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12. Het unieke van de televieserie "Medisch-Centrum West" is dat de
hoeveelheid leed per vierkante meter is gemaximaliseerd.

13. Het dameshockey is nog niet erg geémancipeerd: er moet nog steeds een
"mannetje" worden gedekt.

14. Ook een proefschrift zénder chromatogram kan over chromatografie gaan.
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Stellingen

10.

11.

De R% waarde, zoals gebruikt door Héberger, is niet correct voor het
door hem gebruikte exponentiéle model. Dit verklaart waarom Héberger R?
waarden groter dan 1 als uitkomsten verkrijgt.

(K. Héberger; Emperical correlations between gas-chromatographic
retention data and physical or topological properties of solute
molecules, Anal.Chim.Acta, 223 (1989) 161-174)

De rechtvaardiging van het gebruik van PLS in response surface
methodologie, zoals in de CARSO procedure, is zeer mager. Het berocep
dat door de auteurs wordt gedaan op een beter voorspellend vermogen van
PLS t.o.v. de gebruikelijke kleinste kwadraten methode, is onjuist.

($. Clementi, G. Cruciani, G. Curti and B. Skagerberg; PLS response
surface optimization: the CARSO procedure, J. of Chemometrics, 3 (1989)
499-509)

De "intermediate least squares" regressie methode staat op gespannen
voet met het "consistency at large” idee van H.Wold.

(I.E. Frank; Intermediate Least Squares Regression Method, Chemom. and
Intelligent Laboratory Systems, 1 (1989) 233-242.

H. Wold; Soft Modeling: The Basic Design and Some Extensions, in:
Systems under Indirect Observation, K. Jéreskog and H. Wold (eds),
North-Holland Publ.Co., 1982)

Met het gebruik van partial least squares en principale componenten
regressie wordt het probleem van variabele selectie niet vermeden.

De chromatografische begrippen "solvent strength" en "solvent
selectivity" zijn niet exact gedefinieerd.

Een voorgeschreven vorm heeft in de muziek het creatieve proces nooit
gedoofd, integendeel. Aio’s en oio’s komen dan ook niet per definitie
tot hun recht door het geven van onbeperkte onderzoeksvrijheid.

De weerstand tegen onzuivere schattingsmethoden is te vergelijken met
de weerstand tegen atonale muziek.

Strengere sancties op ontoelaatbaar spelgedrag van de voetballer
sorteren een positief effect. Dit geldt niet voor strengere sancties op
crimineel gedrag.

De snelheid waarmee tweede geldstroom projecten door de betreffende
instanties wordt beoordeeld, dwingt de universitaire indieners wvan
dergelijke projecten tot het verleggen van hun planningshorizon.

Ongerichte ambitie werkt destructief.

Het karakter van een citation index is meer incestueus dan serieus.
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List of Symbols

X, Vy, z data vectors (first order arrays); sometimes

a variable, depending on the context

X, Yy, 2 multivariate variables

X, Y, Z data matrices (second order arrays)
X, Y Z data cubes (third order arrays)

n sample size

m,r _ number of variables

i,j.k,s running indices

population covariance matrix
sample correlation matrix

sample covariance matrix

P matrix containing the right eigenvectors of a
matrix (the loadings of the variables on the
principal components)
diagonal matrix

T matrix containing the left eigenvectors of a
matrix (the scores of the objects on the
principal components)

t, ith left eigenvector of a matrix (the scores
of the objects on the ith principal
component)

A% ith singular value

A ith eigenvalue

Pi ith right eigenvector of a matrix (the
loadings of the variables on the ith

principal component)

Q, W special loading matrices used in PLS

diag(z;,..,2z,) diagonal matrix with diagonal elements z; to
Zm

I, Identity matrix of order k

“det(X) determinant of matrix X

tr(X) trace of matrix X



B
bols
V(bgys)
a;, b
A" B’
e, £

, F
E, F
g
1)

i

random error

population model coefficients

an estimate of B with the ordinary least
squares method

variance-covariance matrix of the estimator
by

vectors containing loadings (scores) of the
variables (objects) on the ith PARAFAC
component

matrices containing loadings and scores of
the variables and objects on the PARAFAC

components

vectors (or scalars) of residuals
matrices of residuals

cubes of residuals

number of components in a PLS, PCA or PARAFAC

model

Kronecker symbol: §;; = 1 if i=j, 6;; = 0
otherwise

the vector (1,...,1)’






Preface

One of the most widespread techniques in analytical chemistry is
high-performance liquid chromatography, especially the reversed-phase
mode (RP-HPLC). In the stationary phases of RP-HPLC a ligand is
covalently bonded to the silanol groups at the silica surface.
Different types of ligands give different selectivities towards the
group of solutes that is to be separated. In this way optimization of
a separation can be performed, besides mobile phase manipulation, by
changing the type of stationary phase.

A problem that arises when using RP-HPLC is the occurence of
between-batech variation. When the mobile phase composition of a
separation is optimized on, e.g., an octadecyl stationary phase, the
optimal mobile phase composition will no longer be optimal when a
fresh column is used. This change is due to small irreproducible
differences between the old and the fresh octadecyl stationary phase
(assuming that they are from different batches). Similarly, during an
operation, the stationary phase deteriorates and the optimal mobile
phase composition has to be updated.

A first step in the optimization of a separation by varying the
type of stationary phase, 1is the transfer of retention values of a
set of solutes on a stationary phase to a stationary phase of a
different type. This problem is called: "Calibration of various types
of stationary phases" and is dealt with in Part III.

A first step in correcting the optimal mobile phase composition
when batch differences arise, consists of transferring the retention
values of a set of solutes on a stationary phase of one batch to a
stationary phase of another batch. This topic is dealt with in Part
IV and is called: "Calibration of octadecyl stationary phases of
different batches".

The problem of the deterioration of a stationary phase iIs not dealt
with, but some general ideas are given in Chapter 8. '

The above mentioned calibration strategies demand their own stat-
istics, in particular multivariate statistics. A review of the
(multivariate) statistical techniques used in this thesis are given
in Part I.

Part II deals with some recent relevant developments in RP-HPLC. Of
particular interest is Chapter 8: the core of this thesis.

In order to avoid extensive phrases, some abbreviations are used
instead. The test solutes are abbreviated with capitals. Thus TOL
stands for the test solute toluene. The solute TOL refers to the
solute toluene as such, whereas the variable TOL refers to the
retention values (ln k values) of the solute toluene. TOL, without
the addition of the noun "solute" or "variable" can have both mean-
ings, but the exact meaning of the abbreviation will be clear from
~the context.
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PART I CHAPTER 1 THE CHOICE OF THE MARKERS

Chapter 1 The choice of the markers

1.1 Description of the problem

Let x be an m-variate variable with mean zero and covariance matrix
S of order mxm. A number of n measurements X,,...,%X, is made on this
variable. These measurements are gathered in X=(%,,...,%,)’ of order
nxm. The matrix X may contain retention measurements of a number of
solutes (the variables) at different mobile phase compositions (the
objects) on different stationary phases (clustering of the objects).
The matrix ¥ can be in correlation form, this depends on the kind of
scaling of x.

1f the data matrix X is available, the question arises whether it
is possible to discard a number of variables (columns) of X without
loosing too much information. Especially in cases where X is highly
structured this is possible indeed. The notion "loss of information®
should be defined sharply and depends on the problem definition for
which X is used. A possible measure of information is wvariation and
accordingly some variables in X are retained which explain a large
part of the variation. Another possibility is to retain variables
that can predict the discarded variables as well as possible. A third
measure of information arises from the observation that X can be
understood as the notation of n objects (data points, rows) in the m-
dimensional Euclidian space. Discarding variables can then be seen as
a projection of the objects to a space of lower dimension, spanned by
the retained variables. In that case those wvariables should be
retained which preserve the "distance structure" within the original
m-dimensional space in a satisfactory way (the concept "distance
structure" has to be defined exactly).

Obviously, the maximum of information is retained if all variables
are used, but using all variables has two disadvantages: a statist-
ical one and a practical one. The selected variables are used as
predictors in models. For a given sample size there is an optimal
number of predictors for a given model, optimal in the sense of
prediction performance of the model. Increasing the number of pre-
dictors (variables) beyond this point only worsens the predictions.
This notion is called the peak-phenomenon and is treated more extens-
ively in Chapter 2. The intuitive reason is clear: additional vari-
ables give additional information and additional uncertainty. Beyond
a certain point the additional uncertainty overwhelms the additional
information. From a practical point of view a low number of variables
"is profitable. The wvariables represent solutes of which retention
measurements have to be made in order to calibrate a new stationary
phase. Minimizing the number of experiments is therefore equivalent
to a low number of selected variables.

Throughout this thesis the retained variables are called markers.
The meaning of this name will become clear in the following.

15



PART I CHAPTER 1 THE CHOICE OF THE MARKERS

1.2 Principal component analysis (PCA)

It is assumed that a data matrix X is available which consists of n
measurements (objects) on an m-variate variable x and X is column-
mean centered (see Section 1.7). An unbiased estimate of 3 is then:

1
S = X'X (1.1
n-1

If the columns of X are scaled to variance one, this S§ is in correla-
tion form. In the following analysis it is not necessary to make a
distinction between an S matrix in correlation or in covariance form.
It must be stressed, however, that there is no straightforward
relationship between the principal components (PC’s) obtained from a
correlation matrix and those based on the corresponding covariance
matrix.

A thorough description of PCA is given by Anderson!, Mardia
et al.?, and Jolliffe®. Some results are stated. The matrix S is
symmetric and positive semidefinite, therefore S has eigenvalues

A1y .-, 2,20 and eigenvectors p,,...,p, with pip;=0, ”pi“=(p;pi)'%=l.
The matrix P=(p,,...,p,) 1is orthogonal (P'P=PP'=I), so from SP=PD
follows

S = PDP’ (1.2)
where D=diag(X,,...,);) and A;>0 (each i) if rank(S)=m. The ith

principal component (PC) is given by t,=Xp, with p; the ith column of
P. Equation (I.2) can also be written in the spectral decomposition
form:

S = ApyPy + ApPaP; t+ ...+ ALPLPa (1.3)

This spectral decomposition is a successive rank one approximation
of S because rank(X;p,;p/)=1 for every i unless A;=0. If an eigenvalue
is zero, this means that rank(S)<m, so that there is a linear depend-
ence in the columns of §.

Some properties of PCA are readily shown:

i) tit;, = piX'Xp; = (n-1)p;Sp; = (n-l)p{PDP’pj = (n-1)§;;4;,
where §;,=1 when i=j and O otherwise. This can be shown by

making use of P'P=I.

16



PART I CHAPTER 1 THE CHOICE OF THE MARKERS

ii) (1/n)e't, = (I/n)¢'Xp; = (A/n) e’ (X1, .., X, )Py =
(A/n)(e'xqy, .., 0" %)P; = (1/n)(0,..,0)p; = 0, where
v=(1,..1)" and X=(%;,..,%,). Use the fact that X is column-
mean centered.

Property i) means that two PC's are orthogonal to each other. Each
PC has mean zero, when the original variables are centered, which is
shown in property ii). The variance of the ith PC is seen to be A, ,
by using property i) and ii). It is customary to arrange the eigen-
values in U in non-increasing order, so A;x...2) 20. The PC's are
arranged in the same order. The first PC is then the linear function
t;=p{x of x which has maximum variance A;. The second PC is a linear
function t,-pjx of x which has maximum variance under the condition
that t]t,=0, this variance is X, and so on. The vectors p; are called
the loadings of the m variables on the ith PC and the vectors t; are
called the scores of the objects on the ith PC. The PC's are strictly
defined as the scores, but in practice the term "PC" is used for
either the scores or the loadings vector, usually this is clear
within the context.

The total variance in X 1is trace(S), which equals the sum of
variances of the m variables in x. It can be shown* that tr(S)=
tr (PDP' )=tr (DP'P)=tr(D)=%; A, . The sum of variances in X is decomposed
in parts related to the PC's. The percentage of variation accounted
for by the first k PC’'s can be expressed as:

k m
100 & X, / 2 X (I.4)
1 1

The usefulness of PCA as a dimension reducing technique is seen with
the use of formula (I.4). If a lot of variation in ¥ can be accounted
for by a few PC's, the transformation of the original x-variables to
PC's is worth it to be considered. While the primary aim of PCA is
the search for linear combinations of the original variables in such
a way that the sum of variances of those original variables (tr(S))
is satisfactorily reallocated, formula (I.3) shows that the PC's
explain successively also the off-diagonal elements of S. This can be
seen by realizing that the eigenvalues are ordered in a mnon-in-
creasing way and therefore the elements in the successive parts of
the spectral decomposition tend to become smaller®. This distin-
guishes PCA from factor analysis (FA), because FA focusses on the
‘off-diagonal elements of §S.

The geometrical interpretation of PCA is shown in Figure I.1. From
data matrix X, representing measurements made on two variables for
eight objects, the first PC is visualized by a straight line through
the origin (assuming that X is column-mean centered) of the data
cloud and the vector t; contains the projections of the original data
points on this line. This straight line is selected in such a way

17



PART I CHAPTER 1 THE CHOICE OF THE MARKERS

that the projections on this line have a maximum spread. The second
PC is orthogonal to the first. There are only two PC’'s because there
are not more than two variables. The PC’s transform the data with an
orthogonal transformation of the original variable axis. Detailed
explanations of geometric interpretations have been given, e.g. by
Wold® and Davis’. It should be noted that the first PC gives a good
representation of the data. The data can be approximated or explained
rather good by the first PC. If PCA is used to reduce an m-dimen-
sional data structure to three dimensions, 3-D plots of the three
first PC's can be seen as a view in that m-dimensional space.

X2

PC,

X4

PC,

Figure I.1. Geometrical interpretation of PCA.

The loading vectors p; and the eigenvalues A; are important in the
diagnosis of the influence of the x variables. Near-zero eigenvalues
give valuable information regarding linear dependence between the
variables. To show this, suppose ),=0. Then Xp,=0 because t =Xp,=
thty=(Xp,)' (Xp,)=0, with the use of property i). This indicates a
near_linear dependence between the X-columns. Suppose X=(Xy,...,%,)
and the loading of x; on the final PC, the first value in Pm, 1is
high, say 0.90, and the loading of x, on this PC is 0.44 (the
loadings of the other variables are 0 because 0.90x0.90+0.44%0.44=1
as should be since P'P=I). One of the two variables is redundant,
since the variation of one of them can be explained almost totally by
the variation in the other because a near-linear dependence exists.
Which one should be thrown away? For the sake of simplicity assume
that 8 is in correlation form. The fraction of wvariation in -
"explained" by t; is pfjAj. This value can also be understood as the
contribution of x; to t;. Likewise, the contribution of x; to the

18



PART T CHAPTER 1 THE CHOICE OF THE MARKERS

first m-1 PC's is 2721 p?;A;=1-pf,),. Then 1-pf X, is the contri-
bution of x, to the first m-1 PC’'s. Because p%, is smaller than p%m,
the contribution of x, to the first m-1 PC’s is higher than the
contribution of x,. It seems, therefore, reasonable to discard
variable x,, the variable most associated with the redundant PC.
Analogous reasoning can be used for all those PC's with near-zero or
small eigenvalues. Note that in case of exact linear dependence,
A,=0, it does not matter which variable with a non-zero loading on
that PC is discarded.

Another way to look at the eigenvalues and loadings is by investig-
ating the PC’'s with high eigenvalues and select the variables which
are highly associated with these PC’s. This can be done by investi-
gating the loadings of the variables on the PC's with high eigen-
values and choosing those variables which span the PC-loading space
at best.

Both lines of reasoning were followed by Jolliffe’: He concludes
that both strategies give reasonable results in practice. A similar
approach is adopted by $S.Wold et al.® in the context of "Multivariate
Design". S$.Wold er al. use the scores of the objects on the first
PC's to choose the objects which span the PC-score space as good as
possible. Analogously, the loading plots can be examined and the
variables be chosen which span the loading space.

The spectral decomposition (see formulas (I.2) and (I1.3)) can be
generalized for arbitrary nxm matrices, not necessarily square. This
is called the singular value decomposition (SVD) of matrix X (see
Jolliffe®, Graybill®, Rao and Mitra'®). This results in:

8

X = THEp (1.5)

where X is an (nxm) data matrix. T, P are (nxr), (mxr) matfices,
respectively, in such a way that T'T=I_, P’P=IrtJThe m%ﬁrix D% is a
(rxr) diagonal matrix with diagonal elementf Af to AZ and r is
rank(%%. If X~Pas full rank m then r=m. The D% matrix is arranged so
that Af =...=\% 20. These values are called singular values. The SVD
of X written in a slightly different form gives:

X = XEE,pl + ... + X3t p/ (1.6)
with T=(%,,...,%,), P=(p;,...P,), and rank(X)-m. The symbol " " is

used to make a distinction between two closely related formulas, viz.
‘(I1.6) and (I.7) (see the following). Formula (I.6) 1is called the
singular value decomposition of X. This singular value decomposition
is a successively rank one approximation of X because each term

sk : :
Aft;p! has rank one. If rank(X)=r<m then the final m-r singular
values are zero. In practice this 1is never the case, because X

19



PART I CHAPTER 1 THE CHOICE OF THE MARKERS

contains measurement errors, so an exact linear dependence between
the columns of X is not likely to occur. In cases where some of the
singular values are nearly equal to =zero, the effective rank of X
becomes less than m and X can be approximated by, say, the first r<m
terms in the SVD.

The notion of approximation can be sharpened by using the concept
of the Frobenius or Euclidian norm of a matrix. The Frobenius norm of
X (”X”) is given by X Z x -—tr(X’X). Straightforward calculatioéns
show that [x|=2X, and 3, —HAzt p!|l. where X, is the square of X?. This
means that the matrix X can be approximated successively by matrices
of mnon-increasing norms, the first matrix X?Elp{ accounts for the
largest variation in X within the class of rank one matrices (Rao!?,
Graybill®). The second matrix )\thp2 accounts for the largest vari-
ation in X- )\Ztlp1 within the class of rank one matrices under the
constraint that t]t,=p;p,-0 and so on.

The similarity between the SVD and PCA becomes clear by realizing
that X'X=(TDH?p’')’ (TH*p’ )=PD"*t " TH"p" =PDP’, because of T'T=1 and
B#3"%~D. This is the spectral decomposition of X'X. The eigenvalues of
X'X are Xl,...,im and it is clear that the squares of the singular
values are, besides a constant (n-1), equal to the eigenvalues of S
(D=(1/(n-1))D). If the columns of X are scaled-to-length-one, the
squares of the singular values equal exactly the eigenvalues of §S.
The P matrix as obtained in the SVD of X equals the matrix of
loadings of the PCA on the x variables. The scores of the objects on
the ith PC were t,=Xp, see Sectlon 1.2. With the use of (I.5) it
follows that t,=Xp; —TD%P P; TD ~A2t where P’'P= I and vy is the ith
column of the identity matrix. When the matrix D? is absorbed in the
matrix T, the matrix T is the result, so T= TD%. Thus the tith column
vector contains the scaled-to-length-one scores on the ith PC.
Efficient algorithms are available to calculate the SVD of a
matrix!!. The loadings and scores on the PC’'s are then readily
available.

If the effective rank of X is g<m, then (I.6) can be written as

X=+tp; + ... +tp;, + E=T,P +E (1.7)

where E is the (nxm) matrix of residuals and t;p/ the outer products
associated with each dimension, =(ty,... )t ) and P —(pl,...,pg)

Formula (I.7) shows that X is approx1mated by Ty Pg . The quality of
this approximation, in terms of “E” does not alter if both T, and
P, are multiplied by an orthogonal matrix Q, because X=T Py +E=
TgQQ’Pé+E=(TgQ)(PgQ)’+E. This invariance under orthogonal transfor-

20



PART 1 CHAPTER 1 THE CHOICE OF THE MARKERS

mations has its consequences for the variable selection procedure
mentioned above. Variables were selected on the basis of P,, but it
is also justified to select variables on the basis of P,Q, where Q is
an arbitrary orthogonal matrix. This complicates the variable selec-
tion procedure on the basis of loadings on PC’'s.

In order to show the bilinear character of the approximation of X,
formula (I.7) is written in a slightly different form:

g
XKi; = Z tixPry t €53 i=1,...,n; j=1,...,m (1.8)
k=1

where t;, and py; are the typical elements of T, and P,, respect-
ively. The word "bilinear" means that, with P ; fixed, (I.8) 1is
linear in t and vice versa. Formula (I.8) may be understood as a
model for x;;. The number of components, g, used to approximate X can
be established by cross-validation!?” %, by Horn's test!®, by proced-
ures proposed by Malinowskil® 17 or by comparing the standard devi-
ation of the residuals in (I.8) with the measurement error.

A justification of the use of the SVD (and also PCA) in the ana-
lysis of data tables comes from the idea of latent structure. If an
underlying process, unobservable as such, becomes manifest in the
measured variables which are summarized in the data table X, the
scores on the PC’s are estimates of so-called latent variables. The
ideas concerning latent variables and latent variable modelling have
received much attention recently in the statistical literature'® 19,
A particular justification of SVD and PCA for the analysis of multi-
variate chemical data is given by $.Wold?%:2! and finds it roots in
the observation that extra thermodynamic relationships (linear free
energy relationships) are special cases of latent variable modelling.
The use of SVD (or PCA) to model the data matrix X can be viewed as a
local approximation: a generalization of polynomial Taylor-approxima-
tion. This observation puts a restraint on the use of PCA and SVD in
the analysis of multivariate data: a latent structure is presumed.

A convenient way to picture the SVD and PCA approach is given by
S.Wold et al.” In Figure 1.2, a data table X is shown which is
approximated by rank-one matrices written as outer products: t;p;.
Geometrically, the SVD can be visualized along the same lines as PCA.
The scores t; can be regarded as orthogonal projections of the data
on the linear combination of the x variables whose weights are given
by p;. Stated otherwise: a new basis is defined for describing the

‘data which consists of an orthogonal transformation of the original
axes, see Figure I.1.

Some new developments in PCA research comprise the stability of
PCA%2 | warnings against PCA%%:2%  leverage and influence measures for
PCA%5, and the effect of sample design on PCAZ5.
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Figure I.2. Singular value decomposition of X.
1.3 Principal variables

Some of the multivariate techniques shown in this Section rely on
the work of McCabe?’ . Let X be an (nxm) data matrix with zero column-
means and let x; be the jth column of X. Again no distinction is made
between a correlation or covariance form of S=(1/(n-1))X'X. If r
variables are selected, the X matrix can be partitioned as:

X= (X , %) (1.9)

where X; is (nxr), X, is (nx(m-r)) and X, consists of the columns of
X which contain the scores on the retained variables. The correspond-
ing partition of S is:

S11 I S1z
S=(—m—) (1.10)

SZl | SZZ

where S;; 1is (rxr) and S,, is (m-r)x(m-r). The generalized variance
of the selected variables is given by det(S;,). The idea is to select
the variables (for a fixed r) which maximize this generalized vari-
ance. All combinations of r wvariables are investigated and the
combination with the highest det(S;;) 1is chosen. The determinant
criterion for the selection of markers is suitable for situations
where retention of variation is important. It should be stressed that
the determinant criterion assumes a fixed r because determinants of
matrices of different sizes cannot be compared in a simple way.

Other criteria for the selection of wvariables can be used. Let
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S,, ; be the conditional covariance of X, given X, or, in other
terms, the covariance of X, corrected for the influence of X,. Then:

Sp2.1 = Szz - $21511812 (1.11)

For a proof of this formula, see Anderson!. Formula (I.11) can be
explained by applying the following reasoning. Suppose the objective
is to predict X, by X;. The least squares predictor of X, is X;B with
B=(X/X,) 'X{X, (see Draper and Smith??, Mardia et al.?). Now
S,,=(n-1)"1X/X, and S,,=(n-1)"!X{X,, so B=S71S;, and X,=X;S1{S;,. The
explained variation in X, is (n-1)"1R3K,=(X; 8718, ,) ' (X, 8718,,) (n-1) 7!
= 8{,S71X{X,571S;, (n-1)"1 ~ $28118115115:12 = S215118;,. The wvaria-
tion to be explained in X, is (n-1)"'X;X,=S,,. Therefore, (I.11)
represents the unexplained variation. It can be recognized as the
covariance matrix of the (unexplained) residuals E=X,-X,. A logical
step seems to be the choice of the variables which minimize this
covariance matrix in some respect. The minimization of det(S,, ,) is
the same as the maximization of det(S;;), because det(S) =
det(S;,)xdet(S,, ;) (Graybill*) and det(S) is fixed. Therefore,
maximizing the retained variation, represented by det(S8;,) is the
same as minimizing the lost variation, represented by det(S,, ).
Another way to minimize S,, ; is the minimization of tx(S;, 1)

this is not the complement of the maximization of tr(S;;). This
tr(S,, ;) 1is the sum of wunexplained variances of the discarded
variables after regression of these variables on the retained ones.
The minimization of the trace aims at an optimal prediction of the
discarded variables. It can be shown?’ that:

m
= s, R2(x;,%;) = €r(S) - tr(Sy, ;) (1.12)
j=1

where s.. is the jth main-diagonal element of §, the variance of the
jth variable, and R? is the squared multiple correlation coefficient
if x; 1is regressed on X, . The term sijz(xj,Xl) is called the induced
variance of X; on xj. Therefore, by minimizing tr(S,, ,), the sum of
the induced variances is maximized because tr(S) is fixed for a given
data matrix X. This marker choice criterion will be called the
induced-variance criterion. Note that for a column x; of X which is
retained, the induced variance is exactly s;;.

In PCA, results are often described by a percentage of explained
variation. The induced-variance criterion leads to the definition of
percent explained variation:
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r m
2
= s;y *+ P sij (xj,Xl)
i=1 j=r+1
P = x100% (I.13)

m
2 sy
=1

This percentage can be recognized as the percentage of the total
variation which is induced (it should be remembered that the first r
variables are retained and their induced variances are the S;;'8)-

Another interpretation of P can be shown by making use of the
Frobenius (or Euclidian) norm of a matrix X, which was defined
earlier. From this definition it follows that [X|? = tr(X'X). Thus
[%]2=txr((n-1)8)=(n-1)tx(S). The matrix E=X,-X, has norm |E|%=tr(E'E)
=tr{(n-1)S,, ;)=(n-1)tr(S,, ;). The denominator of P is equivalent to
(I.12) and becomes (n-l)'1WX”2-(n-1)‘1HE”2. The nominator of P is
(n-1)"1|X|?. Therefore, P can also be written as:

Il - [zl
P= — & 100% (I.14)
x|

Realizing that the norm of a matrix is a measure of its magnitude,
the term [E| in (I.14) can be interpreted as the magnitude of the
amount of information which is thrown away. The interpretation of P
becomes then: the relative magnitude of the amount of information
which is retained.

Both criteria, the determinant- and the induced-variance criterion,
can be used to select variables. Generally, the result of the selec-
tion will depend on the criterion which is used. The problem of the
fixed r value in case of working with the determinant criterion can
be solved by first using (I.13) for establishing the r value and for
this choice of r the determinant criterion can be used. A measure of
the percentage explained variation which can be attained maximally,
using an r-dimensional subspace of the original m dimensions, is
given by the percentage of explained variation by the first r prin-
cipal components (note that by choosing r variables, a subspace of
the original m-dimensional space is chosen). This 1is because of
optimum properties of PCA?®. Comparing the percentage explained
variation by the first r PC's with the percentage explained variation
of r specific variables, gives an idea of how efficient these vari-
ables are with regard to the dimension-reduction.

The complete procedure can be summarized as follows
1. Make a choice with regard to scaling the columns of X, or stated

otherwise, use a correlation or a covariance approach (see

Section 1.7).
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2. Let r be 1,2,3,...

3. Choose a criterion (determinant or induced-variance) and select
the optimal variables.

4. Calculate the explained variation of those variables and compare
this with the explained variation of the first r PC's.

5. If the percentage explained variation is not high enough in
comparison with the PCA result, then make r one unit higher and
return to 3.

To illustrate a weakness of the induced-variance- and determinant
criterion suppose the following. From a set of four variables two
should be selected (assuming the variables scaled in such a way that
S is in correlation form). The first three variables have reasonable
high two and two correlation coefficients (say 0.9) and are therefore
exchangeable. The final variable has no high correlation with any of
the first three ones (say maximally 0.40), so this final wvariable can
be regarded as "outlying". If two of the variables are chosen accord-
ing to the induced-variance criterion, the final variable will be
part of the optimal subset, because exclusion of that variable will
give rise to a low P (see I.13) since its induced variance is low.
The final variable is not chosen on the basis of its predictive
power, but on the basis of 1its bad predictability. Tests on
"outlying" variables are therefore needed prior to using the induced-
variance criterion, because this criterion is not robust against
deviating, or outlying, variables. The same holds for the determinant
criterion.

An approach related to the use of the induced-variance criterion is
used by Steigstra®®. There are two differences. Steigstra selects
variables successively, but if a variable is in the selected set, it
remains in that set when the number of variables in the retained set
is raised by one. This does not guarantee that, for a given size of
the set of selected variables, the optimal ones of Steigstra’s
approach, equal the best ones of the induced-variance approach. A
second difference is that Steigstra performs a Gram-Schmidt orthogo-
nalisation procedure on the set of selected variables in order to
obtain an orthogonal basis for the space spanned by the selected
variables. This difference is not essential, but is related to the
purpose of the variable selection.

A very nasty property of the above sketched procedures for choosing
markers is the uncontrollable influence of chance. If four variables
are chosen out of twenty, a number of 4845 possible combinations of
‘four variables are evaluated. The outcome of the above sketched
procedure is an optimal subset of four variables, but it may be
purely chance that this particular subset shows up as the optimal
one. This problem is thoroughly described for the cases of variable
selection in multiple regression and discriminant analysis by
Steerneman®!: 32, Schaafsma and Steerneman®® and is called data-mining
or chance correlation (see also Section 2.4). Some examples of this
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phenomenon are also reported by Topliss®“:35 in the area of quantit-
ative structure activity relationships.

In order to avoid the problem of data-mining a possible solution
may be to use a jack-knife procedure. The idea is to leave one
observation out of the training set and calculate the markers. This
is done n times, where each observation is omitted once. A number of
n subsets of markers is the result. By examining these subsets it is
possible to get an idea of how reliable the selection procedure is.
If the calculations are too excessive, this procedure can be adjusted
(see Sections 10.1 and 11.1). This jack-knife procedure may be a
solution of the data-mining problem because it is not very likely to
obtain n times the same set of markers purely by chance. This is more
likely when only one calculation is performed on the whole training
set.

Another way to avoid the problem of data-mining is the reduction of
the number of subsets of variables at the beginning of the procedure
on the basis of chromatographic arguments. A limited number of
variables (solutes) are then tested on their mark-power and there
will be less chance correlation. Quantitative measures of the degree
of chance correlations in this procedure are hard to derive
(Steerneman®?). The build-in restriction used by Steigstra®? de-
creases the number of possible subsets and might have a favourable
effect on decreasing chance correlations.

1.4 Procrustes analysis and related ideas

A method of selection of variables is outlined by Krzanowski®®:37.
Starting from the matrix X (nxm), which is assumed to be column-mean-
centered, a principal component analysis is performed on this matrix.
Let the scores on the first r principal components be gathered in Y
(nxr). The multivariate structure of the set of points (in R™)
associated with X are supposed to be revealed by the PCA of X (in
R"). Suppose g of the original m variables are selected (g=r) and the
scores on these g variables are gathered in X,,; (nxg). The multi-
variate structure, present in X, ;, is revealed by a PCA on Xeols
where again r components are supposed to be sufficient to describe
this structure. The scores of this latter PCA are gathered in Z
(nxr). The discrepancy between the original configuration (enclosed
in Y) and the configuration after the selection (enclosed in Z) can
be calculated as the sum of squared differences between corresponding
points of the two configurations after they have been matched as well
as possible under translation, rotation, and reflection. Matching
under translation is already performed, because both X and X ,; are
column-mean-centered, and therefore Y and Z are also mean-centered.
This matching operation is called Procrustes analysis and the sum of
squared differences (Gower®®) after matching under rotation and
reflection is
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SSD = tr [YY'+ZZ'-22Q'Y'] (1.15)

where Q=TP’ from Z'Y=TDP’', the singular value decomposition of Z'Y,
and SSD is the abbreviation of sum of squared differences.

The procedure to choose g markers is now easy. All possible subsets
are subjected to the above sketched analysis. The subset with the
lowest SSD value is the best one. Two remarks are appropriate. First,
the danger of chance results is present in this procedure, so leave-
one-out techniques may give insight in the stability of the solution.
Second, Krzanowski®® gives a backward elimination procedure to select
the best subset, which partly reduces the problem of chance results,
because less alternatives are tested.

A modification of the procedure described above is the removal of
the necessity to calculate two principal component analyses. Suppose
X (nxm) and X,,; (nxg) are as before. Only a PCA on X is performed
extracting g components. The resulting scores are gathered in T
(nxg). With Procrustes analysis the matrices X ., and T, and the
associated sets of points in R®, are matched under rotation and
reflection. The necessity to establish r is obsolete.

A related procedure (called DISNORM, distance norm) to Procrustes
analysis is the following. The first step is the same as above. The
matrix X is subjected to a PCA and the first r components are sup-
posed to give a sufficient describtion of the multivariate structure
in X. The scores on these r components are gathered in Y (mxr) and
can be represented as n points in R*. A quantitative measure of the
configuration of these n points is the distance matrix DS (nxn) with
typical element ds;;, the Euclidian distance between points i and j,
defined as

r
1
ds;; = [ Z(¥ix-Y360217° (1.16)
k=1

When the matrix X,,, (nxg) is subjected to a PCA, the resulting score
matrix of the first r components is Z (mxr). From this matrix a
distance matrix can be calculated also and will be called DS". Note
that both DS and DS" are rotation and reflection independent. A
measure of the discrepancy of the configurations represented by Y and
Z is ||ps-DS*|, where |.] is a norm of a matrix, e.g. the Frobenius
norm. The subset of variables is chosen that gives rise to the lowest
|Ips-Ds™ | value.

Two other alternatives are reported. Both redundancy analysis
Escoufier’s RV-coefficient*’ seem promising.

39 and
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1.5 Variable selection in supervised pattern recognition (SPR)

If the objects in the data matrix X can be ordered in predefined
groups and interest focusses on the description of differences
between these groups, the way is open to use variable selection
techniques for supervised pattern recognition (SPR). The variables
that discriminate most between the groups should be chosen. Again the
danger of data-mining shows up and care must be taken in the variable
selection procedure®?:3%, In the case at hand, a natural group
structure might be given by the stationary phases. Measurements
performed on one specific stationary phase at varying mobile phase
compositions of a set of solutes are then regarded as one group. A
problem of this approach might be the strong overlap between groups.
This can occur because within group variation is caused by changing
the mobile phase composition, which is known to have a larger effect
on retention than changing the stationary phase which accounts for
the between group variation.

The SPR method SIMCA, developed by S.Wold*!, models each group with
a few PC's. The discriminating power of a variable is a measure of
the involvement of that variable in the PC class models. This dis-
criminating power can be used to explore influential variables*l:42,

The SPR method linear discriminant analysis (LDA) is a technique
developed by Fischer®®. Its use is widely spread and there are
numerous ways to select variables®® 32, The SPR methods CLASSY and
ALLOC can also be used (van der Voet and Hemel®’, Coomans and
Broeckaert“®). The SOLOMON method uses a variable selection method
that is already described (Steigstra29-%7).

1.6 The simultaneous choice of markers and mobile phase compositions:
three-way methods

Extensions of PCA and factor analysis (FA) are described which
pertain to three-way data tables (Carroll*®, Kroonenberg’?,
Harshman®®, Tucker®!). A survey of three- and multi-way data analyses
is given by Law et al.’?. Applications in chemistry -are given by
S.Wold®3® and de Ligny et al.’*. The idea of tensorial calib-
ration®®:%® is closely related®’ to the PARAFAC model which will be
discussed later on.

A natural distinction in the data can be made in three directions.
The first direction corresponds to the stationary phases, the second
direction to the mobile phase composition variables, the fractions of
MeOH, ACN, THF etc. The third direction comprises the solutes. This
situation is depicted in Figure I.3. Each number in the three-way
data table is a retention measurement of a solute at a specific
mobile phase composition on a specific stationary phase. The station-
ary phases can be regarded as cases (objects), the solutes and mobile
phase compositions as two categories of variables. Two approaches to
generalize PCA and FA to three-mode data tables will be outlined.
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Sol. |

S.Ph.

1 M.Ph. m

Figure I.3. Data cube of retention values; n is the number of
stationary phases (S.Ph.), r the number of solutes (SOL.) and m the
number of mobile phase compositions (M.Ph.).

The first generalization of model (I.8) is given by:
&

Xijk = tispsjk + eijk i=l,...,n (117)
s=1 j=l,...,m
k=1,...,r
or, alternatively,
X =t,®P + ... +t, ®P, +E=T. ® P +E (1.18)
where t,=(ty;.,...,t,4)", T=(%;,...,t,), X has typical element x;,,, E
has typical element e;,,, P, has typical element p,;, and P is a

three-way array with dimensions (gzmxr), with P, the uppermost
horizontal slice in P and P, the lowermost one. For notational
details we refer to S.Wold et al.’®. The typical element of t, ® P,
‘is t; pgjx- Note that the symbol "®" does not denote the usual
Kronecker product. Since t, ® P, is a three-way array, model (I.18)
is again a successive approximation of X. The number of factors, g,
used to decompose X, must be established. The same procedures as
mentioned earlier (Section 1.2) can be used. In Figure 1.4, model
(1.18) is illustrated for the two-factor case.
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In order to make the generalization consequent, ty and P, are
calculated in such a way that T'T is diagonal, P!P, = I for every
s=1,..,g and the Frobenius norm of E is minimized. With this general-
ization the idea of bilinearity is not extended: model (I.18) is not

a trilinear model?®Z2.

Figure I.4. Two-factor decomposition of X given by model (I.18).

S.Wold et al.®® show that the estimates ty and P, can be obtained
by unfolding the data cube X. The idea of unfolding is visualized in
Figure I.5. The wunfolding can, of course, be done in different
directions. That direction which is related to the objects should
remain intact and projected onto the t, vectors. The unfolded data
matrix X can be subjected to a singular value decomposition yielding
the wanted estimates. For obvious reasons, this generalization (model
(I.17)) of model (I.8) will be called unfold-PCA.

Sol.i MPh. Sol.2 MPh, Sol.r MPh.

1 m 1 m - _ 1 m

S.Ph.

n! 1 i ;

Figure I.5. Unfolded data cube of Figure I.3, for the abbreviations
see legend Figure I.3.
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The second generalization of (I.8) is given by

8
=3 a; b._c + e; . i (1.19)

ijk is~js ks ‘ 1 BERERS
s=1 l,,..,m
i,...,r

.
I

X

1l

P
[

where, again, g is the number of factors used, not necessarily the
same as in (I.17). If X, represents the mxr matrix, which is the ith
slice of X, then model (I.19) can be written as
X, = BA;CT + K i=1,...,n (I.20)

where B is a mxg matrix with typical element b;,, C is a rxg matrix
with typical element c¢.,, E; is a mxr matrix with typical element
e;;x- The gxg matrix A; is diagonal, with diagonal elements taken
from the ith row of A, the nxg score matrix of the first mode with
typical element a;,. The g diagonal elements thus represent the
effect of the changes in the relative importance of the g factors on
influencing retention on stationary phase 1 (when the stationary
phases are treated as objects). For a given number of components in
model (I.19) the coefficients a,, bjs, and ¢,, are estimated such
that ZEZefjk is minimum, where the summation runs over 1, j, and k.
Each slice X; is factor analysed, and this is performed in a parallel
fashion. Model (I.19) 1is, therefore, referred to as the PARAFAC
decomposition®® (Parallel Factor Analysis).

The PARAFAC decomposition is shown in Figure I.6 for the two-factor
case. Establishing the number of factors in model (I.19) can, e.g.,
be done by comparing the standard deviation of the residuals with the
size of the measurement error. The vectors a,=(a;,,...,a,,)’ can be
chosen orthogonal to each other or not. The same can be done for the
b, and ¢, vectors. Note that the PARAFAC model is a trilinear model;
the idea of bilinearity is extended in model (I.19), contrary to
model (I1.17).

For both the models (I.17) and (I.19) holds that scaling and
centering is of particular importance, because the results of the
decompositions depend on these aspects.

There is a conceptual difference between models (I1.17) and (I1.19).
Model (I.19) is an unconstrained model: the wvalues p, .,y are the
factor loadings of the sth (component) across modes B and C of the
data and no constraint is placed on these values. Such a constraint
‘is present in model (I.19): pg;x=bj,.Cxs- The meaning of this con-
straint can be explained as follows. Comparing b, .c,;, and b, .c,,
with b,,.c;, and b, .c,,, 1t is clear that the expression of the
influence of factor s across mode C (as measured by c;, and ¢, ) does
not depend on the level of mode B. The reverse is also true: the
expression of the influence of factor s across mode B does not depend
on the level of mode C. In order to illustrate the consequences of
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|>< b 1 b2 | E

ol J—|-

a1l a?2

Figure I.6. Two-factor PARAFAC decomposition of X.

this difference between models (I.17) and (I.19), suppose that the
stationary phases comprise the first mode (the objects), the solutes
the second mode and the mobile phase compositions the third mode. PCA
studies®8: 3% on reversed-phase chromatographic data indicate that the
loadings of the solutes on the first PC are related to the hydro-
phobic character of the solutes. Similarly, the loadings of the
mobile phase compositions may be related to the polarity of the
eluent. With respect to the first factor in the decomposition of X,
the above mentioned constraint means that the way in which hydro-
phobic differences between solutes affect the differences in reten-
tion values of those solutes, does not depend on the mobile phase
composition.

Whether to use unfold-PCA or PARAFAC is a tedious question, analog-
ous to the question which model to use in linear regression. S.Wold
et al.’? claim that the PARAFAC decomposition is too restricted and
propagate the unfolding strategy. Law et al.’?, however, show that
the presupposed latent structure in X has its consequence for the
kind of model to be used. An example of such a consideration was
already given above. A careful examination of the kind of data in X
is suggested, especially its background, and the decision which model
to use should not only be made on the basis of the size of the
residuals e; ;. Assuming the same number of factors in the alternat-
ive models (I.17) and (I.19), it should be stressed that the number
of parameters to be estimated is considerably larger for the unfold-
PCA model than for the PARAFAC model. This is the pay-off for not
imposing the constraint, as mentioned above, on the model. The result
is a larger number of degrees of freedom for the PARAFAC model and
therefore perhaps lower variances of the estimated loadings and
scores of the PARAFAC model compared to the unfold-PCA ones.

32



PART I CHAPTER 1 THE CHOICE OF THE MARKERS

The treatment of the different modes or directions in the three-
way table, or data cube, is not symmetrical in the unfold-PCA model
(note that the unfolding can be done on three different ways). A
choice has to be made, therefore, when model (I.17) is used, which
direction constitutes the one associated with the t vectors: the
scores.

The variable selection problem as described in Section 1.1 can be
generalized to the three-way case. The selection should encompass the
solute/mobile phase combinations that will constitute the training
set. Those solute/mobile phase combinations should be selected which
"explain much of the variation" in the data cube X. A measure of

variation of Z is [|z|, the Frobenius norm: the sum of squared ele-
ments of Z. This measure can be used to define the notion of ex-
plained wvariation. This selection problem is visualized in
Figure 1.7.

sph.| |

1 T M.Ph. -

Figure I.7. Choice of the markers/mobile phase combinations which
describe the systematic variation in X.

A generalization of the Jolliffe-approach (see Section 1.2) is
readily available. Suppose X is decomposed by unfolding this data
cube (in the direction so that the stationary phase mode is left
intact) and two factors are obtained which explain enough variation
in X to hold as a good description of X. The loading plot of these
"two factors of the unfolded data cube can be used to chose the
solute/mobile phase combinations that load high on these two factors,
or stated otherwise, which are mostly associated with the two fac-
tors. Examples which will illustrate that such a choice is not easy,
will be given in the following chapters. When a decomposition of X
with the use of (I.19) is available (suppose again that two factors
are appropriate), loading vectors b;, b,, ¢;, and c, are calculated
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which describe the contribution of the variables in the second and
third mode, respectively, to the two factors (note that the first
mode contains the stationary phases). Variables from the second mode
(say, the mobile phases) can be chosen that mostly associate with the
loadings b, and b,. Analogous for the solutes, the third mode,
variables can be chosen that mostly associate with ¢; and c,.
Examples will be given in Chapters 13 and 16.

Extensions of the principal variables approach with regard to the
problem of selection in two directions, the simultaneous choice of
variables related to two categories, are not described in the liter-
ature. A "quick and dirty" method is the unfolding of X, followed by
the principal variables approach to the unfolded matrix X.

1.7 The effect of scaling

Different kinds of scaling can be applied to the data matrix
X=(xy,...,%,). The different scaling features are illustrated by
applying these to the scores on the first variable Xyp=(Xqyq1,..., %10 .
Scaling of x; is an operation c¢x,, where ¢ is an arbitrary real
number. Usually scaling is done to give z;=cx; a predefined length d,
hence ¢ is chosen in such a way that z1z,=d. Scaling-to-length-one is
a special case of scaling so that d=1. This can be accomplished by
choosing c¢ as 1/”X1”, where ”X1”=(X{X1)%. Scaling influences the
variance of x; but not the mean.

Centering is the operation on x; so that the resulting variable z;
has mean zero. Vinod and Ullah®® show that the centering operation on
Xy can be performed by wusing the matrix [I-¢:'/n], hence
zy=[I-v¢'/n]xy, with t=(1,..,1)’. Centering influences the mean of X
but not the variance.

The autoscaling operation involves two aspects, first the variable
%, 1s centered and then scaled to obtain variance one. The variable
zy=(1/sy)[I-¢¢'/n]x,, where s; is the standard deviation of the
scores on X; with divisor n-1, has mean zero and variance one.

If all variables in X are column-autoscaled S=(n-1)"1X'X gives the
dispersion of X in correlation form. If the columns in X are centered
and scaled-to-length-one, S=X'X produces the correlation form disper-
sion of X. The last type of scaling is common in ridge- and Stein
regression. If X 1is only column-centered, S=(1/(n-1))X'X gives the
dispersion of X in covariance form. Note that centering followed by
scaling-to-length-one on the one hand and autoscaling on the other
hand differ only the multiplicative constant /(n-1).

It is already mentioned that PCA, Unfold PCA, and PARAFAC depend on
scaling. Jolliffe’ states that the modelling behaviour of PCA towards
the off-diagonal elements of S depends crucially on the kind of
scaling. The approaches sketched in Sections 1.3, 1.4, and 1.5 do
also depend on scaling. Whether to use scaling, is a choice which has
to be made and is part of the model structure which is postulated.
The effects of using or ignoring scaling must be fully realized. The
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subject of scaling is given attention in the literature (Kvalheim61,
Brown®2?). One rule of thumb may be to use autoscaling or scaling-to-
length-one when variables are involved measured on different measure-
ment scales. The combination in one model of fractions of organic
modifiers and solute capacity factors would, e.g., justify scaling.

The influence of scaling on results in ridge- Stein- and partial
least squares regression will be discussed in the chapters where
these methods are described.
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Chapter 2 The linear model

2.1 Some basic issues

The 1issues stated here are readily available from text books
concerning regression analysis (Vinod®®, Johnston®®, Judge et al.®%,
Draper and Smith?®). Consider the linear regression model:

§-R%B + ¢ (I.21a)

where B'=(By,...,B,)' is a vector of unknown regression coefficients;
y is an nxl vector of an observable random (dependent) variable; X is
an nx{m+l) matrix of observable independent or predictor wvariables
with the first column consisting of ones to account for the constant
in the regression equation; ¢ is an nxl vector of disturbances. It is
assumed that ¢ has mean 0 and variance-covariance matrix E(e¢e¢’)=c?1.
This assumption means, among other things, that the variance of the
disturbances does not depend on the magnitude of X (homoscedasti-
city). The symbol """ is used to make a distinction between the model
with uncentered data, (I.2la), and the model with centered data,
which is (I.21b). Measuring y and X about their column means, gives y
of order nxl and X of order nxm, respectively, where the column of
zero's obtained after the column-mean centering of X is omitted to
obtain X. The matrix X has, therefore, full rank. To be more spe-
cific, y=(I-+:’'/n)y and X=(I-:¢'/n)X; with X=(¢ , ;). In the fol-
lowing it is assumed that y and X have this form, unless stated
otherwise. The linear regression model in terms of deviations from
the column means is

v = XB + ¢ (1.21b)

where B'=(B1,....Bn) ' =(By,...,By)" and e=(I-(l/n)se')é , with . as
before. Scaling of y and X has no effect on the results of the least
squares calculations®?:83, The ordinary least squares (OLS) estimator
of B8 is

b1y = (X'X)7 X'y (1.22)
This estimator minimizes SSE=e’e=(y—Xb)’(y-Xb), where b is an arbit-

rary estimator of B and SSE is the sum of squared residuals. Some
familiar properties of b,,, are

E(byy1s) = B (1.23)
V(bgys) = o (X'X)71 (1.24)
These formulas show that the b_,, estimator is unbiased and has
variance-covariance matrix V(b,,. ). Because of X'e=X'(y-Xb,;.)
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=X’ (y-X(X'X) 1X'y)=X'y-X'X(X'X) 'X'y=X'y-X'y=0, it follows that
v'y = bl X'Xb,, + e'e (1.25)

Formula (I.25) can be written as SST=SSR+SSE, where SST is the total
sum of squares (which has to be explained), SSR is the sum of squares
due to regression (explained sum of squares) and SSE is the sum of
squared errors (unexplained sum of squares).

A well-known criterion for the performance of the model 1is the
squared multiple correlation coefficient

SSR e'e
R? = = 1- (1.26)
SST yv'y

This is interpreted as the proportion of variation in y explained by
the regression model. This performance criterion has some disadvant-
ages as will be shown in Section 2.3.

The estimation of B in the linear model can also be obtained in the
case that X consists of n realizations of an m-variate random vari-
able (see Judge et al.’®). For the moment no difference is made
between the random and non-random case.

If the fractions of the mobile phase constituents are incorporated
in a linear model, which is familiar in response surface modelling
with mixture variables®3, centering of the data is not appropriate.
To see this, consider the model y=%B+¢, in which y and X (nx(m+l))
are not centered, X=(:,%;)=(¢,%y,...,%,) with X +%,+%3=1 or X c=¢,
c=(1,1,1,0,..0)" and ¢=(1,..,1)’ as usual. Vinod®? shows that column
centering a matrix X; gives the matrix X, which can be calculated as
X=(I-te¢'/n)X,;. Now Xc= (I-¢ev'/m)X ¢ =(I-ve'/n)e=(Te-v¢” v/n)=(1-¢)=0.
The column-centering operation introduces a linear combination in the
centered design matrix X, diminishing rank(X) by one. The calculation
of the inverse of X'X, necessary for b,,,, is therefore not possible.
One solution is to delete one of the variables X;,X, 0or X;. Another
solution is to keep the variables x; to X; in the equation, but to
leave the constant out.

