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An integrated approach to analytical calibration from a tensorial perspective is
introduced. Tensorial theory provides a proper language to address the calibration
problems for first, second and higher order analytical instruments. A instrument that
yields an n- dimensional matrix of data per sample is defined as a nth-order instrument.

First order tensorial calibration (FOTC) is used to describe multivariate calibration
methods and illustrate tensorial concepts. It is shown that the most essential step in
FOTC is building the calibration model. Several methods for multivariate calibration are
them discussed from this perspective.

Second Order Tensorial Calibration (SOTC) is defined as calibration of
instruments that produce two-dimensional (2D) data. Focus is given to bilinear
instruments, for which the 2D data can be modeled as an outer product of the intrinsic
patterns in each order, such as liquid chromatography with a diode-array UV detector
(LC/DA-UV) where the data can be modeled as the outer product of the UV spectrum and
the chromatographic profile. The Generalized Rank Annihilation Method (GRAM) is
introduced as a method for calibration and resolution of the pure spectra. Only one

calibration mixture and its bilinear data are necessary to determine all the analytes of




interest. Then the bilinear data of each unknown sample is processed with GRAM

yielding the pure spectra and their concentrations relative to the calibration sample.
Computer simulations and experimental LC/UV data are used to illustrate GRAM.

The possibilities and limitations of GRAM are discussed in relation to the different factors

that affect the quality of the results, including pattern similarity, similarity of the relative

concentrations, noise level and number of components.
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INTRODUCTION

The analytical chemist is confronted frequently with the problem of analyzing a
chemical sample to identify some of its constituents (qualitative analysis) and determine
their relative amounts (quantitative analysis). To solve this problem, an instrument is
usually necessary to analyze the sample. The instrument produces signals (e.g.,
voltages or currents) which ideally are related to the amount of the constituents of interest
(analytes) present in the sample. The process of building a model that predicts amounts
(or concentrations) from the instrument responses is called calibration.

An example of calibration is the classical calibration curve. The instrument
Teésponses are measured with set of calibration standards of known concentration. If a
linear model is appropriate, then a least-squares regression may be used to estimate the
model parameters. This is a univariate problem (only one variable). Concentrations of
future samples may then be estimated by using the linear model. Univariate calibration
requires an instrument response to be dependent only on the analyte of interest. In order
to fulfill this condition, the analyst either separates the analyte from the other constituents
of the sample that interfere with the instrument response (complete resolution) or uses a
highly selective instrument (complete selectivity).

Classical univariate calibration forces the chemist to make sure there are no
interfering species. If inadvertently an interferent component is present, there is no way
to detect the error, much less to correct it. On the other hand, univariate calibration is

well understood, and it is the easiest to adopt. Even when an instrument is available that
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produces multivariate information, on many occasions, most of data is discarded in

order to use the more comfortable and intuitive univariate calibration.

With the development of instruments that produce many responses per sample,
e.g., a UV-Vis absorption spectrometer, it is no longer necessary to achieve complete
resolution or selectivity. Using multivariate calibration methods, such us multiple linea:

regression, the analyst could estimate concentrations of multicomponent samples if the

spectra of all the constituents present in the samples is known (Direct Calibration).

Another possibility is to record the spectra of multicomponent calibration samples for

which the concentrations of the analytes of interest is known (Indirect Calibration)

[Martens and Naes, 1984].

Multivariate calibration relates a set of signals from a multi-channel instrument t
the concentrations of one or several analytes in a sample. In general, instrument
responses are recorded from a set of multicomponent calibration samples from which the
concentrations of the analyte(s) of interest are known. A prediction model is built with
this information. Then the instrument responses from the unknown sample(s) are
obtained. If the responses can be fitted to the model, then the concentrations of the
analytes can be estimated. If the responses cannot be fitted to the model, the sample is
rejected as an outlier; it probably has interferent components. Interferences can be

detected using multivariate /inear calibration, but they usually cannot be corrected [Oste

e ——— ST - —

and Kowalski, 1984].

In spite of the limitations of multivariate calibration, Ho and coworkers presentc
CONWIIETS Pesn

a calibration technique that allowed quantitation even in the presence of interferences nof

accounted for in the calibration set, namely, the rank annihilation (RA) method [Ho

et al, 1978, 1980, 1982]. The implications of this discovery were remarkable: most

research in analytical chemistry is designed to increase resolution, selectivity and
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eliminate interferences, but rank annihilation worked without all those restrictions. They

i.e., the experimental responses are a matrix, M = XYT, where X andY'_ra_lre matrices

that represent the intrinsic factors responsible for the observations® .

The RA method requires one calibration matrix per analyte of interest, N;, and

the unknown, or test sample data matrix, M. The method consists o{ iteratively

computing the matrix D = (M - 8 Ny) and varying 4 until the rank of D decreases in one
unit. In practice, they used the value of 3 for which the smallest significant eigenvalue
of the matrix D was a minimum. This method has been successfully applied to
emission-excitation fluorescence [Ho et al, 1978, 1980, 1982], LC/UV [McCue and
Malinowski, 1983], and TLC-reflectance imaging spectrophotometry [Gianelli e al,
1983; Burns ez al, 1986] with good results. Appellof and Davidson extended RA to
tridimensional arrays [Appellof and Davidson, 1983].

Burns and coworkers have shown, that when only information in one order is
available for the analyte of interest (e.g., only its UV spectrum is available for LC/UV
data), quantitation using RA is still feasible if the data in the other order can be restricted
in some way, e.g., a non-negativity constrain can be applied to a chromatographic

concentration profile for LC/UV data [Burns er al, 1986]. In ordinary RA, the matrix

Ny can be modeled as the outer product of the intrinsic factors belonging to one analyte,

Ny = x, y,T. If only one of the vectors is known, e.g., x;, they showed that all

possible vectors y, that reduce the rank of the matrix (M - 3Ny by one unit (for certain
- J3) are limited to a single line in the vectorial space of y,. Combining this fact with the

non-negativity constrain gives a unique solution to Y Which is later used to compute .

* A typical example of this is the data generated in liquid chromatography, using a multi-wavelength UV
absorbance detector (LC/UV). The columns of the matrix X represent the pure spectra of each component
present in the sample. The rows of YT represent the pure component elution profiles.
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Lorber and Kim independently introduced a non-iterative version of the RA
method, presenting the problem as a generalized eigenvalue-eigenvector equation for
which a direct solution is found by using the singular value decomposition (SVD)
[Lorber, 1984, 1985; Kim, 1984]. The SVD of the matrix M, i.e, M=US VTis
used to compute its pseudoinverse, M+, and then the trace of the matrix M+N, is equal
to the ratio of concentrations.

Multivariate Calibration cannot account for the results of the RA method, mainly
because multivariate calibration deals with vectorial quantities, and RA deals with
matrices. As multivariate calibration is a generalization of univariate, RA could probably
be explained within the context of a generalization of multivariate calibration. Tensorial
Calibration provides such generalization.

Using a tensorial description of rank annihilation, the generalized rank
annihilation method (GRAM) has been developed. GRAM alle  or simultaneous
determination of several analytes from a multicomponent unknown using a single
calibration sample containing a mixture of standards of all the analytes of interest
(Quantitative analysis). GRAM also extracts the intrinsic spectra of the two orders for
each analyte that is determined (Qualitative analysis). E.g., if the bilinear data comes
from an emission-excitation fluorescence instrument, then GRAM will estimate the

emission and the excitation spectrum for each individual analyte shared by the samples,

and their ratio of concentrations. If the data comes from an LC/diode-array UV
instrument, then GRAM estimates the UV spectrum and the chromatographic
concentration profile for each analyte shared by the samples and their ratio of

concentrations.




Tensors

Multivariate calibration can be described with the vectorial language, but rank
annihilation (RA) cannot. It could be said that vectorial theory does not “span” the space
that explains RA. This work shows that tensorial theory does. Simultaneously, by
being a generalization of vectors, tensors can also describe multivariate calibration.

A vector is analogous to a first order tensor. A matrix of data can be considered
to be the components of a second order tensor. A single number can be thought of as the
component of a zero order tensor. Similarly, chemical measurements can be classified
into zero, first, second and higher order, according to the data that they produce. A pH
meter is a zero order instrument, a UV spectrometer is a first order instrument, and a
video fluorometer [Warner et al, 1975; Johnson et al, 1977] is a second order
instrument.

Tensorial theory, or the tensorial language, provides a unified approach to
calibration and chemometrics. When different chemometric methods are explained from
the same ground, their advantages and disadvantages, similarities and differences
become more clear. It also provides a framework for what could be the beginning of a
fundamental theory of Analytical Chemistry.

No extensive description of the tensorial theory will be presented here, but an
appendix describing the essentials of tensorial theory is included, adapted from
Budiansky's introduction to tensors [Budiansky, 1974]. The difficulty of the tensorial
notation, with multiple subindexes and superindexes has been avoided, in favor of a

more intuitive notation to facilitate the understanding of the equations.
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Accomplishments

The most important accomplishments of this work are itemized below:
* The Generalized Rank Annihilation Method (GRAM) has been developed.
GRAM takes two multicomponent bilinear matrices M and N, and extracts the

underlying factors x; and y; that are common to both samples, and their respective

concentration ratios.

* An integrated approach to multivariate, multi-order calibration is presented,
that is an appropriate framework for a formal theory of measurement in chemometrics.

* The effect of the experimental noise in the results of GRAM have been studied
theoretically and with computer simulations.

* The first application of GRAM to experimental data (LC/UV) is presented.

Organization

The first chapter uses multivariate calibration to introduce some of the useful
tensorial concepts and at the same time provides interesting insights into the subject. The
second chapter, second order tensors, shows how tensorial theory is used to explain
rank annihilation (RA) and naturally develop a new method denominated the generalized
rank annihilation method (GRAM), a calibration and curve resolution method for bilinear
data. Examples of the application of the theory to simple and complex simulated and real
experimental samples will be given. The last section of the second chapter presents a

short discussion of the potentials of third and higher order instrumentation.




CHAPTER I
FIRST ORDER TENSORIAL CALIBRATION

First order tensorial calibration is known in the literature as multivariate
calibration. The intention of this chapter is to present known concepts from linear
multivariate calibration from a tensorial perspective. This will provide a familiarity with
the subject that will make the next chapter more readable. It also provides certain insights
into calibration that are worth mentioning.

There will be no discussion of classical univariate (single sensor) calibration, that
would correspond to zero order calibration. The only aspect worth mentioning in this
context is that zero order tensors, like vectors, need a base of reference. For example,
it is not very useful to say “the concentration is 5.3”. Units should be specified, or at
least they must be implicit. It is more useful to say “the concentration is 5.3 g/I”. The

number 5.3 by itself does not have significance if not referred to its base, in this case g/!.

If the base is changed, the component 5.3 must also change. For reviewing univariate

calibration see e.g. [Garden er al, 1980; Mandel and Linnig, 1957].




Multivariate Calibration

The task of multivariate calibration is to find a predictive model that relates two
vectorial spaces. Interest in multivariate calibration in analytical chemistry has grown
from very few publications in the last decade to a very important topic during the last few
years. The widespread availability of computers and the increasing amounts of data that
the experimentalist obtains has prompted this change in interest in multivariate methods.
For recent reviews see, e.g., [Carey et al, 1986; Ramos et al, 1986; Martens, H. and
Naes, T., 1984; Brown, P. J., 1982].

An example of a specific problem for multivariate calibration is multicomponent
analysis by infrared spectrophotometry [see, e.g., Maris et al, 1983]. The infrared
spectrum of a group of calibration samples is recorded; then a prediction model is built
that relates the spectra with the concentrations of the analytes of interest. Finally, the
spectrum of an unknown sample is recorded, and the concentrations of the analytes are
estimated.

In this work, calibration will refer to calibration of an analytical instrument. The
instrument is calibrated to estimate some property of an object or sample. In first order
calibration, an instrument that produces a vector of responses for a given sample is used.
This discussion will be based on the assumptions that the objects are homogeneous
multicomponent samples of matter and the property to estimate is the concentration of one
or several constituents (analytes) present in the samples. Not to reduce generality, but to
make the topic less abstract, it will be assumed that the instrument is an array of sensors,

such us a diode-array UV (DA/UV) detector.




Vectors

A vector is an n-tuple of real numbers or components, represented as
=(rp, r2 ... r,). These components are the coordinates of a point in a
n—dimensional abstract space. They are relative to the base vectors, i.e., asetof
independent vectors that span the vectorial space. Multivariate calibration and, in
general, multivariate analysis, use vectorial quantities, and a vector space approach has
already been proved to be very useful in describing these subjects [Eaton, 1983].

