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PREFACE

This manual attempts to present, using nontechnical
language, the basic information necessary to use the
programs in the PARAFAC Analysis Package and to understand
their output. It 1is assumed throughout that the user is
reasonably familiar with his/her own computer system; no
attempt has been made to include, for instance, system
control language with any of the example input decks.

This manual does not discuss the PARAFAC model 1in detail,
nor does it present proofs. It is strongly recommended that
you read the references cited, especially Harshman (1970)
and Harshman and Lundy (1984a, 1984b) for more theoretical
discussion and background about the model.

Some information in this manual is optional, depending on
the user's level of expertise and what his/her purposes are.
Most wusers will omit Appendix A (matrix notation) .
Appendices B and C (formulas, etc.) are provided for those
who are interested, but are not required reading; the same
can be said for Sections 6.5 and 6.6 (special loadings
interpretations, etc.). Users who do not synthesize data
will not need to refer to Sections 2.5 and 2.6, nor Chapter
T

The authors 1invite suggestions for improvement to the
manual. Comments may be addressed to them C/O Scientific
Software Associates.






CHAPTER 1

GENERAL INTRODUCTION

1.1 MANUAL ORGANIZATION

Chapter 1 is devoted to a summary of the manual
contents (this section), a brief description of the PARAFAC
Analysis Package programs (Section 1.2), a discussion of
terminology that will be used in the program documentation
(Section 1.3), and a comparison of PARAFAC to some other
three-way factor analysis procedures (Section 1.4). If you
are not already familiar with the PARAFAC model, you should
read Section 1.2 and the references cited there, so that you
know whether or not PARAFAC is appropriate for your data.
You should also read Section 1.3 so that you will understand
what is meant by various terms that appear elsewhere in the
manual.

The remainder of the manual is documentation for the
programs in the PARAFAC Analysis Package. Chapter 2
describes PARAFAC input for data analysis and data
synthesis. Examples of input and output are provided.
Chapter 3 describes input and output for the wutility
programs DIMS, PFPLOT, CMPARE and DISTIN, and supplies
examples for each.

Chapters 4-8 contain explanations for practical and
theoretical issues that arise when using PARAFAC. Chapter 4
discusses various types of preprocessing and should be
referred to before you analyze your data. Chapter 5 is a
description of the PARAFAC output. Chapter 6 elaborates on
diagnostic indicators and on questions of interpretation.

Data synthesis is covered in Chapter 7, and informative
messages output by PARAFAC (e.g., warning messages) are
listed in Chapter 8.

Additional information is contained in several
appendices. Appendix A is a short review of matrix
notation; most users may omit it. Appendix B 1lists the
computational formulas used by PARAFAC. Included are
formulas for fit values (e.g., Mean Square Error, Stress),

data preprocessing (e.g., centering, normalization), factor
relationships (e.g., cross-products, correlations, etc.).
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Appendix C describes the random number generator used by
PARAFAC and gives the equations used to simulate various
distributions from which random factor loadings, error
components, etc. are selected.

Appendices D and E (if included) give general
instructions for installing the PARAFAC Analysis Package
programs. This information is not required by those using a
program that is already installed.

1.2 PARAFAC ANALYSIS PACKAGE SUMMARY

The PARAFAC Analysis Package is a set of Fortran batch
programs which enable the user to perform factor analysis
and multidimensional scaling of two- and three-way data
arrays.

The main program in the Package is, of course, PARAFAC,
which does the actual analysis. PARAFAC (for Parallel
Factors) fits the three-way factor analysis model based on
the Principle of Proportional Profiles (Cattell, 1944):

b

b + ... t a

- + . s

X3k - 231P51%1 T 212°32%2 in°3inkn T ®ijk
where x is a data value in a three-way array, a, b and c are
loadings for factors 1.2,..., n in the three modes of the
data; and e is random error. For example, this model could
be applied to an array of people's ratings of stimuli on
various scales; the three modes of such an array would be
ratings scales, stimuli and subjects. (Throughout this
manual, a distinction is not explicitly made between the
PARAFAC model and the PARAFAC program; the word "PARAFAC"
is used for both. However, the context wusually makes it

clear which is meant.)

The mathematical bases of the model are discussed by
Harshman (1970, 1972, 1976), Harshman and Berenbaum (1981),
and Harshman and Lundy (1984b). PARAFAC makes the same
assumption as two-way factor analytic procedures do (i.e.,
that the data can be decomposed into the additive effects of
a few basic underlying factors). It also makes assumptions
that are related to the three-way nature of the data:

1. The same common factors are present in several
two-way slices of the three-way array (although
some factors can be missing from some slices).
These factors need not have the same relative
importance within different slices.

2. System variation occurs in the data (i.e., changes
in the wunderlying factors are proportional across
levels of the third mode; see Harshman, 1970,
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Pp»19-21) »

. 3. For analysis of raw or profile data, but not for
covariance analysis, measurements must be of the
same objects (or people) on the same variables for
every level of the third mode (e.g., for every
occasion or condition).

The user should check that the PARAFAC model is appropriate
for his/her data. PARAFAC can be directly applied to the
raw data if all three assumptions are fulfilled. Otherwise,
covariances may have to be computed from the raw data and
analysed by PARAFAC (covariance analysis 1is discussed in
Chapters 4.4 and 6.7) .

The user should also select preprocessing that will
make the data more suitable for PARAFAC analysis. For
example, interval scale data should be centered (a PARAFAC
option will do this) to remove constants and transform it to
ratio scale data, since PARAFAC expects ratio scale data.
(Centering and other types of preprocessing are discussed in
more detail in Chapter 4.)

Alternating Least Squares, with overrelaxation to
accelerate convergence, 1is the fitting method used. It
provides a least squares best fit with the important
"intrinsic axis property" (i.e., the axis orientation is

‘ unique when the data fulfil certain conditions, such as
those described in Assumption 1 above). This uniqueness

property eliminates the problem of factor rotation that
occurs in two-way factor analysis.

PARAFAC has numerous options which permit considerable
flexibility 1in the use of the program. Default values are
assigned for most of the options if no values are specified
by the user. It 1is recommended that the user take the
defaults if he/she is unsure of which value to use.

Some particulariy useful features of PARAFAC are:

1. Missing data capability

2. Preprocessing options which allow centering and/or
normalizing of the data on one, two or three modes

(see Chapter 4)

3. Orthogonality or =zero-correlation constraints on
the factors in one, two or three modes

4. Data synthesis capability (see Chapter 7)
It should be noted here that PARAFAC can also be used

‘ to perform traditional two-way factor analysis, if the data
array has only one level in Mode C. However, as with other
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two-way factor analysis procedures, the solution will be
rotationally indeterminate; the factors will have to be
rotated using some external criterion. This two-way
analysis capability will not be stressed, since the main
contribution of PARAFAC is in the domain of three-way data
analysis.

In addition to PARAFAC, four '"utility" programs are

supplied (see Chapter 3). They are included mainly to
complement PARAFAC, but three of the four also have more
general uses. The utility programs are as follows:

1. DIMS redimensions PARAFAC arrays and can also be
used to alter PARAFAC I/O to suit the user's
installation. It is written specifically for use
with PARAFAC.

2. PFPLOT plots points on a 130-column Ilineprinter,
along a single axis or on the plane defined by two
axes. Normally, it 1is wused to help interpret
factors from a PARAFAC analysis, but it also
accepts input of a more general nature.

3. CMPARE compares factors from several different
PARAFAC solutions by merging them into one file and
computing cross-products and correlations among all
the merged factors. Like PFPLOT, it also accepts
more general input.

4. DISTIN preprocesses data (usually similarity or
dissimilarity measures) so that PARAFAC can then be
used to do multidimensional scaling. Or, DISTIN
may be wused to transform data for some other
analysis procedure.

1.3 DEFINITION OF TERMS

1.3.1 PARAFAC Notation

Any matrix can be thought of as having two '"ways'" or
"directions" associated with it (i.e., down and across)
--hence the term "two-way'" factor analysis. PARAFAC, which
fits a three-way model, is an extension of two-way factor
analysis. Instead of one matrix, a series of data matrices
is analysed. The data can be visualized as a block if the
matrices are thought of as being stacked one behind the
other, as shown below:
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............
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Mode B ; ;.;>/ﬁ Mode C

.............

ey

Mode A
It is evident that such an arrangement, called a data
array, has three directions associated with it (i.e., down,
across, and '"back"'"). These ways or directions are referred
to in the manual as '"modes". (Some, e.g. Carroll and
Arabie, 1980 have made a distinction between "ways" and
"modes'", but here we do not.) The letters "A", "B" and "C"
designate the specific directions: "Mode A" is across,

"Mode B" is down, and "Mode C'" is back.

As defined, '"Mode A", "Mode B" and '"Mode C" are general
terms which refer to any three-way data set. Of course, any
given data array has a specific meaning for each of its
three modes, depending on what was measured (e.g., rating
scales, stimuli, people) and on how the data are arranged in
the array. Each mode has a unique meaning if raw data is
input, but if covariance or scalar product matrices are
input instead, then Modes A and B have the same meaning.

Mode A is always regarded as the "first" mode, Mode B

the '"second", and Mode C the "third". This order reflects
the data input sequence to PARAFAC (i.e. by rows within
matrices). Otherwise, the order has no special significance

beyond providing a consistent method for referring to the
ways of the data, since during analysis PARAFAC generally
treats all three modes in the same way. Indeed, the data
can be rearranged so that the rows and columns (for example)
are interchanged, but the PARAFAC solution 1s unchanged
except that the Mode A and B factor loadings are reversed.

The size of a PARAFAC data array is specified by the
phrase '"m by m by p" or 'n X m X p". n is the number of
columns or levels of Mode A and m is the number of rows or
levels of Mode B 1in each matrix; p is the number of nXm
matrices or levels of Mode C. Note that here n X m denotes

n columns by m rows, to be consistent with the PARAFAC mode
order, even though this 1is opposite to common matrix
notation.

The total number of cells in the data array 1is the
product of n, m and p. Thus a 5x4x10 array, for example,
has 200 cells. A cell in the array is the intersection of a
column (level of Mode A) and row (level of Mode B) within a
specific matrix (level of Mode C). Its location is denoted
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by the ordered triple (i.,j.,k), where i is the column number,
j the row number and k the matrix number within the data
array. Such ordered triples are used to indicate the
locations of missing values in the PARAFAC data array.

1.3.2 Two-way Analysis

In the typical situation involving two-way factor
analysis, measures on variables of some kind (e.qg.,
personality scales) are collected from a group of subjects,
correlations between the variables are computed across the
subjects, and the matrix of correlations is factor analysed.
The factor analytic procedure attempts to mathematically
explain (predict) this correlational data in terms of a few
general underlying entities called factors. Each factor
consists of a vector of loadings or weights, one loading for
each variable. Each factor contributes to the observed
value of the variable; the amount contributed is indicated
by the sign and magnitude of the loadings. The person
(subject) loadings, usually called factor scores, may be
recovered by using regression techniques. A problem with
two-way factor analysis is that the set of 1loadings which
fulfil the mathematical constraints is not unique;
different rotations of the same factors may yield ones that
are more or less easily interpreted than the unrotated ones.

1.3.3 PARAFAC Analysis

Three-way PARAFAC analysis has the same purpose as
two-way factor analysis, that is, reduction of the data to a
few factors that are simpler to interpret than the data
itself, but which predict the data reasonably well. Usually
it is hoped that these factors reflect wunderlying real
causes or meaningful entities, and so they not only help to
explain the current data but also may suggest new
predictions that can be tested in further research. It has
been argued that the "uniqueness'" property of PARAFAC
facilitates the discovery of such empirically meaningful
factors (see Harshman, 1970, Ch. 1, 2).

In contrast to the two-way case, PARAFAC is often used

to analyse raw data, or in some special cases covariance
data (see Chapter 4). And, 1f the assumptions of the
PARAFAC model as stated in Section 1.2 above are met, the
obtained solution is unique (i.e. there are no rotational
indeterminacies) . Each PARAFAC factor consists of a vector
of weights or loadings, one loading for each level of each
mode. If one of the modes refers to people, then the
weights that are output for that mode are the '"person
loadings"; no additional computation 1is necessary to

recover them. We do not often use the special term '"factor
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scores" to refer to the person loadings, since we prefer to
regard all three modes, and the loadings associated with
them, on an equal basis. Also, note that "dimension" and
"factor" are used interchangeably in the manual; for
example, by the phrase "one-dimensional solution", we mean
that one factor was used to explain the data.

The PARAFAC solution is output as three matrices of
factor loadings, one matrix for each mode of the data array.
The matrix rows correspond to the levels of the mode and the
columns to the factors. The following diagram illustrates
the arrangement of a 3-factor PARAFAC solution from an
analysis of a 3x4x3 data array:

Factors

1 2 3

Moda ==p==sg==j
A 1
2
3

1 2 3

Mode :-=i--:--:
B 1
2
3
4

1 2 3

Mode :--:--:--:
cC 1
2
3

This review of terminology 1is geared specifically
toward use of PARAFAC. See Comrey (1973), Green and Carroll
(1976) or Kim and Mueller (1978) for more extensive
background about the general theory and procedures
pertaining to factor analysis.
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1.4 OTHER THREE-WAY ANALYSIS PROGRAMS

There are other three-way analysis procedures besides
PARAFAC. Some are: CANDECOMP (Carroll and Chang, 1970),
ALSCAL (Takane, Young, and DeLeeuw, 1977), MULTISCALE
(Ramsay, 1977), PINDIS (Lingoes and Borg, 1978), ALSCOMP
(Sands and Young, 1980) and TUCKALS?2 and TUCKALS3

(Kroonenberg and DeLeeuw, 1980) . CANDECOMP, ALSCAL,
MULTISCALE and PINDIS perform multidimensional scaling
(MDS) . The others are used mainly for factor analysis.

Most of these models, along with others developed for multi-
mode data analysis, are included in Law, Snyder, Hattie and
McDonald (1984) .

The basic form of the CANDECOMP model (Carroll and
Chang, 1970) is very similar to PARAFAC; in fact, the model
presented in Section 1.2 above is sometimes referred to as
the PARAFAC-CANDECOMP model. However, Harshman and Lundy
(1984a) have recently shown that the PARAFAC model can be
"extended" to a more general one than CANDECOMP when the
special PARAFAC preprocessing options are used.

The principal difference between PARAFAC and CANDECOMP
is their application. CANDECOMP, incorporated into the
INDSCAL program (Carroll and Chang, 1970), has mainly been
used for fitting the weighted Euclidean distance model in
three-way metric MDS. In contrast, PARAFAC was incorporated
into a program specifically designed for three-way factor
analysis (although it can accomplish INDSCAL-like MDS too if
the data are first preprocessed by the DISTIN program (see
Chapter 3). For example, the PARAFAC program has an option
for estimating diagonal values that allows the common factor
model to be fit to covariance matrices, and its other
special preprocessing and orthogonality options help the
user to cope with difficulties that arise in three-way
factor analysis but not in three-way MDS.

The other MDS programs are related to INDSCAL.
According to Carroll and Arabie (1980), ALSCAL is a
nonmetric implementation of INDSCAL that in addition allows
for missing or replicated data. MULTISCALE performs maximum
likelihood metric MDS and permits the definition of
confidence regions for both subject weights and stimulus
points (Ramsay, 1977, 1978) . PINDIS fits an INDSCAL-like
weighted Euclidean distance model, and generalizations of
it, plus a '"vector weighting" or 'perspective" model
(Lingoes and Borg, 1978).

Tucker's three-mode factor analysis (Tucker, 1964,
1966) , implemented in TUCKALS2 and TUCKALS3, provides a more
general model for three-way data than PARAFAC does.

Therefore, it can be successfully applied to some data for
which PARAFAC is inappropriate, or for which PARAFAC gives
"degenerate" solutions (see Harshman and Lundy, 1984a).

However, it does not possess the "intrinsic axis" property
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of PARAFAC, and so solutions must Dbe rotated to some
position preferred by the analyst.

ALSCOMP is a general program that can do nonmetric as
well as metric analysis, and it can handle continuous or
discrete data (Sands and Young, 1980). In those cases where
a nonmetric procedure is clearly superior to a metric one,
ALSCOMP has the advantage over PARAFAC. Often, however, the
difference in procedures is likely to be minimal, even when
the data are only ordinal scale (see Weeks and Bentler,
1979) . Even though PARAFAC was not designed for discrete
data, the distinction between continuous and discrete data
is not crucial; Sentis, Harshman and Stangor (1983) found
in a Monte Carlo study that PARAFAC successfully recovered
continuous latent structure from binary data. And, the
preprocessing options of PARAFAC allow the model to be
"extended" to interval scale or conditional data that would
otherwise be appropriate for ALSCOMP but not PARAFAC.
Finally, both ALSCOMP and PARAFAC may yield '"degenerate"
solutions for some types of three-way structure. However,
PARAFAC has special orthogonality options that frequently
overcome such degeneracies and result 1in interpretable
solutions.

In summary, then, the PARAFAC model 1is less general

than some other three-way analysis models (e.g., Tucker's:
ALSCOMP) and very similar to others (e.g., CANDECOMP).
However, its unique axis property and the special

preprocessing and analysis options make the PARAFAC program
generally appropriate for a broad range of data, and
therefore quite useful as a data analysis tool.






CHAPTER 2

PARAFAC INPUT

This chapter is mainly a description of PARAFAC input,
but it also provides some other information that is useful
if you're just beginning to use PARAFAC. Sections 2.1 and
2.2 list the standard array sizes and I/0 units and explain
how to modify them if necessary. Section 2.3 discusses the
arrangement of PARAFAC input, and Table 2.1 gives a detailed
description of the input parameters for data analysis.
Examples of PARAFAC input are presented in Section 2.4.

Data synthesis is introduced in Section 2.5 and Table

2.3 is a summary of the synthesis 1input parameters.
Examples of input for data synthesis are presented in
. Section 2.6. Data synthesis is further discussed in Chapter
7 and it is recommended that vyou read Sections 7.1-7.3

before generating data for a specific purpose.

Example output from a data analysis run appears in
Table 2.2 but is not described; Chapter 5 explains such
output in detail. Table 2.4 is an example of output from a
data synthesis run; it is described in Chapter 7.

2.1 PARAFAC LIMITS

The standard PARAFAC code (i.e., as shipped) has the
following limits:

Maximum number of levels in Mode A is 18.

Maximum number of levels in Mode B is 18.

Maximum number of levels in Mode C is 35.

Maximum number of missing data values is 50. .
Maximum number of factors to be extracted during an
analysis is 10.

b wn =

To change any of these limits, the utility program DIMS
must be run. See Chapter 3 for more details. If you do not
know what is meant by '"Mode A", '"Mode B", etc. you should

' refer to Section 1.3.
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2.2 PARAFAC I/0 UNITS

PARAFAC uses up to 3 different logical input units and
up to 4 different logical output units, which are denoted by
separate parameter names. The parameters are assigned
default values that can be overridden by the user as
desired. Appropriate system commands must be included with
the job to 1link the logical units with actual disk files.
Listed below are the parameter names used for the I/O units,
along with their default values and other information.

Input

1. ISTDIN=5 (standard input unit; default): it can
be changed by using the DIMS program. It is used
for input of the analysis control parameters.

2. IUNITB=5 (default), or it can be specified by the
user on input Card I-3 of the PARAFAC job. It is
used for input of the data parameters, data set,
and any missing value subscripts.

3. JUNITC=5 (default), or it can be specified by the
user on Card I-3 of the PARAFAC job. It is used
for input of the starting loadings.

Qutput

1. ISTDOU=6 (standard output unit; default); it can
be changed by using DIMS. It is used for output of
the program documentation and step-by-step output
of the analysis.

2. IUNITG=7 (default), or it can be specified by the
user on Card 1I-8 of the PARAFAC job. It is used
for output of the final loadings from the PARAFAC
solution (s) . This output can be suppressed by
specifying -1 on Card I-8.

3. IUNITD=0 (no output; default), or it can be
specified by the wuser on Card I-8 of the PARAFAC
job. It is used for output of the revised (e.qg.,

centered or synthesized) data.

4. IUNITF=0 (no output; default), or it can be
specified by the wuser on Card I-8 of the PARAFAC
job. It is used for output of the residuals at the
end of each solution.

PARAFAC I/0 is pictured in Figqure 2.1.
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2.3 PARAFAC INPUT

Input to PARAFAC consists of three sections:

1. Job control parameters (Input Section I) read from
ISTDIN
2. Data parameters and data set (Input Section 1II)

read from IUNITB
3. Optional starting loadings for the analysis (Input
Section III) read from IUNITC

The content and format of all three sections are described
in Table 2.1.

Figure 2.2 illustrates the arrangement of the PARAFAC
input file. If the data set and starting loadings are to be
read from the standard input wunit (i.e., IUNITB= IUNITC=
ISTDIN), then the file is like the diagram, with Card II-1
immediately following Card I-8 and the starting loadings
following Card II-(Y+l) -- do not insert blank records
between the input sections. More often, the data set (and
starting loadings) will be stored in separate files, and so
the input file will contain only the job parameters.
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Figure 2.1. PARAFAC Input and Output

INPUT
Section L Section Il Section IIIL
Job Parameters Data Starting Loadings
(from ISTDIN) (from IUNITB) (from IUNITC)

PARAFAC |
Program

YA ~ )
Lineprinter EFinal Preprocessed Reslduals
(to ISTDOU) (to IUNITG) Data (to IUNITF)
(to IUNITD)
.

usually output to diskfiles

W

OUTPUT

(Dotted lines represent input/output that is optional‘ or
that can be suppressed.)
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SECTION I
Analysis Control Parameters
(read from standard
input unit)

SECTION II
Data Parameters
and Data Set
(read from standard
input unit, or
from disk or tape
files)

(Optional) SECTION III
Starting Loadings
(read from standard
input unit, or
from disk or tape
files)

Card No. or
Record No.

II—1

-2

-3

—4

=

I—(X+1)

II—:(Y)

II—(Y+1)

Figure 2.2

PARAFAC Input Deck

Job title

Task size parameters

Input options

Data preprocessing options

Starting position parameters

Analysis options

Convergence criteria

Output options

Format for revised data output (optional)
Format for residuals output (optional)

Data title
Data set dimensions

Data input format

Data set

Optional table of missing-value subscripts

Termination code

Loadings for solution 1

etc.

Loadings for solution 2
Loadings for solution 3

etc.

(Optional) One set of loadings
for each solution
requested on Card ¢2
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Table 2.1

PARAFAC INPUT SPECIFICATIONS TABLE

(for PARAFAC version 6H)

SECTION I: ANALYSIS CONTROL PARAMETERS

This first section of parameter input controls the subsequent steps of data input, preprocessing, analysis, and output of results. The analysis con-
trol parameters are specified on 8 cards, which are always read from the standard input unit ISTDIN (usually unit 5). For these parameters, if the
user leaves blanks instead of specifying particular values, default values are assigned by the program. Integer values specified by the user must be
right-justified in their respective fields.

CARD I FORMAT: (80A1) JOB TITLE: A description of the current job that distinguishes it from other analyses of the same data
(Cols. 1-80) set. (Note: General information on the data being analyzed need not appear here, as it is included on Record
IH below.) The information on this card is printed out as the first line of every loadings output table and thus
helps to document the PARAFAC output. This card also provides an identifying label for the Section | input
deck.
CARD 2 FORMAT: (414) TASK SIZE PARAMETERS.
Default  Parameter
Column Value Name Explanation
14 2 NFACT Number of factors to be extracted.
58 3 NSOLS Number of “solutions” to be obtained; each "solution" is an analysis from a different starting point. (Set
NSOLS=—1 to suppress analysis, e.g. when only doing data preprocessing or data synthesis.)
912 2 NOUTS Maximum number of intermediate outputs of loading tables for each of the solutions. (Fewer outputs may be
generated if the solution converges.)
13-16 100 NITER Number of iterations done between each intermediate output and the next.
CARD 3 FORMAT: (212, INPUT OPTIONS. (See also "Note 4: 1/0 Units" at the end of Section | of this table).
1X,11)
Default  Parameter
Column Value Name Explanation
1-2 5 or IUNITB Input unit for data. (It is only necessary to specify a value if you do not want to use the standard input
ISTDIN unit.)
3 5 or IUNITC Input unit for starting loadings; to be used if ISTART (on Card H5, below) is 1 or 2. (It is only necessary to
ISTDIN specify a value if you do not want to use the standard input umt).
6 0 IFSYMT Check for symmetry across Modes A and B. A message is printed each time a symmetry failure is detected up

to a maximum of 50 messages, and then execution stops. (0 = no symmetry check; 1 = check symmetry.)
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Table 2.1 (Continued)

CARD H4

Column
1
2

3

FORMAT: (3I1,1X,I1,

1X,11,2X,5G10.4)
Default Parameter
Value Name
0 IFCENA
0 IFCENB
0 IFCENC
0 IFCODE
0 MISEST

DATA PREPROCESSING OPTIONS AND MISSING DATA INFORMATION.

Explanation

Mode A Flag for centering and/or normalization.
Mode B Flag for centering and/or normalization.
Mode C Flag for centering and/or normalization.

IFCEN Flag Values are interpreted as follows:

0 = Do not center or normalize the data on the indicated mode.

1 = Center the data on the indicated mode.

2 = Normalize the data on the indicated mode.

3= Center and normalize the data on the indicated mode.

4 = Apply equal-average-diagonal normalization. (If used, this option must be applied to both mode A
and B, and in this case, IFCENC can only be 0 or 1).

5 = Apply equal-average-diagonal normalization, followed by centering. (If used, this option must be
applied to both Mode A and Mode B, and in this case, IFCENC can only be 0 or 1).

Flag to indicate whether special data values ("missing-data code values™) are used to identify missing data
cells. This flag 1s also used to indicate when limits on the valid data range are being specified. 0 = Do not
check: 1 = Data will be checked for values equal to missing data codes and for values outside the specified
range for valid data. (See Note 1 and Note 2 at the end of Section | for more details.)

Flag to specify how to get starting values for the iterative estimation of the quantities to fill the missing data
cells. Starting values for missing data cell estimates are needed at the begwmng of computation for each
solution. (See Note 3 at the end of Section | for additional details.)

MISEST values are interpreted as follows:

0 = Estimates at the end of one solution are used as the starting estimates for the next solution.
1 = Estimates are re-initialized on iteration 1 of each new solution. Thus, the starting estimates for
the missing data are the same for all solutions.

The following parameters are used only if IFCODE 15 1:

Column

10-19

20-29

30-39

4049

Default

Value

10.€30

10.£30

—10.E30

10.€30

Parameter

Name

OMISS1

DMISS2

DMISS3

DLOWR

DUPPER

Explanation

Missing-data code value.

Mssing-data code value.

Missing-data code value.

When IFCODE 15 1. a data cell 1s considered to be missing data if its imitial value matches any one of the
three missing-data code values. If zero 1s used as a code value, it must be put in cols. 10-19. If zero 1s not
a code value, put some other number in cols. 1019 (e.g. a missing-data code value or a number that is out-

side the range of the data). Note that the value of 10 raised to the 30th power 15 outside the range of most
data sets and therefore will not cause any additional data cells to be treated as missing values.

Lower limit for valid data range.

Upper limit for valid data range.

If specified, the lower limit must have a value that i1s smaller than that of the upper limit. Otherwise, an error
message 1s printed and execution stops. It IFCODE is 0, these limits are ignored.
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CARD 5 FORMAT: (I1,1X,D16.0)

Default Parameter
Column Value Name
1 0 ISTART
318 0219843517.00 SEED

STARTING POSITION PARAMETERS FOR THE ANALYSIS.

Explanation

Starting position type.
ISTART values are interpreted as follows:

0 = Random loadings are generated at the beginming of each solution

1 = Standard continuation. Starting loadings for each solution are supplied by the user. and input
according to a format supplied by the program. Usually these loadings are the output from a pre-
vious PARAFAC analysis.

2 = Analysis with vanable format input of the loadings. Starting loadings for each solution and input
format for the loadings are supplied by the user.

Seed for the random number generator (used only 1f ISTART 1s 0). SEED must be a double precision whole
number in the inclusive range (2.00 to 2147483646.00). If it 1s outside this range, the default value is used
by the program. Note: After the string of one to 10 digits. the end cof the number should consist of a
decimal point, followed by the letter "D". followed by the numeral 0. This defines the seed as a double preci-
sion whole number

CARD 6 FORMAT: (3ILIX,I1,1X,

311,1X,13)
Default Parameter
Column Value Name
1 1 IORTHA
2 1 IORTHB
3 2 IORTHC
5 0 IGDIAG
7 0 IFHLDA
8 0 {FHLDB
9 0 IFHLDC
1113 5 IRINTV

ANALYSIS OPTIONS

Explanation

Factor independence-dependence constraint for Mode A.
Factor independence-dependence constraint for Mode B.
Factor independence-dependence constraint for Mode C.

I0RTH flags for Modes A, B, and C are interpreted as follows:

1 = Allow oblique factor loadings in this mode durng all iterations.

2 = Requre uncorrelated factors in this mode during early iterations (when solution 1s tar from con-
vergence)

3 = Require uncorrelated factors in this mode up to middle stage of iterations (until solution 1s less

than one power of 10 from the convergence criterion).

Require uncorrelated factors in this mode dunng all iterations.

Require orthogonal factor loadings in this mode during early iterations.

Require orthogonal factors in this mode up to middle stage of iterations (when solution is less

than one power of 10 from the conversence criterion)

7 = Require orthogonal factor loadings in this mode during all iterations. Note: orthogonal and zero
correlation constraints have the same eftfect when factors have a mean loading of zero in the
given mode (e.g. when the data has been centered in the given mode).

> v o
[/

Option to 1gnore data diagonals (ie., treat them as missing values). Values in diagonal cells will be itera-
tively reestimated during the analysis. The imtial estimates are the values from the data array. Estimates
at the end of a solution are used as the starting estimates for the next solution. (0 = do not estimate
diagonals; 1 = estimate diagonals.)

Option to hold Mode A fixed during analysis.
Option to hold Mode B fixed during analyss.
Option to hold Mode C fixed during analysis.

Flags IFHLDA, IFHLDB, IFHLDC allow the user to hold the loadings for a given mode or modes at their imtial
value (except for normalization) while using PARAFAC to estimate optimal values for the other mode(s), given
the fixed mode(s). IFHLD flags for Modes A, B, and C are interpreted as follows:

0 = Iteratively compute new loadings for the indicated mode.
1 = Hold the imtial values of the loadings for the indicated mode constant during analysis (except for
renormalization).
2 = Set all loadings to 1.0 for the indicated mode, and hold them constant during the analysis
(except for renormalization).
Interval (1.e. number of iterations) between successive computations of the fit value R (correlation between
data and predictions of the model) duning the analysis. Each time R is computed 1t 1s checked to see that i,
1s still increasing, and changes in the analysis procedure are made it it is not  After eacn check, R 1s wntten
out along with related information. (Set IRINTV to —1 f you want to suppress this checking and outputting
of R)
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CONVERGENCE CRITERION FOR EACH MODE. For a given mode, this specifies the

CARD -7 FORMAT: (3G10.4)
largest percentage change allowed on any loading from one iteration to the next, if the solution is to be con-
sidered “converged.” (Percentage change values are computed by dividing the absolute value of each loading
change by the root-mean-square loading value for that factor in that mode, and then multiplying by 100.) A
convergence message is pnnted when all three convergence cntena are met: the values of the loadings at that
iteration are then output, and the program proceeds immediately to the next solution
Default Parameter
Column Value Name Explanation
10 0.1 DIFMXA Mode A convergence criterion (i.e., the maximum percentage change allowed in Mode A).
11-20 value of DIFMXB Mode B convergence criterion (i.e., the maximum percentage change allowed in Mode B).
DIFMXA
2130 value of DIFMXC Mode C convergence criterion (i.e., the maximum percentage change allowed in Mode C).
DIFMXA
CARD 8 FORMAT: (312,1X,I11) OUTPUT OPTIONS. (See also "Note 4: 1/0 Umts” at the end of Section | of this table)
Default Parameter
Column Value Name Explanation
1-2 7 or IUMTG Output unit for special disk, punched or tape copy of the final loadings from each solution. (This copy 1s in
ISTOLD addition to the one on the listing.) The output format i1s supplied by the program. These loadings may be used
as the starting loadings for a continuation of the analysis in a subsequent run (with ISTART on Card H5 set
to 1 in the subsequent run). To suppress output of this special copy, specify "—1° for IUNITG.

H - IUNITD Output umt (if any) for revised data (e.g., centered data or data with missing values estimated). The data are
output at the end of each solution. The default 1s to not wnte them out. (This uit is also used for output
of any synthesized data.) It IUNITD 1s specitied, DATFMT (Card H8A) must also be specified.

6 = IUNITF Output unit (if any) for residuals. They are output at the end of each solution. The default is to not wnte
them out. If IUNITF is specified, RSOFMT (Card H8B) must also be specified.

8 3 ISTANM Flag to indicate method of standardization of loadings before output. Except when ISTANM=4, the standardi-

zation causes the loadings for two modes to have a mean squared loading of 1.0 for each factor, with compen-
satory rescaling of the loadings in the other mode to reflect the scale of the data.

1 = Mode A reflects the scale of the data, Modes B and C standardized.

2 = Mode B reflects the scale of the data, Modes A and C standardized.

3 = Mode C reflects the scale of the data. Modes A and B standardized.

4 = Modes A and B jointly reflect the scale of the data; Mode C has a mean square of 1.0.
5= Do not standardize any mode.

The following card is used gnly 1f IUNITD on Card H8 is specified. When required, this card follows Card H8.

(Card F8A)

FORMAT: (80A1l)
(Cols. 1-80)

"DATFMT": FORMAT FOR OUTPUT OF REVISED OR SYNTHESIZED DATA.
This is the format for one row of data (see explanation of Record II-3 and II-4 below for more details on what
is meant by "one row”). It must be enclosed in parentheses, and must specify F, E or G format. (If the data
is to be wntten on a line printer, include a carnage control character in DATFMT.)

The following card is used gnly if IUNITF on Card 8 is specified. When required, this card follows either Card H8A, or (if H8A 1s not used) it immediately

follows Card H8.

(CARD IF8B) FORMAT: (80A1)

(Cols. 1-80)

"RSDFMT": FORMAT FOR OUTPUT OF RESIDUALS. Ths is the format for one row of
residuals (see explanation of Record I1-3 and I1-4 below for more details on what is meant by "one row"). It
must be enclosed in parentheses and must specify F, E or G format. (It residuals are to be written on a line
printer, include a carnage control character in RSOFMT.)
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Table 2.1 (Continued)

SECTION I NOTES

NOTE 1: MISSING OR INVALID DATA VALUES. Any data cells which, on input, contain missing-
data code values or values which are outside the specified range limits will be considered to have missing data. Their
location in the data set is entered into the array of subscripts of missing data cells, and the values in these locations
are iteratively re-estimated during the analysis.

NOTE 2: MISSING-DATA SUBSCRIPTS. If the user wishes to identify certain locations in the data
array as containing missing data without using code values, then he may have the subscripts identifying these locations
entered directly into the array of subscripts of missing-data cells (see Record IFH(X+1) to Record IFY).

NOTE 3: STARTING VALUES FOR MISSING-DATA VALUE ESTIMATES. Locations of
missing-data cells may be specified directly by a subscript table immediately following the data and/or indirectly by
missing-data code values. The initial estimate for any data cell whose location is listed directly in the subscript table
is the value contained in that cell upon input, i.e. the value read from the data set. In contrast, the initial estimate for
any data cell containing a missing—data code value is the mean computed from all other valid data values in the same
"tube" (i.e., all points on the same Mode A and mode B level and across all levels of mode C). Therefore, two or more
cells containing missing-data code values which are located in the same tube will have the same imitial estimate. Any
data point which is listed in the subscript table and which contains a missing-data code value is treated like the others
in the table (i.e., its first estimate is the value read from the data set and nor the mean computed across all points in

the same tube).

These initial estimates are used on iteration 1 of the first solution. For all subsequent iterations, the missing-data
estimates do not depend on whether the cell locations were specified directly or indirectly. Starting estimates used for
iteration 1 of the following solutions depend on the value of MISEST.

NOTE 4: 1/0 UNITS.

a. At most installations, the operating system provides "standard” umts for Fortran input and output (e.g. 5 is often
the standard input unit and 6 the standard output umit). When the program reads and writes using the "standard”
units, no extra system control cards are required. The standard version of PARAFAC assumes that S is the stan-
dard input unit and 6 the standard output unit. However, the DIMS program can be used to create a revised ver-
sion of PARAFAC where ISTDIN (the number of the standard input umit) and ISTDOU (the number of the standard
output unit) can be set to any values desired, to make PARAFAC compatible with the conventions at the user's
installation. The first 8 cards (F1 to F8) are always read from umt ISTDIN, and the main PARAFAC output list-
ing is written on ISTDOU.

b. When the user requests special input and/or output on units different from the standard (usually 5 and 6, respec-
tively), the appropriate system control cards must be used to access the input files and to save the output files.
The form of these cards depends on the particular computer and operating system at the user's installation

¢. Users with a Cyber installation may specify only units 1-9 inclusive (unless they change the "Program” statement
at the beginning of the PARAFAC Fortran source).
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SECTION II: DATA PARAMETERS AND DATA SET

This second input section provides the data set and information about the data. It is read from IUNITB (see Card H3). Preceeding the data set
one must put a data title, followed by information on the size and format of the data array. Following the data set is an optional list of the sub-
scripts of any data cells for which data is missing. It for IUMITB the user selects the standard input umt (usuaily 5), the Section If information is
read from cards put immediately after Card 8 (no end-of-file or other separation is used). The normal (and recommended) procedure, however, is
to keep Section Il information in a separate file on tape or disk, with Record IH-1 the first record of that file.

RECORD IH1 FORMAT: (80A1l) DATA TITLE: A general description of the data set that (a) identities it easily for future
(Cols. 1-80) reference and (b) distinguishes it from any other versions of the data which may also be (or have
been) analyzed. This record provides identitying information that stays with the data It is also
printed out as the second line at the top of every loading output table and thus helps to document
the output of a PARAFAC analysis.
RECORD IF2 FORMAT: (314) DATA SET DIMENSIONS. The data set 1s NAS by NBS by NCS points. NAS gives the
number of items per row of the data matnix (even if this involves more then one Fortran record).
NBS gives the number of rows per "slice” or matnix (i.e. per level of Mode C). NCS gwes the
number of "slices™ or matnices assembled into the three-way data set.
Parameter
Column Name Explanation
14 NAS Number of levels or items in Mode A.
58 NBS Number of levels or items in Mode B.
912 NCS Number of levels or items in Mode C.
RECORD I3 FORMAT: (80A1) "VARFMT": DATA INPUT FORMAT. Format for reading one row of the data matnx
(Cols. 1-80) (this may be a multi-record format). The format must be enclosed in parentheses, and must
specify F, E or G format for input of the data. To input data stored as integers, use F format
with zero places to the nght of the decimal point (e.g. use F2.0 to read two-column integer data).
VARFMT should provide for reading all the levels of Mode A at a fixed level of Mode B and C.
(See also comment for Record IH4.)
RECORDS IH4 FORMAT: VARFMT DATA ARRAY. There are NCS blocks of records. Every block contains NBS sets of records,
to 11X and each set 1s read according to VARFMT. In Fortran, the data points are input in the following
(NBS by NCS sets way: .
of records) DO 10 k=1, NCS in PARAFAC
DO 10 J=1, NBS Svwree 1 ne

10 READ (IUNITB, VARFMT) (POINT (1).K), I=1, NAS) ;J\Pui’ with dl\’&

RECORD IIHX+1)
to Y
Column
14
58

%12

FORMAT: (314)

Parameter
Name

MISSING-VALUE SUBSCRIPTS TABLE: Optional. Each record indicates the

location of one data cell with missing data.

Explanation

Level of Mode A; maximum value 1s NAS.

Subscripts for a POINT (1.J.K) with mssing data.

Level of Mode B; maximum value 1s NBS.

Level of Mode C; maximum value 1s NCS.

RECORD IHY+1)

FORMAT: (14)
(Cols. 1)

TERMINATOR RECORD FOR SECTION II. —001 in columns 14 is a fixed code
which marks the end of the subscnpts. It must a/ways be included. even if no missing value sub-

scrpts are specified.
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SECTION III: STARTING LOADINGS (Optional)

When it is required, this third input section is used to provide nonrandom starting loadings for the analysis. It is read from IUNITC (see Card H3).
When the loadings are read from the same umt as the data, i.e. when both IUNITB and IUNITC are the same (for example if both are set to be the
standard input umt) the loadings information is placed immediately after the "—~001" record of Section Il. When IUNITB is not the standard input
unit, but [UNITC is, the loadings immediately follow Card H8 of Section I. Usually, all three sections are in separate files. In Section Ili, there
should be NSOLS (see Card H2) complete sets of loadings, one set for each solution.

This section is necessary only if the user chooses to read in starting loadings rather than generate them randomly, r.e.. f ISTART (Card H5) 1s 1 or
2. Since the form of this input depends on whether ISTART is 1 or 2, it will be discussed separately for the two cases.

(a) Standard Continuation (ISTART = 1)

For standard continuations, the loadings are read according to a standard format provided internally by the program. Generally, they are the output
from a previous PARAFAC analysis. Loadings from another source may be used only if the format 15 1dentical to that described in the table below.

The table describes the format for one complete set of loadings. It must be repeated NSOLS times (see Card F2), so that there is a set of start-
ing loadings for each solution requested. The PARAFAC loadings file may be used exactly as 1t was wnitten or punched out (by IUNITG) it NSOLS

has the same value for both the imtial and continuation analyses.

Record No.

-
to 116

7 to—
(NAS sets of
records)

(2 Records)

(NBS sets of
records)

(2 Records)

(NCS sets of
records)

Format

(5X,6G12.4)

(5X,6G12.4)

(5X,6G12.4)

Explanation

Information about the loadings sets: analysis and data titles, predicted data fit values, Mode A heading, etc
This information 1s printed out during the input phase of PARAFAC. to document which loadings set s being
used. However, since these labels are not used in the actual analysis, blank records can be placed here
instead. In either case, there must always be 6 records preceding the loadings.

Mode A factor loadings. Each of the NAS sets of records consists of the loadings on NFACT factors for one
level of Mode A.

Blank record and "Mode B" heading. Two blank records may be substituted

Mode B factor loadings. Each of the NBS sets of records consists of the loadings on NFACT factors for one
level of Mode B.

Blank record and "Mode C" heading Two biank records may be substituted

Mode C factor loadings. Each of the NCS sets of records consists of the loadings on NFACT factors for one
level of Mode C. ’

Repeat this pattern for second and successive solutions
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(b) Continuation with Variable Input Format for the Loadings (ISTART = 2)

This type of loadings input is generally used when the loadings are from a source other than PARAFAC (e.g. to input theoretical values determined
by the user). The input format for the loadings in each mode must be specified individually. These formats are always read from the same umt as

the loadings.
The table below describes the format for one complete set of loadings. It must be duplicated NSOLS times, so that there is a set of starting load-
ings for each solution requested.

Parameter
Record No. Format Name Explanation
11 (80A1) FORMTA  Format for input of a single level of Mode A loadings. It must be enclosed in parentheses, and
(Cols. 1-80) must specify F, E or G format. (Integers should be read using Fn.0 e.g F2.0 for two-column
integers.)
12 to FORMTA = Mode A factor loadings. Each of the NAS sets of records consists of the loadings on NFACT fac-
X tors for one item or level of Mode A.
(NAS sets of
records)
IMHX+1) (80A1) FORMTB  Format for input of a single level of Mode B loadings. It must be enclosed in parentheses, and
(1 record) (Cols. 1-80) must specify F, E or G format. (Integers should be read using Fn.0 format, e.g F2.0 for two-
column integers.)
MNHX+2) to FORMTB = Mode B factor loadings. Each of the NBS sets of records consists of the loadings on NFACT fac-
Y tors for one item or level of Mode B.
(NBS sets of
records)
IHHY+1) (80A1) FORMTC  Format for input of a single level of Mode C loadings. It must be enclosed in parentheses, and
(1 record) (Cols. 1-80) must specify F, E or G format. (Integers should be read using Fn.0, e.g. F2.0 for two-column
integers.)
HHHY+2) to FORMTC = Mode C factor loadings. Each of the NCS sets of records consists of the loadings on NFACT fac-
11} =2 tors for one item or level of Mode C.
(NCS sets of
records)

Repeat this pattern for second and successive solutions
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2.4 PARAFAC EXAMPLES (FOR DATA ANALYSIS)

In this section, examples are given of the input that
is described in the PARAFAC Input Specifications Table.
First, individual cards from Input Section I are shown;
then, examples of Input Sections 1T, 11 and IIT are
presented.

2.4.1 Examples Of Individual Cards/Records

Card I-1 (80A1l) ~-Job Title
You can leave this card blank, and a blank line will be
output (i.e., no default info is inserted). However,
it is better to input some sort of documentation here
to indicate what distinguishes the current run from
other analyses.

Card I-2 (3I4) -NFACT, NSOLS, NITER, NOUTS

0 -1

(1) No data analysis will be done, but data
preprocessing as requested on Card I-3 will be carried
out; wused most often when synthesizing data.

0 0 4 50
(2) Maximum 200 iterations per solution; loadings will
be output on the lineprinter listing after iterations
50, 100, 150 and 200 of the analysis, unless the

solution converges before. 2 factors will be
extracted; 3 different starting positions will be used
(defaults) .

0 0 1 200
(3) Same as example 2, except factor loadings are
output only once -- after 200 iterations.

Card I-3 (2I2,1X,I1) -IUNITB, IUNITC, IFSYMT

1 2
(4) Data (Input Section II) to be read from logical
unit 1; starting loadings for data analysis or
synthesis (Input Section III) to be read from logical
unit 2; appropriate system commands must be included

to access these files.

Card I-4 (3I1,1X,I1,1X,I1,2X,5G10.4) -IFCENA, IFCENB,
IFCENC, IFCODE, MISEST, DMISSl, DMISS2, DMISS3,
DLOWR, DUPPER
(See Chapter 4 before specifying IFCEN- values.)
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312 11 -9.0 0.0 0.0 6.0 6.0
(5) Data to be centered on Modes A and B, normalized on
Modes A and C; a value of -9.0 indicates missing data;

data with values outside the range -6.0 to 6.0 to be
treated as missing even if they are not equal to -9.0
(e.g.., keypunch errors); solution 1 starting estimates
for missing values are tube means, solution 2 starting
estimates are final estimates from solution 1, etc.

312 11 -9.0 0.0 0.0 0.0 0.0 |
(6) Same as 5, except the valid data range is virtually
unbounded (i.e., -10.E30 to 10.E30 by default).

312 11 0.0 0. 0.0 1.0 100.0 ]

(7) Same as example 5, except 0.0 is the missing data
code, and the valid data range is 1.0 to 100.0.

[312 1 1 10.E30 0.0 0.0 1.0 100.0 ]
(8) Same as 7, except no missing data codes are used
(or the missing data code is 10.E30).

312 11 0.0 -9.0 0.0 i, 100. |
(9) Same as 7, except both 0.0 and -9.0 are missing
data codes. Note that 0. must be the first missing

data code specified (cf example 5).

Card I-5 (I1,1X,D16.0) -ISTART, SEED

lo 0003401260.D0 B
(10) Random starting loadings to be used for the
analysis; seed for random number generator is

specified.

Card I-6 (3I1,1X,I1,1X,3I1,1X,I3) -IORTHA, IORTHB, IORTHC,
IGDIAG, IFHLDA, IFHLDB, IFHLDC, IRINTV

oo 0 000 1 |
(11) Factors in Mode A constrained to be orthogonal
throughout the entire analysis; change in fit value
checked and output after every iteration; default

values to be assigned for other parameters.

Card 1-7 (3G10.4) -DIFMXA, DIFMXB, DIFMXC

b.os ]

(12) Convergence criterion for all three modes to be
twice as stringent (percentage change allowed is half
as big) as the default value.
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Card 1-8 (3I2,1X,I1), I-8A and I1-8B (80A1) -IUNITG,
IUNITD, IUNITE, ISTANM (and DATEMT, RSDEMT)

0000
(13) Final loadings written to logical unit 7 and Mode

C reflects the magnitude of the data values (defaults):
no format line required. Appropriate system commands
must be included with the job to save the unit 7 file.

-1 0 6

(1H ,6F12.7/1H ,4F12.7)
(14) No output to disk files; residuals are to be
listed on the standard output unit according to the
format shown on the second line. Note the inclusion of
the carriage control characters. This format is for a
data array that has 10 values in each row (i.e., 10

levels of Mode A).

-1 3 6

(5G15.7/5G15.7)

(1H ,6F12.7/1H ,4F12.7)
(15) Same as 14, except the preprocessed data is to be
written on logical wunit 3 according to the format on
the second line; format for the residuals 1is on the
third line. Appropriate system commands must be
included with the job to save the unit 3 file.

2.4.2 Examples Of Input Section I

2.4.2.1 Analysis Of Two-way Data -

(16) Principal components analysis (direct fitting)
The input data is a matrix of raw scores arranged as
variables (Mode A) by people (Mode B). The data should

be transformed to =z-scores by normalizing across
variables and centering across people (IFCENA=2,
IFCENB=1), and the variables factor weights should
reflect the scale of the data (ISTANM=1) .

Orthogonality constraints are 1imposed on both modes
(IORTHA=IORTHB=7) to obtain the principal components
axis orientation. These parameters are circled in the
deck setup below. Others are either assigned example
values or left blank (zero).

2

=
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EXAMPLE 2-D PRINCIPAL COMPONENTS ANALYSIS
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‘ (17) Principal co o (indi Fitting)
The input data is a (symmetric) matrix of correlations
or covariances. The input deck 1is the same as 16
above, except no preprocessing of the data is
necessary, and so Card I-4 is as follows:

[000 i

Or, if you input covariances but want correlations, you
can obtain correlations by requesting EAD normalization
on Card I-4 as follows:

[a40 ]

(18) Common factor analysis
As for example 17, the input data 1is a matrix of
correlations or covariances. The analysis dififers from
17 in that it involves iteration on the diagonal
(IGDIAG=1) . The pertinent parameters are circled in
the deck setup below, while some of the others have
been given example values.

CARD
I-1 [EXAMPLE 3-D COMMON FACTOR ANALYSIS
I-2 3
I-3

& 1-4 ({00

I-5[0 1142785923.D0
I-6 (771 1)
1-7
I1-8 7.0 0(2)

2.4.2.2 Direct Fitting Of Three-way Data -

See examples 22 and 23 below. Usually, of course, you
don't input everything from the file as shown in
example 22. Neither do you wusually input starting
loadings for the analysis unless continuing a previous
run, as illustrated in example 23. Thus you would
usually specify some of the parameters (e.g., IUNITB,
IUNITC, ISTART) differently than shown in the examples.