2.2 Diagnostics for the linear model

If a linear model 1like y=XB+e 1is used, it is wise to use some
diagnostic tools in order to make the right interpretation of the
results. Some results from Belsley et al.®% are summarized. For the
sake of convenience, it is assumed that y (nxl) and X (nxm), of full
rank, are mean-centered and the columns of X are scaled-to-length-
one. Special attention is paid to the mnature of X because (near)
linear dependence between the x-variables give rise to problems in
the linear model. This phenomenon, which is called multicollinearity,
is discussed in detail in Section 2.4.
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A first step in measuring dependence between columns of X is the
examination of the correlation matrix R=X'X. Now T (the ijth
element of R) is the correlation coefficlent between x; and x;. High
correlations indicate potential problems. This R, however, only
reveals dependence between two variables and not between a set (three
or more) of x-variables. The diagnostic value is, therefore, limited.
* Because of (I.24), the diagonal elements of R™!, where R !=
(X'X) !, are often called the variance inflation factors (VIF's).
Their diagnostic value rises from the observation that

VIF, = — (1.27)

where R? is the multiple correlation coefficient of xj regressed on
the remaining predictor variables. If R? is high, large variances of
the b,,, can occur, see (I1.24). In case of near linear dependence
between columns in X the inversion of X'X becomes very unstable. The
VIF's are, therefore, not very reliable in case of serious multicol-
linearity.

With the use of the SVD of X = TD¥P’ (omitting the " " notation as
used in Section 1.2 for convenience), the variance-covariance matrix
of b,;, can be written as:

V(b,;q) =02 (X'X)"1 =o2PD 1P’ (1.28)

The variance of the kth component of b, ,, can then be written as

S

ka
var(bg,is ) = 0% = (1.29)
3 Ay
where Px; 1is the kjth element of P and D%=diag(k%,...,A§). The

variance of the kth component of b, ,, is decomposed in parts associ-
ated with one and only one of the m singular values A?. A singular
value near =zero points to a near linear dependence between the
columns of X and let the associated terms in (I.29) blow up. The
columns of X which are not part of this dependence have loadings zero
on the associated PC, so that for these variables the p; values are
zero. Consequently the mnear-zero value of the particular singular
value does not blow up the variance of the estimated coefficients of
these variables. An unusually high proportion of the variance of two
or more coefficients concentrated in the same small singular wvalue
suggests that the corresponding near dependence may give rise to
problems. If the kjth proportion of the variance decomposition is
defined as the proportion of the wvariance of the kth regression
coefficient associated with the jth component of its decomposition in
(I.29), these proportions can be readily calculated. Let
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Pk ; m
§; = ——— and O = Z Oy k=1,...,m (1.30)

j=1
then the variance decomposition proportions are

Oy 5
- ’ k,j=1,...,m (1.31)
9

ij
"
The n-values can be arranged conveniently in a I-matrix providing a

quick view on probable near dependence (Figure 1.8). Examples of the
use of these diagnostic tools will be given in Chapters 10 to 12.

b, .. by
LW D . o Tim
n -
“ml «ave "mm

Figure I.8. Matrix of variance-decomposition proportions.

Another diagnostic tool which proves to be useful is latent-root
singular value decomposition (LR-SVD) (Jolliffe®, Mason®’, Vinod®?).
The LR-SVD is a singular value decomposition performed on the X
matrix augmented with the y-column and indicates which variables in X
are important for the prediction of y. Of special interest are the
loading vectors associated with the low singular values because, as
argued before, here the linear combinations show up. When y loads on
such a singular vector and also one or more x variables then these x
variables can be regarded as important in predicting y. In
Section 2.4 it is shown that this LR-SVD can be used to investigate
multicollinearity. Latent root regression is an estimation method
based on this principle (Hawkins®®, Webster et al.59%).
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2.3 Validation of linear models

One of the most important issues in (linear) model building is the
assessment of the quality of the model. The model may fail to de-
scribe reality or to predict future observations because the import-
ant variables are omitted, or because unimportant variables are
retained, or because there is no linear relationship at all. Familiar
criteria for the validation of linear models are t- and F-statistics,
these are described in most textbooks for regression analysis., It
should be kept in mind that these criteria are designed to test
specific hypotheses, which may not be of interest for the user.
Another familiar criterion is R? (see Section 2.1). Because R?® is a
non-decreasing function of the number of variables (Judge et al.%*,
Hocking’®), it will always advise the use of all variables. This is
not always the optimal choice when good prediction and estimation is
the aim (Allen’!, Breiman and Freedman’?, Steerneman®?). This will be
illustrated later. One way to cope with this problem is the use of

2
Radj

= 1-(n/(n-m-1))(1-R?) (I1.32)

the adjusted R?, where m+l is the number of variables in the non-
centered regression equation (I.2la). A penalty is introduced for the
use of too much variables. Both R? and Rgdj do not consider the
particular purpose for which the model will be used: for a descrip-
tion of the data or for the prediction of future observations (our
purpose).

A different class of wvalidation criteria, designed to meet the
specific demands of the user with regard to the purpose of the model,
follows from the concept of mean square error (MSE) as a part of
statistical decision theory (see e.g. Amemiya’®, Breiman and
Freedman’?, Vinod®%). Let b be an estimator of B in the usual linear
model y=Xg+e. Then

MSE(b)

Il

E(b-8)' (b-8) = E(b-Eb+Eb-g)’ (b-Eb+Eb-g) (1.33)
E(b-Eb)’ (b-Eb) + (Eb-8)’(Eb-8)
tr[V(b)] + [bias(b)]'[bias(b)]

It

Il

where tr represents the trace of a matrix and E represents the
expectation over b. The Euclidian length of a vector v is (v'v)* and
MSE(b) measures, therefore, the average of the squared Euclidian
distance between b and f. It was shown earlier that E(b,;,)=8,
consequently the bias of the OLS estimator is zero, so MSE(b,; )=
tr[Vi(b, )]

Considering the prediction of mean values of y at the sample points
(py=XB), the mean squared error of prediction (MSEP) is defined by:

MSEP(b,X) = E(py-Xb)’(py—Xb) = E(b-8)'X'X(b-8) (1.34)
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and measures the average squared Euclidian distance between predicted
and mean values of y, the expectation is again over b. This MSEP(b,X)
can also be conceived as MSE(J), where $=Xb.

If the prediction of the mean value of y at a point x; is con-
sidered (u,,=x¢B), the mean squared error of prediction is:

MSEP (b, x,) = Ey0-%4b) " (i -%4D) (1.35)
= E(b-8)"xyx§ (b-8)

which is a measure of the prediction error in an arbitrary point in
the design space, again the expectation is over b. Stated otherwise,
MSEP(b,x,) is the conditional mean square error of prediction,
conditional on a value of x,. If the expectation is taken over x, the
result is the unconditional mean squared error of prediction (UMSEP):

UMSEP(b) = E(MSEP(b,x,)=E[E(b-8)'x,%, (b-8)] (I.36)

where the expectations are taken over b and x,. It can be observed
that the MSE criteria are all expected values of quadratic functions
of b-B. They all measure, therefore, the distance between b and S
according to a metric corresponding with the positive semidefinite
matrix involved in the quadratic term.

As a warning against wusing too much variables 1in the model
Hocking’® shows the following. Suppose y=X;B;+X,B,+¢ 1is the true
model, where (X, ,X,;)=X and g'=(8;.8;). Let 9=x'b and 91=X£b1 be the
predictions of y at a point x using the full model or the truncated
model, respectively, where x=(x; , x,) and b, b; are OLS estimates of
B, By. Then var(¥)=var(y,). That is, even if B, is not equal to zero
the future response can be predicted with less wvariability if the
truncated model is used. The penalty is in the bias, because §; is
not predicted with the right model. It can be shown that, if B, is
small enough, then var(§)-MSE(9)=MSE(¥,).

If the validation of a linear model, from the perspective of these
MSE criteria, is wanted, it is necessary to have good estimators of
these criteria. These estimators have attained much attention in the
statistical literature (Hocking7°, Breiman and Freedman’?, Bunke and
Droge’%:7%, Allen’®, Picard’’, Berk’®, Mallows’®, and Amemiya’®). The
statistical properties of these estimators are sometimes hard (or
not!) to obtain (Steerneman®?).

Three estimators of the MSE criteria will be outlined: Allen’s
prediction sum of squares (PRESS), Amemiya's prediction criterion
"(PRC) and Mallows' Cq- The PRC of Amemiya73 (see also Judge et al.b%)
is derived under the assumption that x; is regarded as a random
vector that satisfies the condition E(xyxj)= (1/n)X’'X. Under this
assumption (I.36) becomes

PRC =sé(l + q/n) (1.37)
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where sé is the usual estimate of ¢° in the restricted model and q is

the number of predictor variables in the model (including the con-
stant). This criterion is suited for the comparison of the predictive
performance of linear models where a decision has to be made which
variables to retain in the model. The model that generates the lowest
PRC is desired. Often a peak-phenomenon occurs which is visualized in
Figure I1.9. The PRC can only be used to compare models where the
parameters are estimated using the ordinary least squares (OLS)
method. Generalizations to PLS, ridge and Stein esimation techniques
(see Sections 3.2, 3.3 and 3.4) are not readily available.

PRC

2

q

Figure I.9. Peak-phenomenon, q is the number of variables in the
model (model complexity), for PRC see text.

The Cq criterion of Mallows is defined as

RSSq
Cq = + 29 - n (1.38)
52
where s? is the residual mean square for the full model, if all

variables are used (the constant is understood as a variable), q is
the number of wvariables (including the constant) used in the model
whose performance is assessed and RSS_ is the residual sum of squares
of this g-term model. A disadvantage of Cq appears immediately: the
full model must be known. The justification’® of C, is that it is an
estimate of the standardized total mean squared error of estimation
for the current data Fq=(l/02)2 MSE(?i) where the summation index i
runs from 1 to n; §, is the prediction of y in data point i with the
q term model; o2 1is the population wvariance of . Note that
Fq=(l/02)MSEP(bq,X), where the subscript q refers to the ¢-term
model. Extensions of the C; criterion for use in ridge regression are
reported by Mallows’?.
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The prediction error sum of squares (PRESS) is defined as

PRESS = 3 (y; -§(1))? (1.39)

i

where ﬁ(i) represents the predicted value of the ith observation with
the use of a model where the ith observation on (y,x) is omitted.
This is done n times (for each object). The PRESS value measures the
predictive performance of this model, it can be conceived as a sample
estimate of MSEP(b,X), formula (I.34) (Golub®®). The model which
produces the lowest PRESS is preferred. Usually the peak-phenomenon,
already discussed when introducing the PRC, is observed when plotting
PRESS against the complexity of the model, ie. the number of terms in
the model. The advantage of the PRESS criterion is in its flexibilicty
to validate a range of models, whose parameters are estimated with a
range of estimation methods. OLS estimates can thus be compared with
RR, JSR and PLS estimates. Examples will be given in Chapters 10 and
11.

The idea behind PRESS is called cross-validation and stems from a
class of related validation methods, which are based on a special use
of the sample. These methods are the bootstrap, the jack-knife, and
cross-validation. An overview is given by Efron and Gong®'. The idea
of the bootstrap method is to understand the sample (size n) as a
population (size n). From this population random samples, say 1000,
of size N are drawn and the parameters of interest are calculated.
The moments of the parameters can be calculated from these repeti-
tions and are then considered as bootstrap-estimates of the real
moments. The jack-knife is closely related to the bootstrap and
consists of leaving successively out one observation and calculating
the parameters of interest of the model on the basis of the (n-1)
remaining observations. This is repeated n times and in this way
jack-knife estimates of the moments of the parameters are obtained.

Crosg-validation (CV) is a very old method and is aimed at valida-
ting prediction rules (or predictive models in a more restricted
sense). Reference should be made to Stone®?. The idea of cross-
validation is to leave out one observations and to use the predictive
model to predict this observation. Similarly, this can be done for
more than one observation. When each observation is omitted once, a
value like PRESS can be used to assess the predictive performance of
the model. Cross-validation can be used in the context of regression
models’* 77 or PLS modeling'“-*2. Applications in the field of PCA
are also reported?:13. One of the choices to be made in cross-
validation is the number of observations to be omitted simultaneous-
ly. The validation results can differ depending on this choice
(Osten'®). When one observation is omitted, as advised by Stone®?,
the decrease of the number of degrees of freedom in estimation of the
model parameters, 1is minimal. This corresponds to an honest assess-
ment of the predictive performance. A disadvantage of this leave-one-
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-out (LOO) method is the heavy computational burden. A more fundamen-
tal criticism is stated by S.Wold et al.8® by arguing that the LOO
method opens the way for overfitting, which is avoided by leaving
more observations out simultaneously.

Stoned? advocates the use of a double-cross-validation, which
consists of two imbedded LOO-methods: one  for the choice of the
predictor and one for the assessment of that choice. An extension of
cross-validation is described by Golub et al.®? and is called gener-
alized cross-validation (GCV). This method is proposed for the choice
of the k parameter in ridge regression (see Section 3.2), but can be
used in a much broader sense. Its justification stems from the fact
that in the extreme case when all entries of X are 0 except for the
diagonal elements, the PRESS values as a function of the k parameter
do not have a unique minimizer. The GCV solves this problem and can
be viewed as a form of ordinary cross-validation invariant under
rotations of the measurement coordinate system.

A different way to validate the predictive performance of models is
to hold out a part of the data set (test set) and use predictions
made for the test set observations for assessment. Note the resemb-
lance of this idea and cross-validation, in fact CV can be viewed as
using the training set also as a test set.

A very convenient and intuitively appealing advantage of cross-
validation is the possibility it offers to validate a complex predic-
tion rule. In our case the prediction rule consist of a few steps:
the choice of the markers, the choice of a prediction method, the
choice of k and c¢ parameters for ridge and Stein regression (see
Sections 3.2 and 3.3), and is complex indeed. Cross-validation makes
it possible not only to validate the whole procedure, but also its
parts. If the cross-validatory results are compared with the results
of the "real" predictions in the test set, the behaviour of cross-
validation in this particular prediction situation can be estab-
lished. This is one of the goals of this thesis.

2.4 Multicollinearity

The term multicollinearity has been used already in the preceding
sections. Multicollinearity is defined as the existence of (near)
linear dependence between two or more columns of X. Most textbooks in
the field of econometrics treat this subject, e.g. Judge et al.®*,
Johnston®3 ., A detailed treatment is given in Belsley et al.®® and
Vinod®?, The effects of multicollinearity can be very serious. This
can be illustrated by noting that
)] = Z var(b

MSE(b,;.) = tr[V(b L) = ofEar? (1.40)

ols ols,

where XA; 1is the ith eigenvalue of X'X (which is the correlation
matrix of x, if scaling to column-length-one is adopted). In terms of
eigenvalues, multicollinearity means that there exists at least one
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eigenvalue with a near zero value. Consequently, one or more of the
variances of the regression coefficients may become very high. This
can even result in regression coefficients with the wrong sign. The
influence of multicollinearity on the variances of the regression
coefficients can be understood by applying the VIF's (formula I1.27).
If one column in X can be explained by one or more of the others,
then the RZ becomes 1 and the VIF of the estimated coefficient of
that specific x variable becomes very high. Marquardt®* suggests as a
rule of thumb that serious multicollinearity exists if the VIF of a
coefficient is greater than five (the phrase “variance inflation
factor" is now understood as the variance of a coefficient inflated
by multicollinearity).

Furthermore, it can be shown that the regression coefficients
become unstable towards slight distortions of the data, which is not
desirablef®. The same goes for t-values, commonly used to judge the
significance of a regression coefficient®?.

The influence of multicollinearity on the predictive power of the
model is not easy to evaluate. The following argument is valid,
however (Judge et al.®%). The distribution of b,,  is given by

bols - Nm (:8» UZ(X’X)_1> (141)

under the assumption that ¢ has a normal distribution. The prediction
of a new value y is done with the predictor xg'b,g=y, where the x
vector consists of the realization of the m variate x variable which
is used for the prediction. The variance of this predictor is given

by:
var(§)= var(x!b ;) = x{ (o2 (X'X)"1)x, (1.42)

Making use of the eigenvalue decomposition of S=X'X (assuming that X
is scaled such that S has the correlation form), which can be written
as S=PDP' (see Section 1.2), formula (I.42) can be rewritten as
o?x! (PD" P Yyx, — o%x{(ZA['p;p])x, because (X'X) " l=(pDpp') =
(P')"1p"tp ! = PD 1P’ using P'=P !=I. Assume that multicollinearity
exists and A, ,=0. Then Xp,=~0 (see Section 1.1).

What is the effect on the variance of %? The problem arises in the
last term of the summation in the rewritten form of (I.42) as shown
in (I1.43),

var(xib,,)=02 (... .... +(1/A,) (%2 Py ) (Pax)) (1.43)

The ), value is (near) zero and blows up the variance of §. Each row
x; in X satisfies x]p,=0 because Xp,=0. When x{ has a similar struc-
ture as x] then XthNO and the effect of a near zero value of X  in
the last term of the summation in I.43 1is cancelled out. Hence the
variance of § is not necessarily blown up by multicollinearity as

long as the values of the explanatory variables for which predictions
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are desired satisfy the same near-exact linear dependence as the
original design matrix X. Note that when o2 is small than the effect
of multicollinearity is also diminished. A high signal-to-noise
ratio, defined as E(y)/0® where the expectation is over x and vy,
decreases the effect multicollinearity has on the prediction of y. A
remark made by Hoerl et al.®> is relevant in this context. They
mention that MSEP(b,,,,X), see Section 2.3 formula (I.34), has a sz
distribution regardless the level of multicollinearity. OLS, there-
fore, can be used at high levels of multicollinearity if prediction
at the original design points is the primary concern.

This is only a part of the problem. A difficulty that obscures the
reasoning above is the problem of misspecification. A model y=Xf+e¢ is
assumed but this might not be the true model, it may e.g. contain x-
variables which are (in terms of the population) not influential.
Misspecification is another problem encountered in regression ana-
lysis and has attained much attention®®. One of the solutions of this
problem is performing variable selection on the basis of the sample
data, which is difficult in case of multicollinearity®!:86.79 . If
the true model y=Xp+e¢ is not known and a model y=X§+e is postulated,
then d,,, is the least squares estimator of ¢ and x;d the linear
predictor of y,. But then

ols

MSEP(dols’XO) = E(#yO - X6d015)2 = E(Xéﬂ - Xédols)z
var(xjd, o) + E(x{B - x{é,1) (X8 - X46,1s) (1.44)

The term E(x§B - x§b6..4) ' (x{B - x{6,,s) can no longer be neglected,
contrary to the case of predicting y, with x/b,,,, where b, ,;  is the
OLS estimator of S, because then E(xéﬂols-py0)=0. The influence of
multicollinearity and misspecification on predictive performance is
difficult to assess.

The detection of multicollinearity is already mentioned briefly in
Section 2.2. VIF's can be used, but have the disadvantage of being
the result of unstable calculations when multicollinearity is severe.
An overall measure of the degree of multicollinearity is given by the

condition index K of X which is defined as®®
NE ax
K - > 1 (1.45)
Ax
min

where X . and )\%, ~are the highest and lowest singular values of X,
respectively. The condition number of any matrix A with oxrthonormal
columns (A'A = I) is unity. In case of multicollinearity the Azin
becomes near zero and so K will increase. In Section 2.2 the wvari-
ance-decomposition proportions were discussed and the phrase “small
singular values" was used there. Now a yardstick is obtained against

which smallness can be measured. Define the kth condition index as

46



PART I CHAPTER 2 THE LINEAR MODEL

3
Amax

b = —— k=1,...,m (1.46)
DY

with A the kth singular value of X. A singular value that is small
relative to A:ax has a high condition index. The variance-decomposi-
tion table (II-matrix) can be augmented by a column which gives the
condition index associated with each row. Relationships between
variables, indicated by their variance-decomposition proportions, are
more severe when associated with a high condition index. Unfortu-
nately the condition number and the condition indices depend on the
kind of scaling. To make comparisons between condition indices
meaningful, it is wise to scale each column to length one. Whether a
condition index is large is a matter of empirical determination.
Belsley et al.®® argue that condition indices around 5 or 10 indicate
weak dependence whereas strong dependence is indicated by values of
30 to 100.

A distinction can be made between predictive and non-predictive
multicollinearity (Vinod®?, Jolliffe®, Mason®’, Mager®’). If the
latent root SVD of (X,y) is performed, the dimensions associated with
low singular values are of special interest because these low values
indicate linear dependence. If the loading of y on a singular vector
associated with a low singular value is small, this singular vector
reveals a "non-predictive multicollinearity". The removal of an x
variable strongly associated with this singular vector might be
appropriate, following the same lines of reasoning as in Section 1.2.
In latent root regression this singular vector is removed from the
model (Mason®’). If, on the contrary, the loading of y is high on a
singular vector associated with a near-zero singular value and two or
more x variables load also on this singular value then there exists a
predictive multicollinearity. Those variables that load on this
singular vector are able to predict y and cannot be deleted without
consequences for the prediction. Some critical remarks are appropri-
ate. The "multicollinear-structure" (non-predictive and predictive
multicollinearity) as evident in the training set does not necessar-
ily resemble the relationship between the predictor variables and y
for future observations. When the population is well defined and the
training set is a representative sample then the above mentioned
criticism is not completely valid. Another warning against the use of
latent root SVD must be made. If an x variable, seemingly unrelated
to the other x variables, is deleted and a latent root SVD of the new
augmented design matrix is performed, new "multicollinearity pat-
terns" emerge. These patterns are totally different from the patterns
observed in the original design matrix. Examples will be given in
Chapter 10.

Remedies against multicollinearity can be divided in three parts.
The first kind of remedy is the inclusion of new observations in the
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training set. Silvey®® and Judge et al.®* show how (if this is
possible) the values of the predictor variables should be chosen to
obtain one optimal new observation. If it is not possible to control
the values of the predictor variables, random observations should be
taken. The second remedy is already discussed partly: the exclusion
of "troublesome" wvariables. Of special interest are the variables
which are involved in mnon-predictive multicollinearity. This should
be done carefully, however, keeping in mind the remarks made on the
representativeness of the training set. The remarks in Sections 1.3
and 1.5 regarding data-mining are wvalid here. A closely related
problem to data-mining is overfitting. If variables are included in
the regression model which are not relevant in the prediction of y
(the true model is generally unknown) they add only noise and should
be removed. But how can one be sure which variables are not relevant?
A dilemma shows up because retaining all variables gives an overfit,
which can mask the influence of really important variables, and on
the other hand the discarding of variables makes the problem of data-
mining manifest. So variable selection should be done with extreme
care and with the use of all possible prior information. Cross-
validation may help to validate the step of excluding variables. The
third remedy against multicollinearity is the use of estimation
techniques that differ from ordinary least squares and are designed
to handle multicollinearity, e.g. ridge regression and partial least
squares. These will be discussed separately in Chapter 3.
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Chapter 3 Biased estimation

3.1 Background

If the MSE criteria are used to choose estimation methods, a much
broader scala of methods becomes attractive. Throughout Chapter 3
the linear model y=Xf+e¢ is assumed, with y centered and X (nxm)
column-centered and of full rank in such a way that X'X=R, the
correlation matrix of x. The OLS estimate of B, which is b ; =(X'X)"
X'y, is an unbiased estimate of g. This means that E(b,;,)=p. It can
be shown®? that b,,, minimizes MSE(b) within the class of unbiased
estimates b of B. If the restriction of unbiasedness is omitted,
estimators can be found with a lower MSE than the MSE of the OLS
estimate but with a bias. Estimators which do not share the property
of unbiasedness are called biased estimators.

Generally speaking, the MSE(b)=tr[V(b)]+[bias(b)]’[bias(b)]. If b
is the OLS estimator bias(b)=0, so that MSE(b_ , )=tr[V(b,;,)]. The
advantage of the biased estimators is, therefore, in the reduction of
the variance of the estimator. If the bias becomes too large, the
biased estimator is not advantageous any more.

Note the correspondence of tr[V(b)] and bias(b) with the ideas of
"precision" and "accuracy" in analytical chemistry, respectively. In
Figure 1.10 the idea of biased estimation is shown: an accurate but
imprecise estimator (Fig. I.10a) is exchanged for a precise but
inaccurate estimator (Fig. I1.10b), resulting in an estimator with a
lower MSE. Several estimation methods (and corresponding estimators)
have been developed, three of these are discussed explicitly below.
Reference should be made to Vinod®?, Mayer and Willke®?, Hocking’?,
Judge and Bock®®, and Marquardt®*.

a)
B
b)
8
Figure I.10. Illustration of biased estimation; a single B is

estimated accurate but imprecise (a) or precise but inaccurate (b).
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In case of multicollinearity, biased estimation may present a
special advantage. To see this mnote that MSE(b,,,)=c?ZA[! (see
(1.40)) and in case of multicollinearity one (or several) of the A/s
become near zero. The MSE becomes very large and it may be very
profitable to use an estimator b with lower variance than b and
with an inevitably larger bias.

ols

3.2 Ridge regression

The idea of ridge regression is due to Hoerl and Kennard®':92, The
ridge estimator is defined as

b, =(X'X + kI)"*X'y (I1.47)

where k20 (if k=0 then b, =b,,.). Originally®®, Riley’* proposed a
method for solving b in Ab=d, where A is a square ill-conditioned
matrix and d is a vector. A 1is expanded in terms of F, where F=(A+kI)
for some k. Then b=A"'d=F !d+kF ?d+... Note the resemblance between
this idea and problem at hand: solving b in (X'X)b=X'y, where X'X is
ill-conditioned caused by multicollinearity. The ridge solution is
the first term in the series expansion and is specifically designed
to handle the problem of multicollinearity.

The justification of the ridge estimator can be shown by the
following 5°9:91.82  let b be an arbitrary estimator of B in the
linear model y=XB+¢. Then

SSE(b) = (y-Xb)'(y-Xb) = (y-Xbg, ) (y-Xbg ) +
(b-byy, ) X' X(b-byy,)

= SSE(b,,,) + ®(b) (1.48)
where &(b)=(b-b,;,) 'X'X(b-b,;,) and ¢(b) can be assumed a function of
b because b,,, is fixed (given X and y). Now X'X is a positive
definite matrix (assuming X has full rank) and therefore &(b)z=0, with
&(b)=0 if and only if b=b then SSE(b) attains its minimum value.
From (I1.33) follows

ols?

MSE(bols) = E(buls'ﬂ)'(bols'ﬂ) = E(bélsbols',‘s'bols-"
+ B'B-bl1b)= BB + E(b)ibgyy)

but

MSE(b,, ) = 028!

ols

SO

E(bli by1s) = B'B + o2EA]! (1.49)

ols~ols
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In words (I.49) means that, especially in case of mult}collinearity,
the length of b,,, overestimates the true length (8'8)7 of B. It can
be shown®! that b_, is the solution of the following problem:

minimize b'b with respect to b (1.50)
subject to @(b)=C

where C is a positive constant. The idea is to allow a small increase
C on SSE and choose that vector b which is the shortest under that
condition. This seems reasonable when observing (I.49). The MSE of
b, is80

MSE(b, ) o2SE2A]Y + B(6,-1)242 =

tr[V(b,,)] + [bias(b,,)]’[bias(b, )] (1.51)

i

with &,=X,/(};+k) and v;=(P'b);, the ith element of the vector P'b.

The matrix P and the numbers A, stem from the SVD of X: X=TD¥P, the

X!s are the squares of the singular values. By comparing MSE(b,.)

with MSE(b,,,)=0?ZA;!, it 1is clear that large values of 1/); are

muted (because §;<1) at the cost of bias and tr(V(bols))Ztr(V(brr)).
Using the SVD of X, the linear model becomes

y = Xb+e = TD¥P'b + e = TD¥c + e (1.52)

with P'b=c. This reparametrization transforms the linear model in
another linear model with uncorrelated components of b, because
(TD¥)' (TD¥) = D¥T'TD¥ = D. The least squares estimate ¢,y =D !D¥T'y
=D ®T'y. Obviously, b,; =Pcylg. The variance-covariance matrix of
¢, s 1S V(eyy )=0?D"*. The ridge estimator is c,,=(D+kI) " 1D¥T’y.
Again simple calculations show that b, =Pc... Define Q as (D+kI)™ D =
diag(8,,...,6,) with §; as before. Then Cpp=(D+KI)"IDD ¥ T'y=Qc, ), -
Written out fully this becomes
Cpp = (85€1,...,6p¢,)" (1.53)

with &§,=X; /(X;+k) as before and cor1s=(cy, . scp)’. If k0, the ¢, is
an estimator that shrinks c,,,, the estimator of the uncorrelated
components of b, towards zero (6§;<1). The components of ¢,,, which
carry the most variance are the ones with low Aj values, see V(cg1s) -
These components are shrunken mostly, because the associated §;
values are the lowest. The length of the c., estimator, the square
root of 2(6101)2, is of course smaller than the length of c,;, (the
square root of Zc?). The length of the b,, vector is smaller than the
length of b,,;, because bl b, =c! P'Pc . =c/ c... Thus an estimator is
obtained with smaller length and smaller variance.

51



PART I CHAPTER 3 BIASED ESTIMATION

A generalization of the ridge estimator is given by
Crrg = (DHK)TIDET'y (1.54)

where K is diag(k,,..,k;) with k;=0 and distinct.

An important issue when using ridge regression (RR) is the choice
of k. Hoerl and Kennard®! proved that for every (8,02) there exists a
k>0 so that MSE(b,_.)<MSE(b,,,), where b__. is the ridge estimator with
that k value. But MSE(b,.) depends on f and 0? which are unknown and
have to be estimated, sc that k cannot be chosen to minimize
MSE(b,,.). There are several possibilities to chose k70-8%.91,982
Hoerl and Kennard®! recommend the choice of k=msz/bc')lsbOls with
s2=SSE/(n-m) because k=mo?/8'f minimizes MSE(b,,) if X'X=I. A very
valuable feature of ridge regression is the ridge trace. This trace
is a plot of the b..-estimates against the ridge parameter k. Large
decrements in the absolute wvalues of particular estimated coeffi-
cients indicate unstable estimation of these coefficients’? 91.92
This trace plot allows one to chose a k-value that "just stabilizes
all estimates™. Another criterion to choose the ridge parameter k
comes from Marquardt and Snee®>. The VIF's, already discussed in
Section 2.2, can be defined for the ridge estimator too. The variance
inflation factors of b,, are the diagonal elements of’?"

Vb, /0% = (X'X + kI)"IX/X(X'X + kI)! (1.55)

The recommendation is to chose k in such a way that the VIF's are
between one and ten and closer to one. Note that, assuming k fixed,
s/VIF, gives an estimate of the standard deviation of the ridge
estimation of the ith coefficient (s 1is the square root of the
estimated error variance). These standard deviations can be used in a
modified t-test on the significance of the associated coefficient®>,
The fourth way to chose k is described by S.Wold et al.®® and Golub
et al.®%, Cross-validation is used to take that k-value which has
lowest PRESS(k)=Z(y;-9.,,)%, where § ,, is the ridge (with ridge
parameter k) prediction of y, without the use of y, in calculating
the model. S.Wold et al.®® use a "leave-more-out” procedure and Golub
et al.®® use Generalized CV (see Section 2.3). The cross-validation
with a leave-one-out evaluation instead of leave-more-out is adopted,
because the predictive performance of the procedure is assessed at
best when the maximum number of degrees of freedom is attained®? (see
Section 2.3). CGCross-validation (CV) instead of GCV 1is adopted,
because of the ability of CV to validate the whole predictive proced-
ure (see Section 2.4). Moreover, the drawback of calculating a PRESS
value with CV (see Section 2.3) does not exist in this situation
because of multicollinearity.

A fifth method of choosing k is given by McDonald and Galarneau®®.
They choose k in such a way that b!_b bl b ‘SZEAzl, where b, is

rr¥rr ols

the ridge estimator and A;2...z), are the eigenvalues of X'X. This
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procedure tries to "give b., the right length".

There have been performed a number of simulation studies regarding
ridge regression (Hoerl et al.®?, McDonald and Galarneau®®, Dempster
et al.®’) Hoerl et al.®® conclude that subset selection is not the
best way to combat multicollinearity if prediction is the purpose and
if most wvariables are related to some degree with the response.
Better predictions are obtained 1f ridge regression is used. They
also conclude that choosing k—~msz/bols b,1s 1S Treasonable and suggest
that the choice of k according to McDonald and Galarneau®® is par-
ticularly good with high signal-to-noise ratios. McDonald and
Galarneau®® state their results in terms of the MSE of the estimated
coefficients, see Section 2.3 formula (I.33). They conclude that the
performance of the evaluated ridge type estimators depends on the
variance of the random error, the correlations among the explanatory
variables and the unknown coefficient vector. To be more specific,
they show that ridge estimation becomes less profitable with smaller
error variances and lower correlations between the x variables. They
state that there is no rule for choosing k which assures that the
corresponding ridge estimator is better than least squares.

Berk’® has validated some biased estimators and subset selection
techniques with the use of real data sets. He splits the data sets in
two parts: the training set and the validation set. As a yardstick of
performance he uses the MSE of prediction in the wvalidation set. If
k=ms? /bols o1s 1s used, he concludes that ridge estimation performs
well if the correlations between dependent and independent variables
are all positive. Otherwise subset selection might be the best
choice, especially if one or a few dominant predictors can be identi-
fied.

A nice view on the geometry of ridge regression is given by
Swindel®¥®

3.3 James—-Stein Regression (JS)

Consider again the linear model y=XB+e, with X of full rank and in
such a way that X'X is in correlation form. James and Stein®® have
shown that the estimator
cy e'e
by = (1- (—)( ))bOls = cyb.1 s (1.56)

n-m X'Xb,

o]_s

where c¢; 1s a positive constant (0=c,=<1) and e is the estimated
residual vector from OLS, has a better performance than b,;, in terms
of MSEP(b,X)/o?, where var(e)=o?, for an appropriate choice c¢;. It
may be profitable to use the James-Stein estimator in case where
prediction is the purpose. Reference should be made to Judge and
Bock®®, Hocking’?, Draper and Van Nostrand®®, Jennrich and Oman!®?. A
detailed overview is given by Vinod®°.
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The James-Stein estimator shrinks the OLS estimator towards =zero
(note the resemblance with the ridge estimator). The James-Stein
estimator is the solution of the following minimization problem:

minimize (b-b Y'(b-b ) with respect to b (1.57)

ols ols

subject to b'b = §2

In words, the minimization problem comes down to the choice of a
shorter b-vector while staying close to the OLS estimator (note again
the resemblance with the ridge solution, particularly (I.50)).
Stein’? suggests to use c, as

c, = max [(1-((m-2)/(n-m+2))(1-R?)/R%?),0] (1.58)

where R? is the multiple correlation coefficient obtained from the
OLS regression of v on X. Necessary and sufficient conditions®0-8°
for the improvement of the James-Stein estimator over OLS, for all g,
are m=z3; n=m+2 and d = Amzle > 2, where the summation runs from 1 to
m. High multicollinearity can destroy the improvement of the JS
estimator over the OLS estimator because then d<2. This does not
imply, however, that there is no § .for which improvement is possible.
The derivation of the MSE of the JS estimator is tedious®’:°% to
perform.

In the study of Berk’%, James-Stein estimation is shown to yield
better predictions than OLS, except in one case were the validation
set does not resemble the original data. Jennrich and Oman!®? give
some hints about situations were James-Stein regression is appropri-
ate.

In this thesis the value of c; is established by cross-validation
in the same way as for the ridge parameter k (see Section 3.2).

3.4 Partial least squares (PLS)

Originally, the idea of partial least squares (PLS) stems from
H.Wold. Descriptions of the original PLS modelling strategies are
given by Joreskog and H.Wold!®. Extensive details on properties of
the PLS estimators are given by Dijkstral®! 192  The PLS estimation
method is introduced by means of the algorithms which are used. These
algorithms are described by Geladi and Kowalskil®?.104 = g Wold
et al.%2-83  Hoskuldsson!®®, and Manne®®®. A slightly different
algorithm is used by Martens'®’, but numerically the same results are
obtained (in terms of predictions).

In order to get a good understanding of PLS the NIPALS algorithm is
discussed firstly. This algorithm has been developed by H.Wold, and
is used to calculate the principal components of X.
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NIPALS:

1. initial guess of t, e.g. the column in X with the largest variance
2. p' = t'X/t't

3. normalize p to HpH =1

4., t = Xp

5. check convergence: if d = lthew-torall is small then 6, else 2

6. residuals: E = X-tp'; use E as X in the next dimension

Step 2 as well as step 4 in the NIPALS algorithm can be recognized as
least squares steps. The first t and p vectors in NIPALS are calcu-
lated in such a way that X-tp’ is minimized in least squares sense.
The minimization of X-tp’ and normalization of p (step 3) provides
that t is the first principal component of X'X, with associated
loadings p (Gabriel and Zamir'°®). In the next dimension t, is the
first principal component of E'E and, therefore, the second principal
component of X'X. If g dimensions are calculated successively, the
matrices T=(t;,..,t,) and P=(p1,..,pg) are obtained and X=TP'+E. The
matrix TP’ has rank g and is therefore a lower rank approximation of
X, TP' is the spectral decomposition of X truncated to g terms (see
Section 1.2). NIPALS is recognized as a member of a family of algo-
rithms which yield lower rank approximations of matrices by least
squares methods®1 198,

This algorithm has the advantage that not the whole spectral
decomposition of X has to be performed if only the first few princi-
pal components are of interest. It can be proven'®® that t{t;=0 and
pip;=0, for i not equal j as should be.

The PLS algorithms are closely related to the NIPALS algorithm. Two
versions of PLS are discussed. The PLS1l algorithm comprises one y
variable and PLS2 comprises more y variables simultaneously.

PLS1:

low =y'X/y'y

2. normalize w to Hw“ =1

3. t = Xw

4, q = t'y/t't

5. p' = t'X/t't

6. residuals: E = X-tp'; f = y-tq.

7. use E and f as X and y in next dimension

Step 1 in the PLS1l algorithm is recognized as the result of regres-
sing X on y. To see this consider the linear equations x =yB,+e, with
s=1,...,m. Least squares theory gives estimates b = (v'y) " ty'x,. Then
w'=(by,...,by)". If y and X are column-autoscaled, w' 1is simply the
vector of correlation coefficients between y and each x variable. The
linear combination of the columns of X with weight factors w' produ-
ces t: the estimated latent variable of the X block (step 3).
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The dependent variable y is then regressed, in step 4, on the estim-
ate of the latent variable of the X block, t, which results in q.
Step 5 is performed to make t'E=t'(X-tp’)=0. When the matrix E and
the vector f are used in the next cycle the result is ty, Wy, g, and
P, . Because t, 1s a linear combination of the columns of E, the
condition tjE=0 results in t{t,=0, where t; is the estimated latent
vector of the first cycle. So the estimated latent vectors of the
different cycles (dimensions) are orthogonall®®:-1%6  The number of
dimensions (components) can be established by cross-validation, this
will be described in more detail in Subsection 10.3.4. Note that the
vectors p obtained in the different cycles are not orthogonal, in
contrast with the NIPALS algorithm. The vectors w are mutually
orthogonal, however!?3 .

Although not treated explicitly here, coefficients for b in the
linear model y=Xp+e¢ can be obtained if the dimensionality of the PLS
model is established!®®:1%7  These b values are biased estimates of S
whose properties are hard to derivel®?. Predictions for a new object
can be obtained as follows:

1. y=0 initialize predictions
2. for k=1 to g

2.1t = x'w /wlwy

2.2y =y + tq

2.3 e' =x'" - tp

2.4 x =c¢e

2.5 go to 2

In step 2.1, the score of x on the latent vector is calculated with
the use of the model parameter w,. In step 2.2 the contribution of
the latent score t;, to y is calculated. The contribution of x to ty
is subtracted from x in step 2.3 and the whole procedure starts again
with the e obtained in step 2.3. Note that the successive q values
are estimated independent from each other in the PLS1 algorithm,
which is possible because the t vectors are mutually orthogonal. This
property of the estimated q values is used in the prediction proced-
ure. If a constant is assumed in the linear model y=XB+e, y and X are
column-mean-centered prior to the PLS calculation (see Section 2.1)
and the predictions are initialized at the mean value of y.

The second PLS algorithm will be labeled PLS2 and is designed to
handle more than one y variable simultaneously. Let all y wvariables
be gathered in Y (nxr).

PLS2:

1. initial guess of u; a column in Y
2. w' =u'X/u'u

3. normalize w to “w” =1

4. t = Xw
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q' = t'Y/t't

u = Yq/q'q

check convergence on u (see NIPALS). If no convergence step 2

. p’ = t'X/t't

residuals: E = X-tp'; F = Y-tq'; use E, F as X, Y in the next
imension

QW oo~ oYW

Again the number of dimensions can be established with cross-
validation. The t vectors are mutually orthogonal, so are the w
vectors. This is not the case for the p vectors. The u vectors are
estimates of the latent variables in the Y block. A assessment of the
PLS method, besides statistical arguments given by H.Wold®,
Dijkstral®?, stems from the observation that the vectors u;, t;, W
and g, are eigenvectors associated with the maximum eigenvalues of
respectively YY'XX', XX'YY’, X'YY'X, and Y'XX'Y. The same goes for u,
to q, but then X and Y must be replaced by their residuals E and F
and so on'®5. Tt is, however, hard to realize what e.g. XX'YY' means.
Mannel®® shows that PLS1 is equivalent to the bidiagonalization
algorithm of Golub and Kahan'®®, which is used to invert a (probably
singular) matrix.

Predictions at a new value of x can be obtained in the same way as
in the PLS1 case. When the model dimensionality is established, say

g, and T=(ty,...,t,), P=(py,...,Pg), Q=(qy,...,qg) then*?:

X = TP' + E (1.59)
Y = TQ' + F

The matrices X and Y are decomposed. Note that the decomposition of X
given by the NIPALS algorithm yields another decomposition of X than
PLS2. The P matrix from NIPALS is orthogonal, whereas the P matrix
from PLS2 is not.

3.5 Unification of methods

A unification of the methods partial least squares (PLS), ridge
regression (RR), James-Stein Regression (JS), ordinary least squares
(OLS), and principal component regression (PCR) can be developed by
realizing that each method somehow approximates the X'X matrix
(Hocking’®, Naes and Martens'!?, Hoerl and Kennard®!, Mason®7,
Jolliffe?).

In OLS no approximation of X'X is made (X'X is used as such) and
the estimator for the linear model y=XB+e is b, =(X'X) 'X'y. Ridge
regression approximates the X'X with X'X+kl and therefore the RR
estimator becomes brr=(X’X+kI)'1X’y. If the JS estimator (I1.50) is
transformed into bj5=(1/CZX'X)"1X'Y, the approximation of X'X with
(1/¢,)X'X is clear. In case of PCR, the (X'X)"! matrix is approxim-
ated by the first part of the spectral decomposition of (X'X)™ ! (see
Section 1.2) which is (1/A;)pypit...+ (1/X3; )PP, if the first g
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eigenvalues and eigenvectors are used, corresponding to the g largest
eigenvalues of X’X. Especially if rank(X’'X)<m, then g can be chosen
as rank(X'X) and the inverse of X'X does not exist. The PCR estimator
becomes then bpcr=((1/kl)p1pi+...+(1/Ag)pgpé)X'y or bpcr=PgDé1PéX’y
where the subscript g means that only the first g columns of the
associated matrix are used. The matrix PgDélPé is called the general-
ized inverse of X'X. Marquardt®‘ generalizes the idea of the rank g
approximation by letting g be a continuous variable 0<g<m and defi-
ning the generalized inverse of X'X subsequently. On overview of the
theory of generalized inverses is given by Rao and Mitral®.

For PLS the derivation of its unified form is a bit more difficult
(Naes and Martens!!?). It can be derived if applying the PLS variant
with orthogonal P and a single y-variable. Let U=(u;,...,u,) be the
(mxg) matrix consisting of the restricted (orthogonal) eigenvectors
of X'X relative to the space spanned by P, then P=UC where C is an
gxg orthogonal matrix. The restricted eigenvectors have the property
that U'X'XU = diag(®,,..., ®,). The PLS predictor is then b
((l/@l)ulu{+...+(1/®g)ugué)X’y.

Another estimation method for the linear model which can be util-
ized in case of multicollinearity is total least squarest!! (TLS). An
application in the field of QSAR is given by $.Wold et a2l.83. With
the use of the pseudo-inverse of X (which is a generalization of the
usual inverse to singular and non-square matrices) a class of estim-
ators can be defined which can also handle multicollinearity.

pls
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Chapter 4 Experimental design considerations

4,1 The classical situation

The ideas behind experimental design are described very well in
textbooks (Box et al.'*?, Deming and Morgan!!®, Davies!!*, Box and
Draper'!®). One of these ideas is the theory of factorial experiments
which results in a design matrix X with orthogonal columns. A factor-
ial experiment can be augmented by some design points to obtain a
central composite design. The notion of orthogonality in designs is
important for the estimatibility of the effects (coefficients).

A special topic in the field of experimental design is the theory
of optimal experimental design (Fedorov!®, Silvey!l’7)., If a linear
model is postulated, y=XB+e, the variance-covariance matrix of b,
is 0% (X'X)" ! and the purpose can be to choose X so that det(X'X)"t is
minimal (D-optimality) or to choose X so that tr(X’X)"! is minimal
(A-optimality). Both A- and D-optimality aim at a regular spread of
the design points in the design space, but the criteria are slightly
different. It must be stressed that the specification of the model is
assumed known throughout (whether it does contain quadratic or
interaction terms etec.). The optimised design is, therefore, only
optimal for that particular model. Obviously, the idea of optimal
design can be broadened by choosing a design that performs reasonably
with different (but equally probable) models. Another approach is
outlined by Box and Draper!!®: the pay-off in using the wrong model
and the variance in the estimation of b,;, or the prediction of y can
be calculated by using an MSE criterion. Choosing a design which
minimizes this MSE gives rise to the best compromise between model
(mis)specification and variance.

The ideas of (optimal) experimental design are also introduced in
the field of mixture experiments (Weyland!'® 119 Debets!?®, Sneel??,
Cornell®®). In a mixture experiment, the sum of the scores on the x
variables always equals one and special models are developed to
handle this situation®®. A linear model is formulated in the mixture
experiments and design considerations are also important in this
area. The idea of a regular spread of the design points in the design
space are followed almost everywhere (except by Drouen!?2?). An
application of D-optimality is reported by Bianchini et al.'2®, for
the use in the optimization of a chromatographic separation.

In the case of calibration, treated in this thesis, the problem
becomes slightly more complicated. In the initial training set the

'stationary phases are given entities and the mobile phase composi-
tions can be chosen only to the restricted area where meaningful
retention times are obtained. In Figure I.11, this situation is
depicted. A factorial arrangement of the experiment requires that
each mobile phase composition is used on each stationary phase. The
design used in Part III is shown in Figure I.12. In this design the
factor "elution-strength" is wvaried at two levels (in Part IV: three
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levels) because each modifier is mixed with water in two different
proportions. The factor "kind of modifier" is varied at three levels:
two binary mixtures each comprising a different organic modifier and
a ternary mixture made up of the two binary ones. The two ternary
mixtures are incorporated for each stationary phase to measure the
influence of mixing the binary ones. The factor "stationary phase" is
varied at six levels. Note that the ideas of "regular spread" and
"orthogonality” are used in this design. :

water

D

e

ACN MeOH
Figure I.11. Factor space of mobile phase compositions. ACN and MeOH
are the abbreviations of acetonitrile and methanol, respectively. A

to D are the limits of the factor space in which meaningful experi-
ments are to be performed.

S.Ph.1 S.Ph.2 S.Ph.3 S.Ph.4 S.Ph.5 S.Ph.6

water
f /é MaOH f é { ,é
ACN

Figure I.12. Orthogonal design.
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For practical reasons, the idea of orthogonality must be left
sometimes because it is not possible to measure the retention of all
solutes at the same mobile phase compositions 1f the stationary
phases differ too much. The resulting design is shown in Figure I.13.
The consequences of such a design with regard to the choice of the
markers needs further research.

S.Ph.1 S.Ph.2

water

MeQH
ACN

Figure I.13. Non-orthogonal design.

Anticipating the models which are used to calibrate with in Parts
IIT and IV, generally some stationary phases are used in the training
set. Markers are chosen with these training data. Then a model is
build which relates the markers (and mobile phase composition meas-
ured as the fractions of the different modifiers) with the mnon-
markers. The design matrix X associated with one of the models is
shown in Figure 1.14. The goal of designing experiments is to obtain
a well conditioned X matrix (see Section 2.4). The first part of this
design matrix is formed by the mobile phase modifier fractions. The
second part of X is formed by the markers which are not known before-
hand. The most sensible way to choose the mobile phase components is
to isolate the mobile phase part from the total X matrix and optimize
that part with the known theory.

This can be done on the assumption that the correlation between the
mobile phase part and the marker part of X is low compared with the
correlations within either the mobile phase- and/or the marker part

"of X. Calculations, see Part III, show that this is a reasonable
assumption. The marker part of X depends on the kind of criterion
used for the marker selection. The determinant criterion yields
markers with a lower inter-correlation than the induced-variance
criterion, as calculations will show (Part III). In terms of the
condition of X, it might therefore be profitable to use the deter-
minant criterion, which is also profitable for James-Stein regression
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(see Section 3.3). But the induced-variance criterion is more suited
for our purpose: predicting the discarded solutes. So a conflict
arises between both marker choice criteria. A yardstick is needed to
validate the performance of both criteria. Cross-validation is such a
yardstick and its merit will be assessed.

ACN MeOH MARK1 MARK2 MARK3 MARK4

[ mphi
8.Ph.1

t..mph®

— mphl
S.Ph.2

L mph8

— mphi
8.Ph.3

L—mph&

Figure I.14: Design matrix X of a model (see text).

A more sophisticated choice of the stationary phases can be made if
they are characterized by physico-chemical measurements. A multivari-
ate design approach as shown by S.Wold®, can then be used. These
measurements are, however, tedious and expensive.

4.2 The influence of the choice of the trainingset

If the stationary phases are chosen without design considerations
then a random sample is the result. The result of the estimation
process and the validation of that process will depend on the quality
of that sample. It can be expected that CV is a good, or reasonable,
validation criterion in cases of a representative sample. The robust-
ness of the CV criterion with regard to the representativeness of the
training sample must be established. This can be done by measuring
the appropriateness of the random sample and confront the GV results
with the results obtained in the test set, if such a test set is
available.

Evidently, the appropriateness of a training set is difficult to
assess. It is possible, however, to measure the difference between
training set and test set and draw conclusions on that basis. Uni-
variate measures of differences between training set and test set are
the moments of first and second order for each variable, hence means
and variances of the variables. A more sophisticated approach,
pointed out by Picard and Cook’’ and Sneel2%, is called matched
split. The consequences of the split of the data in training- and
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test set is qualitatively checked by
V'V/n, ~ X'X/n (1.60)

where X is the matrix of the predictor variables of the total sample
and V the matrix of predictor variables in the validation sample, the
test set (test sample size n,). The second order moments are matched,
in order to obtain the same dispersion in the training set and the
test set (note that X'¥/n and V'V/n, are dispersion matrices). It is
important to emphasize that the unscaled (and uncentered) X matrix is
used in (I.60). A constant in the models and therefore a column of
ones is added to X.