The numerical value of the responses of a sensor array can be arranged as the
components of a vector r. Therefore, this sensor array response “pattern” can be
considered a vector in a multidimensional vectorial space, where the base vectors of the
space are the unitary responses for each sensor, and the components are the actual
numbers that the sensor array has provided. Fig 1.1 provides a simple example for a
two-sensor case, where the components of the vector r in the base {u; , u,} are (4.0,
3.0) respectively.

The response pattern of a multicomponent sample is a function of many factors,
where the concentrations of the analytes present in the sample are potentially the most

important ones. A generalized calibration model would relate the instrument responses

indirectly to the concentrations of analytes [see, e.g., Friedman, 1986; Friedman and

Stuetzle, 1981]; it will be assumed that there is a direct linear relationship between the

array responses and the concentrations of the analytes,

q
r = Zcixi + X, + € [1.1]
i=1 i




Q

10

where r (p x I) is the response of an array with p sensors, to a sample with g analytes,

c; is the concentration of the analyte i, x; (p x 1) is the array's vector of responses of the

pure analyte i; X,(p x I) is the array response of the background, and &(p x I) is the

model error.
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Bases and Components, Covariant and Contravariant*

When there are only two analytes present in a sample, and the background and
error terms are not taken into account in Eq 1.1, the array pattern r can be modeled as a
simple linear combination of the analytes patterns x; and x; (Fig 1.2),

r = ¢c;jX; + 2% [1.2]
it is interesting to observe that if the vectors x; are defined as the pure analyte patterns at
unitary concentration of analyte i, then the vectorial components of r in the base
{x;, X3} are simply the concentrations c; and c;.

Therefore, the problem of multivariate calibration involves finding the
components of the response vector on an specific set of base vectors, each of them
corresponding to the array pattern of responses from a unitary amount of each analyte
present in the sample.

It is known that a vector is defined by its base vectors and its components. For

an orthonormal base of vectors u; (orthonormal vectors are defined as unitary length

perpendicular vectors), the components c; of a vector r are equally defined by the explicit

projection formula or the implicit composition formula (see Appendix A)
projection c; =Ty [1.3]
composition r= Xcu [1.4]

where the symbol “-” represents the dot product between two vectors. The components

— — N i p——

c; from both Eqs 1.3 and 1.4 are the same, because the base is orthonormal. The
—~— -

projection formula relates concentrations to response patterns directly, but the

composition formula requires finding simultaneously all the c; such that Eq 1.4 is an

identity. Naturally, it is more convenient to use the projection formula. Fig 1.3

illustrates this, again for a two-sensor case. If the patterns of the analytes present in the

PEN
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mixture were orthogonal to each other, the calibration problem could be solved directly,
using the projection formula, i.e., Eq 1.3.

Unfortunately, patterns of real pure analytes are seldom orthogonal, and the

Oém/(/‘

concentrations have to be indirectly estimated from the composition formula. General A
L oo =
bases have two kinds of components: the projection formula gives the covariant } Ve L n:

components and the composition formula gives the contravariant components. 1t is usual

to denominate a general base as a covariant base. The contravanant components are the

most valuable for the analysis, because they are equivalent to the concentrations.

Any general, non-orthogonal base also has an associated contravariant base. Fig

1.4 illustrates a non-orthogonal base {x;, X} and its contravariant form {x;*, x,*}, in

a bivariate space. The contravariant base is useful because the roles of projection and

composition are opposite to those for the covariant base. Therefore the contravariant

components (concentrations) can be estimated directly using the projection formula on the

contravarlant base,

¢ =7r1°- Xl"" [15]
If x; is the pattern of analyte 1, then x;* represents its contravariant pattern. The

contravariant pattern depends on the patterns of all other analytes {x;,,} present in the

T sample because it is perpendxcular to all of them. Figs 1.5 - 1.8 should illuminate these

—_—

points with a bivariate case. x;* is also dependent on x; because it is constrained by its
definition, x;*-x; =1 (Eq A.12, Appendix A). These dependencies are true if the
number of analytes (g), is equal or less than the number of sensors ( p). If p < g (fewer
sensors than analytes), the patterns {x;} do not form a base, because they cannot be
linearly independent, and the contravariant vector is not defined. If p > g (more sensors

than analytes), the contravariant pattern is additionally restricted to lie within the

subspace spanned by the base {x;}
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In summary, each analyte present in the sample has a covariant response pattern,

a contravariant pattern and a concentration. The dot product of the sample pattern with an

estimated contravariant pattern results in an estimated concentration, therefore,

estimating the contravariant sensor array pattern of an analyte in a sample solves the

calibration problem.

But, how is the contravariant pattern estimated? A set of calibration samples is
necessary for which the concentration of the analyte is known in advance. The samples
may be analyzed directly (external calibration) or they may be added to the unknown(s)
before the analysis (GSAM, generalized standard addition method [Saxberg and
Kowalski, 1979] ). Only the former case will be discussed, but the concepts presented
here may be extended to GSAM. The calibration samples muLs%s”'e)lected to contain all of =
the components present in the future unknown samples, with /rgt’io_s of concentration -/'
gﬁg@nt enough to fully span all the variations of interest [Zemroch, 1986; Honigs et al,
1985]. Calling R the matrix whose rows are the response patterns of all the samples in
the calibration set, an equation similar to Eq 1.5 can be written,

' ¢, = R x;+ [1.6]
where ¢; is a vector with the concentrations of the i*# analyte in every calibration sample.
In practice, Eq 1.6 is an approximation, because of the experimental error in the
measurement of R and ¢;,, and in some cases also because of possible deviations from
the linear model. The concentrations vector c; is known and the patterns R are measured,

therefore the contravariant vector x;* can be estimated by obtaining a pseudoinverse [see

¢.g. Lawson and Hanson, 1974] of the matrix R, ie., R+,
X+t = R+ ¢ [1.7]




R i
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where the symbol “A” stands for estimate. It will be shown that the difference between

the most common multivariate linear calibration methods used in chemistry lies in the

—————————— —-— e

computation of the pseudoinverse of R.
The pseudoinverse, R+, of the second order tensor R is another tensor such that

. the dot product (defined in the response space) of the two is an identity tensor within the

subspace spanned by the {x;} base. The product of that identity tensor with any vector

e —————

in that subspace leaves it unchanged and the product with any vector outside of the
subspace simply projects it into the space (Analogous to target factor analysis,
[Malinowski and Howery, 1980; Lorber, 1984B] ) In general, the pseudoinverse is not
equal to the inverse R-1, because the components of R do not usually form a square
matrix. Also, the generalized inverse (defined as R-= (RTR)-IRT) often can not be
used as a pseudoinverse [see, e.g., Mandel, 1982; 1985], because the covariance matrix
RT R may not be invertible.

The sensor array patterns of the calibration samples can be represented as a group
of points in a multidimensional pattern space. For example, in spectroscopy, the
number of wavelengths, or dimensions of the space is often as high as one thousand.
Clearly, the number of dimensions of the space is probably much higher than the
dimensionality of the subspace spanned by the calibration samples spectra. In addition,

also the number of calibration samples is usually higher than the intrinsic dimensionality

v
\fv/ ffJ of the calibration. Therefore, in many cases the generalized inverse of the response
f A i matrix R is ill conditioned or undefined.

Imagine a simple case in which only two components are presentin n (>> 2)
calibration samples, and the array has only three sensors. If the system has a linear
response, the dimensionality of tpe calitzration sct‘will be two. Therefore, a plane (two
dimensions) that best fits the calibration Samples has to be found, and then the

generalized inverse within the subspace defined by the plane can be computed.
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Naturally, some information is lost when the data is projected onto the plane; due to the

experimental noise, it is also clear that there exists no vector x;* that will make Eqs 1.6 -

1.7 an identity for every concentration, but only an approximation. The goal of

multivariate calibration is to find x;* such that it has the minimum error of prediction.

Prediction error is defined as the error in predicting concentrations of samples that were

not include__d in the calibration set.

——

In conclusion, first order tensorial calibration is performed in two steps: model
building and contravariant pattern calculation. Once the model of the subspace has been
defined, the contravariant pattern can be evaluated algebraically. The difference between
the different calibration methods is therefore based only on the basis chosen for

projecting the data. It is possible to show this mathematically by changing tensor R in

Eqs 1.6 - 1.7 to a given orthonormal base, {v;} with ¢ (< n) vectors, which spans the
same subspace spanned by the ¢ independent vectors {x;},
R, =RV [1.8]
R, (g x n) can be further reduced by observing that its columns have n components. But
there are only g columns, g < n. Therefore, g orthonormal vectors {u;} can be found
that span the row space (e.g., using its singular value decomposition), obtaining
R,, = UTR, = UTRV [1.9]
with R, (¢ x g) being an invertible matrix, that approximates the tensor R, and
represents information restricted to the subspace defined by {v;}. The pseudoinverse of
R can now be defined as
R+ = V(R,)!IUT [1.10]
The concentration is then estimated combining Eqs 1.5, 1.7, 1.8, 1.9 and 1.10.

The only approximation occurs in the initial projection (Eq 1.8). This confirms the fact

that the different methods of }i_r”)\ga{ calibration must differ only in the base used for

e ——
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projection of the calibration response matrix. The next sections will illustrate this fora

few well known methods of calibration.
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Direct Calibration

Direct calibration methods assume that the array pattern for all pure analytes
present in the sample are available, at some unitary concentration, and the patterns are
significantly different (linearly independent) [Martens and Naes, 1984]. Rewriting Eq
1.1 in matrix notation,

r = X:¢c + e [1.11]
where X (p x g) is a matrix whose columns are the patterns, x;, of all the analytes
present in the sample, including any possible background, and ¢ is a vector with the
concentrations of each analyte in the sample.

The pure patterns form a complete base of vectors to span the calibration
subspace. If the pure pattern matrix, X, is known, its runcated singular value
decomposition (SVD) [Lawson and Hanson, 1974] can be computed. Truncated SVD is
here defined as the SVD of the matrix with all its zero singular values discarded, together
with their corresponding vectors. This SVD provides us with a base for which the
components of the tensor X are the diagonal matrix S,

X=USVvT [1.12]
where U and V are orthonormal basis sets and S is the diagonal matrix of the principal
singular values. Substituting in Eq 1.11 and dropping the error term,

r=USVT¢ [1.13]
from which c¢ can easily be estimated

¢c=VS+UTr [1.14]

The result of Eq 1.14 is equivalent to the least squares (LS) estimate: If X is

known, the LS estimate of ¢ can be computed by
¢c = (XTX)!XTrp [1.15]

e ———— e
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which is defined if the covariance matrix XT X has an inverse. If one or several of the
patterns are a linear combination of other patterns, then this covariance matrix cannot be
inverted, and Eq 1.15 is not useful for the particular problem. This points out an

advantage of Eq 1.14 over Eq 1.15: the former can still be used for quantitation of

analytes whose patters are not linearly dependent, even though the other patters are.
If X is expressed in terms of its truncated SVD vectors, X =U S VT, its
covariance matrix is
XTX = VSUTUSVT = V82 VT [1.16]
and the inverse of the covariance matrix is
(XTX)yl = VS2VT L1 1T
therefore, Eq 1.15 can now be written as
¢ = VS2VIVSUTr = VS1UTr [1.18]
which is identical to Eq 1.14 when S-! is equal to S+, i.e., when all the spectra are

linearly independent.
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Indirect Calibration

Often the analyst is given a group of mixture samples for building a calibration
model, for which no control over the amount of analytes present in each sample is

possible. This is the so-called indirect calibration problem [Martens and Naes, 1984].

For example, an accurate, expensive method is used to measure the amount of the
analyte(s) of interest in the calibration set, and a model is built that relates those
concentrations to the responses from some other, perhaps unexpensive, measuring
technique. Three methods will be discussed from the tensorial point of view, namely the
least squares approach (LS), the principal component regression method (PCR) and

partial least squares (PLS).

Least Squares. The LS method is similar to the example presented in the previous section
for direct calibration. The only difference is that now the calibration patterns belong to

mixtures rather than pure components. Either the number of samples used for the

calibration or the number of sensors should be equal to the number of variant components

Ppresent in the samples, and they should be representative of the Population. Itis often
difficult to test for these requirements, therefore this method has limited use for complex
samples even though it is by far the most commonly employed.