2.4.2.3 Indirect Fitting Of Three-way Data -

(19) Covariance analysis (see Sections 4.4 and 6.7)
The 1input data are covariance matrices that are
symmetric across Modes A and B (IFSYMT=1), have EAD
normalization applied to Modes A and B (IECENA=
‘ IFCENB=4), and the data scale should be jointly
reflected in Modes A and B of the factor loadings
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(ISTANM=4) . These parameters are circled in the
example deck Dbelow; other parameters have been .
assigned example values or left blank.

:

L B e B e B e B e B S I S A =
I
OO0 wNHEO

EXAMPLE COVARIANCE ANALYSIS; 2-D SOLUTION
2
0@

0 0010348205.D0

000 0 000 -1

7 0 0(a)

h—d

|

I

(20) Multidimensional scaling (see Sections 4.6 and 6.8)
The input data are scalar product matrices (possibly
output from the DISTIN program) that are symmetric

across Modes A and B (IFSYMT=1), and they may be
normalized on Mode C (IFCENC=2). The Mode C factor
weights reflect the scale of the data (ISTANM=3) -- (cf
covariance analysis).
CARD

I-1 |[EXAMPLE 2-D MDS ANALYSIS

L-2 2(3

I-311 0

®

I-510 0000428295.D0

I-6 (000 0 000 -1

I-7

1-8 70003

2.4.2.4 Three-way Data Preprocessing For Direct Fitting -

(21) One-cycle preprocessing (see Section 4. 3)

Suppose you have 3-way ratings data with 10 levels in
Mode A. You want to center Modes A and B, normalize
Modes A and C, and then do a 2-D analysis. You
ordinarily accomplish this in one job, by specifying
NFACT=2 on Card I-2 and IFCEN-=312 on Card I1-4. To do
this wvia 'one-cycle" preprocessing, however, requires
two steps.

Step 1: The input data is raw score data. Center the
data as required (IFCENA= IFCENB=1 in this example) and
save the centered data without analysing it (NSOLS=-1;
IUNITD=2) . Include system commands to save the
centered data.
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|

ONE-CYCLE PREPROCESSING -- STEP 1

1

-1J2
(5G15.7/5G15.7)

Step 2: The input data is the centered data from step
1. Normalize the data as required (IFCENA= IFCENC=2 in
this example) and analyse as usual.

.

ONE-CYCLE PREPROCESSING -- STEP 2
2

02
0 0000025173.DO0

7 00 3
Alternatively, 1in step 2 you could suppress the
analysis (NSOLS=-1) and save the normalized data. In a
third run, you would then analyse the data that had
been saved in the second step, but no data

preprocessing would be done.

2.4.2.5 User-supplied Starting Loadings -

(22) Nonstandard loadings format

The following example illustrates the deck arrangement
when both the data (Input Section II) and starting
loadings (Input Section III) are read from the standard
input unit (IUNITB= IUNITC=5). So that the example may
be presented on one page, the entire data array is not
shown; however, the card numbers indicate how many
lines of data there would be altogether. Missing data
subscripts are included with the data set (in contrast
to using missing data codes on Card 1I-4): the two
values specified as missing are circled in the data.
The starting loadings are in nonstandard format
(ISTART=2) . Only one set of two factors is included
and so only one 2-D solution 1is requested (NFACT=2,
NSOLS=1) .
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@)
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|
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III-23

)

2 1
55

EXAMPLE OF EVERYTHING READ FROM UNIT 5

EXAMPLE DATA SET

7 5
(1X,7F7. 3)
3.404 -2.777 1.567 -2.586 0.662 0.814
-3.217 2.626 -1.509 2.440 -0.660 -0.759 3.832
2.144 -1.743 0.917 -1.637 0.334 0.537 -2.322
-1.963 1.600 -0.899 1.491 -0.376 -0.471 2.280
-2.443 1.989 -1.070 1.863 -0.410 -0.603 2.711
1.540 -1.240 0.507 -1.196 0.057 0.440 -1.268
-0.297 0.282 -0.639 0.159 -0.660 0.108 1.665
3.771 -2.934 -0.068 -3.103 -1.432 1.544 0.330
-1.073 0.857 -0.266 0.845 0.064 -0.338 0.656
-3.303 2.579 -0.060 2.703 1.111 -1.310 0.024
0.250 -0.195 0.001 -0.205 -0.088 0.100 0.007
0.417 -0.318 -0.086 -0.354 -0.253 0.199 0.243
1.737 § -0.205 -1.453 -0.869 0.774 0.608
-0.249 0.193 0.013 0.206 0.105 -0.105 -0.044
-1.419 1.093 0.161 1.186 0.701 -0.629 -0.479
7 1
2 3
-001
(2G12.4)
-1.422 -1.652
1.160 1.271
-0.6579 0.2142
1.080 1.384
-0.2806 0.8487
-0.3386 -0.7424
1.670 -0.6281
(2G12.4)
-1.274 -0.1911
1.222 -0.4658
-0.7584 -1.685
0.7315 0.2138
0.8799 1.365
(2G12.4)
1.872 0.4502E-01
0.6582 1.100
0.2688 0.9783
2.189 0.7985
1.426 0.8334
0.2107 0.8974
0.4916 0.9061
1.502 0.1187
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(23)

:

|

:

i | |

1 l

2.4.

(24)

HHHHHH
|

ok A
|

Standard loadings format

The following illustrates the continuation of a PARAFAC
analysis, wusing final loadings from the first run as
starting loadings in the second. You would do this
whenever solutions do not converge before the maximum
allowed number of iterations has been reached, or when
you want to impose more stringent convergence criteria
on (converged) solutions that you already have. For
the continuation run, the data must be preprocessed in
the same way and NFACT must have the same value; NSOLS
will wusually also have the same value. The values of
other parameters may be different, however.

Job 1: Three 2-D solutions are requested, and a
maximum of 200 iterations 1s allowed for each. The
data are input from logical unit 1. Random starting
loadings are used (ISTART=0). Final 1loadings are
written on logical unit 7; system control commands
must be included to save this file.
D
1|JO0B 1: 3 2-D SOLUTIONS
2 2

311
41312
510 0030518619.D0
6
7
8

Job 2: Continuing the analyses begun in job 1, the
maximum allowed number of iterations is increased to
300. The final loadings saved in job 1 are input from
logical unit 2 (IUNITC=2; ISTART=1).
D

1 ICONTINUATION OF 3 2-D SOLUTIONS FROM JOB 1

2 2 3 2 150

311Q)
4 1312
s (@
6
7
8

3 Examples Of Input Section II

Single-record format and missing-value subscripts

In example 22 above, IUNITB= ISTDIN=5, and so the data
are included 1in the same file as the analysis control
parameters. If IUNITB#Z ISTDIN, the information on
Cards II-1 through II-46 would be in a separate file.
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(25)

That data set is a case where values for all levels of
Mode A are contained on a single line. It also
includes two sets of missing-value subscripts; the
circled data values are at the locations indicated by
those subscripts.

Multi-record format

The following is an example of a data array where the
values for the 11 1levels of Mode A span 3 records.
Card I-3 specifies a format to read all 3 records, not
just the first one. To save space, only the first and
last parts of the data file are shown.

CARD
I1-1 [EXAMPLE DATA SET
I1-2| 11 15 40
I1-3 |(4G14.7/4G14.7/3G14.7)
I1-4 | -.5319867 1.988933 -.3579961 -.2289961
I1-5| -.3253686E-01 1.048057 -.3314863 -.5062028
II-6 | 1.593186 -1.932368 .5049098
: 1.296400 -.8910265E-01 -1.819356 -.7503637
1.300004 .6574843 -1.367316 -.2070050
.8240627 . 7563386 -1.007790
7732101 -.6742343 2.136340 -.5338494
: 5192412 -.7221175 - .9940822E-01 -.2064337
I1-1803 | -.9411721 -.3429637 -.5200354
I1-1804 [-001

2.4.4

(26)

(27)

Examples Of Input Section III

Nonstandard loadings format

Example 22 contains an example of variable format
loadings (Cards III-1 to III-23). They are included in
the same file as the analysis control parameters
because IUNITC= ISTDIN=5 in that example; otherwise,

they would be in a separate file. There 1is only one
set of loadings because NSOLS=1 on Card I-2. In
contrast, when NSOLS=3, three sets of loadings are

required, one for each solution.

Standard loadings format

The loadings from example 22 are shown below in
standard PARAFAC format (ISTART=1). If they had in
fact been output by PARAFAC, there would be additional
information on Cards II-1 to II-6, II-14, -15, -21 and
-22. While this information is useful as
documentation, it 1is not necessary, and so these
records have all been left blank below.
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CARD

III-1
III-2
II1-3
111-4
III-5
I111-6

I11-7 -1.422 -1.652

: 1.160 1.271

-0.6579 0.2142

1.080 1.384

-0.2806 0.8487

-0.3386 -0.7424

: 1.670 -0.6281
I111-14
II1-15

II1-16 -1.274 -0.1911

: 1.222 -0.4658

-0.7584 -1.685

0.7315 0.2138

; 0.8799 1.365
I11-21
II1-22

III-23 1.872 0.4502E-01

: 0.6582 1.100

0.2688 0.9783

: 2.189 0.7985

1.426 0.8334

0.2107 0.8974

: 0.4916 0.9061

II1-30 1.502 0.1187

2.4.5 Example Of PARAFAC Output

Table 2.

2 shows

lineprinter

output produced by

PARAFAC during the analysis of a small data set. The data
were synthesized in a previous run (see example 1 in Section
2 .6) . Chapter 5 explains the 1listing contents in more

detail.



Table 2.2.

PARAFAC1, VERSION 6H(S). COPYRIGHT 1980 BY RICHARD A. HARSHMAN.

CURRENT PROGRAM SET UP FOR--EXAMPLE DATA SET

CURRENT MAXIMUM DIMENSIONS ARE--
MODE A= 25. MODE B=

STANDARD INPUT UNIT (ISTDIN

DEFAULT UNIT FOR OUTPUT OF

MAX NUMBER OF FACTOR LOADINGS TO BE LISTED ACROSS THE PAGE = 10

SECTION I OF INPUT-- ANALYSIS CONTROL PARAMETERS
5

BEGIN INPUT, READING FROM UNIT

ONE 2-D ANALYSIS OF SMALL EXAMPLE DATA SET

0 1

000 0 0

000 0 000

7000

FRROR -FREE SYNTHETIC PROFILE DATA, 2 "TR/REVISED, SOLUTION

8 5

=CARD I-1 (B0Al), JOB TITLE.

0 0
=CARD I-2 (414), TASK SIZE PARAMETERS

20. MODE C= 40. NO. OF FACTORS= 10. NO.
E = 5, STANDARD OUTPUT UNIT (ISTDOU%D= 6
OADINGS TO TAPE, DISK, OR CARDS (IS LD) = 7
See

NO. OF FACTORS TO BE EXTRACTED, NO. OF SOLUTIONS, MAXIMUM NUMBER OF OUTP

ITERATIONS PER OUTPUT.

AFTER DEFAULTS REPLACE UNSPECIFIED VALUES, NFACT= 2, NSOLS=

=CARD I-3 (2I2,1X,I1), INPUT OPTIONS.

NON-STANDARD INPUT UNIT FOR DATA, NON-STD.
AFTER DEFAULTS REPLACE UNSPECIFIED VALUES,

0

" 0. 0. 0.
=CARD I1-4 (3I1,1X,I1,1X,11,2X,5C10.4),
OPTION TO CENTER AND/OR NORMALIZE MODE
USED TO INDICATE MISSING DATA, FLAG TO
THREE MISSING DATA CODES, LOWER BOUND

1, NOUTs=

DATA INPUT UNIT= 1, LOADINGS I

0.

DATA PREPROCESSING OPTIONS AND MIS
A, MODE B, AND/OR MODE C, FLAG TO
INDICATE METHOD OF GETTING STARTI

AND UPPER BOUND FOR VALID DATA RAN

Example of PARAFAC Lineprinter Output (Analysis)

info in

2-24

headings

Chanaed wid

}Df\:)v'ﬁuan;'ll"

OF MISSING VALUES= 0

Dim

See Ch,.

Seskiva S-1.|

UTS PER SOLUTION, MAXIMUM NUMBER OF
2, NITER= 100

INPUT UNIT FOR LOADINGS, FLAG FOR CHECK OF AB SYMMETRY.

NPUT UNIT= S

SING DATA INFORMATION.

INDICATE WHETHER OR NOT CODES ARE
NG ESTIMATES FOR THE MISSING DATA,
CE.

3

=CARD I-5 (Il,lX,Dlﬁ.O%,(ANALYSIS STARTING POSITION PARAMETERS.

STARTING POSITION
TYPE 0=

TYP 0, 1 OR 2) AND SEED FOR RANDOM

TYPE 1=STANDARD CONTINUATION, TYPE 2=VAR

NUMBER GENERATOR (IF NEEDED)
IABLE FORMAT INP OF LOADINGS.

AFTER DEFAULT REPLACES UNSPECIFIED OR INCORRECT SEED,

TYPE=0, SEED= .2198435170D+09

=J:

=CARD 1-6 (JIl,IX.Il,IX,JII,IX,13), ANALYSIS OPTIONS.

FLAGS TO INDICATE DEPENDENCE CONSTRAINTS FOR MODE A, B, AND/OR C,

FLAGS FOR HOLDING FIXED MODE A, B,

AFTER DEFAULTS REPLACE UNSPECIFIED VALUES,

0

=CARD I-8
NON-STD. UNIT FOR
SYNTHESIZED OR REVISED

OUTPUT OF RESIDUALS, FLAG TO INDICATE METHOD FOR STANDARDIZING SCALE OF OUTPUT 5
UNSPECIFIED VALUES, LOADINGS OUTPUT UNIT= 7, AND LOADINGS STANDARDIZATION METHOD= 3

AFTER DEFAULTS REPLACE

3IZ,1X,I&%, OUTPUT OPTIONS.
ITING COPY OF FINAL LOADINGS TO TAPE, DISK OR CARDS, UNIT
DATA (E.G. DATA CENTERED OR WITH MISSING VALUES ESTIMATED) ,

FLAG

. 0.
=CARD I-7 (3G10.4), CONVERGENCE CRITERION FOR EACH MODE.
AFTER DEFAULTS REPLACE UNSPECIFIED VALUES, CRITERIA ARE

SECTION II OF INPUT-- DATA PARAMETERS AND DATA SET

(DATA TITLE, DIMENSIONS,
READING FROM UNIT 1

=CARD II-1 (80Al), DATA SET HEADING.

(1X,8F7.3

3.404

3217

1.419

001

-1, CENTERING= 000

FOR IGNORING DATA DIAGONALS,

AND/OR C, INTERVAL BETWEEN CHECKS OF R
TORTHA= 1 IORTHB= 1, IORTHC= 2, IRINTV= -1
.1000 ., .1000 ., AND .1000 PERCENT.

(IF ANY) FOR OUTPUT OF
UNIT (IF ANY) EOR
LOADINGS

FORMAT, DATA ARRAY, AND MISSING DATA SUBSCRIPTS (IE ANY))

see. Seckion S.1.2

9
=CARD IT-2 (314), DATA SET DIMENSIONS FOR MODES A, B, AND C (NO. OF COLS, ROWS, AND SLICES) .
=CARD II-3 (80A1l), DATA FORMAT.

CARD TI-4 AND FOLLOWING NROWS X NSLICES SETS OF CARDS CONSTITUTE DATA WHICH IS NOW READ ACCORDING TO FORMAT
ON CARD II-3.
DATA CHECK- -
THE FIRST L.INE OF THE DATA IS
~2: 727 1.567 -2.586 .6620 .8140 -3.976 .5390
THE SECOND LINE IS
2.626 =1+.509 2.440 -.6600 =#7590 3.832 -.5220
THE LAST LINE OF THE DATA IS
1.093 .1610 1.186 .7010 -.6290 -.4790 1330

=LAST CARD IN PART II (I3), END-OF-TABLE CODE
(MUST ALWAYS BE INCLUDED, EVEN WHEN THERE IS NO MISSING DATA SUBSCRIPT TABLE INPUT)

SUMMARY STATISTICS FOR DATA TO BE ANALYSED

TOTAL NUM|
OVERALL M]
CVERALL M;

MCDE A
[.EVEL

DLV LN —

MODE B
LEVEL

VbW —

MODE. €

LEVEL

See Seckion

BER OF POINTS IN THE DATA SET= 360
EAN= .74389E-02 OVERALL VARIANCE= 2.3539
EAN SQUARE= 2.3539
MEAN VARTANCE MEAN SQUARE
-.42733E-01 5.8435 5.8453
.43044E-01 3.7203 3.7222
-.12418 .58613 .60155
.18622E-01 3.6486 3.6490
-.13373 .42224 .44012
.27022E-01 .63227 .63300
.32411 3.7605 3.8655
-.52644E-01 .71875E-01 .74646E-01
MEAN VARIANCE MEAN SQUARE
-.16489 2.5413 2.5685
.10933 2.0261 2.0381
-. 21636 3.2521 3.2989
.10247 .89904 .90955
.20664 2.9119 2.9546
MEAN VARTANCFE MEAN SNIARF

5123
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Table 2.2 (Continued)

1 .36100E-01 3.5433 3.5446
2 -.51250E-02 1.9855 1.9855
3 -.107S0E-01 1..1537 1.1538
4 .30025E-01 6.2557 6.2566
5i .14400E-01 3.2914 3.2916
6 -.10625E-01 .93914 .93925
7 -.52500E-02 1.2736 1.2736
8 .27600E-01 2.3547 2.3555
9 -.94250E-02 .38459 . 38468

BECINNING OF SOLUTION 1

()
N
(@]

THE STARTING LOADINGS ARE RANDOM NUMBERS. THE INITIAL SEED FOR THE RANDOM NUMBER GCENERATOR IS .2198435170D+09

ONF 2-D ANALYSIS OF SMALL EXAMPLE DATA SET
FRROR -FREE SYNTHETIC PROFILE DATA, 2 "TR/REVISED, SOLUTION -1, CENTERING= 000

50l I, ITERATION 0, MEAN SQ ERROR= 2.404702 , STRESS=1.0107307
R° .0216673 RSQ= .0004695 DIFEA=0. DIFFB=0. DIFFC=0.
MODE A
1 2
1 .2390 -.4107
2 1.a48 .6550
3 .1475E-01  1.369
4 -1.328 -.7366
5 -.8896 2.023
6 3179 -72031E-01
7 1.200 - 17655
8 1.322 15532
.
MODE B See Sechion 5.2.2.1
1 2
1 -1.376 1.631
2 -.1812 6718
3 .2421E-01 -1.122
a4 1.477 .4348
5 .9454 - 6642
MODE C
1 2
1 .1089 -.9393E-01
2 -.3087 - 11387
3 3446E-01 -.1486E-01
4 .3909 .1013
5 1398 11263
6 3024 ©2937E-01
7 - 6644E-01 -.2764E-01
8 -.3503 12165
9 .2902E-01  .1007
ROOT MEAN SQUARED CONTRIBUTION FOR EACH FACTOR
.235 iRt
DFPENDENCE CONSTRAINTS IN EFFECT FOR- - N 8
MODE C See S!.L*l"‘\ 0.2.3

CONSTRAINT THAT MODE C FACTORS BE INDEPENDENT WAS DROPPED BEFORE ITERATION 12}

CONVERGENCE CRITERION MET ON ITERATION 19

MC A MAXIMUM CHANGE = .901503E-02 PERCENT o

MOL B MAXIMUM CHANGE .361696E-01 PERCENT SLL Se_(j"m 8. ' . 3
MODE C MAXIMUM CHANGE .521205E-02 PERCENT

NO DEPENDENCE CONSTRAINTS IN EFFECT

[

See. Seckion S.2.1

DIFFC= 4.988 PERCENT.
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ONE 2-D ANALYSIS OF SMALL EXAMPLE DATA SET

ERROR-FREE SYNTHETIC PROEILE DATA, 2 "TR/REVISED, SOLUTION -1, CENTERING= 000
SOL 1, ITERATION 19, MEAN SQ ERROR= .1112202E-06, STRESS= .0002174
R=1.0000000 RSQ=1.0000000 DIFFA= .901SE-02 DIFFB= .3617E-01 DIFFC= ,S5212E-02

MOOE A See. JSectNon b T s |

2
1 -1.422 -1.652
2 1.160 1.271
3 .6579 L2144
4 1.080 1.384
5 -.2806 .8488
6 .3386 -.7424
7 1.670 -.6288
8 -.2268 .1663
MODE B
1 2
1 -1.274 -.1911
2 1.222 -.4659
3 -.7584 -1.685
4 #7315, .2138
S .8799 1.365
MODE C
1 2
1 1.872 .45S03E-01
2 .6584 1.100
3 .2689 .9782
4 2.189 .7984
s 1.426 .8334
6 .2108 .8973
7 .4918 .9059
8 1.502 L1186
9 .3130E-01 .6121
ROOT MEAN SQUARED CONTRIBUTION FOR EACH FACTOR
AN SQ ONTRI see. Section §5.2.3

CROSS PRODUCTS OF NORMALIZED FACTORS
(I.E. COSINES OF ANGLES BETWEEN FACTORS)

MODE A
1 2

¥ 5 See Seshom S2-¢

MODFE. B

1 2
1 1.000 .462
2 .462 1.000
MODE C

1 2
1 1.000 .563
2 .563 1.000

R =

CORRELATIONS OF FACTOR LOADINGS See \SC&;h m S 2.5
MODE A

1 2
1 1.000 .506
2 .506 1.000

: B
1 2

1 1.000 .498
2 .498 1.000

MODE C

1 1.000 -.506
2 -.506 1.000

FRROR ANALYSIS FOR SOLUTION 1 See SeXNon S.l-lg
MODE A
LEVEL MEAN SQ ERROR
1 .8624946E-07
.8956451E-07
.9456774E-07
.1102534E-06
.1030322E-06
.1023541E-06
.2216783E-06
.8206155E-07

NI UVDWN

MODE B
[LEVEL MEAN SQ ERROR
1 .9007235E-07

1
2 .1210248E-06
3 .1468931E-06
4 .8456512E-07
5 .1135454E-06
MCONDE C

LEVEL MEAN SQ ERROR
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Table 2.2 (Continued)

.8966895E-07
.1588353E-06
.9459584E-07
.1001498E - 06
.1174497E-06
.1280869E-06
.1444743E-06
.8311072E-07
.8460999E-07

CODNT T DUWN -

ser Sutiom 8.1.3

THE SEED FOR THE RANDOM NUMBER CENERATOR AT END OF EXECUTION IS .6771805000D+09

2.5 DATA SYNTHESIS

The PARAFAC input deck has the same general form
whether one is doing data analysis or data synthesis (or
both in the same run). When doing data synthesis, however,
you of course don't input a data set. The data input format
(Record 1II-3) 1is replaced by a special codeword that
indicates data synthesis is to be performed; the following
four cards are then used for synthesis parameters rather
than data. All other input parameters are the same as for
data analysis.

A detailed description of Input Section II for data
synthesis 1is presented in Table 2.3. Chapter 7 contains
additional information about the parameters in that table.






CHAPTER 9

PFCORE PROGRAM

PFCORE is a Fortran batch program, written especially
for use with PARAFAC. It has been tested fairly thoroughly,
and will probably be included with the PARAFAC Analysis
Package in the future. Although the code has not been
checked against PFORT specifications, PFCORE should be easy
to install on most systems.

PFCORE is a further development for dealing with
"degenerate"™ PARAFAC solutions (see Section 6.2 in the
Reference Manual for the PARAFAC Analysis Package, hereafter
referred to simply as the "manual"™). As mentioned in the
manual, complex data structure that cannot be represented by
the PARAFAC model, but can be fit by the Tucker T2 or T3
models, will cause the PARAFAC solution to be degenerate.
The Tucker solutions do not possess the unique axis property
of PARAFAC, however. What PFCORE does is combine the
optimal features of the two models -- PARAFAC unique axes
and Tucker generality -- to shed light on why the degenerate
PARAFAC solution occurred in the first place. The Tucker T2
and T3 models are fit to the data, using the factor weights
of a constrained PARAFAC solution (see Section 6.2.1.3 in
the manual) as estimates for the TUCKALS components. This
allows PFCORE to noniteratively compute the corresponding T2
and T3 core arrays.

The core arrays show the across-mode interactions
amongst the (constrained) PARAFAC factors, which the PARAFAC
model does not allow for. The interaction patterns may
indicate a violation of the PARAFAC assumption of angle
invariance between any two factors, for example, which would
help explain why the wunconstrained PARAFAC solution was
degenerate. As Lundy, Harshman and Kruskal (1985) did, you
can actually interpret the core array to gain understanding
of the relationships in the data. This would not be
possible if the degenerate PARAFAC solution (with
uninterpretable factors) were used instead.
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9.1 USING PFCORE

It is recommended that you arrange your data so that
Mode C refers to people (Mode C is not reduced to a common
space by the T2 model). The T2 core slices will then show
the Mode A and B factor interactions for individuals, and
the T3 slices will show the interactions for "idealized
people".

9.1.1 PFCORE Limitations

The current PFCORE arrays have the following limits
(the parameter names printed in upper case are defined in
the Input Specifications Table below) :

1. Maximum number of points in the data array is 39000
(i.e., NAS*NBS*NCS£39000).

2. Maximum number of points in the factor loading
matrices for Modes A and B is 250 (i.e.,
NAS*NFACT€250 and NBS*NFACTS250) .

3. Maximum number of points in the Mode C factor
loading matrix is 400 (i.e., NCS*NFACT£400).

4. Maximum number of levels in Mode A and in Mode B is
40 (i.e., NASL40 and NBSK40).

5. Maximum number of factors is 10 (i.e., NFACTL10).
These limits may be changed by modifying the appropriate

dimension statements and assignment statements at the
beginning of the program.

9.1.2 PFCORE I/O Units

The logical units used for system standard input and
output are 5 and 6 respectively. These may be changed by
modifying the appropriate assignment statements at the
beginning of the program (ISTDIN=5 for input; ISTDOU=6 for
output) .

9.2 PFCORE INPUT

Input to PFCORE consists of three sections. Listed in
order of input, they are:

1. Job parameters (input from logical unit 5)
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2. Data parameters and data set (input from IUNITB, a
job parameter specified by the user; default is 5)

3. PARAFAC 1loadings (input from IUNITC, a job
parameter specified by the user; default is 5)

Usually your data and PARAFAC solution will be stored in
separate diskfiles, but it is possible to input everything
from one file (i.e., by taking the defaults for IUNITB and
IUNITC) . If using separate files, remember to include
system control statements with your job to access them.

9.2.1 PFCORE Input Specifications Table

Input Section 1: Job Parameters

The first input section consists of five records read
from the standard input unit. They are explained in detail
below. Parameter names are printed in upper case. The
expression in parentheses that follows each record number is
the Fortran input format for parameters on that record.
Integer values should be right-justified in their respective
input fields.

Record 1 (80A1) Job Title (columns 1-80): Description
of the current job, for your own
information

Record 2 (14) NFACT (columns 1-4): Number of factors
in -the PARAFAC solution

Record 3 (412) Input and Scaling Options

Column Default Parameter Name, Explanation
Value
1-2 5 IUNITB, data input unit
3-4 5 IUNITC, PARAFAC loadings input unit
5-6 3 ISTANM, mode that reflects data scale in

PARAFAC solution; explained on page 2-9
in the PARAFAC manual

7-8 0 IDSCOR, option to have core matrix
reflect data scale (0=No, l1l=Yes)

Record 4 (212) Output Options
Column Default Parameter Name, Explanation
Value
1-2 0 ITCORE, core array(s) to be output

0=T2 (extended) core array only
1=T3 (compressed) core array only
2=both T2 and T3 core arrays
3-4 0 IUNITD, output unit for disk copy of
core array(s). THIS OPTION IS NOT FUNC-
TIONAL IN THIS VERSION OF PFCORE.
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Record 5 (80A1) Output Format for Core Array(s)
(columns 1-80): This is the Fortran
format for outputting one row of the
core array (one row contains NFACT
values) . The format must be enclosed
in parentheses, include a carriage
control character, and specify F, E or
G format for the core array elements.
See page 2-16 of the manual for
examples.

Input Section 2: Data Parameters and Data Arrays

The data are read from IUNITB, specified on Record 3
above. The format is exactly the same as for the PARAFAC
program, described on page 2-11 of the PARAFAC manual. See
page 2-22 for an example data set.

There are two points to note about data input:

1. Usually, you want the data to correspond to the
PARAFAC solution that you input to PFCORE (i.e.,
you want to input the data that produced the
solution). In most cases, this is not the raw data
that was input to the PARAFAC analysis. If you
preprocessed the data or specified missing values,
you should save the data at the end of the solution
and use these data as input for PFCORE (see Card
I-4 and the IUNITD parameter on Card I-8, described
on pages 2-7 and 2-9 in the manual).

2. If they are included with the data, PFCORE ignores
missing value subscripts and the "terminator
record" that are written out by PARAFAC. You would
have to delete these records from the data set only
if the PARAFAC solution was to be read from the
same file as the data (i.e., if IUNITC=IUNITB).

Input Section 3: PARAFAC Solution

The PARAFAC factor loadings are read from IUNITC,
specified on Record 3 above. Output by PARAFAC, they are
already in the format required for input to PFCORE. If you
use loadings obtained from some other source, you must
arrange them in "standard PARAFAC" format, as described on
page 2-12 of the manual; an example is given on page 2-22.
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9.3 PFCORE OUTPUT

PFCORE outputs everything to the standard output unit
(i.e., logical wunit 6). First, the input is documented;
then fit values and core array(s) are listed. Input of the
data and the factor loadings is verified in the same way as
for PARAFAC, described in Sections 5.1.2 and 5.1.3 of the
manual.

9.3.1 Fit Values

Fit values output by PFCORE are R, RSQ, MEAN SQ ERROR
and STRESS; they are explained in Section 5.2.1 of the
PARAFAC manual. These fit values are given for five models:
PARAFAC (the most restricted model) and the Tucker T3, T2,
Tl (A) and T1(B) models. Note that the fit values for the
"T" models are not computed using TUCKALS components for
Modes A, B and C, but rather using the PARAFAC components
that were input.

Except for roundoff error, fit values for the PARAFAC
model will agree with the ones listed as documentation for
the input PARAFAC solution. If not, check your data. (For
some purposes, you might deliberately input a solution that
was not obtained by analysis of the input data; then, of
course, the fit values would be different.)

You will see that the fit improves as the models become
more general, which is due at least partly to the increasing
number of parameters of the model. Thus, as you go from
PARAFAC to the Tl models, the R and RSQ values increase and
MEAN SQ ERROR and STRESS decrease. Both T1 models are
general, but one may fit more parameters than the other
(depending on NAS and NBS), and so that one would be
expected to fit the data better.

Extreme differences in the fit wvalues suggest the
presence of data structure that is more general than can be
fit by a restricted model like PARAFAC or even T3 (e.g., the
T1(A) £fit wvalues for the metaphor data in Lundy, Harshman
and Kruskal, 1985). To be sure whether the improvement in
fit for a less restricted model is evidence of more general
structure in the data, and not Jjust due to the greater
number of parameters and/or chance, you would of course need
to do a Monte Carlo study (briefly described in the Lundy et

al paper).
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9.3.2 Core Arrays

The core arrays are listed as a series of 2-way
matrices or "slices", NFACT slices for the T3 core and NCS
slices for the T2 core. Each slice shows what are
essentially "interactions" between the Mode A and B
components for each "idealized" person (in the T3 case) and
for each individual (in the T2 case).
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Table 2.3
PARAFAC INPUT FOR DATA SYNTHESIS

SECTION I: ANALYSIS CONTROL PARAMETERS

This first section of input for the generation (and analysis) of synthetic data is set up as described in Section | of the Input Specifications Table
in the chapter on PARAFAC input. The same 8 cards can be used here to control the analysis of the synthetic data once it is generated On the
other hand, if no immediate analysis of the generated data is desired, these cards can be mostly left blank. Simply specify a value of —1 (negative
one) for the NSOLS parameter on Card 2 (cols. 5-8). In this case, it is not necessary to specify any of the parameters on Cards H3 to 7
(blank cards may be used instead). On Card 8, however, you need to specify IUNITD (cols. 3—4) and provide a DATFMT (cols. 180 on Card H8A)
if you want the synthetic data to be output.

SECTION II: DATA PARAMETERS (AND LOADINGS TO GENERATE DATA)

The orgamzation of the second input section, when doing data synthesis, is similar to that for general data analysis. However, the actual raw data
is replaced by parameter cards and externally supplied loadings (if any) that are used in the generation of the synthetic data. The program assigns
default values to some of the parameters if they are not specified by the user. All information except the loadings is read from IUNITB (cols. -2
on Card F3). The loadings are input from IUNITC (cols. 34 on Card F3). (Of course, IUMTB and IUNITC can be set to the same umt, e.g 5 or
ISTDIN, if desired.)

RECORD I FORMAT: (80A1) DATA TITLE: Ths record should contain a verbal description of the data set
that is to be generated; it will become the first line of the generated data file. See
the explanation of Record I in the PARAFAC Input Specifications Table for more
details.

RECORD IF2 FORMAT: (314) DESIRED DIMENSIONS FOR GENERATED DATA SET: The
data set to be generated will contain NAS by NBS by NCS points.

Parameter
Column Name Explanation
-4 NAS Number of levels or items in Mode A.
58 NBS Number of levels or items in Mode B.
912 NCS Number of levels or items in Mode C.

RECORD I3 FORMAT: (4A1) CODE WHICH SELECTS SYNTHETIC DATA GENERATION:
"SYNT" in cols. 1—4 1s a fixed code which specifies that synthetic data 1s to be gen-
erated by the program. This replaces the data input format (VARFMT) which is put
here when data is to be read in

Parameter
Column Name Contents of Col. 14
-4 e SYNT
RECORD IF4 FORMAT: (14) NUMBER OF FACTORS: This parameter specifies the number of factors to

be used to generate the “true” or systematic part of the data. If omitted, the number
will be set equal to the number specified for analysis (i.e. NFACT from Card +2).

Default  Parameter
Column Value Name

14 = NFACT NFGEN
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Table 2.3 (Continued)

[\8]

RECORD IS5 FORMAT: (I1,1X,D16.0)

Default Parameter
Column Value Name
1 0 ILDGIN
318 0594420173.00 SEED2

TYPE OF FACTOR LOADING INPUT FOR DATA GENERA-
TION: These parameters determine the source of the factor loadings which will
define the underlying factor structure of the "true” or systematic part of the synthetic
data. (These loadings should not be confused with those selected by the starting
position parameters on Card H5. Card H5 selects the starting loadings for use in the
iterative analysis, which occurs after the data is generated.) The size of the factor
loading tables used to generate the data will be NAS by NFGEN NBS by NFGEN and
NCS by NFGEN for Modes A, B and C, respectively.

Explanation

Type of source for the loadings used to generate the "true” or systematic part of the
synthetic data.
ILDGIN values are interpreted as follows:

0 = Random loadings are to be generated (rectangularly distnbuted).

1 = Loadings in standard format are to be read in, as provided by the user.
See Section Ili(a) in the PARAFAC Input Specifications Table for a
descniption of the format.

2 = loadings with nonstandard format are to be read in, as provided by the
user. See Section lli(b) 1n the Input Specifications Table for a descnp-
tion of the arrangement of the input.

Seed for the random number generator (used only if ILDGIN is 0). SEED2 must be a
double precision whole number in the inclusive range (2.00 to 2147483646.00). If it
is outside this range, the default value is used by the program. Note: after the
string of one to 10 digits, the end of the number should contain a decimal point, fol-
lowed by the letter "D", followed by the numeral 0. This defines the seed as a double

29

precision whole number.

RECORD IF6 FORMAT: (I1,1X,3I1,

1X,311,1X,11,1X,
11,G10.4)
Default Parameter
Column Value Name
1 0 IDATYP
3 b IFAPOS
4 - IFBPOS

5 ks IFCPOS

CHARACTERISTICS OF THE TRUE OR SYSTEMATIC PART
OF THE DATA. These parameters determine the general charactenstics of the
"true” or systematic part of the data to be synthesized. Data type 0 selects profile
data, appropnate for factor analysis. Data type 1 selects dissimianty data, appropn-
ate for multidimensional scaling. (This data would require preprocessing with DISTIN
before analysis with PARAFAC.) Data type 3 selects cross-product or covanance type
data, appropnate for factor analysis. Umipolanty constraints allow data to be gen-
erated with all loadings having the same sign (as in "positive mamfold”) in any or all
modes. Dependence constraints allow the user to specify that the factors be orthogo-
nal or uncorrelated across the levels of any particular mode. The factor size muiti-
pliers determine the distnbution of relative sizes of the factors used to generate the
"true” part of the data, and the data size multiplier determines the scale of the "true*
part of the data.

Explanation

Type of synthetic data to be generated.
IDATYP values are interpreted as follows:

0 = Raw score or "profile” data
1 = Dissimlanty data
2 = (ross-product, covanance, or scalar product data

Mode A umpolanty option. * (for default value see Note 1; below.)
Mode B umpolanty option. * (for default value, see Note 1; below.)
Mode C umpolanty option. * (for default value, see Note 1; below.)
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Table 2.3 (Continued)

IFAPOS, IFBPOS and IFCPOS flags are interpreted as follows:

0 = Default value will be assigned depending on the mode and the type of
data involved (see "Note 1: Defaults” beiow).

1 = Allow bipolar (positive and negative) loading patterns in the specified
mode.

2 = (Constrain loadings to be unipolar (i.e. all positive or all negative for each
factor in the specified mode).

3 = "Center” loadings for each factor in the specified mode (i.e. adjust load-
ings so that, in the specified mode, the mean loading for each factor will
be zero).

7 . IFAORT Factor independence - dependence constraint for Mode A. * (for default value, see
Note 1, below.)

8 . IFBORT Factor independence - dependence constraint for Mode B. ° (for default value, see
Note 1, below.)

9 . IFCORT Factor independence - independence constraint for Mode C. * (for default value, see
Note 1, below.)
IFAORT, IFBORT and IFCORT are interpreted as follows:

0 = Default value will be assigned depending on the mode and type of data
involved (see "Note 1: Defaults” below.)

1 = No constraint will be imposed on the factors in the specified mode.

2 = Constrain the factors in the specified mode to be uncorrelated.

3 = Constrain the factors in the specified mode to be orthogonal.

11 0 ISTRMS Option to standardize the root-mean-square of the true part of the data.

0 = Do not standardize; let the scale of the true part of the data be deter-
mined by the number and size of the factors, as well as DSIZE.

1 = Standardize, so that the root-mean-square of the data points, before eror
1S added, 1s equal to DSIZE; (this option is useful for precisely determin-
ing the variance comtributed by the true part of the data).

13 0 ISZFAC Method of selecting factor size multipliers. When ISZFAC == 0 or 1 (i.e. when factors
are allowed to have different overall variances or mean squares) a multiplier 1s ran-
domly selected for each "size" factor, and Mode C loadings for that factor are scaled
up or down by thws size multiplier. Since, with real data, it is seldom the case that
all factors account for the same proportion of the data vanance (or mean square),
these multipliers are used to simulate naturally occunng vanations in the relative
sizes or vanance contributions of the factors used to generate the true part of the
data. If a tnangular distnbution of sizes is used, factors are more likely to have
similar sizes, whereas a rectangular distnbution will tend to give a wider range of
vanations in the relative proportions of variance contributed by the different factors
underlying a particular set of synthetic data.

0 = A size multiplier for each factor is randomly selected from a tnangular
distrnibution ranging from 0.1 to 1.9, with a mean of 1.0.

1 = A size multiplier for each factor is randomly selected from a rectanguiar
distribution ranging from 0.1 to 1.9, with a mean of 1.0.

2 = The size multiplier for all factors is 1.0.

14-23 1.0 DSIZE Size multipher for the "true” part of the data. When data of the type specified by
IDATYP is generated from factors which have the charactenstics requested via other
parameters on this record, the vanance of the true part of the data will depend on the
factor sizes, factor covaniances, and other charactenstics of the true part of the data.
DSIZE allows this vanance to be adjusted. If ISTRMS is zero, each data point is then
multiplied by DSIZE (and consequently the vanance of the true part is multiplied by
the square of DSIZE). If ISTRMS is one, DSIZE (s first divided by the root-mean-
square of the unadjusted data, before being used as the adjustment factor for each
data point (and consequently the onginal valve of DSIZE becomes the root-mean-
square of the true part of the data). (See Note 2 for further details).
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RECORD IF7 FORMAT: (I1,1X,D16.0, CHARACTERISTICS OF THE RANDOMLY VARYING PARTS

1X,4G10.4)
Default
Column Value

1 0

38 0807833162.00
20-29 0.0
3039 0.0
4049 0.0
50-59 0.0

OF THE DATA.

Parameter
Name Explanation
IERTYP Type of random error to be added to each synthetic data point.
0= No ermor
1 = Constant variance, uniform distribution
2 = Proportional vanance, umform distribution
3= Constant vanance, normal distribution
4 = Proportional variance, normal distribution
5= "Lognormal” distnbution
6 = Constant vanance, "slash” distribution
7 = Proportional vanance, "slash® distribution
SEED3 Seed for the random number generator (used only if IERTYP or ACONSZ is not zero).
The range restnictions and special format, noted above for SEEDZ (Record IH5), also
apply to SEED3.
ERRSIZ Size multiplier for the random error specified by IERTYP. If the default is taken, no

random error 15 added, regardless of the value of IERTYP (except when CONPRB and
CONSIZ are nonzero).

ACONSZ Size multipher for additive constants. If IERTYP 15 zero, ACONSZ is added to each
data point (i.e. the additive constants are all 1.0). If IERTYP 1s greater than zero, an
additive constant is generated for each level of Mode C as a random number umformly
distnbuted between zero and one. The constant 1s multiphied by ACONSZ and added
to all data points at that level of Mode C (i.e. each "shice” of the data matrx has 3
different additive constant).

CONPRB Probability that each data point 1S contaminated by extra large error (i.e. probabuhity
that the pont is an “outlier”). The distribution type for the error of contamnated
points 1s the same as for the non-contaminated points. i.e. it has the shape deter-
mined by IERTYP. However, the expected standard deviation of the error of the con-
taminated points 1s different as determined by CONSIZ descnibed below. (If IERTYP
1s zero, CONPRB is ignored). Note that since CONPRB is a probabrlity, it can assume
only values from zero to one inclusive.

CONSIZ ERRSIZ multiplier for data points that have extra large error (i.e. for "outliers™). CON-
SIZ is used only if both IERTYP and CONPRB are greater than zero. In general,
ERRSIZ 15 the error size multiphier for all points that are not outhers, while the pro-
duct ERRSIZ*CONSIZ 1s the error multiphier for the outliers. However, the user may
sometimes want the non-contaminated points to be error-free. In such cases, ERRSIZ
1s zero and CONSIZ is nonzero (and IERTYP and CONPRB are nonzero). With such
specifications, the error multipher that is used for the outliers 1s CONSIZ (1.e. ERRSIZ
1s assumed to be 1.0 when calculating error for the outliers, and zero otherwise.) In
this case, only the "outliers™ have error added.

RECORD I8 to II-X (optional)

OPTIONAL FACTOR LOADINGS USED TO GENERATE THE "'TRUE"
COMPONENT OF THE DATA. Data Generation Loadings are needed only if ILDGIN
(Record 1H5) 1s 1 or 2. When needed, these loadings are read from IUNITC (Card H3). The for-
mat of this loadings section is as described in Section Il of the PARAFAC Input Specifications
Table, except that the loadings are read in dunng Part Il and oniy one complete set of loadings 1S
read in (These values are used only to generate the data, and nor to analyze it.) The records
contaimng these loadings may be included among the Part |l parameter records if IUNITC 1s the
same as IUNITB. Otherwise they are in a separate file. See "Note 3: IUNITC" (below) for further
details.
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Table 2.3 (Continued)

RECORD IFHX+1) FORMAT: (314) MISSING-VALUE SUBSCRIPTS TABLE: Optional. Each record indicates the
to IFY location of one data cell with missing data. (Naturally, synthetic data is not going to have cells
with missing values. However, the user can cause the output synthetic data file to be written with
a missing-value subscript table which will cause certain cells to be treated as if they contained
missing data. This might be useful when simulating real data which contained missing values, or

studying the effects of missing data on the solution of synthetic data problems.)

Parameter
Column Name Explanation
I ] | Level of Mode A; maximum valve is NAS.
58 ) Level of Mode B; maximum value is NBS.
912 K Level of Mode C; maximum value is NCS.

Subscnpts for a point (1,J,K) which is to be treated as missing data

RECORD IIHY+1) FORMAT: (14) TERMINATOR RECORD FOR SECTION II. —001 in cols. -4 is a fixed code
which marks the end of the subscript table. It must always be included, even if no missing value
subscripts are specified.

SECTION III: STARTING LOADINGS FOR ANALYSIS OF SYNTHESIZED DATA (Optional)

This third input section follows the format described in Section Il of the Table of Input Specifications. The "Note on IUNITC" below should also be
referred to. It is not necessary to include Section Il (the section of starting loadings) if NSOLS is —1 or if ISTART is 0.

NOTES

NOTE 1: DEFAULTS. The default values for parameters IFAPOS to IFCORT inclusive on Record |6 above
depend on whether one is generating profile data, distance data, or covariance - like data (i.e. the defaults depend on
the value given to IDATYP). These defaults are given in the table below.

IF
IDATYP = 0 1 2
DEFAULT VALUE OF THE PARAMETER
IFAPOS= 1 3 1
IFBPOS= 1 3 1
IFCPOS= 2 2* 2
IFAORT= 1 1 1
IFBORT= 1 1 1
IFCORT= 1 1* 1

L ]
When IDATYP is 1, the default value for IFCPOS takes precedence over any other value specified by the user; the pro-
gram issues a message when it resets the value of (FCPOS. Also when IDATYP is 1, a user-specified value of 3 for
IFCORT will be reset to 2 by the program, and a message will be printed to inform the user.
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Table 2.3 (Continued)

NOTE 2: SPECIAL LIMITATIONS ON DSIZE. (a) For synthetic data which consists entirely ot
error, the user must specify a very small nonzero number for DSIZE (e.g. 10.E-30) so that the contribution of the
"true" component is essentially zero. A DSIZE of exactly zero cannot be used for this purpose, because the default
value of 1.0 is assigned if cols. 14—23 contain zero or are left blank.) (b) If IDATYP is one, DSIZE should be positive.

NOTE 3: IUNITC. If IUNITC is not the standard input unit, and factor loadings are to be input by the user for
both data synthesis (ILDGIN is 1 or 2) and analysis (ISTART is 1 or 2), the information on JUNITC must be arranged

in the following order:

a. One complete set of loadings, which is used to generate the data. The set is arranged as described in Part Il
of "PARAFAC INPUT," according to either the standard continuation (ILDGIN =1) or the continuation with vari-

able input (ILDGIN =2).

b. NSOLS complete sets of loadings, which are used during analysis as starting positions for the different solu-
tions. The sets are arranged as described for a standard continuation (ISTART =1) or as explained for a con-

tinuation with variable input (ISTART = 2).

2.6 PARAFAC EXAMPLES (EOR DATA SYNTHESIS)

This section presents examples of the input that is
described above in Table 2.3. Whereas Section 2.4 presents
separate examples for the three input sections, each example
here consists of the entire input deck (usually Input
Sections I and II only). More emphasis is placed on Section
IT, however, as this is where the synthetic data parameters
are specified.

(1) This simple example produces the lineprinter output
shown in Table 2.4. Default values are assigned for most
parameters. The synthetic data 1is error-free raw score
data, with 2 underlying '"true" factors. The data and '"true"
factors are saved (include system commands to do so), but
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the data are not analysed.

%

CENERATE AND SAVE SMALL EXAMPLE DATA SET
-1

—
[

[ S [ G U
|
OO U W

7 2

I-8A|(1X,8E7.3)

IT1-1 |ERROR-FREE SYNTHETIC PROFILE DATA, 2 "TRUE'" FACTORS
IT-2 8 5 9

IT-3 [SYNT

I1-4
IT-5
II-6
I1-7
IT-8 =001

(2) This example shows synthesis of raw score data with 2
underlying "true" factors and subsequent 3-D analysis in the
same run. The data have normally distributed random error
added (IERTYP=4) that contributes approximately 407 of the
total variance (ISTRMS=1, DSIZE=1.0, ERRSIZ=0.8165; see
Section 7.3). The data are not saved, but the factor
loadings are (include system commands to do so). The
loadings file will contain the 2-D '"true" factor solution
first, followed by the three 3-D solutions produced by the
analysis. (These solutions were then compared; see the
CMPARE output listing in Table 3.4).

CARD

GENERATE DATA WITH 2 FACTORS AND DO 3-D ANALYSIS
3 3

—
I |

i

0 0004216538.D0
-1

= =
|
HONOOUbdwN

7
SYNTHETIC RAW SCORES, 2 "TRUE'" FACTORS, 40y ERROR
II-2 25 18 35
IT-3|SYNT
LI =4 2
II-5{0 0081024173.D0
IT-6|0 112 111 1 0 1.0

—

ITI-7|4 0000023149.D0 0.8165
IT-8(=001
(3) In the example below, parameters are specified to

generate dissimilarities data with error due to additive
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constants. Note that NAS=NBS because for dissimilarities,
Modes A and B refer to the same stimuli. The data are not
analysed here; they must be converted to scalar products

first (see DISTIN input example 1 in Section 3.4.5).

CARD

I-1 [GENERATE AND SAVE DISSIMILARITIES DATA
I-2

: } same as example 1
I-7

I-8 (-1 2
I-8A |(1X,6G13.5/1X,6G13.5)
IT1-1 IDISSIMILARITIES, 3 TRUE FACTORS, ADDITIVE CONSTANTS
11-2 12 12 20
IT-3 [SYNT
I1-4 3
IT-510 0042951039.D0
IT-6 (1 332 111 0 0 2.0
IT-7 1|5 0000559183.D0 0.0 1.0

IT-8 (001

(4) Suppose you want to generate raw score data with 3
underlying factors and no error added except for outliers:
87 of the data points are to be outliers contaminated with
proportional variance error from the slash distribution
(CONPRB=0.08, IERTYP=7). You then want to do a 3-D analysis
of the data to see how the outliers affect the recovery of
the true structure in the data. Both data and solutions are
to be saved (include system commands to do so). The PARAFAC
input would be as follows:

B

o o
|
ONOUDdwh~T

GENERATE AND ANALYSE DATA WITH OUTLIERS
3

5

0 0000309158.D0
-1

71

I-8A |(1X,5G14.6/1X,5G14.6/1X,5C14.6)
I1-1 |[SYNTHETIC RAW SCORES, 8% OUTLIERS

IT-2| 15 19 14

I1-3 [SYNT

I1-4 3

IT-5 [0 0145326595.D0

IT-6 {0 000 000 0 0 1.0

I1-7 |7 2003678995.D0 0.0 0.0 0.0800 1.0
I1-8 =001

Table 2.4 is the lineprinter output produced by PARAFAC,
given the input shown above in example 1.
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PARAFAC1, VERSION 6H(S). COPYRIGHT 1980 BY RICHARD A. HARSHMAN.