Another measure of difference between the test set and the training
set is the ratio of the mean Mahalanobis distances for the two sets,
see Berk’®. The Mahanalobis distance of a point x to the centroid
(origin) is

ds = x(X'X) " tx (1.61)
assuming that X is mean-centered. It can be shown’® that
(n-m-1) mDS

E(MSEP, /MSEP) = ———— (1 + 1/n +
(n-m-3) nDS,,

y (1.62)

where MSEP, is the mean squared error of prediction in the test set
(validation set) and MSEP the mean squared error of prediction in the
training set (both MSEP and MSEP, are MSEP(b,X) values, see formula
(I.34)), DS is the mean Mahalanobis distance in the test set and DS,
is the mean Mahalanobis distance in the training set. It is advant-
ageous to keep the number of predictor variables, m, low, especially
if DS/DS, is high. A danger of extrapolation is shown: MSEP in the
training set is not a good estimator of MSEP in the test set with
severe extrapolation (DS becomes large).

4.3 A sumary of the preceding chapters

One of the keywords in this thesis is "model". The calibration of
new stationary phases is done with the aid of a model. The relation-
ship between predictors (markers) and dependent variables (non-
markers) have to be modelled. The exact form of such a model is not
known a priori (the number of predictors, which predictors, transfor-
mations of predictors etc.). Diagnostic tools are, therefore, neces-
sary to judge the quality of predictors and of the model (see Section
2.2). Obviously, prior to the model-building process a set of predic-
tors has to be chosen (see Chapter 1).

One of the first decisions to be made in the model-building process
is the purpose of the model. The models used in this thesis have one
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explicit purpose: prediction. Therefore, the models must be judged
with criteria measuring the predictive performance (see Section 2.3).

A difficult problem arises if the performance of a model has to be
established. Incorporating too much variables in the model bears the
risk of overfitting: irrelevant variables incorporated in the model
introduce noise and obscure the effect of really important variables
because of multicollinearity between the predictors (see
Section 2.4). The need for wvariable selection is clear. If this
variable selection is done using the data, uncertainty is introduced.
The data is used to select the variables and, in a second step, to
evaluate the model and the selected variables as if they were prede-
termined. Consequently, an assessment of the performance of the model
tends to be optimistically biased.

Another issue related to model-building is the existence of influ-
ential observations. This subject is not treated extensively in this
thesis, but some remarks are given (see Chapter 1).

After establishing the modelspecification, the estimation method
with which the parameters in the model are to be estimated must be
chosen (see Chapter 3). Ridge regression, James-Stein regression and
partial least squares are designed to meet specific goals and should
be chosen with these goals in mind.

All the above sketched topics and problems are intertwined. This
makes the model-building process complex. For example: influential
observations can induce multicollinearity; ridge regression and
partial least squares can perhaps (partly) solve the problem of
multicollinearity; jack-knife gives an idea on chance results when
selecting markers, but depends on influential observations.
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PART II CHAPTER 5 THE MOBILE PHASE

Chapter 5 The mobile phase

5.1 Recent developments in mobile phase optimization

A lot of research has been done in the area of mobile phase optimi-
zation. Good reviews are given by Berridge! and Schoenmakers®. Recent
developments in the area comprise the use of multi-criteria decision

making®, comparisons between different mobile phase systems*, invest-

igation of the selectivity of multisolvent systems®, the use of
optimal design theory® to select the initial mobile phase composi-
tions’, a statistical basis to select appropriate starting eluents?®,
the use of diode array detection®'1?, new criteria to characterise a
chromatographic separation'!, the use of retention indices!?:1%, and

an alternative optimization strategyl’ .

5.2 Prediction of retention dependent on the mobile phase
composition

In a series of papers!® 1%, Jandera describes a method of retention

prediction in binary eluentia. The key of this approach 1is the

formula:

log k = (a3 + a;ng)(l-px) - gx (I11.1)

where a; and p are assumed to depend only on the type of organic
modifier, x is the fraction of organic modifier in the mobile phase,
a, and g are solute/stationary phase specific parameters. Once the
system is calibrated for a suitable homologous series, e.g. n-alkyl-
benzenes, the values of a,, a; and p are assumed fixed. If prediction
of the retention of a member of a homologous series is wanted, n, 1is
the number of carbon atoms of that member. Only one measurement of
that member is necessary to calculate g, which is solute/stationary
phase specific. If the prediction of an arbitrary solute is at hand,
two measurements of that solute are needed to calculate g and ng,
which is then defined as the "carbon equivalent" of the solute.
Modifications to incorporate ternary mixtures are reported. The
formula is adapted to predict selectivity wvalues (a values) of a
solute relative to toluene. This allows the prediction of capacity
factors at other stationary phases with the use of the measured
capacity factor of toluene. The mean relative deviation of the
predicted k from the experimental values was between 7 and 10% for a
number of six test compounds on nine stationary phases.

Several comments are appropriate. The above mentioned formula is
obtained after a series of linear approximations of a complicated
function F(n,,x) describing the dependence of log k on n, and x. This
linear approximation holds for x values greater than 0.4. For the
organic modifier tetrahydrofuran such a linearisation fails!®. If the
prediction of the k of a solute is wanted, two measurements are
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needed in Jandera's approach. It is questionable whether his approach
is better than a simple linear approximation between the measured
log k values as is used in the area of mobile phase optimization?.
Closer examination of the formula used by Jandera, shows that this
formula resembles a bilinear model: as+a;n, and q depend only on the
solute/stationary phase whereas 1-px and x depend only on the mobile
phase. The influence of the mobile phase composition and the solute/
stationary phase combination on log k is separated and combined in
linear parts. As such the background of the formula becomes clear: it
is a bilinear approximation of the complicated function F. Whether
Jandera's approach is better than a direct bilinear approximation of
this function F with the use of principal component- or factor
analysis!®: 20 is questionable.

The use of factor analysis for the prediction of retention has
shown its wutility in gas-chromatography?! 22 and reversed-phase
chromatography?®. This latter study uses a small (3x4) matrix of
retention values as a training set. With the use of three retention
values of the compound of interest, the retention values of that
compound at the other mobile phase compositions can be predicted. An
average relative prediction error in k of 5% is reported. Note that
the data used to validate the procedure are chosen from the same set
as the training set. A real independent test set is, therefore, not
available and the results may be too optimistic.

An analogous prediction scheme as Jandera is provided by Jinno
et al.?* to predict the retention of PTH amino-acids. The retention
of the amino-acids is predicted with linear models based on a solu-
bility parameter R, the column temperature and the fraction of
organic modifier in the mobile phase. The use of a parameter R is
based on ideas current in the area of quantitative structure reten-
tion relationships?5, The developed models can be used to optimize a
separation. :
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Chapter 6 The stationary phase

6.1 Properties of reversed-phase stationary phases

Most reversed-phase materials are based on silica. The structure of
this silica substrate and its influence on retention characteristics
has received much attention?%7 3%, The modification of the silica
substrate in order to obtain the reversed-phase material is performed
by silanisation of the silica. This is achieved by a reaction of the
silanol groups at the surface of the bare silica with chlorosilanes
or alkoxysilanes®!. Groups of different functionalities can be bonded
covalently to the silica surface, resulting in different types of
stationary phases. Jones®? has reported a study in which 21 variables
are screened with respect to their influence on the silanisation
process, using a Plackett-Burman design. A three level Plackett-
Burman design was used thereafter to investigate in detail six
variables®3®. This illustrates the complexity of the silanisation
process, especially because Jones only investigated the dependence of
carbon weight percentage on the 21 variables.

Apart from differences between the silica substrate material, the
complicated silanisation process causes non-reproducible differences
between stationary phases of the same type. Not only stationary
phases of different brands differ®* %% but even different batches of
stationary phases from the same make®’ *% differ non-reproducibly.
The bad reproducibility of retention values, due to changing station-
ary phases, is especially troublesome in the area of mobile phase
optimization®?l.

Due to sterical hindrance not every silanol group at the surface of
the silica substrate reacts with the silanisation reagent, so that
about 50% of the silanol groups is left unreacted®®. One of the
differences between stationary phases of the same type (i.e. with the
same functional group attached to the silica surface) is caused by
differences in amount and distribution of the free silanol
groups3?: 42745 This leads to a dual retention mechanism, not only
hydrophobic interactions are important for the retention of a solute,
but also the silanophilic (specific) interactions‘®. Obviously, this
dual retention mechanism can be used to enhance selectivity*’-*%. On
the other hand, however, the retention behaviour of basic solutes 1is
hampered by the free silanol groups*® 27,

The elimination of the undesirable influence of free silanol groups
is partly achieved by endcapping. After the silanisation process the
stationary phase is treated with, e.g., trimethylchlorosilane that
reacts with the free silanol groups®®:3!. Not all free silanol
groups, however, are bonded to the endcapping reagent. Two new types
of silane modified silica have been manufactured recently®?, which
attempt to shield the free silanol groups by either attaching a
monofunctional silane with a bulky group to the silica surface or
bonding of bidendate silanes to the silica surface.
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One of the problems encountered in reversed-phase chromatographic
separations 1is the deterioration of the stationary phase mater-
1al1%%755, Retention values change due to ageing of the stationary
phase material. A mobile phase optimization procedure performed on a
fresh stationary phase is not easily updated if the column deteri-
orates.

The influence of the stationary phase on the retention of a solute
depends on the mobile phase composition®®” 7%, Therefore, the influ-
ence of the stationary phase and the mobile phase on the retention of
a solute is difficult to entangle. Various types of stationary phases
(i.e. modified with groups of different functionalities) show dif-
ferent behaviour with respect to the retention of a solute®° 82, This
leads to different selectivities which can be used to achieve a
separation between a set of solutes. The selectivity of the station-
ary phase can also be changed by mixing different silylating
reagents®®, so that the stationary phase consists of structure
elements of different types. In fact, the endcapping procedure is a
special example of such a mixed stationary phase®*.

6.2 Classification and characterization of reversed-phase material

Cluster analysis and principal component analysis (PCA) were used
by Delaney et al.®5 to classify nine octadecyl stationary phases. Out
of a set of ten benzene-derivatives, the solutes methylparaben,
phenol and benzoic acid were found to contain the most information
with regard to the differences between the stationary phases. Only
one eluent composition (a binary water/acetonitrile mixture) was
involved in the PCA calculations. Conclusions with regard to either
other mobile phase systems or specific contributions of stationary/
mobile phase combinations are, therefore, not available. With the use
of linear discriminant analysis, Welsch et al.%% found that the log k
value of aniline, the log k value of butyrophenone and the asymmetry
factor (a measure of peak asymmetry) of benzylalcohol were able to
reproduce clusters of different kinds of stationary phase materials
which were previously discovered with the use of cluster analysis,
All measurements were performed with n-heptane as eluent, in order to
find solutes sensitive to free silanol groups.

Antle et al.®7:5% define the concepts "strength" and "selectivity"
of columns analogous to mobile phase solvents®®. The column strength
parameter or effective phase ratio, J, differs between reversed-phase
columns and leads to corresponding shifts in retention for all
solutes on a given column (at the same mobile phase composition).
Column polarity can be measured by a parameter P, which further
characterizes column selectivity. With the use of a set of benzene
derivatives, estimates of J and P are found for six stationary phases
of different types.

In a series of papers multivariate analysis is used
to study the selectivity of chalcones and other test solutes. In the

70-73,48,74-75
b
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first study’®, correspondence factor analysis (CFA, a version of PCA
designed for nominal scaled variables’®) is used to analyze a data
set consisting of capacity factors of 53 chalcones, measured on four
stationary phases of different types at the same mobile phase com-
position. The first axis of the CFA can be associated with the
hydrophobicity of the compounds and stationary phases, the second
axis describes specific interactions. In the fifth study*®, the
selectivity of 22 chalcone configuration isomers on 23 reversed-phase
packings are analysed with PCA. The scores on the first two principal
components show clearly three different groups of stationary phases:
octadecylsilyl endcapped phases, octadecylsilyl uncapped or partially
capped phases and trimethyl, C;, G4, Phenyl, CN stationary phases. An
interesting conclusion is that the selectivity seems to increase with
increasing silanol group accessibility. In the sixth and seventh
study’*+7%, a distance metric (based on CFA) is defined that measures
the differences 1in selectivity of fourteen octadecyl stationary
phases, with respect to 63 compounds (chalcones and benzene deriv-
atives). An attempt is made to estimate the hydrophobic- and non-
hydrophobic part of these differences with the purpose to design a
hydrophobicity scale for RP-HPLC packings. Packing characteristics
governing selectivity are the carbon loading, the nature of the
organic ligand and the accessibility of the silanol groups. The
source of the silica gel, the shape of the silica and the type of
organic layer do not have a significant influence on selectivity.

6.3 Simultanecus optimization of stationary- and mcobile phase

A very straightforward strategy to optimize both stationary- and
mobile phase is given by Lin’’. Initially, the solutes were eluted on
four stationary phases, a methyl- octyl- phenyl- and a cyano modified
stationary phase, at varying binary mobile phase mixtures (water/me-
thanol). Two stationary phases showed promising selectivity towards
the test solutes and were tested further with water/acetonitrile and
water/tetrahydrofuran mixtures, where the content of the organic
modifier was varied from 10 to 50%. The best combination was chosen.

A strategy for the simultaneous optimization of stationary- and
mobile phase is presented by Glajch et al.’8 7%, Three stationary
phases of different types - Cz, CN, Phenyl - were incorporated in an
earlier developed strategy for mobile phase optimization®®. A com-
plete mobile phase optimization scheme was performed for each type of
_stationary phase. Mcdels were made to describe the influence of the
mobile phase on the k values and resolution. The three stationary
phases were treated as mixture variables, the k values of the solutes
were assumed to depend linearly on the amount of stationary phase of
a specific type in the column. With the use of this assumption and
the models mentioned above, a grid search can be performed to scan
all possible stationary/mobile phase combinations. Several comments
are appropriate. First, the assumption of linearity is question-
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able®*. This is also experimentally verified by Glajch and non-linear
effects are detected. Second, not all solutes have to be measured on
each stationary phase, this will be shown in Part III of this thesis.
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Chapter 7 Calibration of reversed-phase chromatographic systems

7.1 Definition of calibration of a chromatographic system

The first step in calibration of a chromatographic system is the
measurement of retention values of specific compounds (standards) on
that system, with a specific purpose. The second step depends on the
goal of calibration.

The goal of calibration can be to obtain a "measurement-system
independent” retention value of a solute, measured on a new system.
The second step then comprises the correction of the retention value
of that solute, using the standards measured on the new system. This
correction is particularly useful in the area of identification of
unknown compounds with their retention values.

Another goal of calibration is the transfer of the retention value
of a solute on one system to another system. The second step then
comprises the prediction of that retention value on the new system,
with the use of measured standards on that new system. This goal 1is
particularly valuable in the area of mobile phase optimization where
an optimal eluent composition must be wupdated if columns*! are
changed or if a column is deteriorated.

7.2 Calibration in gas-liquid-, paper- and thin-layer chromatography

A widespread used calibration system in gas-liquid chromatography
(GLC) 1is the retention index system developed by Kovats®!. These
indices are based on n-alkanes as reference substances. The purpose
of the correction of the retention value of a specific compound (by
calculating its index) is to make that retention value less dependent
on measurement conditions. This system is based on the linear rela-
tionship between the logarithm of the net retention times of the n-
alkanes and the number of carbon atoms in the molecules. By defini-
tion, each homolog in the n-alkane series C H,,,, receives the
retention index RI=100n, so that fixed reference points are obtained.
The retention index RI(A) of a compound A can then be obtained from a
simple graph as shown in Figure II.1.

For use in paper-chromatography (PC) Galanos and Kapoulas®? de-
veloped a method based on two reference compounds and the calculation
of the corrected R; values (Ry(c)) by a linear regression:

Ry(c) = aR¢ + b (11.2)
where a and b are constants obtained from the calibration of the two
measured R; values of the reference compounds against tabulated

values. These tabulated values are averages of repeated measurements
of the reference compounds under controlled conditions.
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Figure II.1. Kovats indices. Log t(4) is the log net retention time
of solute A. RI(A) is the retention index of solute A.
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Figure II.2. Corrected R, in TLC. RY(1) to RY(5) are the reference
Ry values of the standards. RE (1) to R}(5) are the measured Ry values
of the standards. The measured Ry value of solute A is R} (A), whereas
the corrected R; value of A is RS (A).

The same ideas used in PC are applied to thin-layer chromatography
(TLC). Moffat®3 describes a procedure for TLC and advises four or
five standards. The correction method is graphically depicted in
Figure II.2. The reference R; values of the standards (on the X-axis)
are plotted against the measured Ry, wvalues (on the Y-axis). The
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reference values of the standards can be measurements made in one
particular laboratory®* or average values of several laboratories®?.
The corrected R, value of a compound A is found by linear interpola-
tion, as showed in Figure II.2. More than two standards are needed,
because curvature may be present in the reference versus measured R
values of the standards.

7.3 Calibration in reversed-phase chromatography (RP-HPIC) with
retention indices

A review of the use of retention indices (RI) in RP-HPLC until 1987
is given by Smith®®. Some results are summarized and extensions are
given. The idea of using retention indices in RP-HPLC was introduced
by Baker and Ma®®. They proposed to use a homologous series of 2-keto
alkanes. The method of calculating the RI of a compound A is depicted
in Figure II1.3. By definition, the retention index of a given 2-keto
alkane standard is equal to 100 times the number of carbon atoms in
that compound. Note that a non-linear relationship between the log k-
and RI-values of the homologs is approximated by linear parts. The
question is whether this approximation should be used or a curve fit
procedure to estimate the relationship between log k and RI. The
stationary phases tested were a octadecyl (ODS)- and a cyano (CN)
bonded phase. The mobile phase comprised a mixture of 0.025 M NaH,PO,
aqueous solution and varying fractions of methanol (MeOH) or acetoni-
trile (ACN). Especially, the log k versus RI plot of the homologs
with the combination of the CN phase and ACN containing eluent was
curved. A number of eight different drugs was chosen as test com-
pounds. From the combination of the ODS phase and the MeOH/NaH, PO,
mobile phase with varying methanol content (from 20-90% MeOH), the
following was concluded: the RI values of the drugs decreased on
average 18 units for each 10% increase in the methanol content of the
mobile phase (The RI values of the drugs ranged from 230 to 870 RI
units, approximately). This indicates that the RI values cannot be
considered independent of the percentage MeOH in the mixture. The
stability of a RI, under varying conditions, depends on the test
compound, the stationary phase, the mobile phase composition and the
particular combinations of these three. If the percentage of organic
modifier is changed in the four measurement conditions - combinations
of the ODS and CN phase with the two kinds of mobile phases - it
appears that the RI values of acetophenone remains stable whereas the
RI values of androsterone vary. Especially the combination of andro-
sterone with the CN phase and ACN is unstable. This points to spe-
cific effects -interactions- between modifier, stationary phase and
solute which makes calibration with retention indices based on a
homologous series troublesome. Baker and Ma concluded that the
retention index of a given drug does not markedly change with changes
in solvent composition, solvent type and column type. No clear def-
inition of "markedly" is given, so conclusions are not easy to draw.
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Figure II.3. Retention indices in RP-HPLC. Log k(A) is the logarithm
of the capacity factor of a solute A, RI(A) is the calculated reten-
tion index of A.

Smith®’ proposed a retention index scale using alkylarylketones. He
criticised the use of the 2-keto alkanes, because they have a limited
absorbance at 254 nm and are not widely available. As with the 2-keto
alkanes, the RI of the alkylarylketones are by definition 100 times
the carbon number of that standard. Three to seven alkylarylketones
are used to calculate the parameters a and b in log k = aRI + b. The
RI of a specific test compound follows from its k value and applica-
tion of the above mentioned equation with known a and b. Good linear
relationships between carbon number (times 100) and log k of the
alkylarylketones were found by Smith, on an octadecyl stationary
phase at different binary water/methanol mixtures. Eight benzene
derivatives were used as test compounds and eluted with mobile phases
containing varying percentages of MeOH (on an ODS column). The RI
values showed a small but general increase with increasing fractions
of MeOH in the solvent. The average deviation of the RI values of
these test compounds with a 10% change of the percentage of MeOH, was
13 RT units (the RI values ranged from 500 to 1100, approximately).
Again it is not easy to derive conclusions. Yet the alkylarylketones
seem to perform slightly better than the 2-keto alkanes. Experiments
performed on three different stationary phases (SAS-Hypersil, Cyyp-
Magnusil and Spherisorb-Phenyl) combined with the experiments on the
ODS phase, showed that the RI values of the eight test compounds,
measured at a constant mobile phase composition, varied considerably.

The effect of the eluent on the retention of barbiturates, using
alkylarylketones as standards, was investigated by Smith et al.88® The
stationary phase is always the same ODS column. He concluded the
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following. The repeatability (measurements taken on different days)
is better in terms of RI than k values. In a binary system - metha-
nol/buffer pH 8.5 - the RI values of the barbiturates showed much
smaller changes with varying fractions of methanol content than the
capacity factors. Yet the average deviation of the RI values of the
barbiturates with a 10% change of the percentage of methanol, was 26
RI wunits, whereas the analog value of the column test compounds-
nitrobenzene, 2-phenylethanol, p-cresol, toluene, n-methylaniline-
was 12 RI wunits. This last number is comparable with the earlier
reported value®® which was 13. For the RI values of the barbiturates
the average deviation was much higher. According to Smith the reason
for these higher deviations are twofold. First, the barbiturates are
partly ionised under the changing apparent pH values of the eluent
composition. The second reason is the difference in polarity of the
barbiturates compared to the ketones. The RI values of the barbitu-
rates showed significant changes with varying temperature, smaller
changes however than the k values. The effect of the eluent pH on the
RI values of the barbiturates is very strong, which prompts Smith to
say that "for comparison purposes the pH of the eluent would probably
be the principal factor that would need to be reproducible control-
led".

The effect of the stationary phase on the RI values of barbiturates
was also studied by Smith et al.®’. The variation in retention values
of the barbiturates on ODS columns of different batches was compared
with the variation of the retention values on ODS columns of the same
batch. It appeared that the k values had a slightly lower variation
on the ODS columns of different batches than on the ODS columns of
the same batch. The reverse was true for the RI values. This suggests
small differences in selectivity between the batches. The variations
in RI, on the ODS columns of different batches, were generally
greater for the barbiturates than for the column test compounds (the
same test compounds were used as in (88)). Different brands of ODS
material showed less wvariation in RI values than k values of the
barbiturates, but still the RI values are not as reproducible as on a
single batch. The general conclusion is that RI values are more
reliable than k values when comparing results obtained from different
column packing materials and/or laboratories. The RI values are,
however, still sensitive to column selectivity differences.

In another study®®, Smith et al. investigated the effect of differ-
ent factors on the RI values of local anaesthetic drugs, again using
the alkylarylketone scale. On an ODS column with an eluent containing
methanol, the average deviation of the RI values of the local anaes-
thetic drugs with a 10% change of MeOH was 24. For the column test
compounds - toluene, mnitrobenzene, 2-phenylethanol, p-cresol - this
number was 17. Although Smith concluded that the RI is virtually
unaffected by changes in percentage of methancl, a complete indepen-
dence is not present. The effect of the eluent pH is slightly visible
in the RI values of the local anaesthetics, but not in the RI values
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of the column test compounds. The temperature of the column has
influence and this prompts Smith to say that "running the analysis at
a specified temperature will be an important requirement to obtain
reproducible laboratory results”. Comparing three different column
packing materials showed large variation in k values of the local
anaesthetics. If the results were expressed in RI units the variation
was less, but still significant.

The use of the alkylarylketone scale was investigated in acetoni-
trile- or tetrahydrofuran containing binary eluents®?. Good linear
relationships were found between carbon number (times 100) and log k
value of the homologs when changing the percentage acetonitrile in
the binary eluent (acetonitrile-phosphate buffer pH 7.0). When
changing the percentage of acetonitrile, the largest deviations in RI
were found for the more polar test compounds, p-cresol and 2-phenyl-
ethanol. The average deviation, with a 10% percent change in acetoni-
trile, was 10 in RI units. Good linear relationships were also found
for the log k values of the homologs and their carbon number in THF
containing eluents (water-THF). The RI wvalues, however, were not
stable: the RI values of the relatively non-polar compound (toluene)
increased steadily with increasing fractions of THF whereas for polar
analytes, such as p-cresol, the values decreased markedly. The values
of the retention indices in the THF containing eluents, particularly
for p-cresol, were significant different from the acetonitrile
containing eluent. In comparison with an earlier study®!, it appears
that much smaller differences were observed between different makes
of column packing material with THF containing eluents than with
acetonitrile- or methanol containing eluents. Thus for THF containing
eluents the RI values depend on the percentage modifier, but are more
independent of the make of the ODS material.

In a study’* on retention reproducibility of thiazide diuretics
and related drugs, the influence of mobile phase properties (percent-
age acetonitrile, pH, proportion of acetic acid), temperature and
stationary phase on RI values was established. The conclusion is that
the proportion of acetonitrile in the mobile phase, the column
temperature and the brand of column packing material are important. A
common brand of packing material should be adopted for interlabor-
atory comparisons.

Bogusz and Aderjan proposed a retention index scale based on
l-nitroalkanes. They criticised the use of alkylarylketones because
the first reference compound on this scale (acetophenone) elutes
comparatively late. The calculation of index values for fast eluting
compounds is difficult, due to severe extrapolation on the index

92

scale. The relationship between log k of the l-nitroalkanes and the
carbon number of those standards is linear from the second homologue.
The RI wvalues of some of the tested drugs - caffeine, barbital,

paracetamol, theophylline - decrease sharply with increasing acetoni-
trile percentage in the binary mobile phase. The RI values of the
column test compounds (toluene, methylbenzoate, methylaniline)
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remained virtually constant when changing the acetonitrile percent-
age. The same column test compounds were used by Smith in testing the
alkylarylketones. Bogusz and Aderjan conclude that the behaviour of
these column test compounds is virtually identical on both scales
(alkylarylketones and l-nitroalkanes). The first two homologs of the
l-nitroalkane scale, however, elute so early that it is possible to
calculate the RI values of early eluting drugs.

A full comparison between the different scales has to be made,
investigating the specific advantages of the particular homologous
series. To make such a comparison a yardstick is necessary to evalu-
ate the power of the different homologous series to correct retention
values. Such a yardstick will be presented later on.

7.4 Calibration with corrected- and relative capacity factors or
corrected retention index values in RP-HPLC

The notions of relative- and corrected capacity factors are discus-
sed firstly., The relative capacity factor of a solute A is defined as
k,/ks, where S is the standard compound used to calibrate. The idea
of corrected capacity factors is borrowed from TLC. Reference k
values are assigned to, say, four standards. These values may be mean
capacity factors under controlled conditions. These reference values
are plotted against the measured values and a least squares routine
is used to estimate the best fitting straight line. A measured
capacity factor of solute A is corrected with this equation to obtain
a corrected k value, see Figure II.4.

Gill®3 investigated the merits of reporting retention values in RI
units, relative k values and corrected k values for interlaboratory
comparison. On a study with barbiturates, measured under controlled
conditions in ten laboratories, he used the discrimination number
(DN) as yardstick to compare the different options to report reten-
tion. The discrimination number is defined as the number of retention
windows, each two standard deviations wide, which can be fitted into
a defined chromatographic range. A large DN means that the chromato-
graphic system, with the adopted option to report retention, has a
large discriminating power towards the identification of a class of
compounds. Gill assumed a predefined range of k values from 1 to 25
to calculate the discrimination numbers of the different options for
reporting the retention of five barbiturates, and concluded the
following. The corrected k values, based on four barbiturates as
standards, gave the highest DN, which was 64. The relative k values,
based on one barbiturate as a standard, were second best with a DN
of 55. Relative retention times, analogously defined as relative k,
were third best (DN=44). The use of RI values, based on the alkyl-
arylketones, gave a DN of 34. The use of either k values or retention
times for reporting retention gave a DN of, respectively, 16 and 10.
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Figure II.4. Corrected k in RP-HPLC. The k_(1) to k., (4) values are
reference k values of the standards, k,(1) to k,(4) are measured
values of the standards. The measured capacity factor of solute A,
k, (A), is corrected with outcome k., (A).

It is clear that corrections using standards of a similar nature as
the test solutes, the barbiturates, give the best results. According
to Gill, this is because of the fact that the alkylarylketones and
barbiturates respond differently to small variations in chromato-
graphic conditions. The use of more than one of such a standard is
advantageous.

In the study on retention reproducibility of 1local anaesthetic
drugs®®, Smith calculated relative capacity factors, using one of the
local anaesthetics as a standard. His conclusion was that this
correction cannot compensate for mobile phase properties (percentage
methanol in a binary mobile phase, pH), temperature and different
column packing materials.

In the study®‘ on retention reproducibility of thiazide diuretics,
Smith evaluated the use of relative capacity factors, using one of
the thiazide diuretics as standard. He concluded that the proportion
of acetonitrile in the (binary) mobile phase, the column temperature
and the brand of column packing material are important factors
influencing the reproducibility. It is important to use a relative
method for reporting retention, such as relative capacity factors or
retention indices, but there is no clear best method. For correcting
differences due to different column materials the relative capacity
factors have some advantage, but still significant differences are
present. If relative capacity factors are used, those solutes with a
capacity factor in the same order of magnitude as the standard, are
corrected best.
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Bogusz®* proposed the use of corrected retention indices. As a

first step the RI values of all solutes (barbiturates) relative to
the alkylarylketone scale are calculated. Second, three of the
barbiturates (located in the low, middle and high RI range) are
chosen as correction standards. A plot is made of listed versus
measured RI values of those standards. The RI values of the other
barbiturates are corrected with 1linear interpolation, see
Figure II.2. He concluded that the corrected RI values show less
variation between six different ODS-silica columns than the ordinary
RI values. Bogusz stated that the retention behaviour of chemically
similar substances on different ODS columns is highly correlated. The
method of corrected RI values may, therefore, enable the comparison
of retention data of chemically similar compounds obtained on dif-
ferent ODS columns in different laboratories.

7.5 Some conclusions on calibration in RP-HPIC

The difference between the use of retention indices based on
homologs in GC and RP-HPLC, finds its root in different retention
mechanisms. While the retention mechanism in GC can be understood, to
a high degree, as a partition mechanism, this 1s not true for
RP-HPLC. The retention process in RP-HPLC is much less defined, and
difficult to describe. The RI values cannot correct completely for
the specific interactions between solute, stationary phase and
modifier. The RI values are still sensitive to column selectivity
differences, to the kind of organic modifier and to other properties
of the mobile phase.

A disadvantage of the RI values, the inability to correct retention
values of compounds which are chemically not related to the used
homologs, is partly solved by using relative capacity factors. A
standard is chosen with a chemical structure similar to the compounds
which have to be corrected. In this case some improvement is reported
compared to the use of RI values.

The use of more than one standard compound is more promising. On
the notion that there are three principal sample-solvent interac-
tions®3 (electron donating, electron withdrawing and dipole) Smith®®
argues that three test compounds, together with the RI standards to
test polarity effects, should be sufficient to characterise any
reversed-phase chromatographic system. Although the use of corrected
capacity factors based on more than one standard compound seems to be
advantageous, the question which standards should be used is still
open. The RI values of the column test compounds (toluene, 2-phenyl-
ethanol, p-cresol and nitrobenzene) showed less variation, due to
changing stationary/mobile phase conditions, than the RI values of
barbiturates®® and local anaesthetics®®. The optimality of the choice
of these test compounds is questionable in reflecting the selective
differences between the stationary/mobile phase combinations with
respect to the compounds of interest: the barbiturates and local
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anaesthetics. Note that the calibration along the lines suggested by
Smith®® and performed by Bogusz®‘ requires the measurement of at
least seven calibration standards (four homologs and three barbitu-
rates). Besides, some criticism on Snyders solvent selectivity
concept is reported!?:1?, Perhaps a more sound classification scheme
for solvents is given by Chastrette®’ .
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Chapter 8 New calibration strategies aimed at prediction of reten-
tion on new chromatographic systems

8.1 Two-way approaches
8.1.1 Strategies based on one stationary phase in the training set

Suppose capacity factors are available of r solutes at m mobile
phase compositions on one stationary phase. This data set can be
arranged conveniently in a data matrix X with m rows and r columns.
As was stressed in Section 2.1, homoscedasticity (the measurement
error of a variable is constant) is a convenient property of the
variables if linear models are applied. Assuming that the relative
error of a measured capacity factor is independent of the mobile
phase composition, the specific solute and the stationary phase, a
logarithmic transformation of k gives In k values with a constant
variance?® 100  This assumption will be verified in forthcoming cases
(Section 9.5 and 14.5). It is assumed that X consists of In k values
of the solutes.

Two new approaches are introduced. The first approach takes the
solutes as variables, whereas the second approach takes the mobile
phase compositions as variables.

The first approach is depicted in Figure II.5. The measurements of
the markers are gathered in X[M], the measurements of the non-markers
are gathered in X[NM]. The markers are selected with one of the
techniques of Chapter 1. Note that the markers in this case only
represent differences due to the mobile phase, because measurements
on other stationary phases are mnot available. For illustrative
purposes a number of four markers is assumed to be sufficient.
Different modelspecifications relating the X[M]-block to the X[NM]-
block are possible. Ln k values of each non-marker (in the X[NM]-
block) can be related to the measurements of the markers (in the
X[M]-block) with a linear equation (for the sake of simplicity, an
integer indexing the non-marker is left out)

In ky = By + B MLy + ﬁzsz + BM35 + BMay + € (I1.3)

where j indicates the mobile phase composition, M1, to M4; are the
In k values of the markers measured at the jth mobile phase composi-
tion, €; is an error term. The parameters B, to B, have to be estim-
ated with one of the methods mentioned in Chapters 2 and 3. If
measurements of the markers on a new stationary phase at one specific
mobile phase composition (not necessarily one of the mobile phase
compositions used on the first stationary phase) are available, the
In k value of the non-marker can be predicted at that mobile phase
composition on the new stationary phase. For each non-marker a
separate model is build and can be used to predict on the new sta-
tionary phase. This can be done for every mobile phase composition,
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provided that the measurements of the markers at this mobile phase
composition are available. It is also possible to relate all 1ln k
values in X[NM] directly to X[M], with the use of, e.g., partial
least squares (see Section 3.4).

| Sol. a 5 Sol. |6
m.ph. |
S.Ph. | " X [M] — X [NM]
i
it
m.ph.9
r— == - - - haun |
m.ph. | | [
S.Ph. ow " X[M] - | X[NM] |
" new f new I
"
m.ph.9 L — — — -
Figure II.5. One stationary phase in the training set, solutes

treated as variables. In X[M], the In k values of the four markers on
the stationary phase (S.Ph.) at the nine mobile phases (m.ph.) are
gathered. The In k values of the non-markers, at the same measurement
conditions as the markers, are gathered in X[NM].

Summarizing this approach, the relationship between the retention
of the markers and non-markers on the first stationary phase 1s
modelled. The same relationship 1is assumed to hold between the
markers and non-markers on the new stationary phase.

The second approach is depicted in Figure II.6. The matrix X (rxzm)
is the transpose of the above mentioned X, for the sake of simplicity
the same name is used. The mobile phase compositions are treated as
variables. When applying this strategy, more markers have to be
chosen, because the solutes are treated as objects. A number of five
is minimally needed. These are chosen with the techniques of
Chapter 1 on the basis of the measurements made on the only station-
ary phase. The number of variables in X[M] exceeds the number of
objects, so a projection method like PLS is needed to relate the
X[M]-block to the X[NM]-block. The corresponding model is:

X[M]
X[M]

TP’ + E (I1.4)
TQ' + F (I1.5)

I

new

where T is a (5xg) matrix of scores on the g latent variables (g<5).
P and Q are (mxg) matrices containing the loadings of X[M] and
X[M],.w on the latent variables, respectively. E and F are error
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matrices. In order to build the model, measurements of the 1In k
values of the markers have to be available on the new stationary
phase at some mobile phase compositions (e.g. 7) not necessarily the
same as used on the initial stationary phase. Prediction of 1ln k
values of the non-markers on the new stationary phase are obtained at
the (seven) mobile phase compositions chosen to calibrate that new
stationary phase. This prediction is accomplished with the model and
the measured 1n k values of the non-markers on the original station-
ary phase., Summarizing this approach, the relationship between the
behaviour of the markers on the original and on the new stationary
phase is modelled and used to predict the behaviour of the non-
markers on the new stationary phase.

‘ | -—>M.F’h.9 I ~=M.Ph.
Sol. x [M] —> X [M]
new
5
6 r—-———- 1
I !
! {
I
st X [NM] |==>'  x[nM] |
: ! new |
! I
! I
16 !. _____ __.'
Figure II.6. One stationary phase in the training set, mobile phase
compositions treated as variables. For abbreviations, see
Figure II.5.

The relative merits of both approaches have to be established in
future research. It is, e.g., not clear how the kind of scaling of
the respective matrices effect predicting performance.

It seems that the above mentioned strategies are particularly of
value if the problem of updating the optimal mobile phase composition
on a deteriorating stationary phase is at hand. Only one - the
original - stationary phase is available in the training set, after
using this phase, it has to calibrated again with the use of the
markers.
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8.1.2 Strategies if two to four stationary phases are available in
the training set

For the sake of illustration, suppose that measurements on two
stationary phases are available. This data set can be depicted as in
Figure II1.7. The unfolding of this data set in the direction so that
the mode of the solutes remains intact is shown in Figure II.8. The
solutes are conceived as variables. This was also the case in the
first strategy presented in Subsection 8.1.1, which can be thought of
as a degenerate case of this unfolding. Markers can be selected with
the help of the techniques described in Chapter 1.

9
M.Ph. /,
a
/——o-—o—o—o-——o——o—o-o-o;
° | /o
a °
/ o S L
o - o
/ /
I—— o
S.Ph. 1| o /
7 °
K- o ;7 © = 06 — 0 — 06— 0= 0 — 0 —
S.Ph.2| ,
/
' —Sol. 16
Figure II.7. Training set if measurements on two stationary phases

are available. For abbreviations, see Figure II.5, Sol. 1is the
abbreviation of solute.

The next step is the model-building step and is depicted in Fig-
ure I1.9. The relationship between the 1ln k values of the markers and
the non-markers can be modelled. This model can be used later to
predict the retention of the non-markers on a mnew stationary phase,
at an arbitrary mobile phase composition, provided that the retention
values of the markers at that mobile phase have been measured, see
Figure II.10. The specific form of the model is already explained in
Subsection 8.1.1, see formula (II1.3). An example in the area of the
prediction of retention variability due to batch differences will be
given in Chapter 15.

If measurements on three or four stationary phases are available,
the matrix X can be augmented. The whole procedure remains the same.
An example with three stationary phases in the training set is given
in Chapters 10-12, where an attempt is made to incorporate explicitly
the influence of the mobile phase composition in the model.
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Sol.
1 16
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Figure II.8. Unfolded training set of Figure II.7. For abbrevi-
ations, see Figure II.7.

Sol. Sol.
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m.ph. |
]
S.Ph. 1 "
m.ph.9
+ XM - L X LNM
m.ph. | [ ] [Nm]
s.ph.2 |
"
m.ph.9
Figure II.9. Model if measurements on two stationary phases are

available. For abbreviations, see Figures II.5 and II.7.

Analogous to the second strategy in Subsection 8.1.1, is the
following. The first step is the choice of the markers, this can be
done on a similar way as above, with the use of the matrix in Fig-
ure II.8. Next, the data cube is unfolded in such a way that the
direction of the solutes remains intact. Suppose the 1n k values of
the markers are measured on a new stationary phase, not necessarily
at the same mobile phase compositions as used on the original sta-
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Figure II.10. Predictions for a new stationary phase if measurements
are available on two stationary phases. For abbreviations, see

Figure II.9. The subscript "new" refers to the stationary phase for
which predictions are needed.

tionary phases. The data can be arranged as shown in Figure II.11. A
model is made relating X[M] and X[Ml, .., similar as in Section 8.1.1
(see formulas (II.4) and (II.5)).

S.Ph.l1  S.Ph.2 S.Phenew
e e e et e et
mphed 4w mphSmpht |, mph.S mphady w mph. 7
| :
Sol. x [M] = x M,
5
6 r——-=-"
I |
| |
x [Nm] ' x [NM] !
Sol. - > | e w
! I
i |
| [
16 » .
Figure IT.l1l1. Alternative model if measurements on two stationary

phases are available. For abbreviations, see Figure II.10.
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8.2 Three-way approaches: strategies if more than four stationary
phases are available in the training set

Suppose 1n k values of sixteen solutes are available on five
stationary phases, at nine mobile phase compositions. This data set
can be arranged in a data cube, as shown in Figure II.12. If the
number of stationary phases is large enough, the way is open to use
three-way decompositions to analyse this data cube. Note that this is
impossible if too few stationary phases are available, because the
rank of the data cube would become too low. Two possible alternatives
to decompose this data cube are discussed: the unfold-PCA (and -PLS)
and the PARAFAC solution (see Section 1.6).

1 — Sol. 16

Figure II.12. Training set if measurements on five stationary phases
are available. For abbreviations, see Figure II.7.

8.2.1 The unfold-PCA (and -PLS) solution

For the sake of simplicity, assume that four markers are chosen
which have to be measured at four mobile phase compositions. The
methods to select such combinations are presented in Section 1.6. A
partition of the data cube of Figure II.12 can be made in such a way
that the selected solute/mobile phase combinations are gathered in
X[MaMPh] and the non-selected solute/mobile phase combinations
constitute X[NMaMPh]. Note that the 1ln k values of the markers at the
non-selected mobile phase compositions are also present in X[NMaMPh],
as well as the 1n k values of the non-markers at the selected mobile
phase compositions, because only the 1ln k values of the markers at
the selected mobile phase compositions are present in X[MaMPh]. The
specific arrangement of all 128 (9x16-4x4) combinations in X[NMaMPh]
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is not important, as long as the arrangement is kept constant during
all calculations. If PLS is used to model the relationship between
X[MaMPh] and X[NMaMPh], the respective data cubes are decomposed in a
summation of products of vectors times matrices, see Figure II1.13.

—Sol.
— Sol. Ph
ol 4 M.Ph. i
M.Ph./ /7 [
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S.Ph. | 1 [ l
] | 1 S
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i /— /
- i -
S.Ph.5 4
w Q
P
- - T -7 1
L - = = Ly
“x [NMaMPh] N
N - > e news
X [MaMPB] o
rﬁ Z - S
S.Ph. 1
new VAN v

Figure II.13. Unfold-PLS model. In X[MaMPh] the sixteen selected
combinations of four markers, at four mobile phase compositions are
gathered on all stationary phases. Similarly, the npot selected
marker/mobile phase combinations are gathered in X[NMaMPh]. For
abbreviations, see Figure II.7 and the text.

Considering only one dimension in the PLS model involves the
calculation of t and W: scores and loadings on the first latent
variable of the X[MaMPh]-block and u, Q: scores and loadings on the
first latent variable of the X[NMaMPh]-block (see Section 3.4).

Let the typical element of W be Wy (k=1,...,4;j=1,...,4), where k
is the index of the markers and j the index of the mobile phase
compositions. Measurements (ln k values) made on the new stationary
phase, the sixth, are noted as Kk ;s where k and j are the same as in

Wy ;. Predictions of the retention of other mobile phase/solute
combinations are obtained as follows. First the score of the new
stationary phase on the latent wvariable, tgz, 1is calculated as

tg=X..W"/|w|?, where the notation for three-way arrays is used!®!. In
this particular situation this is t5=2kj(x6kjwkj)/2kjw§j. This score
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can be understood as the least squares solution of

Xgrj = Wrjte T €6k (11.6)

because t6=(w’w)'1w’x, with w=(wy,,...,W,,)' and X=(Kqq1,. . %440
arranged in the same order, and egy; 1s an error term. The X[NMaMPh]
values of the new stationary phase are predicted by calculating tgQ.

If the matrices X[MaMPh] and X[NMaMPh] are unfolded in such a way
that the direction of the stationary phases is left intact, the
result is shown in Figure II.14. Note that the arrangement of the
solutes/mobile phase combinations in X[NMaMPh] is arbitrary as long
as this arrangement is kept the same during the PLS calculations. If
these two matrices are subjected to a mnormal PLS procedure (see
Section 3.4), the result is exactly the same as above'?!. The loading
matrix W becomes a loading vector w, the same w as defined below
formula (II.6). The predictions are obtained according to the above
mentioned scheme. This solution is called, therefore, the unfold-PLS
solution.

Sol./M.Ph. Sol./M.Ph.
171 4/4 | 7 |44
SoPho' p
]
L1 X [Ma mPh] — X [NMa MPh]
] 1
S.Ph.5

[NMa MPh]

S'Ph'new X [Ma Mphinew] - >

Figure II.l4. Unfolding of the data cubes in Figure II.13. For
abbreviations, see Figure II.13.

= - -

I x|

—/
|
|

If more than one dimension in the PLS model is appropriate, the
calculations are straightforward and comparable with the above
sketched ones, see Section 3.4.

8.2.2 The PARAFAC solution
Explanation starts from the same figure as in Section 8.2.1:
Figure 11.12. The data cube is decomposed in a summation of products

of vectors, see Section 1.6, For the sake of simplicity, it is
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assumed that one dimension 1is capable of describing sufficient
variation in X. Let a,b and ¢ be the modes describing, respectively,
the stationary phases, the solutes and the mobile phase compositions.
Suppose that, after rearranging, the selected markers and mobile
phase compositions have loadings b; to b, and c¢c; to c¢,, respectively,
on the first component. A new stationary phase has to be calibrated
by measuring the markers at the selected mobile phase compositions

(the "S.Ph._,.," block of Fig. I1.15). Then ag can be calculated as
the least squares solution of

Kgej = DpCjag + €gy (I1.7)
where k=1,...,4 indexes the markers; j=1,...,4 indexes the selected

mobile phase compositions and €g; 1s an error term. The xg,; values
are the In k outcomes of the measured markers at the selected mobile
phase compositions. Predictions of the not selected solute/mobile
phase combinations can be obtained by xgy;=bycjag, with k,j not equal
to 1,1 ... 4,4 (see Fig. II.15). These b, and o values are available
from the primary decomposition. Note the resemblance between formulas
(IT.6) and (II.7), in both cases the x values are regressed in order
to obtain a new score but the design matrices of the regressions
differ.

— +E

Figure II.15. The PARAFAC model with one component. For abbrevi-
ations, see Figure II.7 and the text.

If a decomposition of X with two components 1s wanted, then
al=(a1'1,...,a1'5), 3«2=(a2,1,'—~,a2,5): b1=(b1,1:""b1,16)’

b2=(b2,1,...,b2'15), cl=(clll,...,c1,g) and cz=(c2'1,...,02'9), with
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the first index indicating the component. Analogous to formula (II1.7)
is:

Kexj = b1k01j316 + bchzja26 + o€gyj (11.8)

where k, j, Xgy; and eg; as in formula (II.7). The coefficients a; ¢
and a, 4 are determined with multiple regression. Predictions of the
not selected solute/mobile phase combinations can be done in a
similar way as above.

For both the unfold-PLS and PARAFAC solution holds that if scaling
the data is performed prior to the decomposition, rescaling of the

predicted values is necessary to obtain predictions in the original
scale.
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PART III CHAPTER 8 EXPERIMENTAL DESIGN

Chapter 9 Experimental desicn

9.1 The choice of the stationary phases

Six stationary phases with varying ligands were chosen to build up
a data set. In order to obtain stationary phases with a similar base
silica structure, all stationary phases consisted of Spherisorb
materials (Phase-Sep). These Spherisorb stationary phases were based
on spherical particles with a mean particle size of 5 um. Obviously,
if different batches of base silica materials are used prior to the
modification of the phases, the idea of a similar base silica has to
be released to some extent.

The six stationary phases were modified with trimethylsilyl bonded
to the silica (Cl); hexylsilyl bonded to the silica, fully capped
(C6); octylsilyl bonded to the silica, fully capped (C8); octadecyl-
silyl bonded to the silica, fully capped (C18); cyanopropylsilyl
bonded to the silica (CN) and phenylsilyl bonded to the silica,
partially capped (PHE).

These six stationary phases were considered diverse enough to
represent different selectivities and to test the strategies men-
tioned in Section 8.2.

9.2 The choice of the mobile phase compositions

In order to develop calibration schemes for reversed-phase high
performance liquid chromatography, relatively simple mobile phase
compositions were selected. The exact compositions are given in
Table III.1. The mobile phase compositions consist of binary and
ternary mixtures of water, methanol and acetonitrile, regularly
spread in the mixture triangle (see Figure 1.11). The compositions
were chosen in such a way that the capacity factors of the test
solutes (see Section 9.3) ranged between one and thirty roughly.
Similar mobile phase compositions were used on all stationary phases.
This was done in order to avoid the problem of non-orthogonality in
the design. This problem is indicated in Chapter 4.

Note that two aspects of a mobile phase composition were incorpor-
ated in this design. First, moving from wml to wm2 the eluent becomes
weaker. The same holds for wal to wa2 and aml to am2. Second, the
kind of organic modifier changes when moving from a water/ methanol
to a water/acetonitrile mixture.

9.3 The choice of the test solutes

Nine test solutes were chosen. These solutes were selected because
of their relatively easy detectability with an UV variable wavelength
detector; their expected reasonable retention behaviour with the
selected mobile phase compositions (Section 9.2) and their frequent
use in other studies on calibration of reversed-phase chromatographic
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systems (Chapter 6).

The nine selected testsolutes were acetophenone (ACP), n-butyl-
4-aminobenzoate (BAB), ethyl-4-hydroxybenzoate (EHB), paracetamol
(PAR), 2-phenylethanol (PE), toluene (TOL), mn-propyl-4-hydroxy-
benzoate (PHB), ethyl-4-aminobenzoate (EAB) and methyl-4-hydroxy-
benzoate (MHB).

9.4 Experimental details

Methanol (MeOH) was of analytical grade and acetonitrile (ACN) was
of chromatographic quality (both from Merck). Distilled water was
used throughout. All test solutes were of pharmaceutical quality and
obtained from various firms. The column dimensions were 150mm x 4.6mm
(length x i.d.).

The instrument used was a Waters 6000A HPLC-pump fitted with a
Kratos Spectroflow 757 variable wavelength detector (operating at a
wavelength of 205 nm), an injection wvalve (Valco) fitted with a
20 p-liter loop and an Omniscribe Recorder (Housten Instrument).

The dead time was measured as the retention time of a 5 u-molar
sodiumnitrate solution (in water). It ranged from 60 seconds for the
C6 column to 68 seconds for the Cl and CN columns. The flow rate was
1.0 ml/min. The concentrations of the injected solutes were 0.02
mg/ml, except for toluene (0.04 mg/ml) and paracetamol (0.0l mg/ml).

Data acquisition and integration was performed by an Autolab System
IVb Chromatography Data Analyzer (Spectra-Physics). The PLS and OLS
calculations were performed on an Olivetti M-24 Personal Computer
using the programs SIMCA (Sepanova, Sweden) and CLAS (University
Centre for Pharmacy, The Netherlands). The selection of the markers
was done with software written in Fortran V on the Cyber 170/760
computer of CDC at the Groningen University Computing Centre and on
an Olivetti M-24 computer. The ridge and Stein calculations were
performed on an Olivetti computer with software written in Fortran V.
The PARAFAC calculations were performed on a Cyber with existing
software developed by Harshman (see Section 1.6).

