

matrices of this kind, and is an alterantive for the 

Invariant Factors Model of McDonald (1984). 

Recently Kroonenberg, Ten Berge, Brouwer, & Kiers 

(1989) have shown that the Bauer-Rutishauser step in 

the TUCKALS algorithms may be replaced by the 

modified Gram-Schmidt orthogonalization procedure. 

The latter is slightly faster than the former. 

The proof assumes orthonormality, while at p.81, it 

was suggested that the proof should be valid without 

this assumption. A correct proof is given in Ten 

Berge, De Leeuw, & Kroonenberg (1987). 
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113 

128 

131 

138ff 

141 

151 

153 

- 5 

3-9 

5 

154 14ff 

A different more direct proof is contained in Ten 

Berge, De Leeuw, & Kroonenberg (1987). 

The discussion on this page should have referred to 

Green (1952). 

Delete from (5.3): 
, and K'K .. Is 

, 

The diagonality problem (NS) is essentially 

equivalent with Harshman's PARAFAC (Harshman, & 

Lundy, 1984a). A more detailed report on this 

equivalence is contained in Brouwer (1985), and 

related material is given by Harshman, Kruskal, and 

Lundy in various permutations (see reference list). 

Sections 6.1-6.8. The issue of centring and 

standardization has recently received a much more 

detailed and algebraic treatment (Harshman & Lundy, 

1984b; Kruskal, 1984). Some additional commentary 

see Harshman and Lundy (1985). 

'pca-data' are commonly called 'profile data'; 

'mds-data' are commonly called 'proximity data'; 

'anova-data' resemble 'conjoint measurement data'. 

see Shepard (1972). 

Three-mode data. The ANOVA-first approach (see also 

p.195) has been treated in considerable detail by 

Kettenring (1983a,b) using the PARAFAC model for the 

three-way decomposition. An application with the 

Tucker models can be found in Kroonenberg & Van der 

Voort (1987). 

'giphjqekr' should be 'giphjpekp'. 

In contrast to the statement, averages of 

correlations are correlations. 

Before the third summation sign an ' .. ' should be 

inserted. 

Components as latent elements. Probably all that can 

be said is that the major components span a space 

which captures most of the common variability. 

Whether there are directions in this space which 

correspond to latent entities or theoretical 

constructs is a different matter, and thus the 

statements in this section stand to be corrected. 

7 



155 

l55ff 

159 

160 

160 

164 

165 

167 

180 

202ff 

227ff. 

257 

8 

18,19 

1-4 

7-15 

- 3 

2,3 

-4,5 

20 

'session' should read 'section'. 

Rotation of components. Most reviewers of the book 

have chided the author for not treating this issue 

in more depth. (see the reviews 

arguments). 

for detailed 

The diagonal matrix lambda should be absorbed into H 

rather than G (see also remark, p. 19). 

A diagonal cork matrix as suggested here, can only 

occur if Ep,q CpqrCpqr' 0, as required by the 

all-orthogonality of the core matrix (see Weesie & 

Van Houwelingen, 1983). Thus 

Gl = 2 0 
o 2 

G1 2 0 

o 2 

and G2 = -lOis possible, but 

o 1 

and G2 lOis not. 

o 1 

The cited example indeed shows the required pattern. 

The diagonal/antidiagonal phenomenon is also in 

c~~cordance with the all-orthogonality. 

'HVr ' should read 'HVr '. 

'When Cr [ •. ) be used' should read 'When Cr is not 

square with, say s(t, Cr selects as-dimensional 

subspace from the t-dimensional space of H'. 

'h 'should read 'b '. .q .q 
'1.67' should read '1.64'. 

Chapter 8: The final and corrected data have now 

been reported in Van IJzendoorn, et al. (1985) with, 

however, very condensed information on the three­

mode analysis. 

Chapter 9. Triple personality data. A reworked 

version of this chapter was published as Kroonenberg 

(1985). 

Section 11.2. From the introduction of this section 

one might get the impression that unlike methods for 

multidimensional scaling three-mode principal 

component analysis needs similarities. The remarks 

made refer to the fact that the output of the three­

mode programs are easiest to read when high values 

indicate closeness, rather than separateness. Such 
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274ff 

275 7ff 

an effect can easily be obtained by converting 

dissimilarities into inner products by the standard 

Torgerson procedure for classical multidimensional 

scaling. When the input data themselves are already 

considered proportional to inner products, then high 

values should indicate closeness. 

Chapter 12: The reference to Levin (1966) was 

omitted in this chapter. An extensive treatment" of 

the analysis of sets of correlation/covariance 

matrices is now available in Kroonenberg & Ten Berge 

(1987, 1989). Furthermore, insufficient justice was 

done to Procrustes procedures (see Gower, 1975; Ten 

Berge, 1982). 

Chapter 12: The analysis is in this chapter is 

performed on a set of correlation matrices. There ae 

several reasons why such an analysis is less than 

desirable (Harshman and Lundy, 1984, p.141). 