CURRENT PROCRAM SET UP FCR--STANDARD PROGRAM tsh"‘ duA
CURRENT MAXIMUM DIMENSIONS ARE--

MODE A= 18. MODE B= 18. MODE C= 35. NO. OF FACTORS= 10. NO. OF MISSING VALUES= 50 Q.ff'a-j
STANDARD INPUT UNIT (IS'I'DINL S, STANDARD OUTPUT UNIT (ISTDOU) = 6
DEFAULT UNIT FOR OUTPUT OF OADINGS TO TAPE, DISK, OR CARDS (ISTDLD) = 7 Siz—t_s

MAX NUMBER OF FACTOR LOADINGS TO BE LISTED ACROSS THE PAGE = 10

SECTION I OF INPUT-- ANALYSIS CONTROL PARAMETERS
BEGIN INPUT, READING FROM UNIT S

JENERATE AND SAVE SMALL EXAMPLE DATA SET =
N =CARD I1-1 (80Al), JOB TITLE. see Sechion 1.4-1.1

0 -1 0 0
=CARD I1-2 (4I4), TASK SIZE PARAMETERS
NO. OF FACTORS TO BE EXTRACTED, NO. OF SOLUTIONS, MAXIMUM NUMBER OF OUTPUTS PER SOLUTION, MAXIMUM NUMBER OF

ITERATIONS PER OUTPUT.
AFTER DEFAULTS REPLACE UNSPECIFIED VALUES, NFACT= 2, NSOLS= -1, NOUTS= 0, NITER= 0

500
=CARD I-3 (2I2,1X,I1), INPUT OPTIONS.
NON-STANDARD INPUT UNIT FOR DATA, NON-STD. INPUT UNIT FOR LOADINGS, FLAG FOR CHECK OF AB SYMMETRY.
AFTER DEFAULTS REPLACE UNSPECIFIED VALUES, DATA INPUT UNIT= S, LOADINGS INPUT UNIT= S
000 0 0 O. 0. 0.
=CARD 1-4 (311 X, 11,1X,T1,2X; 5010 4), DATA PREPROCESSING OPTIONS AND MISSING DATA INFORMATION.
OPTION TO CENTER AND/OR NORMALIZE MODE A, MODE B, AND/OR MODE C, FLAG TO INDICATE WHETHER OR NOT CODES ARE
USED TO INDICATE MISSING DATA, FLAG TO INDICATE METHOD OF GETTING STARTING ESTIMATES FOR THE MISSING DATA,
THREE MISSING DATA CODES, LOWER BOUND AND UPPER BOUND FOR VALID DATA RANGE.
0 0.

=CARD I-S5 (I1,1X,D16.0), ANALYSIS STARTING POSITION PARAMETERS.

STARTING POSITION TYPE (0, 1 OR 2) AND SEED FOR RANDOM NUMBER CENERATOR (IF NEEDED)
TYPE 0=RANDOM, TYPE 1=STANDARD CONTINUATION, TYPE 2=VARIABLE FORMAT INPUT OF LOADINGS.
AFTER DEFAULT REPLACES UNSPECIFIED OR INCORRECT SEED, TYPE=0, SEED= .2198435170D+09

000 0 000 0
=CARD I-6 (3I1,1X,I1,1X,3I1,61X,613), ANALYSIS OPTIONS.
FLAGS TO INDICATE DEPENDENCE CONSTRAINTS FOR MODE A, B, AND/OR C, FLAG FOR IGNORING DATA DIAGONALS,
FLAGS FOR HOLDING FIXED MODE A, B, AND/OR C, INTERVAL BETWEEN CHECKS OF R.
AFTER DEFAULTS REPLACE UNSPECIFIED VALUES, IORTHA= 1 IORTHB= 1, IORTHC= 2, IRINTV= 5

0. 0. 0.

=CARD I-7 (3G10.4), CONVERGENCE CRITERICN FOR EACH MODE.

AFTER DEFAULTS REPLACE UNSPECIFIED VALUES, CRITERIA ARE .1000 ., .1000 ., AND .1000 PERCENT.
7200

=CARD I-8 (3I2,1X,11), OUTPUT OPTIONS.

NON-STD. UNIT FOR WRITING COPY OF FINAL LOADINGS TO TAPE, DISK OR CARDS, UNIT (IF ANY) FOR OUTPUT OF

SYNTHESIZED OR REVISED DATA (E.G. DATA CENTERED OR WITH MISSING VALUES ESTIMATED), UNIT (IF ANY) FOR

OUTPUT OF RESIDUALS, FLAG TO INDICATE METHOD FOR STANDARDIZING SCALE OF OUTPUT LOADINGS.

AFTER DEFAULTS REPLACE UNSPECIFIED VALUES, LOADINGS OUTPUT UNIT= 7, AND LOADINGS STANDARDIZATION METHOD= 3
(1X,8F7.3)
=CARD I -8A (80Al), OUTPUT FORMAT FOR REVISED OR SYNTHESIZED DATA.

SECTION II OF INPUT-- DATA PARAMETERS AND DATA SET
(DATA TITLE, DIMENSIONS, FORMAT, DATA ARRAY, AND MISSING DATA SUBSCRIPTS (IF ANY))

READING FROM UNIT S

FRROR-FREE SYNTHETIC PROFILE DATA, 2 "TRUE" FACTORS 1 7.“*‘, l z
=CARD II-1 (80Al), DATA SET HEADING. SC’L S(Cj.l o

9
=CARD I11-2 (314), DATA SET DIMENSIONS FOR MODES A, B, AND C (NO. OF COLS, ROWS, AND SLICES).
SYNT

=CARD I1.-3 (80Al), DATA FORMAT

CODEWORD SYNT IN COL 1-4 SELECTS SYNTHETIC DATA GENERATION INSTEAD OF DATA INPUT.

=SPECIAL CARD I1-4 (I4)
NUMBER OF FACTORS TO USE IN GENERATING THE TRUE OR SYSTEMATIC PART OF THE DATA.
AFTER DEFAULT REPLACES THE UNSPECIFIED VALUE, THE NUMBER OF FACTORS IS 2

=SPECTAL CARD II-5 (I1,1X,D16.0)

TYPE OF SOURCE FOR DATA-GENERATION LOADINGS (0,1 OR 2) AND SEED FOR RANDOM NUMBER GENERATOR (IF NEEDED) .
TYPE 0=RANDOM NUMBERS, TYPE 1=STANDARD CONTINUATION DECK, TYPE 2=VARIABLE FORMAT INPUT OF LOADINGS.
AFTER DEFAULT REPLACES UNSPECIFIED OR INCCRRECT SEED, TYPE=0, SEED= .5944201730D-+09

0 000 000 0 00.
=SPECIAL CARD II-6 (I1,2(1X,3I1),2(1X,11),G10.4), CHARACTERISTICS OF THE TRUE OR SYSTEMATIC PART OF THE DATA- -

DATA TYPE, OPTION TO DETERMINE SIGNS FOR MODES A, B AND C, FACTOR DEPENDENCE OPTION FOR MODES A, B AND C,
OPTION TO STANDARDIZE THE ROOT MEAN SQUARE OF THE TRUE PART, SELECTION OF SIZE MULTIPLIERS FOR FACTORS,

SIZE MULTIPLIER FOR TRUE PART OF THE DATA.
AFTER DEFAULTS REPLACE UNSPECIFIED OR INCORRECT VALUES, THE SICN OPTIONS FOR MODES A,6B,C=112,
THE DEPENDENCE OPTIONS FOR MODES A,B,C=111, THE DATA SIZE MULTIPLIER= 1.000

0 0. 0. 0.
=SPECIAL ("ARD I1-7 (Il 1X,D16.0,1X,4G10.4) , CHARACTERISTICS OF THE RANDOMLY VARYING PARTS OF THE DATA- -
VARIATION TYPE, SEED, SIZE MULTIPLIER FOR ERROR, SIZE MULTIPLIER FOR ADDITIVE CONSTANTS, PROBABILITY THAT
ANY GIVEN DATA POINT IS CONTAMINATED BY ERROR WITH A DIFFERENT SIZE, AND EXTRA ERROR MULTIPLIER FOR CONTAMINATED

DATA POINTS.

BEGINNING OF DATA SYNTHESIS See SCK}!M 7"‘"- l.2. ‘

DATA WILL BE GCENERATED FROM RANDOM LOADINGS. THE INITIAL SEED FOR THE RANDOM NUMBER CENERATOR IS .5944201730D+09
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Table 2.4 (Continued)

SUMMARY STATISTICS FOR SYNTHETIC DATA COMPONENTS

MEAN
TRUE PART OF DATA .7454E-02
ADDITIVE CONSTANT 0’
RANDOM ERROR (NOT 0.
INCLUDING ADDITIVE
CONSTANT)
TOTAL ERROR
(INCLUDING ADDITIVE
CONSTANT)
RANDOM ERROR
VS.
TRUE PART
MFAN CROSS-PRODUCT 0.
COVAR [ANCE 0.
(.Oi\‘lNE LR R SR

hER Rk

CORRELATION

See Setfiom 7:4.).2.2

VARIANCE
2.

MEAN SQUARE
354 2.354

0. .
0. 0.

TOTAL ERROR
TRUE PART
0.

AP
(22222 0]

CENERATE AND SAVE SMALL EXAMPLE DATA SET

FRROR - FREE SYNTHETIC PRCFILE DATA, 2
.7470924E - 28, STRESS

SYNTHETIC DATA-- MSE=

I'HE
MODE A
2
1 -1.422 ~1.652
2 1.160 1.271
3 6579 2142
4 1.080 1.384
S -.2806 .8487
6 -.3386 -.7424
7 1.670 -.6281
8 .2268 .1662
MODE. B
1 2
1 -1.274 =+ 1911
2 1-222 -.4658
3 -.7584 -1.685
4 .7315 .2138
5 .8799 1.365
MODE C
1 2
1 1.872 .4502E-01
2 .6582 1.100
3 . 2688 .9783
4 2.189 .7985
5 1.426 .8334
6 .2107 .8974
7 4916 .9061
8 1.502 .1187
9 .3112E-01 .6121

"TRUE" EACTORS

.0000000,R=1.0000000,RSQ=1.0000000

TRUE OR SYSTEMATIC PART OF THE DATA HAS THE FOLLOWING STRUCTURE

see Sekinm 7.4.1.2.3

ROOT MEAN SQUARED CONTRIBUTION FOR EACH FACTOR
.7829

1.219

CROSS-PRODUCTS OF NORMALIZED FACTORS

(I.E. COSINES OF ANGLES BETWEEN FACTORS)
MODE A
1 2
1 1.000 .513
2 .513 1.000
MODE B
1 2
1 1.000 .462
2 .462 1.000

see Section T4.0-2.4
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Table 2.4 (Continued)

MODE C
1 2

1 1.000 .563

2 .563 1.000

CORRELATIONS OF FACTOR LOADINGS

MODE A

L 2
1 1.000 .507
2 .507 1.000
MODE B

1 2

1 1.000 .498
2 .498 1.000

MODE C
1 2
1 1.000 -.506
2 -.506 1.000
See
DATA CHECK -
THE EIRST LXNE OF THE DATA Is
3.404 -2 -2.586 .6617
THE SECOND LINE IS
<3..217 2.626 #1.509 2.440 -.6596
THE LAST LINE OF THE DATA IS
-1.419 1.093 .1609 1.186 .7013
001

=LAST CARD IN PART II (I3), END-OF-TABLE CODE

Seckion 74,005

.8136 -3.976
-.7587 3.832
-.6294 -.4790

(MUST ALWAYS BE INCLUDED, EVEN WHEN THERE IS NO MISSING DATA SUBSCRIPT

SUMMARY STATISTICS FOR DATA TO BE ANALYSED

TOTAL NUMBER OF POINTS IN THE DATA SET= 360
OVERALL MEAN= .74545E-02 OVERALL VARIANCE= 2.3539
OVERALL MEAN SQUARE= 2.3539

MODE A
LEVEL MEAN VARIANCE MEAN SQUARE
1 -.42780E-01 5.8434 5.8452
2 .43121E-01 3.7205 3.7224
3 -.12414 .58602 .60143
4 .18656E 01 3.6488 3.6492
5 ~:13371 .42229 .44016
6 .27025E-01 .63226 .63299
2 .32410 3.7604 3.8655
8 .52647E-01 .71887E-01 .74659E-01
MODE B
LEVEL MEAN VARIANCE MEAN SQUARE
1 -+16492 2.5411 2.5683
2 .10936 2.0260 2.0380
8 -.21638 3.2522 3.2990
4 .10253 .89904 .90955
5 .20668 2.9121 2.9549
MODE C
LEVEL MEAN VARTANCE MEAN SQUARE
1 .36135E-01 3.5432 .5445
2 -.50986E-02 1.9857 1 9857
3 -+ 10777E-01 1.1538 1.1539
4 .30009E-01 6.2557 6.2566
S .14407E-01 3.2913 3.2915
6 -.10592E-01 .93919 .93930
7 -.52008E-02 1.:2737 1.2738
8 .27651E-01 2.3548 2.3558
9 -.94436E-02 . 38458 . 38466

THE SEED FOR THE RANDOM NUMBER GENERATOR AT END OF EXECUTICN IS .1601272600D+09

.5392
~i+5221

1327

TABLE INPUT)

-38






CHAPTER 3

PARAFAC UTILITY PROGRAMS

This chapter describes the four programs that come with
PARAFAC in the PARAFAC Analysis Package. DIMS is discussed
first in Section 3.1, CMPARE next in Section 3.2, then
PFPLOT in 3.3 and finally, DISTIN in 3.4.

3.1 DIMS PROGRAM

The DIMS program changes array sizes in PARAFAC so that
data sets of varying sizes can be analysed. Decreasing the
standard dimensions (see Section 2.1 for PARAFAC limits)
saves computer memory when executing PARAFAC; increasing
them permits analyses of larger data sets. DIMS can also
change other features of PARAFAC, such as the standard I/0
units, the descriptive header at the top of the output
listing, and the maximum width of tables on the listing.

To make the changes, DIMS copies the main routine of
the PARAFAC Fortran source code from one file to another,
revising dimension statements and/or assignment statements
in the code as it does so. The modified source code must
then be compiled before PARAFAC can be executed.

3.1.1 DIMS I/0 Units

DIMS uses 2 logical input units and 2 1logical output
units that are denoted by parameter names. Default values
are assigned to the parameters via assignment statements in
the DIMS source code. (Users who have access to the source
code can modify any of the I/O wunits if necessary by
following the instructions given in Appendix E.)
Appropriate system commands must be included with the job to
link the nonstandard units (IUNITA, IUNITB) with disk files.

Input
1. ISTDIN=5 (standard input unit) is used for input of
DIMS parameter values, described in Table 3.1.
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2. IUNITA=1 (diskfile):; it is used for input of the
PARAFAC source code that is to be redimensioned.
DIMS leaves this code intact.

Output

1. ISTDOU=6 (standard output unit) is used to document
the DIMS run. The parameter input is verified and
the amount of storage required by the redimensioned
PARAFAC arrays is reported. This number may be

useful 1if core memory is limited; when added to
the requirements of PARAFAC compiled without its
arrays (which depends on your computer and

compiler), you have an estimate of how much core
memory 1is needed for the redimensioned PARAFAC.

2. IUNITB=2 (diskfile); it is like a datafile, used
for output of the revised PARAFAC source code.
This new source code must be compiled, of course,
before executing PARAFAC.

DIMS I/0 is pictured below in Figure 3.1.

Figure 3.1. DIMS Input and Output

INPUT
Job Parameters PARAFAC Source Code
(from ISTDIN) (from IUNITA)
DIMS
Program
Lineprinter Copy of PARAFAC
i i Source (revised array"
(to ISTDOU) sizes, I/0 units, etc.)
(to IUNITB)

a disk file

OUTPUT
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Table 3.1

DIMS INPUT SPECIFICATIONS TABLE

CARD1 FORMAT: (80A1) REVISION TITLE
Label 1dentifying the researcher and/or applications for which the modified version of PARAFAC is intended, a

revision date, and any other useful information. This label will be written out as part of the header at page 1
of each PARAFAC output.

CARD 2 FORMAT: (915) PROGRAM REVISION PARAMETERS

Columns Explanation
1-5 Maximum number of levels in Mode A.
610 Maximum number of levels in Mode B.
115 Maximum number of levels in Mode C.
1620 Maximum number of factors to be extracted.
21-25 Maximum number of missing values in the data set.

(The following parameters are optional. If not specified by the user, DIMS assigns default values.)

2630 Maximum number of factor loadings to be printed on ore line across the PARAFAC output listing (Default =
10; maximum = 11). The best value for this number depends on the width of the page at your printing facil-
ity. This parameter affects only text which is output in columns. See the Note below for more details.

3135 Standard input unit in PARAFAC (Default = 5). This is the value for "ISTDIN," referred to in "PARAFAC 1/0
Units."

3640 Standard output unit in PARAFAC (Default = 6). This is the value for "ISTDOU," referred to in "PARAFAC 1/0
Units.”

4145 Output unit for special tape, disk, or card copy of the final loadings from PARAFAC solutions, unless otherwise
specified in the PARAFAC runs (Default = 7). This is the value for "ISTDLD," referred to in "PARAFAC 1/0
Units."

NOTE: ADJUSTING THE WIDTH OF OUTPUT TABLES TO THE PRINTING FACILITY. PARAFAC outputs simple
text (i.e. nontabular information) using up to 124 characters per line. When this material is output to 80-column CRT terminals or 72-column tele-
types, some of the lines will be too long to fit these output devices. Most systems will handle this situation by carrying over part of the line onto
an additional line. This "carry over" does not impair the readability of simple text. However, tables arranged in columns become very hard to read
when output in this way. Therefore DIMS sets a parameter ("NFCOLS") which determines the maximum number of columns per line in a PARAFAC
output table. In the output of factor loading tables, each loading on a given line takes 12 columns, and 4 extra columns are needed for the line
number (plus 1 for carriage control). Consequently, when the DIMS parameter NFCOLS is set to K, the required page width is 12*k + 4 columns
(plus 1 for camriage control). If set to 11, only 136-column line printers will be able to print the output without "carry over” onto the next line. If
set to 10, most printers should be able to handle the output, since it will only require 124 columns. If outputting to CRT terminals or 72-columns
teletypes, set this parameter to 6 to avoid "carry over."
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3.1.2 DIMS Examples

Two examples of DIMS parameters (input from ISTDIN) are
given below. Table 3.2 is what is output to the lineprinter
(ISTDOU) , given the example 1 input.

(1) The following will create a copy of the PARAFAC source
code with array limits and I/O units identical to those
described 1in Sections 2.1 and 2.2. Note that values
must be specified for the parameters in columns 1-25 of
Card 2, even 1if no changes in array sizes are to be
made, while the parameters in columns 26-45 need not be
specified when no changes are desired.

STANDARD PROGRAM
18 18 35 10 50

(2) The following will make a copy of the PARAFAC source
code with the following revisions: arrays can
accommodate data sets up to 75x75x100 in size, with no
missing values; the standard I/0 wunits (ISTDIN and
ISTDOU) are 41 and 42 respectively; and only 6 columns
of factor loadings will be printed across the page
(e.g.. for output to 80-column CRTs or narrow paper).

MONTE CARLO STUDY, DECEMBER 1985
75 75 100 10 0 6 41 42

Table 3.2

DIMS PROGRAM. COPYRIGCHT 1980 BY RICHARD A. HARSHMAN.

CURRENT PROGCRAM DIMENSICNS ARE FOR-- STANDARD PROGRAM
DIMENSIONS EOR PARAFAC BASED ON INPUT PARAMETERS--
MAXIMUM NUMBER OF LEVELS IN MODE A 18

MAXIMUM NUMBER OF LEVELS IN MODE B 18

MAXIMUM NUMBER OF LEVELS IN MODE C 35

W nu

MAXIMUM NUMBER OF FACTORS = 10

MAXIMUM NUMBER OF MISSING VALUES = 50

MAXIMUM NUMBER OF LOADINGS TO BE PRINTED ACROSS THE LISTING (DEFAULT VALUE) = 10
UNIT TO BE USED BY PARAEFAC FOR STANDARD INPUT (ISTDIN) = S

UNIT TO BE USED BY PARAEAC FOR STANDARD OUTPUT (ISTDOU) = 6

(DEFAULT) UNIT TO BE USED BY PARAFAC EOR OUTPUT OF EINAL LOADINGS (ISTDLD) = 7

WITH THESE DIMENSIONS, THE ARRAYS REQUIRE 13915 STORAGE LOCATIONS.
(ALL ARRAY LOCATIONS ARE SINGLE PRECISION) .
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3.2 CMPARE PROGRAM

The CMPARE program is often helpful when interpreting
solutions. It takes as 1input separate sets of factor
loadings and merges them into one large set. The merged set
may contain either all the factors that were input, or only
some factors specified by the user. CMPARE outputs one or
both of the following:

1. cross-products and intercorrelations among all the
factors in the merged file
This permits comparison of factors from different

solutions. This is useful for ascertaining that a
PARAFAC solution is stable from different starting
positions (and thus worth interpreting), for

example, or for comparing a PARAFAC solution with
theoretically predicted factors, etc.

2. the merged set of loadings

The merged set is written as one large set of
loadings in standard PARAFAC format, which is
suitable for input to the CMPARE program again,
PFPLOT or PARAFAC. By inputting the merged set to
PFPLOT, for example, you can obtain more
information about the relationship between factors
from different solutions (e.g., by requesting
two-way plots for certain pairs of factors).

CMPARE array capacity is indicated in Section 3.2.1 and 1I/0
units in 3.2.2. Input and output are described in Sections
3.2.3 and 3.2.4 respectively. Examples of CMPARE input and
output are presented in Section 3.2.5.

3.2.1 CMPARE Limits

Array limits of the standard CMPARE code (i.e., as
shipped) are as follows:
1. The maximum number of levels in any mode is 250.
2. The maximum number of factors in the merged set is
75. (The total number of factors input may be

greater than 75, but the factors selected for
merging and comparison may not exceed 75.)

3. The maximum number of loadings or points in any
mode is 8750 (i.e., the number of levels in the
mode times the number of factors 1in the largest
loadings set £8750; the merged set will usually
have the most factors, unless the 1input sets are
very large and only a few factors are selected from
them for merging) .
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Instructions for modifying the CMPARE array sizes are
given in Appendix E, for users who are permitted access to
the source code.

3.2.2 CMPARE I/O Units

CMPARE can take input from up to 25 different 1logical
input units, although you will probably only use a few, and
up to two output units. In addition, it uses one temporary
file for Dboth input and output. System commands must be
included with each job to link any nonstandard units to disk
files.

Input

1. ISTDIN=5 (standard input unit) is used for input of
CMPARE job parameters.

2. ILDIN(1), ILDIN(2), ... , ILDIN(24) =0 (no output,
default), or up to 24 units can be specified by the
user i1f desired on Cards I1-4, -4A and -4B. DO NOT
SET ANY OF THESE UNITS TO 1. They are used for
input of the factor loadings sets.

Output

1. ISTDOU=6 (standard output unit) is used for listing
documentation and tables of cross-products and
correlations.

2. ILDOUT=0 (no output, default), or the user can
specify a value on Card I-5. DO NOT SET ILDOUT TO
1. It is used for output of the merged set of
factors.

Temporary I1/0 Unit

Logical unit 1 is assigned to a temporary disk file
that CMPARE uses for input and output during execution.
This "scratch" file 1is not saved, but appropriate
system commands should be included 1if necessary to
allow for I/0O to logical unit 1.

The standard I/0 units (5, 6) and the temporary unit (1) can
be changed 1if necessary by users who have access to the
source code (see instructions in Appendix E). CMPARE I/0. is
pictured in Figure 3.2.
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Figqure 3.2. CMPARE Input and Output

INPUT
Section 1 Section 11
Job Parameters Croups of Factor Loadings
(from ISTDIN) (from ILDIN(1), ILDIN(2),
ILDIN(3), etc.)

CMPARE&————%Pscratch" file]

Program
\\
Y |
Lineprinter Merged
Listing Loadings
(to ISTDOU) (to ILDOUT
usually a diskfile
OUTPUT

(Dotted line represents optional output.)

3.2.3 CMPARE Input

The CMPARE input consists of job parameters and
loadings sets that are specified in terms of '"groups'" of
sets. All sets within a group must have the same format
(i.e., all standard PARAFAC or all variable input) and
number of factors. Usually a ''group" will Dbe several
solutions output from one PARAFAC run and stored in a
separate file. Across different groups, the number of
factors and the format may vary, but all sets must have the
same number of levels 1in corresponding modes (but see
example 3 1in Section 3.2.5). Appropriate system commands
must be included with the job to 1link 1logical wunits with
disk files containing the loadings.
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CMPARE input is described below in Table 3.3.

Table 3.3

CMPARE INPUT SPECIFICATIONS TABLE

SECTION I: CONTROL PARAMTERS

The first section of input contains the parameters which control input and merging of the groups of loadings sets. These parameters are always
read from the standard input umt ISTDIN (usually Fortran umt 5). Integer parameters must be right justified in their respective fields.

CARD H1 FORMAT: (80A1) JOB TITLE. A description of the cwrent job. The information on this card is used as the first line
(Cols. 1-80) of the file of merged loadings, and thus serves to identify that file.
CARD 2 FORMAT: (314) NUMBER OF LEVELS IN EACH MODE.
Parameter
Column Name Explanation
-4 NAS Number of levels in Mode A.
8 NBS Number of levels in Mode B.
9-12 NCS Number of levels in Mode C.
CARD 3 FORMAT: (13) NUMBER OF GROUPS OF LOADINGS SETS TO BE INPUT. The maxmum
allowed 1s 24.
Parameter
Column Name Explanation

1-3 NGRPS See Note 1 at the end of Section | for more details.
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Table 3.3 (Continued)

CARD H4 FORMAT: (8(213,212)) LOADINGS GROUPS TO BE INPUT.
Parameter
Column Name Explanation
-3 ISOLS(1) The number of sets of loadings (number of solutions) in the first group.
6 IFACT(1) The number of factors in each set in the first group. (Al sets in the goup must have the same number
of factors).
8 ILDIN(1) The input unit for the loadings sets in the first group. It may not be unit 1.
%10 IFORM(1) The format type of every set in the first group (all the sets in one group must have the same type of
format).
0 = Standard PARAFAC format
1 = Vanable (nonstandard) format
Subsequent 10—column fields on this card are used to specify the characteristics of groups two to eight
if needed. Charactenstics are specified in the same way as shown above for the first group. See Note
2 below for more details.

CARD H4A  FORMAT: (8(213,212)) CONTINUATION OF CARD 4. Optional. Include only if NGRPS (Card 3) 15 greater
than 8. Characteristics of groups 9 to 16 are specified in 10—column fields as shown for the first group
on Card H4.

CARD 4B FORMAT: (8(213,212)) CONTINUATION OF CARD [<4A. Optional. Included only it NGRPS (Card +3) is
greater than 16. Charactenstics of groups 17 to 24 are specified in 10~column fields as shown for the
first group on Card H4.

CARD 5 FORMAT: (413) CHOICE OF PROCEDURE(S) AND OUTPUT PARAMETERS.

Default Parameter
Column Value Name Explanation
1-3 0 I0PT This specifies the procedure(s) to be performed on the merged file, as follows:
0 = Compute and list cross-products and intercorrelations of factors in the merged loadings file.
1 = Wnte out merged loadings set to umit ILDOUT (see cols. 9 below).
2= Both list cross-products and intercorrelations, and wnte merged loadings set to umt ILDOUT.
6 0 KFAC Method of selecting factors for the merged file.
0 = All factors input are to be merged.
1 = For some sets of loadings, only user-specified factors are to be included in the merged fije.
A list of factors (Cards 6 to -Y) will be provided by the user.
-9 ILDOUT Output umt for the merged loadings. It may not be umt 1. Specify only if 10PT is | or 2.
10—12 0 INORM Option to standardize factor loadings before output to umt ILDOUT. Except for INORM = 4, the stan-

dardization causes loadings on two modes to have a mean square loading of 1.0 for each factor, with
compensatory rescaling of loadings on the other mode to reflect the scale of the data. Specify only if
I0PT is 1 or 2.

Do not normalize
1 = Mode A refiects the scale of the data
= Mode B reflects the scale of the data
= Mode C reflects the scale of the data
Modes A and B jointly reflect the scale of the data, and Mode C has a mean square of 1.0
(normally used with data that is symmetric across Modes A and B, e.g. covanances)
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Table 3.3 (Continued)

CARD 6 FORMAT: (2613) LIST OF FACTORS TO BE SELECTED FOR MERGING AND COM-

to CARD HX) PARISON. Optional. Include only if KFAC on Card H5 is 1. Each card refers to a different
loadings set and specifies the group number, the set number within the group, and up to 24 factors in
the set that are to be selected for merging. The maximum allowed number of these cards is 47.

The following describes the parameters on Card H6. All other cards in the list are identical.

Parameter
Column Name Explanation
1-3 KGRP(1) Group number. This identifies a group which contains a set from which factors are to be selected.
6 KSOL(1) Set number. This identifies a loading set (within the group) from which factors are to be selected.
'] KFACT(1,1) Number of the first factor in the set to be included in the merged set.
1012 KFACT(1,2) Number of the second factor in the set to be included in the merged set.
etc. etc. etc.

See Note 3 below for more details.

CARD HY) FORMAT: (13) TERMINATION CODE FOR THE LIST OF FACTORS. OPTIONAL. Include
(Cols. 1-3) only if KFAC on Card 5 is 1. The character stnng —01 in columns 1—3 1s a fixed code which
specifies the end of the table.

NOTE 1: LOADINGS GROUPS. A "group” of loadings consists of one or more loadings sets; each set in the group has the same
number of factors and the same format, and is input from the same umt.
LS

NOTE 2: GROUP SPECIFICATION AND INPUT. All loading sets in one group are input before reelling loadings from the next
group. The values specified for ISOLS, IFACT, ILDIN and IFORM may vary for different groups. If the groups are on drfterent disk or tape files, each
group would be input from a different umt. However, the same umt may be used for input of more than one group. Fer example, suppose the user
wishes to compare two 3-dimensional PARAFAC solutions that were punched on cards and one 3-dimensional solution (also on cards) from another
source. The input would consist of two groups read from the standard input unit (usually Fortran umt 5). The first group contains two sets of
loadings in PARAFAC format; the second group consists of one set in vanable format. This information would be specified on Card H4 as follows:

23501 351

NOTE 3: SELECTED FACTORS. For any set not specified in the table, all the factors are added to the merged fife. 'For each set
specified in the table, only the factors listed are included in the merged file; these factors are added to the merged file in the order they appear on
the card. If the group number and set number (KGRP and KSOL respectively) are specified, but the rest of the card is left blank, no factors from
the indicated loadings set are included in the merged file.
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Table 3.3 (Continued)

CMPARE INPUT SPECIFICATIONS TABLE

SECTION II: GROUPS OF LOADINGS SETS

The second section of input consists of one or more groups of loadings which may be read from various input units (except umit 1). The number of
loadings sets (ISOLS), the input umt (ILDIN), and the input format (IFORM) for each group are specified on Card H4. Any groups to be input from
the standard input umt follow Card H5 (or the terminator Card Y if a list of factors is included). All groups of loadings are input in the order
that they are specified on Card H4. The two possible formats of the loadings sets are given below.

a)  Standard PARAFAC Format (IFORM = 0)
See PFPLOT Input Specifications Table, Section lla for a descnption of the arrangement of one loadings set with this format. For a group
containing more than one set, this arrangement 1s repeated ISOLS times.

b) Vanable (Nonstandard) Format (IFORM == 1)
See PFPLOT Input Specifications Table, Section IIb for a description of the arrangement of one loadings set with this format. For a group
containing more than one set, this arrangement is repeated ISOLS times.

3.2.3.1 General Uses Of CMPARE - Most of the time you will

use CMPARE with PARAFAC solutions of three-way data.
However, the loadings sets can also be from a source other
than PARAFAC (e.g., theoretically predicted) and they can be
for two modes only or one mode only. With nonstandard
loadings you would use CMPARE as follows:

1. Specify 1 for NCS (and NBS) on Card I-2 if data for
only two modes (one mode) are input.

2 Set IFORM to 1 on Card I1-4.

3. Specify 0, 1, 2 or 4 for INORM on Card I-5 if input
data have two modes (0 or 1 if one mode).

4. Input Section II contains format and data for Modes
A and B only (Mode A only).

CMPARE prints a table of factor cross-products and
correlations for modes with more than one level. Regardless
of the loadings format on input, the merged set 1is always
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written in standard PARAFAC format, with one row of loadings

for the mode(s) with one level. If the recommended values
for INORM are used, then the loadings for the single-level
mode (s) are all 1.0 and may be discarded. (Otherwise, the

scale of the data is reflected in these loadings and so they
must be retained to preserve it.)

3.2.4 CMPARE Output

CMPARE output consists of documentation and tables of
cross-products and correlations, and/or the merged set of
factor loadings. Everything may be listed on the standard
output unit (ISTDOU), although usually the merged loadings
are saved on a disk file so they can be accessed for input
to PARAFAC, CMPARE or PEPLOT.

3.2.4.1 Cross-products And Correlations - Cross-products
and correlations for the merged set of factors are computed
in the same way as for PARAFAC and are listed just as
PARAFAC outputs them (see Sections 5.2.4-5). The additional
interpretations described in Chapter 6 do not apply for
CMPARE output, however.

CMPARE does not preserve factor (order) numbers as they
are in the input sets. Rather, it adds factors to the
merged file in the order that they are read, and then
numbers them consecutively from 1 as they occur in the file.
Thus the (i, ]j) entry in each matrix is the cross-product or
correlation between the 1ith and jth factors in the merged
set. To make it easier to read the output tables, you may
want to draw lines on the listing to separate the different
solutions (as has been done in Table 3.4).

When PARAFAC solutions have been compared, subsets of
the tables will be identical to those on the PARAFAC listing
(i.e., where adjacent factors in the merged file belong to
the same PARAFAC solution). What CMPARE shows that PARAFAC
does not is the relationship between factors from different
solutions. Two factors are identical (or very similar) if
the magnitude of their cross-products and correlations |is
1.0 (close to 1.0) in all three modes. Two solutions are
identical (very similar) if they have identical (very
similar) factors in three modes.
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3.2.4.2 Merged Loadings - The merged loadings set can be
listed on the lineprinter, or saved on a disk file in
standard PARAFAC format. If written on disk, the wuser is
informed by a message on the CMPARE listing. Appropriate
system commands must be included with the job to save the

file.

3.2.5 CMPARE Examples

This section consists of three examples of CMPARE
input, followed by an example of CMPARE lineprinter output
in Table 3.4.

(1) You have six 3-D PARAFAC solutions for 21x32x40 data,
stored on a disk file. The PARAFAC output listing shows
that four of the solutions converged and are identical.
Solutions 3 and 5 seem close to convergence (R values are
comparable to the converged solutions, DIFF- values are near

the convergence criterion). You want to see if they are
similar enough to the converged solutions to be called
identical, or 1if they should be continued. One way to set

up the CMPARE input 1is as follows (remember to include
system control commands to access the loadings file):

CARD
I-1 |COMPARISON OF 6 3-D SOLNS, TOTAL DATA
I=2 21 32 40
I=3 1
1-4 6 3 20
I-5 00 0 0

(2) You could make the cross-product and correlation tables
for example 1 more compact (18 factors were compared there)

by excluding solutions 2, 4 and 6 from the comparison
(assuming visual inspection of the PARAFAC listing indicates
that they are identical to solution 1). This would be done

as follows (note that solution 6 can be excluded simply by
not inputting it; see Card I-4):

CARD
I-1 |COMPARISON OF 3-D SOLN 1 WITH SOLNS 3 AND 5
I-2 21 32 40
I-8 1
I-4 5 320
=5 0 1 0 ©
I'=6 1 2
I-7 1 4
I-8 =01

(3) Suppose Mode C of the data 1in example 1 refers to
people. You split the total data into two equal-sized
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samples, randomly assigning the people to one sample or the
other. You then obtain three (converged) 3-D PARAFAC
solutions for each of the split halves. You could compare
them with each other and with solution 1 of the total data,
as follows:

C

%

[ B e B e T e I
|

Db wnorHT
w

COMPARISON OF 3-D SOLNS-- TOTAL VS SPLIT HALE 1 AND 2
21 32 20

|

Note that here comparisons are meaningless in Mode C:
you don't expect person loadings to be replicated for
different people. However, you hope to see the Mode A
and B loadings replicated across the different samples.
Note also that to compare any of the other total data
solutions with the split half solutions, you would first
need to put them in separate files; NCS is not correct
for the total data, and subsequent solutions in the same
file would not be input properly.

Table 3.4 shows an example of the lineprinter output that is
generated by CMPARE. The loadings sets that are compared
were produced by PARAFAC, using the input shown for data
synthesis example 2 (see Section 2.6). Note that although
the sets are all in the same file, they must be treated as
two ''groups" for the CMPARE run (see Cards I-3, -4). This
is because the '"true" factor solution (first loadings set in
the file) has 2 factors while the other three solutions have
3 factors. Lines have been drawn on the output to indicate
the different solutions, so that the pertinent comparisons
can be seen more easily.
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CORRELATION/MERGING PROCRAM FOR FACTOR LOADINGS SETS. COPYRIGHT 1980 BY RICHARD A. HARSHMAN.

BEGIN INPUT
READING FROM UNIT 5

SYNTHETIC DATA: 2 TRUE FACTORS VS THREE 3-D SOLNS
=CARD I-1 (80Al), JOB TITLE.

25 18 35
=CARD I-2 (3I4), DIMENSIONS FOR (NO. OF LEVELS WITHIN) MODES A, B, AND C.

=CARD I-3 (I3), NUMBER OF DIFFERENT LOADINGS GROUPS TO BE INPUT.

1 220 3 320
=CARD 1-4, AND CONTINUATIONS IF NECESSARY (8(2[3.212%)
FOR EACH GROUP-- THE NUMBER OF SETS, THE NUMBER OF FACTORS IN ONE SET,
THE INPUT UNIT AND THE FORMAT. FOR THE FORMAT, O0=STANDARD INPUT, 1=VARIABLE INPUT.

0
=CARD T1-5 (413), PROCEDURE REQUESTED, FACTORS TO BE MERGED, OUTPUT UNIT FOR MERGED FACTORS,
AND NORMALIZATION OF MERGED FACTORS BEFORE OUTPUT.
FOR THE PROCEDURE, 0=COMPUTE AND LIST FACTOR CROSS-PRODUCTS AND INTERCORRELATIONS,
1=WRITE OUT MERGED LOADINGS, 2=BOTH LIST CROSS-PRODUCTS AND INTERCORRELATIONS, AND WRITE MERGED LOADINGS.
FOR THE FACTORS, O0=ALL FACTORS INPUT ARE MERGED, 1=FOR SOME SETS, USER-SPECIFIED FACTORS ARE MERGED.
FOR NORMALIZATION, 0=DO NOT NORMALIZE LOADINGS, 1-4=NORMALIZE LOADINGS IN ONE OF FOUR WAYS BEFORE OUTPUT.

READING FROM UNIT 2
THE FIRST FIVE RECORDS ARE--

GENERATE DATA WITH 2 TRUE FACTORS AND DO 3-D ANALYSIS OF IT

SYNTHETIC RAW SCORES, 2 "TRUE" FACTORS, 40% ERROR

SYNTHETIC DATA-- MSE= ,6567563 .STRESS= .6317489,R= .7736762,RSQ= .5985749
THE TRUE OR SYSTEMATIC PART OF THE DATA HAS THE FOLLOWING STRUCTURE
NAS 25, NBS= 18, NCS= 35, NFACT= 2, PREP=000, DEP=112, IGD=0

READING FROM UNIT 2
THE FIRST FIVE RECORDS ARE--

CENERATE DATA WITH 2 TRUE FACTORS AND DO 3-D ANALYSIS OF IT

SYNTHETIC RAW SCORES, 2 "TRUE" FACTORS, 40% ERROR

S0L 1, ITERATION 42, MEAN SQ ERROR= .6188689 , STRESS= .6132558
R= 7884775 RSQ= .6216968 DIFFA= .7062E-01 DIFFB= .8778E-01 DIFEC= .8263E-01
NAS 25, NBS= 18, NCS= 35, NFACT= 3, PREP=000, DEP=112, IGD=0

READING FROM UNIT 2
THE FIRST FIVE RECORDS ARE- -

CENFRATE DATA WITH 2 TRUE FACTORS AND DO 3-D ANALYSIS OF IT

SYNTHETIC RAW SCORES, 2 "TRUE" FACTORS, 40% ERROR

SOl 2, ITERATION 78, MEAN SQ ERROR= .6188689 , STRESS= .6132558

R= 7884775 RSQ= .6216968 DIFFA= .7085E-01 DIFFB= .8807E-01 DIFFC= .8290E-01
NAS 25, NBS= 18, NCS= 35, NFACT= 3, PREP=000, DEP=112, IGD=0

READING FROM UNIT 2
THE FIRST FIVE RECORDS ARE--

CENERATE DATA WITH 2 TRUE FACTORS AND DO 3-D ANALYSIS OF IT

SYNTHETIC RAW SCORES, 2 "TRUE" FACTORS, 409 ERROR

SOL 3, ITERATION 67, MEAN SQ ERROR= .6188689 . STRESS= .6132558

R= 7884775 RSQ= .621€968 DIFFA= .7021E-01 DIFFB= .8727E-01 DIFFC= .8215E-01
NAS= 25, NBS= 18, NCS= 35, NFACT= 3, PREP=000, DEP=112, IGD=0

CROSS - PRODUCTS OF NORMALIZED FACTORS
(I.E. COSINES OF ANCLES BETWEEN FACTORS)

A
1 2 3 4 5 6 7 8 9 10 11
-000 -.183 .998 -,197 .201 .998 -.197 .201 .998 -.197 s201

g
9
T -

1
2 +183 1.000 -.195 ,995 -.107 -.195 .995 -.107 -.195 .995 -.107
3 +998 -.195 1.000 -.212 .195 1.000 -.212 .195 1.000 -.212 .195
4 -.197 .995 -.212 1.000 -.124 -.212 1.000 -.124 -.212 1.000 =, 1.2
S +201 -.107 .195 -.124 1.000 .195 -.124 1.000 .195 -.124 1.000
6 -998 -.195 1.000 -.212 .195 1.000 -.212 .195 1.000 -.212 .195
7 -.197  .995 -.212 1.000 -.124 -.212 1.000 -.124 -.212 1.000 -.124
8 -201 -.107 .195 -.124 1.000 .195 -.124 1.000 .195 -.124 1.000
9 -998 -.195 1.000 -.212 .195 1.000 -.212 .195 1.000 -.212 .195
10 -.197 .995 -.212 1.000 -.124 -.212 1.000 -.124 -.212 1.000 -.124
11 201 -.107 .195 -.124 1.000 .195 -.124 1.000 .195 -.124 1.000
MODE B
1 2 3 4 S 6 7 8 9 10 1x

1 1.000 .253 .999 .235 -.443 .999 .235 -.443 .999 .235 -.443
2 +253 1.000 .266 .995 -.467 .266 .995 -.467 .266 .995 -.467
3 -999  .266 1.000 .250 -.441 1.000 .250 -.441 1.000 .250 -.441
4 +235.995  .250 1.000 -.412 .250 1.000 -.412 .250 1.000 -.412
3 443 -.467 -.441 -.412 1.000 -.441 -.412 1.000 -.441 -.412 1.000
6 999 .266 1.000 .250 -.441 1.000 .250 -.441 1.000 .250 -.441
? +235.995  .250 1.000 -.412 .250 1.000 -.412 .250 1.000 -.412
8 ~443 - .467 -.44]1 -.412 1.000 -.441 -.412 1.000 -.441 -.412 1.000
9 2999 266 1.000 .250 -.441 1.000 .250 -.441 1.000 .250 = 441
10 -235 .995  .250 1.000 -.412 .250 1.000 -.412 .250 1.000 -.412
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Table 3.4 (Continued)
11 -.443 -.467 -.441 -.412 1.000 -.441 -.412 1.000 -.441 -.412 1.000
MODE C
1 2 3 4 s 6 7 8 9 10 11
1 1.000 .688 .999 .713 .280 .999 .713 .280 .999 .713 .280
2 688 1.000 .679 .993 -.090 .679 .993 -.090 .679 .993 -.090
3 999 .679 1.000 .706 .303 1.000 .706 .303 1.000 .706 .303
4 713 .993 .706 1.000 -.055 .706 1.000 -.055 .706 1.000 -.0S5
5 280 -.090 .303 -.055 1.000 .303 -.055 1.000 .303 -.055 1.000
6 999 .679 1.000 .706 .303 1.000 .706 .303 1.000 .706 .303
7 713 .993 .706 1.000 -.055 .706 1.000 -.055 .706 1.000 -.055
8 280 -.090 .303 -.055 1.000 .303 -.0S55 1.000 .303 -.055 1.000
9 999 .679 1.000 .706 .303 1.000 .706 .303 1.000 .706 .303
10 713,993 .706 1.000 -.055 .706 1.000 -.055 .706 1.000 -.055
11 280 -.090 .303 -.055 1.000 .303 -.055 1.000 .303 -.055 1.000
CORRELATIONS OF FACTOR LOADINGS
MODE A
1 2 3 4 5 6 7 8 9 10 11  deue
1 1.000 -.184] .998 -.200 .165| .998 -.200 .165| .998 -.200 .165 fackors
2 184 1.000]-.196 995 -.104)-.196 .995 -.104]-.19 - ac
B} =196 1.000 -.215 .159 L_gg_o =215 .15 - :
4 200 . .215 1.000 -.122|-.215 L_Y_g_g -.122]-.215 -.122 3-D Solh L
—S 165 - 199 - 122 1.000) ,159 - 1.00c] 159 - L0
6 98 -.196[1.000 -.215 .159]1.000 -.215 .159]1.000 -.215 159
7 -.200 .995]-.215 1.000 -.122|-.215 1.000 -.122|-.215 1.000 -.122 = .
A 165 - Tl 199 -,122 1,000] ,159 -.122 1.000] .159 -.122 1.000 3-D Soln 2
9 998 -.196[1.000 -.215 .159[1.000 -.215 .159J1.000 -.215 .150
10 200 .995] -.215 1.000 -.122]-.215 1.000 -.122}-.215 1.000 -.122 2-D soda 3
11 165 -.104l .159 -.122 1.000l .159 -.122 1.000] .159 -.122 1.000 8in
MODE B +
1 2 3 4 s 6 7 8 9 10 11 ue
1 1.000 .340] .999 .323 -.316| .999 .323 -.316| .999 .323 -.316 ¢ +
2 .2340 1.000] .357 .995 -.560] .357 .995 -.560] .357 .995 -.560 Crovrs
3099 .357[1.000 .342 -.312 347 - 12| LN 342 - 312
4 1'35 .9 .342 1.000 -.503| .342 -.503] . 342 0 -.503 3‘D 3ol |
5 -.316 ?28 23lg -.503 1.000)-.312 —503 1,000]-.312 = 1,000 ofn
6 s 397 .000 342 -, 312011.000 Jaz -.31211.000 342 -.312
7 323 5| .342 1.000 -.503| .342 1.000 -.503| .342 1.000 -.503 = ’
8 216 - D00l 312 -.503 1,000]- 312 -.503 1.000f-.312 -.503 1.000 3D solky ¥ B
5 .99 357[1.000 .342 -.312[1.000 .342 -.312[1.000 .342 -.312
10 'ﬂ% .342 1.000 -.503] .342 1.000 -.503] .342 1.000 -.503 -1 )2 3
11 -.316 - .312 -.503 1.0001-.312 -.503 1.000°-.312 -.503 1.000 D JSeo ~
MODE C
1 2 3 4 s 6 7 8 9 10 11
1 1.000 -.049] .996 .005 .346| .996 .005 .346{ .996 .005 .346 ~
2 049 1.000]-.061 980 -.332]-.061 .980 -,33§ -.061 .980 -.332 +N“' -PAC\'O )
3 96 -.061]1.000 -.001 .385 —.001 . LO40 -.001T 385 D ol I
4 5 . .001 1.000 -.279|-.001 -.279 =001 -.279 - Y
b 346 %33 385 -.279 1.000) .385 L‘-.g% 1.000] .385 L‘BJ 7"8)..% 3 e
6 Qb -.061]1.000 -.001 .385[L.000 -.001 .385[1.000 -.001 .
7 005 . .001 1.000 -.279-.001 1.000 -.279|-.001 1.000 -.279 '
8,346 - gsz 385 -.279 1.000) .385 -.279 1.000] .385 -.279 1.000 ?‘D ¢0|n L
9 .49p -.061]1.000 -.001 .385[L.000 -.001 .385|1.000 -.001 385 ,
10 005 .98Q]-.001 1.000 -.279}-.001 1.000 -.279]-.001 1.000 -.279 -
11 .346 -.3321 .385 -.279 1.000| .385 -.279 1.000| .385 -.279 1.000 3-D 50,’\ 3
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3.3 PFPLOT PROGRAM

The PFPLOT program takes as input sets of numbers --
usually PARAFAC factor loadings -- and outputs plots to the
standard output unit (the lineprinter). Two types of plots
can be produced:

1. individual factor plots (i.e., the loadings
projected onto each factor axis) and/or

2. two-factor plots (i.e., the loadings projected onto
the coordinate plane defined by a pair of factor
axes) .

Both types of plots can be printed for the factors in one,
two or all three modes of a PARAFAC solution. The plots aid
in the interpretation of PARAFAC solutions, because you can
immediately see which 1levels have the highest and lowest
loadings on each factor and see the relationship between
pairs of factors in a particular mode.

PEFPLOT array limits are listed below in Section 3.3.1.
I/0 is discussed in Section 3.3.2, input is described in
Section 3.3.3 and output in Section 3.3.4. Example input
and output is shown in Section 3.3.5.

3.3.1 PFPLOT Limits

Array limits of the standard PEPLOT code (i.e., as
shipped) are as follows:

1. The maximum number of levels in each of Modes A, B
and C is 250.

2. In Modes A and B, the maximum value of the number
of levels times the number of factors in the
solution to be plotted is 1500 (i.e.,

NAS*NFACT £1500 and NBS*NFACT élSOO) ;

3. In Mode C, the maximum value of the number of
levels times the number of factors in the solution
to be plotted is 3500 (i.e., NCS*NFACT £3500).

For example, a loadings set with 6 factors and 250 levels in
each mode can be accommodated (250x6=1500). Or, a set with
14 factors and 100 levels in Modes A and B and 250 levels in
Mode C can be accommodated (100x14=1400; 250x14=3500) .