9.5 Reproducibility and Repeatability

The measurements were performed consecutively on each stationary
phase so that, for practical reasons, no randomized design was used.
On each stationary phase measurements started with the test mixture
wm2, which consisted of a binary water/methanol (0.55/0.45 v/v)
mixture. Then the other mobile phases were used. At the end of the
series of measurements on a specific stationary phase, each solute
was chromatographed again at the wm2 test mixture. The retention
measurement of each solute was immediately repeated at each mobile
phase mixture for three times. The repeatability of the retention of
a solute at a specific stationary/mobile phase combination is defined
as the standard deviation of those three repeated measurements. This
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repeatability can be defined in terms of k values or 1n k values. The
reproducibility of the retention of a solute on a stationary phase at
the wm? mixture is defined as the standard deviation of the two mean
k values (or mean Iln k values) that result from the three repeated
measurements at mixture wm2 at the beginning and at the end of the
series of measurements. It should be emphasized that this method for
estimating the reproducibility is biased upwards. The change of a
stationary phase is at its maximum between the beginning and the end
of the series of measurements thereby yielding an estimate of the
reproducibility which is too high. Actually, reproducibility defined
in the way above is probably rather a yardstick of drift in the
measurements than an indication of differences due to random causes.
Another aspect that should be pointed out in this context is that the
dependence of the reproducibility on mobile phase composition is not
known and cannot be estimated with this experimental set-up.

In Table III.1 the capacity factors of the test solutes at the
mobile phase compositions are given. Table III.2 states the reprodu-
cibility results in terms of k values. For every solute on each
stationary phase, the mean k (or mean ln k) was higher at the start
of the series than at the end of it, which indicates drift. It can be
observed that reproducibility depends on the solute (a slow eluting
compound has a worse reproducibility than a fast eluting one) and on
the stationary phase.

The repeatability of the measurements (Table I11.3) is much better
than the reproducibility. This can be seen by comparing the standard
deviations in the wm2 rows in Table III.3 with the corresponding rows
in Table III.2. A pattern emerges from Table III.3. When paired
mobile phase mixtures, that differ only in elution strength (wml and
wm2, wal and wa2, aml and am2), are compared, the strongest mixture
(the "1" mixtures) generally has the best repeatability. This pattern
breaks down for the CN phase and is somewhat less clear for the PHE
phase, so that these phases can be considered as exceptions. A
second, though vague, pattern is the dependence of the repeatability
on the solute: a slower eluting compound has a worse repeatability.

If the capacity factor of a specific solute measured at different
stationary/mobile phase combinations participates in the model-
building proces, a constant absolute error is assumed. The error in
the capacity factor depends on the mobile phase as was demonstrated
earlier. This dependence can be removed by assuming a constant
relative error in the capacity factor. By using a logarithmic trans-
formation the constant relative error is transformed in an (almost)
constant absolute error, see Balke!, Weyland? and Box and Draper®. In
Table III.4 the logarithms (base e logarithms) of the k values of the
solutes are given. The corresponding reproducibilities and repeatabi-
lities are given in the Tables III.5 and I11.6. The reproducibilities
(Table I1II.5) differ less than in Table III.2. The repeatabilities
(Table III.6) show less dependence on the elution strength than in
Table III.3, although complete dependence has mnot been removed.
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Assuming that repeatability, in terms of 1n k values, does not depend
on the elution strength, the pooled standard deviations can be calcu-
lated for each solute on each stationary phase. These values are
shown in Table II1.6 and indicate no clear dependence on the station-
ary phase or the solute. The overall pooled repeatability is 0.013.
It can, therefore, be concluded that by applying a logarithmic
transformation a more homogeneous error structure will be obtained.

Another argument for using a logarithmic transformation can be
found in Table III.7. In that table the moments of the retention
measurements of the solutes measured in k values and in In k values
are compared. A normal distribution, for each solute, is approximated
more when 1ln k values instead of k values are used, because a smaller
skewness is obtained for the In k values. Ideally, in case of perfect
normality, the skewness is zero. The kurtosis, ideally zero for the
normal case, is slightly worse however for the 1ln k values. 1In spite
of the slightly worse kurtosis for the 1In k values, a logarithmic
transformation is performed because it renders a better skewness and
because of the reason mentioned above regarding the constant absolute
error.

A very serious problem was encountered when the PHE stationary
phase was wused. The measurement procedure as described above was
applied to the PHE stationary phase. However, when the solutes were
chromatographed at test mixture wm2 for the second time, a serious
decrease of retention for every solute was observed. Table III.8 and
ITI.9 summarize this problem. The whole procedure was repeated for
the PHE stationary phase, but now at more instances in the meas-
urement of the retention values on the PHE phase more wm2 test
mixtures were used to evaluate that stationary phase. The results
were much better. This last series was used and the results are given
in Tables III.1 to III.6. By comparing Table III.8 with Table III.3
it can be inferred that the repeatability is in the same order of
magnitude for the first (bad) series (Table III.8) and the good
series (Table III.3). The reproducibility however, was much worse for
the bad series (Table III.8) than for the good one (Table I1I1.2); it
differs by a factor four or five. The same can be said when comparing
Table III.9 with Tables III.5 and III1.6, although in that case the
differences are less pronounced. Evidently, the PHE stationary phase
was quite deteriorated which is alarming because the treatment of the
phase was very gentle ie. no buffers with a high or low pH were used.
The results for the second series, however, were good enough to use.

This extraordinary behaviour of the PHE phase was observed in a
milder form on the other stationary phases. As mentioned earlier in
the discussion on the reproducibility of the measurements, retention
measured at the test mixture wm2, always decreases after measureming
the whole series. This has a direct consequence for the consistency
of the data set. It is therefore of utmost importance to minimize the
number of measurements used to build the training set and to charac-
terize a new stationary phase. A simultaneous decrease in the number
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of solutes and mobile phase compositions to process is necessary.
9.6 Univariate description of the data set

The univariate description of the data set is divided into three
parts. The first part describes the dependence of the retention of
the solutes on varying mobile phase compositions while the stationary
phases are fixed. The second part describes the reverse: the depen-
dence of the retention of the solutes on the different stationary
phases at fixed mobile phase compositions. The last part is dedicated
to the special role of the solute paracetamol.

Figures III.la to III.1f give an impression of the dependence of
some solutes (representative for the whole data set) on varying
mobile phases with fixed stationary phases. Two different comparisons
can be made by examining these figures. Comparison of the correspond-
ing mobile phase mixtures indicated with "1" and "2" shows that
retention usually increases when changing from the "series 1" mix-
tures to the "series 2" mixtures. This is due to a decrease of
elution strength in that direction and is in accordance with rever-
sed-phase theory*. This pattern breaks down for the solute PAR which
is discussed later on. Inferences regarding the selectivity of a
varying mobile phase in relation to a particular stationary phase,
can be made by realizing that the distance of two lines in Fig-
ures III.la to ITI.1f, measured in the 1ln k direction, is the loga-
rithm of the selectivity factor «. The changes in selectivity due to
mobile phase variations are small when all lines in a figure, corres-
ponding to a particular stationary phase, are parallel to each other.
The Cl phase shows hardly any changes in selectivity with the
exception of PAR. The C6, C8 and Cl8 phases show some selectivity
changes for ACP. The CN phase shows considerable changes in selectiv-
ity (including peak cross-over). The PHE phase is more regular.

Figures I1II.2a to III.2f give an impression of the differences
between the stationary phases at fixed mobile phase compositions.
When examining these figures some patterns emerge. It should be kept
in mind that differences between stationary phases (at a specific
mobile phase composition) must be examined reckoning with the repro-
ducibility of the retention times. In Figure IIL.2b the 1 sigma bar
of the 1n k values of EHB are incorporated to give an impression of
the significance of the differences. Again, a number of inferences
can be made. When the mean retention (a measure of hydrophobicity of
the stationary phase) of all the solutes is considered, the phases
can be arranged in decreasing hydrophobic order for all mobile
phases, namely Cl18, €8, C6, Cl, PHE and CN. The differences between
C6 and C8 are not very large. This pattern breaks down for PAR. For
the water/methanol and the ternary mixtures, PAR shows hardly any
difference between Cl, C6, C8 and C18.

117



PART III CHAPTER ¢ EXPERIMENTAL DESIGN

a In k
) L0
—— ACP
—+— eHB
1.8
—*- pAR
- pE
1k
0.5
0 /H\*//ﬂé
0.5 ) 1 : 1 i )
0 1 2 3 4 5 6
mobile phase
b) In k
2.5
—== ACP
2t ~ EHB
¥~ PAR
1.5 8- pg
L /\/ﬁ‘\/
0.5
0 ¥///* -
—0.5 L .W :
[\ 1 2 3 4 5 6
mobile phase
[o] in k
) 2.5
= ACP
2f ~t— EHe
—¥= PAR
1.5¢ /////\\\\ -8~ pp
L /\/\/
0.5}
0.5 L \ L ! L .
0 1 2 3 4 5 5

mobile phase

Figure III.1. Measured In k values of some of the solutes on the (I
phase (III.la), the Cé phase (III.1b) and the C8 phase (III.lc). For
the abbreviations, see the text. The numbers 1 to 6 correspond to,
respectively, wml, wm2, wal, wa?, aml, and am?.
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Figure III.1 (continued). Measured In k values of some of the

solutes on the Cl8 phase (III.1d), the CN phase (III.le) and the PHE
phase (III.1f). For the legend, see Fig. III.la.
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Figure III.2. Measured In k values of some solutes on the stationary
phases at mobile phase wml (III.2a), mobile phase wm2 (III.2b) and
mobile phase aml (III.2c). The numbers 1 to 6 correspond to, respect-
ively, €1, C6, C8, C18, PHE, and CN. For the other abbreviations, see
the text.
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Fig.III.2a.
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Especially water/ acetonitrile mixtures show more retention of PAR
on Cl than on Cl8,but this will be commented on later. Changes in
selectivity, due to varying stationary phases at a fixed mobile phase
composition, can be observed for the CN and PHE phases. In particular
for water/ acetonitrile mixtures these phases show peak cross-over.
Incidently, C18 (Figure III.2a and III.2b) and Cl (Figures III.2b)
show cross-over. In accordance with Berendsen® the alkyl-bonded
phases show a flattening behaviour when the retention of a solute is
plotted against the number of carbon atoms in the alkyl chain. The
ternary mixtures show the least selective differences between the
alkyl- bonded phases.

The special role of the solute paracetamol is illustrated in
Figures I1I1I1.3a to III.3f. In Figure IIIL.3a and III.3b the 1In k values
of PAR at the water/methanol mixtures are plotted for the stationary
phases (some extra measurements were available). When only a solvo-
phobic mechanism is responsible for retention®, all 1n k wvalues
should increase in the order mobile phase 1 to 9 (decreasing elution
strength). This is, however, not the case for the Cl8 phase at mobile
phases 1 to 3 which indicates a dual retention mechanism’. A dual
retention mechanism means in this case that, besides the solvophobic
interactions, a second kind of interaction is present. This second
kind of interaction might be a polar (specific) one of a solute with
the free silanol at the surface of the modified silica material®.
More indications of a dual retention mechanism can be obtained from
Figure III.3e, the water/acetonitrile mixtures. The retention behavi-
our of paracetamol on the CN and PHE phases shows deviations from the
behaviour based on solvophobic theory, which is in agreement with the
observation that the CN and PHE phases can be regarded as moderately
polar®. The irregularity of the Cl phase (Figure III.3f) with respect
to the above mentioned solvophobic theory, might be due to measure-
ment error and is hardly evidence of a dual mechanism. The ternary
mixtures (Figures 1III.3c and 1III1.3d) show also deviations from
solvophobic theory for the CN and PHE phases. The irregular behaviour
of the Cl phase is again doubtfull, although slightly more pronounced
than in Figure IIL.3f. A reason for a more pronounced dual mechanism
in water/acetonitrile mixtures can be that free silanol groups are
more shielded in water/methanol mixtures because of hydrogen bonds
between methanol and silanol!®. 1In water/methanol mixtures, the
number of free silanol sites accessible for specific interactions
with a solute, is less. The observation that the solute paracetamol
shows more retention on the Cl than on the Cl8 stationary phase, at
water/acetonitrile mixtures, is may also be due to the free silanol
sites. These sites are more accessible on the Cl phase than the C18
phase and cause specific interactions, especially in combination with
water/acetonitrile mixtures!!.
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The repeatability and the reproducibility of the retention values
of paracetamol on the six stationary phases were not extremely poor
(see Tables I111.2, III.3, III.5 and II1.6) and there was no reason to
assume, by examining the original measurements, that systematic
errors were made. This is not the only peculiarity of the behaviour
of paracetamol. The solute has almost everywhere the lowest reten-
tion. Differences between the stationary phases hardly show up for
this solute because there is almost no interaction between parace-
tamol and the stationary phases. Yet the hypothesis that the 1n k
values of paracetamol are not influenced by the different stationary
phases, at mobile phase composition wmZ, can be checked by performing
an analysis of variance. The associated F-ratio is 22.34 leading to a
p-value smaller than 0.001. Altogether, there is no hard evidence to
discard the measurements of the solute paracetamol.

The low retention of paracetamol 1is, of course, a calibration
design problem. The mobile phase compositions in this particular
experiment are chosen orthogonally (see Sections 4.1 and 9.2). This
does not work out properly for paracetamol and weaker mobile phase
compositions are, therefore, more appropriate in order to obtain more
retention for this solute. This conflicts, however, with the very
high retention of other solutes in the same calibration set. The only
solution is a non-orthogonal design, calibrating the less polar
compounds with a stronger eluent than the polar ones.

9.7 The choice of the training- and test set

If the stationary phases are conceived as objects, the solutes as
the first category of variables and the mobile phase compositions as
the second category of variables, a three-way data table is the
result. This data table is presented in Figure III.4a. As shown in
Section 1.6, one of the possible generalizations of PCA can be
obtained by performing an ordinary PCA on the unfolded data cube, see
Figure III.4b. Two principal component analyses were done, the first
on the unscaled, the second on the scaled data. The data were always
column-mean-centered and the scaling was done in such a way that the
columns obtained variance one. The purpose of these principal compo-
nent analyses is to make a proper division of the stationary phases
into the training set and the test set.

With the first PCA (unscaled) three principal components accounted
for 99.8% of the variation (respectively 98.6%, 1.1% and 0.1%). The
score plot of the first two PC's are shown in Figure III.5a. From
Figure III.5a, which represents 99.7% of the wvariation, it can be
inferred that the C6 and C8 stationary phases are very similar, while
the other stationary phases are dissimilar. The most extreme ones are
the C18, CN and Cl phases. This is in accordance with the conclusions
drawn in Section 9.6. As already mentioned in Section 1.2, it is
usually difficult to interpret the principal components. Combining
the observed patterns in Table III.4, which were already discussed in
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ACPwm1 ... PHBwmi ACPwm2 .. . v . .. PHBam2

f

ct ‘

C8
cs

c18

CN

PHE

Figure III.4b. The unfolded data cube of Figure III.4a. The front

layer of Fig.III.4a is placed most left in the unfolded matrix and so
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Section 9.6, with Figure IIT.5a, it might be concluded that the first
principal component describes the hydrophobicity of the stationary
phases. The CN and PHE phases are the least hydrophobic ones, the C18
phase the most hydrophobic, whereas the C6 and C8 phases have a
similar hydrophobicity though somewhat less than C18. The Cl phase
takes an intermediate position between Cl8 and CN. It is tempting to
discuss differences in selectivity between the stationary phases in
terms of scores on the second principal component but no attempts are
made here because of the speculative nature. The loading plots, that
belong to the first PCA, are complicated, see Figure III.5b, but a
pattern emerges. The loadings on the first PC are mostly positive
(except for the wvariables 22 and 31, which remain to be discussed
later). This can be understood by observing, in Table III.4, that for
every solute/mobile phase combination the 1n k values become higher
in the range CN, PHE, Cl, C6, C8 and C1l8. This is, of course, a
restatement of the earlier remark on the hydrophobicity of the
stationary phases. The loadings on the first PC reflect the influence
of the hydrophobicity of the stationary phases on every solute/
mobile phase combination. The wvariables 22 and 31 are exceptional
cases (negative loadings on the first PC). In both cases the solute
paracetamol is involved with the water/acetonitrile mixtures. The
reason for this behaviour of paracetamol has already been discussed
in Section 9.6.
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Figure III.5a. Score plot of an unscaled three-way PCA on the data
cube of Fig.III.4a. Legend: 1=Cl, 2=C6, 3=C8, 4=C18, 5=CN and 6=PHE.
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Figure III.5b. Loading plot of an unscaled three-way PCA on the data
cube of Fig.IIl.4a. Legend: 4=ACP at wml, 6=ACP at wml, 11=BAB at
wm2, 14=PE at wm2, 15=TOL at wm2, 18=PHB at wm2, 21=EHB at wal,
22=PAR at wal, 26=MHB at wal, 29=BAB at waZ2, 30=EHB at wal, 31=PAR at
wa?, 33=TOL at wa2, 35=MHB at wa2, 36=PHB at wal2, 37=ACP at aml,
38=BAB at aml, 41=PE at aml, 42=TOL at aml, 45=PHB at aml, 47=BAB at
am2, 49=PAR at am?, 51=TOL at amZ? and 54=PHB at am?.

In order to perform the generalized Jolliffe-approach of variable
selection (see Section 1.6) simultaneously in two directions, the
loading plots must be examined carefully. It is very difficult to
make a proper choice. One of the possible choices might be the
solutes PAR, TOL and PHB at mobile phase compositions wm2, wal and
am?2. Variable selection was not the reason to perform three-way PCA
but it illustrates how difficult it is to make a selection without
procedures to evaluate the selection quantatively and to recognize
"outlying" variables.

The second three-way PCA was performed on the auto-scaled data. The
first three components explained 99.5% of the total variation (re-
spectively 92.1%, 6.3% and 1.1%). The score plot, see Figure III.5c,
shows the same pattern with regard to the hydrophobicity because the
order of the scores on the first PC is the same as in the previous
case. As can be seen, PCA is not scale invariant. The first PC in the
scaled wversion explains legs than the first PC in the unscaled
version. This can be understood by realizing that in the unscaled PCA
version variables with the highest wvariance contribute the most to
the first principal component. This can be checked by comparing the
loadings (see Figure III.5b) of the TOL related variables (6,15,33,42
and 51 are shown) on the first PC with the PE related ones (14 and 41
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are shown). All the TOL related loadings are higher due to the higher
variability of TOL. When the same comparison is made for the scaled
PCA variant (Fig.III.5d), it can be observed that the loadings for
the TOL and PE related variables on the first PC are almost equal (6
and 42 are shown, all other TOL and PE related loadings on the first
PC are of the same order). Assuming that hydrophobicity of the
stationary phases is the major cause of variability of the variables,
the influence of hydrophobicity is blown up by using the unscaled
variant which results in an extremely high percentage of variation
explained by this phenomenon (98.6%, see also Section 1.2 and 1.7).
This indicates that the scaled version may be more valuable.
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Figure III.5c. Score plot of a scaled three-way PCA on the data cube
of Fig.IIT.4a. Legend: see Fig.III.5a.

Comparing the scores on the second component for the scaled and
unscaled versions, differences show up (note that, due to sign
arbitraryness, the reflection of Figure III.5a in the second axis
should be compared with Figure III.5¢). In the scaled version the FPHE
stationary phase is more similar to Cl, the C6 and C8 phases are more
dissimilar.

The stationary phases Cl, Cl8 and CN are chosen for the training
set, the other stationary phases constitute the test set. Looking at
the score plot in Figure III.5¢ (scaled version) the phases in the
training set span the three PC dimensions, with the exception of the
PHE phase. The expectation is that when this choice of the training
set is made, predictions on the PHE stationary phase might be a
problem so that the performance of the prediction procedure can be
tested.
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Figure III.5d. Loading plot of a scaled three-way PCA on the data
cube of Fig.IIT.4a. Legend, see Fig.III.5c and 13=PAR at wmZ, 23=PE
at wal and 40=PAR at aml.
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Chapter 10 Two-way approach: the induced-variance criterion

10.1 The choice of the markers

A first step in the marker choice procedure is the performance of a
PCA on the training set, the stationary/mobile phase combinations as
objects and the nine solutes as variables. The columns of this data
matrix were again autoscaled. The cumulative percentages of explained
variation were respectively 90.88, 99.22 and 99.60 for the first
three dimensions. The score plot associated with the first two
dimensions is shown in Figure III.6. In Figure III.6 a grouping of
the observations can be seen according to the stationary phases. The
data are spread regularly and no clear outliers are detected. The
loading plot, Figures III.7, displays the contributions of the
variables to the first two dimensions. The solutes PAR and TOL span
the loading space together with one of the solutes MHB, EHB, PHB or
PE (for an explication of the notion "span the loading space", see
Sections 1.2 and 1.6). The reason for the extreme loadings of PAR is
clear from the discussion in Section 9.6. The solute paracetamol is
perhaps an outlying variable, and the Jolliffe-Wold approach in
selecting variables from the loading plot which span the loading
space is not robust against the selection of outlying- instead of
representative variables.
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Figure III.6. Score plot of a PCA on the training set. Legend:
1=Clwm2, 4=Clwal, 6=Clwa2, 7=Clwml, 1l1=Claml, 14=Clam?, 46=Cl8wm?2,
48=C18wml, 50=Cl8wa2, 53=Cl8wal, 54=Cl8am2, 55=Cl8aml, 67=CNwm? ,
74=CNwa2, 77=CNam2, 81=CNwml, 82=CNwal and 83=CNaml.
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Figure III.7. Loading plot of a PCA on the training set. Legend:
4=ACP, 5=BAB, 7=PAR, 9=TOL and 11=MHB.

The induced-variance criterion, introduced in Section 1.3, is used
to select the markers. For convenience, the training set from which
the markers are chosen is depicted in Figure III.8 (this is also the
matrix of which the PCA was calculated). The induced-variance cri-
terion aims at the prediction of the omitted solutes (the non-mar-
kers), using the markers. The solutes that are selected perform well
in this sense. The columns in the training set matrix are mean-
centered and scaled-to-length-one in order to obtain the correlation
form of the induced-variance criterion. This is a reasonable choice
because the modelspecifications in the next stage of the prediction
procedure comprise, besides the logarithms of the capacity factors of
the markers, the fractions acetonitrile and methanol in the mobile
phase. Different measurement units are therefore used in one model
and autoscaling (or centering and scaling to length one which only
differs a constant from autoscaling) seems appropriate. The results
of the induced-variance calculations are shown in Table III.10.

From Table III.10b it can be inferred that the solutes BAB, EHBR and
PAR are the best choice. The first four subsets of markers, as shown
in Table III1.10b, explain nearly the same amount of variation and are
therefore exchangeable.

The jack-knife procedure to check chance results (note that, in
order to obtain the output in Table III.10b, 84 different combina-
tions of solutes have to be tested) is summarized in Table III.10a.
The marker selection is done six times, each time the three rows
(cases) in the training set are omitted corresponding to Cl, Cl8 and
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Figure III.8. The training set.

CN at the same mobile phase composition (see the legend of Table
III.10). A full leave-one-out procedure was not performed in order to
1imit the calculations. The five best subsets of markers associated
with each omitted mobile phase mixture are given. The combination of
BAB, EHB and PAR is always one of the five best subsets. The combina-
tion of PAR, TOL and MHB is present in all but one of the five best
subsets. In order to get a quantitative idea of the similarities
between Table III.10a (the leave-more-out results) and Table III.10b
(the optimal subsets), scores can be attributed to the subsets of
Table III.10a which reflect the occurrence of the specific combina-
tion in the wml to am2 leave-more-out results. The subset BAB, EHB,
PAR obtains score 3 from the wml block and score 5 from the am2 block
(a subset obtains the highest score when it is the first in a parti-
cular leave-more-out block). The results of this score system, when
these scores of the six omitted blocks are summed wup, are:
BAB,EHB,PAR 21; PAR,TOL,MHB 21; EHB,PAR,TOL 13; BAB,PAR,PHB 13 and
BAB,PAR,MHB 4. Obviously, the outcome of the calculations as reported
in Table III.10b, is stable. The difference between the combinations
of BAB, EHB, PAR and PAR, TOL, MHB is very small. The combination of
BAB, EHB, PAR is selected because it has the best performance.

A careful examination of the leave-more-out results show that the
solute paracetamol is present in all subsets. This can be explained
by the peculiarities in the behaviour of paracetamol, discussed in
Section 9.6, and the dual character of the induced-variance cri-
terion, see Section 1.3. The solute PAR is not incorporated in each
subset because of its predictive quality, but due to its unpredic-
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table behaviour. All other solutes, except PE, are present in one or
more subsets. All solutes except PE and PAR are exchangeable as
predictors for each other, although some combinations have a better
performance than others. It is not possible to explain why the solute
PE does not show up in any of the subsets. It may be a bad predictor
or good predictable. It can be argued that PE is never selected
because the predictability of PE is not so bad as the often selected
solute PAR. A cautious conclusion might be that the non-robustness of
the induced-variance criterion towards unpredictable- or outlying
compounds can be overcome by careful examination of the leave-more-
out results.

The choice of the numbers of markers can be made by examining the
percentages of explained variation of the markers and the principal
components. Table III.10c reflects this comparison and shows that a
number of three markers 1is reasonable. Table ITI1.10d gives calcula-
tions done on subsets of the training set. By choosing these subsets,
the variation in ln k values of a solute due to the stationary phases
is slightly more pronounced. The separate "series 1" and "series 2"
mixtures contain less variation due to elution strength and, con-
sequently, the stationary phase influence is enhanced. The selected
combination performs well regarding the "series 1" mixtures. The
performance with regard to the "series 2" mixtures is less good: the
selected combination occupies a nineth place with 99.59% explained
variation. Whether this constitutes a problem can be assessed by
examining the prediction results. The combination of PAR, TOL, MHB
performs well in both cases.

10.2 Modelspecifications and an evaluation of the design matrices

Two different modelspecifications (see Subsection 8.1.2) for the
prediction of the non-markers are tested, which can be fine-tuned in
a later stage (see Section 10.5). The first modelspecification,
briefly called model 1, accounts explicitly for the mobile phase
variation and describes the In k value of each non-marker as depen-
dent on markers and mobile phase compositions (for the sake of
simplicity, an integer indexing the non-markers is left out):

1n knon,t=5o +B14A, tB,M, +B3BAB, +8,EHB, +85PAR, +e, (II1.L)

where t (=1,..,n) indexes the object number in the training set (the
stationary/mobile phase combination), Ay and My are the fractions of
acetonitrile and methanol respectively in the mobile phase, and BAB,
EHBy, PARy are the In k values of the solutes BAB, EHB and PAR. The
error terms ¢, are assumed to be distributed around zero with the
covariance matrix ¢?I. A justification of this constant variance is
given in Section 9.5. This variance, however, may differ between the
non-markers. After column-centering and omitting the column of zero’s
(see Section 2.1), the full rank design matrix X is the result. The
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matrix X is depicted in Figure III.%9a. Figure III.9> depicts the
resulting test set. The fraction of water is not taken into account
because the fractions of A, M and water sum to one so that two
variables are enough to describe the variation of the mobile phase
composition. Moreover, when the fraction of water is incorporated in
the model (the constant term has to be omitted in that case) a linear
combination in X is introduced after autoscaling of the X block, see
Section 1.7.

a) A M BAB EHB PAR b) A M BAB EHB PAR
Clwmi1 céwmi
Ctam2 C6am2
C18wmt C8wmi
Ci8am2 C8am2
CNwmi PHEwm1
CNam2 PHEam2
c) d)
C A M BAB EHB PAR Cc BAB EHB PAR
Cc1 C1
L L.
Ccé L C6
cs | cs [
c18 c18
L L
CN [ CN
PHE [ PHE
L

Figure III.9. Design matrix X (a) and the test set (b). Matrices Z
associated with model 1 (c¢) and model 2 (d), see text.
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The second modelspecification, model 2, does not take the mobile
phase variation into account explicitly, but relies upon the predic-
tive power of the 1n k values of the markers, which are also influ-
enced by the mobile phase composition. This model describes the 1n k
values of each non-marker as follows (again the integer indexing the
non-marker is left out):

In knon,t = B, + B,BAB, + B,EHB, + B;PAR, + ¢, (I11.2)

where t, BAB,, EHB,, PAR, and ¢, stand for the same values as before.
The design matrix associated with model 2 (again after the column-
centering operation) is the same as for model 1 except for the first
two columns.

A model relating the 1In k values of the non-markers only to the
mobile phase variables A and M can also be formulated. Preliminary
calculations (not shown) indicated that the performance of these
models was bad.

The most important characteristics of the design matrices are
summarized in Table III.1l1. Model 1 is discussed firstly. The design
matrix X of model 1 is scaled in such a way that X'X is in correla-
tion form. Very strong correlation exists between the 1ln k values of
BAB and EHB (Table III.1la). Multicollinearity is not difficult to
discover in this case, the relationship between BAB and EHB being
very clear. The drawback of using the correlation matrix as a diag-
nostic tool (see Section 2.3) does not hold in this simple case.
There is also a strong correlation between A and M. The correlation
between A and M can be influenced by using a proper design (see
Section 4.1). In this case, the demand of orthogonality (the same
mobile phase compositions on each stationary phase) results in
correlation between the mobile phase variables. The correlation
between the marker variables can be influenced by the marker choice,
see Section 4.1. High correlations between the two mobile phase
variables and the marker variables do not occur, the highest correla-
tion is -0.469 between M and PAR. The multiple correlation coeffi-
cient (not shown in the Tables) between BAB and A,M is 0.31, for EHB
and PAR these numbers are respectivily 0.32 and 0.53. These relat-
ively low values give rise to some doubt about the predictive relev-
ance of the mobile phase variables A an M. There are hardly serious
connections between the mobile phase variables and the marker vari-
ables. Within the block of marker variables the solute PAR is again
an exception: moderate correlations between PAR and BAB, EHB (0.484
and 0.577 respectively).

The wvariance inflation factors, Table III.11b, must be lower than
five (see Section 2.4). Values above this threshold indicate multi-
collinearity. As already described in Section 2.2, a high variance
inflation factor of a specific predictor variable indicates a strong
dependence of that variable on the other predictor variables and,
therefore, strong multicollinearity. Especially BAB and EHB have very
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high variance inflation factors, partly because of their strong
correlation.

The relationship between BAB and EHB is also present in
Table IIT.llc, presenting the variance decomposition proportions.
Simulation results indicate that weak dependence shows itselves with
condition indices around 10. Condition indices between 15-30 indicate
relationships with associated correlations of about 0.9 and are
considered serious. Condition indices above 100 are of great poten-
tial harm for the regression (see Section 2.4). It can be inferred
from Table III.llc that a strong relationship exists between BAB, EHB
and (to some extend) PAR. Note that the connection between BAB, EHB
and PAR, as present in the variance decomposition proportions, cannot
be inferred from the correlation matrix (Table III.lla). The rela-
tionship between A and M is associated with the fourth singular value
and does not contribute much to the multicollinearity.

In order to give an overall picture of the design matrix of model 1
a principal component analysis 1s performed on this matrix. The
columns of the design matrix are autoscaled. Figures III.10a to
II1.10c give the score plots of the first three dimensions. When the
scores on PCl and PC2 are considered, the CN measurements form a
separate class, which is not surprising considering the remarks made
in Section 9.6. Yet these measurements cannot be considered, on the
whole, as outliers. When the scores on the second and third PC are
plotted (Figure III1.10c) a clustering of the measurements on the
different stationary phases emerges. No clear outliers are visible so
that all measurements can be retained. Examining Table III1.11ld, some
patterns become visible. The only solute that loads high on the third
PC is PAR which proves ones more that this solute has a deviating
behaviour. The relationship between A and M is present in the fourth
PC and between BAB and EHB in the fifth one. The variance decomposi-
tion proportions show these relationships more drastically because
these proportions combine two aspects of a (near) linear combination
of variables: the loadings of the variables on that combination and
the strongness of that relation. Stated otherwise, the loadings of
the variables on the last PC are combined (see Section 2.2) with the
percentage of explained variation (eigenvalue) of that last PC. The
variance decomposition proportions are therefore preferred as a
diagnostic tool.

The design matrix of model 2 is closely related to the one of
model 1. The correlation matrix of the variables in model 2 is the
3x3 lower-right submatrix of the correlation matrix of model 1, and
the same remarks regarding the correlation of BAB and EHB are valid
to this case. The variance inflation factors are lower than in the
previous case (see Table III.lle). These variance inflation factors
are the reciprocal of 1-R?, where R? is the multiple correlation
coefficient between the predictor variable and the other x variables.
These R2 values are a non-decreasing function of the number of the
other x variables involved and are therefore not lower (and usually
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Figure IIT.10d. Score plot of a PCA on the design matrix of model 2.
Legend, see Fig.III.6.

higher) for model 1 than for model 2. Yet the variance inflation
factors of BAB and EHB are still very high. The variance decomposi-
tion proportions for model 2 show again a relationship between BAB,
EHB and PAR although a slightly weaker than for model 1 (Table
TIII.11f). Still, the condition index associated with this relation-
ship is high, pointing to serious multicollinearity. A principal
component analysis of this design matrix clearly reveals the rela-
tionship between BAB and EHB (see Table III.1llg). The score plot
(Figure I1I1.10d) shows clustering of the stationary phases, but again
no serious outliers are detected.

In relation to the marker choice and the choice of the modelspeci-
fication(s), the quality of the test set must be assessed. This is
important because the ultimate yardstick in the evaluation of the
estimation methods, of cross-validation and of the model specifica-
tions, is the quality of the predictions in the test set. The import-
ance of a matched split is indicated in Section 4.2. If model 1 is
assumed, the total data set, with regard to the predictor variables,
is depicted in Figure III.9c and labelled Z, where Z is an 36x6
matrix. The test set values can be arranged in matrix V (18x6), in
which the column entries are the same as those of Z. The rows of V
consist of the stationary/mobile phase combinations which were chosen
in the test set. Note that the elements of V are a subset of the
elements of Z. The split of the data in a training set and a test
(validation) set is a matched split when Z'Z/n~V'V/n,, where n and ny
are the total number of observations (36) and the number of observa-
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tions in the test (validation) set (18), respectively. When the two
dispersion matrices Z'Z/n and V'V/n, are compared, see Table III.llh,
the problem arises of how close they resemble. No clear guidelines
are given by Picard and Cook!?, but their numerical example show that
the two dispersion matrices in Table III.1lh are close enough to
indicate a matched split.

The Z matrix, that corresponds with model 2, is depicted in Fig-
ure II1.9d. The split can be judged by inspection of the two disper-
sion matrices in Table III.1lh, the A and M entries being omitted.
Again the tentative conclusion is that the test set is a reasonable
reflection of the whole data set.

10.3 The results of the different estimation methods
10.3.1 Ordinary least squares (OLS)

The results of the ordinary least squares (OLS) calculations are
summarized in Table III.12 (model 1) and Table III.13 (model 2). All
y variables and columns of X are mean-centered and scaled-to-length-
one and X is of full rank (see Section 2.1). Although this is not
necessary for the OLS calculations, the estimated coefficients are
now standardized and their influence on y can easily be compared.
Model 2 is discussed firstly.

For each solute a high F value is obtained, indicating a signi-
ficant decrease of unexplained variance due to the application of the
model. Even for the solute with the lowest F value, TOL, the associ-
ated p wvalue 1is still smaller than 0.0l1. The s values (standard
deviations of the residuals) can be compared with the pooled standard
deviations of the reproduced measurements in the training set (see
Table I1I1.5). They are in the same order of magnitude, so that there
is no serious lack-of-fit (it should be kept in mind that these
pooled standard deviations are biased estimates of the actual repro-
ducibility of the measurements but these are the only ones available,
see Section 9.5). The variances of the estimated coefficients by,y
and byyp are regarded as high in relation to the other estimated
coefficients in the same equation. This is due to the multicolline-
arity between the 1n k values of BAB and EHB, and was already indica-
ted by the variance inflation factors (discussed in Section 10.2).
Despite this fact, the variable BAB has a significant influence in
the regression of ACP, PE, EAB and TOL (the null hypothesis that
bgap=0 is rejected at «=0.03). The wvariable EHB has a significant
(a=0.05) influence in the regression of MHB and PHB, which is not
surprising because the solutes MHB, EHB and PHB are quite similar
(homologs). The variable PAR has some predictive power for PE and to
a smaller extent for PHB, its role 1is not completely clear. The
mobile phase variables A and M have predicting relevance for EAB, PHB
and to a smaller extent for TOL, MHB. It is tempting to discard the
variables without any significant coefficients in an equation. This
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is one of the remedies against multicollinearity but it should be
done with care (see Section 2.4). One of the pitfalls of such a
procedure is the strong influence multicollinearity has on the
magnitude (and sign!) of an estimated coefficient, as will be illus-
trated in Subsection 10.3.2. The fine-tuning of the model specifica-
tions is postponed till Section 10.5.

In Table III.12b the root mean squared error of predictions
(RMSEP) are presented. For the training set these values are calcu-
lated by the leave-one-out method to evaluate the predictive power of
the estimation method and to check on influential observations!® 1%,
The percentage of variation in the test set explained by the model
has a minimum of 98.0 for PE and a maximum of 99.9 for PHB. This
indicates that the predictions are good, despite the strong multicol-
linearity. Theoretically, this is possible if the linear combina-
tion(s) of the variables which cause the multicollinearity problem is
(are) also present in the test set (see Section 2.4). To be more
specific: when a new ln k value has to be predicted with the use of a
(measured) predictor vector x (which consists of A, M and the 1n k
values of the markers) and when the x vector is subjected to the same
linear combination(s) which determine the multicollinearity in the
training set, and the outcome is near zero, then the multicollin-
earity will not harm the predictions. 'Harm’ in this context means
that the multicollinearity will cause high variances of the predicted
1n k values!5. Not only the scores of a test set predictor vector on
the first PC's are of interest (in order to perform an outlier test)
but also the score of a test set vector on the last PC is worthwhile
to notice.

In Section 10.2 the design matrix of model 1 is discussed. There is
one serious source of multicollinearity, given by the linear combina-
tion associated with the smallest eigenvalue of the design matrix,
see Table IIIL.11ld. When the 18 test vectors x (see Section 9.7) are
subjected to this linear combination, the outcomes range from -0.0353
to 0.0298. When these values are squared and averaged the result is
3. 4x10"%. This value will be called mean sum of squared deviations
(MSSD). For the individual stationary phases C6, C8 and PHE this mean
sum of squared deviations was respectively 2.5x107%, 0.68x10™% and
6.9x107%. The question rises whether these outcomes are near 2zero.
For comparison: when the test vectors are subjected to the linear
combination associated with the largest eigenvalue of the design
matrix (see Table III.11d), the outcomes range from -0.5304 to 0.5751
with MSSD of 1079x10°%. When the training set objects are subjected
to the linear combination associated with the smallest PC, the out-
comes (which are proportional to the training set scores on the fifth
PC) range from -0.0199 to 0.0142 with MSSD 0.75x10"%. The tentative
conclusion may be that the positive predictive performance of the OLS
model is (at least) partly due to a similar multicollinearity pattern
in the training- and test set. Another reason for this positive
predictive performance is mentioned in Section 2.4. A low s? de-
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creases the effect of multicollinearity on the wvariance of the
predictions. Hoerl et al.'® showed that in combination with high
signal-to-noise ratios (F-ratios > 150), the predictions are not
necessarily bad with OLS. Whether the coefficients belonging to the
predictor variables are stable under the multicollinearity is discus-
sed in the subsection on ridge regression (Subsection 10.3.2).

The variable TOL has large prediction errors in the training set
and on the test set phases. This can be explained by examining the
loading plots of the PCA performed with all solutes as variables and
the Cl, C18 and CN phases as objects (at the six eluent mixtures),
see Figure III.7. TOL represents one of the extremes in this loading
plot, thereby indicating a deviant behaviour.

A closer look at the RMSEP values of the separate test stationary
phases reveals no clear differences, although the predictions on the
C6 stationary phase tend to be less than average, the RMSEP in the
whole test set. The prediction of retention on the PHE stationary
phase, which was expected to be difficult (see Section 9.7), is good,
with a slight exception of PE. This variable is badly predicted,
over-estimated, at mixtures wml and wm2. This might be caused by a
deviating behaviour of the variable PE in relation to its predictors
A, M, BAB, EHB and PAR, in the training set and on the PHE phase at
the water/methanol mixtures. The variable EAB is badly predicted on
C6 at eluent mixtures wal, wa2 and am2; all 1ln k values are underes-
timated.

Note that the above mentioned mean sum of squared scores of the
test predictors on the final PC are higher than the training set ones
for the C6 and PHE column. The C8 column behaves very well in this
respect and the predictions on this column are good.

The leave-one-out RMSEP (training set) can be regarded as predic-
tors of the RMSEP in the test set (Section 2.3). As such, they
perform reasonably, except in the case of TOL, which was already
partly discussed above. A closer examination of the leave-one-out
predictions of TOL reveals that especially the retention on the
stationary/mobile phase combinations Clwml, Cl8wml and Cl8wm?2 is
badly predicted. The same phenomenon as described above with regard
to the possible harm of multicollinearity on predictions holds, of
course, for the leave-one-out predictions. If the omitted predictor
vector x (Clwml, Cl8wml and Cl8wm2 consecutively) does not yield a
near-zero value when subjected to the troublesome linear combination
a bad prediction of the omitted 1n k value of TOL is the result. The
three mentioned combinations may be influential points in the regres-
sion. Careful examination with the use of robust techniques!? 18 and
leverage diagnostics?? 14,19 ig needed. If leverage is defined with
regard to the dispersion of the X matrix, then Clwml, Cl8wml and
C18wm2 are no leverage points. This can be concluded from the score
plots of the PCA made of the design matrix associated with model 1.
Moreover, if these combinations were leverage points, bad predictions
would also be present for the other non-markers at those points but
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that is not the case. This subject is not pursued any further, but it
can be concluded that the reason for the bad predictions of TOL at
Clwml, C18wml and Cl8wm2 is not clear.

The results of model 2 are shown in Table III.13. The F values are
again very high, indicating a significant regression. The s values
are in the same order of magnitude as the standard deviations of the
reproduced measurements, so there is no serious lack-of-fit present.
The variances of the estimated coefficients bp,; and bpyy are high in
comparison with bp,p, as was already inferred from the high variance
inflation factors of these specific coefficients. The variable BAB
has a significant (a=0.05) influence on ACP, EAB and TOL. The vari-
able EHB has a significant influence on EAB, TOL, MHB and PHB. The
influence of PAR is significantly present in the regression of EAB
and PHB. The danger of using the significance of an estimated coef-
ficient for variable selection purposes has already been pointed out.

The RMSEP values of model 2 are summarized in Table III.13b. The
predictions in the test set are good, except for TOL. If the predic-
tor vectors x in the test set are subjected to the linear combination
causing the multicollinearity in the training set (see Table
I11.11g), the outcomes range from -0.0376 to 0.0301, with an MSSD of
3.5x10"4% (for the individual stationary phases of C6, €8 and PHE
these numbers are respectively 2.1x107%, 2.7x107*% and 5.8x107%). The
outcomes are small in comparison with the outcomes of the x vectors
subjected to the linear combination associated with the highest
eigenvalue, which range from -0.3608 to 0.5415 (MSSD of 908x107%).
Moreover, the training set outcomes of the linear combination associ-
ated with the smallest PC range from -0.0252 to 0.0307 (MSSD of
2.2x10°%). The phenomenon described above when discussing model 1
regarding the cancelling of the damage of multicollinearity, seems to
hold for model 2 as well. For the test set predictions the variable
TOL is an exception. Relatively bad predictions are obtained, par-
ticularly for the PHE phase. The RMSEP of TOL at the individual
mobile phase compositions on the PHE phase are 0.119 at wml, 0.389 at
wm?2, 0.041 at wal, 0.219 at wa2, 0.092 at aml and 0.253 at am2. For
the "serie 2" mixtures, the predictions are bad, the predicted value
is always much too high. This is in agreement with the results in
Section 10.1 where it was shown that the combination of the markers
BAB, EHB and PAR are not the optimal choice for the "series 2"
mixtures. The influence of elution strength is not reflected ad-
equately by the markers on the PHE column to become good predictors
of TOL on the PHE phase. Incorporation of A and M improves the
prediction of TOL on PHE, see model 1.

Again the predictions on the C6 phase are slightly worse than
average. Especially EAB (and TOL) are badly predicted. The largest
prediction errors with regard to EAB on C6 are made at the mixtures
wal and wa2. The retention of EAB is underestimated at those mix-
tures. A similar line of reasoning to explain these bad predictions
can be followed in the case of PE on PHE with model 1. The rela-
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tionship between EAB and its predictors BAB, EHB, PAR differs between
the training set and the G6 phase. Note that incorporation of the
mobile phase variables improves the prediction of EAB on the (6
phase.

The leave-one-out RMSEP is a reasonable predictor of the test set
RMSEP except for PE, as the leave-one-out RMSEP for PE is high. The
leave-one-out RMSEP of PE on the different phases are 0.0759 on C1,
0.1226 on Cl8 and 0.0747 on CN, so the leave-one-out predictions are
particularly bad on Cl8. This subject shall be treated in Subsec-
tion 10.4.4.1.

A discussion of the differences between model 1 and model 2 should
include two aspects. The first aspect concerns the differences
between the models with respect to their predictive performance. The
second aspect concerns the performance of different wvalidation
criteria which are used to choose between the different models. The
second aspect is discussed in Subsection 10.4.4. With regard to the
first aspect, the RMSEP in the test set as a whole is treated first-
ly. Model 1 surpasses model 2 for the solutes EAB, TOL, MHB and PHB,
although the difference for MHB is not very large. PE is better
predicted by model 2, and for ACP there is no difference between the
models.

When comparing the RMSEP of the models for the individual phases in
the test set (Tables III.12b and III1.13), the reproducibility of the
separate solutes should be taken into account. The differences
between the predictive performances of the models is especially
manifest for the PHE stationary phase. The variable PE has a lower
RMSEP on the PHE phase if model 2 instead of model 1 is used: 0.0517
versus 0.0935, which is a clear difference compared with the reprodu-
cibility of PE on the PHE phase (0.079). The incorporation of the
variables A and M in the model for PE only increases the variability
of the predictions on the PHE phase, and do not contribute much to
the influence of the other wvariables, the markers (see Subsection
10.4.4.1). With the variables EAB and TOL the reverse is true. The
RMSEP for EAB is slightly lower if model 1 is used, compared with the
reproducibility of EAB on the PHE phase, which is 0.105. For TOL, a
large difference between the RMSEP on PHE for model 1, 0.1287, and
for model 2, 0.1758, shows up compared with the reproducibility of
TOL on the PHE stationary phase, which is 0.1098. It can be concluded
that model 2 shows a lack-of-fit in predicting TOL.

In order to get an impression of the predictive performance of the
models, some predicted versus observed values are given in Table
I11.14

10.3.2 Ridge regression (RR)
The results of ridge regression (RR) applied to model 1 (see
Subsection 10.3.1) is discussed firstly. The y variables and the

columns of the X matrix are all mean-centered and scaled-to-length-
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one (see Section 2.1). In contrast with the OLS technique this
scaling has influence on the RR results?®. The question whether or
not to scale is debated in the literature (see Section 1.7). The data
are scaled in such a way that X’X is in correlation form®*'. By
centering y and the columns of X, a constant is implicitly assumed,
which is not subjected to the shrinkage operation of the ridge
estimation??.

The influence of the k parameter on the estimated coefficients can
be seen in Figures 1II1.1la to III.11d, the so-called ridge traces.
Even within a very small range of the k parameter considerable
changes in the coefficients of BAB and EHB are observed. The estim-
ated coefficient for the marker EHB changes sign in the models of PE,
EAB and TOL: applying RR with a k parameter of 0.01, instead of
k=0.00 (OLS), changes the coefficient of EHB in the model of PE from
-1.368 to 0.808. These changes in estimated coefficients show clearly
that the OLS coefficients, as presented in Subsection 10.3.1, should
be interpreted carefully. The instability of the coefficients of the
markers EHB and BAB is the result of their strong correlation. Note
that the sum of the estimated coefficients of BAB and EHB remains
almost constant if the ridge results are compared with the OLS
results. Clearly, the sum of Bg,y and fpyy can be estimated by OLS
and is not affected by the multicollinearity“®. This may indicate
another reason for the good predictive performance of OLS: the
markers BAR and EHB are exchangeable to a large extent (correlation
of 0.99) and their simultaneous influence can be is estimated despite
the multicollinearity.

For almost every non-marker, the estimated coefficients of the
mobile phase variables A and M level off and decrease. According to
Hoerl and Kennard??®, such behaviour points to the loss of predictive
power of these variables. Note that as a result of the scaling, the
coefficients are standardized and the impact of a variable is reflec-
ted in its estimated coefficient. For TOL the variable A does not
decrease very much. Ridge traces can be used for the purpose of
variable selection?®:%2%. This subject will be discussed later (Sec-
tion 10.5). However, it should be pointed out that discarding the
mobile phase variables in the way suggested by the ridge traces is
not advantageous for all non-markers, especially not for TOL, with
respect to the test set results.

The role of the marker PAR is discussed separately. For the vari-
ables PE and EAB the coefficient of PAR decreases rapidly for
increasing k values. The PAR coefficients for the other variables
(ACP, TOL, MHB and PHB), however, do not diminish when k increases.
Conclusions regarding the predictive power of PAR are difficult to
draw.

The choice of the k parameter 1is, of course, essential. A full
discussion on this topic is postponed till Subsection 10.4.2. The
method used here employs the leave-one-out method (see Section 3.2).
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Figure III.11. Ridge traces of model 1 for the variables PE (a), EAB
(b) and TOL (c). For the abbreviations, see the text.
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Figure III.11 (continued). Ridge traces of model 1 for the variable
PHB (d). For the legend, see Fig. III.l10a.

The wvalidation of this leave-one-out method for the choice of k
isalso postponed till Subsection 10.4.2. For a grid of k values
between 0.00 and 0.20 the leave-one-out prediction error sum of
squares (LOOPRESS) outcomes are compared. Assuming that the LOOPRESS
is a unimodal function of k, the value of k can be established by
approximating the minimum of the LOOPRESS. Some typical LOOPRESS
versus k functions are shown in Figures III.12a to III.12d.

Table IIT.1l5 summarizes the results of the ridge regression when k
is chosen with the leave-one-out method. All k parameters are low.
The standard deviations of the estimated coefficients can be calcu-
lated (see Section 3.2). For the variables involved in the multicol-
linearity, EHB and BAB, the standard deviations are much lower than
the OLS results. The standard deviations of the residuals, the s
values, are always higher than the corresponding OLS results. This is
due to optimum properties of OLS, see Section 3.2. Only for the
variable TOL the s value exceeds the standardized reproducibility,
but no serious lack-of-fit is present.