Especially within the context of structural equation 

modeling, there is strong opposition to analysing 

correlation rather than covariance matrices (see 

e.g. Joreskog, 1971; McDonald, 1984, 3p.292; 

Meredith, 1984). The main argument centres around 

the different size of one standard deviation unit 

for the same variable across different samples. 

The second paragraph on p. 275 contains somewhat 

confusin~ statements about eigenvalues. The 

remarks taken from Harshman's review following 

clarify the 

analysis using 

issue: "When performing a two-way 

a singular value decomposition (SVO) 

of raw data, the eigenvalues and related sums of 

squares are obtained from the squared singular 

values, whereas when doing an SVD of a covariance or 

correlation matrix, one examines the unsquared 

singular values to obtain the eigenvalues and 

related sums of squares of the original data from 

which the covariances were computed. Likewise, when 

TMFA is applied to raw data, one looks at squared 

core elements, but when it is applied to 
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313ff • 

322 

326ff 

327 
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360 

362 

364 

371 

376 

376 

377 

393 

5 

- 1 

19 

16 

- 0 

6 

16-18 

- 9 

covariances, one should examine the un squared core 

elements. If this is done, 

from two-way and three-way 

comparable." (p.33!). 

"eigenvalues" obtained 

methods are directly 

Chapter 13. For a different analysis of the hospital 

data see Kroonenberg, Lammers, & Stoop (1985). 

Chapter 14. These data were also analysed by curve 

fitting with logistic regression, see Jansen & Bus 

(1984). 

The column means in Table 14.4 should read: 

'12 13 12 27' giving column effects '-5 -4 0 10', 

and residuals for Q of '-4 -2 102 0'. Eliminating 

the 'maybe too many positive scores'of Q (1. -4,-5), 

and invalidating the remark about Q. 

Chapter 15. Strictly speaking, it is not correct to 

use the name 'correspondence analysis' in this 

chapter, as the basic properties of correspondence 

analysis do not hold. For a further investigation 

into a proper three-mode correspondence analysis, 

see Kroonenberg (1989). 

Delete '+ log rij' 

'-18' should read '-8'. 

'Nesselroode' should read 'Nesselroade'. 

'model of application' should read 'model by 

application' • 

Insert after Einhorn: 

Fienberg, S.E. 

categorical data 

Press, 1980. 

The analysis of cross-classified 

(2nd edition). Cambridge, MA: MIT 

'1987' should read '1978'. 

'791' should read '591'. 

The correct reference is: Penrose, R. (1956). On the 

best approximate solutions of linear matrix 

equations. Proceedings of the Cambridge 

Philosophical Society, 52, 17-19. 

'alternative' should read 'alternating'. 

Entry Joint plots: '163-165' should read '164-166'. 
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Three-mode principal component analysis 
Theory and applications 
Pieter M. Kroonenberg 

In multivariate analysis the data are usually contained in a single matrix with n rows 
and m columns, corresponding with n individuals and m variables. Or, to put it 
differently, the data have two modes: individuals and variables. It has already been 
known for a long time that this particular two-mode representation of data is too 
restrictive in a number of very important cases. Often there are three modes, the 
additional mode being replications, occasions, conditions, points-of-view, and so 
on. The data must be collected in a three-mode matrix, which has n rows, m 
columns, and k slices. Of course this 'data-box' can be flattened into an ordinary 
two-way matrix in various ways, but often there is no unique obvious way in which 
this should be done. Moreover most data analysis techniques that can be applied to 
the two-way matrix obtained by summation or concatenation over one of the 
modes, simply ignore the fact that the data were originally three mode. 

In the early sixties Tucker introduced a form of principal component analysis which 
works directly on the three-mode matrix, and has parameters for all three modes. 
This was an enormous step ahead, because there was no need to flatten databoxes 
any more. Somewhat later individual differences models were introduced in 
multidimensional scaling. They are also based on three-mode data, and pretty 
soon the two developments were integrated by Tucker and Carroll. For the 
individual differences models specialized algorithms are available, but for 
Tuckers's three-mode component model the available algorithms were somewhat 
ad hoc and suboptimal. 

In Three-mode principal component analysis perhaps the main emphasis is on the 
development and study of a satisfactory algorithm for Tuckers's technique, 
together with a friendly computer program. Butthis is not all. Models for three-mode 
data are also discussed in considerable detail. Important data analytic decisions, 
which must be taken before the programs can be applied, are spelled out. A 
chapter on the analysis of residuals shows that the job is not done if the program 
has run. About half of the book is used to analyze meticulously a number of 
examples, which are chose"n in such a way that each of them is representative for a 
large class of data structures. There are semantic differentials, three-way contin­
gency tables, replicated correlation matrices, three-way similarity data, and multi­
variate time-series data. All examples are used to show which plots can be made, 
how the residuals should be analyzed, how the key parameters should be 
interpreted, and so on. 

Three-mode principal component analysis says about everything there is to say 
about this class oftechniques. The book does this on a mathematical and computa­
tional level, but more importantly it illustrates everything that is said by using a 
number of very real and very interesting examples. 
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