Users who are permitted access to the source code can
modi fy these limits if necessary, by following the
instructions given in Appendix E.
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3.3.2 PFPLOT I/O Units

PEFPLOT uses up to 2 logical input units and 1 logical
output unit; these are denoted by integer values assigned
to parameter names. The standard units for input and output
are 5 and 6 respectively. They can be changed if necessary
by modifying assignment statements in the source code (see
Appendix E for instructions). I/0 units are as follows:

1. ISTDIN=5 (standard input unit) is used for input of
general plotting parameters and specific plot
requests.

2. TIUNITC=5 (default), or the user can specify another

value on Card I-1 of the input file. It is used
for input of factor 1loadings that are to be
plotted.

3. ISTDOU=6 (standard output unit) is used for listing
documentation and plots produced by PEPLOT.

PFPLOT I/0 is pictured below in Figure 3.3.

Figure 3.3. PFPLOT Input and Output

INPUT
Section 1 Section I1 Section 111
Job Parameters Factor Loadings Plot Requests
(from ISTDIN) (from IUNITC) (from ISTDIN)
-
PEPLOT
Program

Lineprinter
Listing
(to ISTDOU)

OUTPUT
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3.3.3 PFPLOT Input
Input to PFPLOT consists of three general sections:
1. GCeneral plotting parameters (Input Section I) read
from unit ISTDIN
2. Factor loadings set (Input Section II) read from

unit IUNITC

3. Specific plot requests (Input Section III) read
from ISTDIN

Sections II and III can be repeated to produce plots for
more than one loadings set in the same run.

The content and format of the three 1input sections
depends on whether '"Quick'" or '"Detailed" input is used.
Quick input requires less user-supplied information but
Detailed input gives the user more control over the plots
that are produced. The two types of input are described
separately, Quick input in Section 3.3.3.1 and Detailed
input in Section 3.3.3.2. Examples of both are given in
Section 3.3.5. Section 3.3.3.3 briefly discusses how to
specify input parameters for more general uses of PFPLOT.

3.3.3.1 Quick Input - Use of Quick input is restricted to

PARAFAC output (or loadings in standard PARAFAC format) .
The plots produced are standardized, whereas Detailed Iinput
enables the user to specify certain characteristics of the
plots. Quick input is more flexible that Detailed input,
however, in that the loadings sets plotted in one run need
not be the same size.

The following are standard features of Quick plots, but
may be changed using Detailed input:

1. Plot headings specify which mode (A, B or () is

plotted. The rest of the heading is a combination
of the first 32 characters from line 1 of the input
loadings set, plus the first 32 characters from
line 2.

2. For each mode, item labels are the digits 1-99 for
levels 1-99 respectively, A0-A9 for levels 100-109,
B0O-B9 for levels 110-119, etc.

3. The largest and smallest loadings in a given mode
determine the endpoints of the scale of the plot.

4. Single-factor plots are double-spaced.
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5. The loadings are ordered by absclute value in the
table of ranked loadings that accompanies
single-factor plots.

6. Two-factor plots include all possible pairs of
factors. (The total number of two-way plots is
NFACT* (NEACT-1) /2, where NFACT is the number of
factors in the loadings set.)

Quick input parameters are described below in Table 3.5.

Table 3.5

PFPLOT INPUT SPECIFICATIONS TABLE (QUICK INPUT)

SECTION I: GENERAL PARAMETERS

The first input section consists of one card only, which is read from the standard input unit ISTDIN (usually unit 5). Integer valves
must be right-justified in their respective yields.

CARD H1 FORMAT: (2I3, 1X, A1) LOADINGS FILE PARAME-
TERS, AND TYPE OF

INPUT.
Default Parameter
Column Value Name Explanation
13 5 or IUNITC Loadings input umit.
ISTDIN
6 0 LFORM Format of the loadings.
0 = Standard PARADAC format
(usually output from a PARAFAC
analysis).
LFORM must be 0 for Quick input.
(See Section Il below for a description
of the required loadings format.) Use
the Detailed input procedure for load-
ings sets that are in nonstandard for-
mat.
8 D IPROC Type of input,
Q = "Quick" input, described

In this table
(The default D refers to "Detailed”
input, which 1s described in the follow-
ing table.)
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Table 3.5 (Continued)

SECTION II: FACTOR LOADINGS SET

The second input section consists of one complete set of loadings, in standard PARAFAC format, which is read from IUNITC (see
Card I-1 above). If IUNITC is the same unit as ISTDIN, then these leadings follow Card I-1.

The program reads the loadings set according to a standard format. Loadings output from a PARAFAC analysis are in the required
form, but loadings from another source may be used if the format is identical to that described below.

Record No. Format Explanation

-1 to 14 - Information about the loadings set:
analysis and data titles, predicted fit
values, etc. This information only
documents the PFPLOT output, and four
blank records may be substituted.

IH5 (5X,14,6X14,  Dimensions of the loadings set.
6X,14,8X13)
Parameter
Column Name
69 NAS Number of levels in Mode A
‘ 16-19 NBS  Number of levels in Mode B
2629 NCS Number of levels in Mode C
3840 NFACT Number of factors
-6 - "Mode A" heading One blank record
may be substituted
=7 to— (5X,6G12.4)  Mode A factor loadings. Each set of
(NAS sets records consists of the loadings on
of records) NFACT factors for one level of Mode A.
(2 records) - Blank record and "Mode B" heading

Two blank records may be substituted.

(NBS sets (5X6G12.4)  Mode B factor loadings. Each set of
of records) records consists of the loadings on
NFACT factors for one level of Mode B.

(2 records) . Blank record and "Mode C" heading
Two blank records may be substituted.

(NCS sets of  (5X,6G12.4)  Mode C factor loadings. Each set
records) of records consists of the loadings on
NFACT factors for one level of Mode C.
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Table 3.5 (Continued)

SECTION III: SPECIFIC PLOT REQUESTS

The third section of input controls the production of plots from the loadings set (input Section Il). These plot control parameters
are always read from the standard input umt ISTDIN (usually unit 5). When IUNITC is the same as ISTDIN, this section follows the
loadings in the input file. When the Ieadings are input from some other unit, these plot requests follow Card I-1 in the input file.

Card IITFF1 FORMAT: (4A1) PROCEDURE CODE AND PLOT REQUESTS

Default Parameter
Column Value Name Explanation

1 - CHTEST P = Print plots that are requested
via CODEA, CODEB and CODEC
values in columns 2-4

2 blank CODEA Plot request for Mode A
3 blank CODEB Plot request for Mode B
4 blank CODEC Plot request for Mode C

CODEA, CODEB and CODEC values
are interpreted as follows:
X = No plots for the indicated mode
1 = One-way plots only for the
indicated mode
2 = Two way plots only for the
indicated mode
blank = Both one- and two-way
plots for the indicated mode

CARD IIF2 Format: (A1) CONTINUATION/TERMINATION CODE.

The letter £ in column 1 indicates the end of the run. This termi-
nation code must be on the last card of the input deck.

The letter G in column 1 indicates that another set of loadings is
to be read and plotted. This means that input Sections Il and I,
described above, must be repeated. The PFPLOT run can be con-
tinued in this way for as many times as desired (within computer
time and printer limits).
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3.3.3.2 Detailed Input - Detailed input can be wused with
either standard PARAFAC loadings or loadings in nonstandard
format. If more than one loadings set is to be plotted in
the same run, however, all loadings sets must be the same
size and have the same format (either all standard PARAFAC
or all nonstandard). If you supply labels for levels of one
or more modes, use alphanumeric characters only, since some
special characters (e.g., * and §) are used to indicate
overlap on the plots (see PFPLOT output).

Figure 3.4 shows the Detailed input arrangement of
PFPLOT. If IUNITC=ISTDIN, then there 1is one input file
arranged exactly like the diagram (without blanks between
the different input sections, of course). Usually the
loadings will be in a separate diskfile (i.e.,
IUNITC#ISTDIN), though, and so the Section II segments would
be one after the other in another file. Table 3.6 describes
the Detailed input parameters in detail.

3.3.3.3 General Uses Of PFPLOT - Usually vyou will use
PFPLOT when interpreting PARAFAC solutions of three-way
data, but you can also use it to plot other types of data.
Section II of the input can also be factor loadings for two
modes only or for one mode only, or it can even be raw data.
If Section II is PARAFAC output (e.g., from analysis of
two-way data), then you can assume standard PARAFAC format
and use Quick input format to specify the plot requests.
Otherwise, you must use Detailed input as follows:

1. Cards I-1 thru I-8 are all included as usual, but 1
is specified for NCS (and NBS) if data for only two
modes (one mode) is input.

2. Input Section II includes format and data for Modes
A and B only (Mode A only).

If raw score data is 1input, PFPLOT can be wused to
generate scatterplots that may reveal outliers, etc. Each
(two-way) matrix is treated by PEFPLOT as '"factor loadings"
for one "mode". For example, if the data consist of scores

on the 11 subscales of the WAIS IQ test for 50 people (where
each row is an individual's scores), then you would specify
NAS=50 and NFACT=11. You could then get scatterplots for
scores on one subscale vs another by requesting two-factor
plots for specific palirs of factors (use IOPTXY=2; 60 plots
would be generated if IOPTXY=1).
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Figure 3.4

PFPLOT Deck Setup for Detailed Input

The diagram below illustrates the arrangement of the "Detailed" input parameters for a PFPLOT run. The
parameters are described in detail in the table following the diagram. If the unit specified for loadings
input is the same as the standard input umit, then the input deck for a PFPLOT run is exactly like the
diagram. However, it will generally be more convenient to read them from a separate disk or tape file
(where they would be after a PARAFAC run). Then the Section Il segments would be deleted from the input
deck; these segments would reside on another file, one after the other.

I-1 Loadings file parameters
SECTION | I-2 Number of levels in Mode A
General I-3 Labels for levels of Mode A
Parameters I-4 Number of levels in Mode B
(read from I-5 Labels for levels of Mode B
standard I-6 Number of levels in Mode C
input unit) I-7 Labels for levels of Mode C
I-8 Number of factors
SECTION 1l
Factor Loadings Set | II-2
(read from disk | One loadings set
on tape file, I-X
or from standard
input unit)
-1 General plot parameters
SECTION Il -2 One-way plot parameters Plot requests
Specific -3 Two-way plot parameters for one mode
Plot -4 Factor pairs to be plotted (optional)
Requests -1
(read from | Plot requests for a second mode (optional)
standard -4
input unit) -1
| Plot requests for a third mode (optional)
-4
SECTION I
and SECTION Il Input for continuation of the run (optional)
Repeated See below for details of this block.
(read from
standard input Ini-5 Termination code

unit)
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. Figure 3.4 (Continued)

PFPLOT Continuation (How Sections II and II Can Be Repeated)

(read from
standard input unit)

SECTION Il
(read from same

unit as the
first set)

SECTION il
(read from
the standard
input umit)

-5

-1

I-X

-1

-4

-1

-4

-1

Il-4

See diagram above for the entire deck.

Continuation code

One loadings set

Plot requests for one mode

Plot requests for a second mode (optional)

Plot requests for a third mode (optional)

This arrangement may be repeated as many times as desired.
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Table 3.6

PFPLOT INPUT SPECIFICATIONS TABLE (Detailed input)
SECTION I: GENERAL PARAMETERS

This first input section specifies the dimensions of the loadings set to be plotted and the labels to be used on the plots. These
general parameters are always read from the standard input umt ISTDIN (usually umt 5). Integer values specified by the user must
be nght-justified in their respective fields.

CARD H1 FORMAT: (213,1X,A1) LOADINGS FILE PARAMETERS, AND TYPE OF INPUT.
Default Parameter

Column Value Name Explanation
13 5 or IUNITC Loadings input umt.
ISTDIN
6 (i LFORM Format of the loadings.

0 = Standard PARAFAC format (usually output from a PARAFAC analysis)
1 = Vanable (nonstandard) format

8 D IPROC Type of input.
D = "Detailed" input, described in this table

CARD 2 FORMAT: (14) NUMBER OF LEVELS IN MODE A. The maximum allowed is 250.
Parameter
Column Name
-4 NAS
CARD I3 FORMAT: (40A2) LABELS FOR LEVELS OF MODE A. Each label occupies two columns; at least one
(Cols. 1-80) of these two columns must be nonblank. Only letters and integers should be used (i.e. no special

characters). If this card i1s left blank, default labels will be assigned. Default labels are the
integers 1, 2, 3, etc.

CARD(S) F3a FORMAT: (40A2) CONTINUATION(S) OF CARD 3. Optional. Include only if required (e.g. H3A
(3B, 3, ..., (Cols. 1-80) 1s included only if NAS is greater than 40; F-3B follows -3A only if NAS is greater than 80; etc.).
3F) A maximum of 6 continuation cards is allowed.
CARD H FORMAT: (14) NUMBER OF LEVELS IN MODE B. The maxmum allowed is 250.
Parameter
Column Name

-4 N8BS
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Table 3.6 (Continued)

CARD 5 FORMAT: (40A2) LABELS FOR LEVELS OF MODE B. Each label occupres two columns; at least one
(Cols. 1-80) of these two columns must be nonpiank. Only letters and integers should be used (i.e. no special
characters). If ths card is left biank, default labels will be assigned. Default labels are the
integers 1, 2, 3, etc.
CARD(S) F5A FORMAT: (40A2) CONTINUATION(S) OF CARD 5. Optional. Include only if required (e.g F5A
(5B, F5C, ..., (Cols. 1-80) 1s included only 1f NBS is greater than 40; I-58 follows I-5A only if NBS is greater than 80 etc.) A
5F) maximum of 6 continuation cards is allowed.
CARD 6 FORMAT: (I14) NUMBER OF LEVELS IN MODE C. The maxmum allowed 1s 250.
Parameter
Column Name
14 NCS
CARD I7 FORMAT: (40A2) LABELS FOR LEVELS OF MODE C. Each label occupies two columns; at least one
(Cols. 1-80) of these two columns must be nonblank. Only letters and integers should be used (i.e. no special
characters). If this card is left blank, default labels will be assigned. Default labels are the
integers 1. 2, 3, etc.
CARD(S) HA FORMAT: (40A2) CONTINUATION(S) OF CARD I-7. Optional. Inciude only if required (e.g H7A
(7B, F7C, ..., (Cols. 1-80) 15 included only 1f NCS 1s greater than 40; 7B follows /A only 1f NCS is greater than 80; etc)
F7F) A maximum of 6 continuation cards is allowed.
CARD -8 FORMAT: (13) NUMBER OF FACTORS.
Parameter
Column Name
1-3 NFACT
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Table 3.6

(Continued)

SECTION II: FACTOR LOADINGS SET

The second input section consists of one complete set of loadings which is read from IUMTC (see Card H1). If IUNITC is the
same unit as ISTDIN, then these loadings follow Card H-8. Since the form of this section of input depends on whethér LFORM (see
Card H1) is 0 or 1, it will be described separately for the two cases.

Record No.
IF1 to 16

IF7 to —

(NAS sets of
records)

(2 records)

(NBS sets of
records)

(2 records)

(NCS sets of
records)

Format

(5X,6G12.4)

(5X,6G12.4)

(5X,6G12.4)

(a) Standard PARAFAC Format (LFORM=0)

The loadings set is read according to a standard format specified by the program. Generally, it is output from a previous PARAFAC
analysis. However, loadings from another source may be used :f the format is identical to that described in the table below.

Explanation

Information about the loadings set: analysis and data titles, predicted data fif values, Mode A
heading, etc. This information is used only to document the PFPLOT output, and blank records can
be substituted. However, there must always be 6 records preceding the loadings.

Mode A factor loadings. Each of the NAS sets of records consists of the loadings on NFACT fac-
tors for one level of Mode A.

Blank record and "Mode B" heading. Two blank records may be substituted.

Mode B factor loadings. Each of the NBS sets of records consists of the loadings on NFACT fac-
tors for one level of Mode B.

Blank record and "Mode C" heading. Two blank records may be substituted.

Mode C factor loadings. Each of the NCS sets of records consists of the loadings on NFACT fac-
tors for one level of Mode C.

(b) Vanable (Nonstandard) Format (LFORM==1)

This type of format generally occurs when the loadings are from a source other than PARAFAC. The input format for the loadings in
each mode must be specified individually. These formats are always read from the same umt as the loadings.

Record No.
1
-2
(NAS sets of
records)
(1 record)
(NBS set of
records)
(1 record)

(NCS sets of
records)

Format

(80A1)
(Cols. 1-80)

FORMTA

(80A1)
(Cols. 1-80)

FORMTB
(80A1)
(Cols. 1-80)

FORMTC

Parameter
Name

FORMTA

FORMTB

FORMTC

Explanation

Format for input of Mode A loadings. It must be enclosed in parentheses, and must specify F, £
or G format. (Integers should be read using Fn.0 format, e.g F2.0 for two-column integers.)

Mode A factor loadings. Each of the NAS sets of records consists of the loadings on NFACT fac-
tors for one level of Mode A.

Format for input of Mode B loadings. It must be enclosed in parentheses, and must specify F, £
or G format. (Integers should be read using Fn.0 format, e.g. F2.0 for two-column integers.)

Mode B factor loadings. Each of the NBS sets of records consists of the loadings on NFACT fac-
tors for one level of Mode B.

Format for input of Mode C loadings. It must be enclosed in parentheses, and must specify F, £
or G format. (Integers should be read using Fn.0 format, e.g F2.0 for two-column integers.)

Mode C factor loadings. Each of the NCS sets of records consists of the loadings on NFACT fac-
tors for one level of Mode C.
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Table 3.6 (Continued)

SECTION III: SPECIFIC PLOT REQUESTS

This third section of input controls the production of plots from the loadings set (input section I). These plot control parameters
are always read from the standard input umit ISTDIN (usually unit 5). When IUNITC is the same as ISTDIN (i.e. the loadings are read
from the standard input umit), this section follows the loadings in the input file. When the loadings are input from some other unit,
these plot requests follow Card -8 in the input file. Integer values specified by the user must be right-justified in their respective

fields.
Card 111 FORMAT: (A1,1X,2G10.4) GENERAL PLOT PARAMETERS.
Default Parameter
Column Value Name Explanation
1 = CHTEST Mode to be plotted.
A= Mode A
B = Mode B
C= ModeC
312 see Note | SMAXP Maximum value to be plotted.
13-22 see Note 1 SMAXN Minmum value to be plotted.
SMAXP and SMAXN apply to all plots printed for CHTEST. See Note 1 below for more details.
CARD IIF2  FORMAT: (I1,2X,I1,72A1) ONE-WAY (Y) PLOT PARAMETERS.
Default Parameter
Column Value Name Explanation
1 0 10PTY Selection of one-way plots (i.e. to print single factor plots for CHTEST and table of ranked load-
ings)
0 = No plots
1 = Pnint plots, and rank loadings by algebraic value in the table
2= Pnnt plots, and rank loadings by absolute value in the table
4 0 ISPACE Spacing of plot output. (Not necessary if IOPTY = ()
0 = Single space
1 = Double space
5-76 HEADY Title for the plot output. The default is a blank line. (Not necessary if I0PTY == 0)
CARD IIF3 FORMAT: (I1,1X,12,72A1) TWO-WAY (XY) PLOT PARAMETERS.
Default Parameter
Column Value Name Explanation
1 0 1DPTXY Selection of two-way plots (i.e. to print two-factor plots for mode CHTEST).
0= No plots
1 = Prnt plots for all possible pairs of factors
2= Print plots for only the factor pairs specified by the user
34 0 N2FAC Number of factor pairs to be input by the user. Optional. Specify only if I0PTXY = 2. The
maximum allowed for N2FAC 1s 30.
5-76 - HEADXY Title for the two-way plots. The default is a blank line. (Not necessary if IOPTXY = 0)
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Table 3.6 (Continued)

w

=30

CARD IIH4 FORMAT: (2014) FACTOR PAIRS TO BE PLOTTED: Optional. Include only if N2FAC has a valve

greater than zero (and IOPTXY == 2). See Note 2 below for more details.

CARD IIF4A FORMAT: (2014) CONTINUATION OF CARD II4: Optional. Include only if N2FAC has a valve
greater than 10. The eleventh factor pair to be plotted is specified by the numbers in cols. 1—4

and 58 of this card, etc.

CARD IITFH4B  FORMAT: (2014) CONTINUATION OF CARD IIF4A: Optional. Include only it N2FAC has a value

greater than 20.

Cards II1 to lIF4 determine the plots for one mode only, as specified to CHTEST. For each of the other modes that you want
plotted, repeat card sequence |IH1 to IIH4. (The parameters do not have to be specified identically for the different modes.)
To terminate these plot requests, insert Card 5.

CARD IS5 FORMAT: (A1) CONTINUATION/TERMINATION CODE. Any letter other than A, B, C or G in
column 1 indicates the end of the run. This termnation code must be on the last card of the
input deck. The letter G in column 1 indicates that another set of loadings 1s to be read and

plotted. See Note 3 below for more details.

NOTE 1: PLOT LIMITS. Defaults for SMAXP and SMAXN are the values of the largest and smallest loadings in the
selected mode. The appropnate default value will overnde the user-specified value for SMAXP and/or SMAXN if the user-specified
range is too small, i.e, if some loadings would otherwise be excluded from the plot. The value of SMAXP used by the program will
either be the user specified value, or the value of the largest loading whichever is greater. Similarly, SMAXN will be the user
specified value, or the value of the lowest loading whichever is less.

The abulity to specify SMAXP and SMAXN explicitly 1s useful for making plots share the same scale across different solutions and/or
modes. If a mmmum scale of exactly zero 15 desired, specify a very small number (e.g. 10.E-30) for SMAXN Blank or zero cannot
be specified directly, since it is replaced by the default.

NOTE 2: USER-SPECIFIED FACTOR PAIRS. On Card Il-4, the first pair is specified by the (factor) numbers in
cols. 14 and 5-8; numbers for the second pair are in cols. 312 and 13-16; etc. The first number in each pair represents the
factor that will be plotted on the ordinate (y-) axis and the second number is the factor that will be plotted on the abscissa (x-)
aus. Ten pars of factors can be specified on Card IlH4 altogether. |f N2FAC is greater than 10, continue the factor pair
specification on Card IIH4A (and Card IIH4B if necessary).

NOTE 3: CONTINUATION. To continue the PFPLOT run, input sections Il (Factor Loadings Set) and Il (Specific Plot
Requests) described above must be repeated. Section | (General Parameters) is not repeated; values specified for the first loadings
set apply to the second one as well. Thus, successive sets must be the same size and have the same general format (see LFORM

on Card H1) as the first set.

The second loadings set and then the specific plot request follow Card Il in the input file if IUNITC (Card H1) 15 the same as
ISTDIN). If JUMITC is some other umt, the second loadings set follows the first one on that file, while the specific plot requests
follow Card 115 in the input file. Another Card 5 must be included at the end of the second set of plot requests to specify
either termination of the run, or continuation of it with a third set of loadings and plot requests. Each continuation would follow
the same format as described above.

There is no limit to the number of continuations allowed in a PFPLOT run (except for computer time and pnnter limits). Remember
that all loadings sets used must be the same size and the same format type, and that the final record in the input file (i.e. after the
last set of plot requests) must be a Card IIF5 contaimng a termination code.



'3J

G

PARAFAC UTILITY PROGRAMS

3.3.4 PFPLOT Output

The output consists of documentation and plots, both of
which are printed on the standard output unit (ISTDOU). The
documentation allows a check of the input, and provides a
list of the labels used in the plots. An example of PEPLOT
output is shown in Table 3.7, and some comments about the
plots are also made below.

3.3.4.1 One-way Plots - The one-way plot consists of item

labels printed in columns under the headings D1 (dimension
or factor 1), D2 (dimension or factor 2), etc. The vertical
positions of the labels in each column represent the pattern
of factor loadings for the indicated factor, plotted against
the scale values that are printed down both sides of the
page. The plot is printed on either one page (single-
spaced) or two pages (double-spaced); the spacing does not
affect the scale values. (Double-spaced plots are useful if
you need to make a lot of notations on the plot.)

The scale values are not usually the actual magnitude
of the loadings, but are the loadings raised or lowered by a
power of 10. This does not affect the relative positions of
the plot 1labels. It does, however, minimize the number of
characters needed for the scale labels, which is especially
useful when printing the two-factor plots.

For each factor, loadings with the same value (when
rounded off by the program) are indicated by labels printed
side-by-side in the appropriate column, up to a maximum of
three. When more than three have the same value, a special
character is printed instead of the first 1label. The
special characters are defined at the top of the plot: +
means 2 overlapping points, ++ means 3 overlapping points, *
means 4, ** means 5, $ means 6, $$ means 7, and () means
more than 7. An "Overlap Table" below the plot provides
information about the overlapping loadings.

You may have to add notations when interpreting the
plots, since the 1labels printed on the plot have only two
characters at most. Labels that appear at both ends of a
bipolar dimension and at the nonzero end of a unipolar
dimension indicate the 1levels that influence the factor
most; use them when determining the factor interpretation.
You will need to inspect plots for the corresponding factor
in all modes before you can assign an overall interpretation
to the factor. For an example of factor interpretation, see
Harshman and DeSarbo (1984). One solution discussed by them
is plotted in Table 3.7.
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3.3.4.2 Two-way Plots - Each two-way plot shows the

relationship between the two factors indicated at the top of
the plot; the one on the vertical axis is Y and the one on
the horizontal axis 1is X. The vertical and horizontal
scales are identical and are the same as the scale for the
one-way plots in the same mode. This consistency
facilitates comparisons across different plots. The "STEP="
value at the top of the plot (ignore the decimal point) is
the difference in value between adjacent points on the plot
(i.e., it is the step size of the scale). The overlap of
two or more labels at the same point on the plot is
indicated by the same special characters as for one-way
plots, and an Overlap Table gives more information about the
overlapping points.

Each two-way plot can be thought to illustrate one
plane in the multidimensional space spanned by the solution.
While one-way plots are especially helpful when interpreting
a solution, two-way plots can sometimes reveal additional
useful information about it because they show how pairs of
factors are related. A linear trend along either diagonal
of the plot indicates highly correlated factors; scattered
points reveal that the factors are independent. Nonlinear
relationships due to factor interactions may show up: they
might suggest the need for a nonlinear factor model for the
data. Finally, interesting clusters of points might
sometimes be exposed.

3.3.5 PFPLOT Examples

Examples 1 and 2 below show Quick input, examples 3-6,
Detailed input. Table 3.7 is an example of PFPLOT output.

(1) Suppose you have a file containing several PARAFAC
solutions that are identical, and so you want complete plots
for only the first one. The PFPLOT Quick input parameters
would be (remember to include system commands to access the
loadings file):

CARD
I-1[ 1 00

ITI-1 [P

I11-2 E

(2) Suppose you have a file containing 3 PARAFAC solutions.
You don't want plots for the first solution (it didn't
converge) , but you want one- and two- factor plots for Modes
A, B and C of the second solution, and one-way plots for
Mode B of the third solution. The Quick input parameters
would be as follows:
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CARD
1-1f 1 009

ITI-1 |[PXXX

I11-2|C

I1I-1|p

I11-2 |G

I1I-1 [PX1X

I11-2 (E

In fact, the card containing PXXX can be omitted (i.e.,
if you want to skip a solution without plotting anything,
the continuation code G is sufficient).

(3) Detailed input parameters to produce plots 1like those
for example 1 are as follows (assuming a 2-factor solution
for a data array that is 41x35x90):

CARD

1 0D

=
i I

I

[m]
w

35

!

90

D HHH
! |
TP I0OUTD W

—
[ B

ITI-1
ITI-2
ITII-3
ITT-1
IIT=2
ITI-3
II1I-1
111-2
L LL—3
III-5

SOLN 1 OF EXAMPLE DATA
SOLN 1 OF EXAMPLE DATA

—_—

MODE
MODE

> >
AN
I

OF EXAMPLE DATA
OF EXAMPLE DATA

MODE
MODE

=

SOLN

OF EXAMPLE DATA
OF EXAMPLE DATA

SOLN
SOLN

=

MODE

D
D
2-D SOLN
2-D
D
MODE D

ONQ] T w
o

MR NOQFENDT RN D
’_A

(4) Suppose the factor loadings in example 3 above were not
in standard PARAFAC format. The only change in the plotting
parameters would occur for Card I-1, which instead would be:

| 1 10D ]

(5) The following example illustrates how to specify plot
characteristics via Detailed input parameters. Suppose you
have a file containing six 5-factor PARAFAC solutions for
41x35x90 data. Inspection (CMPARE runs, visual checks) has
revealed 2 different solutions: solutions 1, 2, 3 and 5 are
identical, and 4 and 6 are identical. You thus want to plot
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solutions 1 and 4. You want one-way plots of Modes A and B
(Mode C refers to subjects whom you don't have any
information about, and so you will use Modes A and B to
interpret the factors) and two-factor plots of factor 1 vs
all the other factors (with factor 1 on the horizontal
axis) . To make the plots of the two solutions comparable,
you want to specify the endpoints of the scales. The
plotting parameters would be as follows:

CARD

L7l

§ ‘} same as example 3

I1-7B

I-8 5
ITI-1(A 3.0 -3.0
I11-2|1 0 MODE A 5-D SOLN 1
IT1-3|2 4 MODE A 5-D SOLN 1
ITI-4 2 i 3 1 4 1 5 1
ITI=1 B 3.0 -3.0
I1I-2|1 O MODE B 5-D SOLN 1
II1-3|2 4 MODE B 5-D SOLN 1
111-4 2 1 3 1 4 1 5 1
ITI-5|G
ITII-5|C
ITTI-1(A 3.0 =35 0
ITI-2|{1 0 MODE A 5-D SOLN 4
II1-3|2 4 MODE A 5-D SOLN 4
I11-4 2 1 3 1 4 1 5 1
ITI-1|B 3.0 =3/, 0
I11I-2(1 0 MODE B 5-D SOLN 4
I11-3|2 4 MODE B 5-D SOLN 4
I11-4 2 1 3 i 4 il 5 1,
I1I-5|E

(6) Suppose you have a 3-D PARAFAC solution for 41x35x90
data and suppose Mode C refers to subjects. Your sample
consists of 45 males and 45 females, and the data file is
organized with data for all the females first, then data for
the males. To check for a sex difference on the factors,;
you could assign labels for the levels of Mode C (F=female,
M=male) and request plots for that mode, as follows:

CARD
I-1
: }' same as example 3
1=6
I=7| EE FEEF EE EF »sesdss®antsims FFFFFEFEFEFTEFETF
I-7R]| EE EF EMMMMM === 2<% o= MMMMMMMM
I- Bl MMMMMMMMMM
1-8 3
I11-1|C
IIT-2|1 1 MODE C 3-D SOLN (F=FEMALE, M=MALE)
ITT1=3\ |1 MODE C 3-D SOLN (F=FEMALE, M=MALE)
ITI~5 |E
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Table 3.7. Example of PEPLOT Lineprinter Output

PFPLOT VERSION 2A, JUNE 1979. COPYRIGHT 1980 BY RICHARD A. HARSHMAN.
DETAILED INPUT

UNIT FROM WHICH LOADINGS ARE TO BE READ-- 5
FORM OF LOADINGS FILE-- %5 (0=STANDARD PARAFAC FORM. 1=NON-STANDARD FORM)

NO. OF ITEMS IN MODE A--

LEVEL NO. LABEL
1-99 1:299
100-109 A0-A9
110119 B0 -B9
120-129 C0-C9
130-139 DO-D9
140-149 E0-E9
150-159 EQ-F9
160-169 GC0-G9
170-179 0-H9
180-189 10-19
190-199 J0-J9
200-209 K0-K9
210 219 LO-L9
220-229 MO -M9
230-239 NO-N9
240 - 249 00-09
250 PO
NO. OF ITEMS IN MODE B-- 39
[LEVEL. NO. LABEL
1-99 199
100 109 A0-A9
110-119 BO-B9
120 129 C0-C9
130-139 DO -D9
140-149 E0-E9
1.50-159 EO-F9
160-169 G0-G9
170+129 HO-H9
180 189 10-19
190 199 J0-J9
200 209 KO0 -K9
210-219 LO-L9
220-229 MO -M9
230 239 NO-N9
240 249 00-09
250 PO

NO. OF ITEMS IN MODE C-- 34
0. LABEL

[LEVEL N
1-99 1-99
100-109 AO0-A9
110-119 BO-B9
120-129 Co-C9
130-139 D0-D9
140 - 149 EQ-E9
150-159 FO-E9
160169 G0-G9
170-179 HO-H9
180-189 10=T9
190-199 J0-J9
200 209 K0-K9
210-219 Lo-L9
220229 MO0 -M9
230239 NO-N9
240 249 00-09
250 PO

NO. OF FACTORS-- 3
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Table 3.7 (Continued)

SOLUTION 1

iNPUngoRMAT FOR MODE A LOADINGS- -
3F6.

INPUT FORMAT FOR MODE B LOADINGS--
(3F6.2)

INPUT_FORMAT FOR MODE C LOADINGS--
(3FS.2)

SELECT MODE (A=MODE A, B=MODE B, C=MODE C)-- A

YPLOT SELECTED=1 (0=NO. 1=YES--RANK LOADINGS BY ALGEBRAIC VALUE.
2-YES--RANK LOADINGS BY ABSOLUTE VALUE)

SPACING=0 (0=SINGLE. 1=DOUBLE)

XYPLOT SELECTED=0 (0=NO. 1=ALL 2-FACTOR PLOTS. 2=USER-SPECIFIED 2-FACTOR PLOTS)
NUMBER OF USER-SPECIFIED FACTOR PAIRS= 0

USER-SPECIFIED LIMITS FOR THE PLOTS--MAXIMUM= 3.000 AND MINIMUM= -3.000
[LIMITS USED BY THE PROCRAM--MAXIMUM= 3.000 AND MINIMUM= -3.000

TABLE OF RANKED LOADINGS
FACTOR

=

ITEM NO. ITEM LABEL ITEM VALUE
3 3 1.770

22 22 1.370
16 1.180

[
o

N
N

N B WHOODUMB NN NI

e

-
DO 1 bt b et et s s g
FOVRNOUVDWNHFOLODIOULD W

DHOWOUNDDWHOODUIBNON NI
[
'S
o
<3

RN = = O R =

FACTOR
LABEL ITEM VALUE
6 .150

[N]

g [SININTN]
qompuwwx ndwNn
—

-

&
z
(o]
—
z

B bt b bt et e s
VONOUVDWN-HOOD
- () N-AEN N
CODNOVWWUINWDHFHUON®WN
e N NHEHEON N
CODBNOVWWUINWDHHUONDWN
'
N
—
o
o

FACTOR

w
[SENISTSTNTN]
Vb wN—O

VD WHOODONOUD W

bttt b e

16 8 8
P
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' Table 3.7 (Continued)

MODE A 3-D UNCONSTRAINED SOLN (HARSHMAN AND DESARBO 1984 PP 629- 637) OV'ERLAP CHARS ‘2 o= 3 '—4 **=5 8= 6 §8=7, () =CT7?

D1 D 3
> L4 » 1]
3 FASHY " “maTuRe/ “FEMInI VE 33
207 cwsetwmw 307
93 * Rsrat 94
%3 Faw e 33
s o
21
208 22 208
197 ’lu\mu\»\'A Liacoln Maovr Tj“’ 197
186 A 12 Mg 186
% Aw : 5
164
151 fa ol Orsea WA 153
142 Kn N22 o 132
31
120 Cuh\\ﬂblﬁ o.rgA', ok 120
28 .ngmi 19 14 28
e T gg A #liters zs
54 15 10 54
43 2 11 5 24 21 43
32 4 8 2 23 20 13 32
21 9 8 + 25 1 17 14 1 21
10 11 25 7 10
0 eee 24 23 8 c———— 0
BT R ag : 4
-33 12 16 =33
-44 1S 23 15 22 -44
55 11 =55
35 3 55
-88 19 20 7 -88
~99 =99
1o E 13 F” " 6 Drton Welles 110
ord [ Wag
131 : -131
142 Fawtett 3 Muhammed, AL 142
e ) .
0 Dot 0 g : Jom Wt i
11;3(7) mMJD -186
9 -197
208 P) mt‘J 21 Travolta 5 4.'\ MOA -208
219 7Y er -219
230 -230
281 Am, 231
g :
263 m°'*‘°f‘$ -263
274 -274
285 -285
296 -296
307 =307
ji8 =318
329 -329
OVERLAP TABLE }
SCALE PT. FACTOR NO. ITEM NO. ITEM LABEL ITEM VALUE
21 1 S 5 L2100
23 1 10 10 .1500



Table 3.7 (Continued)

SELECT MODE (A=MODE A, B=MODE B, C=MODE C)-- B

YPLOT SELECTED=1 (0=NO. 1=YES--RANK LOADINGS BY ALGEBRAIC VALUE.
2=YES- -RANK LOADINGS BY ABSOLUTE VALUE)
SPACINC=0 (0=SINGLE. 1=DOUBLE)

XYPLOT SELECTED=0 (0=NO. 1=ALL 2-FACTOR PLOTS. 2=USER-SPECIFIED 2-FACTOR PLOTS)
NUMBER OF USER-SPECIFIED FACTOR PAIRS= 0

USFR-SPECIFTED LIMITS FOR THE PLOTS--MAXIMUM= 3.000 AND MINIMUM= -3.000
LIMITS USED BY THE PROGRAM--MAXIMUM= 3.000 AND MINIMUM= -3.000

TABLE OF RANKED LOADINGS

FACTOR 1
RANK ITEM NO. ITEM LABEL ITEM VALUE
1 20 20 1.360
2 34 34 1.330
3 24 24 1.280
4 39 39 1.250
5 4 4 1.240
6 7 7 1.140
7 16 16 1.120
8 10 10 1.070
9 37 37 1.060
10 18 18 1.030
11 15 15 .7900
12 9 9 .7600
13 d 1 .7000
14 21, 21 .7000
15 2 2 .6700
16 29 29 .5800
17 35 35 .2500
18 27 27 . 2400
19 30 30 .1600
20 36 36 .3000E-01
21 38 38 .1000E-01
22 22 22 -.3000E-01
23 3 3 -.4000E-01
24 19 19 -.1300
25 12 12 -.2700
26 17 17 -.4200
27 13 13 -.6200
28 26 26 -.8700
29 11 11 -.8900
30 32 32 -.9000
31 33 33 -.9800
32 14 14 -1.060
33 28 28 =1.310
34 25 25 -1.420
35S S S -1.430
36 23 23 -1.490
37 31 31 -1.560
38 8 8 -1.570
39 6 6 -1.810
FACTOR 2
RANK ITEM NO. ITEM LABEL ITEM VALUE
1 3 3 1.910
2 13 13 1.730
3 38 38 1.360
4 9 9 1.330
S 14 14 1.320
6 32 32 1.120
7 29 29 1.100
8 33 33 1.080
9 23 23 .8600
10 21 21 .7700
11 1 .7000
12 24 24 6000
13 2 5500
14 27 27 4400
15 39 39 4000
16 S S .3800
17 10 10 .2700
18 34 34 .2300
19 6 6 .2200
20 16 16 .1800
21 15 15 -.4000E-01
22 31 31 -.1000
23 7 7 -.1100
24 37 37 .1900
25 22 22 -.3800
26 25 25 -.6500
27 8 -.6600
28 19 19 -.8300
29 18 18 -.8400
30 35 35 -.8400
31 28 28 -1.040
32 11 11 -1.110
33 12 12 -1.200
34 4 4 -1.220
35 30 30 -1.300
36 17 17 -1.390
37 26 26 -1.460
38 20 20 -1.620
39 36 36 -1.660
FACTOR 3
RANK ITEM NO. ITEM LABEL ITEM VALUE
1 9 29 2.030
2 1 1.790
3 39 39 1.740
4 34 34 1.520
S 10 10 1.270
6 36 36 1.100
2 33 33 .9200
8 S S .8400
9 16 16 .8100
10 27 27 .8100
11 12 12 .6300
12 3 .3800
13 6 .3500
14 23 23 .3500
15 9 .3100
16 15 15 .3000
17 26 26 .3000
18 17 17 .2100
19 31 31 .2100
20 11 11 .1900
21 37 37 -.1000E-01
22 24 24 -.7000E-01
23 30 30 -.3900
24 13 13 -.4900
25 35 35S -.5000
26 4 4 -.5300
27 32 32 -.5500



PARAFAC UTILITY PROGRAMS 3-39
% Table 3.7 (Continued)
28 8 8 -.5700 o
29 14 14 -.5800
30 38 38 -.6500
31 21 2 -.9700
32 28 28 -.9900
33 20 20 -1.030
34 7 7 -1.050
35 2 2 -1.180
36 25 25 =1:190
37 18 18 -1.290
38 19 19 -1.910
39 22 22 -2.140
‘ MODE B 3-D UNCONSTRAINED SOLN (HARSHMAN AND DESARBO, 1984, PP 629-637) OVERLAP CHARS +=2,++=3, *=4, **=5, $=6, §$=7, () =CT7
- D1, o D2 D3 —
329 "FLASHY MATURE/ . “FEMIVINE" it
L CONSERVATIVE o0
285 285
274 274
263 263
252 252
241 241
230 g:llg
219
- Formal 20 Smucth 5
186 SN LMature 1 Pleasant 16
‘} ,i '%.g\ \2 Sa')u\!h ra.d'\'v(._ igg
153 3 34
L ANE T eI e POSED 13
1
120 1 7 5 y 32 120
109 37 18 10 33 29 36 109
98 33 98
/7 15 23 21 27 16 S 87
76 9 2 + 1 76
65 29 24 12 65
54 2 54
43 39 27 S 23 6 3 43
32 35 27 34 10 26 15 9 32
21 30 16 6 31 17 11 21
10 38 36 10
0 22 3 ————m—m 3]l 15 c—— 37 24— 0
-11 19 3T 7 =11
=22 12 -22
+33 17 22 30 =33
-44 35 13 4 44
SS 13 25 32 14 + =55
-66 8 -66
77 26 35 19 18 -77
88 33 32 11 21 -88
-99 14 28 28 20 7 -99
15 28 %4 * 38 ‘ 139
-12 i =
1T TR | S e it
St 23 it i3
154 Olosuure T lMA kd“& -175
186 Light 19 led -186
i Colorless J 22 Maseuli 157
519 LR {JTRIVLT 3 b 2519
-230 -230
-241 -241
-252 -252
263 -263
‘ -274 274
285 -285
-296 -296
307 -307
318 -318
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Table 3.7 (Continued)

RLAP TABLE
QR ! LEACTOR NO.  ITEM NO.  ITEM LABEL ITEM VALUE
76 I 21 21 17000
3 B

76 1
132 38 38 - 16500

wwrH
w
~
o
o

Note that while -3.0 and 3.0 are specified as the
minimum and maximum respectively for the above plots, the
scale values range from -329 to 329 instead of from -300 to
300. This is a result of how PFPLOT computes the scale step
size, and is not an error.

The solution plotted above, taken from Harshman and
DeSarbo (1984, pp. 628-30), 1is an example of how to deal
with the complexities of interpretation that may arise when
ratings on bipolar scales are analysed. Mode A refers to
various celebrities and automobiles, Mode B to bipolar
rating scales, and Mode C to subjects. Compared to the
values presented by Harshman and DeSarbo, the sign of the
Mode A factor 1 loadings have been reversed for these plots,
as have the Mode B loadings for factors 2 and 3. (This 1is
equivalent to reversing the sign of all the data values and
then analysing the reversed data.) With this reversal,
labels from the "low" instead of the "high" end of the
rating scales are assigned to the levels of Mode B. Taken
together, these labels make certain aspects of the solution
more salient than do the opposite labels with the unreversed
data. Harshman and DeSarbo preferred to focus on these
aspects in their interpretation.

They assigned factor labels based on the scale labels
at the upper end of the factor. The reversal of factor 1 in
Mode A rather than in Mode B causes the '"flashy" labels to
be at the high end in Mode B; hence, the label "Flashy'".
This was done because they preferred to discuss the solution
in terms of positive aspects (e.g., flashiness) rather than
negative ones (e.g., dullness, lack of colour).

In general, interpreting a solution obtained from
bipolar ratings data may pose problems that are not
encountered with other types of data. Sometimes the
interpretation may seem unduly complicated and difficult to
discuss until you reverse the loadings for each factor in
one mode and focus on the opposite scale labels, as was done
in the above example.
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3.4 DISTIN PROGRAM

The main purpose of the DISTIN program is to transform
similarity or dissimilarity data to scalar products, so that
PARAFAC can then be used to do a multidimensional scaling
analysis (see Section 4.6). The input data is usually a
three-way array (a set of two-way matrices), or it can be a
two-way array (one matrix only). For each Mode A-by-Mode B
matrix (i.e., for each Mode C or frontal slice of the array:;
see Section 4.2), the following transformations are done:

1. Symmetrization, either by computing the mean of the
corresponding off-diagonal entries (i.e., (x(i.j) +
x(j,i))/2.) or by Shepard's method (1972) (i.e.,
(2 (1, 5)y*{ 3, 1)) A {3 4)+% (9. 7)) DO NOT USE IF
DIAGONALS EQUAL ZERO)

2. Similarities changed to dissimilarities (i.e., sign
of all data values reversed or reciprocal values
computed)

3. Dissimilarities changed to distance measures (i.e.,

additive constant estimated for the matrix and then
data values adjusted by this constant)

4, Distances transformed to scalar products (i.e.,
each value squared, then the matrix is row- and
column-centered)

The output data need not be scalar products. Each of the
above transformation steps 1is a separate option in DISTIN
and so any combination of one or more can be requested. You

could just symmetrize the data or just compute reciprocals,
for example, to make the data appropriate for whatever you
want to do.

DISTIN array sizes are listed below in Section 3.4.1
and I/0 units in Section 3.4.2. Input is discussed in
Section 3.4.3 and output in 3.4.4. Examples of input and
output are given in Section 3.4.5.

3.4.1 DISTIN Limits

Array limits of the standard DISTIN code (i.e., as
shipped) are as follows:
1. The maximum number of levels in each of Modes A and
B is 40.
2. The maximum number of levels in Mode C is 250.

Users with access to the source code can change these limits
if necessary. Instructions for doing so are given in
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Appendix E.

3.4.2 DISTIN I/0 Units

DISTIN uses up to 3 different logical input wunits and
up to 3 different logical output units. They are denoted by
integer values assigned to parameter names. The standard
units for input and output are 5 and 6 respectively. System
commands must be included with each job to 1link any
nonstandard units with disk files. The I/O units are as
follows:

Input

1. ISTDIN=5 (standard input unit) is used for input of

DISTIN processing options.

2. IUNITB=5 (default), or the user can specify a value
on Card I-1. It is wused for input of the data

array.

3. IUNIT3 = IUNITB (default), or the user can specify
a value on Card I-3. It is used for input of the
data parameters.

Output

1. ISTDOU=6 (standard output unit) is used for listing
documentation of the DISTIN run.

2. IUNITD=7 (disk file, default), or the user can
specify a value on Card I-2. DO NOT SET EQUAL TO
IUNITB. It is used for output of the transformed
data. This output can be suppressed by specifying
-1 on Card I-2.

3. IUNITA=0 (no output, default), or the user can
specify a value on Card I-3. It is used for output
of the additive constants.

The standard I/0 units (5, 6) can be changed 1if necessary:
see Appendix E for instructions. Figure 3.5 illustrates

DISTIN I/0.
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Figure 3.5. DISTIN Input and Output

INPUT
Section 1 Section 11 Section IIT
Job Parameters Data Parameters Data
(from ISTDIN) (from IUNIT3) (from IUNITB)
DISTIN
Program

"
Lineprinter Processed Additive
Listing Data Constants
(to ISTDOU) (to IUNITD) (to IUNITA)

usually a diskfile may be a diskfile

OuUTPUT

(Dotted lines represent output that is optional or that can

be suppressed.)

3.4.3 DISTIN Input

DISTIN input is described below. If both IUNITB and
IUNIT3 are set to 5, then the information is arranged on one
file as shown in Figure 3.6. A detailed description of the
input is given in Table 3.8 and examples are to be found in

Section 3.4.5.
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Figqure 3.6

DISTIN Input Deck

SECTION I H Data input umt and processing options.
Processing Options 2 Data output unit and output format
(read from standard H Output umt for additive constants and
input unit) input umt for Section Il

SECTION 11 -1 Data title

Data Parameters 12 Data set dimensions

(read from standard
input umt or disk 13 Data input format
or tape file)
SECTION I1I Data set
Data Set
(read from standard
input umt, or disk

or tape file)

3.4.4 DISTIN Output

Output generated by a DISTIN run includes
documentation, the transformed data and a 1list of the
estimated additive constants (i f applicable) . The
documentation, listed on the lineprinter, allows a check of

the input and shows the step-by-step transformation of the
data for the first and last matrices only (i.e., the first
and last frontal slices in the three-way data array). The
additive constants are output either to a disk file or to
‘the lineprinter, as requested by the user.

After all the requested transformation processes have
been applied, the transformed data set is output in a format
compatible with that required by PARAFAC for data input

(i.e., Input Section II -- see Table 2.1 for a description;
also see example 25 in Chapter 2). Usually these data are
written to a disk file. It is recommended that you not set

IUNITD equal to the standard output unit, because the actual
data listing and the step-by-step documentation for the last
matrix may be confused; also, the transformed data would
not be saved for subsequent analysis.
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Table 3.8

DISTIN INPUT SPECIFICATIONS TABLE

SECTION I: PROCESSING OPTIONS

This first section of input contains parameters which specify the 1/0 units to be used, and the transformation procedures to be performed on the
data. This section is always read from the standard input umit ISTDIN (usually Fortran umt 5).

CARD H1 FORMAT: (513) DATA INPUT UNIT AND PROCESSING OPTIONS.
Default Parameter
Column Value Name Explanation
13 5 or ISTDIN IUNITB Data input umt.
46 0 ISYM Symmetrize data on Modes A and B. (For symmetrization NAS must equal NBS). See Card II-2
below).

0= No

1 = Use means

2 = Use method described by Shepard (David and Denes, 1972).
] 0 IPRE Preprocess data values

0= No

1 = Reverse sign

2 = Take reciprocal

1012 0 IESTC Estimate additive constant for each level of Mode C (applicable only if input data set contains
measures of simianties or dissimilanties)

0= No
1= Yes
1315 0 ISCALP Transform data to scalar products (normally appropriate only if the data set contains measures of
similarities or dissimilarities)
0= No
1= Yes
CARD 2 FORMAT: (13,1X,76A1) DATA OUTPUT UNIT AND OUTPUT FORMAT.
Default Parameter
Column Value Name Explanation

13 7 or ISTDTD IUNITD Data output umt. To suppress this output, specify —1 for IUNITD.

580 (1X7G11.4) DATFMT Output format for one row of the data (1.e. it should provide for writing all levels of Mode A at a
fixed level of Modes B and C; it may be a multi-record format). The format must be enclosed in
parentheses, and must specity F.E or G format.