A comparison of the Tables III.12b and III.15b shows the effects of
ridge regression in terms of predictions (see also Figures ITI.12a to
1I1.12d). In case of PE, EAB and TOL it is advantageous to use ridge
regression, the opposite is the case for ACP and MHB. The solute PHB
is an exception because OLS and RR coincide. The advantage of using
RR in case of EAB and TOL is a minor one. This is in agreement with
the observation of Hoerl et al.l®. They show in their study that the
improvement of RR over OLS is not large when F ratios of 150 and more

147



PART III CHAPTER 10 TWO-WAY APPROACH: INDUCED-VARIANCE
a) 0.14 -
= = - ., ~— SSRES
012 g ~4— TESTPRESS
ok —E—~ LOOPRESS
0.08 |-
0.06 |-
0.04
0.02 |
0 L L 1 1 J
0 0.01 0.02 0.03 0.04
k
b) 012 -
Y\K\X_‘ —0— SSRES
X
o.1 | % % R—R——""" . =f~ TESTPRESS
W/A ~®~ LOOPRESS
0.08 |-
0.06 |-
0.04F o9
0.02 -
0 1 1 L I 1
0 0.005 0.01 0.015 0.02
k
c) 0.8
—— SSRES
~+—~ TESTPRESS
0.6} ¥~ LOOPRESS
0.4 /
0.2}
0 Il H L i 1 ]
0 0.02 004  0.06 008 0.1

Figure IIT.12. Plots of sum of squares (S) against k for model 1, PE
(a), EAB (b) and TOL (c). SSRES is the residual sum of squares,
TESTPRESS is the sum of squared prediction errors in the test set.
For LOOPRESS, see text.
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Figure III.12 (continued). Plots of sum of squares (S) against k for
model 1, PHB (d). Legend, see Fig. III.12a.

are obtained in OLS. This 1is the case for all non markers. The
improvement in the predictions for PE and TOL are mainly caused by
the predictions on the PHE stationary phase. This can be checked by
comparing the mean RMSEP values of OLS and RR with the leave-one-out
k parameter. The reason for the specific improvement of the predic-
tion of PE and TOL on PHE is not clear.

An assessment of the use of RR is obscured by the necessity to
choose k from the training data. This choice may not be the optimum
one. If the test set results only are considered, an optimal k value
can be calculated: i.e. the k value that gives rise to the lowest
RMSEP in the whole test set. The results are presented in Table
III1.17. Ridge regression is only useful in case of the prediction of
PE, EAB and TOL. The solutes PE and TOL profit the most from RR; PE
especially when predicting on the PHE column, TOL in the predictions
on the C6 and C8 columns.

The profit from using ridge regression for the predictions on the
individual phases can be expressed by comparing the mean RMSEP values
of these phases for the OLS- and the ridge case. All stationary
phases in the test set profit from the ridge operation. From the MSSD
values 1t could be expected, that the multicollinearity harms the
predictions on the C6 and PHE phase most, although not serious, as
argued in Subsection 10.3.1. Yet, also C8 profits from the Ridge
regression.

A modified t-test is proposed by Hoerl et al.l®, In this test the
ratios b, (k)/sy;(x, are used to test the hypotheses Hy: pB; (k)=0,
where B; (k)=E(b; (k)). The denominators of the ratios are the coef-
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ficient's standard deviations (see Section 3.2) assuming a fixed k,
they ignore the bias. The b; (k) and s, ., values are reported in
Tables IIT.15 and III.17. The threshold value of a ratio to indicate
a significant coefficient is roughly 2. For the solute TOL a consid-
erable change in important predictor variables is observed when
applying RR, reflected in Table I11.17. The variables PAR and EHB
become important in predicting TOL, which was obscured by the multi-
collinearity in the OLS results. The reason why ACP, MHB and PHB do
not profit from the RR may be that a given vector of random errors in
the y variable, causes the non-existence of a suitable k in a par-
ticular application?®.

The results of the ridge regression on model 2 are given in
Table I11.16. For ACP, EAB and PHB the leave-one-out method recom-
mends OLS (k=0.0). Some typical ridge traces are shown in Figures
ITI.13a to TII.13e. Except for PE, the estimated coefficients for EHR
and BAB change rapidly. The marker PAR has only some relevance for
EAB and MHB. For ACP, EAB and TOL the OLS estimates of Beys and Bypap
have opposite signs. This is suspect because the markers EHB and BAB
have a highly positive correlation. They describe, therefore, the
same aspect of the training data and should influence the non-markers
similarly. According to Hoerl and Kennard?3®, the reason for the
opposite signs in the OLS estimates might be the negative covariance
between the estimates (one of them is estimated too high and the
other one therefore too low, becoming negative). This is indeed the
case: the covariance between bgagp (0ls) and bgpyy(ols) is -3600%. In
the ridge analysis they do not keep their opposite signs. This can be
concluded from Figures III.13b and III.13c. The reason why the ridge
trace for PE is stable in comparison with the other non markers is
not clear. For those solutes where the leave-one-out method advises a
k value >0, only TOL profits from the RR, which can be seen in Table
III.16b: the test set results. If the individual test set phases are
observed, it becomes clear that only the PHE phase profits to some
extent from the ridge regression with the leave-one-out k parameter.

The usefulness of RR can be assessed with Table ITI.18. Again the
solute TOL profits the most from the RR, especially in the predic-
tions on the PHE column. A comparison of the mean RMSEP values of RR,
1f the best ridge estimator is applied, and OLS reveals that only the
RR predictions on the PHE phase are better than the OLS predictions
on that phase. This conclusion is in agreement with the high MSSD
value of PHE on the last PC of the X matrix of model 2. The station-
ary phase of the test set that profits most from RR, shows a pattern
in the 1In k values of the markers which resemble the least the
“multicollinear pattern” in the training set.

A comparison between model 1 and model 2 can be made with the test
set results given in the Tables III.17 and III.18. Model 1 has always
the best performance, although the differences for ACP and MHB are
small. Of special interest is PE because this solute is predicted
best with model 2 when OLS is used and with model 1 when RR is used.
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Figure III.13. Ridge traces of model 2 for the variables PE
(b) and EAB (c). For the abbreviations, see text.
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This will be commented on in Subsection 10.4.4.1. A large difference
is observed with the RMSEP on the PHE phase for TOL, model 1 predicts
TOL much better on the PHE phase.

10.3.3 James~Stein regression (JSR)

As already indicated in Section 3.3, a necessary condition for the
JS estimator to be better than the OLS estimator is d=1_%A]1>2 where
Az .=A 20 are the ordered eigenvalues of X'X (m is the number of
predictors in X). In case of model 1, d=1.05 and for model 2, d=1.04.
Note that another necessary condition in this context, namely that
the number of predictors should be greater than two, is exactly
fullfilled in model 2. There is no guarantee that the JS estimator
will give a smaller PMSE than the OLS estimator for all values of B.
Yet, there might be a value of g for which the PMSE of the JS estim-
ator is smaller than the PMSE of the OLS estimator. It is, therefore,
still worthwhile to calculate the JS estimator. This holds both for
model 1 and model 2.

For both models the y and columns of X are centered and scaled-to-
length-one (see Section 2.1). Scaling influences Stein regression and
the traditional scaling procedure?! is followed. Note that, by
adopting this kind of scaling, a constant is implicitly assumed,
which is not subjected to the shrinkage operation of the Stein
regression®®. The results of model 1 are presented firstly.

The value of c¢ is chosen with the leave-one-out method in the same
way as the ridge parameter in the previous chapter. The results of
the calculations are reported in Table III.19. The first part of
Table TIT.19a shows that for TOL and PHB no shrinkage is recommended
by the leave-one-out method. For the other variables mild shrinkage
is advised and the s values increase therefore slightly. In Tab-
le II1.19b the results of the predictions are shown. When these are
compared with the OLS results of model 1 (Table III.12), it appears
that only the predictions of ACP improve to some extent, the other
variables for which shrinkage is proposed are predicted worse. The
mean RMSEP values of the individual phase show that the Stein regres-
sion with the leave-one-out ¢ choice does not improve the predic-
tions.

Whether or not these conclusions are influenced by the leave-one-
out choice of c can be checked by calculating the best ¢ value with
the use of the test set results (the assessment of the leave-one-out
criterion for choosing ¢ is postponed till Subsection 10.4.3). The
choice of the best ¢ value is carried out similarly to the leave-one-
out cholce of ¢, only in this case the PRESS values in the test set
are used, which cannot be done in practice, of course. The best c
values are given in the second part of Table III.19a. Only for ACP,
TOL and PHB shrinkage is advantageous. The prediction results are
shown in Table III.19c. When applying Stein regression, the mean
RMSEP values of the individual phases show a slight improvement of
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the predictions on C6 and C8 and a worsening on the PHE phase. There
is no connection between this conclusion and the MSSD values (the
multicollinearity patterns) of the test set phases. The variable ACP
gains a little from the shrinkage, especially on the PHE column. For
TOL the gain is in the predictions on the €6 and C8 column, while a
considerable worsening is seen in the predictions on the PHE column.
The same holds for PHR. The reason for this phenomenon is not clear.
The conclusion is that the shrinkage does not provide considerably
better estimators in the MSEP sense for model 1, probably because of
the severe multicollinearity in X.

By examining Table I1I1.20a, it is clear that, in case of model 2,
the leave-one-out procedure only advises shrunken estimators for FPE
and TOL. The predictions of these solutes (Table II1.20b) improve
little for PE and become worse for TOL. No improvement of Stein
estimation (with the leave-one-out c choice) is seen with regard to
the mean RMSEP values.

The best choice of the ¢ value (Table III.20a, second part) sug-
gests shrinkage for ACP, TOL and PHB, again using the test set
predictions. For ACP this results in only slightly better predictions
(Table II11.20c), for PHB the RMSEP in the test set decreases clearly.
It is, however, difficult to assess this decrease in relation to the
estimated reproducibility of PHB in the test set. The profit TOL
gains from the shrinkage is minor. The mean RMSEP values for C6, C8
and PHE when applying Stein regression (with the best choice of ¢)
show hardly any difference with the OLS ones, perhaps a slight
improvement occurs on the C8 phase. Again, as in model 1, the predic-
tions on the PHE column become worse. The conclusion with regard to
the use of JS regression in estimating the parameters in model 2 is
that only for PHB a small advantage is obtained in terms of PMSE. A
comparison of the different modelspecifications 1 and 2, when subjec-
ted to the JS regression, can be done with the use of Table II1.19¢c
and Table III.20c. The same conclusions can be drawn as in Chapter
10.3.1 with regard to the OLS results: only for the solute PE model 2
performs better. Again the success of model 2 is in the prediction of
PE on the PHE column.

10.3.4 Partial least squares (PLS)

The PLS calculations are performed with the X-block variables A, M,
BAB, EHB, PAR and the Y-block variables ACP, PE, EAB, TOL, MHB, PHB.
Modelspecification 2 is not estimated with PLS because in that case X
will have only three columns which will make the choice of PLS less
obvious (note that if in the PLS calculations g=m, the number of
dimensions is the number of columns in X, then PLS becomes OLS?%).
All variables are column-autoscaled. Figure II1.14 depicts this set
up. The number of PLS components is determined to be three by cross-
validation, see Subsection 10.4.1. In Table III.21 some diagnostics
and the results of the predictions are shown. The loading of a
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variable on the PLS component of a specific dimension (Table III.2la)
measures the contribution of that variable to that PLS component. For
variables within the X-block the contribution, measured with the
absolute value of the loading, can be interpreted as the amount of
variation in the variable that is used to explain the Y-block wvari-
ation. For variables within the Y-block, the contribution (absolute
value of the loading) can be interpreted as the amount of explained
variation of the specific variable,

A M BABEHBPAR ACP PE PHB

C1

C18

CN

Figure III.14. Set-up of the PLS calculations.

The value sﬁnexpl is calculated as the variance of the variable
after the contribution of the variable to the three PLS dimensions.
Although the exact behaviour of these values is not yet clear?®, they
can be used for indicative purposes. In case of X-block variables,
these sﬁnexpl values can be interpreted as the unused variance in the
modelling process. For the Y-block variables, sﬁnexpl can be inter-
preted as the variance unexplained by the model. Note that, at the
beginning of the estimation process each variable has variance one,
so that each sZ ..., equals one. The square root of the S hexpl
values are reported in Table III.2la and can be compared with the s
values obtained in the OLS estimation. After applying three dimen-
sions, 99.42% of the wvariation in the X-block is used to explain
99.21% of the Y-block variation. The markers BAB and EHB contribute
mainly in the first dimension, the mobile phase variables mainly in
the second one. The marker PAR plays a particular role and contrib-
utes to a large extent in the third dimension, which is in agreement
with the principal component analysis on the X-block (see Section
10.2). Especially the non-marker TOL profits from this contribution
of PAR because a high loading of TOL on this PLS component is obser-
ved. This 1s in accordance with the ridge regression results, see
Table III.15 and Table III.17, where PAR contributes to the explana-
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tion of the variation of TOL. A warning with regard to the inter-
pretation of these loadings is appropriate: it might be concluded
that ACP also profits, to a lesser extent than TOL, from the contri-
bution of PAR, but this is contradicted in Table III.17a.

The results of the predictions in the test set are given in
Table III.21b. When these results are compared with the OLS results
for model 1 (Table III.12b), it appears that only PE is better
predicted by PLS, especially on the PHE and C6 column. The retention
of the other non-markers are worse predicted by PLS than OLS, some-
times considerably worse e.g. TOL on C6. The mean RMSEP values for
C6, C8 and PHE when applying PLS show, in comparison with the OLS
ones, no improvement. However, the predictions on the C6 and PHE
phases are worse. It should be kept in mind that PLS is a biased
estimation procedure, which does not give always better predictions
than the unbiased one: OLS. Another reason for the weak performance
of PLS in relation to OLS might be the influence of autoscaling (both
X- and Y-block) on the predictive performance of PLS?’. This is still
to be investigated.

10.4 The performance of cross-validation.
10.4.1 Determining PLS model-complexity

The use of cross-validation (CV) in estimating the optimal model
complexity in PLS is discussed firstly. In the PLS calculations, as
described in Subsection 10.3.4, the PLS algorithm was used as imple-
mented in the SIMCA-3B program. All non-markers were collected in one
Y-block and simultaneously modelled. Whether it is appropriate to
model each y variable separately depends on the postulated latent
variable structure of the Y-block. In the case at hand a latent
structure within the Y-block measurements is supposed. The hydropho-
bicity of the stationary phase, the polarity of the mobile phase and
the polarity of the solutes are ingredients of this latent structure.
All y variables are the manifest variables of that structure and
should be incorporated into the model simultaneously. An advantage of
this ste-up is that it creates the possibility to reckon with the
measurement error in the x variables?®.

The CV as implemented in the SIMCA-3B program is not a leave-one-
out method, but splits the Y-block data in four groups and leaves
these groups out successively. For each dimension in the PLS model,
the sum of squares in the Y-block is calculated before applying the
next dimension (SSBEF). In calculating the next dimension of the
model the 1n k values of the omitted group are predicted and the
quadratic differences with the actual values are summed in the sum of
squares due to Cross-validation (S8CSV). This is done four times to
ensure that each data point in the Y-block is predicted once by the
next dimension. The SSBEF can be interpreted as the error sum of
squares if, instead of applying the next dimension, each Y-block data

155



PART III CHAPTER 10 TWO-WAY APPROACH: INDUCED-VARIANCE

point is predicted with the value of zero. If the ratio SSCSV/SSBEF
is smaller than 1 the next dimension in the model will predict better
than the zero values.

As a threshold for the significance of the next dimension the
SIMCA-3B manual advises that the square root of SSCSV/SSBEF (CSV/SD)
is smaller than 0.95. These CSV/SD values can also be calculated also
for each of the y variables separately. These values should be taken
into account when a decision is made on the significance of a new
dimension, i.e. when the overall CSV/SD is greater than 0.95 but a
considerable number of individual CSV/SD is smaller than 0.95, this
dimension (component) can still be considered significant.

The above sketched CV procedure showed the following characteris-
tics when applied to model 1. The first three dimensions gave overall
CSV/SD values of below 0.95. The fourth dimension gave an overall
CSV/SD wvalue of 1.00, indicating non-significance. Two of the six
individual CSV/SD values were below 0.95 and the increase of ex-
plained variation in the Y-block was 0.09%, which is very low. The
fifth dimension gave an overall CSV/SD value of 0.94, which is on the
borderline, and explained only an additional 0.14% of the wvariation
in the Y-block (see also Table III1.2la). It seems therefore reason-
able to choose three dimensions.

The results of the leave-one-out strategy are given in
Table IIT1.22. Concentrating on the rows with entry "TOTAL" it appears
that 5 dimensions give the lowest leave-one-out prediction error sum
of squares (LOOPRESS) summed over all non-markers. Actually, PLS with
five dimensions is OLS because X is a 18«5 matrix. Osten?® describes
how to use PRESS values in the decision on the number of PLS compo-
nents: choosing the number of dimensions which corresponds to a local
minimun in the PRESS versus number of dimensions plot is a reasonable
procedure. An alternative method to decide on the significance of the
difference between two succesive PRESS values is based on an F test.
This F test, however, is outlined only for the case of a single vy
variable, which is the situation at hand. Besides, the F test lacks a
rigorous statistical treatment. The local minimum in the PRESS values
is attained at five PLS dimensions.

Selecting five PLS components gives rise to the lowest PRESS in the
test set, so that, obviously, five components is the best choice.
This TESTPRESS value, associated with five PLS dimensions, is evid-
ently smaller than the value associated with three PLS components,
which is chosen on the basis of the PLS results obtained from the
SIMCA-3B program. Several reasons for the discrepancy between the use
of CV from SIMCA and the leave-one-out procedure with a PRESS value
can be given. First, the SIMCA program splits the data in four groups
which are subsequently omitted while the CV procedure reported in
Table III.22 leaves out one data point at a time. Osten?® shows that
this might influence the situation when the data are not an adequate
sample of the population. Another reason for the above mentioned
discrepancy is the "soft" way by which the significance of a new
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calculated component must be judged in the SIMCA program. This leaves
some margin for the investigator to decide. The leave-one-out method
is preferred because its statistical basis is to retain as much as
possible of the original data in the training set to evaluate proper-
1y the predictive power of the model (see Section 2.3). A leave-gne-
out method might be more robust against non-adequate sampling.

In Table III.22 the LOOPRESS and TESTPRESS values are also given
for the separate non-markers. It should be kept in mind that the
modelling process is done in such a way that all non-markers consti-
tute the Y-block. Discrepancies arise between the number of PLS
components advised by the leave-one-out method and the best test
results for the individual non-markers. Whether the non-markers
should be modelled individually to obtain a better fine tuning of the
number of components, by means of an leave-one-out method, 1is not
known.

10.4.2 Determining the ridge parameter k.

Several procedures for choosing the ridge parameter k are described
in Section 3.2. The (ordinary) cross-validatory estimate of k is
compared with reasonable alternatives for the situation at hand:
Hoerl’s recommended value k=ms?/(b/,,b,,,) and the k value as ob-
tained from the ridge trace. The McDonald and Galarneau alternative
seems also reasonable, but is not implemented yet. The method using
the variance inflation factors of b_, has the disadvantage of not
taking the y variable®? into account. The generalized cross-valida-
tion (GCV) was designed to meet the problem of near-orthogonal design
matrices. This GCV is not necessary in our case because the design
matrices are not near orthogonal.

The results for model 1 are shown in Table III.23. For the sake of
convenience this table partly duplicates Table II1.17. When all three
alternatives are considered, only for the solutes MHB and PHB the
leave-one-out strategy yields a k wvalue which gives rise to a
TESTRMSEP as close as possible to the best TESTRMSEP. For the other
non-markers Hoerl's choice (four times) and the trace choice (two
times) give rise to the "closest" TESTRMSEP. There 1is no clear
preference for the leave-one-out strategy. The other strategies do
not perform any worse and are computationally much more convenient. A
greater variety of modelled non-markers 1is needed to evaluate
properly the success of CV in establishing k. For this moment Hoerl's
choice seems to be reasonable.

The results of model 2 are presented in Table IIT.24. A comparison
of the different choices of k is skewed by the fact that Hoerl's
method and the leave-one-out method give rise to the same k in three
cases. The performance of the ridge trace criterion is worse than in
model 1. Hoerl's method, however, performs well and so does the
leave-one-out method. The only non-marker for which the leave-one-out
method is better than Hoerl’s method is ACP. The conclusion is that
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also for model 2 Hoerl's method for choosing k is reasonable. The
only improvement in choosing k might consist of applying the algo-
rithm given by McDonald and Galarneau (see Section 3.2), because this
algorithm seems to be particularly appropriate for large signal-to-
noise ratios!® which is the case with the models described above.

10.4.3 Determining the James-Stein shrinkage parameter c.

The leave-one-out procedure applied to calculate c is compared with
the ¢ value as proposed by Stein (see Section 3.3 formula I.10): the
positive Stein rule estimator.

The results of this comparison are summarized in Table III.25. When
the c¢ choice procedure, which gives rise to a TESTRMSEP as close as
possible to the best TESTRMSEP wvalue, for model 1 is counted, it
appears that the STEIN choice beats the leave-one-out choice. For
model 2 such a comparison remains undecided.

There 1is no clear preference for the leave-one-out method. The
STEIN choice has the advantage of being simple to calculate.

10.4.4 Choosing between the modelspecifications.

Two different models (modelspecifications) are calculated through-
out: model 1 with the inclusion of the mobile phase fractions and
model 2 with these fractions omitted. Cross-validation can be used to
make a choice between these models. For the OLS estimation method
different criteria are available to judge the predictive performance
of a model, see Section 2.3. Generalizations of such criteria for
ridge- and Stein regression are also reported®!:32, The discussion
concentrates on the criteria for the OLS estimation. Specifically,
the prediction criterion of Amemiya (PRC), the Co value of Mallows
and the Rédj, are compared with the cross-validation (PRESS), see
Section 2.3.

Table III1.26 contains the result of this comparison. The ultimate
decision which model has the best performance can be made with the
yardstick RMSEP in the test set, as noted down in Tables III.12 and
III1.13. The values of C,, PRC and PRESS have to be minimized, whereas
RZ,, must be maximized.

Concentrating on PE, EAB, TOL and PHB, where clear differences
between the predictive performance of the respective models are
observed, the following can be concluded. For PE, all criteria give
the wrong advice, i.e. the criteria do not recognize model 2 as the
best model for predicting the In k values of PE. For TOL, all cri-
teria give the good advice, although C, is not very decisive. In case
of PHB three criteria give the right advise, but Rgdj is indecisive.
The PRESS criterion performs worse than the other criteria in case of
EAB. A preliminary conclusion is that PRESS is not the best criterion
for choosing between modelspecifications because the PRC criterion
performs better. A more exhaustive evaluation of the criteria is
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needed with a wider range of non-markers and model specifications,
e.g. by choosing a subset of the markers for the prediction of a
particular non-marker (see Section 10.5).

10.4.4.1 A closer look at the solute PE

There are two reasons to take a closer look at the results for PE.
First, PE is the only solute for which model 2 is the best and
second, no validation criterion - PRESS, Rﬁdj, PRC or C, - indicates
this. The behaviour of the PRESS criterion is treated first. A PCA on
the augmented matrix [X,y], as described in Section 2.4, reveals some
interesting features. In Table III.14b the loadings of this PCA of
the training data for model 1 and 2 are given, together with the
variation explained by the components. Model 2 is treated firstly.

The last component reveals a non-predictive multicollinearity
between BAB and EHB (see Section 2.4). PE loads high on the third
component but no clear pattern emerges on which predictors are
connected with PE for this dimension. The leave-one-out RMSEP of the
data points Clwml, Clwm2, Cl8wm2, Cl8wal and Cl8wal are respectively
0.114, 0.135, 0.199, 0.146 and 0.140, the five highest values of all
eighteen. These values can be compared with the leave-one-out RMSEP,
Table III.13b, which is .0937. Deletion statistics are indeed capable
of detecting influential observations but the PRESS value becomes
high when there are influential observations. In order to illustrate
the effect of masking®, data points Cl8wal and Cl8wa2 are omitted
simultaneously and predicted by the model on the basis of the sixteen
other data points. The RMSEP values are respectively 0.253 and 0.262.
This is considerably worse than the leave-one-out results because the
influence of Cl8wal is no longer masked by Cl8wa2 and vice versa. The
PRESS value is sensitive to leverage points and influential observa-
tions. To assess the meaning of a PRESS value in a specific situa-
tion, a careful analysis with regard to leverage- and influential
points is needed.

How the observation of the high leave-one-out RMSEP wvalue for
model 2 is related to the conclusion drawn in Section 10.1 regarding
the peculiar role of PE in the marker choice assessment is difficult
to disentangle. Two possibilities for the absence of PE in one of the
best subsets were given, either PE is a bad predictor or the reten-
tion of this solute can be predicted very well. The tentative conclu-
sion can be drawn that PE is a bad predictor. Note the close connec-
tion between the results of model 2 for each non-marker and the
induced-variance criterion: the mean R? (averaged over all non-
markers) is equal to the induced-variance.

The same analysis can be performed in case of model 1. The loadings
on the sixth component of the PCA on the augmented model 1 matrix,
Table III.14b, reveal a non-predictive multicollinearity between BAB
and EHB. The variable PE is mainly present in the fifth dimension and
is related, to some extent, to the predictor BAB. The data points
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Clwm2, Cl8wm2 and Cl8wa2 have a high leave-one-out RMSEP, respect-
ively 0.173, 0.142 and 0.139. No related observations are seen in
Figure II1.9d and no further attempts were made to investigate
masking effects. Note that examining Figure TIITI.9d only reveals
masking leverage points, not masking influential points.

A conclusion 1s that the high leave-one-out RMSEP for model 2 is
(partly) due to some influential observations, which are less pro-
nounced for model 1. It should be stressed that a full analysis of
the prediction of PE, and indeed of all non-markers, with the use of
models 1like model 1 and 2 should encompass robust estimation
methods!’ 18.19.33 A rigorous treatment of the impact of influential
observations on the behaviour of Rgdj, PRC and C, is not readily
avallable, so that an assessment of the behaviour of these criteria
in deciding whether to use model 1 or model 2 is difficult.

The question remains why model 2 predicts PE better on the PHE
column than model 1. A LR-PCA on the PHE data set was performed to
reveal this difference. The results for model 1 and model 2 are
recorded in Table III.l4b. In order to make an honest comparison
between training set and test set results, the PHE data are, prior to
the LR-PCA, subjected to the scaling constants of the training set.
The loadings on the second and sixth component in the LR-PCA of model
1 are important to PE, especially the sixth. In neither of these
dimensions the mobile phase variables are present, which indicates
that these variables possess no clear predictive power. This conclu-
sion 1s supported by the results in Table III.17, where the best
ridge results are presented of model 1. The mobile phase variables
have hardly any influence, see Table III.17a. The mobile phase
variables, therefore, only attribute to the variance in the predic-
tion of PE if incorporated in the model.

A particular phenomenon is observed when comparing Table III.15b
with Table ITT.16b and Table III.17b with Table III.18b. For both the
leave-one-out and the best choice of the ridge parameter, model 1
predicts better than model 2 in case of PE. This is in agreement with
the conclusions and warning of Hoerl and Kennard?? and Hoerl et al.'®
that variables that lose their predictive power and obtain a low
coefficient estimate in the equation should not be discarded in the
ultimate prediction equation.

10.4.5 Choosing between estimation methods.

A particular advantage of cross-validation is the potential it
offers to choose between estimation methods. The leave-one-out method
is utilized to obtain PRESS values for different estimation methods,
for each non-marker separately. The method with the lowest PRESS is
advised as the best prediction method. Table I1I1.27 summarizes some
results. Concentrating first on model 1, Table II1.27a, it is clear
that cross-validation gives a good advice for the solutes EAB, TOL
and PHB. For ACP cross-validation advises the worst method, PLS (the
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highest TESTPRESS value) and for PE and MHB the second- respectively
the third best choice. Cross-validation performs well in advising the
estimation method, except for ACP.

For model 2, Table III.27b, the assessment of the potential of CV
to choose between estimation methods is obscured by the fact that for
three solutes no alternative estimation methods are available. When
only observing the non-markers PE, TOL and MHB it appears that CV
advises two times the best method, and one time the second best. Also
for model 2 CV behaves reasonably.

It can be concluded from Table III.27 that there is no best
estimation method, although there may be a slight advantage in using
ridge regression. For diagnostic purposes, however, ridge regression
is useful, probably in combination with influence measures in ridge
regressiont* 3%,

10.5 Fine tuning the modelspecification of EAB

As an example model 1 is taken as starting point for the non-
markers to illustrate modifications of the model. Eliminating vari-
ables, which are of no predictive importance, gives rise to a de -
crease of variance in the predictions of the non-markers. An example
is given by fine tuning the modelspecification of EAB.

There are two possible modifications for EAB, starting from
model 1. The first modification emerges from the observation that the
marker PAR is, perhaps, obsolete in the prediction of EAB. Indica-
tions of this conclusion can be found in the low significance of PAR
in the OLS calculation of EAB, see Table I1I1.12a, in the behaviour of
the estimated coefficient of PAR in the ridge trace, Figure III.llb,
and in the high loading of PAR on the third component of the LR-PCA
on EAB, Table IIL.28a, which is hardly associated with EAB. If the
marker PAR is omitted, the resulting model is called model la. The
results are as shown in Table III1.28b and Table II1.29a. The design
matrix, associated with model la, has a better condition: a condition
index of 15 instead of 45 for the full model, so that there is less
multicollinearity. This indicates that the deletion of variables is
one of the remedies against multicollinearity (see Section 2.4). The
coefficient of EHB in the model equation changes considerably. The
variance inflation factors decrease considerably, resulting in a much
lower standard error of the estimated coefficients for BAB and EHB. A
LR-PCA on the augmented correlation matrix of model la reveals no
non-predictive multicollinearity between BAB and EHB, which was
present in the full model. This illustrates the tentative nature of
the LR-PCA considerations; the elimination of the wvariable PAR
changes the pattern of the LR-PCA considerably, even though the
correlation between PAR and BAB, EHB is low (see Table ITII.11). The
leave-one-out RMSEP of model la is lower than the analogous value of
model 1. The PRESS criterion, therefore, advises model la, which is a
correct advice because model la predicts better than model 1, see the
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TESTRMSEP values. Ridge and Stein calculations on model la did not
improve the predictions (results not shown).

It might be argued that a further step in the fine tuning of
model la can be made by eliminating variable EHB, because this marker
is mnot significant (Table 1II1.29a). The resulting model, EAB=
F(A,M,BAB), has a lower leave-one-out RMSEP (0.0694) but a higher
TESTRMSEP (0.0690) than model la. This fine tuning of model la is,
therefore, not appropriate although the PRESS criterion does not
reveal this.

The second possible modification, starting from model 1, may
consist of deleting EHB. Because EHB and BAB are highly collinear,
EHB is not significant in model 1, see Table III.12, and a non-
predictive multicollinearity exists between EHB and BAB, see
Table III.28a. Note, however, that this conclusion is contradicted by
the behaviour of EHB in the ridge trace, but for the sake of illus-
tration model 1b is postulated. Model 1b is model 1 with EHB omitted.
The results are shown in Tables III.28 and III.29. The condition
number of the design matrix associated with model 1b, becomes 9 and
again the multicollinearity is much decreased, which was expected
because one of the two correlated predictors has been left out. The
leave-one-cut RMSEP as well as the TESTRMSEP are lower for model 1b
than for model 1, see Table III.29b, which indicates a better predic-
tive performance of model 1b. This is noticed by the PRESS criterion.

The standard error of the estimated coefficients decrease consider-
ably for BAB and PAR, because of a lower multicollinearity, and the
marker PAR obtains a significant coefficient. Note that, if the
variable PAR 1is deleted from model 1b, the same model as above
EAB=F(A,M,BAB) is obtained. Model 1b has both a lower leave-one-out
RMSEP and a lower TESTRMSEP than the model EAB=F(A,M,BAB), so
model 1b surpasses this model. This is indicated by the PRESS cri-
terion. Ridge and Stein calculations, starting from model 1b, do not
yield improvement (results not shown).

If a decision has to be taken whether to chose model la or 1b, on
the basis of the PRESS criterion model 1b is preferred. Both models,
la and 1b, have the same predictive performance.

Some final remarks are appropriate in this context. First, note
that the best ridge solution, see Table III.17, of model 1 gives a
TESTRMSEP of 0.0674, which is lower than the best TESTRMSEP after
fine tuning model 1. This illustrates the notion that elimination of
variables is not always the preferred remedie against multicolline-
arity (see Section 2.4). Even the ridge results of model 1 with the
leave-one-out choice of k, see Table XV, gives a TESTRMSEP close to
the one obtained after fine tuning. Second, an evaluation of the
PRESS criterion, when using it for fine tuning, is difficult. On the
occasions that it failed, it was in distinguishing between model la
and the model EAB=F(A,M,BAB) and in recognizing the equal predictive
performance of model la and model 1b. An explanation of this failure
might be that the PRESS value (and hence the leave-one-out RMSEP
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value) is too high for model la. This is possibly due to the high
correlation between EHRB and BAB in model 1la, which indicates a
relation between the performance of the PRESS criterion and the
degree of multicollinearity in the design matrix.

The precision of the predictions of the retention of the mnon-
markers must be very high. Calculations show®? that a gain in RMSEP
from 0.100 to 0.0600 seems little but results in a reduction of the
relative prediction error in k values from 10% to 6%. This reduction
is of interest when the relative measurement precision of the k
values is about 3-5%. The purpose of the calibration should be kept
in mind: predicting simultaneously the retention values of a set of
solutes, or stated otherwise, predicting a chromatogram. Small
prediction errors result in chromatograms with overlapping peaks?®8 .
It is therefore of utmost importance to obtain very precise predic-
tions.
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Chapter 11 Two-way approach: the determinant criterion

11.1 The choice of the markers

The data set from which the markers must be chosen comprises the
logarithms of the capacity factors of all solutes measured on the Cl,
€18 and CN stationary phase at the six mobile phase compositions. A
principal component analysis on this data set has already been
carried out and discussed in Section 10.1. Prior to the marker
selection the data were centered and scaled-to-length-one column
wise, for the same reasons as outlined in Section 10.1.

If the markers are chosen according to the determinant criterion
the five best subsets are PAR,TOL,MHB; PAR,PE,TOL: PAR,TOL,PHB:
EHB,PAR,TOL and PAR,PE,EAB. The determinants of these subsets were
respectively 0.0331; 0.0306; 0.0302; 0.0299; 0.0288. The first subset
determinant is slightly higher than the one for the other subsets,
the last four subsets have almost equal determinants. The best
subset, PAR,TOL,MHB, induces 99.47% of the variance in the whole data
set (see Table TIII.10).

If the markers are calculated with the determinant criterion in
combination with a leave-more-out evaluation, in the same way as in
Section 10.1, it appears that PAR,TOL,MHB is a stable solution. Note
that this subset spans the loading space of first principal compo-
nents, see Figure III.7. The solute PAR is always part of the five
best subsets for each omitted group, again pointing to an outlying
behaviour of PAR. All other solutes were present in one or more of
the previous subsets. The deviating behaviour of PE was not present
in these leave-more-out results.

If the markers are chosen on the basis of the "series 1" mixtures
only, the subset PAR,TOL,MHB is the second best choice, with a
determinant of 0.0609. Compared with the determinant of the optimal
subset, in this case (PAR,PE,EAB) 0.0610, there is hardly a differ-
ence. This does not hold for the "series 2" mixtures. The best choice
is ACP,PAR,PE with a determinant of 0.0273 which is clearly higher
than 0.0214, the determinant of PAR,TOL,MHB, the sixth best choice.
Whether this will results in worse predictions at the "series 2"
mixtures if PAR,TOL,MHB are used as markers is an open question.

The best subset of size 2 is PAR,TOL with an induced-variance of
97.59%, and the best gubset of size 4 is PAR,PE,TOL,EAR with an
induced-variance of 99.57%. When these induced variances are compared
with the explained wvariances of the principal components, Table
II1.10c, a subset size of 3 seems reasonable.

11.2 Model specifications and evaluation of the design matrices
Two different model specifications are distinguished for reasons
already discussed in Section 10.2. Model 1 is defined as (an integer

indexing the non-marker is left out):
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In X on, ¢=Bot BiAL+ BoMy + B3PAR + B, TOL + BsMHB, + € (ITI.3)

where t is an index indicating the measurement conditions (station-
ary/mobile phase combinations); A, and M; are the fractions of aceto-
nitrile and methanol, respectively, in the mobile phase and PAR,,
TOL,, MHB, are the 1ln k values of the markers PAR, TOL and MHB. The
error terms ¢, are assumed to be distributed around zero with covari-
ance matrix o?1.

The second model specification is the same as model 1 except for
the mobile phase fractions which are omitted. For details see Sec-
tion 10.2.

Table III.30 reports the diagnostics for these models. Model 1 is
discussed firstly. High correlations are present between A and M and
between TOL and MHB. The variance inflation factors for A, M, TOL and
MHB are greater than 10 and point to multicollinearity. The variance
decomposition proportions, Table III.30c, show that a multicolline-
arity is present and caused by a relationship between the markers.
Note that the degree of multicollinearity is much lower than that of
the markers BAB, EHB and PAR, see Section 10.2. A weak dependence 1s
present between A and M.

A principal component analysis on the design matrix associated with
model 1 was performed (all columns in X were autoscaled). The loa-
dings are given in Table III.30d and the scores are plotted in
Figures III.15a to III.15c. When these figures are examined, it
appears that the CN measurements form a separate group in the scores
on the first two PC's. A clear clustering can be observed in Fig-
ure III.15c, the three stationary phases being separated. In the plot
of PCl versus PC3 two observations are outlying: 50 (Cl8wa2) and 53
(Cl8wal). This could be related to the relative low retention of PAR
on C18 at the water/acetonitrile mixtures (note that PAR loads high
on the third PC), see Section 9.6. This outlying behaviour does not
show up in Figures III.15a and II1.1l5c¢ and these data points are
therefore not considered to be leverage points. On the whole, these
score plots are comparable with the corresponding ones from the two-
way approach with the induced-variance criterion (Chapter 10), see
Figures II1.10a to III.10c. The loadings of the variables on the PC’'s
behave also similar as in case of Chapter 10. The solute PAR is
almost the only one present in the third dimension. The solutes TOL
and MHB constitute the final dimension.

The design matrix associated with model 2 will not be discussed
extensively, reference is given to Table I11.30e to Table IIT.30g and
Figure III1.16. An overall conclusion is that the corresponding design
matrices for the determinant markers and the induced-variance markers
bear the same characteristics, whereas the relationships are (much)
more pronounced for the induced-variance case.
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Figure III.16. Score plot of a PCA on the design matrix of model 2.
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An assessment of the quality of the test set in terms of model 1
and model 2 can be done with the use of Table III.30h. In case of
both models all entries of the dispersion matrices in the whole data
set and the test set are in the same order of magnitude. A matched
split (see Sections 4.1 and 10.2) is therefore also present in the
two-way approach using the determinant criterion.

11.3 The results of the different estimation methods
11.3.1 Ordinary least squares

The results of the OLS calculations on model 1 are summarized in
Table II1.31. All non-markers are modelled very well with high
F-ratios and low s values. When these s values are compared with the
corresponding standard deviations due to reproducibility, s.qpro»
(Table III.5) no lack of fit shows up. The standard errors of the
estimates of the marker coefficients are lower than in Table III.12,
where the induced-variance markers were used. This is due to the
lower degree of multicollinearity in the X matrix. The marker MHB is
a valuable predictor for every non-marker, except for PE. The vari-
able TOL is a relevant predictor for BAB, EHB, PE and PHB. Again PAR
plays a dubious role: it has relevance for PE. The mobile phase
variables, A and M, are only relevant for PE and EAB. An assessment
of the stability of the estimated coefficients under the multicol-
linearity is postponed till Subsection 11.3.2.
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None of the RMSEP values of the whole test set (Table III.31b) is
higher than the average standard deviation due to reproducibility.
The predictions are good. As in Subsection 10.3.1, three reasons for
this good performance can be given. First, the F-ratios are high,
indicating a high signal-to-noise ratio which makes the need for
biased estimation less!®. Second, low s values make the variance in
the predictions low, see Section 2.4, formula I1.42. Third, the
influence of the multicollinearity on the predictive performance is
not severe. As already explained in Subsection 10.3.1, this can be
checked by subjecting the x vectors used for prediction to the linear
combination which causes the multicollinearity, with loadings given
by the last PC on X, Table III1.30d. The mean sum of squared devi-
ations (MSSD) for the eighteen predictor vectors (six mobile phases
times three stationary phases), when subjected to this combination is
12.3x10"*. The analogous value in the training set is 4 .8¢107%. If
the test set vectors are subjected to the loadings associated with
the first PC, Table III.30d, the resulting MSSD is 1115x10™%. The
analogous value of the training set is 1506x10"%. A tentative con-
clusion is that the predictor vectors have the same multicollinear
pattern as the X vectors in the training set and that therefore the
influence of the multicollinearity on the predictive performance is
damped.

The predictions for the individual phases can be judged by the
individual RMSEP values in Table III.31b. The RMSEP values for the C6
phase are higher than the corresponding Srepros See Table III.5, for
each non-marker. The MSSD values associated with the last PC for the
C6, C8 and PHE phase are respectively, 25.6x107%, 4.7x10"% and
6.4x107%. The MSSD values associated with the first PC are, respect-
ively, 992x107%, 1197x10"% and 1158x10"*. These values support the
relatively bad predictions on the €6 phase. Only for PE and PHB the
RMSEP values of the C6 phase are high compared with the RMSEP values
for the whole test set. PE is discussed firstly.

The measurements of the solute PE are underestimated at the ternary
mobile phase compositions on the €6 column. Inspection of the 1n k
values of PE on C6 (Table III.4) shows a slight non-linear effect of
the mixing of the binary mobile phase "series 1" compositions. The
difference between the average of the measurements at wal and wml
(0.783) and the measurement at aml (0.881l) is larger than the Srepro
of PE on C6. The same holds for the “"series 2" mixtures:
(1.357+41.219)/2=1.288 1is smaller than 1.405, compared with Srepro -
The most influential predictor of PE is TOL. If the non-linear
behaviour of TOL, as a result of mixing binary eluentia, is investig-
ated in the training set, it appears that especially on the Cl and CN
stationary phase, TOL shows a pattern similar tc PE on these phases.
This is not the case if the measurements on the C6 phase of TOL and
PE are compared. There is an interaction between non-linear mixing
behaviour of the solutes TOL, PE and the stationary phases. This
makes the prediction of PE at the ternary mobile phase compositions
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on the C6 phase with the use of TOL, quite troublesome.

For PHB, bad predictions are observed at the "series 2" mixtures,
especially the wm2 and am2 mixtures on the C6 phase. All the predic-
tions of PHB on C6 are too high, which indicates that the mean
retention of the markers (especially TOL and MHB) estimates the mean
retention of PHB too high. Stated otherwise, in relation to the
retention of TOL and MHB, there is a difference in the behaviour of
PHR in the training- and test set. This can be verified roughly by
calculating the weighed average, with weighing-constant the corres-
ponding b_;,, of the mean ln k values of TOL and MHB in the training
set and compare this with the mean ln k value of PHB. Since TOL and
MHB are the most important predictors of PHB, only the 1ln k values of
these markers are needed to predict PHB on the Cl, CN and Cl8 phases
at the six mobile phase compositions. The ratio between this weighed
average and mean ln k of PHB is 1.8. The corresponding value on the
C6 phase is 1.5, which means that the mean retention of PHB on C6
(averaged over the six mobile phase compositions) is overestimated.
The particularly bad predictions at the wm2 and am? mixtures are
probably related to the remark in Section 11.1, where it was pointed
out that the particular combination PAR, TOL, MHB was not the best
one with respect to the "series 2" mixtures. An explanation of the
bad predictions at the “"series 2" mixtures might be that the depend-
ence of PHB on elution strength, in relation to the dependence of the
markers (especially TOL and MHB) on the same elution strength,
differentiates between the training set and the G6 phase. The influ-
ence of elution strength is overestimated by the markers on the C6
phase, resulting in predictions which are too high for PHB at the
ngeries 2" mixtures. Stated otherwise, the interaction between
elution strength and stationary phase should be represented well by
the markers. In the case of PHB, this interaction is not represented
well enough by the markers.

The variable ACP is badly predicted on the PHE phase. The retention
of ACP on PHE at mixtures wm2 and wal is severely underestimated. The
reason of this is not clear.

Summarizing the comments on the bad predictions of PE and PHB,
three aspects are to be distinguished. First, the particular position
(hydrophobicity) of a new stationary phase in relation to the sta-
tionary phases in the training set. This particular position of the
new stationary phase must be adequately assessed by the markers.
Second, non-linear mixing behaviour must follow the same patterns in
the training set as on the new phase, as well as for the markers and
for the non-markers. Third, the simultaneous influence of elution
strength on the markers and non-markers on the new phase must reflect
the patterns in the training set. Unfortunately none of these aspects
can be tested beforehand, a careful (theoretical) examination of the
prediction problem at hand is, therefore, necessary.

The variable PHB has a high RMSEP value in the training set,
caleculated with the leave-one-out procedure, higher than s,..,.,-
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Particularly bad predictions are obtained for PHB at the wal mixtures
on both Cl and CN. The score plots, Figures III.15a to III.15c, do
not reveal these points as leverage points and they might be consi-
dered influential. The leave-one-out RMSEP without the contribution
of these points is 0.066, which is a much better result. The results
of model 2 are discussed in the following. The estimated coefficients
and diagnostic values are reported in Table III.32b. Again high
F-ratios are obtained. Only the s values for PE and PHB are higher
than the corresponding Srepros indicating a slight lack-of-fit (note
that in model 1 the variable A was significant in the model equation
of PE and M nearly significant for PHB). The marker MHB is a relevant
predictor for all non-markers. For ACP, BAB and EAB the marker TOL is
also relevant, whereas PAR contributes only to BAB.

The predictions performed with the use of model 2 in the test set
are good, there is not one RMSEP in the test set larger than the
corresponding s..,.,. As for model 1, this is due to high F-ratios,
low s values and a similar multicollinear pattern in the training and
test set. To illustrate this last point the MSSD should be calculated
when the training- and test set vectors are subjected to the linear
combination associated with the last PC of the design matrix of
model 2, see Table III1.30. The outcomes are respectively, 12x10™* and
14x107%. The analogous values with the use of the loadings on the
first PC are 1288x10™* and 891x107*%.

The RMSEP of the individual phases, shows that the C6 phase has
RMSEP values which are always higher than the Srepro Vvalues. The MSSD
values of €6, C8 and PHE with respect to the last PC are, respect-
ively, 19.9x107%, 9.3x10"* and 13.8x10"%. For the first PC these
values are, respectivily, 1045x107%, 1128x10™* and 500x10"%. The high
MSSD value of C6, associated with the last PC, supports the view that
the multicollinear pattern in the training set is not completely
present on the €6 phase, so the multicollinearity may cause harm on
C6. Only for the solutes EAB and PHB, the RMSEP on the C6 phase is
higher than on the other phases. EAB is discussed firstly. Particu-
larly the retention at the mixtures wa2 and am?2 is badly predicted.
The predictions are too low, which indicates a different influence of
elution strength on the C6 phase and on the phases of the training
set with regard to the solutes TOL, MHB (the important predictors of
EAB) and EAB. If the mobile phase variables are incorporated
(model 1) better results are obtained, see Table TIT.31.

For PHB holds that the predictions obtained on the C6 phase at
mixtures wal and wa2 are too high. MHB is the most important predic-
tor of PHB in model 2. It is possible that the relative sensitivity
of MHB and PHB for the water/acetonitrile mixtures in the training
set differs from this sensitivity on the C6 phase. PHB profits from
the incorporation of the variables A and M in the model.

The bad prediction of AGP on PHE is caused by a severe underestim-
ation of the observed values at mixtures wm2 and wal.

The leave-one-out RMSEP are high for EAB and PHB. In case of EAB
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the 1n k values at combinations Cl8wml and Cl8wa2 are considerably
overestimated. If the contribution of these prediction errors is
subtracted from RMSEP the new RMSEP becomes 0.0695. For PHB the In k
value at the combination CNwal is underestimated. With this predic-
tion error omitted the RMSEP becomes 0.0836. The need for outlier
detection and regression diagnostics is again clear, but this is not
pursued any further.

A discussion on the differences between model 1 and 2 is divided in
two parts. The part describing the power of wvalidation criteria to
choose between the models is postponed till Subsection 11.4.3. The
differences between the models with regard to their predictive
performance are discussed. At this moment it is very hard to derive
solid conclusions by comparing the predictive performance of the
models. A comparison of the RMSEP wvalues should be done with the
corresponding S,...., kept in mind. All RMSEP in the test set are
lower than the associated s,.,,, values, for both models. The only
tentative conclusion is that model 1 predicts EHB, EAB and PHB
slightly better. For the other solutes no real differences between
the models are observed. The profit of using model 1 in predicting
EAB and PHB is obtained at the C6 phase, which has already been
discussed.

A comparison between the predictive performance of the marker set
chosen with the induced-variance criterion (Chapter 10) and the set
chosen with the determinant criterion (Chapter 11), in terms of OLS
results, is postponed till Section 11.5.

11.3.2 Ridge regression

Prior to the performance of ridge regression the data are centered
and scaled-to-length-one. The evaluation of cross-validation with
regard to the choice of the ridge parameter is postponed till Subsec-
tion 11.4.1. The results of model 1 are discussed firstly.

The ridge estimates for these models, with a leave-one-out choice
of k, are presented in Table III.33. Some representative ridge traces
are shown (Figures III.l7a to III.17d) and are much more stable than
the analogous ones in the case of the induced-variance markers
(Figures III.1lla to III.lld). Comparing, e.g., the ridge traces of PE
in both cases, very small changes in k have a large effect on the
parameter estimates of the induced-variance markers (Figure IIIL.1la),
whereas the influence on the parameter estimates of the determinant
markers is much milder (Figure IIIL.17b). This is due to its milder
multicollinearity. Changes in signs of the estimated coefficients of
the markers, at low values of k as in Figure III.lla, are not obser-
ved. For ACP the marker TOL becomes more pronounced than in the OLS
estimation. The variable MHB obtains some predictive relevance for
PE. The mobile phase variables do not diminish rapidly in the ridge
trace of EAB, which is in agreement with the better predictive
performance of model 1 in the case of EAB. The differences between
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the OLS estimates (Table III.3la) and the ridge estimates
(Table TIT.33a) are not as large as the analogous difference with the
induced-variance markers (Chapter 10).

With respect to the predictions with the ridge estimates of
model 1, Table III.33b, the conclusion is that slightly better
predictionsg are obtained, in the whole test set, with ridge regres-
sion. As a warning against drawing conclusions too quickly, note that
the RMSEP values of the whole test set for all non-markers, both for
the OLS and ridge estimates, are below the corresponding s
values.

The predictions on the C6 phase, especially the solutes BAR, PE and
PHB, profit considerably from applying the ridge estimates. This is
also reflected in the mean RMSEP values. Only PE has still a relative
high prediction error on C6é, the ternary mobile phase compositions
are still troublesome. The leave-one-out RMSEP is rather high for
PHB, which was also the case for OLS. The solute ACP is badly predic-
ted on the PHE phase: the same eluent mixtures as in the OLS case are
troublesome.

The real power of ridge regression can be assessed if the ridge
parameter is chosen to minimize the prediction error in the test set,
Table III.35. An evaluation of the leave-one-out choice of k is
postponed till Subsection 11.4.1. The estimated coefficients given in
Table IIT.33 do not differ much from the ones given in Table III.35.
The predictions show improvement in relation to the OLS predictions.
Yet, the remark regarding the Srepro 1S still valid.

An impression of the power of ridge regression for each test set
stationary phase separately, can be obtained by comparing the mean
RMSEP for the particular phases in the OLS case and the ridge case.
The stationary phase C8 does not profit from the ridge regression,
this is in agreement with the low MSSD value of C8 associated with
the last PC in the training set, see Subsection 11.3.1. The high
prediction error of ACP on the PHE phase has vanished.