A response matrix R is measured that contains ¢ columns (one column per
sample), and it will be assumed that the number of variant components is also g. To
span the subspace of variation, a set of q perpendicular vectors, {u;}, can be generated
from the truncated SVD of the R matrix,

R =USVT [1.19]

whose pseudoinverse is given by
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R+ = VS+UT [1.20]

If ¢, is the vector of concentrations of the i*h analyte for the samples in the calibration set

and r is the measured pattern of an unknown sample, then Eq 1.5 and 1.7 can be

combined to yield
=r - R+-¢ [1.21]

Cr

which is the desired estimate of the concentration for the unknown pattern r. The least

squares approach to this problem is analogous to Eq 1.15

¢, = r-(RTR)! RT ¢; [1.22]

and again, Eq 1.21 is obtained by substituting R by its truncated SVD.

Principal Components Regression. The PCR method is directly related to the SVD. The

model chosen for the spanning of the subspace is given by the first g singular vectors,
which are a least squares expansion of the calibration response data matrix. As with
many other methods, the most difficult problem is to select how many or which
components will be used for the regression. The proper truncation of the SVD is a very
important factor in determining the quality of the results [see, e.g., Mandel, 1982],
R =USVT [1.23]

c, =1 - (VS*UD) ¢ [1.24]
the only difference between these equations and Eqs 1.19 - 1.21 is that these require that
the number of components of singular values be estimated for the calculation, whereas
the LS equations take all the possible singular values into account, sometimes amounting
to a considerable overfit of the data. This is a problem with no satisfactory solution. The
PCR solution spans the space in a generalized least squares sense, with no emphasis on
prediction. Nevertheless, PCR prediction results are consistently better than LS when

collinearities are present in the calibration samples [Mandel, 1982; Dempster ez al, 1977].
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Partial L east Squares. The PLS method [H. Wold, 1982; S. Wold er al, 1984; Naes
and Martens, 1984] can also be seen from a tensorial point of view. The PLS model is
usually written as
R =TP+e [1.25]
where the orthonormal matrix T of vectors {t;} is computed according to an al gorithm
that repeatedly projects the matrix R onto the concentration vector, c¢;. [see, e.g.,
Geladi and Kowalski, 1986]. These vectors usually span the response space biased
toward the analyte of interest. Lorber and coworkers have shown that the comparison of
PLS and PCR is very useful in understanding the PLS method [Lorber er al , 1987]. The
first PLS component is a weighted sum of the principal component vectors, where the
weights are the amount of the projection of the concentration vector on principal
components of the profile space. In other words, rather than spanning the subspace
starting with the first principal component, another vector is chosen that is biased toward
the concentration vector, in an effort to explain more relevant variance in the lower
vectors. Similarly to other techniques, if the T's are orthonormal, the concentration _ [, 4 A 2,
predictor is given by
¢, =r - (PTP)IPTTT. [1.26]
The PLS method has cé};s“istently been found to be élightly better or at least as
good as PCR for calibration in the literature. In fact, there is controversy over why
should PCR discard smaller components simply based on their smaller variance, when
they may as well be better for prediction [Jolliffe, 1982]. From the discussion presented
herein, it can be suggested that in order to obtain good prediction, the contravariant
pattern, or the prediction vector, must be at least included in the subspace generated by
the spanning vectors. Obviously, if it is not in the space, poor results are expected. It
is natural to understand then why the PLS method usually needs fewer factors than PCR

to produce accurate concentrations: By projecting repeatedly on the concentration vector,
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the model is forced to first span the region around the concentration vector, that in turn
will span the region that is in the neighborhood of the contravariant pattern for that
analyte. In the extreme case, if the first vector chosen to span the subspace was the
contravariant pattern itself, it would obviously be the only important factor, and the rest

could be discarded.

Conclusion

As stated earlier in the chapter, the intention of introducing multivariate
calibration from a tensorial perspective was to provide a unifying theory of calibration. It
has been seen that a considerable insight is acquired by the geometrical representation of
some of the basic tensorial concepts in multivariate calibration. As a final note for this
chapter, it is suggested that tensorial description of multivariate calibration should be
pursued for the understanding of this topic. Two possibilities for future research are the
following:

. First, given that the particular choice of vectors that span the space has crucial
importance to the results, the tensorial approach could be used in the future to find
the optimal set of spanning vectors for prediction. Optimal should be understood in
relation to prediction results, rather than optimal model for description.

« Second, given that non-linearities and deviations from the model are one of the
most important sources of errors in collinear calibration, this may be another reason
why biased methods such as PLS give better results by spanning the neighborhood of
the regions of the subspace that are more important for prediction. Future research in
this area should start to give more importance to the samples from the calibration

whose sensor array patterns are in the neighborhood of the unknown sample's

- TSR A
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pattern, e.g., by using proximity weighting. This would be biased not only toward
the concentration vector, but also toward the response vector of the unknown
sample, that is not usually considered for the calibration model. It would also be
similar to a generalization of univariate local estimation methods to multivariate data
[Tibshirani, 1984].

Finally, it is important to remark that whenever interferences are present in an
unknown sample that were not included in the calibration set, the results of first order
calibration will be unreliable. Therefore it is important to validate the prediction model
for the unknown sample before estimating the analyte concentration. Unfortunately, if

the model is not valid, the concentration can not be estimated. However, second order

calibration can handle this problem, and it will be discussed in the next chapter.
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CHAPTER II
SECOND ORDER TENSORIAL CALIBRATION

Second order calibration is defined as calibration of an instrument that produces a
two dimensional (2D) array of data per object or sample that is analyzed. The
discussions in this chapter are specific to a special kind of 2D data: bilinear or dyadic
data. Bilinear data from a si:.,le pure chemical component can be expressed as the outer
product of two vectors. Bilinear data for n constituents can be expresed as the sum of n
outer products. ‘Examples of bilinear techniques are emission-excitation fluorescence or
chromatography-spectroscopy combinations. Examples of non-bilinear techniques are
two dimensional nuclear magnetic resonance (2D-NMR) and mass spectrometry - mass
spectrometry (MS/MS) [see, e.g., Johnson and Yost, 1985]. Even though it will not be
presented here, tensorial concepts could also be applied to non-bilinear data.

The idea behind second order calibration is the following: bilinear data,
collected from a sample with a second order instrument, can be interpreted as the
components of a second order tensor. If two samples have the same intrinsic
constituents, there exists at least one change of the two second order bases that will
transform the components of both tensors to diagonal matrices. If there is only one such
pair of bases, they can be estimated, and will correspond to the intrinsic vectors or the
true spectra in both orders,n and the tensor diagonal components will be directly
proportional to the amounts of each component present, allowing for quantitation.

The last chapter was an introduction to the tensorial concepts using well-known

first order (multivariate) calibration. This chapter will use some of those ideas and
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concepts to develop second order calibration for bilinear data, and will outline some
possibilities for third and higher order calibration.

The structure of this chapter is as follows. First, GRAM theory from a second
order calibration perspective is presented. Then, computer simulations are used to
illustrate the effect on GR.".M results from different factors like noise level, similarity of
the analytes spectra, etc. Finally, some examples of the application of GRAM to real

chromatographic data are presented, including an interesting, complex sample with more

than 300 constituents.
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Theory

There are many instruments in chemistry that generate second order data, e.g, all
the “hyphenated” methods [Hirschfeld, 1980, 1985] including chromatography-
spectroscopy conbinations, MS/MS, 2D-NMR, etc. All these techniques generate,
from a single sample, data that can be represented in a matrix. From tensorial theory, it
is known that the components of a second order tensor are also a matrix. Therefore, data

acquired from a second order instrument can be defined as the components of a tensor.
Designating M;; the element at the / row and j column of a the data matrix, then there is
an associated tensor M whose components are M;;:

M= XM 54 [2.1]

)

where 7; represents the basis vectors for one order and ).j represents the set of base

vectors in the other orther. They are the standard bases; e.g., for a LC/UV instrument,

T; represents measurement at time i/, and lj represents measurement at wavelength ;.
Using the summation convention, Eq 2.1 can be expressed as* ,

M= M; 74 [2.2]
for vectors and tensors. The summation convention invariably applies to summation over

a repeated index in one side of the equation.

The data matrix M,-j from a second order instrument has an associated tensor M.

From tensorial theory, the tensorial object M is invariant to changes in base, therefore

any base that spans the spaces defined by the standard bases 7; and lj- could be used to

represent the tensor M, and it would be describing the same mathematical object. The

standard bases used in Eq 2.2 are a convenient choice because their vectors are

* See appendix A for a description of the summation convention.
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orthonormal, therefore, the data matrix can be directly related to the instrument
variables.

The standard base is not the only useful base. A generally appropriate base for a
tensor can be obtained from the singular value decomposition (SVD) of the components
matrix of the tensor. The SVD decomposes any matrix into the product of three matrices,

M = US VT, [2.3]
where U and V are orthonormal matrices, i.e., their respective columns {u;} and {vi}
are orthogonal, unitary vectors; and S is a diagonal matrix. These two sets of vectors
can be used as the base for the tensor M, and the covariant and contravariant components
are equivalent, because they are orthonormal, and the projection formula is enough for
the change of base. In matrix notation, by left multiplying M by UT and right
multiplying by V, the components of M in the new base are obtained.

UTMV = UTUSVTYVY = 8§ [2.4]

But S is a diagonal matrix, therefore the singular value decomposition vectors provide a
base where the components of the tensor are a diagonal matrix, and Eq 2.2 is reduced to

M = S;u v [2.5]
Thus, the matrices M and S represent the same tensor under different bases. There are
an infinite number of matrices that represent the tensor M, but in most cases there is only
one that is, at the same time, diagonal and its bases are orthonormal, and this is given
by the singular value decomposition.

Another important base with diagonal components arises when the second order
data comes from a bilinear instrument. As stated earlier, such data has the interesting
property that if there is only one analyte present in the sample, then the matrix can be
approximately expressed as the outer product of two vectors, which also means that the

rank of the matrix should be one, within the noise level. If the technique is, e. g.,
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emission-excitation fluorescence, then one of the vectors would correspond to the
emission spectrum of the analyte and the other to its excitation spectrum,

N, = x;yT + ¢ [2.6]

where x; is the spectrum in one order, €.g., excitation; y; is the spectrum in the other
order, e.g., emission; and e, is the error of the approximation. Of course, this is the
base that is of greatest interest to the chemist. If a sample has g analytes, then the matrix

can be modeled by a sum of g unitary rank matrices, and will have rank g,
q
M = i Ni = 2 x“ yiT [27]
1]

i
where the error in the model has been dropped for simplicity. Rewritting Eq 2.7 in
matrix notation, by considering the vectors {x;} and {y;} as the columns of the matrices
X and Y, yields

M = XYT, [2.8]
forcing the {x;} vectors and the {y;} vectors to be of unitary length, then a third matrix |
is necessary, with the normalization constants in its diagonal, and zeros in the rest,

M = XB8YT. [2.9]
This equation is similar to Eq 2.3, with a diagonal matrix B, but the matrices X and Y
are not orthonormal. They are the pure analyte spectra, or sensor array patterns, in each
order. By analogous reasoning, expressing the tensor M in the bases {x;} and {y;}, its
components will be again a diagonal matrix, in this case B. It is important to realize that
Eq 2.9 is only an approximation. For normal experimental conditions, factors such as
noise, or systematic deviations from the model are always present. Again, because B is
a diagonal matrix, the tensor M can be expressed as

M = Bix;y; [2.10]
Note the position of the indexes ii as a superscript, indicating that the f3it are

contravariant components for both bases. If the instrument is linear, the vectors X; and
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y; do not change with a change in concentration of the analyte i, i.e., c;, The only thing

that changes is 8%, therefore, for a linear response instrument, the /8i's are directly
proportional to the concentrations, and if they are determined, they can be used for
quantitation.

It has been found that there are at least two important advantages derived from
calibration with bilinear data [see also Sdnchez and Kowalski, 1986]:

1.- The concentrations of the analytes of interest can be estimated even if linearly
independent background and other factors are present in the unknown sample but absent
in the calibration sample(s).

2.- The intrinsic bilinear spectrum, or array pattern, of all the components in
common between the unknown sample and the calibration sample(s) can be estimated.

Assume that there is only one multicomponent sample in the calibration set.
Calling N the tensor of its responses, it can modeled with an equation similar to Eq 2.9,

N = XEYT [2.11]
N is the tensor in the standard base and § is the diagonal tensor in the xy base. The
components of N are known only in the standard base. Similarly, an unknown or test
sample has a response tensor M, that can also be modeled with Eq 2.9, repeated here
for convenience.