CARD 3 FORMAT: (213) OUTPUT UNIT FOR ADDITIVE CONSTANTS AND INPUT UNIT FOR
SECTION IL
Default Parameter
Column Value Name Explanation
-3 . IUMTA Output unit for additive constants (Optional). The default is to not output the constants.
6 = |JUNITB IUNIT3 Input umt for Records 11, 12, and IH3.
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Table 3.8 (Continued)

DISTIN INPUT SPECIFICATIONS TABLE

SECTION II: DATA PARAMETERS

This second section of input specifies the title, dimensions and input format for the data set. It is input from IUNIT3 (specified on Card H3).
Most often the value for IUNIT3 will be either the same as ISTDIN (usually Fortran umit 5) or the same as IUNITB. In the former case, Section I
would follow Section | in the input deck; in the latter, Section Il would precede the data set (Section Ill) in the file on IUNITB.

RECORD IH1  FORMAT: (80A1) DATA TITLE. A general description of the data set that identifies it and distinguishes it
from any other versions of the data This information 1s output as the first record of the
transformed data set.

RECORD I1-2 FORMAT: (314) DATA SET DIMENSIONS. The data set is NAS by NBS by NCS points. NAS gives the
number of items per row of the data matnx (even if this involves more than one Fortran record).
NBS gives the number of rows per "slice” or matrix (i.e. per level of Mode C). NCS gives the
number of "slices” or matnces assembled into the three-way data set.

Parameter
Column Name Explanation
-4 NAS Number of levels or items in Mode A.
58 NBS Number of levels or items in Mode B.
912 NCS Number of levels or items in Mode C.

RECORD I3 FORMAT: (80A1) "VARFMT": DATA INPUT FORMAT. Format for reading one row of the data matnx
(Cols. 1-80) (i.e. 1t should provide for reading all the levels of Mode A at a fixed level of Modes B and C; it
may be a multi-record format). The format must be enclosed in parentheses, and must specify F,
E or G format. To input data stored as integers, use F format with zero places to the nght of the
decimal point (eg. use F2.0 to read two-column integer data).

SECTION III: DATA SET

The third section of input 1s the data set that is to be transformed and/or written in a format switable for input to the PARAFAC program. It is
input from IUMITB (specified on Card 1). The data set contains NAS by NBS by NCS data values altogether. There are NCS blocks of “records.
Every block contains NBS sets of records, and each set is one row of the data which is read according to VARFMT (specified on Record IH-3) (i.e.
the three-way data set consists of NCS matrices; each matnx is NBS rows by NAS columns). In Fortran the data points are input in the following

way:

D0 10 K=1,NCS in DISTIN souree;

00 10 J=1,NBS do net input with
10 READ (UNITB, VARFMT) (DIS(LLK), I=LMAS) ) Aot
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3.4.5 DISTIN Examples

Two examples of DISTIN input are given below. Table
3.9 is an example of lineprinter output.

(1) Suppose you had used PARAFAC to generate 12x12x20
dissimilarities data with error due to additive constants
(see Section 2.6, example 3). You now want to convert them
to scalar products. In this <case, you do not need to
symmetrize the data because it 1is already symmetric (no
random error was added to destroy the symmetry). The input
to DISTIN would be as follows (include system control cards
to access the data file and to save the scalar products):

CARD
I~ 1 0 0 1 1
I-2 7 (1X,6G13.5/1X,6G13.5)
I-3 6 1

(2) Suppose you have a 19x19 data matrix that you want to

symmetrize for some reason. The data only are in a separate
file. DISTIN input in such a case could be specified as
follows:

CARD

I-1] 1 1 0o o o
I-2| 7 (13F6.3/6F6.3)
I-3| o s

IT-1 [EXAMPLE TWO-WAY DATA
IT-2| 19 19 1

I1-3 |(13F6.3/6F6.3)

Table 3.9 is the lineprinter output produced by DISTIN,

given the example 1 input above. The additive constants
listed here are the same as those on the PARAFAC 1listing
when the data were generated, except for their sign. This

is because DISTIN adds negative constants to cancel the
effects of the positive bias that PARAFAC added when
synthesizing the data. Of course, if random error had been
added too, DISTIN would not be able to recover the additive
constants so exactly.
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Table 3.9.

Example of DISTIN Lineprinter Output

DISTIN. WRITTEN AUGUST 1979.

CURRENT MAXTMUM DIMENSIONS ARE--
MODE A= 40, MODE B= 40, MODE C= 250

SECTION I OF INPUT-- JOB CONTROL PARAMETERS

1 0 0

INPUT UNIT FO ATA,

SYMMETRIZE DATA ON MODES A AND B (0=NO,
PREPROCESS DATA (0=NO,
ESTIMATE ADDITI

TRANSFORM DATA TO SCALAR PRODUCTS {0=NO, 1=YES)

7 (1X,6G13.5/1X,6G13.5)
=CARD I-2 (I3,1X,76A1),

=CARD I-3 (213),

SECTION II OF INPUT-- DATA PARAMETERS AND DATA SET

3 TRUE FACTORS, ADDITIV/REVISED SOLUTION
DATA SET HEADIN

DISSIMILARITIES,
=CARD 1I-1 (80Al),

12 12 20
=CARD II-2 (314),
(1X,6G13.5/1X,6G13.5)

=CARD II-3 (80Al), DATA FORMAT.

STEP-BY-STEP OUTPUT FOR FIRST AND LAST LEVELS OF MODE C ONLY

input data. are a-lfu.o\j Symmebric | as gemerated

DATA INPUT.
bl FARAFAC
DATA CHECK FOR MODE C LEVEL

.3764 6.644 6.075 6.568 3.456
6.960 8.281
6.644 .3764 1,711 1.529 3.587
7744 2.432
6.075 1.711 .3764 1.125 3.259
1.998 2.590
6.568 1.529 1.125 .3764 3.704
1.813 2.214

3.456 3.587 3.259 3.704 .3764
3.894 5.371

5.253 1.772 1.785 2.058 2.200
2.107 3.631

3.904 5.958 6.148 6.530 3.569
6.126 7.952
8.676 4.272 3.648 3.288 6.277
4.382 2.945

3.599 5,595 4.501 4.954 3.590
5.958 6.541

2.514 7.330 7.124 7.592 4.268
5770 9.207
6.960 7744 1.998 1.813 3.894

3764 2.308
8.281 2.432 2.590 2.214 5.371
2.308 3764

1
-CARD I-1 (SIJ& DATA INPUT UNIT AND PROCESSING OPTIONS.
D,

1=USE AVERAGE,
1=REVERSE SICN, 2=TAKE RECIPROCAL)
CONSTANT FOR EACH LEVEL OF MODE C (0=NO, 1=YES),

DATA OUTPUT UNIT AND OUTPUT FORMAT.

OUTPUT UNIT FOR ADDITIVE CONSTANTS, AND INPUT UNIT FOR CARDS II-1,

COPYRIGHT 1980 BY RICHARD A. HARSHMAN.

2=USE METHOD DESCRIBED BY SHEPARD),

II-2, AND II-3.

CENTERING= 000

DATA SET DIMENSIONS FOR MODES A, B, AND C (NO. OF coLs,

5. 253
1772
1.785
2.058
2.200
.3764
4.849
4.911
4.493
6.008
2.107
3.631

ADDITIVE CONSTANT ESTIMATED. &t&jb'\ﬂv\é' x 2ero
DATA CHECK_FOR MODE C LEVEL 1
.3000E-04 6.2 6.192 3.080 4.877

584 7. 905

ROWS AND SLICES) .

3.904 8.676 3.599 2.514
5.958 4.272 5.595 7.330
6.148 3.648 4.501 7.124
6.530 3.288 4.954 7.592
3.569 6.277 3.590 4.268
4.849 4.911 4.493 6.008
.3764 9. 332 6.178 2.:621
9.332 .3764 6.111 . 10.10
6.178 6.111 .3764 5.619
2.621 10.10 5.619 .3764
6.126 4.382 5:955 7.577
7.952 2.945 6.541 9.207
after constant added
3.527 8.299 3.222 2.138
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6.267
. 3980
.699
.622
+1192
1437
.080
+518
.877
131
«D27
.749
299
.006
.222
.578
.138
.201
.584
-.3000E-04
7.905
1.932
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DATA

DATA
.4290E-01
747
V957
.405
« 755
.890
152
063
231
.808
.753
.338
287
.642
.869
~ 106
<571
.201
742
.854
.747
.4290E-01

(SRS BN )

NNNOUWONOVVNG WD WD W

ADDITIVE CONSTANT ESTIMATED.

DATA CHECK FOR MODE C LEVEL
5.710

-.1498E-02
703
7913
.361
.710
.845
108
.018
.187
.764
.709
293
242
.598
.825
«JLL
527
«15%7
.698
.809
.703
-.1498E-02
7.983
3.584

NNNDWONOOUNO WD WD WO~ g

7.913
7.983
-.1498E-02
4.704
757
. 291
.858
.599
.770
.447
.478
272
.865
.503
.918
.812
.432
254
182
. 466
361
.584
.704
-.1498E-02

BUHDONDOANNUHFNWUO NS

4.

=1

S.
3.
4
6.
6
5
6
3

~

757
498E-02
462
802

.643

122

.952
.169
.427
.845
.291

1.153
. 7490

-.3000E-04

3.327
1.681
6.153
2.912
4.577
7.215
1.437
1.837

1
=8,:113

3.537
3.014
4.116
-2.611
.9433
-7.506
8.624
-2.730
-10.44
3.936
7.233

20
8.152

1,903
5.506
.4290E-01

264

992

034

343

4.

1:

7.

3.
8.272
8.930
3.063
o

644

20
8.108

1.858
5.462
-.1498E-02

4.

1.948
6.990
3.299
8.227
8.886
3.ols
5.599

3.
2.
3.

-.3000E-04

1.
3.
S.
3.
3.
3.
4.

5.
-2.
-2
-2

210
883
327

193
901
214
891
518
995

121
145

.052
.611
.732

- 4979

<5

=2
-4,

4
3.
3
4.

.4290E-01

2,
3.
6.
5
4.
3.
S.

.9 (Continued)
-.3000E-04 1.335
2.056
1.335 -.3000E-04
2.213
1.153 .7490
1.837
3.210 2.883
4.995
1.396 1.408
3.255
5.582 9:77
7.576
3.896 3.271
2.568
5.218 4.125
6.165
6.954 6.747
8.830
.3980 1.622
1.932
2.056 2.213
-.3000E-04

VALUES TRANSFORMED TO SCALAR PRODUCTS.

CHECK FOR MODE C LEVEL
-8.497 -6.004
-15.38
4.286 2.489
6.892
2.489 2.473
5.650
3.537 3.014
7.233
-2.145 -2.052

-4.744
1.467 .5429
1.86S
-4.069 -6.050
-12.47
5.358 6.689
14.37
-5.786 -1.584
-6.452
-8.506 275999
-18.60
4.974 2.832
7.908
6.892 5.650
13.73

INPUT.

CHECK FOR MODE C LEVEL
7957 5.755
8.027
.4290E-01 4.802
4.748
4.802 .4290E-01
2.336
1.903 5.506
5.644
3.814 3.846
5.491
1.522 4.687
5..317
5.910 6.166
7.547
4.962 6.996
6.856
8.477 5.213
7.298
8.227 6.471
8.511
1.405 3.890
3.629
4.748 2.336
.4290E-01

4.
3.
3.
4.

-.1498E-02

2.
3.
6

S
4
3
S

.135
.740
.389
.823
.411

744

#2311

814

.846

264

611
674
772
586
719
808
491

187
770
802
219

566
629

.727
.541
.674
.764
. 447

1.
1.
b I8
1

-.3000E-04

L © N

2.
1.

396
408
681
823

.472

535

.116

632

731
. 255

594
467

.5429

.9433

-.4979

.5964

=+3352

.8204

-2.
-2.
1.
1.

6.
1.
4.
>4
2.

.4290E-01

w

(O S S S 7|

6.
1.
4.
1.
2.

-.1498E-02

[ S S I N, BT |

486
032
711
865

753
522
687
992
611

.086
+131
.543

154

.338
=317

709
478
643
948
566

.042
.086

499

.110
.293
.272

5.582
5.771
6.153
3.193
4.472
-.3000E-04
8.956
5.802
2.245
5.749
7.576

12.14
-4.069
-6.050
-7.506

5135
-.3352

18.73
~19:.93
-1.778

20.38
-4.251
-12.47

287
910

S.

5.
6.166
7.034
3.674
5.086
.4290E-01
10.06
8.030
3.644
5.642
7.547

242
865
122

S.

5.,

6.

6.990

3.629

5.042

-.1498E-02
10.01
7.986
3.600
5.598

7.503

3.
3.
2.
5.
4.
8.

896
271
912
901
535
956

-.3000E-04

S.
9.
4.
2.

734
720
006
568

-14.64

S.
6.
8.
10

358
689
624
740

.8204

-19.93

21.61

-4941E-01

-22.90

S.

693

14.37

9.
4
6.
3
6
)

869

.962

996

.343
o7}
+131

10.06

.4290E-01

8.

848

11.31

S
6.

9
4
6.
3
6
S

10
-.1
8.
il &
S-
6.

756
856

.825
.918

952

.299
- 727

.086

.01
498E-02
804

.26
7121
812

3-49

5.218 6.954
4.125 6.747
4.577 7.215
3.214 3.891
4.116 5.632
5.802 2.245
5.734 9.720
-.3000E-04 5.243
5.243 -.3000E-04
5.578 7.201
6.165 8.830
9.494 20.24
-5.786 -8.506
-1.584 ~7.999
-2.730 -10.44
1.389 6.323
~2.486 -2.032
-1.778 20.38
.4941E-01 -22.90
11.3% 5.471
5.471 27.06
-6.962 -9.487
-6.452 -18.60
3.571 2.742
8.477 8.227
5.213 6.471
8.272 8.930
5.586 4.719
7.543 7.154
8.030 3.644
8.848 11.31

.4290E-01 6.01S

~N @

3
8
S
8
S
2
7
8

.015
.201
.298

.527
.432
.169
227

541

.499
.986
.804

-4290E-01
7.854
8.511

698
182
427

2
8.
6.
8.886
4.674
7.110
3.600
11.26

-.1498E-02 5.971

S.
8.

7.

971
157
254

-.1498E-02
7.809
8.466
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Table 3.9 (Continued)

ADDITIVE CONSTANTS EOR

1
6
11
16

DATA VALUES TRANSFORMED TO SCALAR PRODUCTS.

DATA CHECK FOR MODE C LEVEL 20
-14.41 -.6848

3.76 -14.23
3.47 -11.04
4.41 10.04 -2.554 10.06
414 2.898
6848 -2.554 7.479 -4.414
6642 10.0S
4.23 10.06 -4.414 13.52
524 .2443E-01
956 -1.242 -2.645 -1.299
924 -5.051
914 6.641 -4.328 7.576
399 -2.248
399 -1.918 -4.740 -7.406
090 -8.946
8.49 10.82 -2.530 19.21
503 3.635
0.48 -15.71 5.205 -12.26
4.12 -2.544
3.65 -13.05 -1.507 ~17.,31
0.77 -11.49
3.47 8.414 .6642 6.524
636 6.834
1.04 2.898 10.05 .2443
.834 17.88

TRANSFORMED DATA WRITTEN

-.3764
-.2555
-.8439
-.3435

2
7
12
17

ON UNIT

3.956
-1.242
-2.645
-1.299

1.684

.2605

4.516
-3.893

.3130

5.325
-1.924

E-01 -5.051

-7.914
6.641
-4.328
7.576
.2605
5.422
.2604
7.670
-10.58
-7.157
4.399
-2.248

8.399
-1.918
-4.740
-7.406

4.516

.2604

20.52
-21.98
-6.801

19.19
-1.090
-8.946

7 IN FORMAT SUITABLE FOR INPUT TO THE PARAFAC PROGRAM

S ie., Scalar producks

-.6957
-.5503
-.8066
-.3272

20 SUBJECTS WITH

3 -.6518
8 -.6095
13 -.6958
18 -.6964

12 X 12 DATA
4

S

9 -.2200E-02 10

-.3578
14 -.1380
19 =45139

15
20

.3834
.3787
.8376
.4440E-01

-18.49
10.82
-2.530
19.21
=3+893
7.670
-21.98
35.79
-6.034
-30.10
5.903
3.635

20.48
=18:71
5.20S5
-12.26
.3130
-10.58
-6.801
-6.034
29.65
12.40
-14.12
-2.544

23.65
-13.05
=1.507
-17.31

5.325
=7.X57

19.19
-30.10

12.40

30.81
=10...77
-11.49



CHAPTER 4

DATA PREPROCESSING

Sometimes the raw data may be unsuitable for PARAFAC
analysis Dbecause it violates some assumptions of the model.
However, this problem often can be overcome by transforming
or preprocessing the data in some way before beginning the

analysis (Harshman and Lundy, 1984a). Some of these
transformations allow '"direct fitting" of the data (i.e.
the data structure is unchanged by the preprocessing) while
others result in "indirect fitting" (i.e. the structure of
the transformed data 1is different from the raw data
structure) .

The PARAFAC program can do two types of preprocessing:
"centering" (removing means), explained in Section 4.1, and
"normalization" (equalizing mean squares), explained in
Section 4.2. Both permit direct fitting of the data. A
special type of PARAFAC normalization, "equal-average-
diagonal normalization'", is separately discussed in Section
4.5 below; the descriptions of normalization and iterative
preprocessing in Sections 4.2 and 4.3 do not apply to it.

Covariance computation (not done by the PARAFAC
program) is an important type of data transformation which
permits indirect fitting. PARAFAC analysis of covariance
matrices instead of raw data is discussed in Section 4.4.

Another type of data transformation, conversion of
similarities data to scalar products, is briefly mentioned
in Section 4.6.

4.1 CENTERING

The purpose of centering is to make the data more
consistent with the PARAFAC factor model. Centering removes
constant biases or constant terms in the data which might
otherwise either vyield constant loadings on a factor or
distort the solution. It also shifts the emphasis in
certain modes from baseline values to relationships among
patterns of change. PARAFAC centering involves removal of
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"fiber" means (row, column or tube means; see below) rather
than removal of '"slab" means or the overall 'grand" mean.
This centering method preserves the underlying factor
structure of the data whereas the other types of centering
distort it. Proof of this is given in a detailed discussion
of centering by Harshman and Lundy (1984a, pp. 231-9).

PARAFAC can center the data on any combination of one

or more modes. Of course, the simplest case is centering on
only one mode. For example, PARAFAC centers the data on
Mode A in the following way: for every row (where a '"row"

is defined as the set of values taken across all levels of
Mode A while holding the levels of Modes B and C fixed), the
row mean is subtracted from the data values in that row.
The formula is given in Appendix B, Equation 5a; 1in it, the
values of subscript i correspond to the levels of Mode A in
the data array X, the values of j to the levels of Mode B,
and the values of k to the levels of Mode C. Similarly,
centering on Mode B removes column means and centering on
Mode C removes tube means (where a '"column" is the set of
points across all levels of Mode B at fixed levels of Modes
A and C, and a '"tube" is the set of points across all levels
of Mode C at fixed levels of Modes A and B). Equations 5b
and 5c in Appendix B are the formulas used for Mode B and
Mode C centering respectively.

The diagrams below illustrate what 1s meant by the

terms '"row", ‘"column" and "tube'". (You may recall from
Chapter 1 that PARAFAC denotes the three ways of the data
(i.e., across, down and back) as Mode A, Mode B and Mode C

respectively.)

.............................................

. X
X
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X's denote '"row" X's denote "column'" X's denote '"tube"

As a simple example of how PARAFAC centering works,
consider the following 3X3 data matrices. The first is the
original data matrix and the others show it after it has
been either row-centered, or column-centered, or both row-
and column-centered. Note that the entries in the
double-centered matrix do not depend on the order of the
centering operations (i.e., row-centering a column-centered
matrix has the same result as column-centering a
row-centered matrix).
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32 4 0 -1 1 1 -1 1 0.67 -1.33 0.67

123 -1 0 1 =L =1 0 -0.33 -0.33 0.67

25 2 =1 2 =1 0 2 -1 -0.,33 1.67 -1.33

Original Centered Centered Centered on both

Data on only on only Modes A and B
Mode A Mode B

(rows) (columns) (rows & columns)

If Mode A and/or Mode B centering were applied to a
three-way data array, the successive matrices would exhibit
the same effects as those shown above. Mode C centering is
a parallel procedure, but is harder to illustrate on this

page.

The PARAFAC factor loadings reflect any centering that
is done. That is, the loadings for each factor have a mean
of zero in any mode that is centered. The level means in
the Summary Statistics Table (described in Section 5.1) more
indirectly indicate when centering has been done. For
example, centering Mode A removes row means (across levels
of Mode A, but within levels of Modes B and C). Thus, the
Mode B and C level means are set to zero, but not the Mode A
level means. In general, centering on one mode sets the
level means of the other two modes to zero. Consequently,
if two of the three modes are centered, then the level means
for all three modes are zero.

4.1.1 When to Center

There is no '"cookbook'" method for centering, but we can
give some general rules of thumb to follow for PARAFAC
analyses.

When deciding whether or not to center, consider the
type of data to be analysed. You may not need to center if
you are sure that you have ratio scale data with no constant
terms or factors. Even so, however, you may still want to
so that certain variance components will be emphasized. On
the other hand, if you have interval scale data, you should
always center to remove constants and thus transform it to
ratio scale data. This 1is necessary because PARAFAC
requires ratio scale data.

If you choose to center, you must then decide how many
modes require this transformation. The data should almost
always be centered on at least one mode, and often it is
better to center on two modes because this removes more
unwanted constants and interactions. Although in theorvy,
centering on three modes should be best, it usually does not
work in practice because it reduces the signal-to-noise
ratio too much. In other words, the factor or systematic
deviations become too small compared to the random error
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variation, which is not affected much by the centering.

The meaning of the mode may determine whether or not

you center on it. Centering across the 'person'" mode
parallels traditional two-way factor analysis methods, but
based on our experience, we would recommend against
centering the person mode in three-way data. Also, 1if
response biases on ratings scales (for example) are
suspected, center across a mode for which the bias on each
scale 1is constant (i.e., some mode other than the '"scales"
mode) .

Sometimes the results of a PARAFAC analysis may
indicate where centering 1is needed. If the analysis
produces a factor which has 1loadings of more or less
constant size and sign in one or more modes, one of the
modes for which the loadings are constant should probably be
centered. Such centering would remove this factor from
subsequent analyses.

In addition to centering, you will  usually also
normalize the data (normalization is discussed below). You
may have to try several different preprocessing combinations
in order to get the most interpretable solution. We have
sometimes found it useful to center two modes and normalize
two modes, but not the same two. Especially with three-way
rating scales data, we have obtained good results when we
have centered the scales and the stimuli modes and have
normalized the scales and person modes.

4.2 NORMALIZATION

In contrast to the centering procedure, PARAFAC
normalization is not intended to make the data more
appropriate for the PARAFAC model. Rather, normalization
improves the solution by equating the mean square data
values of '"slices" (see below) of the data; large but
spurious differences in these mean squares do not contradict
the model, but they may adversely affect the solution in two
ways:

1. During the factor estimation procedure, PARAFAC
tries to minimize the total error variance. Levels
with large mean squares contribute disproportion-
ately to the total error variance, and so the
factors are primarily determined by the attempt to
fit the data for these levels.

2. Levels with large mean squares require large factor
loadings relative to the others, so that the large
data values 1in those 1levels can be predicted.
Thus, the 1loadings for these levels tend to be
large, even though their meaning may not be central
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to the interpretation of the factors on which they
i load highly.

PARAFAC normalization equates the influence of the data
slices on the solution and also facilitates comparison of
factor loadings across rows of the factor loading matrix.

this preprocessing does not overcome problems that
fiber-conditional differences in mean square values would
cause, but our experience with PARAFAC so far suggests that
such differences are not significant. See Harshman and

Lundy (1984a) for more details about the rationale for
PARAFAC normalization; note that they use the term 'size
standardization" for what is called normalization here.

As with centering, the data can be normalized on any

combination of one or more modes. The simplest case is
normalizing on one mode. For example, the data are
normalized on Mode A as follows: 1in each slice (where the

"slice" is defined as the matrix of points across all levels
of Modes B and C for a fixed level of Mode A), the data
points are all multiplied by the constant which produces a

mean squared data value of 1.0 in the slice. The formula is
given in Appendix B, Equation 6a. Similarly, normalizing on
Mode B results in a mean squared data value of 1.0 in each
Mode-A-by-Mode-C slice (Equation 6b) , while Mode C
normalization produces a mean square of 1.0 in each
. Mode-A-by-Mode-B slice (Equation 6c) . The Summary
Statistics Table, described in Section 5.1, verifies the

normalization (but see Section 4.3 below).

The diagrams below illustrate the way the data array is

"sliced" for normalization on Mode A, Mode B and Mode C
respectively. In general, these slices can be referred to
as "lateral", "horizontal" and "frontal" planes,

respectively (e.g., Kroonenberg, 1983).

.......................................
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The effect of PARAFAC normalization on one matrix is

shown below. You can verify for yourself that the mean

‘ squared value of the normalized matrix is (approximately)
‘ 1.,0.
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3 2 4 1:032 .688 1.376

1 2 3 . 344 .688 1.032

2 5 2 .688 1.721 .688
Original Data Normalized Data

In a three-way data array, successive matrices (slices)
would be similarly transformed, so that the mean squared
value of each normalized matrix would be 1.0.

4.2.1 When to Normalize

Any mode for which large, meaningless mean square

variations occur should be normalized. (To check the mean
square values, you can input the raw data to PARAFAC with no
preprocessing requests, and suppress the analysis: then

refer to the Summary Statistics Table output from that run.)
Variations in mean square values are meaningless if they are
the result of arbitrary differences in the units of
measurement across levels of a mode. For example, mean
reaction time, measured in milliseconds, might vary over ten
times the range of a second variable, number of correct
responses. Also, even when the units of measurement are the
same, mean square variations might sometimes be thought to
be unimportant. For example, ratings scales might give rise
to spurious differences in mean square values, depending on
how they are worded and on subjects' response biases.

4.3 ITERATIVE PREPROCESSING

PARAFAC employs an iterative process when both
centering and normalization on the same mode are specified
or when normalization on more than one mode is requested.
Each iteration involves first normalizing the mode(s) as
requested, then centering the mode(s) as requested, and
finally checking to see if another iteration is required.
The iterative process is necessary because the normalization
of any given mode is distorted by subsequent centering of
the same mode or by subsequent normalization of a second

mode. However, by repeating the procedures, one can more
closely approximate the simultaneous centering and
normalization that was requested. The convergence criterion

set by PARAFAC for the iterative normalization process. is
accuracy within one percent; that is, for each slice in all
normalized modes, the mean square value is between 0.99 and
1.01. (Because in each iteration, the program always
centers after it normalizes, the centering is always exact
to within computer roundoff error and thus does not need to
be checked.) PARAFAC does at most 20 iterations, and if the
convergence criterion is not met by then, the user is
informed. The data values used in the succeeding analyses
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are those obtained on iteration 20. The mean square values
can be checked by referring to the Summary Statistics Table
listed by PARAFAC.

Another way of using PARAFAC centering and
normalization to preprocess the data 1is what we call
"one-cycle preprocessing". First, centering is done as

requested and then (iterative) normalization is done as
requested. This procedure differs from the preprocessing
described above 1in that the centering is done only once

before the normalization (i.e., each iteration involves only
normalization). As with regular preprocessing, however,
iterative normalization is performed if more than one mode
is normalized, and the convergence criterion for the

iterative procedure is accuracy within one percent.

One-cycle preprocessing is not an option in the current
version of PARAFAC, but it can be accomplished by a two-step
procedure. First, input the raw data to PARAFAC and center
only (on one or more modes), suppress the analysis and save
the centered data (see Cards I-2, I-4 and I-8 of the PARAFAC
Input Specifications Table). Then input the centered data
to PARAFAC, normalize and analyse it (or, save the
normalized (and centered) data and analyse it in a separate
run) . An example of the PARAFAC deck set-up to do one-cycle
preprocessing is given in Chapter 2.

If you obtain a solution that 1is hard to interpret
because (you suspect) the iterative preprocessing unduly
complicated the underlying data structure, you may want to
try one-cycle preprocessing. As yet, we have not used it
extensively, but we have obtained similar solutions with
regular preprocessing and one-cycle preprocessing of rating
scales data (i.e., scales and stimuli modes centered, scales
and person modes normalized) . The advantage of the
one-cycle preprocessing is that the relationship between the
raw data and the transformed data is much simpler. However,
one-cycle preprocessing does not correct for the disturbance
in centering subsequent normalization of the same mode
causes, and so it may not be best if you want to transform
slices of the data to z-scores. (The Summary Statistics
Table would indicate how serious the deviation from z-scores
was.)

4.4 COVARIANCE ANALYSIS

Covariance analysis is an instance of indirect fitting
of the data. Direct fitting is more straightforward and
hence is usually preferable, but sometimes it is advisable
to analyse covariances (not correlations) instead of the raw
data. PARAFAC does not compute covariances, but it should
be a simple matter to find or write a program that does. So
that you can use the method of Equal-Average-Diagonal
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normalization as recommended in Section 4.5, the covariances
should be arranged as a series of matrices (like the '"Mode C
slices" in Section 4.2), one matrix for each occasion (or
sample or condition) . Hence, Modes A and B of the
covariance data are symmetric. As explained in Section 4.5,
the restriction of symmetry to Modes A and B simplifies the
programming involved, and 1is not for some theoretical
reason. There are several instances when you should
consider analysing covariances:

1. Object variation in the data rather than system
variation. (Harshman, 1970; Harshman, 1972;
Harshman and Berenbaum, 1981)

2. Data consisting of several different samples,
possibly of varying sizes (e.g., different numbers
of people tested on several occasions).

3. Too many levels in one mode for the analysis to be
practical.

Whenever ''system variation'" (proportional patterns of
factor change) 1is present across the levels of each mode,
PARAFAC analysis of the raw data can determine a unique
orientation for the factor axes. Sometimes, however,
problems of rotational indeterminacy in the PARAFAC solution
do arise. If the cause is the presence of mainly '"object
variation" (idiosyncratic patterns of factor variation) in
one mode, then these problems may be overcome by analysing
covariances instead of the raw data. This is so because the
PARAFAC three-way generalization of the covariance model
does not assume that the raw data from which the covariances
were computed contains system variation (Harshman, 1972;
Harshman and Lundy, 1984b). The covariances are computed
across the mode that is the source of the object variation,
and so that mode '"disappears'" from the covariance data.
Thus, analysis of the covariances gives you no information
about that mode, but you can use regression techniques ¢to
estimate factor loadings for it. The analysis does,
however, produce factors that reveal the same underlying
structure for the other two modes as direct analysis of the
raw data would have yielded (had there been system rather
than object variation present in the data).

In many cases, the decision to analyse covariances
rather than raw data may be somewhat arbitrary. Haan (1981)
gives an instance where the raw data were composed of
personality measures repeated across time. She viewed the
people in the study as sources of object variation rather
than of system variation, and so she computed covariances

(actually, she used unstandardized covariances or
cross-products) over the person mode and analysed them
instead of the raw data. Sometimes, though, you may not be

sure of the source or amount of object variation. You may
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want to begin by analysing the raw data (after appropriate
centering and normalization). Provided that there is enough
system variation in the data, PARAFAC may vyield a unique,
interpretable solution that satisfies you (any object
variation will be treated as error). But a solution with
factors that are all nearly constant (though not necessarily
equal) in one mode indicates that insufficient system
variation is present in that mode for PARAFAC to establish a
unique orientation for the factor axes. (You might also
notice nonuniqueness or uninterpretability of the solution
under these conditions.) If you have some theoretical
ground for believing that the data might contain enough
object wvariation to cause these problems, then it is
reasonable to compute and analyse covariances. If you have
no reason to suspect object variation, however, error
variance may be the problem and so covariance analysis may
not be justified. (Note that when only a subset of the
factors have constant 1loadings in a particular mode, the
cause 1s probably constant terms in the data; they can be
removed by centering the data on the constant mode: see
Section 4.1.1 above and Harshman and Lundy, 1984a.)

One case when covariances should always be analysed
occurs when each occasion involves measurements on the same
variables, but for a different set of people. The sample
sizes may remain constant or may vary across occasions. In
one sense, this may be thought of as the most extreme case
of object variation, since one cannot expect the patterns of
factor variation to be proportional across occasions when
different people are involved every time. In another sense,
this is a violation of the PARAFAC raw score model, which
requires that the same people be measured on the same
variables at every occasion. Either way, analysis of
covariances is required to overcome the problem.

Sometimes you may have data for which there are many
levels in one mode, compared to the other modes (e.qg.,
measures for hundreds of subjects), and to analyse it would
be expensive. A way of reducing the size of the data
without losing information is to compute covariances across
the mode with so many levels; this eliminates that mode and
hence reduces the size of the data set, but uses all the
available information. (However, this approach makes an
orthogonality assumption which is discussed below.) As
mentioned in the discussion of object variation, the factor
loadings for the mode that disappeared can be estimated
using regression procedures.

Although correlations have been used in traditional
two-way factor analysis, we have said that they are not
appropriate for three-way analysis, whereas covariances are.
The reason is that calculation of correlations separately
standardizes the variance within each level of the third
mode (e.g., occasions), thus destroying the proportional
factor relationships across the levels. This violates a
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basic assumption of the PARAFAC model to a degree which may
or may not be serious, depending on the data. In contrast,
covariances do not involve such standardization. EAD
normalization (see Section 4.5) then allows standardization
of the covariances, while maintaining proportionality across
levels of Mode C. The normalized covariances have an
average diagonal of 1.0, compared to correlation matrices
for which all diagonals are exactly 1.0.

While analysing covariances instead of the raw data is
an easy way to overcome problems of object variation or very
large data sets, you should keep in mind a fundamental
assumption of this procedure. It 1is that the factors
underlying the mode over which the covariances are computed
(i.e., the mode that "disappears') are orthogonal (mutually
independent). Even when the factors are not perfectly
orthogonal in that mode, however, analysis of covariances is
still reasonable, especially for initial exploration of the

data. In this case, PARAFAC gives the best orthogonal
approximation to the "true" (nonorthogonal) factors
underlying the data. Often, such a solution is clear and
interpretable.

On the other hand, 1if you suspect that highly
correlated factors underlie the mode that '"disappears",
covariance analysis is not useful even for exploration. The
assumptions of the model would be greatly violated, and the
solution would probably be a very distorted version of the
"true" factors.

4.5 EQUAL-AVERAGE-DIAGONAL NORMALIZATION

Equal-average-diagonal (EAD) normalization 1is applied
to covariance data which are symmetric across Modes A and B.
(The decision to restrict symmetry to Modes A and B was

arbitrary. There 1is no theoretical reason that the data
cannot be symmetric across Modes B and C, or across Modes A
and Cs Due to practical programming considerations,

however, we chose to restrict symmetry to one pair of modes.
Modes A and B seemed to be the best alternative, since the
most common arrangement of covariance data is a series of
matrices (i.e., the frontal planes are symmetric). If your
data set is not in this form, you must rearrange it to make
it suitable for PARAFAC.) EAD normalization equates the
variance associated with each level of Mode A (and B)  so
that the levels can all contribute equally to the solution,
but at the same time, it preserves the proportional factor
relationships across the levels of Mode C. It 1is
accomplished in two steps:

1. The mean is computed across each '"tube" of diagonal
elements c(i,1i, k) (where tube 1is as defined in
Section 4.1 above).
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2. Each element c (i, j.k) in the array is then divided
by the square root of the product of the ith and
jth tube means determined in step 1. Thus, each
diagonal element (where i=j) is divided by the mean
value of the tube in which it 1is located; the
average value in each tube of rescaled diagonals is
then 1.0.

The exact formula for EAD normalization is given in Appendix
B, Equation 7.

The diagram below illustrates how EAD normalization is
applied. The individual slices are square matrices. The
"X's" indicate the tube of (1,1,k) diagonal elements and the
"Y's" mark the tube of (2,2,k) diagonal elements (here,
k=1,2,3). The off-diagonal (1,2,k) and (2,1,k) entries are
the "Q's". The "Q"-values are divided by the square root of
the product of the mean X and the mean Y. Each X is divided
by the mean X and each Y is divided by the mean Y. A
parallel procedure would be applied to all other elements in
the array to complete the EAD normalization.

------------
............

............

4.5.1 When To Use Equal-Average-Diagonal Normalization

Use the EAD method to normalize covariance matrices.
(Section 4.4 above 1is a discussion of when to use
covariances.) The resultant covariance matrices are the
same as would be produced if the original raw data were
first centered and normalized appropriately and covariances
were then computed from the transformed data. An example of
the appropriate PARAFAC deck set-ups is given in Chapter 2.

For example, suppose you have covariance data of the
form Variables by Variables by Occasions, and suppose that
the raw data from which the covariances were computed was of
the form Variables by Persons by Occasions (i.e.,
covariances were computed across persons, so that the person
mode disappeared) . EAD Normalization of the covariances
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equalizes the variance contributed by each variable while
maintaining the pattern of factor proportionality across

occasions. You can obtain the same result by centering the
person mode (in general, the mode that disappears when
covariances are calculated) and normalizing the variable
mode 1in the raw data, and then computing covariances. The

effect of the preprocessing is to set the variance within
each variable slice of the raw data to 1.0 (assuming
"variables" is Mode A, refer to the diagram of Mode A slices
in Section 4.2). Thus, no level of the variable mode will
contribute disproportionately to the PARAFAC solution after
covariance calculation.

In combination with EAD normalization, we suggest that
you select the option to standardize the factor loadings so
that those in Modes A and B jointly reflect the scale of the
data and those 1in Mode C have a mean square of 1.0 (i.e.,
ISTANM=4 on Card I-8; see the PARAFAC Input Specifications

Table) . Then you can interpret the Mode A and B loadings
the same as loadings obtained via traditional two-way
(orthogonal) factor analysis of a correlation matrix. That

is, each factor loading represents the correlation between
the variable (corresponding to that level of Mode A or B)
and the factor. The Mode C loadings are the variances for
the factors 1in the mode that disappeared during covariance
computation (e.g., if that mode were ''persons'", the Mode C
loadings would give the variances of the person loadings or
"factor scores'").

4.6 SCALAR PRODUCTS

PARAFAC can be used to do metric multidimensional
scaling (MDS) of distance-like data, if the data are first
transformed to scalar products. The scalar products are
then analysed by PARAFAC in much the same way as covariances
are. This procedure indirectly fits an MDS distance model
(i.e., the weighted Euclidean model) to the original
distance-like data by directly fitting the factor or
component model to the scalar products.

The DISTIN program, described in Chapter 3, does the
necessary transformations and outputs the transformed data
in a format that is compatible with PARAFAC input

requirements. DISTIN assumes Mode C of the input data is
the '"person'", '"condition'", '"occasion", etc. mode  and
computes scalar products over Modes A and B. Thus, the

scalar product data array output from DISTIN consists of a
series of matrices that are symmetric across Modes A and B
(i.e., the frontal planes are symmetric). The symmetry is
restricted to these two modes to simplify the programming,
not for theoretical reasons.
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The transformation of three-way similarities data to
scalar products 1involves several steps. For each Mode
A-by-Mode B matrix (i.e., for each subject):

1. If the data are not symmetric, symmetrize across
Modes A and B.

2. If the data are proximities or similarities (where
a larger value represents a stronger relationship
or greater similarity) convert to dissimilarities

(where a larger value represents a weaker
relationship or larger "distance'"). This 1is done
by either reversing the sign or taking the
reciprocal of each similarity measure. Then,

estimate the additive constant and subtract it.
This transforms the interval scale dissimilarities
data to ratio scale distance data.

3. Square each distance value.

4. Double-center the matrix of squared distances
(i.e., center on Mode A and on Mode B; see Section
2.1 above).

5. Multiply by -.5 to obtain scalar products.
Torgerson (1958) explains the reason for this
adjustment.

Upon inputting the scalar product data to PARAFAC, you
will usually want to normalize on Mode C (see Section 4.2

above) before beginning the analysis. No other
preprocessing (e.qg. centering) of scalar products is
required.

This section has focused on scalar products. For a

more thorough discussion of multidimensional scaling, see
Kruskal and Wish (1978).






CHAPTER 5

PARAFAC ANALYSIS OUTPUT

As Figure 2.1 illustrates, a PARAFAC job generates a
lineprinter 1listing and wusually also one or more disk or

tape files. The listing 1is mostly self-explanatory. It
provides a check of the parameters and data supplied to the
program and shows the analysis results, while the disk

(tape) files are copies of the analysis results which may be
input to PARAFAC or one of the wutility programs in the
package.

A detailed description of both types of output is given
below. Informative messages, error messages and warnings
that may appear on the listing are discussed in Chapter 8.

Throughout this chapter, numerous references are made
to parameter names, which are printed in upper case, and to

"Card" and "Record'" numbers (e.g., ISTART on Card 1I1-5).
These are all taken from the PARAFAC Input Specifications
Table in Chapter 2. It is assumed that you are familiar

with the information in that table.

Besides referring to this chapter when interpreting
your output, vyou may also want to read the article by
Harshman and DeSarbo (1984); they describe how they applied
PARAFAC to marketing data and how they interpreted the
resulting solution.

5.1 LINEPRINTER OUTPUT: VERIFICATION OF INPUT
5.1.1 Input Section I (Parameter Check)

First on the listing is an overall program heading that
identifies the version of PARAFAC being used, specifies the
current array limits and gives the 1label from the wuser's
DIMS run (or a standard 1label if PARAFAC was not

redimensioned). Printed next is a heading for Input Section
I, followed by each Section I input record as it was read by
the program, and a description of the record. Any

unspecified parameters (i.e., blank on the input record) are
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printed as zero on the listing. In the comments following
the record output, the default values assigned to these
parameters by PARAFAC are listed. It is important to check
this part of the 1listing, especially if warning or error
messages are subsequently issued, to ensure that PARAFAC
read the parameters as you intended (i.e. make sure you
didn't place any values in the wrong column).

5.1.2 Input Section II (Data Check)

The section heading and first three data parameter
cards are listed in the same way as for Section I above.
For the data set, however, only the first, second and last
rows of the data are listed; they are in G-format rather
than the format used for input. This permits a check of
data input without 1listing the entire data set. Use this
check: otherwise, you may be unaware when the data are read
improperly. For example, if PARAFAC reads only part of the
file because a faulty format causes it to input extra values
from each data record, no error is detected, and analysis of
the faulty 'data'" proceeds as usual. (On the other hand, if
it encounters the end of the file prematurely, the job
terminates abruptly with a system message which would alert
you to erroneous specification of the data dimensions or
format, of problems in the data file itself.)

5.1.2.1 Missing Data. - When a missing value subscript

table is input after the data set, the subscripts are listed
after the data check. When special codes are wused to
identify missing data, the subscripts of the data cells
containing these codes are printed. Make sure that the

subscripts in the missing value table were read correctly,
and that other cells identified here contain missing data
codes. Valid data values can be erroneously identified as
missing data if the data range limits or the missing data
codes on Card I-4 are incorrectly specified.

5.1.2.2 Centering/Normalization. - When the user has

requested that the data be centered and/or normalized on one

or more modes, the first, second and last 1lines of the
revised (i.e. after centering and/or normalizing) data.are
listed to allow a check of the transformation. In some
instances, a reference to iterations precedes this data
check. Iterative normalization 1is performed 1if either
normalization on more than one mode or centering and
normalization on the same mode 1is requested. PARAFAC

indicates the number of iterations required to meet the
convergence criterion or, if the iterative procedure did not
converge in twenty iterations, a message informs the user of
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this. (In the 1latter <case, the values printed in the
centering/normalization check and the data wused in the
subsequent analysis are those obtained on iteration 20.)
Refer to Chapter 4 for more details on centering,
normalization and the iterative procedure.

5.1.2.3 Summary Statistics Table. - Next on the listing is

a table of statistics for the overall data, and for each
level of each mode (i.e., for every two-way 'slice" of the
three-way data cube). The statistics are computed after
initial estimates have replaced missing data values and
after the data have been centered and/or normalized.

(Equations la, 1lb and lc in Appendix B are the formulas used
in the computations.) Check these statistics to make sure
that the general properties of the data are what you expect.
A comparison of the mean squares across the levels within a
mode may reveal large differences. Unless these differences
are meaningful, you may want to normalize the data on any
modes for which substantial variation of the mean square
values occurs. See Chapter 4 for a discussion of when to

normalize.

On the other hand, if you requested normalization of
the data, then the mean squares printed in the table allow a

check of the normalization accuracy. Where the
normalization was not iterative, the mean square value of
every level of the normalized mode is exactly 1.0. Where an
iterative procedure was necessary, and the procedure

converged, the mean squares for each mode normalized may
vary between 0.99 and 1.01. The closer to 1.0 they are, the

more accurate is the normalization. If convergence was not
reached, some of the mean squares will be outside this
range.

While the mean squares in the statistics table reflect
the effects of any normalization, the means do not directly
show the result of centering. When only one mode is
centered, the level means for that mode may be far from
zero, but the level means for the other two modes are zero.
If centering 1is done on more than one mode, however, the
level means of all three modes are =zero (within computer
roundoff error). The reason for this is given in Chapter 4,
which describes the centering process in more detail.

5.1.2.4 Symmetry Check. - When a check for symmetry in the
data across Modes A and B was requested, a message about

this check appears next on the listing. In addition, the
location and value of any nonsymmetric points are printed,
for a maximum of 50 points. If there are nonsymmetries, the

program stops here.
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5.1.3 Input Section III (Initial Loadings)

A section heading for Input Section III is listed only
if starting loadings were supplied by the wuser. When
variable format input was used (ISTART=2 on Card I-5), the
format and the loadings for each mode are printed next, so
that their input can be checked. But for a standard
continuation (ISTART=1), the section heading is the only
documentation for Input Section ITIL, The loadings
themselves are printed for iteration zero in the analysis
part of the output. That output provides sufficient
verification of their 1input; see Section 5.2.2.1 for more
details about starting loadings.

5.1.4 Special Output

The revised data are printed next when no analyses are
to be done (i.e., NSOLS=-1 on Card I-2) and IUNITD on Card

I-8 is set to 6 (the standard output wunit). Such output
permits only a visual check of the preprocessed (or
synthetic) data. Usually, you will want to write them on a

disk file so that they can be analysed later.

5.2 LINEPRINTER OUTPUT: ANALYSIS DOCUMENTATION

This documentation consists of a series of factor
loadings matrices which show the progression towards a
solution. A similar sequence is repeated for every solution
requested. The starting loadings are printed first; then
reestimated loadings are listed after every NITER (from Card
I-2) iterations, up to NOUTS (also from Card I-2) times. If
the solution converges before NITER times NOUTS iterations
have been performed, however, the loadings at the point of
convergence are output.

In addition to the factor loadings, the program
supplies other information with every solution. Descriptive
labels and fit values precede each loadings matrix. Also,
depending on the original options selected, messages that
the data have been recentered and that the missing values
and/or the data diagonals have been reestimated may appear
between the loadings outputs. And after the final loadings
for each solution, an error analysis table and matrices of
factor correlations and cross-products are listed.

The analysis documentation 1is described 1in detail

below, generally in the order 1in which it occurs on the
listing. First, general information provided by the
loadings matrices is discussed. Next, the loadings outputs

are explained in Section 5.2.2, with specific reference to
different stages of the analysis. Then, factor correlations
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and cross-products, error analysis, missing value and
diagonal estimates, and special outputs are discussed.
Informative messages which may occur along with the loadings
outputs are described in Chapter 8.

5.2.1 Descriptive Information, Fit Values, Etc.

The first two lines at the top of each loadings matrix
are the job title (from Card I-1) and the data title (from
Record II-1). The next two lines contain the solution (SOL)
number, the iteration number at which the loadings were
obtained, and four fit values which measure how well the
factors predict the data. The fit values generally indicate
improving agreement between the predicted data and the real

data as more iterations are performed. The difference
values -- DIFFA, DIFFB and DIFFC -- give some indication of
the stability of the current estimates of the factor
loadings. The iteration number for the first 1loadings

output in any solution is always zero, which indicates
starting loadings rather than iteratively computed loadings.
Subsequent loadings outputs (except for the final one when
the solution converges) have an iteration number that is
some multiple of NITER.

MEAN SQ ERROR is the mean squared difference between
the real data values and those predicted from the factor

loadings (i.e., it is the sum of the squared errors divided
by the total number of points in the data set). Its value
decreases as the predicted data approach the real data. Its

mathematical formula is given in Appendix B, Equation 2a.

STRESS is the square root of the ratio of the sum of
the squared errors to the sum of the squared real data
values. Like MEAN SQ ERROR, STRESS decreases as the
predicted data begin to more closely resemble the real data.
Zero is the minimum value for STRESS and this only occurs if
all predicted data points are identical to the real data
(i.e., the fit is perfect). The formula for STRESS is given
in Appendix B, Equation 2b.

R is the Pearson product-moment correlation between the
real data and predicted data and RSQ 1is the variance
accounted for (VAF) by the PARAFAC model with NFACT factors
(but see Section 6.7 for how to compute the VAF in indirect
fitting, e.g., when analysing covariances). If the starting
loadings are random numbers, then these two values probably
start out close to zero, because random loadings cannot fit
the data well. Both measures increase as the fit improves,
up to a maximum of 1.0, which indicates perfect fit.
Generally, when R 1is 1large, MEAN SQ ERROR is small.
However, if there are a few extreme outliers in the data,
both a large R (fitting the very large error variance due to
these errant points) and a large (undesirable) MEAN SQ ERROR
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are possible. Thus, you should check that the sizes of both
are reasonable.

DIFFA, DIFFB and DIFFC indicate the maximum percentage
change in the value of any loading in Modes A, B and C
respectively from the previous iteration. (The percentage
value is computed by dividing the magnitude of the change in
the loading by the root mean square loading value for that
factor in that mode, and then mutliplying by 100.) At
iteration zero, they are all zero, Dbecause no iterations
have yet been per formed. During the first several
iterations, large changes in the loadings occur before an
initial crude Fit of the data 1is obtained; these
fluctuations are reflected by large "DIFF" values. The
loadings estimates are further refined during subsequent
iterations, and the differences from one iteration to the
next gradually decrease. Thus, "DIFF" values for succeeding
loadings outputs are smaller. The program considers the
estimation process to have converged when all differences
are less than the convergence criterion specified for the
corresponding mode (DIFMXA, DIFMXB and DIFMXC respectively
on Card I-7). (Except when ISTANM on Card I-8 equals 5,
outputting the loadings at every iteration does not allow a
check of DIFFA, DIFFB and DIFFC. This 1is because the
differences are computed from changes due to reestimation of

the loadings, and do not reflect changes due to the
renormalization that occurs whenever the loadings are
printed.)

5.2.2 Factor Loadings

Following the fit values, etc., factor weights or
loadings are printed 1in matrix form, one matrix for each
mode. Each matrix has NFACT (from Card 1I-2) columns and
NAS, NBS or NCS (from Record II-2) rows. Column (factor)
and row (level) numbers appear across the top and down the
side respectively of each matrix. Any given factor (column)
in one mode (matrix) corresponds to the same factor in the
other two modes.