It is interesting to note that all non-markers profit from ridge
regression, which was certainly not the case for the two-way approach
with the induced-variance markers, see Table III.17. A full compar-
ison of both two-way approaches using the induced-variance- or the
determinant markers is postponed till Section 11.5.

Some representative ridge traces of model 2 (Figure III.18) show a
smooth and similar behaviour for all solutes. Only for EAB the
variable PAR holds some predictive power, still the influence of PAR
remains small. This can be checked in Table III.34. The markers MHB
and TOL have predictive relevance for all non-markers. For the
solutes PE and EAB the ridge regression is not advantageous, compare
Tables III.34b and III.32b. Although these solutes profit from the
ridge operation with regard to the predictions on the PHE phase, the
predictions on the other phases, C6 and C8, are worse than with OLS.
On the whole, only the C6 and PHE phase profit slightly from this
ridge regression.

repro
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Figure III.17. Ridge traces of model 1 for the solutes ACP (a),
PE (b) and EAB (c). For abbreviations, see the text.
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The best results which can be obtained with ridge regression are
reported in Table III1.36. The estimated coefficients are in the same
order of magnitude as the leave-one-out choice k results. The mean
RMSEP values (when applying the optimal ridge regression) show that
only the predictions on C6 and PHE become better. This is in agree-
ment with the MSSD considerations in Subsection 11.3.1, where it was
shown that the 1n k values of the markers on the C8 phase resemble
the multicollinear pattern in the training set most. The solutes PE
and EAB do not profit from applying ridge regressiom.

11.3.3 James-Stein regression

All y vectors and columns of the X matrix are centered and scaled-
to-length-one prior to the James-Stein shrinkage calculations (see
Section 2.1). One of the necessary conditions to obtain a lower MSEP
for all wvalues of B is not fulfilled. This condition is d=lpZAi'1>2,
but in case of model 1 d=1.32 and for model 2 d=1.04. This implies
that there is no guarantee for better predictions, but, as argued
earlier in Subsection 10.3.3, there might be such a g value that
better predictions can be obtained by applying the JS shrinkage. The
results of model 1 are discussed firstly.

The leave-one-out method always advises shrinkage, all c values are
smaller than 1.00, see Table III.37a. An evaluation of the leave-
one-out choice of c is postponed till Subsection 11.4.2. By comparing
the s values of Table III.3la and Table III.37a it can be observed
that, in terms of sum of squared error, the leave-one-out c Stein
solution does not differ much from the OLS solution. Only the non-
markers ACP, BAB, EHB and PHB profit, to some extent, from the
shrinkage. The variable PE is predicted worse. Comparing the mean
RMSEP values for OLS and Stein regression with the leave-one-out c
choice, hardly shows any improvement.

By comparison, the Stein results with the best choice of ¢ are
given in Table III.37. These results are compared with the OLS ones
for model 1. The non-markers ACP, BAB, EHB and PHB profit from
applying Stein regression. Note that the differences between RMSEP
values used to decide whether or not Stein regression is useful, are
small compared with the associated S,.,,., values. Too decisive
conclusions are not allowed. The predictions of ACP on the PHE phase
become much better but the opposite is true for PHB. The profit for
PHB is on the C6 phase.

The mean BMSEP values for the C6, C8 and PHE phase, when applying
the Stein regression with the optimal choice of ¢, show that only the
C6 and PHE phase profit to some extent from the Stein regression.
This is related to the "multicollinearity pattern" of the markers on
these phases. Note that the performance of Stein regression, in
relation to OLS, is better with the markers PAR, TOL and MHB than
with the markers BAB, EHB ,PAR as in Chapter 10. This may be due to
the lesser degree of multicollinearity between the markers chosen
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with the determinant criterion.

The leave-one-out method in case of model 2 advises always shrink-
age, see Table III.38a. According to the RMSEP values in the whole
test set, there is hardly any profit from this shrinkage. This is
partly due to a bad choice of ¢, as can be seen in Table III.38c,
where the results for the optimal ¢ choice are given. The variable
PHB profits most from the optimal shrinkage. On all test set phases
there is some improvement after using shrinkage, especially on C6.
Again the gain from shrinkage (apart from the problem of the choice
of c¢) 1is greater for the two-way approach with the determinant
markers than with the induced-variance markers.

11.3.4 Partial least squares

The PLS calculations were performed in exactly the same way as
described in Subsection 10.3.4. The X-block constists of A, M, PAR,
TOL and of MHB and the Y-block of all non-markers. All columns in X
and Y were autoscaled prior to the calculations. Again only model 1
was calculated, otherwise too few predictors remain in the X-block.

Cross-validation, in the version of the SIMCA program (see Subsec-
tion 10.3.4), was used to establish the number of relevant dimen-
sions, which was three. The loadings, as reported in Table III.39a,
reveal the same pattern as in the case of the induced-variance
markers (Table III1.21). The markers load on the first dimension,
together with all non-markers. The second dimension in the X-block
consitutes the mobile phase variables. The relative low loading of
EAB on this dimension does not point to irrelevance of the mobile
phase variables in the prediction of EAB, see Tables III.38 and
II1.35, but, on the contrary, the ridge results show that the mobile
phase variables have some relevance. The marker PAR loads high on the
third dimension in the X-block. The related non-markers in the Y-
block are ACP, BAB and EAB. The conclusion that PAR may have some
relevance for the prediction of these non-markers is contradicted in
Tables III.33 and IIT.35.

The summary statistics regarding the predictive performance of PLS,
Table I11.39%, can be compared with the OLS ones (Table III.31b). For
the individual phases in the test set, differences are absent between
OLS and PLS. The non-markers ACP, BAB and PE profit to some extent
from applying PLS. The same was observed for the non-markers with the
best ridge results.

11.4 The performance of cross-validation
11.4.1 Determining the ridge parameter k

The different ways a ridge parameter can be choosen (Sections
10.4.2 and 3.2) is already discussed. The same methods will be

discussed in the context of the two-way approach with the determinant
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markers. Tables III.40 and III.41 state the results. The ultimate
yardstick for the comparison of the different choices is the "best"
choice: the k values that gives rise to the lowest RMSEP in the test
set. Obviously, this value is never known in practice, but for the
sake of comparison this yardstick is chosen. The results of model 1
are discussed firstly.

. From the "k-choice methods" - leave-one-out method, Hoerl and trace
- the number of times a method gives a TESTRMSEP value closest to the
best one is counted. These counts are four, one and two for, respect-
ively, the leave-one-out-, Hoerl- and trace method. A slight advant-
age of using the leave-one-out method is seen. This is in contrast
with the conclusion in Subsection 10.4.2 (Table III.23), with the
induced-variance markers, where Hoerl's method surpassed the leave-
one-out method. Whether this observation is related to the lower
degree of multicollinearity when the markers PAR, TOL and MHB are
used is not clear.

A similar pattern is seen with regard to the results of model 2,
Table III.41. Again the leave-one-out method has four times a
TESTRMSEP value closest to the optimal one. For both Hoerl’s- and the
trace method this number is two. After comparing this with the
results of Table II1.24, where the induced-variance markers were
used, the same conclusion as above can be drawn. The leave-one-out
method seems to perform better in case of a lower degree of multicol-
linearity.

11.4.2 Determining the James-Stein shrinkage parameter c

The leave-one-out choice of ¢ is compared with the c¢ value as
proposed by Stein, see Sections 10.4.3 and 3.3. The results of
model 1, Table III.42, is discussed firstly. The best choice of ¢
gives rise to the lowest TESTRMSEP value. The comparison between the
¢ choice methods is done analogous to the comparison between the k
choice methods in the previous chapter. The Stein ¢ value always
advises less shrinkage than the leave-one-out method, which results
in a good advice regarding the shrinkage factor for PE. Yet, the
number of times leave-one-out recommends a c value that gives rise to
the TESTRMSEP value closest to the optimal one is four whereas for
the Stein c choice this number is two. This is in contrast with the
results in Table III.25, where the Stein method performed better than
the leave-one-out method.

The same conclusions hold for model 2. Again the leave-one-out
method is better than Steins choice, except in cases where no shrink-
age is profitable (PE and EAB), because of the more conservative
nature of Steins choice.

The same phenomenon with regard to the leave-one-out choice of the
shrinkage parameter ¢ is observed as in the leave-one-out choice of
the ridge parameter k. There seems to be a relation between the
performance of the leave-one-out method and degree of multicolline-
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arity in the X matrix. A high degree of multicollinearity is problem-
atic with the performance of the leave-one-out method. Further
research is needed on this topic.

11.4.3 Choosing between modelspecifications

The performance of cross-validation, and more specifically the
prediction error sum of squares (PRESS) as a result of the cross-
validation, with respect to the choice between the models 1 and 2,
will be discussed within the OLS context. In this perspective the
performance of the PRESS criterion is compared with the Cy, PRC and
Rﬁdj criteria (Table I1I1.43). The PRESS, Cp and PRC have to be
minimized whereas the Rgdj should be maximized when choosing between
model 1 and 2.

The variables BAB, EHB, EAB and PHB are concentrated on because the
largest difference in predictive performance between the models is
observed with these solutes. Cp, gives a wrong advice for EHB. The
PRESS, PRC and Rzad\j always give a good advice. Again, as in the case
with the induced-variance markers (Table II11.26), there is no clear
preference for the PRESS criterion. Note that none of the validation
criteria gives good advice in choosing between model 1 and 2 in case
of ACP and PE, where the difference between the models is less
pronounced.

If contrasted with the results given in Table III1.26 (the markers
BAB, EHB, PAR) a slight improvement of the performance of the PRESS
criterion is observed, indicating a relation between the performance
of PRESS and the degree of multicollinearity.

11.4.4 Choosing between estimation methods

Cross-validation can be used to choose between estimation methods.
For a particular non-marker, the method that gives rise to the lowest
leave-one-out PRESS value is advised by cross-validation. This advice
can be judged by the test set results. The evaluation of cross-
validation is done with Table III.44. Model 1 is discussed firstly.

Cross-validation gives a good advice in five of the six cases, only
for PE the ridge estimation is advised, which is the second best
solution. An assessment of the performance of cross-validation with
respect to the choice of the estimation method is obscured by the
fact that ridge is almost everywhere the best estimation method, in
the training set as well as in the test set. If cross-validation has
to choose from a wider variety of best estimation methods then a
better assessment is possible. A comparison between Table II1.34a
with its analogon Table II1.27, is skewed on behalf of the same
reason: the variety of best estimation methods is greater in case of
the two-way approach with the induced-variance markers. Note that PLS
is the best estimation method for PE in both cases, the induced-
variance markers and the determinant markers. The reason of this
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particular phenomenon is not clear.

In case of model 2, Table III.34b, the same line of reasoning as
above can be applied. Except for PE and EAB, ridge is always the best
estimation method. Cross-validation does always advise ridge, and
gives a false advice twice. This wrong advice 1is related to the
performance of CV in order to choose the ridge parameter, see Subsec-
tion 11.4.1. CV fails to advise the right ridge parameter twice, in
case of PE and EAB.

A reasonable judgement regarding the performance of cross-valida-
tion with respect to the choice of the estimation method 1is only
possible for a wider range of non-markers and, perhaps, estimation
methods.

11.5 Comparing the induced-variance- and the determinant markers

Both two-way approaches can be compared with regard to the con-
sequence they have for the predictive: performance of the applied
estimation methods for both model 1 and 2. The main differences
between the markers BAB, EHB, PAR and PAR, TOL, MHB should be kept in
mind. The first set of markers have a low determinant value and give
rise to serious multicollinearity. The second set of markers have the
highest determinant, moderate multicollinearity and an induced-
variance which is not much lower than for the first set of markers.
The key question when comparing the outcomes of the induced-variance-
and the determinant approaches is: is the decrease in induced-vari-
ance, resulting from choosing with the determinant criterion instead
of the induced-variance criterion, payed off by a decrease in multi-
collinearity, which at the end, results in better predictions with
the markers chosen with the determinant criterion? This question is
obscured by the fact that the markers, chosen with the determinant
criterion, also have a high induced-variance. Therefore, the main
difference between the marker sets lies in their multicollinear
behaviour.

First, a comparison is made of the performance of all estimation
methods separately. Such a comparison can be done in two ways. The
first point of view is the evalution of the estimation methods with
regard to the prediction of ACP, PE, EAB and PHB. These solutes are
not contained in either of the markers sets. The second point of view
is the judgement of estimation methods averaged over all non-markers.
Ideally, a large set of solutes, which are not contained in either of
the marker sets, should be available for the assessment of the marker
choice.

The OLS results of model 1 are discussed firstly. Judging the
predictive performance of both two-way approaches, it should be kept
in mind that the multicollinear pattern on C6 deviates from the
training set pattern in case of the induced-variance approach, see
the MSSD values in Subsection 10.3.1. The same holds for the deter-
minant approach, where the PHE phase has a relatively high MSSD
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value. The overall predictive performance of both approaches can be
judged by comparing the mean RMSEP values. There is hardly any
difference, especially if the bad predictions of TOL are observed
which make the determinant approach less favourable. The predictions
on C6 with the determinant approach are better than with the induced-
variance approach, despite the high MSSD value. This might be due to
the lower degree of multicollinearity with the determinant approach.
If the individual solutes are examined, it appears that only EAB is
better predicted with the determinant approach. PHB has a better
predictor in EHB than MHB and ACP gains much from the induced-vari-
ance approach in the predictions on the PHE phase.

The variable PE is better predicted on the €6 and C8 phases with
the use of the induced-variance approach, and on the PHE phase with
the determinant approach. This indicates two properties. First, an
inhomogeneity of the test set: the PHE phase plays a particular role.
Second, PE has a specific predictor in the marker set PAR, TOL, MHB
which improves the predictions on PHE, but these predictors worsen
the prediction on the C6 and C8 phases. A specific combination of a
non-marker and a test set stationary phase demands its own predic-
tor(s). This stresses the notion of a representative training set.
Not all non-markers reveal these differences with respect to the test
set phases: the solute PHB is predicted better on all test set phases
with the induced-variance markers, which shows that EHB is a better
predictor than MHB in all cases. There is no interaction between
stationary phase, non-marker and predictor. The results of model 2
are not discussed separately, the conclusions are similar as in the
case of model 1.

The ridge results of model 1, with the leave-one-out choice of Kk,
show the same pattern as the OLS results for model 1. The determinant
approach performs slightly better. In case of these ridge results,
the predictions of TOL are not as bad as in the OLS case with the
determinant markers. The mean RMSEP value (averaged over the whole
test set) 1is, therefore, a better yardstick for comparison in the
ridge case than in the case of OLS. The ridge results of model 2,
again with respect to the leave-one-out choice of k, show a slightly
better performance of the determinant approach. This is, however,
obscured by the moderately bad predictions of TOL. For the non-
markers ACP, PE, EAB and PHB, the induced-variance approach performs
better.

The ridge results for model 1, with the best choice of k, show no
real advantage in using the determinant marker set. The solute EAB ig
better predicted with the determinant markers, only on the PHE phase
the Induced-variance marker set is better. This indicates again an
interaction between non-marker, stationary phase and predictor(s). In
this case the predictor BAB, a homolog of EAB might have predictive
relevance for EAB on PHE, see Tables III.17 and II11.18. This phenom-
enon, with regard to the prediction of EAB, is also visible in the
ridge results of model 2, again with the best choice of the ridge
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parameter. When the ridge results of model 2 are examined, it is
worth noticing that PE is now better predicted on PHE with the use of
the determinant markers set, contrary to the ridge (and OLS) results
of model 1. The mobile phase variables in combination with the
induced-variance marker set are harmful for the prediction of PE on
PHE.

The results of the Stein estimation of model 1, with the leave-
one-out choice of ¢, show an advantage with the use of the deter-
minant marker set. Only on the PHE phase the induced-variance marker
set has a better performance. PE is predicted better by the induced-
variance marker set on the C6 and C8 phase. On the PHE phase the
determinant marker set is better. Exactly the opposite is true for
EAB. These observations indicate again interactions between non-
markers, stationary phases and predictors. The variables ACP and PHB
are better predicted with the induced-variance markers. Roughly the
same conclusions can be drawn regarding the results of the Stein
estimation of model 1 with the best choice of c.

The Stein results of model 2 show, both for the leave-one-out- and
best choice of ¢, a slight advantage in using the determinant marker
set. The variable PE is now better predicted with the induced-vari-
ance markers on PHE. This is in agreement with the ridge results, see
above.

The results for the PLS estimation show that the determinant
approach performs better than the induced-variance approach, on all
phases (particular C€6). It is difficult to relate this to the degree
of multicollinearity, because PLS decomposes the X matrix in ortho-
gonal t vectors, so the multicollinearity is removed. Besides, the
solute TOL is badly predicted with the induced-variance markers and
PLS, especially on the C6 phase.

The influence of the marker choice (and the degree of multicolline-
arity) on the performance of ridge regression as a whole, can be
established by comparing the mean RMSEP values for the whole test
set, and for the individual test set phases, of OLS and ridge (both
the leave-one-out- and best choice of k). Although ridge regression
is more advantageous if the induced-variance markers are used instead
of the determinant markers, when it is evaluated on the whole set,
the general advantage of ridge is small. For model 2 such a compar-
ison reveals a slight advantage in using ridge. These kinds of
comparisons should be related to the reproducibility and are there-
fore tentative. A phenomenon which emerges is that on the phases with
a deviating multicollinear pattern of the markers as compared with
the training set (C6 and PHE), ridge regression is relativily more
advantageous. Especially in case of the prediction on C6 with the
induced-variance markers, ridge improves the predictions, whereas the
MSSD value of C6 is high.

Theoretically Stein regression is not profitable when a high degree
of multicollinearity is present. When the appropriate mean RMSEP
values are compared it appears that, for both model 1 and 2, the
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determinant approach profits more from the Stein shrinkage than the
induced-variance approach, which profits hardly from it. Again, as
above, the test set phase with a higher deviating multicollinear
behaviour profits the most, i.e. C6 and PHE with the determinant
approach.

Some summarizing is convenient. First, there is no clear preference
for the induced-variance- or determinant criterion to choose the
markers. A slight advantage of the latter criterion is its ability to
chose extreme solutes, such as TOL, which cannot be predicted easily.
However, 1f the retention of a solute is very difficult to predict
(e.g. PAR), this solute will automatically be a member of the in-
duced-variance marker set. Both marker choice criteria perform well.
Second, an ultimate yardstick to measure the difference between the
multicollinear pattern in the training set phases and a specific test
set phase is hard to derive. It can be concluded that a decrease in
predictive performance of OLS, resulting from deviating multicol-
linear behaviour of a marker set on a specific test set phase as
measured by MSSD, can be counteracted by a shrinkage operation.
Either ridge or Stein estimation will improve the predictions to some
extent. Finally, specific interactions between non-markers (e.g. PE
and EAB), markers and test set stationary phases (e.g. PHE) cause
trouble and unexpected (and unforeseen) prediction results.

A natural question to ask is whether it is possible to validate the
marker choice and choose that marker set which is expected to perform
best. The validation criteria in combination with OLS estimation are
discussed firstly. Several validation criteria for choosing between
rival models have been presented. Our purpose is to compare model 1
when using the induced-variance marker set and the determinant marker
set, the two models will be labelled 1A and 1B, respectivily.

The C, criterion is mnot suitable because it focusses on discrimin-
ating between a full model and a reduced one. The problem at hand is
the comparison of models of the same size, but with different mar-
kers. With the comparison of model 1A and 1B, the values of n and m
remain the same. This means that both PRC and Rgdj will rely upon the
residual sum of squares in their judgement which model to choose. The
model with the smallest residual sum of squares will be advised as
the best model, both criteria give the same advice. The only compar-
ison made, therefore, is between PRESS and PRC.

In case of the solutes ACP and PHB, model 1A is the best choice
which is clearly detected by the criteria PRC and PRESS. Solute EAB
is slightly better predictable with model 1B. It is not detected with
PRC and PRESS. Models 1A and 1B differ hardly in case of PE with
respect to their predictive power. This is not detected by PRC and
PRESS and these criteria give a convinced wrong advice. Judging the
behaviour of both validation criteria with respect to PE and EAB, it
should be kept in mind that differences between the training-and test
set are clearly present for these solutes.
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The same analysis can be done with regard to model 2. Two models
are compared, model 2A and 2B, both contain only the markers, re-
spectively the induced-variance markers and the determinant markers.
Again the behaviour of PRC and PRESS with regard to ACP and PHB are
good. The wrong advice is given for the solutes PE and EAB, by both
criteria.

The conclusion is that clear differences between the predictive
power of the models in the test set are detected by the PRC and PRESS
criteria. The inverse is not true, when the criteria indicate a clear
difference between either models 1A and 1B, or 2A and 2B, this is no
guarantee for the same differences between the models with respect to
their predictive performance.

The only criterion by which the performance of the marker sets in
combination with PLS estimation can be assessed is PRESS. Concen-
trating again on the solutes ACP, PE, EAB and PHB the PRESS criterion
only fails in recognizing that PE is better predicted with the
determinant marker set. The particular behaviour of PE, as already
discussed, has again its influence.
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Chapter 12 Two-way approach: other marker choices

12.1 A homologous series as markers

The solutes MHB, EHB and PHB are members of a homologous series.
Such a homologous series is often used to correct differences in
retention times due to variation of stationary phases, see Chapter 7.
They can be evaluated with regard to their predictive power. Only the
results of the predictions of the capacity factors of the non-markers
obtained with model 1 (each 1n k of a non-marker is a linear function
of a constant, the mobile phase fractions and the 1ln k values of the
homologs), are discussed. The training- and test set are the same as
in Chapters 10 and 11. Within the data matrix as pictured in Fig-
ure ITI.8, the homologs induce 97.2% of the variation in that matrix,
which is slightly lower than the induced-variance markers (99.5%).
The determinant of the dispersion matrix of the homologs is 0.6x107 7,
which is considerably lower than in case of the determinant markers
(3310x107°%). This means that from the point of view of the induced-
variance criterion, the homologs form a reasonable set of markers.
From the viewpoint of the determinant criterion, however, the homo-
logs form a bad set of markers.

A principal component analysis on the column autoscaled training
set - the variables are the mobile phase fractions and ln k values of
MHB, EHB and PHB- shows that two PC's already explain 99.3% of the
variation (the first PC accounts for 60.9%). The score plot of the
two first PC's is shown in Figure II1.19. The CN measurements form a
different class, but no clear outliers are present,.

Some diagnostics of the associated design matrix are presented in
Table IIT.45. High correlations are present between the homologs, see
Table IIT.45a. Very high variance inflation factors are observed,
which indicates strong multicollinearity. This is also reflected in
the very high condition number (105, see Table III.45¢). Such a high
condition number points to very serious multicollinearity*®. From
Table III1.45c it can be inferred that strong multicollinearity is
caused by the homologs, which, as expected, show a very similar
retention behaviour in the training set. A moderate relation is seen
between A, M, MHB and PHB with associated condition index of 27. The
estimated coefficient of solute EHB has the highest variance infla-
tion factor of the series, indicating that, of all homologs, this
solute can be predicted best from the other X variables in the model.
This is in agreement with the observation that EHB is the intermedi-
ate in the homologous series, the fastest (MHB) and slowest (PHB)
eluting homologs are good predictors Ffor EHB. Table IIT1.45¢ shows
that a very large proportion of the variance in the estimated coeffi-
cient of EHB is due to the main source of multicollinearity.

The results of the predictions, when ordinary least squares is used
to estimate the coefficients, are presented in Table III1.46. The
variable TOL is predicted not very well, especially on the C8 and
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Figure III.19. Score plot of a PCA on the design matrix of model 1.
Legend, see Fig.III.6.

PHE phase. PAR is badly predicted, especially on the PHE phase. This
is in agreement with the remarks made in Sections 10.1 and 11.1. The
results of the OLS calculations can be compared with their counter-
parts in Tables III1.12 (induced-variance markers) and III.31 (deter-
minant markers). Note that the marker MHB is also present in the
determinant marker set and is a good predictor. The mean RMSEP in the
whole test set is higher for the homolog markers than the other
marker sets. If the solutes ACP, PE and EAB are examined- note that
none of these solutes is contained in the three marker sets- it
appears that PE is slightly better predicted with the homologs. The
outcome of an evaluation of the predictive performance of the three
different marker sets, depends on whether all non-markers are exam-
ined or only specific omes. This illustrates the "averaging" charac-
ter of the induced-variance- and determinant marker choice criteria.
With these criteria, markers are selected that give a good predictive
performance on average. For the prediction of a specific solute on a
specific stationary phase, a marker set, not chosen by one of the two
criteria, might be more appropriate.

Whether the measurements of the markers (homologs) on the test set
stationary phases bear the same multicollinear pattern as in the
training set, can be assessed by calculating the mean sum of squared
deviations (MSSD, see Subsection 10.3.1). For the C6, C8 and PHE
phase the MSSD values are respectively, 3.26x107%; 796.3x1075 and
1.88x10°5. The training set MSSD is 2.49x107°. The difference in
predictive performance between C6 and C8 might, partly, be due to the
deviating behaviour of (8 with respect to the MSSD values; the
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variance of the predictions on €8 is blown up by the multicolline-
arity. The predictions on the PHE phase are relatively bad. The
variance in the predictions on the PHE phase is not severely blown up
by the multicollinearity because this phase has a low MSSD value. As
pointed out in Section 2.4, there is another aspect which may hamper
predictions: the bias of the predictor §. This bias may be caused by
misspecification. Stated otherwise, another set of markers might be
moye appropriate for the prediction on the PHE phase.

Some of the ridge results are presented in Figures III1.20a to
I11.20c and Table III.47. The ridge traces are highly unstable,
because of the high degree of multicollinearity. A priori, the
estimated coefficients of the homologs are expected to have the same
sign, because the In k values of the homologs are pairwise highly
correlated. For all non-markers, the OLS estimate of Bguy has always
the opposite sign as those of Bupp and Bpyyp. The reason of this is,
as pointed out in Subsection 10.3.1, a high negative covariance
between the estimated coefficients of Brus, Bumns (-1130x0?) and of
Beup» Bpyp (-1301x02). Only for TOL and PAR the sign difference
remains with increasing k. The leave-one-out procedure only advises a
non-zero k value in case of PE, see Table II1.47a, the main advantage
is in the predictions on C8. An evaluation of the leave-one-out
choice of the ridge parameter is not pursued, but it should be noted
that, contrary to the induced-variance and determinant two-way
approaches, a non-zero k value is only advised in one case. This
might indicate a relation between multicollinearity and the perfor-
mance of the leave-one-out choice of k. The ridge results with the
best k value, Table III.47b, show that improvement can be obtained in
the predictions on the PHE phase. On the other test set phases the
predictions become worse: the reduction of variance in the predic-
tions does not compensate for the increase of bias.

The hypothesis that the relatively bad prediction on the PHE phase
is due to specification error- the wrong set of markers is used to
predict on the PHE phase- is contradicted with the ridge results.
Note the considerable improvements (eg. TOL), when the best ridge
estimates are used.

The results of the Stein estimation are presented in Table III.48.
The Stein estimation with leave-one-out choice of the shrinkage
parameter c, Table III.48a, hardly improves the predictions. The
results of Stein estimation with the best choice of c, Table II11.48b,
does not show much improvement either. This is in agreement with the
theoretical result that Stein estimation does not improve in case of
severe multicollinearity, see Section 3.3.

The PLS calculations are performed with all non-markers gathered in
the Y-block. Both X- and Y matrices were column-autoscaled prior to
the PLS calculations. Calculations with PAR as a separate y variable
(scaled or unscaled) did not yield any improvement (results not
shown). Two dimensions in the PLS model were applied, explaining
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99.3% of the variation in the X matrix and 88.5% of the variation in
the Y matrix, The results of the predictions with this PLS model are
presented in Table III.49. Only the variables PE and BAB are better
predicted with PLS than with OLS. PE profits from PLS prediction on
C8, and BAB is better predicted with PLS on €8 and PHE. The reason
for these improvements is not clear. On the whole, as measured by the
mean RMSEP of all non-markers in the whole test set, PLS gives worse
predictions than OLS. This holds also for each particular test set
stationary phase. The conclusion is that PLS generally does not
improve over OLS in this situation with severe multicollinearity.
Whether or not this result depends on the kind of scaling applied, is
not known (see Subsection 10.3.4).

The performance of cross-validation with respect to the choice of
the estimation method is shown in Table ITI.50,. Only in case of ACP,
TOL and PAR the right advice is given. For the other three solutes
the second best choice is given. Compared with the analogous results
of the two-way approach with determinant markers, Table III.44a, the
performance of CV is worse. Again, as in the case of the two-way
approach with the induced-variance markers, this might be connected
with the multicollinearity. The results with respect to the perfor-
mance of CV for the induced-variance markers are comparable to those
of the homologous markers. This contradicts the hypothesis that the
use of CV as procedure to choose between estimation methods depends
on the degree of multicollinearity.

There is no clear preference for a particular estimation method. It
is again striking that PE is predicted best by PLS, as was the case
when using the other sets of markers. A detailed analysis is neces-
sary, but will not be pursued any further.

12.2 Using bad markers

Using the induced-variance criterion a set of bad markers can be
chosen. The wvariables ACP, BAB and PE induce only 90.9% of the
variation in the whole data table of Figure III.8 which is the lowest
when three markers are used. A model which relates the non-markers
linearly to the mobile phase fractions and the ln k values of ACP,
BAB, PE will be tested.

The diagnostics of the resulting design matrix are presented in
Table III.51. Again high correlations between the markers are vis-
ible. The variance inflation factors are high, but not as high as in
case of the homologs. The multicollinearity is in the same order of
magnitude as with the induced-variance markers. A plot of the scores
on the first two components of a PCA (autoscaled) on the design
matrix is shown in Figure III.2l. No clear leverage points are
present.

The results of the predictions with OLS, Table ITIT.52, show a worse
performance of this marker set than in case of the induced-variance-
or the determinant markers, especially on the PHE phase. The
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Figure III.21. Score plot of the design matrix of model 1. Legend,
see Fig III.6.

retention of the homologs- MHB, EHB, PHB- is well predicted with this
marker set, but TOL and PAR are predicted poorly, again especially on
the PHE phase. The MSSD value for the training set, as calculated
with the loadings on the final PC (Table IIT.51d), 1is 8x107%. These
values are 8.2x1075; 10.4x10"° and 11.4x107° for the €6, C8 and PHE
phase, respectively. This indicates that the multicollinearity has no
serious effect, therefore, on the variance of the predictions in the
test set.

Ridge regression, with leave-one-out choice of k (Table TII1.53a),
is only to a small extent profitable for EAB, the other solutes are
predicted worse with ridge than with OLS. If the best choice of k is
made, Table ITI.53b, only EAB has a non-zero k value, and profits to
some extent of the ridge operation. On the whole it can be concluded
that ridge regression does not improve the predictions when compared
with OLS.

Stein regression with the leave-one-out choice of ¢, Table III.54a,
shows small improvements for PAR (especially on PHE) and PHB. If the
best choice of ¢ is made, Table III.54b, also small improvements are
visible. But the bad predictions of PAR and TOL are not compensated
for. These bad OLS predictions are probably due to bias caused by
misspecification: the wrong marker set is used.

The PLS calculations are done with all non-markers gathered in the
Y-block, both matrices X and Y were column autoscaled and two dimen-
sions were used in the PLS model (explaining 99.1% and 88.3% of the
variation in X and Y, respectively). PLS estimation (Table I11.55) is
only, and to some extent, profitable for EAB. All other non-markers
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are predicted worse with PLS than with OLS. Obviously, the bias
introduced in the predicted values by using PLS is not compensated
for by the reduction of the variance.

A particularly poor performance of CV is shown in Table III.56.
Cross-validation never advises the best estimation method and hardly
ever the second best choice. How this behaviour is related to the bad
choice of the markers is not clear and still to be investigated.

12.3 Conclusions of the two-way approaches

Some overall conclusions can be drawn. It should be kept in mind
that the data set is rather small, especially as far as the number of
test solutes 1is concerned. The reported calculations should, there-
fore, be considered a pilot study and an example by which calibration
calculations can be performed.

1. The tentative conclusion can be drawn that choosing markers with
one of the two proposed criteria is better than using homologs or
random solutes as markers. There are other criteria which are still
to be evaluated (see Chapter 1), preferably on a larger data set. One
of these criteria is designed to choose the solutes, given a subset-
size, that maximize the minimal R? over all non-markers.

2. Both described marker choice criteria are sensitive to "outlying”
variables (solutes). Prior to the marker selection a thorough ana-
lysis of the training data is needed with this respect. The solute
PAR shows outlying behaviour.

3. There seems to be a slight advantage in the use of the determinant
criterion for the marker selection. The markers chosen with the
determinant criterion give a lower degree of multicollinearity in the
ultimate models., This is to some extent advantageous for Stein
regression and the performance of cross-validation in choosing k, c
and the estimation method.

4. When an estimation method has to be chosen which has a reasonable
performance on average, ridge regression seems appropriate. The
choice of the ridge parameter k is a problem. The leave-one-out
choice works only reasonable in case of low multicollinearity (deter-
minant markers), while Hoerl's method is preferable in cases of
moderate multicollinearity (induced-variance markers). The method of
McDonald and Galarneau is worth trying.

5. A priory knowledge on the specific interactions between training-
and test set phases, non-markers, markers, and mobile phase composi-
tion is needed. There is no guarantee that a set of markers performs
well in predicting the retention of each non-marker on each test set
phase (at each mobile phase composition), because of the above
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mentioned interactions. Speaking in statistical terms, the availa-
bility of a representative sample of stationary phases is crucial.

6. Models incorporating explicitly the mobile phase variables seem to
work slightly better, on average, than models without these vari-
ables. This has consequences for the choice of the markers. A marker
choice criterion that reckons with the incorporation of the mobile
phase variables in the final model is worth trying.

7. A good yardstick is needed to decide if the multicollinearity
pattern of the markers (and mobile phase variables) in a test set are
similar to the pattern in the training set. The performance of the
vardstick used here, the mean sum of squared deviations (MSSD),
should be assessed.

8. Some properties of the prediction procedure still have to be
tested. The influence of scaling and the incorporation of interaction
terms in the models (to account for non-linear mixing behaviour of
the mobile phase) should be investigated.
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Chapter 13 Three-way approaches

13.1 Three-way PCA and PARAFAC on the whole data cube

One of the conclusions in Chapters 10-12 was that the solute PAR
showed deviating behaviour. This solute is therefore discarded from
the following calculations. The three-way FPCA and PARAFAC model is
performed on the whole data cube firstly. This data cube, with the
typical element ¥, consists of In k wvalues with the stationary

phases as objects (index i=1,...,6; the first mode), the solutes
(index j=1,...,8; the second mode) and the mobile phase compositions
(index k=1,...,6; the third mode) as variables. This arrangement is

visualized in Figure III.4a of Chapter 9 with the appropriate modifi-
cation of the index values.

Data centering is performed in such a way that for each j,k it
holds that 2Zx; ;, = 0, where the summation runs from i=1,..,6. Because
differences between stationary phases is of primary interest, this
centering operation seems reasonable. Contrary to the arguments given
in Section 9.7 and 10.1, scaling of the data cube is not performed,
because all measurements are in the same units and scaling of data in
three-way analyses is not straightforward®®.

After the centering operation, the mean sum of squares of each
stationary phase i, before applying the model, can be calculated as
injkz/(9x6), the summation running over all combinations of j and k.
These MS,.; values can be regarded as the mean sum of squares that is
to be explained by the model, or, stated otherwise, the mean gum of
squares before the model is applied. After applying the model, values
similar to MS,.r; can be calculated for the residuals: the MS, g
values. An important question in modelling a data cube is the number
of components which should be retained. Because the experiment was
designed in such a way that estimates of the variance of the measure-
ments due to experimental error were available, these estimates can
serve as a yardstick to choose the number of components, by comparing
the MS,.,, values with the measurement error variances.

The results of the unfold-PCA will be discussed firstly. This 1is
equivalent to an ordinary PCA on the unfolded data cube, where the
data cube is unfolded so that the direction of the stationary phases
(the objects) remains intact. (see Section 1.6). All parameters can
then be estimated with the usual PCA algorithms. The results are
presented in Table III.57.

The mean of all 1n k values on a stationary phase, after the
centering operation, can be calculated as the arithmetic mean of all
values in the corresponding layer in the data cube. These mean values
are reported in Table IIT.57a. This mean value is almost zero for
stationary phase Cl. This stationary phase takes an intermediate
position in the range of the six stationary phases and its retention
values hardly deviate from the mean values. Comparing the MS, .
values with the corresponding sfepro, it is clear that the retention
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values on the Cl phase hardly show any systematic variation after the
centering operation. Both observations - near-zero mean and hardly
systematic variation - will have its consequences for the calibration
of the C1 phase, as will become apparent later on.

The variation of the retention values on all stationary phases,
except Cl, can be explained with one principal component: 98.8% of
the wvariation in the whole data cube is explained by the first
component, a percentage comparable with the previously found one in
Section 9.7. Contrary to the results reported in Section 9.7, the
loadings of all 48 (8x6) variables on the first PC are positive,
because the solute PAR has been omitted. For the interpretation of
the loadings and scores (Table II1.57d) on the first PC, reference is
given to Section 9.7.

Only the C18 phase has a MS value which is higher than the

res

corresponding sfepro, but the s?, .. of Cl8 is very low. A better
approach might be to compare the MS.., values with the mean s%epro.

In this context only the variation on Cl is not explained well, as
already discussed, but this stationary phase can be regarded as an
exception.

When the MS__ ., wvalues of the individual solutes are considered
(Table III.57b), it appears that only TOL is not explained completely
by the first component. High positive residuals of this solute are
observed on the C18 phase, at mobile phase compositions wml, wm2,
aml, and am2, indicating a systematic error of the model. The same
pattern is present, although somewhat weaker, in the residuals of TOL
on the CN phase. The stationary phases Cl8 and CN are the extreme
stationary phases, see also Table III.57d, which may partly explain
the situation. Yet, the fit of the retention values of the other
solutes on these phases is reasonable even in case of the solute BABR,
which is also a slow eluting compound. A three-way PCA with two
components (not shown) decreases the residuals of TOL on C18 and CN
to a reasonable size, but, as argued earlier, this second component
cannot be regarded as significant in comparison with the reproduci-
bility. The conclusion is that the solute TOL shows selective beha-
viour that is not accounted for by the first component. If more
precise measurements are available this selective effect of TOL can
perhaps be modelled with an extra component in the three-way PCA.

The MS_,. values of the individual mobile phase compositions are
reported in Table III.57¢, and do not reveal deviating behaviour.

Starting with the same centered data cube as above, the PARAFAC
model was applied. For an explanation of this model, reference 1is
given to Section 1.6. The main difference between unfold-PCA and
PARAFAC is that the latter decomposes the data cube as the summation
of products of vectors, whereas unfold-PCA decomposes the data cube
as a summation of products of vectors and two-way matrices.

In order to explain the consequences of the difference between the
unfold-PCA and PARAFAC model, formulas of Section 1.6 are repeated.
One component is assumed, in both cases. The unfold-PCA model is;
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Xijk =til'pljk +eijk i=1,...,6; J=1,,8, k=l,,6
where t; (i=1,...,6) are the scores on the first principal component
and Pj i (j=1,...,8; k=1,...,6) are the loadings. The e; jy values are

residuals. The PARAFAC model is:

%5k < agq.byq.Cy F o€k i=1,...,6; j=1,...,8; k=1,...,6
where aj, (i=1,..,6) are the scores of the stationary phase on the
first PARAFAC component, bjl (j=1,,.8) and ¢y, (k=1,..,6) are the
loadings of the solutes and mobile phases, respectively, on the first
PARAFAC component.

The PARAFAC model puts a constraint on the loadings in the second
and third mode. Whereas unfold-PCA assumes the general form py; i,
PARAFAC assumes that pjjyx = big.Cpq- The meaning of this constraint
was already explained in Section 1.6.

A consequence of the constraint in the PARAFAC model is that less
parameters have to be estimated when the PARAFAC model is used
instead of the unfold-PCA model. This means that, if the assumptions
of the PARAFAC model are fulfilled a gain in degrees in freedom is
obtained by applying this model.

The results of the PARAFAC model are reported in Table I11.58. One
component in this model explains 98.5% of the variation in the whole
data cube. Considering the average s%epro and MS,_ ., one component is
sufficient. The peculiarities of stationary phase Cl are already
described. Again the Cl8 stationary phase is perhaps not completely
described by this one component model, but compared with the average
siepro some doubt is present regarding this conclusion. Considering
the individual solutes (Table I1II.58b), it appears that the wvariation
in the retention of solute TOL is not completely described by the one
component model. Closer examination reveals that this is especially
the case for the retention of this solute on the Cl8 and CN phases. A
pattern in the residuals of TOL on these stationary phases can be
observed similar to the unfold-PCA case. The reasons for the relat-
ively poor fit of the TOL retention values on the C18 and CN phase
are already described above. Note that again the stationary phases
c18 and CN are extremes (Table 1I1.58d). A two component PARAFAC
model takes away the high residuals, but the same warning as in the
unfold-PCA case is appropriate here. The results for the individual
mobile phase compositions (Table III.58c) show mno deviating beha-
viour.

Which model is best: unfold-PCA or PARAFAC? It is clear that mno
decisive conclusion is possible on the basis of the above results,
both models explain with one component about 98-99% of the variation
in the data cube and the differences between the MS,,, values of both
methods are not significant compared to the szrepro, Moreover, a
decision on which model 1is appropriate should not be done on the

195



PART III CHAPTER 13 THREE-WAY APPROACHES

basis of statistics only. S.Wold et al.3% propose a method of estim-
ating the PARAFAC model by subjecting the loading matrix P, (with
typical element p;,,) to a PCA. Note that with this extra PCA step,
the original data cube can be decomposed as a sum of products of
vectors. In fact, the decomposition that is estimated by PARAFAC
directly is then obtained. If the PCA on the matrix P, is performed,
one principal component explains 99.7% of the variation in P, . The
conclusion is that the three-way PCA model degenerates to the tri-
linear PARAFAC model. Whether the unfolding solution is the best way
to estimate the parameters in the PARAFAC model is questionable.

13.2 Choice of the markers/mobile phase compositions

The calibration procedures will be wvalidated by successively
leaving out one stationary phase, building the models with the five
stationary phases left over, and using the omitted stationary phase
as an independent test sample. The problem reduces, therefore, to
choosing solute/mobile phase combinations, with the use of the
retention measurements made on the five stationary phases, which
explain enough variation of those retention measurements. Because no
generalizations of the principal variables approach, as described in
Section 1.3, are available, the following procedure is adopted.

The first step in the selection procedure is the unfolding of the
5x8x6 data cube in such a way that the direction of the solutes is
left intact. The result is a 30x8 matrix, where the objects are
stationary/mobile phase combinations and the variables are the §
solutes. The three solutes that give the highest sum of all multiple
correlation coefficients between the three solutes and the 5 non-
selected ones are selected; the induced-variance criterion is applied
on the non-scaled data gathered in the 30x8 matrix. The variation in
retention of these selected solutes explain the variation of the non-
selected ones at best. The outcome of this procedure is the set of
solutes toluene, ethylamincbenzoate, and propylhydroxybenzoate. This
outcome 1s found six times: for each omitted stationary phase the
procedure was repeated and gave the same results. This places some
confidence on the selection procedure. The variation of the retention
of these three solutes explain on average 99.8% of the variation in
the matrix from which they are chosen.

The second step in the selection procedure is the unfolding of the
5x8x6 data cube in such a way that the direction of the mobile phases
is left intact. This results in a 40x6 data matrix, with the mobile
phase compositions as variables. The same procedure as above was
applied, which resulted in the choice of the wnl, wal, and am?
mixtures. For each omitted stationary phase the procedure was re-
peated, but now the above mentioned mobile phase compositions were
not always the best choice; they were the best compromise. On average
the selected mobile phase compositions explain 99.7% of the variation
in the matrix from which they are chosen.
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The conclusion is that calibration of a new stationary phase can be
performed by measuring the retention values of the markers TOL, EAB,
and PHB at mobile phase compositions wml, wal, and am?2 .

13.3 Results of the unfold-PLS calibration

The calibration procedure is performed in such a way that each
stationary phase is omitted once. This stationary phase is then used
as an independent test set. The calibration is, therefore, done six
times. The calibration procedure is explained in Subsection 8.2.1.
Column-centering in the way described in Section 13.1 1is always
performed on the X{MaMPh] and X[NMaMPh] data cubes or, alternatively,
the X[MaMPh] and X[NMaMPh] data matrices. The results of the unfold-
PLS predictions are presented in Table I11.59.

In order to explain Table III.59 the results of the C18 phase are
examined extensively. The training set consists of all other station-
ary phases. In the block of explaining variables - the X [MaMPh]
matrix - one component takes away 99.2% of the variation present in
that block; only noise is left which can be checked by comparing the -
residual standard deviation of the X[MaMPh] block (not given) after
applying the first PLS component with the mean s, ..., of the training
set. Analogous reasoning holds for the X[NMaMPh] block: 99.0% of the
variation in that block is explained by the first PLS component and
only noise is left. One PLS component is therefore sufficient to
build the PLS model.

The next step in the calibration process is the measurement of the
retention values of the three markers at the three mobile phase
compositions on the C18 stationary phase. A yardstick of the informa-
tion contained in these marker retention values is the MS,,.x. which
has the following meaning: the nine (3x3) marker retention values on
the Cl18 stationary phase are subtracted from the corresponding
training set means. These differences are squared and averaged.
Compared with the s%epro of the retention values on the Cl8 phase-
which has to be estimated by reproducing some of the marker measure-
ments - this MS_,,. gives an impression of the differences between
the 18 phase and the training set (the reported $Zepro IN
Table I11.59 is calculated with the use of all measurements on Cc18).
In practice, these sfepro have to be estimated or must be known, in
order to judge the information content of the marker retention
values. For the Cl18 phase this MS, ,., has the value of 1.3605, which
is high relative to the siepro of €18 (0.0011).

With the use of the nine marker retention values the score of the
new stationary phase - the Cl8 phase - can be calculated (we refer
again to Subsection 8.2.1). The analogon of %X[MaMPh] for the nine
selected marker/mobile phase combinations is %MARK: the percentage of
variation of the nine marker retention values used to estimate the
score of the new stationary phase. This value is 96.9% for the Ccl18
phase.
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Analogous to MS_ ..., the MS.,ex can be calculated, where toex is
the abbreviation of "to explain”, of the non-selected solute/mobile
phase combinations on the Cl8 phase (the test set). The differences
incorporated in this MS_ ., have to be explained by the PLS model.
Although in practice the MS,, ., value is never known, the MS,..x can
serve as a rough estimate. The MS, ., value of the Cl8 phase is
1.4814, this value represents the "signal" which is to be explained.

If the unfold-PLS model is applied to predict the retention values
of all non-selected solute/mobile phase combinations, the resulting
prediction errors are summarized in MS,_ .. This MS_ .. is the mean sum
of squared differences between the observed and predicted values. The
percentage of explained variation in the test set is simply
100((MS, g ox"MS. o) /MS, o) and takes on the value of 97.0% for the
Cl8 phase.

The Cl stationary phase is a special case. The MS_... is higher than
the MS; ... The peculiar behaviour of the Cl phase is already indi-
cated in Section 13.1. From Table III.5%a it is clear that the MS, .k
does mnot exceed the szrepro of the Cl1 phase, therefore the signal-to-
noise ratio of the markers (MSmark/sﬁepro) is lower than one. This
means that no systematic information is present in the marker reten-
tion values, the score of Cl in the PLS model is estimated as -0.34,
which is very small in comparison with e.g the C8 score: 4.6. The
signal-to-noise ratio of the test set (MStoex/siepro) is also lower
than one indicating that there is no systematic variation to explain.
The diagnostic value of the MS_ ,,., and $%MARK is stressed: both
indicate the peculiar behaviour of the Cl phase. The opposite holds
for $X[MaMPH] and %X[NMaMPh]: their diagnostic value 1s questionable.
The reason for the special behaviour of the Cl phase is directly
connected with the observation in Section 13.1 that the Cl phase
takes an intermediate position in the range of the six studied
stationary phases. The behaviour of the Cl phase can be elucidated by
the following analogy. A single y vector of mean-centered measure-
ments 1s regressed on an x vector, which is also mean-centered. A
value of y in the neighborhood of zero is predicted with a near-zero
x value. The MS,, ., is very low in this case and will be approxim-
ately equal to MS,_ .. Yet, it cannot be said that the model is wrong.

Examining Table IIT1.5%9a, the MS_,,. values are found to be
reasonable approximates of the MS, ., values, thereby fortifying
their diagnostic power. Only in the predictions on the €18 and CN
phases lack-of-fit is present. This can be concluded from the fact
that the MS,., is more than twice the corresponding sfepro for both
stationary phases. Note that both the MS ,.. and MS, ., values of the
Cl8 and CN phases are the highest ones. This illustrates that these
stationary phases are the extreme ones, as was already concluded in
Section 13.1. Extrapolation on the "stationary phase scale" is
therefore, probably, one of the reasons for the lack-of-fit. Besides,
a CN phase is known to be more polar than alkyl-bonded phases‘® and
induces, therefore, selective interactions. This partly explains the
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anomalous behaviour of the CN phase.

When the root mean squared error of prediction values of the
solutes (Table III.59b) are compared with the corresponding S..y:o
(Table 1II1.5), it appears that the predictions of the retention
values of all solutes on the C18 phase show lack-of-fit (RMSEP more
than twice the srepro). Closer examination of the prediction errors
do not show systematic errors. The variables PE, TOL, MHB, and PHB
show a lack-of-fit in the prediction on the CN phase, whereas ACP,
EHB, and EAB are doubtful in this respect. Again no systematic
prediction errors can be observed. The lack-of-fit in calibrating the
C18 and CN phase can not be attributed to some of the solutes alone,
although TOL is the one predicted worst. Note that TOL is a marker,
therefore this variable is only predicted at the wm2, wa2, and aml
mixtures. Even with the availability of the measurements of this
solute at the selected mobile phase compositions, predictions at the
other mobile phase compositions are troublesome. High residuals are
observed for the prediction of TOL at the wm2 and aml mixtures on
both the C18 and the CN phase. This poor predictability was already
foreboded by the results of the unfold-PCA and PARAFAC model in -
Section 13.1 with respect to this solute. The variable MHB has a low
percentage of explained variation on the C18 phase. This is due to a
low MS,,.x for this solute and poor predictions at the water/acetoni-
trile mixtures. Despite the presence of PHB - a related compound of
MHB - as a marker, the unfold-PLS model is not able to predict MHB
well at the water/acetonitrile mixtures on C18. The retention beha-
viour of PHB at the water/acetonitrile mixtures on Cl8 is not repres-
entative of the behaviour of MHB under these circumstances and/or the
unfold-PLS model is inappropriate.

The RMSEP values of the individual mobile phase compositions show
some high values for the water/acetonitrile mixtures on the C18 and
CN phase indicating interaction effects between these mixtures and
the C18 and CN phases not accounted for by the marker retention
values and the model. As already discussed, MHB is one of the solutes
which contributes to the high value on the C18 phase. The results of
the Cl phase for the individual solutes and mobile phase compositions
will not be discussed, because of the peculiar behaviour of the Cl
phase as discussed above.