M = XBYT [2.12]
To describe a general case, assume that the X and the Y are matrices that contain a
superset of all the components present in both M and N. There will be corresponding f3;
or §; elements that will be zero if they are not present in one or the other sample. Itis
evident that the bases X and Y can express both tensors M and N with a diagonal matrix

of components, respectively B and §. It will be shown that under certain conditions,
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To find the base, Eqs 2.10-2.11 can be used as a system of two matrix
equations with four unknowns, namely X, Y, B and €. To solve for these parameters,
N is expressed as a function of M,
N = XEYT = XB1EBYT
N = XB1E)X+XBYT)

N = XB1EX+M [2.13]
these equations are valid only if all the elements of the diagonal matrix § are non-zero.
This implies that M contains all the components of the superset X and Y. For a case that
this is not true, the new matrix W = M + N can be used instead of M, that by definition
would include all the components. X+ represents the contravariant form of the base X,
and is simply the generalized inverse of the X matrix. Defining A = f°1 €, Eq2.13 can
now be factorized to result into a non-symmetric eigenvalue-eigenvector problem, after
right multiplying by M+ and then X as,

NM+ = XAX+MM+ [2.14]
(NMHX = XAX+X
(NMH X = XA [2:15]
The spectra X are the right eigenvectors of the square non-symmetric matrix (N M+),
and the eigenvalues A are the ratios of concentrations, because f§ and € are proportional
to concentrations. Once X is known, YT can be estimated using
YT = §1X+M [2.16]
Eqgs 2.15-2.16 summarize the Generalized Rank Annihilation Method (GRAM)
[Sanchez and Kowalski, 1986]. A particular case of Eq 2.15 arises when N has only

one component, N = x; &, y,T. All the eigenvalues will be nearly zero with the
exception of one, A; = f8;/&;. Then Eq 2.15 can be rewritten as
(x, 61 yITM"') X; = X ),1 [217]

dropping x; and changing sides,
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A= & y/TM*x, [2.18]
which is equivalent to the non-iterative Rank Annihilation equation introduced by Lorber
[Lorber, 1984, 1985]. Actually it is not necessary to estimate y;Tand x ; from N.
Recognizing that N; =& x; ¥j» Eq 2.18 can be simplyfied to

A; = NijM*), [2.19]

where a double summation over i, j applies, and (M*);; represents the i** row and jith

column component of the pseudoinverse of M.




g

40

Characteristics of Bilinear Calibration

Eqgs 2.18 - 2.19 provide information useful to understand the possibilities and
limitations of Bilinear Calibration using GRAM. First of all, they not only represent a
calibration method, but also a curve resolution method, because the intrinsic factors are
extracted. It is not the same curve resolution as described in the literature [see e.g.
Lawton and Sylvestre, 1971; Osten and Kowalski, 1984], in which an uncertainty
region is defined where the intrinsic factors are present, and further constraints must be
used to choose a solution within the region. GRAM estimates a unique solution without
empirical assumptions.

It is a fact that when two (or more) eigenvalues are identical (or very close to each
other for experimental data), their corresponding eigenvectors are not unique.

Therefore, one of the restrictions of GRAM is that if two components have the same
ratio of concentrations between the samples, their eigenvalues will be very similar, and
the estimated spectra will be unreliable. Nevertheless, the eigenvalues should still
provide quantitative information, but it will be more difficult to match the eigenvalue
with its corresponding analyte, because no estimated spectrum is available. If a library
spectrum is available, simple target factor analysis on the space generated by all the
eigenvectors with the same eigenvalue should confirm the identity of at least one of the
eigenvalues [Malinowski and Howery, 1980; Lorber, 1984].

A limitation arises when the intrinsic spectra in one of the orders are not linearly
independent. Eq 2.17 is no longer valid, because X A X+ MM+ is not equal to X A
X+. Assuming that the Y are linearly dependent, the matrix M will have lower rank than
the matrix X, which is made up of linearly independent vectors. The matrix (MM+) is a

projection matrix that behaves like the identity matrix for vectors in the subspace spanned
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by M. Butif X has higher rank than M, it is necessarily true that the vectors in X will
have some component outside of the space spanned by M, therefore MM+ does not
leave X A X+ unchanged. The results then should be unpredictable when such a
dependency exists. Fortunately there is a simple test that will detect, but not correct this
problem: the projection of N on M M+ should leave N unchanged within the noise level.

The estimation of the pseudoinverse of M is the most important step in GRAM.
In a similar way to first order tensorial calibration, the selection of the proper subspace
for the pseudoinverse is a determining step in the quality of the GRAM results. Eq2.18
shows that N is literally projected onto M, therefore the best way to span the space is to
find a set of vectors that express both M and N in an unbiased way. The approach used
in this work was to join the matrices to form a larger matrix W = (M|N), and then
obtain the truncated singular value decomposition of the joined matrix,
W = (M[N) = USVT [2.20]
By joining the matrices M and N into the matrix W, there will be twice as many columns
in W as there are columns in the original matrices. In this way, the columns of the
matrix U will be vectors that are an unbiased estimation of the column subspace of both
M and N. This and other models for projection of the data will be discussed in the
following sections. The number of relevant singular values is first estimated by cross
validation in order to truncate the SVD [Eastment and Krzanowski, 1982; Wold, 1978].
Then, new projected matrices are used for the calculations,
N = UUTN [2.21]
M+ = (UTM)+UT [2.22]
NM+ = UUTN (UT M)+ UT
NM+ = U (UTN) (UT M)+ UT
NM+ = UN, M+ UT [2.23]

R ———
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where N, and M, stand for the N and M tensor components in the U subspace. For this
case M, * is equivalent to the generalized inverse, M,* = M,T (M, M,T)-1. Finally,
The new matrix N M+ is then substituted in Eq 2.15 for a GRAM calculation.

Next sections will present theoretical and computer simulation results that

illustrate and expand on the characteristics of GRAM and its limitations.
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Factors that affect the quality of the GRAM results: Theory

It is a difficult problem to estimate the error of the GRAM results, considering
that there is error in M, N and in the concentrations of the calibration sample. Ho and
coworkers [Ho ez al, 1980] and Appellof [Appellof, 1981] have shown that for small,
homoscadastic errors in the matrix M, the error in estimating the concentration ratio for
one analyte is given by

eylen) = ( §2qyq9,)! oy [2.24]
where 0y is the average square residuals from M, cp/cn 1s the concentration ratio, &is
the only nonzero element of the diagonal matrix & as defined in Eq2.11, and q, qy are
the so called uniqueness factors, for x and Yy, and define the degree of overlap that the

analyte's spectrum has with all the other spectra in each order. It can be shown that

(&4, qy )L is an extension to second order data of the net analyte signal concept
developed by Lorber [Lorber, 1986, 1987]. ¢, (y ) represents the component of the x;
(y;) vector that is perpendicular to the rest of the vectors present in M. Mathematically,

gy = sin?( o), qy = sin’( o) [2.25]
where c, is the angle between x; and the subspace spanned by {x;} and o, is the
angle between y; and the subspace spanned by {yj«}

It is difficult to estimate the uniqueness factors unless all vectors {x;} and {y;}
are known. Fortunately, GRAM estimates these vectors, providing a direct computation
of g, and 9y- Eq 2.18 provides the {x;} in the form of the matrix X, and Eq 2.19
provides the {y;}. Then the formula g, = (I - x,T SS+ X;) can be used (where S is X

matrix excluding the column corresponding to Xx;.) [Ho er al, 1980].

Eq 2.24 is useful for understanding the nature of error propagation in Rank

Annihilation with an error free N matrix. Unfortunately, the experimental errors in M
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and N are usually of the same order, therefore to assume error in M and not in N is
rather arbitrary. In spite of the difficulty of considering both errors simultaneously, it is
possible to estimate the relative concentration variance for a simple M(2x2) with two
components and a N(2x2) with one component, yielding*
2 (cypley? = 0.2 ley? + B2ID? oy +
+ (cpq len)¥D2 (B2 + B2 + 28,8, cos(aty) cos(a,) ] op?  [2.26]
D =8, sin(oy) sin(a,) [2.27]
where oy? is the error in N; in many cases it can be considered to be equal to Opf2.
The first term is the relative variance of the concentration estimate in the

calibration matrix, setting a lower bound for the error. It implies the logical result that

the estimate of ¢y, cannot be better than cy;.

The second term in Eq 2.26 is the contribution from the 02 error, and it can be
shown that it is equivalent to a 2x2 case of Eq 2.24. The coefficient of 0y is actually
(B; sin oy sin ay)'z, therefore, the smaller the angles, the greater the error
propagation. Also, higher concentrations of the analyte in the unknown sample, i.e.,
higher ¢,;;, decrease the error of the estimation.

The effect of the N error is more difficult to interpret (third term), but it can be
compared with the effect of the M error by dividing the third by the second term, using

B =cnilcyy, and assuming that 62 = on? = 02, and that cos(ct,) cos(ay) = 1
results in
(Br 1610 (B2 + Ba% + 28.85) 1352
= (B1 /1) (B + B2 ) 32 [2.28]
which is usually bigger than one , e.g., if all variables have similar magnitude, this
ratio is 4. This means that in general, the error due to the calibration matrix is bigger

than the error in M, or at least of the similar magnitude. In a real experiment, only the

* Sece appendix B for the derivation of this formula.

VAR g G '$" Q0T . A
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¢, term may be controlled, which is proportional to the concentration in the calibration,
¢y - Therefore, increasing cy, decreases the coefficient of O\?, as long as the bilinear

model holds.

The previous discussion applies for the simple 2x2 case with two components in
M and one component in N. The use of Eq 2.26 for cases with more components or
higher dimensionality is qualitatively useful, but presents several problems when applied

to GRAM:
* Eq 2.26 is valid for the cy;/cp; = &; yT; M* x; RA estimator (Eq 2.18),

but GRAM estimates cy,/c;,; as an eigenvalue of the NM+ matrix. They provide the

same result for noise free data, but that is not necessarily the case when noise is present.
Another problem with Eq 2.26 is that any bias introduced by the use of Eq 2.18 is not
taken into account, and it will be seen later how choosing the wrong model affects the
GRAM result much more significantly than the standard deviation of the estimator.

* If g (g >2) components are present in a full rank M(gxq) matrix, the equation
does not apply. Higher order terms may be necessary that are not present in the 2x2
case. Nevertheless, as more parameters are added to the computation, more accurate
results will be obtained due to signal averaging.

* Even for an M matrix with 2 components, if the dimensions are higher than 2,
a model has to be built to project both M and N onto it. The error of the model
introduces a bias in the result that is not predicted by Eq 2.26. An example of this error
occurs when the model is generated from the singular value decomposition of M. The
space spanned by the true intrinsic factors {x;} and {y,} will form an angle with the
model spanned by M, and there will always be an angle, whose value will be correlated

with the value of oy Part of N will be lost when projecting into the M space, producing

average estimated concentrations that are higher than the expected value. Using unbiased

models, such as (M|N), should solve that problem.
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* GRAM may use more than one component in the calibration matrix. In general,
the estimation of the intensity ratio of a component present in both M and N is a
symmetrical problem, that ideally should have a symmetrical solution. Therefore, if N
has more than one component, considerations similar to those for M should apply.

« The intrinsic factors {x;} and {y;} common to M and N are also estimated with
GRAM, but Eq 2.26 gives no estimation of their error. Nevertheless, considering that
the error of the eigenvalues is correlated to the error in the eigenvectors, Eq 2.26 should
provide a qualitative idea of the quality of the estimated spectra.

These problems do not necessary imply that error estimations using those
equations are useless. This equations are useful to obtain a qualitative and semi-
quantitative idea of error propagation in GRAM for many cases. The results are probably
expected: GRAM will perform better with less noise and less overlap between the
intrinsic vectors of the samples. Nevertheless, next section will show how for several

simulations, errors vary linearly with the inverse of the uniqueness.
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Factors that affect the quality of the GRAM results: Computer Simulations

Several computer simulations were performed to study the effect of noise upon
the GRAM results under different conditions. For noise free data, the results were
consistently perfect up to the level of the computer precision, therefore all simulations
included some noise. UV spectra from a library of polyaromatic hydrocarbons were used
coupled with gaussian chromatographic profiles, to simulate the data. The spectra had
ninety seven (97) wavelengths each (matrix X, Eq 2.8) and the chromatograms had ca.
thirty (30) scans (matrix Y, Eq 2.8). All the spectra were normalized to a maximum
absorption of 100 units, and the gaussian peaks to unitary peak height. A constant 2%
noise was added to all the data. 2% noise means that the standard deviation of each
measurement is 2 units. Therefore, for unitary concentration, the relative noise is 2%
only at the maximum of the chromatogram and at the maximum of the spectrum. On the
average, the noise is much higher than 2%.

In light of the discussion in the previous section, simulations were performed
testing the effect of several factors on the results of GRAM . The most important factors
to consider include:

* Model chosen for projection: (1) Number of components (2) Spanning subspace.
* Similarity of the intrinsic vectors: (1) Similarity of the {x;} (2) Similarity of the

{y;} (3) Similarity of the ratio eigenvalues {A,}.