Up to ten columns may be listed across the page (unless
DIMS has been used to alter this; see Chapter 3). If NFACT
is greater than ten, loadings for the first ten factors are
printed for all three modes, and then loadings for the
remaining factors are listed.

You will use the sign and magnitude of the factor
weights in the final (converged) output of each solution
when interpreting the factors. More details are given below
in Section 5.2.2.3.1 and in Section 6.5.
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5.2.2.1 Starting Loadings (Iteration 0). - The first output
for each solution consists of loadings which either have

been supplied by the user or are random numbers generated by
PARAFAC. These loadings represent the initial ''quess" as to
the form of the factors that can explain the data.

Randomly generated loadings generally do not predict
the data well, and this is indicated by poor fit values: R
and RSQ are near zero and STRESS is greater than one. In
contrast, user-supplied loadings may predict the data
better, especially if they are from a previous PARAFAC
analysis. In this case, the fit measures are almost
identical to those listed with the previous output (small
discrepancies are due to roundoff of the loadings when they
were output). DIFFA, DIFFB and DIFFC are always set to zero
for the first output, since they are not defined until the
iterative process begins.

If starting loadings in standard form were supplied by
the user (ISTART=1 on Card I-5), their input can be verified
here. (Recall that they were not printed with the Section
IIT input check, described 1in Section 5.1.3.) They are
identical to the final output of the PARAFAC analysis which
produced them, wunless ISTANM (Card 1I-8) has a different
value than in the other job.

If the starting loadings were 1in nonstandard form
(ISTART=2), then the output at iteration zero probably
differs from the loadings listed with the Section III input
check because of the standardization imposed by ISTANM.
(The Section III input check involves no standardization,
but wunless ISTANM is 5, all other loadings outputs include
standardization.)

While the 1loadings at iteration =zero are only an
initial gquess and may be far from the final solution, it is

sometimes helpful to know their form. Each analysis
involves a different guess but (hopefully) all finally
converge to the same solution. However, the starting

loadings can influence the speed of convergence and whether
the program reaches the true global optimum or instead gets
"hung up" in a local optimum.

5.2.242 Intermediate Loadings. - After iteration zero,

PARAFAC iteratively improves the factor loadings estimates.
Every NITER (from Card I-2) iterations, the updated loadings
are output. These subsequent outputs generally show
improving fit wvalues (i.e., increasing R and RSQ and
decreasing MEAN SQ ERROR and STRESS) and decreasing "DIFF"
values.

Intermediate loadings are sometimes useful for
diagnostic purposes. Ideally, the rates of change of the
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fit and difference values are wusually greatest for the

initial iterations, and then they diminish as the solution
is perfected and the correct rotation established during the
final iterations. However, 1f there are convergence
difficulties, the difference values may fluctuate
substantially within or across modes, even though the fit
values have stopped changing much. In this case, comparison

of the intermediate loadings outputs may provide insight to
the problem. For example, you may note that the estimated
loadings for some factors become stable relatively early in

the analysis process, while loadings for other factors
continuously change with every iteration. This would
indicate that some factors were not well determined, and

that perhaps different starting positions and/or different
dimensionalities should be tried.

5.2.2.3 Final Loadings. - The iterative reestimation
procedure stops when one of the following three conditions
is fulfilled (each is discussed in more detail below):

1. The convergence criterion is met. A message prior
to the final loadings informs the user of this.

2. The solution has not met the convergence criterion,
but the maximum number of iterations (i.e., NITER
times NOUTS) has been performed. No message is

issued, but the iteration number above the loadings
always equals NITER times NOUTS.

3. The output is forced because of decreasing R (i.e.,
the iterative process has begun to decrease, rather
than increase, the correlation between the actual
data and data predicted from the loadings). A
message prior to the final loadings informs the
user of this.

Regardless of which of the above caused the iterative
process to stop, the final loadings are written on a tape,
disk or punched card file (see IUNITG on Card 1I-8) and on
the listing.

5.2.2.3.1 Convergence Criterion Met. - Convergence of a

solution means that reestimation of the loadings does not
change them substantially from one iteration to the next.
It does not necessarily mean that the solution is the global
optimum one. You need to check certain aspects of it and
compare it with other solutions before you know. First of
all, look for a factor that has loadings of constant size
and sign in two or three modes. This would suggest that you
should reanalyse the data, centering on one or more modes.
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Chapter 4 gives more details about when to center. Also,
you should 1look at the factor cross-products (or
correlations) to see how dependent the factors are, since
highly dependent factors may indicate problems. This 1is
explained in Section 6.1. Finally, compare the solution
with solutions from 3 to 5 other starting positions. You
may be able to accomplish this via a visual check, or you
may have to use the CMPARE program (see Chapter 3).

Such comparisons may reveal it to be a local optimum (a
solution with noticeably poorer fit values, that can be
discarded), a competing solution (one of two solutions with
similar fit values but different factors, that appear almost
equally often; you may want to interpret both), or a stable
unique solution (fit values and loadings identical for all
solutions; probably the global optimum for this
dimensionality) . If your check shows that none of the
factors are replicated across the different solutions, the
analysis should be repeated with a smaller NFACT (Card I-2),
since probably too many factors are being extracted. If the
solutions replicate some factors but not others, however,
there are two possible causes. The solutions may be
selecting different subsets of dimensions underlying the
data, and so the analysis should be repeated with a larger

NEFACT. Or, the solutions may be unable to uniquely
determine some of the factors because of indistinct patterns
of wvariation in the data; the factors may be highly

correlated in this case. Reducing NFACT might help.

You will want to interpret a stable solution that
represents the global optimum, so long as it's not a
"degenerate'" solution (see Section 6.2). The interpretive
process 1involves both assigning descriptive labels to the
factors in each mode according to the meaning of the levels
at which the largest (positive and negative) loadings occur,
and explaining how the factors in the different modes are
related. Note that factor 1 in Mode A corresponds to factor
1 in Modes B and C, etc. Use of the PFPLOT program to get a
graphical display, described in Chapter 3, is a help when
interpreting the factors. In addition, where more than one
solution is of interest, the CMPARE program (see Chapter 3)
can be used to show how factors across the different
solutions are related.

Other information supplied with the final loadings may
give you a better understanding of your solution or may
suggest possible problems. For example, the influence of
each factor in the data is measured by its root mean squared
contribution (Section 5.2:3) Cross-products and
correlations measure the degree of similarity or "overlap"
of the factors, and reveal problems such as 'degenerate"
solutions (Sections 5.2.4-5). Which parts of the data are
well fit and which are poorly fit by the solution are
indicated by the error analysis (Section 5.2.6). Harshman
and DeSarbo (1984) present a good example of how to use both
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the factor loadings and the extra information when
interpreting a PARAFAC solution.

5.2.2.3.2 No Convergence. - Usually when convergence is not
met after NITER times NOUTS iterations, the analysis is
continued by using the final loadings here as the starting
position for a solution 1in a subsequent PARAFAC job.
However, if the solution is very close to convergence and
agrees with other converged solutions, it is not necessary
to continue it. The solution is close to convergence when
the DIFFA, DIFFB and DIFFC values for the final loadings are
very close to the values specified for DIFMXA, DIFMXB and
DIFMXC respectively on Card 1-7. In addition, if the
loadings and fit values are very similar to those of a
solution which has converged from a different starting
position, then it 1is reasonable to assume, without
continuing it, that the unconverged solution 1is headed
toward the same place.

Sometimes the solution may fail to converge because of
nonunique factors, and not because of an insufficient number

of iterations. If so, it may be a waste of time to continue
the solution. Such nonuniqueness would be indicated by the
factor cross-product and correlation tables. Refer to

Section 6.1 for more details.

5.2.2.3.3 Forced Output. - Decreasing R (and hence forced
output) often occurs when constraints are imposed on the
factors, but even so, you can usually attain a good
approximation ot the constrained optimum solution.

(Constrained solutions are discussed in Section 6.2.1.3.)
When IRINTV is small, PARAFAC quickly detects the decrease
in R, and thus the solution does not get very far beyond the
optimum point. (To be very scrupulous, you could repeat the
solution with IRINTV equal to 1, and the decline in R would
be immediately detected.) Also, comparison of the fit
values and loadings with those obtained from other starting
positions may reveal strong similarities. Even when the
other loadings are also the result of forced output, you can
reasonably conclude that the constrained optimum has been
obtained if 4 to 6 solutions (or 3 solutions in each of two
split-half data sets) have more or less identical loadings.
I1f the discrepancies between these solutions are not large
enough to substantially affect the interpretation, you may
take the solution with the highest fit value as the best
approximation to the optimal solution. The "DIFEF" values
for these forced outputs may be relatively 1large, which
indicates substantial changes in the 1loadings from one
iteration to the next as the solution departs from the
optimum one.
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5.2.3 Root Mean Squared Contribution of Each Factor

A factor's contribution to an individual data point
x(i,j.k) 1is the triple product of that factor's loadings at
level i of Mode A, level j of Mode B and level k of Mode C;
the factor's contribution to the average data point is the
mean of its contributions to the individual data points. 1If
the data have been centered, however, the average data value
is zero and so is the average factor contribution to it:
this leaves you with no real information about the factor
contribution in the predicted data. To avoid this problemn,
the root mean squared (RMS) contribution is computed and
used as a measure of the size of the factor contribution to
the data.

Before they are printed, PARAFAC factors are ordered in

descending size of their RMS contributions. The RMS
contribution for each factor is listed below the Mode C
loadings. Thus, factor 1 has the greatest influence in the

predicted data, factor 2 has the second-largest influence,
etc.

There are other ways to view the RMS factor
contribution. It is easy to show algebraically that the RMS
contribution of each factor is equal to the triple product
of its RMS 1loading values in the three modes. With the
standardization of the RMS loading value to 1.0 in two modes
(when ISTANM equals 1, 2 or 3), the RMS factor contribution
is in fact equal to the RMS 1loading in the mode that
reflects the scale of the data.

When the data are centered across at least one mode (as
is usually the case), other meanings can be attached to the
RMS contributions:

1. The RMS contribution for each factor equals the
standard deviation of 1its contributions to the
data, and the squared RMS value is the variance of
its contributions.

When the factors are mutually orthogonal (as indicated by
cross-products that are all close to zero in at least one
mode) in addition to the data being centered:

2. The squared RMS contribution approximates the
variance in the (preprocessed) data that is
accounted for by the factor.

3. The squared RMS contribution for any factor,
divided by the total data variance (from the
Summary Statistics Table; see 5.1.2.3), 1is the

proportion of total variance accounted for by that
factor.
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4. The squared RMS contribution for any factor,
divided by the sum of the squared RMS contributions
for all the factors 1in the solution, is the

proportion of explained variance accounted for by
that factor.

5. The sum of the squared RMS contributions for all

the factors in the solution is the variance
accounted for by the solution (=RSQ for direct fit
analyses) .

Note that you cannot interpret the squared RMS contributions
in terms of variance accounted for when the factors are not
approximately mutually orthogonal, because they share too
much overlapping variance.

If you are indirectly fitting the data (e.g., wusing
covariances), see Section 6.7 for additional information.

5.2.4 Factor Cross-Products

Factor cross-products are computed from the final
loadings and are printed in three NFACT by NFACT matrices,
one matrix for each mode, after the final loadings output.
Each matrix entry is the cross-product between loadings of
the two factors (in the indicated mode) designated by the

row and column position in the matrix. Each factor is
standardized to wunit length for computation of the
cross-products. Appendix B, Equation 3a 1is the formula

used; it 1is the same one that Harman (1960, p. 257)
recommends .

The cross-products measure the dependence or similarity
of pairs of factors within each mode, taking into account

both the profile and elevation of the factor loadings. A
cross-product with an absolute wvalue of 0.6 or more
indicates that the two factors are fairly dependent (large
negative values simply mean the factor profiles and

baselines are similar but opposite in sign), while a value
near zero shows that they are more or less independent or
orthogonal. Diagonal entries in each cross-product matrix
are always 1.0, which 1is to be expected, since there is
maximum similarity for any factor compared with itself.

Chapter 6 gives further details about wusing the
cross-product output. For indirect fitting, see Section
6.7,
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5.2.5 Factor Correlations

Like the cross-products, the factor intercorrelations
are printed in three NFACT by NFACT matrices, one matrix for
each mode. Each matrix entry is the Pearson product-moment
correlation between loadings (in the indicated mode) of the
two factors designated by its row and column position in the
matrix. (See Appendix B, Equation 3b for the formula.) The
correlation is essentially the cross-product computed for
factors that have had the mean loading removed, and so the
correlation matrix is the same as the cross-product matrix
for any mode on which the data were centered (since the mean
factor loading 1is =zero for centered modes). Like the
cross-products, a value near 1.0 indicates that the loadings
for both exhibit a similar pattern, while a value near zero
indicates that there 1is minimal similarity. Asterisks
indicate an undefined correlation value, which occurs if one
of the factors has constant loadings in the indicated mode.

See Chapter 6 for a discussion of how to use the
correlations. For indirect fitting, see Section 6.7.

5.2.6 Error Analysis Table

An Error Analysis Table follows the correlation
matrices at the end of the solution. The error analysis
consists of the mean squared error (MSE) for each level of
each mode (i.e., a mean squared error value is calculated
for every possible two-way '"slice" of the three-way data
set). Appendix B contains the formula used.

For any mode that was normalized, you can compute the
quantity (1-MSE) at each level to get the proportion of the
mean squared data value at that level that was fit by the
solution. Where either of the other two modes were
centered, so that the level means of the normalized mode are
all zero (the Summary Statistics Table confirms this), then
(1-MSE) is the proportion of the variance accounted for at
each level by the PARAFAC solution. For example, if the
data were normalized on Mode A and centered on Mode C, then
(1-MSE) for each 1level of Mode A is the proportion of the
variance accounted for in that lateral slice (see Section
4.2) of the data.

How to wuse the MSE values for diagnostic .and
interpretive purposes 1is explained in Chapter 6. For
indirect fitting, see Section 6.7.
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5.2.7 Missing Value Estimates

Whenever there are missing data, a table of the initial
and final estimates for all the missing values is printed
after the error analysis. The 1initial estimates are the
values used for the first iteration, and the final estimates
are the values obtained during the 1last iteration of the
solution. You can check that when the estimates are
reinitialized at the beginning of each solution (MISEST is 1
on Card I-3), the initial estimate for a particular missing
data cell is the same for every solution in the PARAFAC run.
Otherwise, the value 1listed as the final estimate for a
given point 1in one solution appears 1in the following
solution as the initial estimate for that point.

5.2.8 Diagonal Estimates

If diagonal estimation was requested (IGDIAG=1 on Card
I-6), a table of initial and final diagonal values for the
solution is listed next. Note that for PARAFAC version 6H
the table is incorrect, since PARAFAC does not reinitialize
the diagonal values at the beginning of each solution. What
should be shown is that the final estimates for one solution
are the initial estimates for the next solution.

The diagonal values are from the Mode A-by-Mode B

matrix for each level of Mode C (i.e., the Mode C or frontal
slices as shown in Section 4.2). Diagonal estimation 1is
requested most often when the data is a set of covariance
matrices. With such data, diagonal estimation is a way of

dealing with the three-way analog of the communalities
problem that occurs in two-way factor analysis.

5.2.9 Special Output

The revised data and/or residuals are listed if the
special output parameters IUNITD and IUNITE respectively on
Card I-8 have been specified as 6 (the standard output
unit) . This 1is not usually recommended, since these data
are not available for subsequent analyses unless they are
output to disk or tape files. The revised data are the data
that have been centered and/or normalized, and/or with any
missing values replaced by their final estimates; the
residuals are the differences between the real data and the
values predicted from the factor 1loadings on the final
iteration.

The organization of both data listings is as described
in Section II of the PARAFAC Input Specifications Table:
title, dimensions and format of the data, data set,
subscripts of any missing values, and the "-001" terminator
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code. Columns 1-40 of the title line are from Record II-1
(the title of the data being analysed); columns 41-80
indicate that the output is revised data or residuals, and

give the solution number and the centering/normalization
options used ("IFCEN" flags from Card 1-3). The format is
DATEMT from Card I-8A for the revised data and RSDEMT from

Card I-8B for the residuals. When missing values were
indicated in the original data, missing value subscripts are
listed after the data. These subscripts match the

documentary 1list of missing value points on the program
listing, described in Section 5.1.2.1.

5.3 DISK OR TAPE FILE OUTPUT

In addition to the lineprinter 1listing generated by
every PARAFAC job, output may be optionally directed to

punched cards, or disk or tape files. This optional output
occurs at the end of each solution, and may include the
final loadings, the revised data and/or the residuals.

(Note that the appropriate system control cards to access
and save the files must be included with the PARAFAC job.)

5.3.1 Final Loadings

The final loadings are always written to a file, unless
IUNITG on Card 1I-8 1is set to -1 to suppress this output.
NSOLS complete sets of loadings are written on IUNITG during
a PARAFAC job. The descriptive information and the loadings
in the file are identical to the final loadings output (s) on
the 1listing, unless NFACT is greater than 6. If NFACT is 7
or more, the format of the file 1is as described for a
"standard continuation'" in Section III of the PARAFAC Input
Specifications Table (Chapter 2).

This output has several important uses. The final
loadings from one PARAFAC analysis may be input as the
starting loadings for a subsequent one. This 1is wuseful
where many iterations are required because the solution (s)
is(are) slow to converge. Note that NSOLS in the
continuation analysis must not exceed the number of loadings
sets supplied.

The loadings may also be input to the PFPLOT and CMPARE
programs (described in Chapter 3). Generally, PFPLOT is
used to plot factors from converged solutions only; the
plots aid in Iinterpretation of the solution(s) obtained.
CMPARE indicates the similarity amongst factors of different
solutions just as the cross-product and correlation tables
on the listing show the relationship amongst factors of the
same solution.



PARAFAC ANALYSIS OUTPUT 5-16

And finally, another use for these loadings is as input
for other types of computer analysis or transformations.

5.3.2 Revised Data

As mentioned in Section 5.2.9, the revised data are the
data that have been centered and/or normalized and/or with
missing values replaced by the solution's final estimates.
They are output if a unit number is specified for IUNITD on
Card I-8. At the end of the run, the file contains NSOLS
sets of data except when analysis is suppressed by setting
NSOLS to -1; then only one set of data with initial
estimates for any missing data values is written. (When the
file contains several data sets, they have to be separated
before sets 2 through NSOLS can be analysed by PARAFAC,
since it reads only one data set in each run.) The format
of each data set is as described in Section 5.2.9.

The revised data may be used in several ways, depending

on the transformations involved. Especially if the data set
is large and/or many PARAFAC analyses are to be performed
which involve preprocessing (i.e., centering and/or
normalizing) the data, you may want to save the revised
data. Subsequent analysis of the revised data reduces
computation time by eliminating the preprocessing step in
each analysis. Alternatively, PARAFAC can be used only to

preprocess the data, so that the revised data are in better
form for some other analysis procedure.

Where there are missing data values, the revised data
can be output after a PARAFAC analysis; this data set
contains sophisticated missing data estimates based on the
PARAFAC solution. Such data may then be analysed by some
other procedure which does not have missing data estimation
capabilities of 1its own, or it may be used in a subsequent
PARAFAC analysis to provide good initial estimates of the
missing data.

Note that the revised data can both be centered and
have missing values estimated. However, when such data are
analysed in a subsequent job, the "IFCEN" flags (Card 1I-4)
for that job must specify centering if PARAFAC 1is to
recenter the data after every NITER (Card 1I-2) iterations
and Dbefore each new solution (as it usually does when both
centering and missing values are involved): otherwise, the
recentering will not be done. (Of course, the initial
centering done before the first solution in the subsequent
job is redundant in such a case.)
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5.3.3 Residuals

As noted in Section 5.2.9, the residuals are the
differences between the data being analysed and the data
predicted on the final iteration of the solution. They are
output only if a unit number is specified for IUNITF on Card
I-8. At the end of the run, the residuals file contains
NSOLS sets of data, one for each solution obtained. (These
data sets have to be separated before sets 2 through NSOLS
can be analysed by PARAFAC, since it reads only one data set
in each run.) The format of this output is as described in
Section 5.2.9.

There are several applications for the residuals. One
is to input them to a cluster analysis program to look at
the "nonspatial" structure left after the factors have been
taken out. Kettenring (1983) found meaningful patterns that
shed light on the data structure when he used graphical
methods, displaying the residuals in a normal probability
plot and in box plots. Yet another way of dealing with
residuals 1is to input them to other programs that test for
normality of distribution, outliers, etc.

Another approach is a "hierarchical" type of PARAFAC
analysis. This involves an initial PARAFAC analysis of the
raw data to extract two or three “major” factors, and then a
subsequent PARAFAC analysis of the residuals from the first
run to extract additional 'secondary" factors. This
procedure may allow exploration of weak factors without the
"splitting" of major ones, which sometimes occurs when too
many factors are extracted at the first level of analysis.
For two-way data, such a procedure always yields '"secondary"
factors that are orthogonal to the "major" ones. However,
we have found that the "major" and 'secondary'" factors in
three-way data are orthogonal only when the underlying
dimensions are orthogonal in at least two modes and there is
little or no error in the data.






CHAPTER 6

DIAGNOSTICS AND INTERPRETATION

While Chapter 5 was devoted mostly to a description of
the PARAFAC output, this chapter explains how to use parts
of that output for diagnostic and interpretive purposes.
Diagnostic indicators are covered in Sections 6.1 and 6.4;
identifying and dealing with 'degenerate" solutions is
described 1in Section 6.2. Section 6.3 explains how the
cross-products and correlations can also be used during the
interpretive phase of the analysis. Interpretive issues
regarding the PARAFAC factor loadings and factor scores are
dealt with in Sections 6.5-8, with special reference to
analysis of covariances (Section 6.7) and multidimensional
scaling (Section 6.8).

6.1 CROSS-PRODUCT AND CORRELATION DIAGNOSTICS

The cross-products and the correlations serve an
equivalent function as diagnostic aids; as such, they can
be used to quickly identify a solution that has problems.
They both measure the similarity of pairs of factors: the
cross-products take into account the factor profiles and
elevations, however, while the correlations use only the
factor profiles. As noted in Chapter 5, they are identical
for any mode on which the data were centered.

You can use the «cross-products and correlations in
virtually the same way., although you should keep the
following point in mind for any modes that were not
centered. While the cross-products incorporate more
information about the factors than do the correlations, and
thus in some sense may be a better measure of factor
dependence, they sometimes may be artificially 1large or
small because of certain combinations of factor elevations.
For example, if both factors have relatively large positive
baselines, as may occur in an uncentered "person" mode, the
cross-product may be large even when the factor profiles are
not much alike. In such a case, the cross-product gives an
inflated measure of the factors' similarity. On the other
hand, the baselines may sometimes "cancel each other out" so
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that the cross-product is small, even though the profiles
are similar. Thus, you may prefer to use the correlations.
We refer to '"correlations" in the following discussion, but
you can usually substitute '"cross-products'" if you wish.

Look for high correlations between factors. This means
that the factors are highly dependent, and warns of possible
problems. Such dependence can cause PARAFAC trouble in
defining a unique set of loadings for each factor, and so
the solution may not be unique or it may be very slow to
converge. Or, it may '"converge" before it has actually
reached the global optimum (i.e., it may meet the current
convergence criterion, but if it were continued with a more
stringent criterion, the loadings would change considerably
before it met the new one). Highly dependent factors in
only one mode do not usually have such a serious effect on
convergence, but may still make it difficult to get a unique
solution.

When a solution with highly dependent factors is
obtained, compare it with solutions obtained from several
other starting positions (see CMPARE program in Chapter 3).
The comparison may show one of several things:

1. While the current solution has highly dependent
factors and perhaps poorer fit values, (most of)
the others obtained factors that are more
independent and that fit the data better. 1If so,
the poorly behaved solution may be discarded as a
local optimum that had an unlucky starting
position.

2. All solutions generally agree, and so a global
optimum may have been approximated. (You could
further refine the solution by continuing it with
smaller values specified for the convergence
criteria.) However, even if the solution is a
global optimum, it will be virtually
uninterpretable if two or more factors are very
similar in all three modes. We call such a
solution "degenerate', and discuss how you can deal
with it in the following section.

3. All the the solutions are different. Either they
all were changing so slowly that they met the
convergence criteria but in fact were not close to
the global optimum, or too many factors were being
extracted. Depending on the cause, you can either
continue the solutions with more stringent
convergence criteria or reanalyse the data at a
lower dimensionality (see NFACT on Card I-2).
Another possible cause for many different solutions
is that some factors do not have distinct patterns
of variation across levels of one mode, and so
PARAFAC cannot determine a unique orientation for
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them. In such cases, changing the convergence
criteria will not help and neither will reducing
NEFACT, with one exception. If the nonunique
factors account for the smallest amount of
variance, reducing NFACT by 1 or 2 might eliminate
them from the solution. The effect at the lower
dimensionality would then be a stable solution
consisting of the 1larger, unique factors that
remain.

The above discussion is somewhat brief, but it should
give some guidance in using the cross-product and
correlation output to check the solution obtained.

6.2 "DEGENERATE" SOLUTIONS

Degenerate solutions usually occur because the
structure underlying the data is more complex than can be
represented by the PARAFAC model (Harshman and Lundy, 1984a,
p.271-80) . Such structure can often be fit by the Tucker T2
or T3 models (Kroonenberg and Deleeuw, 1980), which are more
general models for three-way data than PARAFAC is.
Characteristics of degenerate solutions are as follows:

1. At least two factors are highly correlated (e.qg.,
with absolute values greater than 0.7) in three
modes and either all three correlations are
negative or only one is (so their triple product is
negative). In degenerate solutions, the triple
product 1is always negative. This contrasts with
the situation where high correlations occur because
too many factors are being extracted. Then, the
triple product is positive (i.e., three positive
correlations or two negative) as often as it is
negative.

2. The same solution (with equal fit values and more
or less identical factors) is consistently
obtained, regardless of starting position.

3. Often, the highly correlated factors appear at low
dimensionalities (e.g., when NFACT is 2 or 3), and
they fit nontrivial amounts of variance. For
example, 1f the factors are highly correlated when
NFACT=2, you will often see that the RSQ fit to the
data has improved by 5-10Y%, compared to the fit
when NFACT=1. This contrasts with the situation

where high correlations are because too many
factors are being extracted. There, the
improvement in fit from the previous dimensionality
is very small, as the additional factor fits

redundant or overlapping variance.
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4. Probably the correlated factors are not
interpretable.

6.2.1 Overcoming Degeneracies

If the solution is truly degenerate, the best way to
get an interpretable PARAFAC solution is to constrain
factors to be independent in one mode throughout the course
of the analysis (see Section 6.2.1.3). Sometimes, though,
improved preprocessing of the data or temporary independence
constraints will also improve the solution.

6.2.1.1 Preprocessing. - Sometimes the degeneracy may be
due in part to additive constants in the data. Factors that
are more or less constant in a particular mode would be
evidence of this. Usually, such a problem can be overcome
by centering the data appropriately (see Chapter 4) and then
repeating the analysis. Harshman and DeSarbo (1984) discuss
data for which appropriate preprocessing overcame a
previously uninterpretable solution.

6.2.1.2 Temporary Constraints. - Sometimes you can try
temporarily constraining the factors to be orthogonal or
uncorrelated in a particular mode (e.g., IORTHA=2 or 3 for
temporarily uncorrelated factors in Mode A; IORTHA=5 or 6
for orthogonal factors; see Card 1-6). This constraint
forces the factors to be independent at first, and may
overcome the apparent degeneracy if somehow the
unconstrained starting position "trapped" the factors at a
local optimum were they were highly correlated. If the
solution is truly degenerate, however, the factors will
almost immediately revert to their highly correlated form
once the constraints are dropped.

6.2.1.3 Permanent Constraints. - For truly degenerate

solutions, we have found that constraining the factors in
one mode to remain uncorrelated until the solution converges
(e.g., IORTHA=4) allows PARAFAC to discover a replicahle,
interpretable solution. (Orthogonality constraints can
sometimes cause problems when imposed in a mode for which
the data were not centered, e.g., the "person'" mode.) Such
"constrained solutions" have poorer fit wvalues than
degenerate solutions at the same dimensionality, further
evidence that the highly correlated factors are fitting
nonover lapping variance in the data. The important thing
is, however, that the factors are meaningful and can
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consistently be obtained from different starting positions.

Permanent constraints generally should be imposed on
only one mode at a time. Such constraints on more than one
mode push the solution towards a principal components axis
orientation, which may be unnatural for the data. When
deciding which mode to constrain, you should consider the
meaning of the modes. If there is a theoretical argument
for only weakly correlated factors in a particular mode, you
may want to start by imposing the constraints on it. You
may have to do several analyses, with the constraints on a
different mode in each one, to see which gives the best
result. This should not be very expensive, since a
constrained analysis usually terminates quickly; see
Section 5.2.2.3.3. For three-way rating scale data, we have
often constrained the 'scales" mode with success, but
sometimes constraining another mode may also work.

6.3 FACTOR CONTRIBUTIONS (DIRECT FITTING ONLY)

Each data point can be thought to consist of the sum of

NEFACT factor contributions (plus error). Each factor
contribution is the amount that the given factor Iincreases
or decreases the predicted score for that data point. In

terms of the three-way data set, you may be concerned with
the relationship of the factor contributions in rows (or
columns or "tubes'") of the array, in "slices" of the array,
or 1in the the array as a whole. (See Chapter 4.1-2 for a
description of "rows'", etc. and "slices".) You can use the
factor cross-products and correlations provided by PARAFAC
to tell you something about the contribution patterns.

6.3.1 Cross-products

You will always use the cross-products for diagnostic
purposes. After you have found a stable, nondegenerate
solution, however, you will want to interpret it. You may
then be interested 1in using the cross-products to compare
patterns of factor contribution in the data.

As described in Section 5.2.4, the cross-products
measure the similarity of the loadings patterns for pairs of
factors, but they also tell us about the relationship of the
"factor contributions". It happens that the cross-product
computed from factor loadings in a given mode 1is equal to
the cross-product of factor contributions to the data within
that mode, for fixed levels of the other two modes. For
example, the Mode A cross-product for any two factors r and
s indicates both the similarity in their Mode A 1loadings
patterns and the similarity in the patterns of their
contributions to any row of the predicted data. Similarly,
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their relationships in any column and any "tube'" are
measured by their Mode B and Mode C cross-products,
respectively.

The cross-products provided by PARAFAC can also be used
to compute the cross-product of factor contributions within
a slice of the data: multiply together the cross-products
in the two modes comprising the slice. For example, you
might be interested in the contributions of factors 1 and 2
to the data in any Mode C slice (all levels of Modes A and B
at a fixed level of Mode C); vyou would multiply together
the Mode A and B cross-products for factors 1 and 2, as
provided on the PARAFAC output. Similarly, you would
multiply together their Mode A and C cross-products to get
the cross-product of their contributions in any Mode B

slice, and you would multiply their Mode B and C
cross-products to get the cross-product for any Mode A
slice. Normally, vyou will only be interested in slicewise
relationships of the factors if you've adopted the

perspective that factor scores vary (see Section 6.6.2).

Finally, the cross-product of contributions for any two
factors r and s over the entire predicted data is simply the
triple product of their Modes A, B and C <cross-products
output by PARAFAC. Thus, the relationship of factor
contributions in the data as a whole can be examined.

6.3.2 Correlations

In some circumstances, the factor correlations provided
by PARAFAC may also be interpreted as correlations in the

patterns of factor contributions to the predicted data. In
the above discussion of factor contributions in rows,
columns and tubes of the data, the word 'cross-product'" can
be replaced by ''correlation" for every mode that was

originally centered. The PARAFAC factor correlations for
uncentered modes cannot be interpreted as correlations
between factor contributions, however.

Factor contribution correlations in a slice of the data
are equal to the product of the cross-products as described
above, so long as at least one of the tIwo modes comprising
the slice has been centered. Multiplying two PARAFAC
correlations together will give you the slicewise
correlation only 1if the data were centered on both modes.
(In this case, correlations and cross-products are equal in
both modes.) If neither mode was centered, you cannot
compute the correlation of the factor contributions from the
information at hand. As with the cross-products, you will
usually only consider slicewise relationships if you assume
that the factor scores change (Section 6.6.2).
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6.4 ERROR ANALYSIS

Variations in fit across levels, which are revealed by
the Error Analysis Table, sometimes may point to problems in
the data or may help in interpreting the solution. A few
very high or very 1low MSE values relative to the others,
systematic patterns in larger versus smaller MSE values, or
substantial variations in the MSE values within a single
mode should all Dbe investigated further. Of course,
differences in variance across levels in the input data, as
shown by the Summary Statistics Table, must be taken into

account. Levels with higher variance on input usually have
higher MSE values, but unexpectedly large MSE values, even
considering input variances, indicate possible problems.

Comparison of the MSE values is more straightforward if the
variances are standardized and equalized before analysing
the data. See Chapter 4 for a discussion of when such
variance standardization ('"normalization'") is appropriate.

Suppose that each mode has one very high MSE value.
Then the data point at the intersection of the levels should
be checked to see if it is an extreme outlier, due perhaps
to a keypunching error. Use of the PARAFAC option to check
for points outside a specified range and to treat such data
as missing during the analysis (see IFCODE, DLOWR and DUPPER
parameters on Card 1I-4) 1is recommended to avoid such

problems.

Patterns of large and small MSE values indicate that
certain parts of the data cannot be predicted as well as
others. For instance, large MSE values at some levels of
the '"stimulus" mode or for some levels of the '"person'" mode
suggest '"difficult" types of stimuli or unreliable subjects,
respectively. You might want to refer back to the raw data
to check these particular stimuli or subjects.

The analysis of tongue shapes (Harshman, Ladefoged and
Goldstein, 1977) is an example of a useful interpretation of
the variations in fit across levels indicated by the error
analysis table. However, note that the values reported in
the article are the MSE values divided by the number of
levels in the mode, so that their sum equals the total MSE
of the data; the current version of PARAFAC computes a
simple MSE for each level.

6.5 MEANING OF PARAFAC FACTOR WEIGHTS

Two-way factor analysis has followed a convention
whereby the factor weights in one mode reflect the scale of

the data and hence are the '"absolute'" size of factor
contributions, while the factor weights in the other mode
are standardized. The factor weights that reflect the scale

of the data are called "factor 1loadings'", and the
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standardized factor weights are called 'estimated factor
scores" or ''component scores'" (depending on whether common
or component factor analysis was per formed) . These factor
scores are usually =z-scores, since the data analysed are
usually correlations. When the data consist of wvariables
measured over people, for example, the variable weights are
usually made to reflect the scale of the data (and hence are
called factor loadings) and the person weights are
standardized (and are called factor scores). Sometimes
additional meanings are attached to the factor loadings.
For example, they are often interpreted as beta weights.
Or, if the factors are orthogonal, the loadings are viewed
as variable-factor correlations, and the sum of the squared
loadings for any given variable 1is the proportion of
variance predicted by the factors (i.e., the "communality'").

The standardization of factor weights that we use for
PARAFAC analysis of three-way profile data is an extension
of the two-way case described above: the root mean squared
(RMS) weight for each factor in each of two modes is set to
1.0 and the weights in the other mode are rescaled in a
compensatory way to retain the scale of the data. For
covariance-like data (i.e., data which are symmetric across
two modes), the factors in the two symmetric modes jointly
reflect the scale of the data and the RMS loading value in
the other mode 1is set to 1.0. The user can control which
mode reflects the scale of the data and which modes are
standardized by specifying a value for the ISTANM parameter
on Card I1-8; the default value of 3 causes the factor
loadings in Modes A and B to be standardized while the Mode
C loadings reflect the data scale. When ISTANM equals 4,
the standardization described for covariance-like data is
done.

Loosely speaking, the standardized PARAFAC factor
weights (Mode A and B loadings when ISTANM=3) are always
analogous to the factor scores in two-way factor analysis;
similarly, the PARAFAC factor weights that reflect the data
scale (Mode C loadings when ISTANM=3) are analogous to the
two-way factor loadings. Strictly speaking, however, the
standardized PARAFAC weights are truly equivalent to factor
scores obtained from two-way analysis of correlations only
under certain conditions where the PARAFAC loadings are also
z-scores (e.g., direct fitting cases 5 and 6, and indirect
fitting of covariances, discussed below). The three-way
nature of the data complicates the interpretation of PARAFAC
factor scores, however. The two different perspectives that
are possible are discussed in Section 6.6 below.

We don't normally distinguish between PARAFAC factor
"loadings" and 'scores" elsewhere in this manual. Rather,
we refer to all the factor weights as '"factor 1loadings",
regardless of whether they have been standardized or whether
they reflect the scale of the data. To specify the loadings
in a particular mode, we say '"variable" loadings, "person"
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loadings, etc., depending on the meaning of the mode.

Several things should be kept in mind when examining
PARAFAC factor loadings. The ones that reflect the scale of
the data can be Iinterpreted 1in the same units as the
preprocessed data. Unless the preprocessing involved
normalization of variances (see Chapter 4), these units will
be the same as for the raw data. For example, if the data
are measurements expressed 1in centimeters, these factor
welghts may be interpreted as centimeters (e.g., see
Harshman, Ladefoged and Goldstein, 1977). Furthermore,
these weights may be directly compared across factors and
the differences expressed in the same units as the weights

themselves. In contrast, the standardized weights in the
other modes, and the differences between these weights, are
expressed in relative units (e.g., z-score units for modes

on which the data were centered).

You can always use the pattern of PARAFAC loadings to
determine the meaning of the factor. In addition, you may
sometimes want to assign special interpretations to the
PARAFAC loadings themselves, similar to the ones applied in

two-way analysis (e.qg., factor-variable correlations, or
variance accounted for). This is possible, given certain
combinations of data preprocessing and loadings

standardization that are described in the following section.

6.5.1 Special Interpretations Of PARAFAC Factor Weights

Listed below are special interpretations of PARAFAC
loadings that are possible when the data and/or factor
loadings meet certain conditions. We recommend that vyou
skip this section if you are just beginning to use PARAFAC.
Even if you are familiar with PARAFAC and with two-way
factor analysis, you may find it easier to follow if you
relate it to a specific data set as you read it. Note that
some of the special interpretations are more useful for some
types of data than others. For example, the idea of '"size
of factor contributions in a particular slice of the data"
(case 2 below) may mean more if the data are ratio scale
measurements such as centimeters displacement (Harshman,
Ladefoged and Goldstein, 1977) rather than rating scale
responses.

Direct fitting (analysis of raw or preprocessed profile
data) and indirect fitting (analysis of covariances or
cross-products) are considered separately in this section.
The cases are ordered within these two categories from
fewest conditions and most general interpretation to most

restrictive conditions and most specific interpretation. In
general, the meanings described are cumulative (i.e., they
also apply to all successive cases in the list). The

conditions are stated in terms of various input parameters
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-- the IFCEN- parameters on Card I-3, the IORTH- parameters

on Card I-6 and ISTANM on Card I-8 -- that have specific
values, and then special interpretations are assigned to the
Mode C loadings. See the note after case 6 1if you are

interested in interpreting the Mode A or B loadings instead.

First, let us explain two terms that are used below:
(2a) the expression "c(k,r)" 1is wused to denote the row k,
column r entry of the Mode C factor loading matrix that is
output by PARAFAC, or, in other words, the factor r loading

at level k of Mode C; and (b) '"factor contributions in the
data at 1level k of Mode C" means the contributions in the
kth "Mode C slice" or '"frontal slice'" of the data array, as
illustrated in Chapter 4.2; "factor contribution'" is

defined in Section 6.3 above.

Category I: Direct Fitting., NFACT Factors EXtracted

1. When ISTANM=5

Loadings in all modes = nonstandardized regression weights
(B weights) in a multiple regression equation

* %k ok k ok ok ok k k%

2. When ISTANM=3

(a) Each Mode C loading (i.e., each c(k,r)) = root mean
square (RMS) size of factor r contributions in kth Mode C
slice of the data;

(b) Squared Mode C loading = mean squared size of factor r
contributions in kth Mode C slice;

(c) Mode A and B loadings same as 1 above.

* Kk k ok k ok k ok k %

3. When ISTANM=3
and IORTHA=7 or IORTHB=7 (or factors are
naturally orthogonal)

(2) Interpretations 2a and 2b above apply:

(b) Squared loadings summed across row k of Mode C factor
matrix = mean squared value in the kth Mode C slice of the
data that is due to NFACT factors; )
(c) Mean squared loading computed down column r of Mode C
factor matrix (= squared RMS factor contribution; see
Section 5.2.3) = mean squared value of factor r
contributions in the total data set;

(d) Mode A and B loadings same as 1 above.

* k k ok k ok k ok k%
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4. When ISTANM=3
and IFCENA=1 (or 3) and/or IFCENB=1 (or 3)
and IORTHA=7 or IORTHB=7 (or factors are
naturally orthogonal)
(a) Absolute value of each Mode C 1loading = standard
deviation of factor r contributions in kth Mode C slice of
the data;
(b) Squared Mode C 1loading = variance of factor r
contributions in kth Mode C slice of the data;
(c) Squared loadings summed across row k of Mode C factor
matrix = variance accounted for (VAF) in kth Mode C slice by
NFACT factors (i.e., the "communality"):
(d) Mean squared loading down column r of Mode C factor
matrix = VAF by factor r in the total data;
(e) Mode A and B loadings same as 1 above.

* Kk k ok k ok k ok k &

5. When ISTANM=3
and IFCENA=1 (or 3) and/or IFCENB=1 (or 3)
and IFCENC=2 (or 3)

(a) Mode C 1loadings = beta weights (i.e., standardized
regression weights) ;

(b) Mode C 1loadings equivalent to traditional factor
"loadings" obtained via 2-way factor analysis of
correlations;

(c) Interpretations 3a-3c and 4a-4d above apply only if all
factors happen to be approximately mutually orthogonal
(i.e., cross-products close to zero) in either Mode A or B:
(d) Mode A and B loadings same as 1 above;

(e) Mode A loadings equivalent to z-score factor scores in
2-way analysis of correlations, if data were centered on
Mode A (IFCENA=1 or 3):;

(f) Mode B loadings equivalent to z-score factor scores if
data were centered on Mode B (IFCENB=1 or 3).

* ok ok ok ok ok ok k ok ok

6. When ISTANM=3
and IFCENA=1 (or 3) and/or IFCENB=1 (or 3)
n IFCENC=2 (or 3)
n IORTHA=7 or IORTHB=7 (or factors are
naturally orthogonal) :

D
0.

|

0)
Q.

(2a) Each Mode C loading = simple product-moment correlation
between the data values in the kth Mode C slice of the data
array and the contributions of factor r in the same slice

(e.g., factor-variable correlation, if levels of Mode C are
variables) ;
(b) Interpretations 4a-4d inclusive apply, except you can

replace '"variance'" with ‘'proportion of variance" in the
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interpretation;

(c) Mode C 1loadings equivalent to traditional factor
"loadings" in 2-way factor analysis of correlations;

(d) Mode A and B loadings same as 1 above:

(e) Mode A and B loadings same as 5e and 5f above.

* %k k k k %k k k ok %

NOTE

Under the conditions listed above, the Mode C 1loadings
are assigned special interpretations; this may be desirable
if Mode C is the '"variables'" mode, for example. Putting the
constraints on different combinations of modes permits
special interpretation of the Mode A or the Mode B 1loadings
instead. For example, 1if the constraints are changed so
that the Mode A loadings reflect the scale of the data
(ISTANM=1), the factors 1in Mode B or (C are orthogonal
(IORTHB=7 or IORTHC=7), and the data are centered on Modes B
and/or C (IFCENB=1 (or 3) and/or IFCENC=1 (or 3)), then the
Mode A loadings have the special interpretations that are
described for Mode C in case 4 above.

Preprocessing/Standardization:

Average covariance matrix is correlation

matrix, mean Mode C 1loading on each
factor is 1.0 and Mode A and B 1loadings
jointly reflect the data scale

(IFCENA=IFCENB=4; ISTANM=4)

N.B. Currently, the root mean sqguare
Mode C loading on each factor is
standardized to 1.0 when ISTANM=4, and
so the interpretations below do not

hold. However, the loadings are
proportional to what they would be if
the mean loading were set to 1.0; thus

the pattern of loadings can be used to
interpret the factors as usual.

You can do simple calculations to
rescale the PARAFAC loadings so that the
interpretations below are valid. Deal
with each factor separately. First,
compute the mean Mode C loading for the
factor; then, divide the Mode C
loadings by this mean value and multiply
the Mode A and B loadings by the square
root of this mean.
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Special Interpretations:

(a) Mode A (= Mode B) loadings = same as Mode C loadings in
case 6 above (i.e., interpretations 6a-6c apply):

(b) Each mode C loading = factor score variance at the kth
level of Mode C in the raw (not covariance) data array.

6.6 FACTOR SCORES (DIRECT FITTING ONLY)

With some data sets, you may wish to interpret the
standardized PARAFAC 1loadings the way factor scores from
analysis of two-way data are interpreted. As mentioned
previously in this chapter, factor scores obtained from
two-way factor analysis are standardized factor weights. If
the data analysed are correlations (as is usually the case),
the factor scores are also centered, and so they are
zZ-scores. (If the data were fit directly, without being
centered across persons, the factor scores would not have
zero means but would have mean squares equal to 1.0.) In
this context, the term '"factor score" implies certain
mathematical properties about the factor weights. However,
there is a stronger empirical sense in which the term is
used when intepreting certain data sets: a '"factor score"
is a measure of the amount of a factor (e.g., a personality
trait) that 1is possessed by an entity (e.g., a person).
"Correlation between factors" is more precisely stated as
"correlation between factor scores'; thus factor
correlations are defined relative to the "entity" (person)
mode.

These empirical definitions of factor score and factor
correlation are reasonably explicit. They can be extended
to PARAFAC analysis of three-way data, but there are some
complications for the direct fit case because of the
additional mode in the data. You will recall that PARAFAC
yields two sets of standardized loadings, for example, the
Mode A and B factor loadings when ISTANM=3. Even though
both possess the mathematical characteristics of factor
scores, we do not simultaneously interpret both as factor
scores according to the definition given above. Rather, we
take one mode (e.g., people) to represent the entities for
which there are factor scores:; the factor scores can be
viewed either as remaining constant or as changing over
levels of the other mode (e.g., occasions). Herein lies the
complication, because the actual factor scores .and
correlations between the factors are defined differently,
depending on which of the two perspectives is adopted. This
complication does not occur for indirect PARAFAC1 fit of
three-way data, since the model assumes factor orthogonality
in the mode (usually the person mode) over which covariances
are computed. (Section 6.7 has more details.)
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Before discussing the two perspectives for factor
scores 1in three-way data, 1let wus remind you of several
things. First, regardless of the factor score perspective
taken, the assumption is that mostly system variation is
present in the data. (Object variation is dealt with by
indirect fitting, as discussed 1in Sections 4.4 and 6.7.)
Also, remember that factor scores are standardized factor
weights. Thus, the PARAFAC factor weights that you
interpret as factor scores should not reflect the scale of
the data. If there 1is a '"variable" mode, it would most
often be appropriate to have the factor 1loadings in that
mode absorb the scale of your data. If there is a "person"
mode, you will wusually want to standardize its factor
loadings. However, be aware that if you have followed our
advice in Chapter 4 and have not centered the data on the
person mode, then these person loadings are not z-scores.
Generally, though, this will not be a problem.

6.6.1 Fixed Factor Scores

One perspective holds that factor scores are invariant.
Over levels of the additional mode (e.g., occasions), the
amount of the factor that 1is possessed by any entity
(person) remains constant, but the amount that is exhibited
varies; the factor scores reflect the amount of the factor
that the different entities have.

This view of factor scores 1is appropriate for an
experimental study, for example, where the test conditions
are manipulated differently for each occasion, or for rating
scale data. The factor scores for the experimental study
are the "person" loadings as output by PARAFAC. For rating
scale data, you might regard either the stimuli or the
people as the entities that manifest or are sensitive to the
factors. Thus, either the "stimulus" 1loadings or the
"person" loadings could be regarded as factor scores,
depending on which approach you want to take. In any case,
the amount of the factor that the person (or stimulus)
manifests on a particular occasion is given by the product
of the person (or stimulus) weight and the occasion weight.

Factor (score) correlations are then obtained directly
from the PARAFAC output: they are the factor correlations
given for the mode that corresponds to the factor scores.
For the experimental study discussed above, for instance,
correlations in the person mode would be the ones vyou'd
want. Or, if you choose to regard the stimulus loadings as
factor scores in rating scale data, you would refer to the
factor correlations in the stimulus mode. The correlations
in the other modes have their usual interpretation -- they
indicate the similarity or covariation of factor loading
patterns and factor contribution patterns in those modes.
You could also compute the '"slicewise'" correlations (see
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Section 6.3.2), but most often you will not be concerned
with them.

6.6.2 Varying Factor Scores

The other perspective holds that factor scores change.
Over levels of the additional mode (e.g., occasions), the
amount of the factor that 1is possessed by the entities
changes; the factor scores reflect this change.

This view of factor scores may be taken in a
developmental study, where it is reasonable to assume that
the amount of a factor (e.g. responsibility trait) that a
person has changes over time. 1In this case, the PARAFAC
person loadings are not the actual factor scores, although
they do 1indicate who has relatively more or less of the
factor in general. To get the actual factor scores, you
must compute the product of the "person" and "occasion"
loadings (where both are standardized). This means that the
factor score for a particular person (on a given occasion)
is the product of his/her loading and the occasion loading.
Each person thus has multiple scores for each factor, a
different one for each occasion (Harshman and Lundy, 1984b,
p. 131). This contrasts with the other perspective of
factor scores where each person has only one score per
factor. You probably will not compute all the factor scores
unless you want to compare them for subsets of people or
occasions, as Haan (1981) did.

Factor (score) correlations in this case are not given
directly by the PARAFAC output, but they can be obtained via
simple computations. Take the matrices of factor
CROSS-products for the two modes you used when calculating
the factor scores (e.g., person and occasion modes in the
above example) and multiply corresponding entries together
to get an NFACT by NFACT matrix of double products. As long
as the data were centered on at least one of the two modes,
the double products are the correlations between the
factors: otherwise, they are cross-products. This method
of computing correlations is the same as the one described
in Section 6.3.2 for finding slicewise factor contribution

correlations. Only the values computed for the person by
occasion slice can be interpreted as correlations between
the factors, however. Note that you can still use the

PARAFAC cross-products and correlations to tell you about
factor similarities in individual modes, even when you adopt
this perspective of factor scores.
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6.7 INDIRECT FITTING

Indirect fitting, with specific reference to
covariances, was discussed in some detail in Sections 4.4-5;
also see Harshman and Lundy (1984b, p.133-43; 202-3) . It
was noted that indirect fitting is done to cope with data
that contains mostly object variation (e.g., Harshman and
Berenbaum, 1981) or that has too many levels in one mode

(e.g., people) for analysis of the raw data to be practical.
A few remarks will be made here about PARAFAC output from
analysis of covariances. The factor 1loadings, factor
correlations, error analysis, etc. that are listed pertain
to the covariances, but usually, you also want to know about
the raw data from which the covariances were computed. We
explain below how you can relate some of the output to the
raw data; see also Category II in Section 6.5.1 above.