The results of the unfold-PLS calibration of the stationary phases
and the calibration results in Chapters 10 and 11 (two-way approach-
es) can be compared. The differences between the two calibration
strategies, however, should be kept in mind. In the two-way approach
the training set consisted of three stationary phases, whereas five
stationary phases constitute the training set in the three-way case.
More effort is needed therefore, to build a training set in the
three-way approach. When calibration of the new stationary phase at
the specific mobile phase compositions is needed, the markers have to
be measured at all these mobile phase composition in case of the two-
way approach. In the three-way case, measurements of the markers at
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some mobile phase compositions are needed to predict at all other
training set mobile phase compositions; less effort is needed com-
pared with the two-way case. The pay-off between the two approaches
is clear: less effort in the training state (two-way) or less effort
in the calibration state (three-way). Note that the two-way approach
leaves the way open for calibration at a mobile phase composition
that is not incorporated in the training set; such a feature is not
yet available in the three-way approach.

The RMSEP values of the C6, €8, and PHE phases are, respectively,
0.0762; 0.0686; and 0.0794 (the square roots of the MS... values).
Comparing these values with the corresponding ones from the two-way
approach, as presented, e.g., in Table III.12 (respectively 0.0832,
0.0743, and 0.0703), no clear distinctions are visible. The two
differences between the two-way and three-way approach work in
opposite direction on the prediction errors and balance each other.

13.4 Results of the PARAFAC calibration

The application of the PARAFAC model for calibration purposes 1is
already explained in Subsection 8.2.2. As in Section 13.3, one
stationary phase is omitted successively, which is used later as an
independent test set. Prior to applying the PARAFAC model, the data
cube is centered as described in Section 13.3. The same marker/mobile
phase combinations are used as earlier in Section 13.3. The results
for the individual stationary phases are presented in Table III.60a
which partly reproduces Table III.5%9a for the sake of convenience.

One component in the PARAFAC model explains 98-99% (the RZ ...
values times 100) of the variation in the training cube. For each
training cube the mean sum of squares of the residuals after applying
one PARAFAC component was always lower than the average sfepro of
that training cube. Therefore, PARAFAC models with one component were
always appropriate.

The remarks made in Section 13.3 with respect to the signal-to-
noise ratios and the special behaviour of the Cl phase are valid
here. The MS ., and $MARK values are again of diagnostic importance,
whereas thrain is not. The same pattern with respect to the quality
of the predictions on the separate stationary phase is present as in
the unfold-PLS calibration. Retention on the stationary phases C18
and CN are again predicted with a lack-of-fit, which can not be
assigned to some of the solutes. No differences are visible in the
predicting power of unfold-PLS and PARAFAC for the individual sta-
tionary phases.

The wvariable TOL is predicted on the €18 and CN phases with high
prediction errors. Especially at the aml mixture on the Cl8 phase,
TOL has a large residual, probably because of non-linear mixing
behaviour. The wvariable MHB has large prediction errors at the
water/acetonitrile mixtures on the €18 phase, already discussed in
Section 13.3.
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Considering the RMSEP values of the individual mobile phase com-
positions, RMSEP of wal on C18 is high. The largest prediction errors
are observed for MHB, EHB, and PHB. These homologs show specific
behaviour in water/acetonitrile mixtures on the C18 phase which are
not accounted for by the markers and the PARAFAC model.

13.5 Conclusions of the three-way approaches

1. There is no clear preference, on purely statistical grounds, for
the unfold-PLS or PARAFAC calibration. The question rises how much
the unfold-PLS calibration differs from the PARAFAC calibration,
because it was shown that the unfold-PCA and PARAFAC models of the
whole data cube do not differ very much with respect to the underly-
ing factor structure.

9 Tf unfold-PLS and PARAFAC show differences between their predic-
ting performance, statistical tools have to be developed in order to
chose between both models. These tools should be evaluated with
respect to their performance. Besides, a choice between unfold-PLS or -
PARAFAC should also be performed on chromatographic arguments. The
data set at hand was too small to try a cross-validation within the
training set: if one of the five stationary phases in the training
set is omitted, only four stationary phases remain in that training
set, a number which is probably too low.

3. Non-linear mixing behaviour of the retention of the solutes (see
the remarks regarding TOL) may cause trouble when predicting on a new
stationary phase, like it did in the two-way approaches (see Sec-
tion 12.3). Modifications of the unfold-PLS and PARAFAC models which
reckon with these phenomena are worth trying.

4. The fifth conclusion of Section 12.3 holds also for the three-way
case (see the remarks regarding MHB, EHB, and PHB at the water/
acetonitrile mixtures).

5. It is unknown how the drift in the measurements, as reported in
Section 9.5, affects the performance of the unfold-PLS and PARAFAC
predictions.

6. One of the draw-backs of the three-way approaches is that predic-
tions are only available at the mobile phase compositions used in the
training set. Explicit incorporation of the solvent fractions,
present in a mobile phase mixture, in the three-way models might
solve this problem. This would also serve another purpose: when
predictions at every mobile phase composition on a new stationary
phase are available, the way is open to predict an optimal mobile
phase composition on that new stationary phase for a given separation
problem.
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Table III.1. The capacity factors of the solutes

ACP BAB EHB PAR PE TOL EAB  MHB PHB

Cl1 wml 2.00 3.65 2.19 0.75 1.43 2.79 1.83 1.60 3.21
wm2 3,53 8.78 4.23 0.93 2.09 4.82 3.22 2,62 7.00
wal 2.71 6.07 3.13 1.12 1.88 5.67 2.79 2.23 4.50
wa?2 3.89 11.53 5.10 1.08 2.59 9.02 4.33 3.25 8.44
aml 1.88 3.92 2.22 0.85 1.50 3.01 1.87 1.61 3.06
am2 2.92 8.18 4.02 1.15 2.26 5.25 3.31 2.62 6.22

C6 wml 2.63 6.93 3.33 0.73 2.19 6.24 2.58 2.21 5.49
wm?2 4.89 20,07 7.56 1.05 3.89 12.78 5.48 4.35 14.59
wal 3.69 9.74 3.61 0.69 2.18 10.71 3.65 2.43 6.11
wa2 6.25 24.48 7.10 0.85 3.38 20.31 6.53 4.12 13.45
aml 3.21 9.72 3.95 0.79 2.41 8.12 3.37 2.51 6.77
am?2 5.65 24.29 8.14 1.09 4.08 15.63 6.65 4.67 15.70

C8 wml 2.71 7.90 3.63 0.8t 2.34 7.33 2,76 2.37 6.37
wm2 4.65 19.73 7.30 0.96 3.72 12.94 4.85 3.85 14.10
wal 3.86 10.36 3.78 0.82 2.27 11.38 3.86 2.52 6.27
wa?2 6.15 25.33 7.06 0.99 3.51 22.05 6.61 4.24 13.30
aml 3.95 9.85 3.92 0.84 2.42 8.17 3.18 2,39 6.52
am2 5.79 27.48 8.50 1.06 4.17 17.47 6.85 4.74 17.61

Cl8 wml 3.38 10.19 4.02 0.71 2.53 12.59 2,73 2.35 7.69
wm2 6.15 27.54 8.98 0.99 4.60 25.71 5.69 4.50 19.02
wal 4.19 12.51 3.82 0.71 2.25 15.87 3.79 2.31 6.78
wa?2 6.87 30.62 7.27 0.81L 3.48 33.22 6.98 3.92 15.13
aml 4.09 14.97 4.93 0.83 2.91 15.32 3.91 2.85 9.80
am2 6.74 37.24 10.10 0.95 4.66 29.75 7.16 4.88 23.35

CN  wml 1.01 1.00 0.63 0.55 0.83 1.08 0.88 0.63 0.67
wm?2 1.24 1.46 0.98 0.65 0.97 1.45 1.11 0.89 1.06
wal 1.20 1.51 1.11 0.94 0.91 1.48 1.19 0.90 1.26
wa?2 1.51 2.22 1.38 0.90 1.23 1.99 1.50 1.17 1.60
aml 1.00 1.09 0.85 0.73 0.88 1.11 0.94 0.80 0.90
am2 1.10 1.35 0.91 0.68 0.92 1.32 1,04 0.83 1.01

PHE wml 1.28 1.50 1.08 0.79 0.95 1.19 1.13 0.95 1.22
wm2 1.73 2.42 1.42 0.82 1.16 1.56 1.53 1.18 1.72
wal 1.72 2.56 1.56 1.15 1.30 2.20 1.68 1.30 1.86
wa?2 2.16 4.06 2.11 1.08 1.62 2.99 2.27 1.65 2.71
aml 1.27 1.67 1.14 0,95 1.05 1.39 1.21 0.99 1.26
am2 1.61 2.48 1.47 0.92 1.28 1.81 1.64 1.26 1.85

Legend: the mobile phase compositions are abbreviated to wm (water/
methanol), wa (water/acetonitrile) and am (water/acetonitril/methanol).
The compositions are (in volume fractions): wml 0.47/0.00/0.53; wm2
0.55/0.00/0.45; wal 0.62/0.38/0.00; wa2 0.70/0.30/0.00; aml
0.54/0.19/0.27; am2 0.63/0.15/0.22. The solutes were injected individu-
ally, so that no recognition problem arose.
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Table IITI.2. Reproducibility (k-values)

ACP BAB EHB PAR PE TOL EAB MHB PHB

Cl  wm2

mean Kk 3.527 8.776 4.233 0.933 2.089 4.824 3.220 2.624 7.002
stdev 0.552 2.267 0.742 0.018 0.219 0.993 0.447 0.347 1.516
cv 15.65 25.84 17.52 1.97 10.47 20.59 13.89 13.23 21.66
C6 wm2

mean k 4,894 20.08 7.565 1,053 3.888 12.78 5.476 4.353 14.59
stdev 0.331 1.356 0.293 0.113 0.240 1.095 0.464 0,295 0.819
cv 6.76 6.75 3.87 10.71 6.18 8.57 8.46 6.78 5.61

C8 wm2

mean Kk 4,646 19,73 7.297 0.962 3.722 12.94 4,85 3,85 14.10
stdev 0.556 2.589 0.817 0.101 0.432 1.878 0.708 0.595 1.803
cv 11.96 13.13 11.19 10.49 11.61 14.51 14.59 15.46 12.78
C18 wm2

mean Kk 6.148 27.54 8.98 0.992 4,600 25.71 5.693 4.498 19.02
stdev 0.094 1.613 0.495 0.036 0.110 0.685 0,125 0,009 0.027
cv 1.52 5.86 5.52 3.59 2,40 2.66 2.19 0.19 0.14

CN  wm2

mean Kk 1.237 1.464 0,976 0.651 0.975 1.450 1.113 0.886 1.063
stdev 0.137 0.308 0.122 0.006 0.071 0,207 0.124 0.075 0.110
cv 11.05 21.03 12.47 0.95 7.33 14.29 11.11 8.44 10.35
PHE wm2

mean k 1.730 2.419 1.420 0.822 1.163 1.565 1.525 1.182 1.716
stdev 0.183 0.376 0.132 0.080 0.077 0.159 0.140 0.081 0.202
Ccv 10.37 15.53 9.27 9.74 6.61 10.17 9.19 6.86 11.75

Legend: at the start of each series of measurements on a column, eluent
mixture wm2 ( W/A/M/ 0.55/0.00/0.45 v/v) was used. The same mixture was
used at the end of each series of measurements. The result is a pair of
k values for every solute (averaged over the repeated measurements, see
text). The mean, the standard deviation and coefficient of variation
(CV) of these two k values are given. Only with the Phenyl column the
procedure differed with respect to the number of reproduced measure-
ments, which was five for this column.
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TABLES

3. Repeatability

Table III.
ACP
Cl wml 0.025
wm2 0.023
wal 0.032
wa2 0.094
aml 0.000
am?2 0.032
C6 wml 0.009
wm2 0.167
wal 0.009
wa2 0.075
aml 0.020
am?2 0.047
C8 wml 0.034
wm2 0.043
wal 0.047
wa2 0.118
aml 0.009
am2 0.045
€18 wml 0.000
wm2 0.067
wal 0.009
wa2 0.074
aml 0.053
am?2 0.167
CN wml 0.009
wm2 0.018
wal 0.000
wa2 0.000
aml 0.000
am?2 0.000
PHE wml 0.009
wm2 0.016
wal 0.009
wa2 0.016
aml 0.000
am?2 0.000
Legend: all

BAB

[oNoNeNeNolNe)

[eNeNoReNoel

OCOO0OO0OCO

[eNeNeNoReie)

OO0 O

.031
.068
.023

106

.068
.015

.034
.410
.016
124
.060
.163

.024
.315

019

.329
.032
.150

.188
.599
.019
.050
.316
.689

.015
.020
.009
.000
.009
.008

0.000
0.018
0.
0
0
0

009

.027
.000
.009

EHB

[oNeNoNoNeNo] [oNoNeNoNo ol [eNeNoNeNeNe] [oNeNeNeNoNe) [oNeNoNeNoN o)

[oNeNolNeN ol

numbers are

.051
.046
.0le
.078
.024
.009

.039
.132
.043
.038
.018
.122

.039
.110
.000
.162
.009
.106

.055
.084
.000
.078
.018
.311

.009
.005
.000
.009
.009
.000

.016
.015
.000
.000
.000
.000

standard deviations calculated on the basis of
For the wm2 mobile phase compositions, the

three repeated experiments.
standard deviations are calculate
over the reproduced measurements (see Table III1.2).

variances

(k-values)
PAR PE
0.008 0.000
0.013 0.009
0.015 0.030
0.024 0.031
0.008 0.011
0.019 0.015
0.016 0.029
0.025 0.060
0.014 0.000
0.017 0.030
0.000 0.000
0.010 0.062
0.000 0.009
0.000 0.032
0.000 0.000
0.050 0.029
0.000 0.000
0.000 0.025
0.009 0.020
0.012 0.026
0.000 0.009
0.049 0.042
0.009 0.047
0.015 0.009
0.027 0.009
0.022 0.006
0.000 0.009
0.009 0.000
0.000 0.000
0.000 0.016
0.022 0.009
0.012 0.020
0.034 0.000
0.000 0.024
0.009 0.000
0.000 0.009

d as the square root of the pooled

TOL

[oNeNeoNoNeNol [eNoNoNeNoe) [oRoNeNoNeRel [oNoNeNoNoR o) [eReNoNeNoNo)

[eRoNeNoNoNe

.008
.072
J112
.100
.043
.060

.137
.390
J111
.184
.018
.212

.009
.089
.019
.088
.009
.627

.000
.622
.150
.613
.058
.128

.000
.006
.009
.009
.019
.000

.01s
.011
.009
.009
.000
.025

EAB

[ NeN oo Rl

COoOOCOOO0o

[N e R el ool

COO0OO0CO O

[eNoNeNoNolel

OO OCOOO

.000
.029
.041
.082
.014
.020

024
.100
044
.192
.000
.124

.009
.009
.025
.033
.044
.079

. 009
.066
.049
.074
.009
.046

.000
.006
.009
.009
.009

000

.000
.028
.000
.016
.020
.009

OO0 0 s NoNoNeNe ol [oNeNoNoNeRol [oNoNeNeNoie] cooOQO0O

COO0O OO

.011
.051
.011
.033
.003
.016

.018
.087
.034
.047
.009
.038

.016
.040
.000
.599
.037
.040

.009
.106
.036
.048
.000
.044

.009
.010
.009
.008
.016
.000

.000
.026
.000
.000
.018
.002

COOQOOO OO0 COOOO0 OO O0OO0OO0O

[eNeReNeNe Nl

.086
.079
.049
.184
.029
.060

.032
174
.016
.059
.009
.219

.009
.390
.000
.243
.086
.104

.065
.145
.019
.140
.028
.629

.015
.020
.010
.000
.017
.000

0.029
0.019
0.
0
0
0

009

.009
.000
.017
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TABLE III.4.
ACP
Cl wml 0.693
wm2 1,254
wal 0,995
wa2 1,359
aml 0.633
am2 1.071
c6 wml 0.969
wm2 1.587
wal 1.307
wa2 1,832
aml 1.167
am2 1.732
C8 wml 0.996
wm?2 1,532
wal 1,351
wa2 1.816
aml 1.180
am2 1.757
Cl8 wml 1.218
wm2 1.816
wal 1.432
wa2 1.926
aml 1.409
am2 1.908
CN wml 0.005
wm?2 0,209
wal 0.185
wa2 0.411
aml 0,000
am2 0.097
PHE wml 0.244
wn2 0,544
wal 0.545
wa2 0.770
aml 0.236
am2 0.476

BAB EHB

1.294 0.784
2.155 1.435
1.804 1.141
2.445 1.628
1.366 0.799
2.102 1.392
1.936 1.202
2.998 2.023
2.276 1.285
3.198 1.960
2.274 1.373
3.190 2.097
2.067 1.290
2.978 1.984
2.338 1.331
3,232 1.954
2,288 1.367
3.313 2.140
2.321 1.390
3.315 2.194
2.526 1.341
3.422 1.983
2.706 1.596
3.617 2.312
0.000 -0.468
0.370 -0.029
0.409 0.104
0.795 0.322
0.085 -0.158
0.302 -0.091
0.406 0.076
0.874 0.347
0.940 0.442
1.402 0.747
0.514 0.132
0.908 0.384

Legend: see Table
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PAR

-0.
-0.
0.
0.
-0.
0.

-0.

0.
-0.
-0.
-0.

0

-0.
.042
-0.
-0.
-0.

0.

-0

-0.
-0.
.343
.211
-0.
-0.

-0
-0

-0.
-0.
-0.
-0,
-0.
-0.

-0.
-0.
0.
0.
-0.
-0.

289
069
114
078
167
139

309
049
368
159

231
083

215

203
006
176
063

345
008

191
049

603
430
065
103
309
384

242
200
137
076
054
083

PE

OO RPO H O OMKO oo oo Co

B OO

.361
.734
.630
.951
404
.816

.785
.357
.780
.219

.881
.405

.852
.311
.818
.256
.884
428

.927
.526
.810
.246
.069
.538

.188
.027
.093
.208
.134
.081

.054
.149
.264
481
.046
L243

TOL

W R W WK BN W RN BN W N faadll el I Sl

O OO0 O

CORrPOOOC

.027
.563
.734
.200
.103
.659

.831
.545
.371
.011

.095
.749

.992
.555
.432
.094
.100
.860

.533
.246
.764
.503
.729
.393

.073
.366
.392
.688
.108
.277

.172
R
.789
.097
.330
.594

[eNeoNoNoNeNel

492

OO OO0

~ O OO

O OoOF O

e e OO

Logarithms of the capacity factors of the solutes

PH

L N O L ) = N e e

W RN RN

[eNeNeNoNeNol

B

.167
.934
.503
.133
.118
.828

. 704
.680
.811
.599
.912
754

.851
.642
.835
.588
.875
.869

.040
.945
.915
717
.283
.150

406
.058
.229
470
.109
.014

.199
.535
.622
.997
.232
.618
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TABLE III.5. Reproducibility (1ln k-values)
ACP BAB EHB PAR PE TOL EAB MHB PHB
Cl wm2

mean Ink 1.254 2.155 1.435 -0.069 0.734 1.563 1.165 0.960 1.934
stdev 0.157 0.261 0.176 0.020 0.105 0.208 0.139 0.133 0.218

cv 12.53 12.13 12.27 28.45 14.28 13.28 11.96 13.80 11.28
C6 wm2

mean lnk 1.587 2.998 2.023 0.049 1.357 2.545 1.699 1.470 2.680
stdev 0.067 0.068 0.039 0.108 0.062 0.086 0.085 0.068 0.056
cv 4. 24 2.25 1.91 220.5 4.55 3.36 4.99 4.61 2.10

C8 wm2

mean lnk 1.532 2.978 1.984 -0.042 1.311 2.555 1.573 1.342 2.642
stdev 0.120 0.132 0.112 0.105 0.116 0.146 0.147 0.155 0.129
Ccv 7.83 4.42 5.65 253.1 8.88 5.67 9.31 11.57 4.86

Cl8 wm2

mean lnk 1.816 3.315 2.194 -0.008 1.526 3.246 1.739 1.504 2.945
stdev 0.015 0.058 0.055 0.036 0.024 0.027 0.022 0.002 0,002
cv 0.837 1.763 2.517 499.1 1.573 0.828 1.258 0.119 0.050
CN  wm2

mean lnk 0.209 0.370 -0.03 -0.430 -0.03 0.366 0.104 -0.123 0.058
stdev 0.111 0.212 0.125 0.010 0.073 0.143 0.111 0.085 0.104
cv 52.93 57.26 435.6 2.32 272.2 39.17 107.4 68.91 178.1

PHE wm2
mean lnk 0.544 0.874 0.347 -0.200 0.149 0.444 0.419 0.165 0.535
stdev 0.102 ©0.148 0.090 0.099 0.066 0.100 0.092 0.068 0.116

cv 18.75 16.95 25.98 49.69 43.91 22.58 21.90 41.48 21.64
stdev in 0.111 0.197 0.129 0.024 0.075 0.147 0.103 0.086 0.058
training

set

stdev in 0.100 0.131 0.087 0.102 0.079 0.110 0.105 0.095 0.109
test set

Legend: see Table IIL.2, The last two rows give the mean standard devi-
ations of the training- and test set. The training set consists of the In k
values of the phases Cl, CN and C18. The other phases constitute the test
set.

209



PART III TABL
TABLE III.6.
ACP
Cl wml 0.013
wm2 0.006
wal 0.012
wa2 0.024
aml 0.000
am2 0.011
sp 0.012
C6 wml 0.004
wm2 0,033
wal 0.003
wa2 0.012
aml 0.006
am2 0.008
sp 0.019
c8 wml 0.012
wm2 0.009
wal 0.012
wa2 0.019
aml 0,003
am2 0.008
sp 0.012
€18 wml 0.000
wm2 0.011
wal 0.002
wa2 0.011
aml 0.013
am2 0.025
sp 0.013
CN wml 0.009
w2 0.016
wal 0,000
wa2 0.000
aml 0.000
am2 0,000
sp 0.009
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Repeatability (1n k-values)

BAB

[=NeNalNeNeNoeRe] OO0 O0OOCOO0O

OCOOOOCOOQ

oo R ol olNoNeNo)

[eNoRelNoNeNeNol

.009
.009
.004
.009
.017
.002
.010

.005

020

.002
.005
.006
.007
.012

.003
.015
.002
.013
.003
.005
.010

.019
.021
.001
.002
.021
.018

017

.015
.015
.006
.000
.008
.006
.011

EHB

ool oo NeNel

= NelaoReReNoNol

COOOOCOCO

COOOOO0O0OOQ

[eNoleoNoNoNeoNaol

.024
.011
.005
.015
.011
.002
.013

.012
.018
.012
.005
.005
.015
.013

.011
.015

000
023

.002
.012
.013

.014
.009
.000
011

004

.031
.014

.014
.006
.000
.006
.011
.003
.008

PAR

OCCOOOCOO

[eNeoNeNoNeNeNel

COO0OOCOOO

OO OO OCOO0O

COO0OOCOoOO0O

.011
.014
.014
.022
.009
.017
.015

021

.025
.020
.020
.000
.009
.019

.000
.000
.000
.050

000
000

.019

.013
.012
.000
.062
011
.016
.026

.049
.034
.000
.010
.000
.000
.026

PE

eNeReNeNeNoNel

[oReNoNoNoNeNe) [N eNo e NeoNeNel OO DOoOOOCO

COOCOCOCOO

.000
.004
.016
.012
.007
.007
.009

013

.015
.000

009

.000
.015
.012

.004
.008
.000
.008

000
006

.006

008

.006
.004
.012
.0l1e
.002
.009

011
.006
.010

000
000

.018
.009

TOL

COO0OO0OOOCO QOO CoCOoOOoO

COOCOOOO

COO0OO0COOO

OCODOOOO

.003
.026
.020
.011
.014
.011

018

.022
.029
.010
.009
.002

014

.019

.001
.006
.002
.004
.001
.036
.014

.000
.024
.009
.018
.004
.004
.015

.000
.004
.006
.004
.017
.000
.007

COOOOOO OO0 OoOOO0O CODOO0OOO [eReRoReNoNeNel

[N eNeleNoNoNe)

.000
.008
.015
.019
.008
.006
011

.009
.018
.012
.029
.000
.019
.017

.003
.002
.007
.005
.014
.012
.008

.003
.011
.013
.011
.002
.006
.009

.000
.006
.008
.006
.010
.000
.006

=N eNeNoNoNoN o] [eNeNoRoleNeNel [oeBolNoNeNeNel

[eNoNoNeNeNoNol

COO0OOOOCO

.007
.018
.005
.010
.002
.006
.011

.008
.020
.014
.011
.004
.008
.013

.007
.010
.000
.136
.015
.008
.052

.004
.024
.01e6
.012
.000
.009
.015

014

.011
.010
.008
.020
.000
.012

PHB

OCOQQOoOO0O CoOoOOoOo0O0OCOoCo

COOCOOOoCO

SCOOoO0OO0OO0OOQO

OO OO OO0OO0

.027
.010
.011

022

.010
.010
.016

006

.012
.003
.004

Q01

.014
.009

.001
.029
.000
.018
.013
.006
.018

,008
.008
.003
.009
.003
.027
.012

.023
.018
.008
.000
.019
.000
.015
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TABLE III.6 (continued).

PHE wml 0.007 0.000 0.015 0,028 0.010 0.013 0.000 0.000 0.024
wm2 0.010 ©0.008 0.011 0.015 0.018 0.007 0.019 0.023 0.012
wal 0.005 0.004 0.000 0.030 0.000 0.004 0.000 0.000 0.005
wa? 0.007 ©0.007 0.000 0.000 0.015 0.003 0.007 0.000 0.003
aml 0.000 0.000 0.000 0.010 0.000 0.000 0.016 0.018 0.000
am? 0.000 0.004 0,000 0.000 0,007 0.014 0.005 0.002 0.009
sp 0.008 0.006 0.009 0.017 0.014 0.008 0.015 0.017 0.012

Legend: all numbers are standard deviations of the three 1ln k values
measured at each mobile phase composition. The sp’s are pooled standard
deviations over the mobile-phase compositions. The numbers in the wm2 rows
are averaged over the reproduced measurements (two for all phases except
Phenyl (five)). The number for the C8 phase wa2 and MHB is an outlier.
Examination of the original measurements did not show the cause. If this
number is deleted the corresponding sp becomes 0.010.

TABLE III.7. Statistics for the Cl, c6, C8, €18, CN and PHE data set

Moments ACP BAB EHB PAR PE TOL EAB MHEB PHB

A

mean 3,28 10.96 3.96 0.88 2.27 9.33 3.34 2.44 7.16

variance 3.36 100.6 7.35 0.02 1.32 75.11 4,06 1.74 0,95

skewness 0.53 1.02 0.66 0.04 0.57 1.16 0.62 0.45 0.95

kurtosis -0.90 0.03 -0.66 -0.77 -0.74 0.75 -0.85 -1.00 0.07

B

mean 1.02 1.89 1.11 -0.14 0.69 1.74 1.01 0.73 1.54

variance 0.37 1.21 0.63 0.03 0.28 1.19 0.43 0.36 1.05
skewness -0.18 -0.20 -0.30 -0.32 -0.12 -0.12 -0.15 -0.29 -0.29
kurtosis -1.21 -1.22 -1.08 -0.30 -1.18 -1.39 -1.,17 -1.05 ~-1.15

Legend: the A-part are the moments (about the mean) of the k values. The B-
part are the moments (about the mean) for the 1n k values. In both cases
the statistics are calculated for the values in Tables III.1 and IIl.4
respectively.
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TABLE III.8. Reproducibility and repeatability of the old Phenyl
stationary phase (k-values)

Reproducibility
ACP BAB EHB PAR PE TOL EAB MHB PHB
wm2

mean k  2.160 3.554 1.905 0.874 1.323 1.978 1.891 1.417 2.340
stdev 0.698 1.689 0.655 0.113 0.225 0.642 0.520 0.313 0.838

cv 32.31 47.52 34,38 12.93 17.01 32.46 27.50 22.09 35.81
Repeatability
ACP BAB EHB PAR PE TOL EAB MHB PHB

wml 0.009 0.009 0.020 0.020 0.018 0.000 0.020 0.000 0.021
wm2 0.035 0.039 0.038 0.021 0.017 0.042 0.008 0.030 0.019
wal 0.032 0.054 0.018 0.000 0.009 0.009 0.009 0.009 0.000
wa2 0.016 0.009 0.000 0.000 0.000 0.009 0.000 0.025 0.009
aml 0.009 0.000 0.009 0.000 0.000 0.000 0.009 0.000 0.000
am2 0.009 0.000 0.024 0.009 0.000 0.024 0.009 0.000 0.034

Legend: see Table III1.2 and Table III.3.

TABLE III.9. Reproducibility and repeatability of the old Phenyl
stationary phase (ln k-values)

Reproducibility

ACP BAB  EHB PAR PE TOL. EAB MHB  PHB

wm2
mean Ink 0.743 1.208 0.614 -0.139 0.273 0.655 0.618 0.336 0.817
stdev 0.329 0.494 0.351 0.130 0.171 0.330 0.278 0.222 0.366
cv 44,28 40.89 57.17 93.53 62.64 50.38 44.98 66.07 44.80
Repeatability

ACP BAB EHB PAR PE TOL EAB MHB PHB
wml 0.006 0.005 0.017 0.029 0.018 0.000 0.0l16 0.000 0.016
wm2 0.013 0.009 0.022 0.022 0.012 0.017 0.004 0.019 0.010
wal 0.017 0.019 0.011 0.000 0.007 0.004 0,005 0.007 0.000
wa2 0.007 0.002 0.000 0.000 0.000 0.003 0.000 0.014 0.003
aml 0.007 0.000 0.007 0.000 0.004 0.000 0.007 0.000 0.000
am2 0.005 0.000 0.015 0.010 0.000 0.012 0.005 0.000 0.016
sp 0.011 0.009 0.015 0.017 0.010 0.010 0.008 0.011 0.010

Legend: see Table III.5 and Table III.6.
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TABLE III.10.

TABLES

Markers selected with the induced-variance criterion

a) leave-more-out evaluation of the markers: the five best sets of markers

wml

solutes

EHB, PAR,TOL
PAR, TOL,MHB
BAB,EHB, PAR
BAB, PAR,TOL
PAR,TOL, PHB

wal

solutes

PAR,TOL,MHB
BAB, PAR, PHB
BAB, EHB, PAR
EHB, PAR,TOL
BAB, PAR,EAB

aml

solutes

BAB,EHB, PAR
PAR,TOL,MHB
BAB, PAR, PHB
EHB, PAR, TOL
BAR, PAR ,MHB

b) the five

solutes

BAB,EHB, PAR
PAR, TOL,MHB
EHB, PAR,TOL
BAB,PAR, PHB
BAB, PAR ,MHB

¢) the best markers if the subset size varies from 2 to 4

solutes
BAB, PAR
BAB,EHB, PAR

EHB, PAR,TOL,

99

99.
99.
99.
. 540
99.

%

99
99
99
99
99

best sets of markers

%

99.
99.
99.
99.
99.

EAB

.606
.567
99.
99.
99.

559
535
532

571
567
561

536

457
.430
L4209
421
.406

483
470
460
460
437

%

99.121
99.483
99.767

wm2

solutes

ACP,EHB, PAR
ACP,PAR,PHB
BAB, EHB, PAR
BAB, PAR, PHB
ACP,PAR,MHB

wa2

solutes

PAR, TOL,MHB
BAB, PAR, TOL
EHB, PAR,TOL
BAB, EHB, PAR
BAB, PAR,MHB

am?2

solutes

BAB,EHB,PAR
BAB, PAR, PHB
PAR, TOL,MHB
BAB, PAR,MHB
EHB, PAR, TOL

principal components %

99.220
99.601
99.850

99.
.519
99.
485
99.

99

99.
99,
99.
99.
99.

.609
.601
.581
.575
.533

527

519

482

395
361
355
336
334
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Table III.10 (continued).

d) the best markers if only the (nearly) iso-elutropic eluent mixtures are

used
only wml/aml/wal

solutes

BAB, EHB, PAR
ACP,EHB, PAR
BAB, PAR, PHB
ACP,PAR, PHB
PAR,TOL,MHB

Legend: a) the heading wml means that all three wml mixtures are omitted;
the % are the percentages of explained variation by the set of solutes; b

%

99.496
99.484
99.471
99.470
99.439

only wm2/am2/wa2

solutes
EHB, PAR, TOL
PAR, TOL, MHB
PAR,TOL, PHB
BAB, PAR, PE
PAR,PE,EAB

and c¢): calculations on the whole training set.
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99.667
99.648
99.645
99.625
99.613
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TABLE III.1l.

TABLES

Diagnostics of the design matrices of the induced-variance

markers

a) correlation matrix model 1

A
A 1.000
M -.968
BAB .072
EHB .057
PAR .392

BAB EHB PAR
.968 .072 .057 .392
.000 -.l44 -.133 -.469
.144  1.000 .990 484
.133 .990 1.000 .577
-.469 484 .577 1.000

e X

b) variance inflation factors model 1

18.0

M BAB EHB PAR
22.9 334.3 392.6 12.9

variance decomposition proportions model 1:

A
.0030
.0098
.0068
.9686
L0117

loadings of

A
.383
.561

-.239
.694

-.017

M BAB EHB PAR CI
.0029 .0002 .0002 .0068 1
.0067 .0003 .0003 .0000 1.24
.0030 .0009 .0002 .1230 2.42
.8102 .0001 .0004 .0053 9.93
.1773  .9984 .9989 .8650 44.95

the variables on the PC's model 1

M BAB EHB PAR %explained
-.423 .460 .473 .489 54.5
-.521 -.450 -.459 -.024 35.6
.179 -.367 -.180 .862 9.34
.715 -.033 .065 ,043 0.55
-.074 -.671 .727 -.123 0.03

variance inflation factors model 2

BAB
119.4

EHB PAR
137.0 3.5

variance decomposition proportions model 2

BAB

.0013
.0023
.9964

loadings of

BAB
.613

-.403

-.679

EHB PAR CI
.0012 .0267 1
.0009 .3614 1.99
.9979 .6119 24.84

the variables on the PC's model 2

EHB PAR %
.632 474 79.81

-.266 .876 20.06
.728 -.092 0.13
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TABLE III.11 (continued).
h) dispersion matrix model 1 total data set and test set

total data set

C A M BAB EHB PAR
c 1.00
A L1171 .049
M .246 .014 .101
BAB 1.893 .336 .430 4.760
EHB 1.106 .193 .252 2.933 1.832
PAR -.142 -.017 -.048 -.195 -.095 .052
test set
C A M BAB EHB PAR
C 1.00
A L1171 .049
M .246 .014 .101
BAB 2.063 .365 .470  5.201
EHB 1.230 .212 .285 3.213 2.000
PAR -.104 -.,015 -.034 -.192 -.109 .032

Legend: abbreviations: singular value (SV), condition index (CI), principal
component (PC), and C is an abbreviation of the constant term, see text.

216



PART III TABLES

TABLE II1I.12. OLS results model 1

a) estimated coefficients and diagnostic values

solute ba by bpAR bEHB bparR F s
ACP -.163 -.216 2.588 .175 -.098 441.1 .0583
L247 .278 1.064 1.154 .210
PE -.213 112 3.500 -1.368 412 234.7 .0678
.288 .324  1.240 1.344 244
EAB -.491 -.619 3.190 ..532 .227 485.9 .0574
’ L2440 ,276 1.054 1.141  .207
TOL 1.062 796 7.539 -2.521 -.357 223.0 .1463
.620 .699 2.674 2.896 .526
MHB -.234 -.244 -.110 2.687 .077 1079 .0361
.153 .172 .660 .713 129
PHB .321 .380 .64 4.088 -.154 4608 L0304

.129 L145 .555 .602 .109
b) results of predictions in training- and test set

root mean squared error of predictions (RMSEP)

RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set
solute
ACP .0703 .0502 .0693 .0660 .0624
(98.8) (99.3) (98.6) (98.2) (98.8)
PE .0808 .0753 L0444 .0935 .0739
(97.8) (98.1) (99.4) (95.5) (98.0)
EAB .0793 .1012 .0640 .0297 ,0712
(98.6) (97.9) (99.1) (99.7) (98.8)
TOL .1756 .1313 .1335 .1208 .1286
97.7) (97.9) (98.1) (98.8) (98.3)
MHB L0478 L0641 .0549 .0162 L0496
(99.4) (99.0) (99.2) (99.9) (99.3)
PHB .0369 L0413 .0378 .0290 .0364
(99.9) (99.8) (99.9) (99.9) (99.9)
mean .0933 .0832 L0743 .0703 .0761

Legend: a) the numbers in the rows with the solutes as entries are the
estimated coefficients, the numbers below these estimates are their stan-
dard deviations; b) root mean squared error of prediction is calculated
with the following formula: J[(l/z)Z(yi-§i)2], where z is the number of
predicted values $, and the summation is over all the z quadratic devi-
ations. The numbers below the RMSEP values, in parenthesis, are the percen-
tages of variation explained by the model. Note that y and ¢ are in 1n k
units.
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TABLE III.13.

TABLES

OLS results model 2

a) estimated coefficients and diagnostic values

solute

ACP

PE

EAB

TOL

MHB

PHB

bpas

3.
.604
.074
.865
.246
.696
.365
.713
.009
.383
.144
.386

1

022

bgyp  bpar  F s
-.291 -.002 815.2 .0553
647 124
1.294 -.084 285.7 .0791
.927 149
-1.660 464 663.2 0636
745,119
-4.571 -.017 322.5 .1567
1.834 .305
2.569 .111 1753  .0364
427,068
4.618 -.270 5692  .0353
413,059

b) results of predictions in training- and test set

solute

ACP

PE

EAB

TOL

PHB

mean

root mean squared error of predictions (RMSEP)

RMSEP in
training
set

.0606
(99.2)
.0937
(97.4)
.0734
(98.9)
.1820
(97.8)
.0427
(99.6)
.0400
(99.9)

.0952

RMSEP C6 RMSEP C8 RMSEP Phe
.0597 .0740 .0509
(99.0) (98.4) (98.9)
.0800 .0621 .0517
(97.8) (98.7) (98.6)
.1181 .0610 .0733
(97.1) (99.2) (98.0)
.1300 1671 .2189
(98.0) (96.9) (96.1)
.0653 .0544 .0203
(98.9) (99.2) (99.8)
.0511 .0372 .0381
(99.7) (99.9) (99.8)
.0892 .0869 .1003

Legend: see Table III.12.
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RMSEP in
testset

.0623
(98.8)
.0657
(98.4)
.0876
(98.1)
1758
(96.9)
.0504
(99.2)
.0426
(99.8)

.0923
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TABLE III.14.

a) predicted versus observed capacity factors

solute ACP on
Phenyl

wml
wm?2
wal
wa?
aml
am2

solute PE on
Phenyl

wml
wm2
wal
wa?2
aml
am2

solute PHB on
Phenyl

wml
win2
wal
wa2
aml
am?

observed

R Nl o

observed

[ e el k=

observed

e Ll i

.28
.73
.72
.16
.27
.61

.95
.16
.30
.62
.05
.28

.22

72

.86
.71
.26
.85

Legend: prediction results f
(PE on Phenyl), moderate goo
predictions (PHB on Phenyl).

predicted

predicted

[ Nl

or model 1 (OLS):
d predictions (ACP on Phenyl) and very good

P N P

e el

Some extensions of the OLS results

.18

56

.57
.10
.25
.59

predicted

.08
.37
.34
.66

13

.35

.24
.73
.84
.69
.28
74

relatively bad predictions
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TABLES

Table IIT.14 (continued).

b) latent root PCA (LR-PCA)

column

model 1: training set

of PE in the training set and on the Phenyl

dim % A M BAB EHB PAR PE

1 57.56 177 -.220 .504 .513 .393 499
2 33.68 .647  -.629  -.207 -.206 .201 -.245
3 8.13 -.261 .196  -.267 -.082 .888 -.166
4 0.47 .684 .711 .017 .121 .041 -.104
5 0.15 .123 .092 -.278  -.523 .032 .790
6 0.02 -.003 .062 L7440 -.632 .120 -.168
model 1: Phenyl test set

dim % A M BAB EHB PAR PE

1 53.96 .608  -.617 .178 .176 .378 .209
2 45.09 -.107 071 517 .507  -.463 495
3 0.85 .780 418 -.133 -.031  -.428 -.122
4 0.10 .075 .615 .294 .313 .650  -.092
5 0.00 -.065 -.102 -.588 772 -.031 -.205
6 0.00 .019 L2246 -.501 -.130 .189 .804
model 2: training set

dim % BAB EHB PAR PE

1 83.26 .534 544 .362 .536

2 16.38 -.264 -.130 .927  -.232

3 0.27 -.458 -.364 .022 .811

4 0.10 -.660 L745  -.092 -.036

model 2: Phenyl test set

dim % BAB EHB PAR PE

1 77.96 -.541 -.531 .387  -.525

2 22.00 .203 .199 .921 .268

3 0.02 -.274  -.543  -.053 .792

4 0.01 .769  -.620 011 -.158

Legend: for the training set, the data are autoscaled. For the Phenyl set,
the data are scaled with the scaling constants (mean, standard deviation)
of the training set.
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TABLE III.15. Ridge regression LOO-k parameter results model 1

a) estimated coefficients and related values

solute ba by bpaB bEHB bpar k s (k)
ACP -.126 -.251 1.638 1.183 -.248 0.01 .0605
.182 .187 .133 .141 .078
PE -.231 .012 2.528 -.316 .236 0.001 .0696
.277 .294 .713 .772  .158
EAB -.414 -.652 1.807 .959 -.009 0.006 .0622
.200 .206 .197 .211  .082
TOL .990° .557 5.557 -.381 -.716 -0.001 .1496
.597 .635 1.539 1.666 .341
MHB -.216 -.176 472 2,055 .185 0.001 .0372
.147 .157 .380 411,084
PHB .321 .380 .644 4.088 -.154 0.00 .0300
.126 .145 .555 .602  .109

b) results of predictions in training- and test set

root mean squared error of predictions (RMSEP)

RMSEP in RMSEP C6 RMSEP €8 RMSEP PHE RMSEP in
training test set
set
solute
ACP L0674 .0534 .0716 .0917 .0739
PE .0805 .0621 .0421 .0693 .0590
EAB L0745 .0879 L0725 .0383 .0694
TOL .1675 .1594 .1211 .0782 .1241
MHB L0449 .0733 .0516 .0154 .0525
PHB .0369 .0413 .0378 .0290 .0364
mean L0894 .0884 .0718 .0604 L0744

Legend: a) the numbers in the rows with the solutes as entries are the
estimated coefficients at the particular value of k and the numbers below
these estimates are their standard deviations (sbi(k)), calculated for the
special k parameter
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TABLE IIT.16.

TABLES

a) estimated coefficients and related values

solute

ACP

PE

EAB

TOL

g
jas)
tx

bpaR

3.022
.604
1.179
Jd11
4,246
.696
8.014
1.363
.267
.314
L144
.386

b) results of predictions in

solute

ACP
PE

EAB
TOL
MHB
PHB

mean

Legend:
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bEHB  bpar
-.291 -,002
647 124
1.130 -.039
114,090
-1.660 464
L7645 119
-3.127 -.195
1.459 .260
2,292 .146
.336  .060
4.618 -.270
413,059

k
0.00
0.03
0.00
0.001

0.001

[

.00

s(k)

.0553

.0800

.0636

.1602

.0370

.0353

training- and test set

root mean squared error of predictions (RMSEP)

RMSEP in
training
set

.0606
.0860
.0734
.1809
.0426
. 0400

.0936

RMSEP

.0597
.0831
.1181
.1263
L0677
.0511

.0890

see Table II1I.15

Cé

RMSEP C8

.0740
.0682
.0610
.1606
.0507
.0372

.0852

RMSEP Phe

.0509
.0410
.0733
.1936
.0191
.0381

.0903

Ridge regression L0OO-k parameter results model 2

RMSEP in
testset

.0623
.0664
.0876
.1625
.0500
.0426

.0882
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TABLE II1.17. Ridge regression best k parameter results model 1

a) estimated
solute

ACP

PE

EAB

TOL

MHB

PHB

b) results of predictions in

RMSEP in
training
set

solute

ACP
PE

EAB
TOL
MHB
PHB

mean

TABLES

bp

.163
L247
.229
.236
487
.234
.357
.199
.234
.153
.321
.129

.0703
.0830
L0757
.2151
.0478
.0369

.1060

by

.216
.278
.060
244
.675
.249
.147
.198
.244
.172
.380
.145

bpaB

2.588
1.064
1.631
.232
2.474
.604
2.663
.133
-.110
.660
.644
.555

RMSEP C6

.0502
.0563
.0924
.0971
.0641
L0413

.0696

Legend: see Table I11.15.

RMSEP C8

.0693
L0434
.0672
.0941
.0549
.0378

.0639

coefficients and related values

bgHp  bPAR
.175 -.098
1.154 .210
649,079
.250 .097
243 .099
654 .134
2.209 -.796
J111 .220
2.687 .077
713 .129
4.088 -.154
602 .109

k

0.00

0.006

0.001

0.12

0.00

0.00

training- and test set

.0660
.0607
.0242
.1155
.0162
.0290

.0620

s(k)

.0583

.0740

.0588

.2106

.0361

.0300

root mean squared error of predictions (RMSEP)

RMSEP PHE RMSEP in
test set

.0624
.0539
L0674
.1027
.0496
.0364

.0654
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TABLE III.18.

TABLES

a) estimated coefficients and related values

solute

ACP

PE

PHB

bpag

3.022
.604
1.159
344
3.288
462
6.014
.848
.267
.314
.600
.301

.291 -
L 647
1.
.367
.638
495
.997 -
.906
.292
.336
.126 -,
L322

bgys  bp

192 -

b) results of predictions in

solute

ACP
PE

EAB
TOL
MHB
PHB

mean

Legend:
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Root Mean Squared Error of Predictions (RMSEP)

RMSEP in
training
set

.0606
.0879
.0770
L1913
.0426
L0424

.0979

RMSEP

.0597
.0811
.1140
L1315
L0677
.0497

.0890

see Table III.15

AR

.002
.124
.066
.103
.338
.097
454
.215
.146
.060

207

.057

k

0.00

0.006

0.002

0.004

0.001

0.001

s(k)

.0553
.0792
.0678
.1769
.0370

.0370

training- and test set

Cé

RMSEP C8

.0740
.0640
L0771
.1628
.0507
.0435

.0880

RMSEP Phe

.0509
L0473
.0481
.1734
.0191
.0269

.0799

Ridge regression best k parameter results model 2

RMSEP in
testset

.0623
.0656
.0842
.1569
.0500
.0412

.0857
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TABLE IIT.19.

Stein regression results model 1

a) estimated c and s values

solute

ACP
PE

EAB
TOL
MHB
PHB

LOO choice

o4

.997
.995
.990
1.00°
.995
1.00

of ¢

s(c)

.0583
.0679
.0582
.1463
.0362
.0304

best choice of ¢

4

.965
1.00
1.00
.960
1.00
.975

s(c)

L0644
.0679
.0577
.1568
.0361
L0451

b) results of predictions in training- and test set with LOO choice of ¢

solute

ACP
PE

EAB
TOL
MHB
PHB

mean
¢) results of

solute

ACP
PE

EAB
TOL
MHB
PHB

mean

RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
test set

training
set

.0720
.0807
.0788
L1756
L0477
.0369

.0932

prediction

RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
test set

training
set

.0730
.0808
.0793
.1826
L0478
.0462

.0963

.0505
.0768
.1065
.1313
.0667
.0413

.0848

.0571
.0753
.1012
.0991
L0641
.0203

.0747

.0689
.0455
.0684
.1334
.0568
.0378

.0752

.0678
L0444
.0640
L1017
.0549
.0293

L0644

.0647
.0950
.0310
.1208
.0148
.0290

.0705

.0519
.0935
.0297
L1545
.0162
.0351

.0792

.0619
.0753
.0753
.1286
.0513
.0364

L0771

.0593
.0739
L0712
L1211
.0496
.0289

.0730

s in training- and test set with best choice of ¢
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TABLE IIT.20. Stein regression results model 2

a) estimated ¢ and s values

LOO choice of ¢ best choice of ¢
solute c s(c) c s(c)
ACP 1.00 .0553 .980 .0572
PE .985 .0797 1.00 .0791
EAB 1.00 .0636 1.00 .0636
TOL .995 .1569 .970 L1615
MHB 1.00 .0364 1.00 .0364
PHB 1.00 .0353 .970 .0511

b) results of predictions in training- and test set with LOO choice of ¢

solute RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set

ACP .0606 .0597 L0740 .050% .0623

PE L0934 .0840 .0675 .0497 .0685

EAB L0734 .1181 .0610 .0733 .0876

TOL .1819 L1261 .1629 .2223 .1750

MHB L0427 .0653 .0544 .0203 .0504

PHB .0400 .0511 .0372 .0381 L0426

mean .0951 .0888 .0862 .1014 L0924

¢) results of predictions in training- and test set with best choice of ¢

solute RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set

ACP .0621 .0631 .0720 L0446 .0610

PE .0937 .0800 .0621 L0517 .0656

EAB L0734 .1181 .0610 .0733 .0876

TOL .1848 .1082 .1430 .2398 .1729

MHB L0427 .0653 .0544 .0203 .0504

PHB L0515 .0291 .0313 .0284 .0296

mean .0972 .0828 .0787 .1070 .0904
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TABLE III.21. PLS results model 1

a) diagnostics

loadings

variable diml dim2 dim3 Sunexpl
A 146 -.648 495 .1269
M -.197 .643 -.431 L1311
BAB .603 .169 .221 .0276
EHB .615 .149 .049 .0316
PAR 446 -.339 -.720 .0090
ACP .406 428 459 .0872
PE .406 497 .206 .1269
EAB .416 .269 .358 .1034
TOL .391 435 .764 .1315
MHB .418 .335 .030 .0616
PHB 412 443 .185 L0447
explained

variation total
X-block 50.55 38.09 10.79 99.42
Y-block 91.76 4.95 2.50 99.21

b) results of predictions in training- and test set

RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in

training test set
set
solute
ACP .0653 L0614 .0751 .1014 .0810
PE .0831 .0540 .0424 .0626 .0536
EAB .0847 .0909 .0801 .0598 .0780
TOL L1767 .2053 .1090 .1385 .1562
MHB L0454 .0861 L0471 L0445 .0622
PHB .0580 .0559 .0572 .0647 .0594
mean .0957 .1062 .0721 .0848 .0888

Legend: diml to dim3 stand for the number of PLS components in the model,
for an explanation of X-block and Y-block, see the text.
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TABLE III.22. Cross-validatory choice of PLS model complexity

solute dim2 dim3 dim4 dim5
ACP LOOPRESS L4145 L0767 .0834 .0890
TESTPRESS .3735 .1182 .1073 .0700
PE LOOPRESS .1636 L1242 L1347 L1175
TESTPRESS .0746 .0518 L0544 .0983
EAB LOOPRESS L3476 .1292 L1012 L1131
TESTPRESS .2894 .1095 .0889 .0914
TOL LOOPRESS 3.344 .5619 .5745 .5549
TESTPRESS 2.209 L4392 L4247 .2979
MHB LOOPRESS L0441 L0371 L0411 L0412
TESTPRESS . 0837 L0696 .0666 L0444
PHB LOOPRESS .2689 .0605 L0401 L0244
TESTPRESS .3181 .0635 .0470 .0238
TOTAL LOOPRESS 4.583 .9896 .9750 .9401
TESTPRESS 3.348 .8518 .7889 .6258

Legend: the LOOPRESS values are prediction error gum of squares in the
training set based on the leave-gne-gut results. The TESTPRESS values are
the prediction error sum of squares in the test set. The row of totals
correspond to the summation of the entities in the Table over the solutes.
See also the legend of Table III.21.
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TABLE III.23. Cross-validatory choice of the ridge parameter k, results

for model 1.
solute L.OOM HOERL TRACE BEST
ACP k .01 .002 .01 .00
LOORMSEP .0674 .0680 .0674 .0703
TESTRMSEP .0739 .0707 .0739 .0624
PE k .001 .002 .01 .006
LOORMSEP .0805 .0815 .0832 .0830
TESTRMSEP .0590 .0555 .0543 .0539
EAB k .006 .001 .01 .001
LOORMSEP L0745 .0753 .0748 .0757
TESTRMSEP .0694 L0674 .0707 .0674
TOL k .001 .002 .04 .12
LOORMSEP L1675 .1685 .1785 L2151
TESTRMSEP L1241 .1282 L1222 .1027
MHB k .001 .001 .01 .00
LOORMSEP . 0450 . 0450 .0463 .0478
TESTRMSEP .0525 .0525 .0620 .0496
PHB k .00 .00 .02 .00
LOORMSEP .0368 .0368 .0492 .0368
TESTRMSEP .0364 .0364 .0548 .0364

Legend: the LOORMSEP is the leave-one-out value of the RMSEP, see legend of
Table III.12. Stated otherwise, LOORMSEP is the square root of the average
LOOPRESS value. The TESTRMSEP values are defined analogously.
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TABLE III.24. Cross-validatory choice of ridge parameter k. Results for

model 2.
solute LOOM HOERL TRACE BEST
ACP k .00 .001 .06 .00
LOORMSEP .0606 .0608 L0740 .0606
TESTRMSEP .0623 .0670 .0839 .0623
PE k .03 .006 .02 .006
L.OORMSEP .0860 .0879 .0861 .0879
TESTRMSEP . .0664 .0656 .0660 .0656
EAB k .00 .001 .04 .002
LOORMSEP .0734 L0745 .0977 .0770
TESTRMSEP .0876 .0846 .1010 .0842
TOL k .001 .001 .06 .004
LOORMSEP .1809 .1809 .2280 .1913
TESTRMSEP .1625 .1625 .1683 .1569
MHB k .001 .001 .03 .001
LOORMSEP L0426 L0426 .0504 .0426
TESTRMSEP .0500 .0500 .0620 .0500
PHB k .00 .00 .03 .001
LOORMSEP . 0400 .0400 L0669 L0424
TESTRMSEP L0426 L0426 L0627 L0412

Legend: see Table TII.23.
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TABLE 1II.25. Cross-validatory choice of Stein parameter cC.

modell
solute LOOM STEIN
ACP
c .997 .999
LOORMSEP .0702 .0703
TESTRMSEP .0619 .0622
PE
c .995 .998
LOORMSEP .0807 .0807
TESTRMSEP .0753 L0744
EAB
c .990 .999
LOORMSEP .0787 .0792
TESTRMSEP .0753 .0716
TOL
c 1.00 .998
LOORMSEP .1756 L1756
TESTRMSEP .1286 L1279
MHB
c .995 1.00
LOORMSEP .0477 L0478
TESTRMSEP .0513 . 0497
PHB
c 1.00 1.00
LOORMSEP .0368 .0368
TESTRMSEP L0364 .0364

Legend: see Table I11.23.