* Effect of the relative concentrations: (1) Concentrations of the calibration sample

(2) Concentrations of the unknown sample.

* Effect of the number of analytes present: (1) In the calibration sample (2) In the

unknown sample.
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The following discussion will go into the details of each simulation and will

present its results.

Model chosen for projection. Model selection is the most difficult and important factor to
be considered. The model can be chosen, whereas other factors are usually already
established. Two sets of simulations were used to illustrate the problems associated with
improper model selection.

« The first set of simulations shows the effect of choosing an incorrect
dimensionality for the subspace that models the matrices M and N. Both samples were
simulated with four chemical constituents each. Table 2.1 shows the results when
selecting three, four, five and six mathematical components (singular values) for the
singular value decomposition of (M|N) (see Eq 2.20). Only one calculation per
dimensionality was sufficient to illustrate this effect. The noise level was fixed at two
units as described in the previous section.

For the three component selection very poor results are obtained, with a best
estimate for BbFl, which is the major constituent. By definition, only three spectra are
estimated when three components are used in the model. The three-dimensional model,
in attempting to fit a four-dimensional data set, loses non-random information. It is
expected that the estimated spectra will be linear combinations of the true spectra.
Naturally, the correlation coefficients between the estimated spectra and the true spectra
are very low (maximum = 0.9533) when contrasted with the results for models with
higher dimensionalities.

It is interesting to note that the estimates using five and six components are
reasonably good in spite of the fact that only four chemical constituents are present. This

is very useful when there is uncertainty in the number of components, because it is safe

to select more components than necessary for the model. Therefore, the dimensionality
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TABLE 2.1

EFFECT OF MODEL DIMENSIONALITY ON THE ESTIMATED
CONCENTRATIONS AND SPECTRA

The first number in the groups of two is the estimated concentration and the
second is the correlation coefficient between estimated spectrum and library
spectrum. The proper dimensionality should be four (4). The missing values
occur because only three estimates are obtained with three components.

Analyte  Concentration Dimensionality of the Model
3 4 5 6
BbFl1 3.0000 1.3167 2.9842 2.9890 2.9915

0.9533 0.9999 0.9999 1.0000

BaP 2.0000 - 2.0008 2.0004 2.0018
- 0.9944 0.9942 0.9942

BkF1 1.5000 2.8887 1.4871 1.4883 1.4904
0.9063 0.9995 0.9996 0.9995

BeP 1.0000 1.7198 0.9996 0.9998 1.0023
0.2810 0.9991 0.9990 0.9991
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of the model must be equal to or higher than the true dimensionality in order to get the
best results. However, this is not true for noise free data, for which estimating a
pseudoinverse M+ with more components than the true number produces computer
overflow or unpredictable results. But this is not a problem, because for this kind of
data (very low or no noise data) there is no problem in selecting the right number of
components for the calculation. There is no perfect method for determining the number
of principal components for noisy data, but it is apparent from the table that observing
the behavior of the eigenvalues as more components are selected for the model provides a
useful method for GRAM, because the important eigenvalues do not change significantly

beyond the correct number of components.

* To compute the pseudoinverse of the M matrix, the data must be projected on a
representative set of vectors, here refered to as the model. The second set of simulations
compares four different models for a two component sample M and a one component
sample N. For the first model the SVD of M, M=USVT, and the columns of the U
matrix where used to span the space and then project the matrices into it. The second
model used the SVD of (M+N) and the third used the SVD of (M|N). Finally, the
fourth model used the SVD of the true intrinsic vectors used to simulate the data in the

first place, i.e., the matrix X. Five concentration levels c;, were used, and the GRAM

estimation was performed five times at each level, with different noises but again
constant Ops = 2 units, to estimate the standard deviation of the estimated
concentrations. A value of 0.01 in the plot is equivalent to a 1% error in the
concentration estimation of c.

There are two distinct errors to consider: the standard deviation (SD), or

precision of the estimated concentration, and the accuracy of the mean estimation (bias),
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or difference between the true value and the mean estimate. Fig 2.1A shows the relative
bias, and Fig 2.1B the relative SD, for the four models. The most important point to
illustrate here is that the bias is smaller and it is in the same order of magnitude as the
precision for high concentrations (as it should be: for a normal distribution, the
distribution of many calculations of the bias is simply the standard deviation of the
mean), but as the concentration decreases, the bias turns out to be the most important
factor, being even two orders of magnitude larger than the precision in the worst case
(with the M model). Therefore, the proper choice of a model is an important step in
GRAM. If the model was chosen improperly, it does not matter how many times the
experiment is repeated, it will not give a better average estimate of the concentration. In
this case, the best model was the pure spectra used for the simulation; in practice, those
factors are probably not available, and the models using (M+N) and (M|N) are the next
best choice. The use of M alone for the model should be avoided, especially for low c;,
concentrations. The only exception is for high c,, concentrations, where the M model
does marginally better than the others. In this particular case, with a concentration of ten
units in M and a concentration of one unit in N, it is possible that M is a better model,
because the signal in N is ten times weaker, and adding N to the model is almost like
duplicating the noise without significant increment in the signal. In practice it is not
advisable to have a ten-fold difference in concentrations due to possible instrument
deviations from linearity, unless several calibration samples are used that cover the
dynamic range.

Eq 2.26 predicts that a higher concentration c,, results in a lower relative SD, and
that holds true for all the models shown in Fig 2.1B. That equation is not valid for the

prediction of the bias, but the bias also has the same general trend of the standard

deviation.

|
!
|
,'
i
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For a concentration ¢y of 0.1 units, the maximum point of the data has a 20%

noise level, and the calculated average for this data set at that concentration is 60% noise.
Most of the simulated response is noise, and it is not surprising that the M model fails
with and error above 100%. By adding (M+N) or adjoining (M|N) the matrices, the
effective noise is reduced by a factor of the square root of two (ca. 1.42), and as a
consequence, projecting in these models reduces the error of the estimation.

Finally, the only difference between the (M+N) and the (M|N) models for this
particular simulation is in the bias estimate, with the (M|N) model consistently less bias
than the (M+N) model. Even though the noise averaging effect of both models is
similar, the (M|N) model is an unbiased (least squares) model for both matrices
simultaneously, and the result shown in the figure should be expected. In fact, the bias
for the (M|N) model and the true factors model (X) are completely overlapped within the

resolution of the plot.

Similarity of the intrinsic vectors. The effect of the similarity between the intrinsic

vectors is the same for the {x;} and the {y;} vectors. Two component simulations using
fixed {x;} vectors and varying the {y;} vectors were performed. Fig 2.2 shows how the
SD error in the calibration increases linearly with the inverse uniqueness, / /sin(ay), as
defined in Eq 2.25, and showing for this case that Eqgs 2.24 and 2.26 are a good
approximation. The values near to the curve correspond to the correlation coefficient,
calculated as cos(ay). Even though the correlation coefficient has no linear relation with
the error, it is a useful measure of high the degree of similarity between the vectors used
for the simulation

As the similarity increases, the importance of the bias relative to the standard

deviation also increases, but it does not reach the level of the SD within the limits of the
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simulation. If the correlation between the vectors continues increasing, the difference
between the vectors will eventually reach the noise level, and the model wil] be totally
random for the second component. It is reasonable to expect the bias contribution to the
error to increase, because the quality of the model decreases. In the other hand, It is
Important to point out the remarkable linearity of the SD with the inverse uniqueness. It
will later be seen that other effects like the number of analytes present, can also be

integrated under the uniqueness coefficient.

Another important effect occurs when two or more eigenvalues (Eq 2.1 8) become
very similar. Even though the accuracy of the eigenvalues is not affected by their
similarity, the eigenvectors suffer degeneracy, and become perpendicular to each other
for identical eigenvalues. Table 2.2 shows the correlations between estimated and true
spectra for a two component case, as the eigenvalues get more similar. It is apparent that
when the eigenvalues get as close as their SD bounds, the estimated spectra start to
degrade. Therefore, comparing the SD of the eigenvalues with their difference is a

useful qualitative criterion to infer the quality of the obtained spectra.

Effect of the relative concentrations. GRAM has been presented as a one point calibration

technique, and when used in this way, the concentration of calibration must be as
similar as possible to that of the test sample. Nevertheless, it is possible to have several
calibration matrices N 1»N2 ... N,,, and obtain a calibration curve. But if the linear
model is correct, one point calibration is safer for second order calibration than for zero
order, because the background is taken into account. Fig 2.1 showed the effect of the

concentration ¢y, on the error and the bias. For high concentrations, the relative error is

almost constant, but ag the concentration decreases, the errors increase dramatically. A
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TABLE 2.2
EFFECT OF EIGENVALUE SIMILARITY
A is the difference between the two eigenvalues. When A is

smaller than the S.D. of the eigenvalues, spectra degrade.
Spectral correlation is between estimated and library spectra.

A Standard deviation Spectral correlation
of eigenvalues
Ist 2nd Ist 2nd
0.0010 0.0023 0.0044 0.9664  0.7938
0.0030 0.0028 0.0048 0.9545 0.6901
0.0100 0.0018 0.0051 0.9964 0.9919
0.0300 0.0018 0.0052 0.9993  0.9989

0.1000 0.0016 0.0052 0.9998  0.9998
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concentration of 0.1 represents a S/N value of 5 for that component at the maximum of its
spectrum. A similar plot is shown in Fig 2.3, this time with varying concentration CcN-
Two different effects work in parallel to produce the errors, again, the bias and the
standard deviation. The bias is caused mostly by the inadequacy of the model, and for

lower concentrations cy;, the model is worst. It is also important to observe that the

error in M has greater impact in the bias than the error in N.

Effect of the number of analytes present. This problem is closely related to the effect of

the similarity and the choice of the model. The more components present, the less
unique they will be when compared with the subspace spanned by the rest of the
components, resulting in a larger net similarity. Fig 2.4 shows the error versus the
inverse uniqueness factors (based on five replicates per case), for different numbers of
components, illustrating that the error varies almost linearly with the similarity,
accounting for the number of components effect.

Another problem arises in model selection to decide how many principal
components are used, because the greater the number of analytes, the more difficult it is
to find the proper number of components. Therefore, calibration matrices with too many
components should be avoided. Of course, in chromatography, where well separated
clusters of components can be quantitated separately, many more components can be

successfully analyzed.

In summary, there are many factors that affect the results of rank annihilation.
How can the analyst use those factors to obtain the best possible quantitation? The
calibration sample N should have concentrations close the those present in M but

different enough to avoid similar concentration ratios (eigenvalues). The model of the
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space should be the best unbiased estimate of the subspace spanned by both matrices, and
it is suggested to use the SVD of (M|N). If both samples have components that are not
present in the other, then M+N should be used instead of M for the estimation [Sanchez
and Kowalski, 1986]. X, Y and c,, will be obtained from the calculation, and the
uniqueness factors can be estimated for each component quantitated, to have an idea of
the error in the estimation. Even better, if some of the spectra {x;} are available, e. g2
from a library of spectra, then the analyst can compare the estimated and the true

spectrum, and have an idea of how good is the estimated concentration.

B



61

Application of GRAM to LC/UV Data

Data from a liquid chromatography (LC) system coupled with a diode array
ultraviolet - visible (U V-Vis) detector was used to test GRAM with real measurements* :
This data is two dimensional, and it will be shown that it can be factorized in the three
matrices of Eq 2.9, e.g. it is bilinear.

The experiment consists in injecting the multicomponent sample in the inlet of the
LC column, and collecting the UV-Vis spectra of the effluent from column at regular
intervals of time, e.g., every second. Eventually, the components reach the detector
cell, but because they move at different speeds through the column, their residency
times (Retention Times, tg) in the column are different. The position at a given time of
an analyte in the column is not a single point, because as it moves along the column,
diffusion and other processes occur that broaden its concentration band. Therefore, even
if two analytes have different tr, they may overlap at the detector, and their pure spectra
may not be collected. The situation is worse when there are many coelluting
components, because multiple overlaps occur, and the possibilities of identification or
quantitation are greatly reduced. GRAM can resolve this problems under certain
conditions.