6.7.1 Factor Scores

As with indirect fitting of two-way data, you can use
regression techniques to estimate factor scores for the

people (i.e., for the mode that "disappeared" when
covariances were computed). First, compute the generalized
inverse of the factor loading matrix (i.e., the matrix of

factor weights that reflect the data scale, e.g., the
variable loadings) to obtain factor score coefficients.
Then apply the coefficients to the uncentered raw data,
separately on each occasion, so that several sets of
uncentered factor scores are computed for each person.
These uncentered factor scores can then be used to 1look at
changes in factor score means (Harshman and Berenbaum,
1981) .

6.7.2 Root Mean Squared Factor Contributions

You can assume that the raw data are centered (the
means are removed when covariances are computed, if not
before) and that the factors in the raw data are orthogonal
(a2 basic assumption for fitting covariances via PARAFAC1).
Then it is appropriate to apply to the raw (centered) data
the five special meanings that are listed in Section 5.2.3,
using the RMS factor contributions from the covariance
analysis. For point 3, however, do not divide by the total
variance. Point 5 1is especially important, because it
explains how to compute the variance accounted for (for
direct fitting, see the RSQ value at the top of the loadings
output) . Harshman and Lundy (1984b, p.202-3) discuss these
issues in more detail.
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6.7.3 Factor Correlations

In order to fit the PARAFAC1l model to the covariances,
the assumption 1s made that the factors are orthogonal in
the mode over which the covariances were computed (usually
people) . This 1is the mode for which factor scores are
estimated. Thus, in accordance with the definition given in
Section 6.6 for the correlation between factors, you can say
that the factors in the raw data are uncorrelated.

You also know about the factor relationships in the
individual modes of the raw data. By assumption, the
factors in the person mode are unrelated; hence, the
inter factor correlations and cross-products for this mode
would be represented by identity matrices. The PARAFAC
correlations and cross-products for Mode A (and B) of the
covariances also hold for the corresponding mode in the raw
(centered) data. The Mode C correlations and cross-products
do not directly apply to the corresponding mode in the raw
data, however; they are derived from squared loadings
(i.e., the Mode C loadings from the covariance analysis are
the squares of the weights that would be obtained by
directly fitting the raw data).

6.7.4 Error Analysis

The MSE values printed on the PARAFAC listing refer to
the covariances and cannot be used to compute, for example,
the proportion of variance accounted for in the raw data.
However, you can use them as relative indicators of the
goodness of fit in the raw data: the larger the MSE value
is, the poorer the fit is for the corresponding level of the
raw data, and the smaller the MSE value, the better the fit.

6.8 MULTIDIMENSIONAL SCALING

As mentioned in Section 4.6, PARAFAC can be used to
indirectly fit the weighted Euclidean distance model to
distance-like data (e.g., pairwise dissimilarity ratings).
This is accomplished by computing scalar products from the
raw data and then analysing the scalar products via PARAFAC.
The theoretical basis for this 1is mentioned in Harshman
(1972) and Harshman and Lundy (1984b, p.144-7).

Using PARAFAC to do multidimensional scaling (MDS) is
like wusing it to analyse covariances, in that both are ways
of indirectly fitting structure in the raw data. However,
there are differences in the procedure. One difference is
that the scalar products are usually normalized on Mode C
(IECENC=2) ; equal-average-diagonal normalization is not
done. Another is that the Mode C factor weights reflect the
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scale of the data (ISTANM=3, not ISTANM=4). A  third
difference is that analysts are usually concerned with the
fit to the scalar products and not to the raw data; hence,

Section 6.7 above applies more to covariance analysis than
to MDS.

Interpretation of the PARAFAC output from an MDS
analysis is straightforward. The Mode A and B loadings are
viewed as the stimulus projections on the dimensions
("perceptual axes'"), and the Mode C loadings are the person
weights (or, more precisely, the squared saliences of the
different dimensions for each person). The fit of the
solution to the scalar products is given by the RSQ value at
the top of the final loadings output.



CHAPTER 7

DATA SYNTHESIS

The PARAFAC data synthesis capability allows you to

construct artificial data with known structure. Such data
are useful for testing theories, evaluating analysis
procedures, comparing fit values between observed data and

"null hypothesis" synthetic data, etc.

Synthetic data generated by PARAFAC may consist
entirely of a systematic or '"true'" component, or entirely of
error, or of some combination of both. The error component
is composed of random error and/or additive constants.
Records II-5 and II1-6 of the PARAFAC input deck are used to
specify characteristics of the true component, while Record
II-7 is used for the error characteristics (see '"PARAFAC
Input for Data Synthesis'"). The ISTRMS and DSIZE parameters
on Record II-6 and the ERRSIZ parameter on Record II-7 can
be used to specify the relative weights of the systematic
component and random error component in the data (see
Section 7.3).

Sections 7.1 and 7.2 describe considerations to be made
when selecting values for the parameters on Records II-6 and
II-7. The discussion relates the parameters to experimental
conditions that may affect '"real'" data and explains how the
varilous parameters influence one another during the data
synthesis process. This should help you decide how to
specify parameters that will simulate data with particular
properties. If there 1is a conflict between some of the
parameters that you specify, PARAFAC will resolve it either
by resetting their values or by terminating the run. In
either case, a message is usually output (such messages are
explained in Chapter 8).

Section 7.4 describes output from a PARAFAC data
synthesis run.
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7.1 SYSTEMATIC COMPONENT (RECORDS II-5,6)

These parameters allow the wuser to specify some
characteristics of the true part of the data, such as the
type of data to be simulated, the sign patterns of the true
factor loadings, whether or not the true factors are to be
uncorrelated or orthogonal, etc. Note that none of the
parameters on this record has any effect if DSIZE is set to
a very small value, because the true component of the data
is then essentially zero.

7.1.1 Factor Weights (ILDGIN)

Factor 1loadings wused 1in the generation of the
systematic part of the data can either be supplied by the
user (ILDGIN=1 or 2) or generated by PARAFAC (ILDGIN=0) .
When ILDGIN=0, the factor weights are randomly selected from
a rectangular distribution that is centered at zero and that
extends over the range (-1,1) (end points excluded).
Appendix C shows how the distribution is simulated.

The initial values are always normalized so that the
mean squared weight for each factor on each mode is 1.0.
They then may be further modified, depending on parameter
specifications on Record 1II-6. You may find the initial
normalization to be a problem, because it prevents you from
generating data from factor loadings exactly as they were
input (when ILDGIN=1 or 2). If so, you may want to modify
the program.

7.1.2 Random Number Generator Seed (SEED2)

SEED2 is used to initiate the generation of random
numbers that will be used to compute the systematic part of
the synthetic data (when ILDGIN=0). The same starting seed
always produces the same sequence of random numbers. Hence,
if you want two different data sets to have the same
systematic ("true") structure, use the same specifications
for all parameters on Records II-2 through II-6. Changing
DSIZE on Record 1II-6 will not change the pattern of the
systematic contributions in the data, but it will alter
their size; changing any of the other parameters could
cause the true structure to be substantially altered.
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7.1.3 Data Type (IDATYP)

PARAFAC can synthesize three types of data: raw score
or profile data (IDATYP=0), dissimilarity or distance-like
data (IDATYP=1), and cross-product- or covariance-like data
(IDATYP=2) . There are also some situations when you can use
data type 2 to represent scalar products. Profile data is
the default and the user will probably choose it most often.
Dissimilarity data and covariance-like data are wuseful for
studies of more specialized situations.

PARAFAC does the inverse of a factor analysis to
generate the true part of the data. For profile and
covariance-like data, PARAFAC multiplies factor loadings
together according to the three-way proportional profiles
factor model (Harshman and Lundy, 1984b, p.126) to obtain an
array of data points exactly described by those loadings.
For dissimilarity data, PARAFAC multiplies factor loadings
together according to the weighted Euclidean distance model
(Carroll and Chang, 1970). Because dissimilarity data are
based on a different model, they are discussed separately
from profile and covariance data below.

7.1.3.1 Raw Score And Covariance-like Data - Synthesizing

raw score data is a straightforward procedure -- simply set
IDATYP to zero -- but covariance-like data synthesis may be
more complicated. Error-free covariances may be directly

synthesized by setting IDATYP to 2, but covariances with
error should be generated via a two-step process that
involves synthesis of raw score data first. This is
explained in more detail below.

Profile data allows for three distinct modes in the

data array. For example, if you wished to simulate a study
that involved subjects rating various characteristics of
some stimuli, you would wusually want to generate profile
data. The three modes in this case are ratings scales,

stimuli and persons.

Sometimes it is preferable to analyze covariance data
rather than profile data (Section 4.4 discusses covariance
analysis in more detail). In real experimental situations,
covariances are obtained indirectly: profile data are
collected and then covariances are computed from the profile
data. There are several situations when such a
transformation is done. For instance, it is not wvalid to
analyze the raw data when the levels of a mode correspond to
nonequivalent samples (e.g., when the same people are not
tested on every occasion), and so covariance-like data must
be computed. Or, it may not be economically feasible to
analyze the raw data when one mode has '"too many" levels.
If you do not want to lose information by simply deleting
some of the levels, you can compute covariances across the
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mode with the many levels. This allows wuse of all the
information, but the resulting data array is smaller and
thus more practical to analyze.

The transformation of raw score data to covariances
eliminates the distinct mode over which the covariances (or
cross-products) are computed, and leaves data that are
symmetric across two modes. For example, suppose the raw
data consist of people's scores on various personality
scales in several different situations, and suppose
covariances are computed across people for each situation:
then the arrangement of the covariance data is scales by

scales by test situation. Strictly speaking, any subsequent
PARAFAC analysis of the covariances is appropriate only if
the factors wunderlying the mode that '"disappears" are
orthogonal or close to orthogonality. The covariance-like

data generated by PARAFAC are consistent with this
orthogonality requirement.

You can use PARAFAC to directly synthesize error-free
covariance type data that are symmetric across Modes A and B
by specifying a value of 2 for IDATYP. If you want the
covariances to contain error, however, you should use a
two-step procedure that parallels the real situation --
first, generate raw score data (IDATYP=0) with error added;
then compute covariances from the raw score data. When
synthesizing the raw data, you may want to impose
orthogonality constraints (see Section 7.1.5) on the mode
over which you intend to compute the covariances. On the
other hand, if there are quite a few levels (i.e., at least
10-15) in that mode, the factors will probably not be very
correlated even if you do not force orthogonality. Small
correlations do not invalidate the PARAFAC analysis of the
covariances. In fact, this might mirror the real situation
more accurately, because the real factors are probably
slightly correlated anyway.

You will also use a two-step procedure if you want to
study what happens when the model is violated (i.e., when
PARAFAC is fit to covariances that were computed across a
mode 1in which the factors were rather highly correlated) .
First, generate raw score data with only a few levels (less
than 10) in one mode -- vyou will be more likely to get
substantially correlated factors if there are not very many
levels. Then 1if you compute covariances across the mode
with high factor correlations, you will have data that do
not fulfil the assumption of factor orthogonality in the
mode that "disappears".
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7.1.3.2 Scalar Product-like And Dissimilarity Data - Most

often, scalar products are indirectly obtained from
distance-like data (e.qg., dissimilarity ratings) .
Dissimilarity data are wused for multidimensional scaling
(MDS) purposes. In real life, dissimilarity data wusually
involve people rating differences between objects or
concepts of some kind. Depending on how they are collected,
the raw data are often symmetric on two modes (the modes are
objects by objects by people) . PARAFAC generates
dissimilarities type data for which the true parts are
symmetric across Modes A and B; added error makes them
asymmetric. The EFEuclidean distance model 1is wused to
simulate dissimilarities (i.e., the judged dissimilarity of
two items 1is equivalent to the '"distance" between them in
the person's conceptual space, plus error). Such data
should be transformed to scalar products (see the DISTIN
program described in Chapter 3) before it is appropriate to
use PARAFAC to analyze them. Thus, a simulated MDS analysis
is a three-step procedure: generate dissimilarities wusing
PARAFAC (IDATYP=1):; then transform them to scalar products
using DISTIN; and finally, wuse PARAFAC to analyze the
scalar products.

There are a few situations for which it is permissible
to directly simulate scalar product-like data (by setting
IDATYP=2) . The data can be error-free or they can have
error added -- 1in contrast to covariance type data which
must be error-free if directly synthesized wusing IDATYP=2.
(Note that added error will destroy the symmetry of the data
on Modes A and B; the data can be symmetrized by using a
DISTIN option.) Tucker (1972), for example, treated ratings
data directly 1like scalar products. This 1is generally
appropriate when pairs of stimuli (e.g., adjectives) are
compared on scales for which one endpoint denotes a positive

relationship, the other a negative relationship (e.qg.,
identical in meaning vs. opposite in meaning) and for which
the midpoint, zero, denotes no relationship (e.qg.,
independent meanings) . Such ratings mirror the
relationships that are conveyed by scalar products (i.e.,
positive, negative and no relationships). In contrast,

dissimilarity ratings denote only varying amounts of the
dissimilarity relationship, and nothing negative or opposite
to it; thus it is not appropriate to input them directly to
programs that assume scalar product-like input.

7.1.4 Sign Constraints (IFAPOS, IEFBPOS, IFCPOS)

Whether or not constraints should be imposed on the
signs of the factor loadings depends on the type of data
being generated and on the situation you are trying to
simulate. Sometimes it 1is mandatory to constrain Mode C
loadings to be positive (IFCPOS=2), because of assumptions
underlying the synthetic data model; sometimes it is only
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desirable. For example, with dissimilarity data (IDATYP=1),
Mode C must be positive; otherwise, computation of
distances may involve taking the square root of negative
numbers. When IDATYP is 1, IFCPOS is always set to 2 before
synthesis begins, regardless of what value had been
specified by the wuser. Mode C should also be positive if
covariance-like data (IDATYP=2) are to be generated.

Negative values, including negative diagonals, might
otherwise arise in the data. Negative diagonals never occur
in real <cross-product, covariance or scalar product data,
since they are obtained by squaring values. Synthesis of
covariance type data (IDATYP=2) is allowed to proceed even
if IFCPOS 1is not 2, although it is theoretically
questionable.

Sometimes, logical considerations imply that loadings
in other modes should also be constrained to be positive.
For some situations that you may simulate, you may feel that
the factors have more or less effect across the levels of a
particular mode, but never have a negative or opposite
influence. For example, suppose that you wanted the data on
one mode to represent test scores and the factors underlying
the data to be viewed as types of ability. You would
constrain the factors to have positive 1loadings 1f vyou
believed that each ability contributed more or less to the
overall score but that it never detracted from the score.

Or, suppose one of the modes represented occasions and you
felt that the factors would never reverse their effect from
one occasion to the next; then you might want to constrain

the factor loadings in the "occasion" mode to be positive.

You may center the "true" factor loadings in a mode to
simulate data with a mean of zero across the levels of that
mode. Or, you may center the loadings if you want data with
an overall mean of zero and hence a mean square equal to the
variance (Section 7.3 describes an instance where this would
be useful) . Note that centering the 1loadings on a
particular mode (e.g., IFAPOS=3) centers the "true'" part of
the synthetic data, whereas centering the data on the same
mode before analysing it (e.g., IFCENA=1) in effect centers
both the true and error parts of the data. A practical
reason for doing both types of centering with a synthetic
data set is to facilitate the comparison of the true factors
with the factors obtained via PARAFAC analysis of the data
(i.e., it 1is easier to tell how similar the factors are if
both sets of loadings are centered).

The default for dissimilarity data for both Modes A and
B is 3 (i.e., IFAPOS=IEFBPOS=3), but this centering is not
enforced. If some other value is specified for IFAPOS and
IFBPOS, the centroid of the configuration of stimulus points
will be located at some point other than zero. This does
not affect the analysis of the scalar products when
recovering the true structure, however, because conversion
of dissimilarities to scalar products always involves



]

DATA SYNTHESIS 7-17

centering.

7.1.5 Dependence Constraints (IFAORT, IFBORT, IFCORT)

For many synthetic data sets, the default of '"mo factor

dependence constraints'" is best. In general, the true
factors will be at most only moderately correlated for any
mode with quite a few levels (e.g., at least 10 or 15).

Sometimes, however, you may want to ensure that the factors
are perfectly orthogonal (or uncorrelated) in one or more

modes. Such a situation would arise if you were
investigating factor models that assume factor orthogonality
in one or more modes of the data. An example of this,

discussed in Section 7.1.3.1 above, is the PARAFAC analysis
of covariance type data that have been computed from raw

scores. The assumption there 1is that the factors are
orthogonal in the mode over which the covariances are
computed. Another case where you would want orthogonal

factors would be for the study of variance additivity
properties that depend on factor independence.

On the other hand, you may want factors that are highly
correlated. You cannot directly request this, but it
usually is the case for any mode with only a few levels
(e.g.. 1less than 10). Highly correlated factors would be
desirable 1if, for example, you were investigating how
recovery of the true structure when the factors are highly
dependent compares with recovery when the factors are
independent of each other.

There are some situations where certain dependence
constraints are 1invalid. PARAFAC checks for these and may
modify or remove the offending constraint, or terminate the
run. A warning or error message (explained in Chapter 8)
will be issued if such action is taken. To avoid problems,
use the following guidelines when specifying dependence
constraints:

1. If the true part has only one underlying factor
(i.e., NFGEN=1), it makes no sense to assign any
dependence constraints (i.e., a value of 2 or 3 for

IFAORT, IFBORT and IFCORT is not allowed) .

2. If the factors are constrained to be positive in a
particular mode (e.g., IFCPOS=2), they cannot
simultaneously be orthogonal (e.g., do pnot specify
IFCORT=3), Dbut they can be uncorrelated (e.g., you
can specify IFCORT=2) .

3. If the factors are centered in a particular mode
(e.g., IFAPOS=3), orthogonality constraints on that
mode have the same effect as zero-correlation
constraints (e.g., IFAORT=2 and IFAORT=3 have the
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same effect) .

4., If there are more factors than levels in a
particular mode (e.g., 1if NFGEN is greater than
NAS) , you cannot assign dependence constraints to
the factors in that mode (e.g., do not specify
IFAORT=2 or 3).

5. If there are the same number of factors as levels
in a particular mode (e.g., 1f NFGEN=NAS),
zero-correlation constraints may cause problems
(e.g., it is better not to specify IFAORT=2).

7.1.6 Root Mean Square Standardization (ISTRMS)

Set ISTRMS to 1 if you want the root mean square of the
systematic component of the data to equal DSIZE. This, in
combination with an appropriate ERRSIZ value, allows you to
control the relative sizes of the random error and true
parts of the data (explained more fully in Section 7.3).
You will probably use this option most often with profile
type data (IDATYP=0) .

7.1.7 Factor Size Multipliers (ISZFAC)

The factor size multipliers allow you some control over
the relative amounts of variance that are contributed by the
different "true" factors. Version 6H of PARAFAC does not
enable you to assign specific values for the multipliers,
however. Rather, depending on the value of ISZFAC, the
multipliers are randomly selected from different
distributions. Random selection simulates the fluctuations
in factor sizes that may occur in different real data sets;
the distribution determines the probability that the values
selected will be similar or quite different. Appendix C
gives details about how the distributions are simulated.

When ISZFAC equals zero, the selection is made from a
triangular distribution, which means that the values
obtained are more likely to be similar and moderate in size
than they are to be large or small. Hence, the factors tend
to have more similar contributions, and this is probably the
most natural of the three alternatives. You would probably
use this in simulating naturally occurring data.

On the other hand, if you want to simulate data that
have some large factors as well as factors that contribute
much less to the data, you would set ISZFAC to 1. In this
case, values are selected from a uniform distribution and so
every value in the range of the distribution, including
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large and small, 1is equally likely. In trying to recover
the true structure in such data, you would then be able to
study how well all factors were recovered. In such cases
the biggest factors often dominate the solutions and small
factors are hard to extract. For example, the big factors
may split rather than the small '"true" factors being
recovered. You might investigate the effects of

orthogonality constraints in trying to recover all the
factors in such a situation.

Setting ISZFAC to 2 (for equal factor sizes) is
desirable when you want to study something that might be
obscured or complicated by factors of unequal sizes. For
example, with data containing error, the "elbow" of the
fit-versus-dimensionality curve is most obvious when all the
factors account for the same amount of variance. In
contrast, where there are some large and some small factors
in the data (as might happen when ISZFAC=1), the small (but

real) factors may obscure the elbow of the curve. This
would occur if they do not fit much more variance than small
"error'" factors that are subsequently extracted. If this

happened with real data, split-half analyses might be
necessary to confirm the existence of such small true

factors.

There is a limiting feature of the current version (6H)
of PARAFAC. You cannot input factor loadings (ILDGIN=1 or
2) and generate data from those factors exactly, even if you
set ISZFAC to 2 (i.e., the "true" factors on the listing are

not equal to the factors that were input). This is because
the factors are always normalized -- whether they are
randomly generated or user supplied -- so that the mean

squared loading for each factor in each mode is set equal to
1.0, before they are adjusted by the size multipliers.

7.1.8 Data Size Multiplier (DSIZE)

You will usually specify a positive value for DSIZE.
For raw score data (IDATYP=0), however, a positive DSIZE is
not compulsory; a negative DSIZE is equivalent to reversing
the signs of all the factor loadings in one mode. DSIZE
must be positive for dissimilarity data (IDATYP=1) -- if
not, the program takes the absolute value -- because the
data represent ''distances'", and of course distances cannot
be negative. DSIZE should also be positive for covariance
type data (IDATYP=2) to be consistent with the theory
underlying this kind of data (i.e., diagonals are obtained
by squaring values, and so negative diagonals are impossible
in real data of this type), but the program does not enforce
this.

A positive value for DSIZE also seems more logical than
a negative one when you want to specify the relative amounts
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of systematic and error variance in the data. This is
explained more fully in Section 7.3 below.

DSIZE can also be used to suppress the contribution of
the '"true" part of the data variance. To do so, specify a
very small value for it (e.g., 1.E-20) -- but not zero,
since if you set it to zero, the program assigns the default
value of 1.0. With a very small DSIZE, essentially 100y of
the variance in the data will then be due to error.

7.2 ERROR COMPONENT (RECORD II-7)

It is possible to add random error and/or an additive

constant to the data generated from the true structure. You
can also have some of the data points contaminated by extra
large random error, relative to the others, or else have

some outliers in the data while the other points have no
error at all.

You can center the true part of the data (see Section
7.1.4), but you cannot formally request that the error
component be centered during data synthesis. However, the
mean of the random error will usually be approximately zero
anyway, if the error is one of the first four types (i.e.,

if IERTYP=1-4 inclusive). This is because these four error
distributions are symmetric about =zero and the error is
randomly selected from them. On the other hand, the error

mean may deviate substantially from zero if you request one
or more of the following: outliers (even with IERTYP=1-4),
error from the lognormal or slash distributions
(IERTYP=5-7), or additive constants.

7.2.1 Random Error (IERTYP)

Four general random error distributions -- uniform,
normal, lognormal and "slash" -- are simulated by PARAFAC.
(For those who are interested, Appendix C provides details
of the simulation procedure.) You will choose the
distribution from which to select the error according to the
type of data you want to generate and the empirical
situation that you are trying to simulate. Brief
descriptions of the distributions follow, along with general
comments about when it is appropriate to use each.

1. IERTYP=1 or 2. The error is randomly selected from
a simulated uniform (rectangular) distribution that
has a mean of zero and a standard deviation of 1.0,
and then 1is scaled up or down by the value of
ERRSIZ. For IERTYP=2, the error component is
further multiplied by the value of the "true"
component to which the error will be added, so that
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its size 1is proportional to the size of the true
component.

2. IERTYP=3 or 4. The error is randomly selected from
a simulated normal distribution that has a mean of
zero and a standard deviation of 1.0, and then is
scaled up or down by ERRSIZ. For IERTYP=4, the
error component is further adjusted, as explained
above for IERTYP=2.

In real data, the size of the error may be correlated with

the size of the true part, or their sizes may be
independent. For example, judgements of heaviness or weight
are likely to have errors whose sizes (disregarding sign)
are correlated substantially with the sizes of the
judgements -- the greater the judged weight is, the greater
the error 1is 1likely to be, either as an over - or
under-estimate of the actual weight. For such data,

proportional variance type error (IERTYP=2 or 4) is best.
Proportional variance error is not appropriate for data that
have no systematic variance (where DSIZE has been set to a

very small value), because data that are all zero will be
synthesized. Where the error size 1is 1independent of the
true part, constant variance error 1is probably more
appropriate. Such error may occur in some types of rating

scale data (ignoring any end effects).

When simulating real measurements, the normal error
distribution (IERTYP=3 or 4) should usually be selected.
There may be times, however, when uniformly distributed
error would be better. For example, if you want to simulate
random ratings (i.e., rating scale data composed entirely of
error), error selected from a uniform distribution (IERTYP=1
or 2) would be more appropriate. You might want to see how
well PARAFAC fits such random data, compared to real rating
scale data (same sized array) if you are testing the null
hypothesis that there are no factors in the real data (e.qg.,
see Harshman and DeSarbo, 1984).

3. IERTYP=5. Of all the error types, lognormal error
is the only one that is not simply added to the
true component. The error value is obtained in the
same way as for IERTYP=3, but then it is used as an
exponent for e (base for natural logarithms), which
is then multiplied by the true component to give
the value of the synthetic data point. Hence, the
error part of the data has a kind of nonlinear
proportional variance.

The lognormal distribution is positively skewed. Error
selected from it can be used for data that are constrained
to be positive, because it will never make a positive data
value negative. This is particularly appropriate for
dissimilarity data. Less error 1is added to small data
values than to 1large ones; this is in accord with many
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psychological models which suggest that small subjective
differences are judged more accurately than large ones.
Also, lognormal error is consistent with the idea that the
error introduced by underestimates is less than the error
due to overestimates (i.e., underestimates have a lower
bound because distances cannot be negative, whereas there is
no upper bound for overestimates) .

4. IERTYP=6 or 7. The slash distributions are
equivalent to a normal distribution with a mean of
zero and standard deviation of 1.0, divided by a
uniform (rectangular) distribution extending over
the range (0,1). Each error component is obtained
by making a random selection from the simulated
normal distribution and a random selection from the
uniform distribution, dividing the first deviate by

the second, and scaling up or down by ERRSIZ. For
IERTYP=7, the error 1s made proportional to the
size of the true part, as explained above for
IERTYP=2.

You would use one of the slash distributions (IERTYP=6 or 7;
see Andrews, Bickel, Hampel, Huber, Rogers and Tukey, 1972,
p.68) if you are interested in testing the robustness of
statistics when the data are contaminated with error that is
not well-behaved. The slash distribution can contribute
more extreme error than the other distributions because it
is unbounded (whereas the uniform distribution covers some
finite interval that depends on ERRSIZ) and because its

tails are thick (compared to the normal distribution). For
example, 0.5% of the error selected from it is on the
average at least 100 times 1larger than error from the
equivalent normal distribution; 0.05% of the time, the

error is at least 1000 times greater.

7.2.2 Random Number Generator Seed (SEED3)

SEED3 is wused to initiate the sequence of random
numbers that will be used to compute the error component of
the data. The same starting seed always causes random
numbers to be generated in the same sequence. Therefore, by
using the same specifications for the parameters on Records
IT-2 and II-7 in different runs, you can generate different
(same-sized) data sets that have the same pattern of error
contributions. If you change only ERRSIZ, the size but not
the pattern of the error changes.
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7.2.3 Error Size Multiplier (ERRSIZ)

You may specify any value for ERRSIZ, except when you
want to control the relative amounts of error and true
components in the data (using ISTRMS=1). Section 7.3
explains how DSIZE and ERRSIZ are related when ISTRMS is 1.

7.2.4 Additive Constants (ACONSZ)

The additive constant can be added to the data in one
of two ways:

1. IERTYP=0 and ACONSZ is nonzero. All data points
are offset by the value of ACONSZ.

2. Both IERTYP and ACONSZ are nonzero. Data points in
the Mode A-by-Mode B matrix at a given level of
Mode C (i.e., a Mode C frontal slice as depicted in
Section 4.2) are offset by a random number that is
multiplied by ACONSZ (the random number is selected
from a wuniform distribution that ranges from zero
to one inclusive). A different random number is
selected for each level of Mode C, so each Mode C
slice has a different additive constant.

The error introduced by the additive constant is
particularly appropriate for MDS simulations. For such
simulations, you should specify a positive value of ACONSZ
so that the additive constant cannot make any data points
negative (since negative dissimilarities are not allowed).

The additive constant may also be used with other types
of data to demonstrate, for example, the value of centering

before analysis. Suppose you synthesize profile type data
with no random error, and adjust each Mode C slice by a
different additive constant. Analysis of the data, with and

without centering, will show that the centered data set can
be fit perfectly with the same number of factors as were

built into it (i.e., with NFACT=NFGEN) , whereas the
uncentered data set requires an extra factor for perfect
fit. The extra factor has constant loadings in Modes A and

B (In fact, if ISTANM=3, the Mode A and B 1loadings for
this factor are 1.0, and the Mode C loadings are equal to
the additive constants that were introduced at the synthesis
stage.) This exercise shows that PARAFAC centering can
eliminate certain kinds of error. It also demonstrates how
the presence of a constant factor in the PARAFAC output
indicates that the data need to be centered (as mentioned in
Section 4.1.1).

To see how the analysis of uncentered data could be
affected in a real situation, you might try adding various
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amounts of random error to the data as well. The extra
error may somewhat obscure the distinction between the true
factors and the '"constant'" factor in the uncentered data.
The Mode A and B loadings of the extra factor will no longer
be 1.0, and the Mode C loadings will not equal the additive
constants. At moderate error levels, however, its Mode A
and B loadings should show little enough variance that it
could be identified as a constant factor.

7.2.5 Outliers (CONPRB, CONSIZ)

A data point is referred to as an outlier if its value
is so large or small when compared to the other data that it
appears to have come from a different distribution. Under
actual experimental conditions, outlying values may occur if
the measurement instrument malfunctions, the instructions
are misinterpreted, or if a significant keypunching error is
made. Almost without exception, outliers can be regarded as
data that are composed of extreme error.

If you want to study the effects of various numbers and
sizes of outliers on the recovery of the true structure, you

will make use of the CONPRB and CONSIZ parameters. The
random error is computed as usual, but for outliers, CONSIZ
is used as an additional error size multiplier. CONPRB can

assume values from zero to one inclusive, since it is a
probability value. However, it should generally be set to
some value less than 0.1, since an errant point cannot as
validly be called an outlier if 109 of the data have values
as extreme as 1t does. Values of 0.005 up to 0.03 for
CONPRB give a realistic outlier frequency, since this means
that the expected number of outliers in every 1000 data
points will be from 5 to 30 respectively. (There may not be
exactly 5 and 30 outliers 1in every 1000 points, because
random selection is involved in determining which points
will be treated as outliers.)

There are two ways of specifying outliers:

1. IERTYP, ERRSIZ, CONPRB and CONSIZ are all nonzero.
All data points have error added as determined by
IERTYP and ERRSIZ, but for the outliers, the added
error 1is also multiplied by CONSIZ to inflate its

size.
2. ERRSIZ=0; IERTYP, CONPRB and CONSIZ are all
nonzero. Only the outliers have random error

added, the size of which is proportional to CONSIZ.
All other data points are error-free (unless ACONSZ
is nonzero) .
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7.3 WEIGHTING OF THE TRUE AND ERROR COMPONENTS

There may be times when you want to be able to specify
the relative sizes of the systematic and error contributions

in the data, rather than leaving it to chance. You would
need to do this 1if, for example, you wanted to see how
recovery of the "true" structure and how
fit-vs-dimensionality curves are affected by different

amounts of random error in the data.

To control the mean square values of the true and
random error components in the data, specify the parameters
on Records II-6 and II-7 as follows:

1. Set ISTRMS=1.

2. Choose IERTYP=1, 2, 3 or 4. Do not specify
outliers (CONPRB, CONSIZ) nor error due to additive
constants (ACONSZ), as either of these may
considerably inflate the amount of error present in
the data.

3. Set DSIZE=1.0. The root mean square (RMS) of the
true component always equals the value of DSIZE;
hence, DSIZE squared is the mean square of the
systematic part of the data.

4. Choose ERRSIZ so that the ratio of DSIZE squared
(i.e., 1.0) to ERRSIZ squared is equal to the true
-to- error mean square ratio that you want -- true
-to- error variance 1is discussed later in this
section. The expected RMS of the random error
equals ERRSIZ; ERRSIZ squared is the expected mean
square (EMS) of the random error in the data.

For example, for data sets with 0%, 25%, 50%, 75% and
100y error as compared to the true component, DSIZE and
ERRSIZ would have the following values:

ILQQL;LLQK DSIZE ERRSIZ EMS

Ratio Error
1:0 1.0 0.0 0.0
3:1 %:.0 0.577 0.33
1:1 g, 0 1.0 1.0
1:3 1.0 1.732 3.0
0:1 1.E-20 1.0 1.0

The first four data sets will have the same mean square
value for the true part, but different expected mean square
(EMS) values for the random error (error due to additive
constants 1is not included in the EMS error value). The
fifth example is included to show how you would use DSIZE to
virtually eliminate the systematic component.
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In fact, the value of DSIZE is not restricted to 1.0.
For IERTYP=1 or 3 (constant variance error), any value for
DSIZE can be specified along with an appropriate value for
ERRSIZ, so that the ratio of their squares is what you want.
For example, you could set both DSIZE and ERRSIZ equal to
3.0 to obtain data that contains 509% error (i.e., true:error
= 1:1). Or, for data with 75) error (true:error = 1:3), you
could set DSIZE = 1.732 and ERRSIZ = 3.0.

For IERTYP=2 or 4 (proportional variance error), it is
simplest Jjust to use DSIZE=1.0 and the corresponding ERRSIZ
value, as explained above. Otherwise, the relationship
between DSIZE, ERRSIZ and the true and error mean square
values is different, and is not explained here.

You can verify that the mean square values do indeed
fulfil the desired ratio by referring to the PARAFAC output
(see Sections 7.4.1.2.2-3). The actual mean squared error
value may vary slightly from the EMS error value that is
listed in the table above (or ERRSIZ squared), because of
the random selection process used to obtain the error value
and because of rounding error.

If you prefer, you can control the true-to-error
variance, so long as both the true and error components have
a mean of (approximately) =zero. This 1is accomplished by

doing the following things when synthesizing the data:

1. Use the same values for DSIZE and ERRSIZ as
outlined above for mean square ratios.

2. Center the true part by requesting centered
loadings on one or more modes (e.g., set IFAPOS=3).

3. Use IERTYP=1, 2, 3 or 4 only, and do not request
outliers or additive constants. This should give
error that has a mean of approximately zero, as
explained in Section 7.2. (There is no parameter
to directly specify centering of the error.) You
can check the PARAFAC output to ascertain that the
actual variance is approximately what you want.

7.4 PARAFAC SYNTHESIS OUTPUT

The output from a run that synthesizes data is very
similar to the analysis output described in Chapter 5,
except for some extra information that is specific to the
synthesis procedure. The information below is discussed in
the order in which it appears on the lineprinter 1listing,
but only what pertains specifically to data synthesis is
described in detail. You are referred to the appropriate
sections of Chapter 5 for more discussion.
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7.4.1 Lineprinter Output: Verification Of Input

The listing consists of two general sections, one that
verifies the program input and one that documents the
analysis (if done) as it proceeds. Most of the changes
occur in Input Section II.

7.4.1.1 Input Section I (Parameter Check) - See Section
5.1.1 for a complete description.

7.4.1.2 Input Section II (Data Check) - The differences in

this section reflect the modified input that is required
when the data are to be generated by PARAFAC, instead of
being supplied by the user. Following the section heading
are the input records for data synthesis, and a description
of parameters, formats, and any default values assigned by
PARAFAC. Then summary statistics, factor 1loadings, and
matrices of cross-products and correlations are listed.
They are described below.

7.4.1.2.1 Loadings Used To Generate Data - A reference Iis

made to the factor loadings that will be used to generate
the data. The actual wording of the message varies,
depending on the value assigned to the ILDGIN parameter on
Record II-5. For ILDGIN=0, random loadings are used; for
ILDGIN=1, PARAFAC- format 1loadings are input, and the
descriptive information that precedes the loadings matrices
(see Section 5.2.1) 1is 1listed next. In both cases, the
loadings are not listed here. For ILDGIN=2, however,
loadings are in non-PARAFAC format, and they are listed so
that you can check the input.

7.4.1.2.2 Statistics For Synthetic Data Components - These
statistics are not to be confused with the summary
statistics described in Section 5.1.2.3, that are computed
after centering, normalization, and missing value
estimation. Rather, these statistics are computed
separately for the true and error components before
centering, etc.

Two tables comprise these statistics. The first 1is a
set of means, variances and mean squares for the various
components of the data. This part of the output is

particularly wuseful if you are interested in the ratio of
true-to-error variance or mean square (see Section 7.3).
You can also check the mean of the error components here
(you will recall that you can't request that the error
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component be centered). The variance and mean square will
be equal, of course, for any component that has a mean of
zero. If the true part was suppressed by specifying a very

small DSIZE value, then the statistics associated with it
are all zero.

The second table of statistics--a set of cross-product,
covariance, cosine and correlation values--are computed from

the true and error components of each data point. As in the
table above 1it, the '"total error" here is the random error
plus the additive constant error; hence, both columns of

values are equal if no additive constants were specified.
These statistics give some indication of the relationship
between the data components. Usually the correlation
between the random error and true components is close to
zero. Even proportional variance error (e.g., IERTYP=2 or
4) is usually uncorrelated with the true component -- their
absolute values would be correlated, however.

Note that for lognormal error (IERTYP=5) , the
statistics are not computed, but are printed as zero. This
will be rectified in a future version of the program.

7.4.1.2.3 Factor Loadings - Factor loadings are listed

next. They are the ones used to generate the systematic
structure of the synthetic data. Even if the systematic
part is essentially zero because you specified a very small
value for DSIZE, the loadings will be output here; however,
the mode that reflects the scale of the data will have
loadings that are approximately zero.

The loadings listed here will not be the same as were
input (when ILDGIN=1 or 2). This is due to several things:
version 6H of PARAFAC always normalizes the mean squared
factor loadings in all three modes, then adjusts to meet any
positivity or orthogonality constraints requested, and
finally multiplies by the factor size multiplier and data
size multiplier. Hence, even loadings in PARAFAC format on
input (ILDGIN=1) are modified somewhat before being output
here. As we've said, this is sometimes a limitation, since
this means you cannot generate a systematic data component
from factors exactly as they were input (unless the program
is modified).

The descriptive information and fit values printed
above the factor loadings apply to the data synthesis
procedure. The fit values give the relationship of the
systematic or "true" structure of the data to the total data
(true plus error components) . Hence, 1if DSIZE is very
small, so that the true component is essentially zero, MSE
and STRESS will be large, while R and RSQ will be
approximately zero. Or, if you didn't request that error be
added, perfect fit will be indicated by R and RSQ values of
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1.0, and MSE and STRESS values of zero.

If you wanted a certain true-to-error ratio in the data
(Section 7.3), you can check RSQ and MSE to make sure that
this was obtained. For example, if you wanted 759 error
(and hence 25Y% systematic structure), you may have specified
DSIZE=1.0 and ERRSIZ=1.732. The error component will have
an expected mean value of zero and an expected variance
value of 3.0 (i.e., ERRSIZ squared). Due to random
selection from the error distribution, however, the mean and
variance of the error will not be exactly equal to the
expected values, although they should be close (check the
statistics table). Hence, while RSQ should be close to 0.25
and MSE should be close to 3.0 (ERRSIZ squared), they will
likely not be exactly equal to these values. (Note that RSQ
may deviate substantially from what you think it should be
if the data include additive constants, but you will see
that the mean is not close to zero.)

The "Root mean squared contribution for each factor" is

a measure of the "size" of the factors. Each value depends
in part on the factor size multipliers, selected according
to the value of ISZFAC (Section 7.1.7). If you had

specified ISZFAC=0, you would expect to see that the factors
had similar RMS constributions, although by chance one could

be much larger or smaller than the others. On the other
hand, 1if ISZFAC=2, the factors all have exactly equal RMS
contributions. See Section 5.2.3 for a general discussion

of RMS factor contributions.

7.4.1.2.4 Factor Cross-products And Correlations - Cross-

products and correlations are computed between the loadings
of the factors that are used to generate the systematic
component of the data. They reflect any orthogonality or
zero-correlation constraints that you may have requested via

IFAORT, etc. (Section 7.1.5). Even if you didn't request
such constraints, you may want to see how correlated the
"true" factors are, especially 1f you are studying

violations of factor models (Section 7.1.3.1).

7.4.1.2.5 Data Check, Etc. - Section 5.1.2 has a complete
description of the information that appears next: a data
check, missing data subscript table, centering/normalization
check, summary statistics table, and a symmetry check.
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7.4.1.3 Input Section III (Initial Loadings) - Unless

analysis of the data is suppressed (NSOLS=-1), information
about the starting loadings is 1listed next; see Section
51 35

7.4.1.4 Special Output - The (centered and/or standardized)
synthetic data will appear as the last thing on the listing
if NSOLS=-1 and IUNITD=6 (the standard output unit).

7.4.2 Lineprinter Output: Analysis Documentation

Analysis of data generated by PARAFAC proceeds in
exactly the same way as analysis of user-supplied data, and
the documentation is also the same. A complete description
is given in Section 5.2.

7.4.3 Disk Or Tape File Output

In general, this output is as described in Section 4.3,
but there 1is additional output resulting from the data
synthesis process.

7.4.3.1 FEinal Loadings - Even if no analysis is performed

(NSOLS=-1), the 1loadings used to generate the systematic
part of the data can be saved on disk, Jjust as the final
loadings from an analysis are. If both data synthesis and
analysis are performed in the same run, then (NSOLS+1)

complete sets of loadings will be written to IUNITG, the
first being the "true'" loadings used to generate the data
and the following NSOLS sets being the loadings obtained
from the analyses. Before wusing them to continue the
analyses, you would therefore have to separate the first set
of loadings from the others.

7.4.3.2 Revised Data And Residuals - The description in

Sections 5.3.2 and 5.3.3 applies here. When analysis is
suppressed, one set of data is written to IUNITD (i.e., the
data as they were generated, and then centered and/or
normalized according to the specifications on Card I-3, with
a missing value table appended if missing values were
specified), but no residuals are output, even if you request
them by mistake.

If the run involved both data synthesis and analysis,
then IUNITF has NSOLS sets of residuals, as usual, while
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IUNITD has (NSOLS+1l) sets of data. The data sets on IUNITD
will all be identical wunless there are missing values
specified. Then, the first data set will have initial
estimates of the missing values (i.e., before analysis),
while the others will have estimates based on the final
loadings from each solution.






CHAPTER 8

PARAFAC MESSAGES

Messages output by PARAFAC fall into three categories:

analysis, warning and error. Analysis messages are part of
the normal output for a PARAFAC solution; they provide
information about the course of the analysis. Warning

messages signal that the course of the data synthesis and/or
analysis was changed when PARAFAC reset a parameter value to

remedy a potential problem. Error messages point out a
problem which caused program execution to halt prematurely.
The messages are discussed below by category, analysis

messages first, warnings next, and errors last.

8.1 ANALYSIS MESSAGES

Depending on the data preprocessing and analysis
options selected by the user, PARAFAC outputs informative
messages as well as the factor loadings matrices during the
course of an analysis. This additional information allows
the user to follow the program procedures more closely. The
messages are listed below 1in the same general order that
they are output for a PARAFAC solution, along with an
explanation of each.

8.1.1 1Initial Messages

The following messages are printed before the first
loadings output (i.e. iteration 0) of the solution:

BEGINNING OF SOLUTION n .
This is always the first message. The number n also
appears in the descriptive information of all subsequent
loadings outputs for the solution.

THE STARTING LOADINGS ARE RANDOM NUMBERS. THE INITIAL SEED
FOR THE RANDOM NUMBER GENERATOR IS dd
This message occurs if ISTART on Card I-5 is zero. 1k
is useful to have the seed value dd if you want to
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repeat the solution from the same starting point (e.q.
if the solution terminated prematurely because computer
time limits were exceeded by the job).

MISSING VALUE STARTING ESTIMATES ARE THE SAME AS FOR
SOLUTION n-1
This occurs for solutions 2 through NSOLS (Card 1I-2),
when MISEST (Card 1I-4) 1is =zero (where n-1 1is the
solution immediately preceding the current one).

MISSING VALUE STARTING ESTIMATES ARE THE SAME AS FOR
SOLUTION 1
This is printed for solutions 2 through NSOLS, when
MISEST is 1.

DATA IS RECENTERED BEFORE ITERATION 1
This is output for solutions 2 through NSOLS after the
missing value estimates have been set up, when at least
one of the "IFCEN" flags on Card I-4 has a value of 1 or
3. Renormalization is not performed.

8.1.2 Intermediate Messages

Other messages appear after the starting and/or
intermediate loadings outputs. They are listed below under
the headings of '"Centering", '"Check of R", "Constraints" and

"Missing Values and Diagonals'".

8.1.2.1 Centering. -

DATA IS RECENTERED AFTER ITERATION i
When there are missing data and at 1least one of the
"IFCEN" flags on Card I-4 is 1 or 3, the data is
recentered after every NITER (Card 1I-2) iterations.
This adjusts for any distortion of the centering which
may result from the reestimation of missing values, and
occurs after every loadings output except the final one.

8.1.2.2 C(Check Of R. -

iTH ITER., R= 1rl1, AVRINC= r2, RACCEL= r3, DIEFFA= aa,
DIFFB= bb, DIFFC= cc
This is the result of checking for a decreasing R value,
but other information is also provided that allows one
to follow the change in the fit and "DIFEF" values as the

iteration process converges. Unless IRINTV on Card I-6
is set to -1 to suppress this, the above message is
output every IRINTV iterations. Thus, it may occur

several times between successive loadings outputs. R is
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the correlation at the ith iteration between the data
being analysed and the data predicted by the model.
AVRINC is the difference 1in R between the current
iteration and IRINTV iterations before the current one
(when a similar message was output), divided by IRINTV
(i.e., it is the average increase in R). RACCEL is the
average acceleration of R over the 1last IRINTV
iterations. DIFFA, DIFFB and DIFFC give the maximum

percentage change in the value of loadings in Modes A,

B

and C respectively from the previous iteration (i.e.,

not averaged across the previous IRINTV iterations).

A negative AVRINC signals decreasing fit. This normally
happens only when orthogonality or zero-correlation
constraints have been imposed on the factors. The
smaller IRINTV is, the fewer iterations are per formed
before the program detects this problem and takes
action. RACCEL may be positive for initial iterations

when the fit is rapidly improving, but the rate

of

change of R quickly levels off during the analysis, and

RACCEL then becomes negative.

NONINCREASING R IS PRESUMABLY DUE TO DATA RECENTERING, NO
CORRECTIVE ACTION TAKEN.
When the AVRINC value 1in the previous message is
negative, the program checks for possible causes. This
message is output next if there are missing data and
"IFCEN" flags on Card I-4 have been set to 1 or 3; in
this case, periodic recentering of the data is

performed, which might temporarily reduce the fit of the
PARAFAC solution to the data. After printing this, the

iterative process resumes.

FIT NOT INCREASING, TEMPORARY DEPENDENCE CONSTRAINTS

DROPPED.

When a negative AVRINC value cannot be explained by data
recentering, PARAFAC next <checks to see if IORTHA,

IORTHB and/or IORTHC are set to 2, 3, 5 or 6 (i.e. for
temporary constraints). All "IORTH" flags which have
any of these values are reset to 1, even though the
normal conditions for dropping the constraints have not
yet been met. After this message, the iterative process
resumes.

EIT NOT INCREASING, OVERRELAXATION SUPPRESSED.

If neither recentering nor temporary dependence
constraints are found, the program then checks whether
the negative AVRINC occurred when overrelaxation was
being performed. After the first 10 iterations of any
solution, new loadings are extrapolated 27.5 percent
beyond the current best regression estimates in the
direction of change from the previous iteration. This

process is called overrelaxation and is used

to

accelerate convergence, but sometimes it may push the
solution too far and the fit may worsen. PARAFAC
continues the analysis after printing the above message,
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but does not extrapolate beyond the best loadings
estimates on subsequent iterations. .

FIT NOT INCREASING, MISSING VALUE RE-ESTIMATION INITIATED.
When neither recentering, temporary dependence
constraints nor overrelaxation can explain the negative
AVRINC value, the iterative procedure terminates unless
there are missing values that have not yet been
reestimated. Normally, missing value reestimation is
not begun until iteration 11. However, if a negative
AVRINC is obtained before this and there are missing
data, the program begins to reestimate the missing
values from the current iteration on. The iterative
process resumes after output of this message.

FIT NOT INCREASING, FURTHER ITERATION SUPPRESSED. FORCED
OUTPUT AT ITERATION i
This happens either when none of the procedures
described above are applicable to the current analysis,
or when all the appropriate ones have been done and
AVRINC is still negative after another IRINTV
iterations.
The solution at iteration i 1is output in the same way
that final 1loadings for any solution are output after
the convergence criterion is met or NITER times NOUTS

iterations have been performed. The program then
proceeds to the next solution in the usual way. Forced
output is explained further in Section 5.2.2.3.3. .

8.1.2.3 Constraints. -

DEPENDENCE CONSTRAINTS IN EFFECT FOR--

MODE A

MODE B

MODE C
This is printed after the loadings outputs for which
each of IORTHA, IORTHB and IORTHC (Card I-6) have a
value greater than 1. Any mode is omitted from the
above list if its "IORTH" flag value is 1.

NO DEPENDENCE CONSTRAINTS IN EFFECT

This is printed after loadings outputs for which IORTHA,
IORTHB and IORTHC all are 1. The message appears after
every output if no constraints were 1imposed at the
beginning of the analysis. On the other hand, if
temporary constraints were requested, it is not output
until all constraints have been dropped (see message
described below) .

CONSTRAINT THAT MODE A FACTORS BE INDEPENDENT WAS DROPPED

BEFORE ITERATION i. DIFFA= aa PERCENT

(Similar messages are output where applicable for Mode B

and/or Mode C.) ‘
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This message appears only once. This signals that the
temporary constraint placed on Mode A factors at the
beginning of the solution has been dropped (i.e., the
value of IORTHA has been reset to 1). Where IORTHA was
originally 2 or 5 (i.e. weak constraints), the aa

value 1is approximately 50 times the value of DIFMXA
(Card I-7); where IORTHA was 3 or 6 (i.e. moderate

constraints), the aa value is about 10 times the value
of DIFMXA.