Beer's law describes the absorption of light by homogeneous solutions. It
assumes a linear relation between the concentration of a single analyte in a homogeneous

solution and the absorption of light by that solution at a given wavelength, Ay

A= abc [2:.29]

T All experimental data courtesy of L. Scott Ramos.
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Where A is the absorption of light at the wavelength 4, a is the absorptivity

constant at that wavelength, 4 is the path length, and c is the concentration of the analyte

in the solution. In general, Eq 2.29 can be expressed for every wavelength A as
A =al)bc

where a(A) is a continuous function of the wavelength, and represents the spectrum of
the analyte,

The concentration ¢ of an analyte at the output of a chromatographic column is not

a constant, but a function of time, therefore, the absorption of light is a function of both
the wavelength and time:

A4 = a(d) b c(2)

[2.31]
A(4,2) is function of 2 and ¢ independently,

ie., itis a bilinear function. In

practical terms, this means that the spectrum a(A) is the same (within the noise level) no

matter what time, ¢, it is measured in a chromatographic peak. Similarly,

the shape of
the chromatographic peak is the same at every wavelength, A.

The data collected from a liquid chromatograph with a DA-UV spectrometer asa

detector is not continuous, The absorption is measured at certain wavelengths (A1,4,

wn ) obtaining a absorption vector, a = (a,a; ... a,), €very scan. Similarly, a fu]]

Spectrum is measured at certain times (z,,, ... 1,) to get a concentration profile vector, ¢

= (¢1,¢5 ... ¢), for ¢very wavelength. Then Eq 2.31 takes the form

The data can be assembled into a matrix, A (mxn). The rows are assigned to
the different wavelengths and the columns to the different scans when a spectrum is

acquired. In matrix notation Eq 2.32 can be expressed as an outer product,

A =abpT

[2.33]
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which is equivalent to Eq 2.6. Any analytical technique for which the data of a single
component can be factorized like Eq 2.33, was defined as a bilinear technique,

M=x g yT [2.34]
where M is the data matrix, x and y are data vectors in the two different orders and /3 is
the proportionality constant. For chromatography/spectroscopy combinations, the vector
X corresponds to the normalized spectrum of the analyte (normalized a) and y
corresponds to the normalized concentration profile or peak shape (normalized c). By
defining y as normalized, its absolute concentration information is lost, but now the
constant 4 is directly proportional to the concentration.

For multicomponent samples, with p components, the resultant data matrix can

usually be approximated by the sum of the p individual bilinear contributions,

p
M= x,8yT [2.35]
k=1

or similarly to Eq 2.9,

M =XBYT [2.36]
where the k% column of the matrix X (m x p) corresponds to the spectrum X, and the
k*h row of the matrix YT (p x n) corresponds to the chromatogram y,T and 8 is a
diagonal matrix with Bkk=j3k, that are proportional to the concentrations: 7 is the
number of wavelengths and » is the number of scans in the chromatogram.

A problem arises when GRAM is used with LC/UV data. The problem is that the

retention times may change from the calibration to the test sample, because of small

fluctuations in the column characteristics. Therefore, the Y matrix from M is different
from the Y matrix from N. Kim has called this problem the synchronization error [Kim,
1984]. If the change in the column that causes the error is not large, it can be assumed

that the error exist only in the time index (J) of the N matrix,

Mixj <=> Ni,j+Aj [237]

—
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Kim assumed that the error Aj was an integer, and a simple integer iteration could find a
4j for which the projection of N on the subspace spanned by M changed N the least.
Unfortunately, when sampling occurs at the order of 7 Hz, in general, Ajis not an
integer. Furthermore, if the change in the column is because of a small change in the
flow rate, 4/ is not constant, but changes linearly for every ;. Appendix D describes
three algorithms that have been developed in this work to correct the synchronization
error, each useful under different circumstances. For each algorithm, a corrected N

matrix is generated, which is used for the GRAM calculations.

Simulated Data

Two simulations were performed to illustrate the use of GRAM for
multicomponent analysis in chromatography [see also Sanchez et al, 1987]. Real spectra
and gaussian chromatographic peak profiles were used for the simulations. In every
case, the peak width of the chromatograms was set equal to 20 seconds.

As mention earlier, the quality of the results obtained with GRAM is a function
of several factors, the most important for LC/UV being noise level, number of
overlapped components, similarity of the concentration ratios, similarity of the spectra
and degree of chromatographic overlap (resolution).

Fig 2.5 shows the total wavelength chromatogram (TWC) of the first simulation
samples. TWC is defined as the chromatogram resulting from summing the absorptions
at all wavelengths for each scan. Table 2.3 presents a summary of the details of this
simulation. Gaussian distributed noise was added to the matrices to simulate experimental

noise as 1% of the average signal value.
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TABLE 2.3
MULTIPLE COMPONENT SIMULATION WITH 1% NOISE

Noise is 1% of the average absorbance. Concentrations in arbitrary units.
Retention times (RT) in sec. The groups correspond to peak clusters.

Input Concentrations Estimated

Component*  RT Calibration Test Concentration
Acen 10.0 0.000 0.500 -

Phen 20.0 1.000 0.800 0.801
Anth 27.5 0.000 1.000 -

BaA 47.5 0.500 0.200 0.200
Chry 60.0 1.500 2.000 2.000
BbFl1 85.0 0.900 1.000 1.000
BkF1 92.5 1.000 0.000 0.000
BeP 105.0 0.600 0.400 0.400
BaP 120.0 0.300 0.000 0.000

* For abbreviations see appendix E

T
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The “unknown”, or test, sample and the calibration sample have several
components in common (Phen, BAA, Chry, BbF and BeP); two components are
present only in the test sample, namely Acen and Anth; and two components are present
only in the calibration sample, BbF and BaP. Therefore, these samples represent the
most general case that a chromatographer might face in real conditions (The identities of
these components are not important here, see appendix E for their names).

The data matrices were cut into three windows, corresponding to points near the
valleys of the TWC. GRAM was applied to each of these windows, and the resultant
resolved chromatograms of the test sample are presented in Fig 2.6.

Fig 2.6A represents the the first peak cluster, in the 0-40 sec. range. Table 2.3
shows that the calibration sample has only one component in this range, Phen, whereas,
the test sample has three: Acen, Phen and Anth. Therefore, the only component that is
correctly resolved is the one present in both samples, i.e., Phen. The two other curves
represent linear combinations of the other two components, and could be resolved using
two-component self modeling curve resolution [Lawton and Sylvestre, 1971]. This
cluster illustrates the most important feature of GRAM: the ability to quantitate an
unresolved component, in this case Phen, which is overlapped with other, unknown
components in the test sample. The other two components are not resolved because they
violate one of GRAM's requirements, i.e., the concentration ratios must be different;
for both components the ratio of concentrations calibration/unknown is zero.

Fig 2.6B represents the second peak cluster, in the 40-70 sec. range. Both
samples have the same two components with different concentration ratios (ca. 3/1), and
both are successfully resolved in the test sample.

Finally, Fig 2.6C represents the third cluster of the test sample. This is the

opposite case of the first cluster, i.e., the calibration sample has more components than
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the test sample. Because both components in the test sample are present in the
calibration, they are correctly resolved.

Careful observation of Fig 2.6 reveals that the arbitrary division into windows
occurs at points where two components overlap, and in each case, GRAM uncovered
these borderline components. For example, Fig 2.6B shows four resolved components,
two of which are the main Gaussian peaks, and the other two, at the beginning and end
of the cluster, represent the tailing edges of components in adjacent windows.

Note also that Anth, the trailing component at the beginning of the second
cluster, could not be resolved in the first cluster, but its tail portion is correctly solved in
the second cluster. This can be explained with the same argument that was used to
explain why it could not be resolved in the first cluster: Anth is the only component in
the second cluster that has a concentration ratio (unknown/calibration) equal to zero.
Therefore, it can be correctly resolved at its trailing edge, where it no longer overlaps
with Acen from the first cluster, which was the other component with a zero ratio.

The second simulation was intended to test the effect of a lower signal to noise
level on chromatographic data. An average 4% noise (S/N = 25) was added to a three-
component simulation. The spectra used for the simulation were those of BaP, BbFI and
BeP. Fig 2.7 shows the GRAM-resolved chromatograms of both samples. This GRAM
calculation was repeated 10 times to estimate the error in the results. Fig 2.8 shows the
normalized chromatographic and spectral solutions and their respective confidence bands.
Table 2.4 compares the estimated and expected concentrations and the predicted error in

the results.
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TABLE 2.4
SIMULATION WITH 4% NOISE
Noise is 4% of the maximum absorbance in the spectrum measured at the apex of the

Gaussian peak. Concentrations are relative to the calibration sample. Retention times
(RT) in sec. Standard deviation based on ten calculations with the same 4% noise level.

Expected Estimated Standard
Component RT Concentration Concentration Deviation
BaP 15 2.000 1.953 0.008
BbF1 20 1.000 0.999 0.001
BeP 25 1.500 1.485 0.005
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Experimental Data

Three sets of samples were used to test the GRAM method with real data. All the
experimental data, including the GC analysis results, were courtesy of L. Scott Ramos.
The experimental and computational details of the GRAM calculations with this data are
presented in appendix E [Sanchez et al, 1987].

The first two sets contained three components in both the calibration and the
“unknown” (test) samples (both sets of samples were prepared from pure standard
solutions, therefore, the test samples were actually known). Table 2.5 presents the
details of these two sets of samples and compares the expected with the estimated
concentrations. The samples of the same set were analyzed sequentially, under the same
chromatographic conditions, to minimize changes in the relative retention times. The
minimal residuals projection method (MRP) was used for the correction of the
synchronization error for this case (See appendix D for details).

The resolved chromatogram of the first unknown sample is presented in Fig 2.9.
This sample and its corresponding calibration sample were analyzed with a mobile phase
containing 20% water in CH;CN. The expected solutions were estimated with a multiple
linear regression program (MLR) for comparison with the GRAM results; the MLR
solutions do not necessarily represent the actual true solutions, but they are a good
approximation of the underlying chromatographic profiles. Note that the MLR solutions
and the GRAM-resolved solutions are very similar. This sample was originally thought to
contain only two components, but GRAM uncovered the presence of a third component,
an impurity. Target factor analysis [Malinowski and Howery, 1980; Lorber, 1984B]
was used to test for the presence of several possible impurities, and only BbFI gave a
positive test, and its spectrum was used for the MLR estimation. Fig 2.10 shows the

GRAM-recovered spectra for this sample, together with the expected spectra. Due to the
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TABLE 2.5
REAL SAMPLES
Spectral similarities are the dot product of the estimated spectrum and the

real spectrum. A value of 1 indicates perfect match and a value of 0
total dissimilarity. A dash (-) indicates data not available.

Sample Expected Estimated Spectral

No. Component  Concentration Concentration Similarity

1 BkFI 4.1 4.5 0.9998
PER 8.6 9.0 0.9996
BbFl1 - - 0.8145

2 BbFl1 6.0 6.4 0.9997
BkF1 5.4 5.5 0.9997

PER 4.1 4.1 0.9980
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low intensity of the impurity signal, the noise in the recovered spectrum is too high to
show clearly its identity. But the estimated spectra of the other two components match
very well with their actual spectra.

The solutions for the second set of three components are presented in Fig 2.11.

These samples were analyzed using 30% water in CH;CN as the mobile phase. The

expected and the estimated spectra can be compared in Fig 2.12. The resolution between
BbF1 and PER is very low (R = 0.15), but the GRAM-resolved chromatograms are a
very good approximation of the MLR estimates. The best estimated spectra also
correspond to BbFl and PER.

The third set was a complex unknown environmental sample, and a mixture of
standards as the calibration sample. Fig 2.13 shows a portion of the TWC for the two
samples. The unknown sample came from the sediment of a local river contaminated
with polyaromatic hydrocarbons. Gas chromatography analysis resolved more than three
hundred peaks. Due to the complexity of the sample and the availability of the pure
spectra, the synchronization error was corrected using the iterative GRAM method. The
calibration sample included eight polyaromatic hydrocarbons of interest, and Table 2.6
compares the GRAM LC/UV with the GC results. Fig 2.14 illustrates the resolved
concentration profiles for the eight analytes and Figs. 2.15-2.16 show their resolved
spectra, compared with the library spectra.

The quantitation results show that the difference between GRAM and the GC
analysis is in average 15%, with the notable exception of Benzo[a]pyrene. The
estimated spectrum of the latter also has remarkable differences with the library spectrum.
Because the error in concentration ratios and the error in the eigenvectors is related, it can

be used as a diagnostic tool: when the estimated spectrum is significantly different from
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that of the pure analyte, the error of quantitation will also be significant. The other

spectra are more accurate, and their concentrations are estimated more accurately.
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TABLE 2.6
COMPLEX ENVIROMENTAL SAMPLE

Comparison of the GRAM estimation results with the Gas chromatography analysis.

Compound Name GC/ESTD LC/GRAM Difference
(ng/p) (ng/ul) (%)
1-Methylphenanthrene 3.83 3.07 20
Fluoranthene 18.39 19.99 9
Pyrene 21.47 24.16 13
Benz[a]anthracene 8.77 7.82 11
Chrysene 10.50 9.21 12
Benzo[e]pyrene 7.63 13.35 75
Benzo[a]pyrene 7.06 9.10 29

Perylene 3.82 4.52 18
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Second Order and beyond

The possibilities for quantitation using GRAM in LC/UV have been presented.
Any other chromatography/speclroscopy combination will of course be suitable for
GRAM. Combinations such us GC/MS should prove to be extremely efficient due to the
capabilities of GRAM combined with the more unique MS spectra. Another area that will
benefit from GRAM is fluorescence Spectroscopy, by using spectral, lifetime,
polarization and other measurements combined in diverse ways to generate second and
higher order data [Warner et al, 1985].

The application of GRAM is not restricted to calibration. Whenever two samples
that have some constituents in common are available, GRAM can be applied. Solvent
extraction could be used to generate two samples out of a single unknown, and with a
proper selection of the solvent the analytes will have different ratios of concentration.
Then a bilinear instrument and GRAM can be used to extract the spectra of those analytes
for identification.,

The greatest potential for GRAM and in general second order methods is perhaps
in future second order instruments which are yet to be built. When using a bilinear
instrument with GRAM, the analyst need not worry about interferences and/or
contaminants in the analysis, and simultaneous determination of several components is
possible with only one calibration sample. Until recently, the main goal in analytical
chemistry has been to increase the resolution more and more, without considering data in
other orders, simply because no advantage was seen in doing so. That trend has started
to change, and everyday more second order instruments become available, as well as the

mathematical tools to handle their data.
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Given the fundamental differences between first order and second order
calibration, it is reasonable to wonder what happens in third order and beyond. With the
knowledge of the possibilities of first order, it was impossible to predict the properties of
bilinear calibration. Therefore, a similar difficulty is faced when trying to predict the
possibilities of third order instruments. Appellof and Davidson have extended the rank
annihilation method to third order data [Appellof and Davidson, 1981A; 1983]. They
also showed that for trilinear data (analogous to bilinear for third order) it was possible to
obtain the intrinsic vectors uniquely, by using a minimization algorithm and at least as
many slices (matrices of data) in the third order as components were present in the
mixture [Appellof and Davidson, 1981B] (GRAM can be seen as a particular case of
decomposition of a trilinear matrix, with only two slices in the third order, the
calibration and the test bilinear data respectively). Aparently, they did not attempt to use
fewer slices in the third order in their calculations, because a unique solution exists for as
few as two slices.

The problem of trilinear decomposition was studied in the early seventies by
researchers in the area of psycometrics [Harshman, 1970]. It was discovered that the
number of factors, n, that could be extracted uniquely from third order data of trilinear
nature is related to the rank in each order by the formula:

n S(gx+qy+q-2)2 [2.38]
where q,, dy and g, are the ranks in each order as defined by Kruskal [Kruskal, 1976]
and the formula sets an upper limit for the number of factors that can be extracted. For
example, for g, =2 (two slices in the third order), and g, = gy, it is concluded that
n < g, This means that the upper limit for the number of unique factors that can be
extracted is equal to the rank of the first two orders, which is the result found for
GRAM, where the number of extracted components has to be equal or less than the rank

in each order (by definition, for bilinear data, the rank in the two orders is the same).
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Similarly, Appellof and Davidson assumed that forq = ¢, = qy = q, was

necessary for resolving g factors, but in fact (3/2)g - 1 could be solved, if g = 10
(e.g.,a 10 x 10 x 10 matrix full rank in every order), thenn < 14 !! A maximum of
fourteen sets of intrinsic vectors can be uniquely extracted from a 10 x 10 x 10 matrix.
That necessarily implies that within each order, the vectors are linearly dependent. This
means that even completely collinear spectra can be solved in the third order under certain
conditions.

Unfortunately, the available algorithms for trilinear decomposition are based in
iterative minimizations of residuals, e.g., Alternating Least Squares procedures.
Convergence is not always achieved, and the more components that are present, the
more difficult it is to find the right solutions [Appellof and Davidson, 1981]. This is a
fundamental difference with GRAM, for which the intrinsic vectors are eigenvectors,

and no iterations are necessary.
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APPENDIX A

Tensors

This appendix is an introductory description of tensors that has been adapted from
Bernard Budiansky's excellent presentation [Budiansky, 1974]. Assuming familiarity
with vectorial concepts, they are presented in the context of tensor theory for
multidimensional spaces. No attempt has been made to expose a rigorous presentation of

the subject, which can be found elsewhere in the literature.

Vectors in Multidimensional Space
Orthonormal Base Vectors Let (e, €y, ...,e,) beasetof n mutually perpendicular
vectors of unit length. These orthonormal vectors will be used as base vectors in the

definition of the Cartesian components of arbitrary vectors. Therefore,
€; - ej = 5," [Al]

where &;; is the Kronecker delta.

Cartesian Components of Vectors The Cartesian components F; of a vector F, referred

to the orthonormal base vectors €;, are defined, equivalently, by either the projection

formula

Fi=F-e¢ i =1,2,..,n [A.2]

or the composition formula

F = F,' €; [A3]
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where a summation convention has been used that dictates that when two indexes are
repeated at the same side of an equation, it implies that the indexed variables are summed
over the range of the indexes. Therefore, Eq A.3 is equivalent to

n

F = ZFl €;
i=]

General Base Vectors The components of a vector do not have to be defined with respect

to orthonormal vectors. Let €y, €5, ..., €, be any n linearly independent vectors that
will be our general base vectors. Eq A.1 no longer holds, but generalizes to the form
€€ = g [A.4]

where g;; is called the metric tensor.

General Components of Vectors One natural way to define the components of an

arbitrary vector F with respect to the general base vectors is to follow Eq A.2 and write
F;=F-¢g i =L B [A.5]
A different kind of component arises from a generalization of the composition formula
(Eq A.3), requiring a different notation
F = Fl g [A.6]
the F; are called the covariant components of F, and the F are the contravariant
components. Cartesian components are both covariant and contravariant.

For any given set of general base vectors, the two kinds of components can be

related with the help of the metric tensor g;;. Substituting A.6 and A.4 into A.5 yields
These relations may be inverted. Use g¥/ to denote the (i,j)th element of the inverse of

the matrix [g]; then
8P gpi = & [A.8]
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where the indices in the Kronecker delta have been placed in superscript and subscript
position to conform to their placement on the left-hand side of the equation. Accordingly
Fi = gi F ) [A.9]
The metric tensor g;; can be used to introduce an auxiliary set of base vectors €
(i=1,2,..,n) by means of the definition
g = gi g [A.10]
The € and g; are called, respectively, the covariant and contravariant base vectors, and

the following relations are readily established:

g = g; © [A.11]
e g =6 [A.12]
g - =gl [A.13]
F = F; € [A.14]
Fi = F-¢ [A.15]

Equations A.14 and A.15 show the use of the earlier roles of projection and composition
in the definition of covariant and contravariant components of a vector.

Consider, finally, the question of calculating the new components of a vector

with respect to a new base vectors g; . A direct calculation gives

Fj = (F &) & =F (& g) [A.16]

We also find easily that
Ej = F; (¢ -g) [A.17]
Fi = Fi(g¢g)=F; (€ ¢) [A.18]

Tensors in Multidimensional Space

Dyads, Dyadics and Second-Order Tensors The mathematical object denoted by ab,

where a and b are given vectors, is called dyad. The meaning of ab is simply that the

operation




(ab)-v
where v is any vector, is understood to produce the vector

ab- -y
A sum of dyads, of the form

T =ab + cd + ef + -
is called a dyadic, and this just means that
T-v=am-v) + cd-v) + e(f-v) + -
Any dyadic can be expressed in terms of an arbitrary set of general base vectors €;; since
a=de, b=big, =cl g,
it follows that
T=adbee+cde € + efi g g +
Hence, T can always be written in the form
T = TV g g [A.19]

in terms of the nxn numbers T%.

A dyadic is the same as a second-order tensor, and the Ti/ are called the
contravariant components of the tensor. These components depend, of course, on the
particular choice of base vectors. The basic meaning of T should be re-emphasized by
noting that, for all vectors v

T-v=Tig (& - v)
= (TY vj) g
Thus, if v; is the jth covariant component of a vector, then (7% v; ) is the ith
contravariant component of another vector. Similarly, we can define the operation
v:T =TV (v-g ) €
= (TY v;) g

which produces yet another vector having 7Y v; as its contravariant components.
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By introducing the contravariant base vectors € we can define other kinds of
components of the tensor T. Thus, substituting
€; =g,'p€P, 8j=gjq£q
into Eq A.16, we get
T =Ty, €7 &4 [A.20]

where the nine quantities

Tpg = Cip8jg TV [A.21]
are called the covariant components of the tensor.

Transformation rules Suppose new base vectors g; are introduced; what are the new

contravariant components T% of T? Substitution of the representations

& =& " &)g [A.22]
g =€ -&9)g [A.23]
into [A.19] gives
T=Tig -&)E &) [A.24]
whence
Pd =TV (g &) " &) [A.25]

which is the desired transformation rule. Many different, but equivalent, relations are

easily derived; for example

Tpg =TV (& " &) (& * &) [A.26]

Nt -Order Tensors A third order tensor, or triadic, is the sum of triads, as follows:
abc + def + ghi + -

The meaning of this is that, for any vector V, de dot products

ab(c-v) + de(f-v) + gh(i-v) + -

or
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atb-v)e + d(e-v)f + gh-v)i + -
provide second-order tensors. It is easily established that any third-order tensor can be
written
T = Tik g ¢ g [A.27]
The extension to Nth -order tensors is now immediate. A general tensor of order N -may
be written in the polyadic form
T = TUk,,-ste; g, elem - g, [A.28]
and this means that the dot product of T with any vector v produces a tensor of order (N
- 1). (The dot product with v may be with respect to any one of the base vectors;
unfortunately, the notations v-T and T-v are unambiguous only for second-order

tensors, and should therefore be avoided for tensors of higher order.)

SRR




APPENDIX B

Error Propagation in Rank Annihilation

To estimate error in the Rank Annihilation results is a difficult problem. Both the
unknown matrix M and the calibration matrix N are usually obtained from the same
instrument, therefore there is the same instrumental error for both matrices. We will
show the error for a simple case with M(2x2) and also N(2x2), with two components in
M and one component in N. This is an interesting case, because the RAFA calculations
can be express easily, and direct error propagation can be applied to estimate the error.

A matrix M bilinear in its chemical constituents can be modeled by three matrices

M = XBYT = x;8; yT; + %28, ¥T; [B.1]
that for a 2x2 M matrix, all the matrices X, B, and YT are also 2x2. X contains the
two unitary vectors (X, X,) as its columns and YT contains the two unitary vectors (y;,
¥2) as its rows. Because M has two components, B is a diagonal matrix with elements

B and 3, in the diagonal, both different than zero. Similarly, the one component matrix

N can be modeled by
f N=x;§ 1y [B.2]

The rank annihilation estimation may be expressed as the product of three

matrices (Eq 2.18),
f = enileyr = & YT, Mrx [B.3]

where fis the ration of concentrations, cy; and ¢;,; are the respective concentrations of
analyte / in N and M, M+ represents a pseudoinverse of M, and x; and y; are unit

length vectors that together with & are a least squares approximation of N such that

T R e
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N =x; & yT; + e, with e minimal in the least squares sense, and the subscript /
stands for the fact that N only contains component /, and X; and y, are its spectra in
each order.

The problem is to find the variance of ¢yy;, Var(cy;), given the variances of M
and N, Var(M) and Var(N). If we assume that the variance is independent of i,j for M;;
and Ny;, then the problem can be greatly simplified. This is a reasonable assumption for
many second order techniques, such as Emission-Excitation spectrometry or LC/DAUV.