8.1.2.4 Missing Values And Diagonals. -

MISSING VALUES ARE RE-ESTIMATED ON EVERY ITERATION AFTER

ITERATION i
Generally, the value of i is 10. When there are
missing values and the starting loadings are random
numbers (ISTART is zero on Card I-5), this follows the
starting loadings output as long as NITER on Card I-2 is
greater than 10. Missing values are not usually
reestimated for ten iterations because the loadings do
not predict the data well at first and thus would not

yield good estimates of the missing values. However,
when the solution converges before iteration 10, missing
value reestimation is begun immediately. In this case,

the loadings are listed when convergence is initially
reached (the iteration value is not usually a multiple
of NITER, as for normal intermediate loadings output)
but no convergence message is issued. Then when the
solution converges with reestimated missing values, a
convergence message and final loadings are output as
usual.

MISSING VALUES ARE RE-ESTIMATED ON EVERY ITERATION

When there are missing values and the starting loadings
are random numbers, this follows every intermediate
loadings output after iteration 10.

When the starting loadings are supplied by the user
(ISTART 1is 1 or 2), missing values are reestimated from
iteration 1, and this message occurs after every
loadings output except the final one.

DIAGONAL CELLS ARE RE-ESTIMATED ON EVERY ITERATION AFTER
ITERATION i

Generally, the value of i is 10. When IGDIAG is 1
(Card I-6) and the starting loadings are random numbers,
this follows the starting loadings output, as 1long as

NITER is greater than 10. Diagonals are not usually
re-estimated during the first ten iterations for the
same reason given above for the missing values.

DIAGONAL CELLS ARE RE-ESTIMATED ON EVERY ITERATION
When IGDIAG is 1 and the starting loadings are random
numbers, this follows every intermediate loadings output
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after iteration 10.

When starting loadings are user-supplied, diagonals are
reestimated from iteration 1, and this message occurs
after every loadings output except the final one.

8.1.3 Terminating Messages

The next message 1is printed immediately before the
final loadings of the solution (if applicable):

CONVERGENCE CRITERION MET ON ITERATION i

MODE A MAXIMUM CHANGE= aa PERCENT

MODE B MAXIMUM CHANGE= bb PERCENT

MODE C MAXIMUM CHANGE= cc PERCENT
No iterations are performed after output of this message
because the solution has "converged". In other words,
the solution is stable enough that, from one iteration
to the next, reestimation of the loadings did not cause
any of them to change more than the arbitrary amounts
(i.e., convergence criteria) set by the user on Card
I-7. For each mode, the change in a loading for any
given factor 1s expressed as a percentage of the root
mean squared loading of that factor; hence the reference

to '"percent'" in the above message. This allows larger
absolute fluctuations in the mode which reflects the
scale of the data. The aa, bb and cc values are

less than or equal to the values specified for DIFMXA,
DIEMXB and DIFMXC respectively, and are the DIFFA, DIFFB
and DIFFC values respectively listed at the head of the
final loadings output.

Finally, when ISTART equals zero, the following message
appears at the end of the listing:

THE SEED FOR THE RANDOM NUMBER GENERATOR AT END OF EXECUTION
IS dd
dd would have been used as the seed for the random
number generator for the next set of loadings, had one
more solution been requested.

8.2 WARNING MESSAGES

Warning messages inform the user when the program has
detected some nonstandard or inconsistent conditions and has
reset a parameter so that the data synthesis or analysis
could proceed. The messages provide only a limited amount
of information, and so an explanation of the problem
associated with each message is given below. The
explanation assumes that you have verified the input to
ensure that the warning 1is not due simply to the
misplacement of values on the input records. The warnings
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are listed below in alphabetical order by the first word of
the message.

DATA IS ALL ZERO, SO FIT VALUES NOT COMPUTED.

Either the data were read as zerces, and so you should
check your input format, or the data were synthesized as
zeroes, and so you should check DSIZE, IERTYP and/or
ERRSIZ. For example, synthetic data equal to zero will
result if you specify a very small DSIZE (to minimize
the systematic component in the data) but forget to
request that nonproportional variance error be added.

DATA SIZE MULTIPLIER RESET TO 0.0 TO AVOID EXPONENT

UNDERFLOW PROBLEMS.
Certain combinations of options for data synthesis cause
some of the computations involving an extremely small
DSIZE (from Record II-6) to result in a value too small
to be represented precisely by the computer (i.e.,
exponent underflow). While this usually does not cause
program execution to cease, a message output to the
lineprinter warns the user of this occurrence (depending
on the computer system). This would be repeated many
times during synthesis of the data and would produce
much unnecessary output. To avoid this, the program
resets DSIZE when the cube of DSIZE equals zero (due to
exponent underflow). Since the small DSIZE value was
originally specified to minimize the contribution of the
"true" component of the data, and this is accomplished
when DSIZE is reset to zero, synthesis of the data is
not affected.

DATA VALUES FOR ALL POINTS ( i, j, K), K=1, n WERE MISSING,

SO THE MEAN COULD NOT BE COMPUTED. ZERO WAS USED AS THE

ESTIMATE.
You have used code(s) to indicate missing data values
(IFCODE=1 on Card 1-4). Since no data point in the
indicated "tube" contained legitimate data values, a
mean could not be computed to use as the starting
etimate for missing data in the tube, and zero was used
instead. This does not alter the analysis, except
perhaps to slow it down if zero is a poor estimate.

DEFAULT VALUE FOR IORTHC RESET TO 1 BECAUSE NCS IS NOT

GREATER THAN NFACT.
You did not specify a value for IORTHC on input, so the

program set it to 1its default value 2 (i.e., weak
zero-correlation constraints); the parameter check for
Card I-6 on the listing verifies this. However, because

NFACT is at least as big as NCS, imposing the default
constraint may cause problems because one factor is
forced to have constant loadings in Mode C in order to

fulfil the constraint. This further constrains the
solution, and worsening fit over several iterations may
occur. Thus, the program resets IORTHC to 1 to

eliminate the constraint and avoid these problems.
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DEPENDENCE OPTION FOR MODE C RESET TO 2 (ZERO CORRELATION)
TO ELIMINATE POSSIBILITY OF NEGATIVE DISTANCES.
Resetting IFCORT (Record 1II-6) resolves the conflict
between the positivity constraint implied because the
data is distance-like (IDATYP=1), and the bipolarity
(i.e. both positive and negative loadings) of factors
2, 3, etc. necessary for factor orthogonality.

DIAGONALS ARE NOT DEFINED IF NAS DOES NOT EQUAL NBS
(MATRICES NOT SQUARE) . OPTION TO ESTIMATE (IGNORE)
DIAGONALS IS SUPPRESSED.
Your NAS is not equal to your NBS (see Record 1II-2).
The IGDIAG parameter (Card I-6) is reset to zero and the
diagonal entries are treated as legitimate data values,
instead of missing values, in the analysis.

FLAG TO STANDARDIZE SCALE OF OUTPUT LOADINGS (ISTANM) RESET
TO 3is
This message may be printed before output of the '"true"
loadings in a data synthesis run. Resetting ISTANM only
affects how the loadings are standardized prior to

output; it is usually done to eliminate the
possiblility of dividing by zero during the
standardization process. For raw profile or

covariance-like data (i.e., IDATYP=0 or 2), ISTANM is
reset if the Mode C loadings are very small (which might
occur if the DSIZE value were very small). For
distance-like data (i.e., IDATYP=1), however, ISTANM is
reset if it was 1 or 2 originally, regardless of the
Mode C loadings; the symmetry of such data across Modes
A and B makes it less appropriate to have one or the
other reflect the data scale.

MODE WITH CONSTANT LOADINGS CANNOT BE CONSTRAINED TO BE

UNCORRELATED OR ORTHOGONAL. IORTHA RESET TO 1.

(Similar messages are output for Mode B and/or Mode C when

IFHLDB and IORTHB and/or IFHLDC and IORTHC respectively have

the same values as described here.)
You set all the starting loadings in Mode A to 1.0
(IFHLDA=2 on Card I-6) and also requested constraints on
the factors in Mode A. It is impossible to fulfil the
constraints with factor loadings that have no variation,
so no constraints are applied to the factors in Mode A
during the analysis.

NEGATIVE MODE C LOADINGS DURING SYNTHESIS OF TYPE 2 DATA
IMPLY NEGATIVE SQUARED VALUES--INCONSISTENT WITH THE BASIC
ANALYSIS MODEL.

In the multiplication process used to produce
cross-product, covariance, or scalar product data from
actual raw data, the Mode C loadings of the raw data are
squared. Consequently, Mode C loadings for Type 2 data
would never be negative. Except for outputting the
above message, however, no action 1is taken by the

program and execution continues as wusual. (It 1is



PARAFAC MESSAGES 8-9

assumed that the user is simulating such "impossible"
data for test purposes.)

NO ANALYSIS PERFORMED BECAUSE DATA IS ALL ZERO.
See the explanation for the warning message DATA IS ALL
ZERO, SO FIT VALUES NOT COMPUTED.

aa PERCENT OF THE DATA IS MISSING ACCORDING TO THE SUBSCRIPT

TABLE AND/OR THE MISSING DATA CODES INPUT. THEREFORE, THE

SOLUTION (S) OBTAINED MAY BE UNSTABLE.
This message is output only if more than ten percent of
the data 1is to be treated as missing. Note that
diagonal entries are also treated as missing values when
IGDIAG equals one (Card I-6). However, aa does not
include the diagonal entries unless they are entered in
the missing data subscript table or contain a missing

data code.

POSITIVE DATA SIZE MULTIPLIER TO BE USED BECAUSE NEGATIVE
DISTANCES ARE IMPOSSIBLE.
The absolute value of the specified DSIZE (on Record
I1-6) is used because distance-like data (IDATYP=1) must
be positive. Other than this change, synthesis of the
data proceeds normally.

PREDICTED DATA IS ALL ZERO, SO FIT VALUES NOT COMPUTED.

This message appears before output of the "true"
loadings during a data synthesis run, if you minimized
the systematic component in the data by specifying a
very small DSIZE, for example. In this case, it is
impossible to compute fit values, and so the fit values
that are printed above the "true'" loadings are all set
to zero. Otherwise, the run proceeds as usual.
This message also appears before loadings output during
data analysis, 1if user-supplied starting loadings were
read as zeroes because of incorrect format
specifications. In this case, the analysis will
probably proceed, but with no change in the loadings;
you will have to correct the loadings input format and
rerun the job.

RESIDUALS MATRIX IS NOT DEFINED, SINCE NO ANALYSIS HAS BEEN
ATTEMPTED. OUTPUT OF RESIDUALS SUPPRESSED.
You have requested that no analysis be done (NSOLS=-1 on
Card 1I-2) but you have specified an output unit for the
residuals (IUNITEF on Card I1-8). The program terminates
execution in the normal way, but does not try to output
residuals.

SIGN OPTION FOR MODE C RESET TO 2 (POSITIVITY CONSTRAINT)
BECAUSE NEGATIVE DISTANCES ARE IMPOSSIBLE.
Distance-like data (IDATYP=1 on Record 1II-6) must be
positive. However, with no positivity constraint on
Mode C loadings, they may be negative and computation of
distances would then involve negative square roots.
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Thus, IFCPOS on Record II-6 is reset to constrain Mode C
loadings to be positive. I

SINCE NFACT IS EQUAL TO NAS THE REQUESTED ZERO-CORRELATION

CONSTRAINT FOR MODE A MAY CAUSE PROBLEMS.

(Similar messages are output if these conditions occur for

Mode B and/or Mode C.)
No parameters are reset and the analysis proceeds as
usual. The problems may arise when interpreting the
solution obtained, since the constraint forces one
factor to have constant loadings in Mode A. (The Mode A
correlations between the constant factor and the other
factors are then undefined.) In practice, this happens
only when forced output has occurred and IORTHA is 4.
Otherwise (i.e., when IORTHA is 2 or 3), the constraints
are always dropped before the solution converges and
before forced output occurs. With no constraints, the
factor does not remain constant in Mode A, and so the
interpretation problem is avoided.
(The Mode A correlation tables following the loadings
may list correlation values close to zero, instead of
asterisks indicating undefined values, for a factor that
is constant in Mode A. This happens if the factor
loadings actually differ when represented to many
decimal places by the computer, since these values are
used in computing the correlations, even though the
loadings are equal when rounded off to four significant

digits.) ‘
SINCE NEFGEN IS EQUAL TO NAS THE REQUESTED ZERO-CORRELATION
CONSTRAINT FOR MODE A MAY CAUSE PROBLEMS.
(Similar messages are output if these conditions occur for
Mode B and/or Mode C.)
No parameters are reset and data synthesis proceeds

normally. However, the constraint will force constant
loadings (i.e., identical values for all levels) on one
factor in Mode A. This, in conjunction with a request

that the loadings be centered (i.e., IFAPOS=3 on Record
II-6) would result in all loadings on this factor being
zero. Thus, this factor would not contribute to the
true part of the data at all and NFGEN would actually be
one less than the number specified on Record II-4.

YOU ASKED FOR POSITIVE MODE C LOADINGS (IECPOS=2), BUT

SPECIFIED A NEGATIVE DATA SIZE VALUE.
This is a questionable combination on theoretical
grounds if IDATYP on Record II-6 is 1 or 2, and so the
message is issued to alert you to a possible error in
specifying the parameter values. If IDATYP is 1 (for
distance-1like data), another message will inform you
that a positive data size multiplier is used. More
details are included in the explanation of that message.
For IDATYP equal to 2 (scalar product data), the
specified combination results in negative values,
including those on the diagonal; these negative .
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diagonals are inconsistent with real cross-product,

covariance or scalar product data diagonals, which
result from the squaring of values and are therefore
nonnegative. No parameters are reset, and data

synthesis and analysis proceeds normally, however.

8.3 ERROR MESSAGES

PARAFAC outputs an error message when it detects an
error or inconsistency and halts execution rather than
arbitrarily resetting parameters to get around the problem.
The messages are listed below in alphabetical order by their
first words (excluding the word "error'" unless it is part of
the sentence), along with an explanation of each. The
explanations assume that the error 1is not due simply to
misplacement of values on the input records.

DIMENSIONS OF MISSING DATA ARRAY EXCEEDED AT THE DATA POINT
(i, j, k). ARRAY CURRENTLY DIMENSIONED FOR nn MISSING
VALUES. POINTS FOLLOWING IN THE DATA ARRAY WERE NOT CHECKED
FOR MISSING DATA CODES.

There are two possible causes for this message. One is
that vyou have made an error in specifying missing data
code values or data range limits on Card I-4. Thus the

program is treating many valid data values as missing,
and the missing data arrays are too small to accommodate
them all. Correcting the code values and/or limits
should rectify this problem. The other cause 1is that
the missing 'data arrays actually are too small for all
the missing data, and the DIMS program must be used to
increase the array space for missing data. Use of DIMS
is explained in Chapter 3.

EQUAL-AVERAGE-DIAGONAL NORMALIZATION CANNOT BE PERFORMED IF
NAS DOES NOT EQUAL NBS.
The data must consist of square matrices (i.e.,
NAS=NBS) . Change the wvalues of IFCENA and IFCENB on
Card I-4 to 3 or less.

ERROR IN CENTERING/NORMALIZATION REQUESTS.
This output is followed by one or more messages which
describe the specific error made. These other messages
are not included here since they are self-explanatory.
Refer to the description of Card I-4 in the PARAFAC
Input Specifications Table for legitimate values of
IFCENA, IFCENB and IFCENC.

ERROR IN SPECIFIED BOUNDS FOR THE DATA RANGCE.
The upper limit specified is less than the lower 1limit
(DUPPER and DLOWR respectively on Card I-4). Change
their values so that DUPPER is greater than DLOWR.



PARAFAC MESSAGES 8~-12

INVALID MISSING DATA SUBSCRIPTS FOR LINE nn IN MISSING
DATA LIST. SUBSCRIPTS ARE READ AS-- i j k
This occurs either if i, j or k is less than or equal to
zero, or if i, j or k is greater than NAS, NBS or NCS
(as specified on Record II-2) respectively. Correct the
erroneous subscript(s) at the indicated 1line in the
missing value subscripts table.

NAS= nl1l AND NBS= n2, BUT FOR DATA TYPE 1, NAS MUST EQUAL

NBS.

(A similar message may appear for data type 2.)
For real dissimilarity data (type 1) and real
cross-product data (type 2), the two '"ways'" of the data,
which are Mode A and Mode B here, are assumed to refer
to identical entities (e.g., objects, questionnaire
items, etc.). Thus the two ways of the data have an
equal number of levels or, NAS equals NBS. Therefore,
it makes no sense to synthesize such data when NAS does
not equal NBS. Either change the value of IDATYP on
Record II-6 to zero, or set NAS equal to NBS on Record
II-2.
(You can simulate data for '"unfolding" analysis (i.e.,
data consisting of dissimilarities between one set of N
things and a different set of M things) by first
synthesizing the full (N+M) by (N+M) matrix and then
extracting an N by M subpart for analysis.)

SINCE CONPRB IS A PROBABILITY VALUE, IT MUST BE IN THE RANGE
ZERO TO ONE INCLUSIVE.
Change the value of CONPRB on Record II-7 to something
in the indicated range.

SINCE NFACT IS GCREATER THAN NAS, THE REQUESTED FACTOR
DEPENDENCE CONSTRAINT FOR MODE A IS IMPOSSIBLE TO
ACCOMPLISH.
(A similar message appears for Mode B and/or Mode C if NFACT
exceeds NBS and/or NCS respectively.)
Reset the value of IORTHA (IORTHB, IORTHC) on Card 1I-6
to 1, so that no constraints are imposed on the factors
in the indicated mode. Also, reset IORTHA (IORTHB,
IORTHC) on Card -6 to 1 if NFACT on Card I-2 is greater
than NAS (NBS, NCS).

SINCE NFGEN IS GREATER THAN NAS, THE REQUESTED FACTOR
DEPENDENCE CONSTRAINT FOR MODE A IS IMPOSSIBLE TO
ACCOMPLISH.
(A similar message appears for Mode B and/or Mode C if NEGEN
exceeds NBS and/or NCS respectively.)
Reset the value of IFAORT (IFBORT, IFCORT) on Record
IT-6 to 1, so that no constraints are imposed on the
factors in the indicated mode.

SYMMETRY FAILURE--POINT (i, j, k)= aa BUT POINT
( j, i, k)= bb
Note that the symmetry check is done after missing data
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values are estimated and the requested centering and/or
normalization performed. Usually, however, symmetry
failures are not detected for symmetric input data, even
after these transformations, as long as IFCENA equals
IFCENB (Card 1I-4). The program allows a difference of
up to approximately 0.0005 percent of the data values to
compensate for differences introduced due to roundoff
during calculations. Thus, if a symmetry failure is
detected, check the input data to see if it really is
symmetric, and/or check that IFCENA equals IFCENB.

The following messages indicate that the DIMS program should
be used to increase the appropriate array sizes (see Chapter
3)

TASK SIZE PARAMETERS CALL FOR nl FACTORS, BUT ARRAYS ONLY

ALLOW FOR n2.

TASK SIZE PARAMETERS CALL FOR nl LEVELS OF MODE A BUT

ARRAY SIZES ALLOW ONLY n2.

(A similar message is printed for Mode B and/or Mode C if
nl exceeds n2 in those modes.)

TOO MANY ENTRIES 1IN THE MISSING DATA SUBSCRIPT TABLE.

MISSING DATA ARRAY CURRENTLY DIMENSIONED FOR nl MISSING

VALUES.
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MATRIX NOTATION

While it is assumed that users are familiar with common
terms associated with matrix notation and two-way factor
analysis, some terms are reviewed here. A basic concept in
two-way factor analysis 1is a matrix. A data matrix is a
tabular arrangement of data values into rows and columns. A
square matrix has the same number of rows as columns, while
a rectangular matrix has either more rows than columns, or
vice versa. The size (and shape) of a matrix is denoted by
the phrase '"nm by m" or "n X m", where n is the total number
of rows and m is the total number of columns. For example,
a 3x4 matrix is rectangular and consists of 3 rows and 4
columns of data values; a 3x3 matrix is square and has 3
rows and 3 columns. (By convention, the row number is
designated first; as you will see, PARAFAC notation
reverses the row and column order.)

A cell of the matrix is the intersection of a row and
column (i.e., the location of a data entry in the matrix).
The total number of cells in a matrix is the product of n
and m, the number of rows and columns. Thus the 3x4 matrix
mentioned above has 12 cells. A specific cell is denoted by
the ordered pair (x,y). where x is the row and y is the
column that intersect at the cell (x is not greater than n
and y 1is not greater than m). The diagram below shows the
location of the (2,3) cell in a 3x4 matrix:

X:r = X indicates (2,3) cell

Diagonal and off-diagonal cells are mentioned with
respect to a square matrix, but these terms are meaningless
in a rectangular matrix. Diagonal cells are those for which
the row and column numbers are equal in the ordered pairs
that specify them. For example, (1,1) is the first diagonal
cell and (n,n) the nth diagonal cell. Together, all the
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diagonal cells compose the matrix diagonal. Off-diagonal

cells are all cells above and below the diagonal.

The

following diagram indicates the diagonal of a 3x3 matrix:

X:

X: X's denote diagonal cells

A symmetric matrix is a (square) matrix for which
off-diagonal (x,y) entry has the same value as each

entry. For example, in the symmetric 3x3 matrix below,

(1,2) and (2,1) cells contain equal values, as do the
and (3,2) cells and the (1,3) and (3.,1) cells (there
restriction on the diagonal values):

[

each
(y.x)

the
(2,3)

is no
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Formulae used by PARAFAC

1. Summary Statistics

a) Level Means

NCS NBS
% = /(NBS % NCS)

2 E Xijk

k

where  x; is the mean for Mode A level i
X;jk s the real data value
NBS is the number of levels in Mode B
NCS is the number of levels in Mode C

Parallel formulae are used for the level means of Modes B and C.
b) Level Mean Squares

/(NBS % NCS)
k

NCS NBS
ms; = [2 2 (xijk)z
J

where  ms; is the mean square for Mode A level i
Xijk, NBS and NCS' are as defined above

Parallel formulae are used for the level mean squares of Modes B and C.

¢) Level Variances

NCS NBS

v = |3 3 Gup—x; )| /(INBS % NCS)
ko

where v, is the variance for Mode A level i

1.

Xijk, X; , NBS and NCS are as defined above in formula la.

Parallel formulae are used for the level variances of Modes B and C.
2. Fit Values

a) MEAN SQUARE ERROR (for entire data set)

NCS NBS NAS R
> ¥ > Gup—xix)?| /(NAS % NBS % NCS)
k J i

where  INAS' is the number of levels in Mode A
NBS is the number of levels in Mode B



NCS is the number of levels in Mode C
X;jk is the real data value
)E,-jk is the corresponding estimated data value.

)E,jk is computed from the factor loadings according to the basic proportional profiles equation.

NFACT
Xijk = 2 airbjrckr
r

where  NFACT is the number of factors extracted
a;, is the loading of Mode A level i on factor r

bj, is the loading of Mode B level j on factor r
¢j- 18 the loading of Mode C level k on factor r

b) STRESS

\/

where NAS, NBS, NCS, x;; and )Eijk are as defined above for MEAN SQUARE ERROR.

NCS NBS NAS .
E 2 E (Xijk _xijk)ZJ /
ko

NCS NBS NAS J

% E 2 (xijk)z

Factor Relationships

a) Factor Cross-Products

Cs = [A%S airais}/ [\ /Iggairz%sai.\?]

where G, is the cross-product between factors » and s on the Mode A
a;, is the loading of Mode A level i on factor r
a;; is the loading of Mode A level i on factor s
NAS is the number of levels in Mode A.

The formula for the cross-product between factors » and s on Mode B can be defined by replacing "N.AS" with
"NBS", "a;" and "a;" with "b;," and "b;", and "Mode A" with "Mode B" in the above formulae and/or

definitions.

Similarly, the formula for the cross-product between factors » and s on Mode C can be defined by replacing
"NAS" and "Mode A" with "NCS" and "Mode C", etc.

b) Factor Correlations

NAS INAS NAS
Tq = [2 (ai:‘a—_s)(an_a__,)]/ Z(Gix“a—,s)z 2 (ait—a__,)z

where  rg is the correlation between factors s and ¢ on Mode A
a;, is the loading of Mode A level i on factor s
a_ is the mean Mode A loading on factor s

a; is the loading of Mode A level i on factor ¢

a, is the mean Mode A loading on factor ¢
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NAS is the number of levels in Mode A.

Parallel formulae are used to compute the correlations between factor s and ¢ on Modes B and C.

4. Error Analysis — Level MEAN SQUARE ERRORS

NCS NBS

> 2 o =)
ko J

where  mse, is the mean square error for Mode A level i
X is the real data value
i’,-,-k is the estimated data value (see formula 2a above for the estimation equation)
NBS is the number of levels in Mode B
NCS is the number of levels in Mode C

mse; = / (NBS % NCS)

Parallel formulae are used for the level mean squares of Modes B and C.
5. Centering
a) Mode A Centering

*
Xijk = Xijk — X jk

where X  =——— E Xijk
!

b) Mode B Centering

Xije = Xijk — Xik
1
Whel'e x~.k = = E x,'jk
: BS
¢) Mode C Centering

o
Xijk = Xijk — Xjj.

1 NCS

where x_,j = WS_ Xijk
k

If more than one mode is centered, the centering operations are applied to the data sequentially, each step taking
as input the output from previous centering operation.

6. "Normalization" (Variance or Mean-Square Standardization)

a) Mode A Normalization
*
Xk = X/ \/ms;
NBS NCS
where  ms; = > > (x;i)/NBS % NCS
ik

b) Mode B Normalization

*

Xijk = Xij/\/ms;
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NAS NCS
where  ms; = 3 % (x;x)/NAS % NCS

¢) Mode C Normalization

*
Xijk = xijk/ \/MSk
NAS NBS

where  msp = > > (x;%)/NBS % NCS
i J

If more than one mode is normalized, (or if normalization is combined with centering) the operations are
performed in sequence and the sequence is repeated iteratively until all requested relations are satisfied
within + .1%. A final centering stage insures that all centering relations will be satisfied "exactly"
(i.e. within machine roundoff error).

7. Equal-Average-Diagonal Normalization

*

P
cisk = Cigx /L3307 % ¢

A

C.. )
JJ ]
where ﬁijk is the rescaled covariance value

Ciax ie the unscaled covariance
- ¢ 1 NS 4
Cij. = p & Ciik 0

_ 1NCS
C o = - C o
NP p% Jik
NCS is the number of levels in Mode C
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RANDOM NUMBER GENERATOR

The code for the random number generator used by
PARAFAC was adapted from Schrage (1979). The generator is
machine independent so long as the machine can represent

31-bit integers exactly, either in single or double
precision format. It is a full cycle congruential
generator; in the cycle, every integer from 1 to 2**31-2 =
2147483646 is generated once, and only once, in a random
sequence. The first integer in the sequence, INT (1), is set
to some arbitrary integer value in the range
0LINT<2147483647. Subsequent integers are obtained via the

recursion
INT (i+1) = A*INT (i) mod P,
where A=7**5=16807 and P=2**31-1=2147483647.

The generator also returns a random fraction in the
range (0,1). PARAFAC calls the generator to approximate a
random selection from a uniform or rectangular distribution
in the range (0,1).

See Schrage (1979) for a discussion of its statistical
properties and a comparison with other generators.

C.1 SIMULATING OTHER DISTRIBUTIONS

The random number generator described above 1is the
basis of the various simulated distributions that are used
to produce random factor loadings, factor size multipliers
and error components. The expressions used to simulate the
distributions are given below. Variables appearing in the
expressions are defined first.

a(i,r) =loading for factor r at ith level of Mode A
b(j.r) =loading for factor r at jth level of Mode B
c(k,r) =loading for factor r at kth level of Mode C
X(i.j.k) =Xa(i,r)*b(j.r)*c(k,r)

r

=systematic component of the data value
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R =uniform random number in the range (0,1): returned after
one call to the generator

SUM2R =sum of two uniform random numbers in the range (0,1):
requires 2 calls to the generator

SUM18R =sum of 18 uniform random numbers in the range (0,1):

requires 18 calls to the generator

ESIZE =ERRSIZ for data points that are not outliers

=ERRSIZ*CONSIZ for outliers (see Record II-7)

C.1.1 Random Factor Loadings (ISTART=0 or ILDGIN=0)
Loadings are randomly selected from a simulated uniform
distribution in the range (-1,1). The distribution is
simulated via

(R*2.) - 1.

Subsequent normalization or rescaling of the factors before
output may change these initial values.

C.1.2 Factor Size Multipliers

ISZFAC=1: Each multiplier is randomly selected from a

simulated triangular distribution in the range (0.1,1.9),

with a mean of 1.0. The distribution is simulated via
(SUM2R*0.9) + 0.1

ISZFAC=2: Each multiplier is randomly selected from a

simulated rectangular distribution in the range (0.1,1.9),
with a mean of 1.0. The distribution is simulated via

(R*1.8) + 0.1

C.1.3 Random Error Component

IERTYP=1: The error is randomly selected from a simulated
uniform distribution with a mean of zero and a standard
deviation of 1.0, and then scaled up or down by ESIZE. The

distribution is simulated via
(R—O.S)*Vlz. * ESIZE

IERTYP=2: Same as IERTYP=1, except the error component is
also scaled by the value of the systematic component. The
distribution is simulated via

(R-0.5)*V¥12) * ESIZE * X(i,j. k)
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IERTYP=3: The error is randomly selected from a simulated
normal distribution with a mean of zero and standard
deviation of 1.0, and then scaled by ESIZE. The
distribution is simulated via

((SUM18R-9.0) /¥1.5') * ESIZE

IERTYP=4: Same as IERTYP=3, except the error component is
also scaled by the value of the systematic component. The
distribution is simulated via

((SUM18R-9.0) /¥1.5') * ESIZE * X(i,j.k)

IERTYP=5: The computation used to obtain the value of a
data point contaminated with lognormal error is:

SIGN(l.O,X(i,j,k))4X(i,j,kﬂ*EXP(((SUM18R—9.0)Ai.5)*ESIZE)

(SIGN is an intrinsic Fortran function, and EXP is a basic
external Fortran function.)
The error deviate that serves as the exponent is obtained in
the same way as described for IERTYP=3.

IERTYP=6: The error is randomly selected from a simulated
"slash" distribution, equivalent to a normal distribution
with a mean of zero and standard deviation of 1.0 (cf.
IERTYP=3) that is divided by a uniform distribution in the
range (0,2). The error value is then scaled by ESIZE. The
distribution is simulated via

(((SUM18R-9.0) /Y1.5 ) / (R*2.)) * ESIZE

IERTYP=7: Same as IERTYP=6, except the error component is
also scaled by the value of the systematic component. The
distribution is simulated via

(((SUM18R-9.0) /YI.5') / (R*2.)) * ESIZE * X(i,j, k)
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PARAFAC PACKAGE INSTALLATION (VERSION 6H)

The following information is provided to minimize the
effort necessary to get the PARAFAC programs running on your
system. Sections D.1 and D.2 list the characteristics and
contents of the magnetic tape, and Section D.3 discusses
general aspects of program installation (e.g., user access
to files). Section D.4 describes general and specific
program characteristics (e.g., I/0 units and maximum
values) , and supplies estimates of computer core
requirements. Instructions for modifying these features are
given in Section D.5; Cyber users must always make the
changes noted in Section D.5.3. Additional modifications
(e.g.., for array sizes and width of lineprinter output) are
explained in Section D.6.

D.1 TAPE SPECIFICATIONS

9-track

IBM EBCDIC characters
Unlabelled

Density=1600 bpi
Blocksize=160

Logical record length=80
0dd parity

NSO whe

D.2 TAPE CONTENTS

There are 11 files altogether. Files 2 and 7-11 inclusive
contain Fortran source code for programs in the PARAFAC
package, while the other files are for testing tape reading
and program installation.

1. (37 records) -Descriptive information about the
program package. It 1is 1included to
check your tape reading accuracy (see
Appendix E for a copy of its contents).
Note that for this file only, column 1
of each record is blank.
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2. (3929 records) -Source code for synthesis version of
PARAFAC program (i.e., program to
generate as well as analyse data).

3. (17 records) -Input parameter file to be used in
testing PARAFAC synthesis program (i.e.,
file 2).

4. (147 records) -Data file that should be output if
PARAFAC executes correctly using file 3
as input (may be small differences due
to round-off).

5. (128 records) -Loadings file that should be output if
PARAFAC executes correctly using file 3
as input (may be small differences due
to round-off).

6. (8 records) -Input parameters to be used (with file 4
as input data) in testing PARAFAC
synthesis and non-synthesis versions
(i.e., files 2 and 7 respectively).

7. (3264 records) -Source code for non-synthesis version of
PARAFAC (i.e., program to analyse data
but not synthesize it).

8. (187 records) -Source code for DIMS (i.e., program to
redimension arrays in PARAFAC) .

9. (1214 records) -Source code for PFPLOT (i.e., program to
plot factor loadings).

10. (780 records) -Source code for CMPARE (i.e., program to

compare factors from different
solutions) .

11. (564 records) -Source code for DISTIN (i.e., program
to transform data before input to

PARAFAC for analysis).

D.3 PROGRAM INSTALLATION

System installation of tape files 2 and 7-11 is

discussed below. Hereafter, the files are referred to as
PARAFAC (S) , PARAFAC (NS), DIMS, PFPLOT, CMPARE and DISTIN
respectively. PARAFAC is used whenever a comment applies to

both the PARAFAC (S) and PARAFAC(NS) files.

As noted above, PARAFAC(S) can both synthesize and
analyse data, while PARAFAC(NS) can only analyse data.
PARAFAC (NS) requires less core memory to load and it may be
possible to use it should PARAFAC (S) exceed the core limits
of a small computer system. (Core requirements are given, in
Section D.4.3.) Otherwise, it is only necessary to install
PARAFAC (S) .

As specified in the multi-user lease agreements, user
acess to the source code of all programs, except for the
main program of PARAFAC (S) and PARAFAC(NS), 1is prohibited.
Thus, all programs should be compiled and stored so that
users only have access to the compiled files. (This does
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not apply for single-user agreements.)

When installing PARAFAC under a multi-user agreement,
the main program must first be separated from the
subroutines. This can be accomplished by running DIMS,
which creates a file containing only the source for the main
program (DIMS parameter values for this are given in the

footnote Dbelow). Or, you can split the PARAFAC program at
line 1150 (line numbers are discussed in D.4.1.2 below) and
put everything up to and including line 1150 (i.e., the main
program) in one file, and all subsequent code (i.e., the
subroutines) in a second file. The main source code and the
compiled subroutines should then be made accessible to all
users. Users must run DIMS to get their own redimensioned

copy of the main program, and then compile and 1link it to
the other compiled subroutines to run a PARAFAC job.

Those under single-user agreements may use the
procedure noted above for PARAFAC installation. Or, if they
do not want a separate main created whenever they run DIMS,
they may remove the comment 1line numbered 1140 in the
PARAFAC program (i.e., C DECK END THIS CARD MUST BE
INCLUDED IF PROGRAM DIMS IS TO BE RUN). Then when DIMS is
run, the entire PARAFAC source (i.e., redimensioned main and
all subroutines) are written to a new file. The new source
may then be compiled and run without linkage to any other
subroutine files. This method may be simpler for those who
are less familiar with computer techniques, but it requires
more disk storage space.

D.4 PROGRAM CHARACTERISTICS
D.4.1 General Features

Installation of the programs on most systems should

require little effort. The source code is portable and well
documented by comments, and the lines of the code are
numbered. All program variables are single-precision,

except the seed for the random number generator in PARAFAC,
and all arithmetic computations are also single-precision.

To create a separate PARAFAC main identical to the one on
the tape, the two DIMS parameter cards should contain:
STANDARD PROGRAM

18 18 35 10 50
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D.4.1.1 Portability. - All programs except PFPLOT conform
to PFORT specifications. PFORT 1is a portable subset of
American National Standard Fortran X3.9-1966 (published by
American Standards Association, Inc., 10 East 40th Street,
New York, N. Y. 10016). The minor deviations of the PFPLOT
code from PFORT (i.e., alphanumeric variables contain 2
characters rather than 1 as specified by PFORT) should cause
no problems on most systems. However, if your system
restricts the contents of an alphanumeric variable to 1
character, PFPLOT cannot be installed (since it cannot
easily be modified to work with 1 character per variable).

D.4.1.2 Line Numbers, - The records of each program are
consecutively numbered in steps of 10, with the line number
right-justified in columns 76-80 of the line (leading zeroes

suppressed) . For example, the first record of PARAFAC(S)
contains 10 in columns 79-80 and the last contains 39290 in
columns 76-80. Line numbers are referred to below in the

instructions for altering program features.

D.4.1.3 Note For Cyber Users Only. - "PROGRAM" statements
are not part of the executable code in any of the programs.
Such statements must be included for the programs to run.
See Section D.5.3 below for instructions.

D.4.2 Specific Features

Listed below are specific program requirements.
Depending on your system, some may have to be modified.
Instructions for doing so are provided in the next section.

1. Input and Output Unit Program
Number
Standard input 5 all
(e.g., cards)
Standard output 6 all
(e.g., lineprinter)
Default for data output 7 PARAFAC, DISTIN
"Scratch" file for I/0 1 CMPARE only
during program execution
Data input 1 DIMS only
Data output 2 DIMS only
2. Maximum Values Program
Floating point: 10.E30 PARAFAC, DISTIN

Integer: (2**31)-1 (i.e., 2147483647) PARAFAC only
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D.4.3 Core Requirements

Estimates of the computer core necessary to load each

program are shown below (1K=1024 words; estimates are based
on compilation by a CDC Cyber 170). Not included 1in the
"total" and '"program only" estimates is the space required
by I/0 buffers, which is system-dependent. The "array only"
estimates are based on standard arrays (i.e., with no
changes made); if PARAFAC arrays have been redimensioned
via DIMS, a new estimate can be computed from the

information printed on the DIMS listing.

If the total core requirement for any program exceeds
the capacity of your system, it may be reduced by decreasing
the size of some arrays. Instructions for doing so are
provided in Section D.6.1.

Program Arrays

Program Total Only Only
PARAFAC (S) 41K 27K 14K
PARAFAC (NS) 34K 20K 14K
DIMS 11K 11K G
PFPLOT 32K 10K 22K
CMPARE 46K 13K 33K
DISTIN 14K 11K 3K

D.5 PROGRAM MODIFICATIONS
In the instructions below, the line to be altered in
the source code 1is 1identified by the number contained in

columns 76-80 of the line (e.g., 1line 10 means the line
numbered 10, not the tenth line of the file).

D.5.1 1I/0 Changes

1. Standard Input and Output

Consecutive assignment statements (i.e., ISTDIN = 5;
ISTDOU = 6) in the source code of each program set the
standard input and output units to 5 and 6 respectively. To
reset the standard input wunit, <change 5 1in the first
statement; to reset the standard output unit, change 6 in
the second statement. The appropriate 1line numbers for
these changes are listed below; the first number applies to
the statement for the input wunit and the number in

parentheses refers to the statement for the output unit):

DIMS -- Line 490 (500)
PFPLOT -- Line 2090 (2100)
CMPARE -- Line 1580 (1590)
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DISTIN -- Line 970 (980)
PARAFAC -- Either run DIMS, specifying the desired
numbers in the parameter file (recommended procedure)
or modify line 790 (800)

2. Default Diskfile Output

PARAFAC -- Either run DIMS (recommended), or change 7
in the assignment statement on line 810 (ISTDLD = 7).
DISTIN -- Change 7 in the assignment statement on line
990 (ISTDTD = 7).

3. CMPARE "Scratch" 1/0 Eile
Change 1 in the assignment statement on line 1860
(IUNIT = 1).

4. DIMS Data Input and Output
Input unit -- Change 1 in the assignment statement on
line 510 (IUNITA = 1).
Output unit -- Change 2 in the assignment statement on

line 520 (IUNITB = 2).

D.5.2 Maximum Values

1. Eloating Point

The maximum floating point value 1is set in an
assignment statement (VLARGE = 10.E30). If your system
cannot represent 10.E30, change this value to the maximum

allowed on your system.

PARAFAC -- Line 930

DISTIN -- Line 1020
2. Integer

If your system does not provide for a minimum 32-bit
representation of integers, 1t cannot represent the value

(2**31) -1 as an integer (i.e., 2147483647). In this case,
you must use the double-precision floating point version of
the PARAFAC subroutine that generates random numbers (all
computations in it 1involve double-precision arithmetic).
This version will work on any system that can represent
(2**31) -1 exactly in double-precision (i.e., any system with
a minimum 16-bit representation of integers).

Implementing the double-precision floating point
version involves two steps. The procedure is the same for
both PARAFAC (S) and PARAFAC(NS), but the 1line numbers are
different. The numbers in parentheses in the instructions
below apply to PARAFAC (NS) .

1. Lines 38520-38840 (31870-32190) inclusive:
Either delete from the source code or replace all
blanks in column 1 by "C" (i.e., change all
executable statements to comments). This step
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eliminates the integer version of the random
number generator.

2. Lines 39020-39270 (32370-32620) inclusive:
Replace the characters '"CX" in columns 1-2 with 2
blanks (but do not alter lines with "C" in column

1 and Dblank in column 2). This procedure
transforms the code for the double-precision
floating point version from comments to executable
statements.

D.5.3 Cyber Users Only

A PROGRAM statement with "C" in column 1 has been
included near the beginning of each program. You can either
replace the "C" in column 1 of that 1line (and its
continuation 1lines, if any) with a blank to make the
statement executable, or you can insert your own PROGRAM
statement at the beginning of the program. Note that if you
change the I/0 units (described above), you must also modify
the PROCRAM statement provided 1in the source code if you
want to use it. In any case, the user should be informed of
which wunits are permissible to wuse. Currently, PROCRAM
statements are as follows:

Program Line(s) 1/0 Units Specified

PARAFAC 130,140 1-9 inclusive

DIMS 10 1, 2, 5 and 6

PEPLOT 10 1, 5 and 6

CMPARE 10-40 1-28 inclusive

DISTIN 10, 20 1-7 inclusive

Using the PROGRAM statements provided (i.e., without
modification) will add approximately 1K per I/0 unit to the
core memory requirements of the programs, assuming the
default Dbuffer size 1is 1K. For example, the 9 units

specified in PARAFAC will increase the total PARAFAC core to
load, given in Section D.4.3, by roughly 9K.

D.6 MISCELLANEOUS MODIEFICATIONS
D.6.1 Array Dimensions

Except for PARAFAC, <changes in array size should
generally be necessary only 1if the current core memory
requirements exceed the computer capacity; the arrays of
the other programs are large so that they can accommodate
most data without modification. The DIMS program enables
each wuser to redimension the PARAFAC arrays for himself and
thus no changes are necessary during installation of
PARAFAC. For the other programs, however, any changes must



w]
®

PARAFAC PACKAGE INSTALLATION (VERSION 6H)

be made during program installation, since wuser access to
the source code 1is not allowed (unless the lease is a

single-user agreement). Listed below are the program
limits, along with instructions for changing them if
necessary.

PARAFAC. Both versions of PARAFAC can accommodate data
sets up to 18x18x35 in size (number of levels in Modes A, B
and C respectively), with up to 50 missing values, and can
extract up to 10 factors. The arrays thus require about 14K
single-precision words of memory. To modify any of these
limits, use DIMS. The DIMS lineprinter output tells you how
much space the newly dimensioned arrays require.

PFPLOT. As dimensioned, the arrays of PFPLOT require
about 22K single-precision words of memory. Two types of
limits must be adhered to:

1. Mode level limits -- The maximum number of levels in
each mode is 250.

2. Product limits -- The product 1is the number of
levels per mode times the number of factors. For both
Modes A and B, the maximum allowed product 1is 1500;
for Mode C, the maximum allowed is 3500. For example,

up to 14 factors can be plotted if the data set has 100
levels 1in each of Modes A and B and 250 levels in Mode
C, but only 6 factors can be accommodated if there are
250 levels in each mode.

One or more of the following changes may be made if
required:

la) . Modifying the mode level limits
Mode A -- Change 250 in MXNAS = 250 (line 1990) and
in CH1 (250) (line 1680).

Mode B -- Change 250 in MXNBS = 250 (line 2000) and
in CH2 (250) (line 1680).
Mode C -- Change 250 in MXNCS = 250 (line 2010) and

in CH3(250) (line 1680).

Note: If the limits for any mode are increased beyond
250, also delete 1lines 5470, 5480 and 5580-5610
inclusive (6 lines altogether). In this case, you
should also make the modifications listed in 1lb) below.
Otherwise, you will have to specify labels for all
levels of the mode(s), as PFPLOT only assigns defaults
for a maximum of 250 levels.

1b) . Change 250 in CHCOD1 (250) (lines 1710, 4490, 7010
and 8890) .
Insert character codes (labels) for CHCOD1 (251),
CHCOD1 (252), etc., starting at line 5350.

2. Modifying the product limits
Mode A -- Change 1500 in MAXA = 1500 (line 2020) and
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in A(1500) (line 1600).
Mode B -- Change 1500 in MAXB
in B(1500) (line 1660).
Mode C -- Change 3500 in MAXC
in C(3500) (line 1660).

1500 (line 2030) and

Il

3500 (line 2040) and

CMPARE. As dimensioned, the arrays of CMPARE require
about 33K single-precision words of storage. Three types of
limits must be adhered to:

1. Mode level limits -- The maximum number of levels in
each mode is 250.

2. Factor limits -- The maximum number of factors in
the merged set is 75.

3. Product limits -- The maximum product in each mode
is 8750. This is the product of the number of levels
in the mode and the largest number of factors in any
one loadings set. The merged set will usually have the
most factors, unless the input sets are large and only
a few factors are selected for merging.

One or more of the following changes may be made 1if
required:

1. Modifying the mode level limits
Mode A -- Change 250 in MXNAS
Mode B -- Change 250 in MXNBS
Mode C -- Change 250 in MXNCS

250 (line 1460).
250 (line 1470).
250 (line 1480).

2. Modifying the factor limit
Change 75 in MXFACT = 75 (line 1490) and in R (75,75)
(line 1390).

3. Modifying the product limits
Mode A -- Change 8750 in MAXA = 8750 (line 1500) and
in A(8750,1) (line 1380).
Mode B --Change 8750 in MAXB = 8750 (line 1510) and
in B(8750,1) (line 1380).
Mode C -- Change 8750 in MAXC = 8750 (line 1520) and
in C(8750,1) (line 1380).

DISTIN. As dimensioned, the DISTIN arrays require
about 3K single-precision words of storage. The limits are

as follows:

1. The maximum number of levels in each of Modes A .and

B is 40.
2. The maximum number of levels in Mode C is 250.
(i.e., data up to 40x40x250 can be accommodated without

redimensioning DISTIN)

One or more of the following changes may be made if
required:
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Mode A -- Change 40 in MXNAS = 40 (line 930). Also,
change 1600 (= MXNAS * MXNBS) in DIS(1600,1) (line 870)
to the new product (= new MXNAS * MXNBS) .

Mode B -- Change 40 in MXNBS = 40 (line 940). Also,
change 1600 (= MXNAS * MXNBS) in DIS(1600,1) (line 870)
to the new product (= MXNAS * new MXNBS).

Mode C -- Change 250 in MXNCS = 250 (line 950) and 1in
ADDCON (250) (line 870) .

D.6.2 Width Of Tabular Lineprinter Output

If the programs are to be used with, say, 80-column
CRTs or 72-column teletypes, printer wraparound will make
PARAFAC and CMPARE tables and PEFPLOT plots hard to read.
(DIMS and DISTIN lineprinter output 1is not obscured by
wraparound.) This problem can be overcome by making minor
changes in the source code.

PARAFAC. Currently, PARAFAC prints tables up to 124
characters across. The user can alter this width by using
DIMS, and so no change in the code need be made during
installation.

PEFPLOT. To use the option for two-way plots, you must
have a printer capable of printing 130 characters per line;

otherwise, printer wraparound makes the plot unreadable. No
simple revisions to the code will overcome this limitation.

Currently, one-way plots require 12 columns, plus 15
columns per factor, up to at most 117 columns (i.e., a
maximum of 7 factors). A few changes in the source code
will reduce the maximum width required. For example, for
output to an 80-column CRT, you will want to change the
maximum number of factors from 7 to 4 (i.e., the maximum
required is then 72 characters across). To do so:

1. Replace 7 by 4 on lines 9280, 9320 and 9330.

2. Replace -6 by -3 (i.e., -4+1) on line 9290.

3. Replace 7(A2,... by 4(A2,... on line 10530.

CMPARE. Tables require 3 columns, plus 6 columns per
factor, up to at most 111 columns (i.e., a maximum of 18
factors). To change this requires only that the 10 on line
1560 of the code be changed to a new value. The maximum
width of the output is reduced (increased) 12 columns per
unit that the new value is less (greater) than 10. .

For example, to reduce the output width for an

80-column CRT, you would substitute 7 for 10 on line 1560.
This reduces the maximum output width by 36 columns to 75,
which is within the capacity of an 80-column printer.
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CONTENTS OF TAPE FILE 1

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 =+-*/(), .$"
= EQUALS SIGN

PLUS SIGN

MINUS SIGN
ASTRISK

SLASH

LEFT PARENTHESIS
RIGHT PARENTHESIS
COMMA

DECIMAL POINT
CURRENCY SYMBOL

" QUOTATION MARKS

Ly« v AN L+

LISTED ABOVE IS THE FORTRAN CHARACTER SET USED IN
THE FORTRAN SOURCE CODE ON THIS TAPE. EXCEPT FOR
THE QUOTATION MARKS, IT IS RESTRICTED TO THE
STANDARD CHARACTER SET AS DEFINED BY THE 1966
FORTRAN STANDARD (SEE BELOW). WHILE WE HAVE
EMPLOYED QUOTATION MARKS IN COMMENT LINES

TO IMPROVE CLARITY, THEY ARE USED NOWHERE ELSE.
SINCE COMMENT LINES ARE NOT COMPILED, THE USE OF
QUOTATION MARKS IN COMMENTS SHOULD NOT AFFECT
PORTABILITY.

THIS IS THE FIRST FILE OF THE PARAFAC ANALYSIS PACKAGE

COPYRIGHT 1980 BY RICHARD A. HARSHMAN

P.A.P. IS A PROPRIATARY SOFTWARE PACKAGE, AND MAY NOT BE REPRODUCED
OR DISTRIBUTED WITHOUT PRIOR WRITTEN PERMISSION OF

RICHARD A. HARSHMAN, OR HIS DESIGNATED REPRESENTATIVE OR AGENT.

THE SYNTAX AND CONVENTIONS OF THE PROGRAMS IN THE

PARAFAC ANALYSIS PACKAGE CONFORM TO THE X3.9-1966 FORTRAN STANDARD.
SEE AMERICAN STANDARD FORTRAN, X3.9-1966

PUBLISHED BY AMERICAN STANDARDS ASSOCIATION

10 EAST 40TH STREET

NEW YORK, N. Y. 10016

NOTE--IN THIS FILE ONLY, ALL CARDS HAVE A BLANK IN COLUMN 1
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