For a 2x2 square matrix such as M, assuming that there are two linearly
independent components, the pseudoinverse is simply the inverse,

M+ = ML [B.4]

If we call M;; the element of the i row and j column of M, and D the determinant of M, D

= det(M), then the pseudoinverse M+ is given by,

My, -Mp
M+ = (1/0)! [B.5]
|-M2r My

Doing some algebra, and expressing the vectors x; and y; as X; = (x;;, x;3) and y;
= (v;7,y12), then we can rewrite Eq B.3 as

enilemr = (§1/D) 0y May - xyMay - xy /My + xy,Mpp)  [B.6]
An advantage of Eq B.6 over Eq B.3 is that the approximation of N;; by & Xiyj is not
necessary, we can simply substitute them, obtaining

entlemy = (LID ) (NjpMpp - NijpMpp - Nyy My, + Npy Myy)  [B7]
Coming back to our problem, we are interested in Var(cyy;), using f as cy;/cp, Var(f)
is related to Var(cyy;) as follows:

Var(cyy) = (Uf)Var(eny) + (eniif 2?* Var(f) [B.8]

that partially substituting f = cy;/cpy; yields
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Var(cyy) = cuiMeni® (Var(eny) + cy?Var(f) ) [B.9]
Then, the relative variance, Var(cyy)/cy? 5 1S
Var(cy ey = Vens® (Var(ey)) + cy?Var(f) ) [B.10]

Now we need to estimate Var(f). There are two sets of variables to consider, N;; and
M. The first order variance of f as a function of the variances Oy and 0y, is defined as
Var(f) = 2 (Of10My)? oy + 2 (9f 1ON;j)? Op? [B.11]
where the summations run for i and j from 1 to 2. After computing the derivatives using
Eq B.7, and simplifying we get
Var(f) = 2 (cyyMjjleyy - Nij)2D2 oy + 2 (M;; 2/D? 6\?(B.12]
The two terms of the right hand side of this equation can be estimated, and correspond
respectively to the effect of the instrumental error for the unknown sample and the
calibration sample. But further simplification is possible to interpret the Var(cyy;) as a
function of the intrinsic factors x and y. The first term is a subtraction of all the
estimated amount of N present in M, that in turn can be approximated with the vectors
X, andy,,
ey Mijlepy - Nij = (enp lemn) X2 B2 ¥2; [B.13]
Because the vectors X, and y, are both unitary, the sum of squares of their components
x,; and y, are equal to /, and the first term of Eq B.12 becomes
2 (cng Mjjlepgy - Ny D2 0y = (e lep1)*B22/D? Opf? [B.14]
The second term of Eq B.12, related to the error in the N matrix, can also be
approximated using the vectors x and y. Using Eq B.1, we obtain
My = xp Bry; + X2 B2y (B.15]

then

2 (M;; )4D? oy?
= UD2(B2Xxy%yy 2

and finally

2 (e Bryiy + X B2 ya)*D? oy?
B22xpi 2y 2 + 2185 XXy yijx2i¥2) [B.16]

+
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Y (M;)UD2 op? = D2 (B2 + B2 + 28,8, cos(a,) cos(ary) ] [B.17]
where o, is the angle between the vectors x; and X,, and similarly, o, is the angle
between the vectors y; and y,. The determinant of M itself can be express as a function
of the intrinsic factors. Using Eq B.1 and the fact that the determinant of the product of
three matrices is the product of the three determinants of the individual matrices, D can ;
be approximated with ?

D = det(B) det(X) det(Y) =/3,8, sin(a) sin(at,) [B.18] |
Now, substituting Eqs B.14, B.17 into equation B.12, we get for Var(f)

Var(f) = (CNI /CMI)zﬂZ?'/Dz O'M2 + 1/D? [/312 + ﬁzz + 2/31ﬂ2 cos(oy) cos(ocy)] O'N2
[B.19]

and the relative concentration variance is obtained substituting Eq B.19 into Eq B.10,
Var(cMI)/cM12 = O'Cz /CNIZ + ﬂzz/Dz GMZ +

+ (cppp len)?ID2 (B2 + B2% + 28,8, cos(ay) cos(ay) ] op*  [B.20]
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APPENDIX C
Algorithm for the Generalized Rank Annihilation Method

This appendix presents the algorithm used to do a complete GRAM calculation.
The algorithms for synchronization of LC/UV data are presented in appendix D. No
major details are given but the information should be enough to write a computer

program.

GRAM
Problem: Given the matrices M and N find the matrices X, Y, B and & as defined by
Eqs 2.11-2.12. A general algorithm is presented here.
Algorithm:
« Choose a model, U, for the column space of M and N (1-3). Three of the

possible models are (the first one is not recommended):

.M =USVT Singular Value Decomposition of M
2.(M+N) = US VT S.V.D. of the sum of M and N
3.(M|N) = USVT S.V.D. of the join matrix M|N

« Truncate U matrix according to the number of significant components. Call ¢
the number of components selected.

 Compute matrix W <- M+ N, (warrants all the components present).
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* Project the matrices W, M and N onto UUT:
W < UUTW
M <« UUTM
N <- UUTN
« Compute S.V.D. of W, W = UySy VyT. There should be g non-zero
singular values, and the rest should be zero within the machine precision.
o« W+ = Vi, Syt UyT, where Sy is a gxq diagonal matrix.
+ Compute eigenvalues and right eigenvectors of non-symmetric matrix NW+
(NWHE = EA
« Compute pseudoinverse of E, i.e., E+.
+ Compute X, Y, B and &,
X=E (ie, x;=¢;)
BYT=E+M -> YT = Normalized(E+ M)
B: B;= Norm(Columniof E+ M)
E: & = Norm(Columniof E+N)

e End.
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APPENDIX D

Synchronization of LC/UV Data

The GRAM model as applied to LC/DA-UV assumes that the chromatographic
profiles of each analyte in the calibration sample are identical to those in the test sample.
However, small variations in the relative positions of these profiles occur for
chromatographic data, i.e., the retention times may change from the calibration to the
test sample, due to small fluctuations in the column characteristics. Therefore, the Y
matrix from M is different from the Y matrix from N. Kim [Kim, 1985] has
denominated this problem as the synchronization error. If the change in the
chromatography that causes the error is not large, we can assume that the error exist only

in the time index (j ) of the N matrix,

M;: <=> Ni,j+Aj [234]

ij
Kim assumed that the error Aj was an integer, and a simple integer iteration could find a
Aj for which the projection of N on the subspace spanned by M changed N the least.
Unfortunately, when sampling occurs at a slow rate, 4j is not generally an integer.
Furthermore, if the change in the chromatography is due to a small change in the flow
rate, Aj is not constant, and changes linearly for every j. This appendix describes three

algorithms that have been developed in this work to correct the synchronization error,

each useful under different circumstances, that account for a non-integer, variable

Aj (j). For each algorithm, the parameters of the function 4j (j ) = 4j9 + mj, that

relates Aj linearly to j are varied with a simplex until some optimality criterion is reached.
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When 4/ (j ) has been found, a two-dimensional interpolation algorithm is used to
estimate the corrected N matrix, i.e., N’, thatis described at the end of this appendix.
The algorithms are not limited to a linear model- more complex models could be
used suchus 4j (j) =4jy + mj + nj2. Butif the conditions of the chromatography
change dramatically between runs, to a point that relative retention times are not
reproduced, then these algorithms cannot synchronize the matrices and GRAM cannot be
used. For long chromatographic runs it is sensible to break the data into small windows
to separate synchronizations and calibrations, that will reduce the effect of fluctuations of
the conditions within the same run, and also reduce the number of components analyzed

at a time.

neral Synchronization Algorithm:

* Define {4/ g ,m } as the parameters of the equation 4j (j) =4j, + mj
* With a Simplex algorithm, vary parameters {4/ ; ,m } until the optimal
minimum of the optimization criterion is reached. Allow very small variations of
m and an initial search value of m = 1.
* Compute the new matrix N” using the estimated synchronization parameters.

where the difference between the algorithms is in the optimization criterion.
Three possible criteria have been developed: Minimal Residuals Projection,

Minimal Subspace Distance and Iterative GRAM.

Minimal Residuals Projection (MRP) If the components present in the calibration, N,

are also present in the test sample, M, then this method can be applied. It is based in the
fact that if N is properly synchronized, the rows (chromatograms) of the N matrix can

be well approximated by linear combinations of the rows of M.
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Algorithm:
« Compute the truncated singular value decomposition of M: U S VT,
« Optimize Residuals after projection: Norm || N" (I - vVDh .
To test if all the N components are present in M we can use the necessary condition
N = UUTN.
Minimal Subspace Distance (MSD) In general is not possible to use MRP, because we

may find that there are components in N that are not present in M. But if there is at least
one significant component in common between the two samples, the intersection of the
row subspaces of M and N” is not null when N’ is properly synchronized. In practice,
the absolute intersection is null due to the random noise, but a N’ matrix can be found
for which the distance between the subspaces is minimal, and it should correspond to
approximately the right synchronization if there is one component in common.

Algorithm:

Compute the truncated SVD of (MIN): US VT
Change M and N' to U base: M, = UTM; N,=UTN".

Compute truncated SVD of M, and N
M, = Uy Sy V™.
N, = Uy Sy VaT.

°

to= vy k=0; Iterate until convergence:

Pres = YNt | This loop finds the two nearest unitary
ty, = Vil Prsr | vectors p and t that belong respectively
Normalize t;, ; | to the N and M subspaces.

« Distance between the subspaces = | Normalized Py, = tes1 |

Iterative GRAM The two previous methods only use the information from the M and N

matrices. A limitation of MSD is that when many components are present in MorN, it

is difficult to find the optimal N’ because there are multiple minima. In addition, the
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proper truncation of the SVD for all the matrices becomes very critical for the quality of
the results. If the spectrum of at least one of the analytes in common is available, e.g.,
from a library of spectra, then it is possible to do iterative GRAM calculations until one
of the estimated spectra matches the library spectrum. Usually GRAM results are very
far from the real factors when the synchronization is not right, therefore this method
could be applied to find the optimal synchronization. It is not recommended when there
are very few overlapping chromatograms (e.g., 2-3) because the possibility of correct
results with a wrong N increases for those analytes at the tails of the chromatogram.
Algorithm:

* Find X using GRAM(M, N)

* Compare library spectrum x, with all the columns of X. Choose the most
similar (ms) column x,,,,.

* Distance = |x; - X,

Algorithm for transformation of N When the Simplex has selected a parameter pair for

testing the optimization criterion, a new matrix N’ is computed for which
N'ij = Nijia
Which is a two dimensional interpolation problem in one variable (standard subroutines
for interpolation are widely available, e.g., IMSL). For our data the number of
wavelengths was equal to 97, therefore (97 x Number of Scans) interpolations are
necessary, unless the magnitude of the problem is reduced, by shrinking the spectral
vectors by projecting onto the truncated SVD vectors of (M|N).
Algorithm:

+ Compute truncated SVD of (M|N): US VT,

* Approximate N in base U: N,)= UTN.

* Forevery j interpolate N, to obtain Ny :Nw:ij =N i i

* Estimate N* = UN",,
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APPENDIX E
Experimental Details

These experimental details were a courtesy of L. Scott Ramos and they are

included for completeness. For more details see [Sanchez ez al, 1987]

Equipment

The liquid chromatography hardware consisted of two Beckman (Berkeley, CA)
114M pumps, a Beckman 340 pflow mixer, a Valco (Valco Instruments Co., Houston,
TX) 10-port injection valve fitted with a 10 pl injection loop, and a Hewlett-Packard
(Palo Alto, CA) 1040A DA/UYV detector. Program control was provided by a Beckman
421A LC controller, while data acquisition and storage were accomplished by a Hewlett-
Packard 85B computer and 9121 dual floppy disk drive.

The gas chromatography hardware consisted of Hewlett-Packard S890A gas
chromatopraph cut-fitted with a capillary injector, a flame ionization detector, and a

Hewlett-Packard 3392A integrator.

Reagents

The mobile phase solvents, UV-grade acetonitrile and water, were obtained from
Burdick & Jackson (Muskegon, MI). Polynuclear aromatic hydrocarbon standards were
purchased from Chem Services, Inc. (West Chester, PA), and included: acenaphthylene
(Acen) [206-96-8], Phenanthrene (Phen) [85-01-8], benz(a)anthracene (BaA) [56-55-3],
anthracene (Anth) [120-12-7], chrysene (Chry) [218-01-9], benz(a)pyrene (BaP) [50-32



8], benz(e)pyrene (BeP) [192-97-2], benz(b)fluoranthene (BbFI) [205-99-2],
benz(k)fluoranthene (BKFI) [207-08-9] and perylene (PER) [6364-19-8].

Procedures

A 5um Cg, 4.6 x 150 mm column (Brownlee, Santa Clara, CA) was used in the

LC analyses. The LC analyses followed a basic procedural outline: an events table was
first created in the 421A controller, including % of solvent B, mobile phase flow rate,
time of injection and time for initiating data acquisition. Calibration and test samples
were analyzed in exactly the same manner, one immediately after the other, to minimize
error in retention time reproducibility.

Data acquisition was initiated upon a command from the 421A controller and was
terminated at the time entered for stop-time in the HP 85B system. The DA/UV detector
was operated in the “periodic spectra” mode, in which full spectral scans from 210-400

nm were acquired at a rate of ca. 1 scan/sec, with a bandwidth of 2 nm.
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