BEST

.965
.0730
.0593

1.00
.0808
.0739

1.00
.0793
L0713

.960
.1826
.1211

1.00
.0478
L0497

.975
.0462
.0289

model2

LOOM

1.00
.0606
.0623

.985
.0934
.0685

1.00
L0734
.0876

.995
.1819
.1750

1.00
L0427
.0504

1.00
.0400
L0426

STEIN

1.00
.0606
.0623

.999
.0937
.0658

1.00
L0734
.0876

.999
.1819
.1757

1.00
.0427
.0504

1.00
.0400
.0426

BEST

.980
L0621
.0610

1.00
.0937
.0657

1.00
L0734
.0876

.970
.1848
L1729

1.00
.0427
.0504

.970
.0515
.0296
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TABLE III.26. Cross-validatory cholce of modelspecification.

solute Ce PRESS PRC S
ACP

model 1 6 .0889 .0045 .992
model 2 2.6 .0662 .0037 .993
PE

model 1 6 1175 .0061 .986
model 2 9.0 .1582 .0077 .981
EAB

model 1 6 1131 .0044 .993
model 2 7.1 .0970 .0050 .992
TOL

model 1 6 .5548 .0285 .985
model 2 6.1 .5959 .0300 .983
MHB

model 1 6 .0412 .0017 .997
model 2 4.3 .0328 .0016 .997
PHB

model 1 6 .0244 .0012 .999
model 2 8.8 .0288 .0015 .999

Legend: C,, PRESS, PRC, and Rzadd are explained in the text.
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TABLE III1.27. Cross-validatory choice of estimation method.

a) model 1
solute OLS PLS RIDGE STEIN
ACP LOOPRESS .0889 .0767 .0818 .0887
TESTPRESS .0700 .1182 .0983 .0689
PE LOOPRESS L1175 L1242 .1167 L1172
TESTPRESS .0982 .0518 .0626 .1020
EAB LOOPRESS L1131 .1292 .0998 L1116
TESTPRESS .0914 .1095 .0867 .1020
TOL LOOPRESS .5548 .5619 .5047 .5548
TESTPRESS .2979 L4392 L2773 .2979
MHB LOOPRESS L0412 L0371 L0364 . 0409
TESTPRESS L0444 L0696 L0496 L0473
PHB LOOPRESS L0244 .0605 L0244 L0244
TESTPRESS .0238 ,0635 .0238 .0238
b) model 2
solute QLS RIDGE STEIN
ACP LOOPRESS .0662 .0662 .0662
TESTPRESS .0698 .0698 L0698
PE LOOPRESS .1582 .1330 L1571
TESTPRESS L0776 .0794 .0845
EAB LOOPRESS .0970 .0970 .0970
TESTPRESS .1382 .1382 .1382
TOL LOOPRESS .5959 .5890 .5957
TESTPRESS .5565 L4753 .5512
MHB LOOPRESS .0328 .0327 .0328
TESTPRESS L0458 L0451 .0458
PHB LOOPRESS .0288 .0288 .0288
TESTPRESS .0327 .0327 .0327

Legend: all ridge and Stein estimation is performed with the LOO-choice of
the k and ¢ values. PLS is performed with the three significant dimensions,
see text.
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TABLE III.28. Fine tuning EAB

a) LR-PCA on EAB in the training set

dim % A M BAB EHB
1 58.83 .21 -.25 .49 .50
2 32.32 .64 -.62 -.26 -.26
3 8.27 -.25 .18 -.25 -.07
4  0.50 .67 .67 .09 .18
5 0.07 .17 .26 -.17 -.57
6 0.02 -.03 -.01 .77 -.57

b) LR-PCA on EAB in training set

dim % A M BAB EHB
1 61.44 .17 -.22 .55 .55
2 37.66 .69 -.67 -.17 -.18
3 0.61 .69 .68 .16 .09
4 0.22 -.03 -.06 -.49 .81
5 0.06 .16 .22 -.63 -.07

c) LR-PCA on EAB

dim % A M BAB PAR
1 55.62 .40 -.44 .45 47
2 33.91 .56 -.51 -.49 -.03
3 9.85 -.23 .18 -.29 .88
4 0.57 .68 .70 .17 .06
5 0.05 .14 .18 -.67 -.03

Legend: dim is the abbreviation of dimension and refers to the number of

PAR

.39
.17
.89
.03
.06
11

with PAR omitted

EAB

.56
-.12
-.20
-.32
.72

in training set with EHB omitted

EAB

.48
-.44
-.24
-.14
71

EAB

.50
-.20
-.18
-.23
.74
-.26

the principal component. For the other abbreviations, see the text.

TABLE III.29. New models for EAB

a) model la: EAB=F(A,M,BAB,EHB)

by by bpap bgHR s
-.531  -.762 2.129  .633 .0581
244 245 418 419

b) model 1b: EAB=F(A,M,BAB,PAR)

ba by bpaB bpar s
-.501  -.671 2.700 .137 .0559
.236 245 .065  .005

Legend: see Table III.12.
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LOORMSEP

.0734

LOORMSEP

.0670

TESTRMSEP

.0678

TESTRMSEP

.0678
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TABLE III1.30. Diagnostics of the design matrices of the determinant

criterion markers

a) correlation matrix model 1

A M PAR TOL MHB
A 1.000 -.968 .392 .112 .068
M -.968 1.000 -.469 -.166 -.150
PAR .392 -.469 1.000 .383 .603
TOL .112 -.166 .383 1.000 . 945

MHB .068 -.150 .603 .945 1,000
b) variance inflation factors model 1

A M PAR TOL MHB
21.4 19.6 8.7 43.3 61.6

¢) variance decomposition proportions model 1

SV A M PAR TOL MHB CI
1 .0029 .0038 .0097 .0016 .0013 1
2 ,0080 .0075 .0001 .0029 .0023 1.26
3 .0048 .0027 .1488 .0091 .0001 2.24
4 .7074 .9089 .0535 ,0183 .0134 9.73
5 .2769 .0772 .7880 .9681 .9829 17.79

d) loadings of the variables on PC's model 1

PC A M PAR TOL MHB sexplained
1 410 -.446 478 .435 465  54.2
2 .542 -.501 -.035 -.464 -.488 34.3
3 -.237 .169 .836 -.462 -.057 10.8
4 .657 713 .115 .151 -.154 0.57
5 .225 114 -.242 -.599 .720 0.17

e) variance inflation factors model 2

PAR TOL MHB
3.2 19.2 25.8

f) variance decomposition proportions model 2

SV PAR TOL MHB CI

1 .0296 ,0081 .0070 1

2 .3438 .0185 .0018 1.9

3 L6266 .9734 .9912 10.4

g) Loadings of the variables on the PC's model 2

PC PAR TOL MHB sexplained

1 471 .601 .646  77.24
2 .857 -.485 -.174 22.04
3 -.209 -.636 .743 0.72
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TABLE II1.30 (continued).

h) dispersion matrix model 1

R »P»O

TOL

C
A
M
PAR
TOL
MHB

total data set

C

.00

.171
.246
.142
.737
.729

A

test set

C

.00
171
246
.104
. 842
.841

A

.049
.014
.017
.318
.129

. 049
014
.015
.339
L147

M PAR TOL

.101

-.048 .052
.383 -.194 4.168
.161  -.054 1.871

M PAR TOL

.101

-.034 .032
404 -.182 4.337
.190 -.071 2.054

Legend: see Table III.1l.
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TABLE ITI.31l. OLS results model 1

a) estimated coefficients and diagnostic values

solute ba by bpar broL bMHB F s

ACP -.182 -.306 -.363 .796 2.121 340.8 .0662
.306 .293 .195 .436 .520

BAB -.169 -.239 -.352 1.863 3.274 88l.4 L0741
.342 .328 .218 .487 .581

EHB .152 .259 .096 .567 1.975 1359 .0430
.199 .190 .127 .283 .338

PE -.590 -.227 401 1.814 .349 434.0 .0500
.231 .221 .147 .329 .393

EAB -.413 -.,737 -.306 .393 2.543 348.6 .0680
.314 .301 .200 448 .534

PHB .403 .621 008 1.141 3.567 760.0 .0747

.345 L3311 .220 492 .587
b) results of predictions in training- and test set
Root Mean Squared Error of Predictions (RMSEP)

RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in

training test set
set
solute
ACP .0842 .0737 .0649 .1233 .0910
(98.3) (98.5) (98.8) (93.7) (97.4)
BAB .0923 .0832 .0702 .1075 .0773
(99.4) (99.4) (99.6) (98.7) (99.3)
EHB .0576 .0517 .0617 .0373 .0512
(99.5) (99.6) (99.4) (99.7) (99.5)
PE .0617 .0947 .0780 .0440 .0752
(98.7) (97.0) (98.0) (99.0) (97.9)
EAB .0856 L0514 L0446 .0844 .0626
(98.4) (99.5) (99.6) (97.3) (99.0)
PHB .0988 .0901 .0849 .0388 .0749
(99.2) (99.1) (99.3) (99.8) (99.4)
mean .0815 .0761 .0686 .0803 L0731
Legend:

a) the numbers in the rows with the solutes as entries are the estimated
coefficients, the numbers below these estimates are their standard
deviations (see alsc legend Table 111.12).

b) the numbers below the RMSEP values, in parenthesis, are the percentages
of variation explained by the model.
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TABLE III.32. OLS results model 2

a) estimated coefficients and diagnostic values

solute

ACP

BAB

EHB

PE

EAB

PHB

bpar  bro. buup F s

-.201 1.069 1.800 558.2 .0667
.120 .293 .339

-.263 1.997 3.119 1606 .0708
.127 .311 .359

-.044 .332 3.254 1999 .0458
.082 .201 .232

-.118 .695 1.714 306.3 .0765
.137 .335 .388
.119 1.120 1.683 318.4 .0915
.164 .401 .465

-.272 .688 4.098 972.5 .0852
.153 .374 432

b) results of predictions in training- and test set

solute
ACP
BAB
EHB

PE

PHB

mean

Legend:

238

Root Mean Squared Error of Predictions (RMSEP)

RMSEP in RMSEP C6 RMSEP C8  RMSEP Phe RMSEP in

training testset

set
.0814 .0813 .0829 .1079 .0915
(98.4) (98.1) (98.1) (95.2) (97.4)
.0841 .0771 L0715 .1009 .0749
(99.5) (99.5) (99.6) (98.8) (99.3)
.0596 .0695 .0741 .0306 .0613
(99.5) (99.2) (99.1) (99.8) (99.3)
.0887 .0832 .0837 .0519 L0744
(97.4) (97.7) (97.7) (98.6) (97.9)
.1034 .0988 .0902 .0609 .0849
(97.6) (98.0) (98.3) (98.6) (98.2)
.1080 .1302 L1142 L0274 .1012
(99.0) (98.2) (98.7) (99.9) (98.9)
.0890 .0922 .0872 .0706 .0824

see Table III.12,
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TABLE III.33. Ridge regression LOO-k results model 1

a) estimated coefficients and related values

solute ba by bpar broL  bMHB k s(k)
ACP -.212 -.263 -.198 1.150 1.679 0.01 .0685
.208 .213 .115 .209 .244
BAB -.230 ~-.215 -.155 2.271 2.751 0.0l L0770
.233 .238 .129 .233 .273
EHB 077 .223 .181 .775 2.721 0.002 .0440
.179 .176 .108 .231 .275
PE -.489 -.163 .323 1.607 .592 0.004 .0509
.192 .191 J111 .227 .269
EAB -.427  -.715 -.227 .572 2.326 0.002 .0686
.284 .279 .170 .365 434
PHB .176 .483 .209 1.628 2.962 0.006 .0782

.266 .267 .150 .295 .348
b) results of predictions in training- and test set
Root Mean Squared Error of Predictions (RMSEP)

RMSEP in  RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in

training test set
set
solute
ACP .0804 .0619 .0664 .1060 .0806
BAB .0886 .0546 .0728 .0853 .0688
EHB L0564 .0417 .0577 .0463 .0490
PE .0609 .0804 .0730 .0450 .0679
EAB .0849 .0524 .0505 .0768 .0611
PHB .0953 .0655 .0729 .0594 .0662
mean .0791 .0606 .0661 .0732 .0663

Legend: a) the numbers in the rows with the solutes as entries are the
estimated coefficients at the particular value of k and the numbers below
these estimates are their standard deviations, calculated for the special k
parameter (see also legend Table III.15).
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TABLE III.34. Ridge regression LOO results model 2

a) estimated coefficients and related values

solute bpar  brOL  bMHB k s(k)
ACP -.089 1.293 1.476 0.03 .0698
.081 .129 .145
BAB -.174 2,199 2.846 0.01 .0726
.103 .215 .247
EHB .031 .547 2.993 0,004 .0477
.074 .170 .196
PE -.075 .807 1.572 0.006 .0769
.119 .265 .305
EAB .181 1.257 1.485 0.02 .0924
.119 .215 L244
PHB -.145 1,046 3,661 0,006 .0883

.133 .295 .339
b) results of predictions in training- and test set
Root Mean Squared Error of Predictions (RMSEP)

RMSEP in RMSEP Cé RMSEP C8 RMSEP Phe RMSEP in

training testset
set
solute
ACP .0757 .0724 .0753 .0935 .0809
BAB .0817 .0632 .0764 .0910 L0711
EHB .0580 .0562 .0748 .0393 .0586
PE .0880 .0853 .0892 L0454 .075%
EAB .1020 .1096 .0946 .0593 .0903
PHB L1042 .1083 .1160 .0380 .0942
mean .0864 .0851 .0889 .0653 .0794

Legend: see Table III.15.
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TABLE III.35.
a) estimated
solute

ACP

BAB

EHB

PE

EAB

PHB

b) results of predictions in training- and test

TABLES

Ridge regression best results model 1

coefficients and related values

b

.120
.078
.199
.131
.077
.179
.319
.112
428
.272
.134
.249

by

.104

.081

.128

.136
.223
.176

.042

.116

.703

.269
456
.254

bpar

014

071

.004

.091
.181
.108
.230
.068

.200

.159
244
.139

bToL

1.346

2

.064
.452
.104
775
.231
.326
.094
.632
.335
.709
.262

1.
.060

bMHB

312

2.430

.111
2.
.275
.900
.105
.252
.397
.858
.307

721

0.04

0.002

0.025

0.003

0.008

set

s(k)

.0822
.0869
.0440
.0556
.0690

.0795

Root Mean Squared Error of Predictions (RMSEP)

RMSEP in

training

set
solute
ACP .0893
BAB .0941
EHB .0564
PE .0620
EAB . 0849
PHB .0953
mean .0818
Legend:

a) the numbers in the row
coefficients at the particular value of k and the number
estimates are their standard deviations, calculated for the special k

parameter.

RMSEP C6

.0754
.0497
.0417
.0666
.0541
.0633

.0595

.0759
.0817
.0577
.0695
.0529
.0710

.0688

RMSEP C8

.0746
L0621
.0463
. 0485
.0739
.0636

.0625

RMSEP PHE RMSEP in
test set

.0753
.0588
.0490
.0622
L0611
.0661

.0626

s with the solutes as entries are the estimated

s below these
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TABLE III.36.

a) estimated

solute

ACP

BAB

EHB

PE

EAB

PHB

TABLES

bpar  broL
-.001 1.328
.066 .067
-.053 2.373
.082 118
.060 .631
071 .158
-.118 695
137 .335
.119 1.120
164,401
-.028 1.357
116,226

bpug

1.

303

.067

2.

536

.130

.891

.182

714

.388

.683

465

.270

.257

k

0.

10

.04

.006

.00

.00

.015

coefficients and related values

s(k)

.0813
.0821
.0496
.0765
.0915

.0959

Ridge regression best results model 2

b) results of predictions in training- and test set

solute

ACP
BAB
EHB
PE

EAB
PHB

mean

Legend:

242

Root Mean Squared Error of Predictions (RMSEP)

RMSEP in
training
set

.0833
.0873
.0588
.0887
.1034
.1077

.0756

RMSEP Cé6

.0777
.0517
.0514
.0832
.0988
.0905

L0777

see Table TIII.15.

RMSEP

.0765
.0871
.0755
.0837
.0902
.1196

.0900

c8

RMSEP Phe

L0741
.0739
.0435
.0519
.0609
.0559

L0611

RMSEP in
testset

.0761
.0641
.0584
L0744
.0849
.0924

.0759
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TABLE III.37.

S

Stein regression results model 1

a) estimated c and s values

L00-choice of ¢

solute c

ACP
BAB
EHB
PE

EAB
PHB

b) results of predictions in training

solute
training
set
ACP L0841
BAB .0919
EHB L0574
PE L0616
EAB .0854
PHB .0982
mean .0812

¢) results of predictions in training- and test set with bes

solute
training
set
ACP .1021
BAB .1003
EHB .0601
PE L0617
EAB .0855
PHB .1042
mean .0876

Legend: see Table III.19.

.995
.995
.995.
.995
.990
.990

s(¢)

.0663
L0744
.0433
.0502
.0685
.0759

.0723
.0801
.0478
L0964
.0549
.0800

.0738

RMSEP in RMSEP Cb

.0686
.0670
.0328
.0947
.0531
.0505

.0640

RMSEP in RMSEP C6 RMSEP C8

.0643
L0712
.0596
.0798
.0504
.0787

.0681

.0740
.0881
.0535
.0780
L0474
.0668

.0694

best choice of ¢

91
.96
.975
1.00
.995
.960

RMSEP PHE RMSEP in
test set

.1206
.1028
.0398
.0452
.0788
.0456

.0786

.0783
.0721
.0507
.0440
.0816
.0684

L0673

s(e)

.0970
.0933
.0500
.0500
L0681
.0917

.0892
.0756
.0498
.0768
.0626
.0699

L0717

RMSEP C8 RMSEP PHE RMSEP in
test

.0737
.0633
.0466
.0752
.0625
L0624

L0646

. and test set with LOO-choice of ¢

t choice of ¢

243



PART III TABLES

TABLE III.38. Stein regression results model 2

a) estimated ¢ and s values

1.00-choice of ¢ best choice of ¢

solute c s(c) c s(c)

ACP .995 .0668 .940 .0798
BAB .995 L0711 .970 .0811
EHB .995 .0460 .960 .0594
PE .990 .0768 1.00 .0765
EAB .995 .0916 1.00 .0915
PHB .990 .0861 .930 L1211

b) results of predictions in training- and test set with LOO-choice of ¢

solute RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set

ACP .0813 .0807 .0826 .1055 .0903

BAB .0840 .0745 .0729 .0966 .0733

EHB .0595 .0657 .0719 .0319 .0592

PE .0885 .0842 .0858 .0492 .0750

EAB L1034 .1012 .0923 .0598 .0863

PHB .1076 .1205 .1083 .0256 .0947

mean .0888 .0897 .0865 .0685 .0807

c¢) results of predictions in training- and test set with best choice of ¢

solute RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set

ACP .0894 .0822 .0864 .0812 .0833

BAB .0902 .0668 L0847 L0767 .0653

EHB .0673 L0411 .0625 L0464 .0508

PE .0887 .0832 .0837 .0519 L0744

EAB .1034 .0988 .0902 .0609 .0849

PHB .1292 .0695 .0919 .0595 .0749

mean .0965 .0757 .0838 .0640 .0732

lLegend: see Table I1I.20,
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TABLE III.39. PLS results model 1

a) diagnostics

loadings

variable diml dim2
A .161 -.657
M .210 .651
PAR .438 -.314
TOL .592 .167
MHB .623 .137
ACP .405 .416
BAB .407 .418
EHB L413 .379
PE L404 .496
EAB .413 .263
PHB .409 440
explained

variation

X-block 49 .56 38.34
Y-block 93.21 5.14

b) results of predictions in training- and test set

RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
test set

training

set
solute
ACP .0821 .0702
BAB .0903 L0514
EHB .0686 .0706
PE .0650 .0523
EAB .1058 .1018
PHB .0987 .0785
mean .0864 .0728

Legend: see Table III.Z21.

dim3

.407
-.338
-.767

.363
-.028

.630
.565
.021
.245
436
.182

11.45
0.93

.0739
.0779
.0519
.0618
.0843
.0699

.0708

Sunexpl

.1281
.1308
.0252
.0707
.0787

.1063
.0656
.0700
.0970
.1288
.0775

total

99.25
99.28

.1019
.0860
.0829
.0523
.0721
.0774

.0802

.0832
.0691
.0697
.0557
.0869
.0754

.0740
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TABLE III1.40. Cross-validatory choice of ridge parameter k. Results for

model 1.
solute LOOM HOERL TRACE BEST
ACP k .01 .004 .02 .08
LOORMSEP .0804 .0812 .0809 .0893
TESTRMSEP .0806 L0845 .0780 .0753
BAB k .01 .002 .01 .04
LOORMSEP .0886 .0902 .0886 .0941
TESTRMSEP .0688 .0823 .0720 .0588
EHB k .002 .001 .01 .002
LOORMSEP .0564 .0566 .0598 .0564
TESTRMSEP .0490 .0496 .0538 .0490
PE k .004 .003 .02 .025
LOORMSEP .0609 L0610 .0618 .0620
TESTRMSEP L0679 .0693 .0623 .0622
EAB k .002 .003 .01 .003
LOORMSEP L0849 .0849 .0870 .0849
TESTRMSEP L0611 L0611 L0645 L0611
PHB k .006 .002 .015 .008
LOORMSEP .0953 .0964 .0961 .0953
TESTRMSEP L0662 L0694 .0678 .0661

Legend: see Table III.23.

246



PART III TABLES

TABLE III.41. Cross-validatory choice of ridge parameter

model 2.
solute

ACP k
LOORMSEP
TESTRMSEP

BAB k
LOORMSEP
TESTRMSEP

EHB k
LOORMSEP
TESTRMSEP

PE k
LOORMSEP
TESTRMSEP

EAB k
LOORMSEP
TESTRMSEP

PHB k
LOORMSEP
TESTRMSEP

Legend: see Table III.24.

LOOM

.03
.0757
.0809

.01
.0817
L0711

.004
.0580
.0586

.006
.0880
.0759

.02
.1020
.0903

.006
.1042
.0942

HOERL

.003
.0794
.0895

.001
.0835
.0832

.001
.0586
.0602

.005
.0880
.0756

.006
.1026
.0867

.001
.1065
.0994

TRACE

.03
.0757
.0809

.01
.0817
L0711

.01
.0616
.0592

.01
.0881
.0768

.02
.1020
.0903

.04
.1195
.0980

BEST

.10
.0833
.0761

.04
.0873
.0641

.006
.0588
.0584

.00
.0887
L0744

.00
.1034
.0849

.015
.1077
.0924

k. Results for
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TABLE III.42. (Cross-validatory choice of Stein parameter c

modell model2

solute 1.OOM STEIN BEST LOOM STEIN BEST

ACP

c .995 .999 .910 .995 1.00 . 940

LOORMSEP .0841 .0842 L1021 .0813 L0814 .0894
TESTRMSEP .0892 .0905 L0737 .0903 .0915 .0833
BAB

c .995 1.00 .960 .995 1.00 .970

LOORMSEP .0919 .0923 .1003 .0840 .0841 .0902
TESTRMSEP L0756 L0773 .0633 .0733 .0749 .0653
EHB

c .995 1.00 .975 .995 1.00 .960

LOORMSEP .0574 .0576 .0601 .0595 .0596 L0673
TESTRMSEP .0498 .0512 L0466 .0592 .0613 0508

PE

c .995 .999 1.00 .990 .999 1.00

LOORMSEP .0616 L0617 .0617 .0885 .0887 .0887
TESTRMSEP .0768 .0756 .0752 .0750 L0745 0744
EAB

c .990 .999 .995 .995 .999 1.00

LOORMSEP .0854 .0856 .0855 .1034 .1034 .1034
TESTRMSEP .0626 .0625 .0625 .0863 .0851 .0849
PHB

c .990 .999 .960 .990 1.00 .930

LOORMSEP .0982 .0988 .1042 .1076 .1080 .1292
TESTRMSEP .0699 .0746 .0624 .0947 L1012 .0749

Legend: see Table III.25.
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TABLE 1II.43. Cross-validatory choice of modelspecification.

solute Cp
ACP

model 1 6
model 2 4.2
BAB

model 1 6
model 2 2.8
EHB

model 1 6
model 2 5.8
PE

model 1 6
model 2 22.8
EAB

model 1 6
model 2 15.4
PHB

model 1 6
model 2 8.2

Legend: see Table ITII.26.

PRESS

.1276
L1192

.1532
L1274

.0597
.0640

.0685
L1416

.1320
.1926

.1759
.2099

PRC

.0058
.0054

.0073
.0061

.0025
.0026

.0033
.0072

.0062
.0102

.0074
.0089

2
R adj

.990
.990

.996
.999

.998
.997

.992
.982

.990
.983

.996
.994
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TABLE III.44. Cross-validatory choice of estimation method.

a) model 1
solute OLS PLS RIDGE STEIN
ACP LOOPRESS L1276 L1212 .1165 L1274
TESTPRESS .1490 L1246 .1169 .1433
BAB LOOPRESS .1532 L1467 L1412 .1519
TESTPRESS L1404 .0966 .0933 .1323
EHB LOOPRESS ' .0597 . 0847 .0573 .0593
TESTPRESS .0473 .0873 .0433 L0446
PE  LOOPRESS .0685 .0759 .0668 .0684
TESTPRESS .1019 .0558 .0830 L1062
EAB LOOPRESS .1320 .2014 L1297 L1313
TESTPRESS .0705 .1360 .0672 .0705
PHB LOOPRESS .1759 .1753 .1634 .1736
TESTPRESS .1010 .1022 .0788 .0881
b) model 2
solute OLS RIDGE STEIN
ACP LOOPRESS .1192 .1032 .1189
TESTPRESS .1507 L1179 .1468
BAB LOOPRESS .1273 .1200 L1271
TESTPRESS .1275 .1086 .1212
EHB LOOPRESS .0640 .0606 .0637
TESTPRESS .0676 .0618 .0630
PE  LOOPRESS .1416 .1394 .1411
TESTPRESS .0997 .1037 .1013
EAB LOOPRESS .1926 .1873 .1924
TESTPRESS .1297 .1468 .1340
PHB LOOPRESS .2099 .1953 .2084
TESTPRESS .1845 .1599 .1615

Legend: all ridge and Stein estimation is done with the LOO-choice of the k
and c values. PLS is done with the three significant dimensions, see text.
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TABLE III.45. Diagnostics of the design matrix when the homologs are used
as markers.

a) correlation matrix model 1

A M MHB EHB PHB
A 1.000
M -.968 1.000
MHB .068 -.150 1.000
EHB .057 -.133 .998 1.000
PHB .038 -.108 .994 .998 1.000

b) variance inflation factors model 1

A M MHB EHB PHB
21.8 24.0 642.9 2430.3 809.0

¢) variance decomposition proportions model 1

vV A M MHB EHB PHB cl
.0002 .0004 .0002 .0000 0001 1
,0117 .0102 .0000 .0000 .0000 1.26
7111 .6419 .0012 .0000 .0014 10.0
2766 .3414 1879 .0001 .1307 27.1
0004 .0062 .8107 .9999 .8677 105.4

oW

d) Loadings of the variables on the principal components model 1

PC A M MHB EHB PHB sexplained
1 .124 -.167 .566 .566 .563 60.9
2 .699 -.685 -.107 ~-.116 -.133 38.4
3 .686 .685 -.156 .022  .187 0.61
4 -.158 -.185 -.708 .030 .663 0.08
5 -.002 -.006 .378 -.81l6 .438 0.01

Legend: see Table II.1l.
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TABLE III.46. OLS results model 1 with homologous markers
results of predictions in training- and test set

RMSEP in  RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in

training test set
set
solute
ACP .1161 .0698 .1064 .0980 .0927
(96.8) (98.6) (96.8) (96.0) (97.3)
PE .0976 .0585 .0669 L0641 .0633
(96.9) (98.8) (98.5) (97.9) (98.5)
EAB .1018 .0568 .0679 .0647 .0633
(97.7) (99.3) (99.0) (98.4) (99.0)
TOL .2643 .0824 .1703 .1943 .1566
(94.8) (99.2) (96.8) (96.9) (97.5)
BAB .1253 L0591 .1188 L1074 .0986
(98.8) (99.7) (98.8) (98.7) (99.1)
PAR .1123 .1183 .1043 L1572 .1286
(67.6) (52.4) (40.5) (24.2) (38.2)
mean .1481 .0772 L1114 .1238 .1060

Legend: see Table III.12.
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TABLE TII1.47. Ridge regression results model 1 with homologous markers

a) results of predictions in training- and test set with L00O-choice of k

RMSEP in  RMSEP C6 RMSEP C8 RMSEP
training
set
solute
- PE .0936 .0617 .0574 .0603
(k=0.002)
mean .1476 0777 L1105 L1234

b) results of predictions with best choice of k

RMSEP in RMSEP C6 RMSEP C8 RMSEP
training
set
solute
ACP .1333 .1033 .1102 .0492
(k=0.11)
PE .0966 L0434 .0479 .0568
(k=0.03)
TOL .3036 .1195 .1990 .0991
(k=0.002)
BAB .1824 .0778 .0875 L0412
(k=0.02)
mean .1710 L0914 L1134 .0876

Legend: when the results of a solute are not reported in a) or b) the

PHE

PHE

RMSEP in

test set

.0598

.1056

RMSEP in
test set

.0917

.0487

L1457

L0717

.0981

respective k parameter was zero, these results are presented in

Table 111.46.
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TABLE III.48. Stein regression results model 1 with homologous markers

a) results of predictions in training- and test set with L0O-choice of c

solute RMSEP in  RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set

ACP .1160 .0707 .1064 .0962 .0923

(c=0.995)

PE .0976 .0603 .0686 .0636 L0643

(c=0.995)

EAB .1013 .0661 L0744 .0593 .0669

(c=0.985)

PAR .1096 L1132 .0938 .1560 .1237

(c=0.88)

mean L1477 .0776 .1107 .1228 .1054

b) results of predictions in training- and test set with best choice of ¢

solute RMSEP in  RMSEP C6 RMSEP C8  RMSEP PHE RMSEP in
training test set
set

ACP L1171 L0764 .1075 .0877 .0915

(e=0.97)

PAR .1136 L1119 .0856 .1559 .1213

(C=0.73)

mean L1484 .0767 .1088 L1222 .1044

Legend: see Table III.19.
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TABLE III.49. PLS results model 1 homologous markers
results of predictions in training- and test set

RMSEP in  RMSEP Cé RMSEP C8 RMSEP PHE RMSEP in

training test set
set
solute
ACP .3126 .1059 L1129 L0511 .0941
PE .0963 .0340 .0401 .0568 .0447
EAB .1093 .0818 .0852 .0510 .0743
TOL .3978 .2235 L2114 L2475 L2279
BAB L1921 .0943 .0794 .0453 .0758
PAR .1685 L1737 .0782 L2146 .1657
mean .2389 L1342 .1145 .1401 .1301

Legend: The solute PAR is predicted separately, only one dimension was
significant. All other solutes were gathered in the Y-block and predicted
with the use of a two dimensional PLS model.
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TABLE I11.50. Cross-validatory choice of estimation method homologous

markers
solute oLS PLS RIDGE STEIN
ACP LOOPRESS L2425 .3126 L2425 L2421
TESTPRESS .1548 L1594 .1548 L1534
PE LOOPRESS L1715 .1670 .1576 L1713
TESTPRESS L0721 .0359 L0645 L0743
EAB LOOPRESS .1865 L2150 .1865 .1846
TESTPRESS L0721 .0994 .0721 .0805
TOL LOOPRESS 1.2573 2.8486 1.2573 1.2573
TESTPRESS L4414 .9352 4414 L4414
BAB LOOPRESS .2828 .6644 .2828 .2828
TESTPRESS .1749 .1035 L1749 .1749
PAR LOOPRESS .2268 L5112 .2268 .2161
TESTPRESS .2976 L4940 .2976 L2756

Legend: see Table III.27.
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TABLE III1.51. Diagnostics of the design matrix when bad markers are chosen
a) correlation matrix model 1

A M ACP BAB PE
A 1.000
M -.968 1.000
ACP  .075 ~-.149 1.000
BAB .072 -.1l44 .997 1.000
PE .006 -.085 .983 .990 1.000

b) variance inflation factors model 1

A M ACP BAB PE
20.5 19.2 223.7 441.4 89.2

¢) variance decomposition proportions model 1

sV A M ACP BAB PE CIL
1 ,0002 .0005 .0005 .0002 .0012 1
2 ,0124 .0127 .0000 .0000 .0001 1.25
3 .7829 .8693 .0009 .0009 .0063 10.1
4 .0652 .0284 .1137 .0030 .4367 14.3
5 ,1393 .0893 .8850 .9959 .5556 45.8

d) loadings of the variables on the principal components model 1

PC A M ACP BAB PE gsexplained
1 .121 -.163 .568 .569 .560 60.6
2 .699 -.685 -.099 -.102 -.147 38.5
3 .688 .702 .076 .107 -.129 0.59
4 .14l .090 -.613 -.140 .759 0.30
5 .064 .050 .535 -.797 .268 0.03

Legend: see Table III.1l.
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TABLE III.52. OLS results model 1 bad markers
results of predictions in training- and test set:

RMSEP in  RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in

training test set
set
solute
EHB L1661 .0312 .0460 .0406 .0397
(96.1) (99.8) (99.7) (99.6) (99.7)
MHB L1501, .0552 .0347 .0378 .0435
(94.2) (99.2) (99.7) (99.4) (99.4)
EAB .0714 .0932 .0708 .0236 .0689
(98.9) (98.2) (98.9) (99.8) (98.8)
TOL .2888 .1528 .1481 .2120 L1734
(93.8) (97.2) (97.6) (96.3) (97.0)
PHB .1583 .0389 .0720 .0357 .0515
(97.9) (99.8) (99.5) (99.8) (99.7)
PAR .2021 L1399 .0546 .1785 L1347
(-5.1) (33.5) (83.7) (2.2) (32.2)
mean .1846 .0976 .0800 L1167 .0992

Legend: see Table III.12.
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TABLE III.53. Ridge regression results model 1 bad markers

a) results of predictions in training- and test set with LOO-choice of k

RMSEP in  RMSEP C6 RMSEP C8 RMSEP

training

set
solute
EHB L1417 .0625 L0725 L0417
(k=0.07)
MHB .1252 .0856 .0607 L0174
(k=0.07)
EAB .0661 .0857 .0657 .0255
(k=0.008)
TOL .2433 L1691 .1619 L2404
(k=0.05)
PHB L1447 .0661 .0925 .0759
(k=0.05)
PAR .1825 .1681 .0793 .1883
(k=0.04)
mean .1600 .1153 L0951 L1302

b) results of predictions with best choice of k

RMSEP in  RMSEP Cé RMSEP C8 RMSEP

training
set
solute
EAB .0669 .0836 .0647 .0290
(k=0.02)
mean .1843 .0961 .0792 .1169

Legend: when the results of a solute are not reported in a) or b) the

PHE RMSEP in
test set

.0603
.0614
L0641
.1938
.0789

.1528

.1145

PHE RMSEP in
test set

.0633

.0986

respective k parameter was zero, these results are presented in

Table III.52.
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TABLE III.54. Stein regression results model 1 bad markers

a) results of predictions in training- and test set with LOO-choice of ¢

solute RMSEP in RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set

EHB .1655 L0314 .0402 .0387 .0370

(c=0.985)

MHB .1490 .0701 .0458 .0275 .0509

(c=0.97) '

EAB .0713 .0981 .0757 .0191 .0724

(c=0.99)

TOL .2886 .1440 .1403 .2202 L1722

(e=0.99)

PHB .1578 .0309 .0639 .0392 .0468

(c=0.99)

PAR .1857 L1371 .0720 L1571 L1274

(c=0.55)

mean L1814 .0966 .0800 L1135 .0977

b) results of predictions in training- and test set with best choice of ¢

solute RMSEP in  RMSEP C6 RMSEP C8 RMSEP PHE RMSEP in
training test set
set

EHB .1655 .0325 .0389 .0386 .0368

(c=0.98)

TOL .2898 L1273 .1260 .2367 L1714

(c=0.97)

PHB .1593 .0207 .0505 .0503 .0428

(c=0.97)

PAR .1877 .1346 .0600 .1603 .1257

(C=0.70)

mean .1824 .0890 .0704 .1209 .0957

Legend: when the results of a solute are not reported in a) or b) the
respective ¢ parameter was one, these results are presented in
Table III.52.
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TABLE III.55.

TABLES

PLS results model 1 bad markers

a) results of predictions in training- and test set

solute

EHB
MHB
EAB
TOL
PHB
PAR

mean

Legend: see Table ITI.21.

RMSEP in
training
set

L1374
.1223
.0734
L2474
L1424
.1848

.1607

RMSEP Cé6

.0660
.0809
.0759
.2053
.0824
.1913

.1305

RMSEP C8

.0776
.0577
.0608
.1958
.1043
.1038

.1103

RMSEP

.0363
.0252
.0458
L2463
L0744
.1907

.1333

PHE RMSEP in
test set

.0625
.0592
.0620
.2169
.0880
.1670

.1251
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TABLE III1.56. Cross-validatory choice of estimation method bad markers

solute OLS PLS RIDGE STEIN
EHB LOOPRESS .4969 .3400 .3614 L4930
TESTPRESS .0284 .0702 .0654 .0246
MHB LOOPRESS .4055 .2693 .2820 .3997
TESTPRESS .0341 .0631 .0679 L0467
EAB LOOPRESS .0918 .0969 .0787 .0915
TESTPRESS .0855 .0693 .0739 .0943
TOL LOOPRESS 1.5015 1.1019 1.0658 1.4997
TESTPRESS L5414 .8470 .6757 .5336
PHB LOOPRESS L4511 .3649 L3776 L4482
TESTPRESS .0478 .1393 .1121 .0394
PAR LOOPRESS .7354 .6148 .5996 .6205
TESTPRESS .3265 .5023 .4202 .2919

Legend: see Table III. 27,
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TABLE III.57. Three-way PCA results on the whole data cube

a) results for the stationary phases

S.Phase mean s% apro  MSper MS,.5(1) %expl
cl -.0033 .0328 .0159 .0156 2.1
cé .5548 .0046 .3408 .0019 99.4
c8 .5781 .0177 .3715 .0017 99.5
C18 .7709 .0011 .7026 .011e6 98 .4
CN -1.1317 .0161 1.4057 .0100 99.3
PHE -.7688 .0102 .6767 .0028 99.6
average 0 .0138 .5855 .0073 98.8

b) results for the solutes

solute s%, ..., MSp.r MS,.s(1) 3%expl
ACP L0111 .3031 .0025 99.2
BAB .0267 1.0234 .0033 99.7
EHB .0120 .5299 .0063 98.8
PE .0064 .2399 .0031 98.7
TOL .0172 1.0457 .0204 98.0
EAB .0116 .3370 .0084 97.5
MHB .0097 .2975 .0073 97.6
PHB .0153 .9077 .0068 99.2

¢) results for the mobile phases

M.Phase MS,.¢ MS .5 (1) sexpl
wml L4671 .0063 98.7
wm2 L7493 .0081 98.9
wal L3413 .0070 97.9
wal .5477 .0070 98.7
aml .5147 .0067 98.7
am2 .8931 .0085 99.0

d) scores of the stationary phases on the first PC

cl cé6 c8 c18 CN PHE

-.125 4.033 4,213 5.759 -8.193 -5.688

Legend: for the meaning of MS; .., MS, .5 (1), s®,,p:0 See the text. The
abbreviation %expl stands for percentage of explained variation of

retention values on the stationary phase.
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TABLE III.58. PARAFAG results on the whole data cube

a) results for the stationary phases

S.Phase mean $% epro  MSp.¢ MS. o5 (1) %expl
Ccl -.0033 .0328 .0159 .0156 2.1
Cé .5548 .0046 .3408 .0030 99.1
c8 .5781 .0177 L3715 .0032 99.1
Cl18 .7709 .0011 .7026 L0141 98.0
CN -1.1317 .0161 1.4057 .0117 99.2
PHE -.7688 .0102 .6767 .0042 99.4
average 0 .0138 .5855 .0086 98.5

b) results for the solutes

solute s® .. .. MSper MS. ., (1) sexpl
ACP .0111 .3031 .0040 98.7
BAB .0267 1.0234 .0037 99.6
EHB .0120 .5299 .0083 98 .4
PE .0064 .2399 .0046 98.1
TOL .0172 1.0457 .0266 97.5
EAB .0116 .3370 .0048 98.6
MHB .0097 .2975 .0082 97.2
PHB .0153 .9077 .0089 99.0

c) results for the mobile phases

M.Phase MS,,, MS. ., (1) sexpl
wml L4671 .0089 98.1
wm2 L7493 .009%6 98.7
wal L3413 .0106 96.9
wa2 .5477 .0094 98.3
aml L5147 .0069 98.7
am2 .8931 .0063 99.3

d) scores of the stationary phases on the first PARAFAC component
Cl Cé c8 Cc18 CN PHE

017 ~-.581 -.607 -.830 1.181 .760
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TABLE III.

a) results

TABLES

59. Results of the unfold-PLS predictions

for the stationary phases

S.Phase s?,,,., ®X[MaMPh] %X[NMaMPh] MSg, MARK  MS,, o4
cl .0328 99.3 99.3 .0287  14.2 .0215
cé .0046 98.8 98.7 .5500 99.1 4773
c8 .0177 98.7 98.6 .7186  99.7 .4925
cl8 .0011 99.2 99.0 1.3605 96.9 1.4814
CN .0161 98.9 98.4 2.4719 97.7 1.9208
PHE .0102 98.6 98.5 1.2383 99.3 .9136

b) root mean squared error of prediction for the solutes

solute

ACP

BAB

EHB

PE

TOL

EAB

PHB

S.Phase

Cl c6 c8 C18 CN PHE

0959  .0543  .0663  .0789  .1263  .0646
(3.6)  (98.9) (98.3) (98.8) (98.6) (99.1)
1149  .0657  .0522  .1062  .1600  .0662
9.1y  (99.5) (99.7) (99.4) (99.3) (99.7)
1923 .0687 .0360 .1761  .2180  .0732
(---)  (99.0) (99.7) (95.8) (97.6) (99.4)
0964  .0628  .0366  .1008  .1489  .0661
(25.2) (98.2) (99.4) (97.4) (97.3) (98.9)
2097 .04k2 1487  .3102  .3523  .1688
(41.6) (99.8) (97.3) (96.3) (95.9) (98.6)
1118 .1219  .0611  .1336  .1495  .0528
(---)  (96.0) (98.7) (96.5) (98.3) (99.5)
1650  .0983  .0589  .2138  .2267  .0706
(---)  (96.8) (98.8) (86.9) (95.6) (98.9)
2363 .0888  .0928  .1866  .2013  .0608
(---)  (99.0) (98.9) (97.6) (98.8) (99.8)

Legend: all values in Table 1I1.59b are root mean squared error of

predictions (RMSEP) .

The values between parentheses (Table I1I.59a, b)
are percentages of explained mean sum of squares in the test set.
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TABLE III.59 (continued)

c) RMSEP for the mobile phase compositions

M.Phase
wml
wm2
wal
wa?l
aml

am?2

266

S.Phase

Ccl cé
.0854 .0296
(---) (99.7)
L1661 .1156
---) (98.1)
.1995 .0168
(---)  (99.9
.1871 L0745

(---)  (98.8)
1371 .0620
(46.3) (99.1)
.0715  .0893
(50.0) (98.8)

c8

. 0480
(99.4)
.1157
(97.7)
.0202
(99.8)
.0354
(99.8)
.0758
(98.6)
.0348
(99.8)

C18

.1093
(98.1)
.1681
(97.8)
1775
(90.6)
.2079
(94.5)
.1562
(97.8)
1334
(98.5)

CN

.1943
(97.3)
.2043
(98.3)
.2804
(93.0)
.2308
(97.4)
1277
(99.0)
1134
(99.5)

PHE

L0944
(98.4)
L1133
(99.1)
.0986
(97.2)
.0555
(99.6)
.0370
(99.8)
.0515
(99.8)
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TABLE III.60. Results of the PARAFAC predictions

a) results for the stationary phases

S.Phase Szrepro szrain Msmark $MARK Mstoex Msren
cl .0328 .99 .0287 14.7 .0215 .0237
(---)
cé . 0046 .98 .5500 98.7 L4773 .0072
(98.5)
c8 .0177 .98 .7186 99.3 L4925 .0062
(98.7)
Cc18 .0011 .99 1.3605 96.7 1.4814 .0307
(96.7)
CN .0le6l .98 2.4719 97.1 1.9208 .0373
(98.1)
PHE .0102 .98 1.2383 99.2 .9136 .0078
(99.1)

b) root mean squared error of prediction for the solutes

S.Phase
Ccl Co6 c8 Cl8 CN PHE
solute
ACP .0967 .0759 .0897 .0520 .1589 L0664
(1.9) (97.8) (97.0) (99.5) (97.7) (99.0)
BAB L1157 .0724 .0562 L1121 L1772 .0574
(7.9 (99.4) (99.7) (99.3) (99.1) (99.8)
EHB L1945 .0802 L0571 L2014 .1981 .0899
(---) (98.6) (99.3) (94.6) (98.0) (99.1)
PE .0984 L0792 .0383 .1310 L0731 .0990
(22.0) (97.2) (99.4) (95.6) (99.3) (97.5)
TOL .2071 .0340 .1665 .3054 .3891 .1568
(43.0) (99.9) (96.7) (96.4) (95.0) (98.8)
EAB L1117 .1199 .0704 .1323 .1648 .0359
(---) (96.2) (98.3) (96.6) (97.9) (99.8)
MHB L1667 .1044 .0591 L2217 .1989 .0824
(---) (96.4) (98.8) (85.9) (96.6) (98.5)
PHB .2386 .0925 .0954 L2111 .1570 .1018

(---) (99.0) (98.8) (97.0) (99.3) (99.4)
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TABLE III.60 (continued)

c) RMSEP for the mobile phase compositions

S.Phase
M.Phase Cl Ccé Cc8 Cl8
wml .0853 .0560 L0714 .0751
(---) (98.8) (98.7) (99.1)
wm2 .1660 L1275 .1280 L1394
(---) (97.7) (97.2) (98.5)
wal .2027 © .0352 L0412 .2189
(---) (99.4) (99.3) (85.7)
wa?2 .1902 L0741 .0488 .2480
(---) (98.8) (99.5) (92.2)
aml .1363 .0595 .0739 L1671
(44.9) (99.2) (98.7) (97.5)
am?2 .0709 .1056 .0532 .1097

(50.9) (98.4) (99.6) (99.0)

Legend: see Table III.59. The abbreviation R?

text.
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CN

.1808
(97.6)
.2260
(97.9)
.2267
(95.4)
.2088
(97.9)
.1356
(98.8)
.1610

(99.0).

train

PHE

.0811
(98.8)
1148
(99.1)
.1200
(95.9)
.0934
(99.0)
.0436
(99.8)
.0388
(99.8)

is explained in the
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PART IV CHAPTER 14 EXPERIMENTAL DESIGN

Chapter 14 Experimental design

14.1 The choice of the stationary phases

The stationary phases, chosen to illustrate the calibration strat-
egies, are different batches of octadecyl stationary phases of the
same brand. Table IV.la summarizes some characteristics of these
stationary phases. Two batches of silica substrate material were
used. Each silica substrate material was subjected to two separate
silanisation procedures. This resulted in four different silica
substrate/octadecyl modified materials. Each combination was dupli-
cated, so eight stationary phases are obtained. From these eight
stationary phases, six were used, as indicated in Table IV.la. The
number of six was believed to be a good compromise between investig-
ating all four combinations in duplo and the amount of experimental
effort. Measurements on these six stationary phases were performed by
three different analysts, using different equipment, also indicated
in Table IV.la (details are given in Section 14.4).

Octadecyl modified material was used for two reasons. First,
because its widespread use in common practice. Second, the measure-
ments described in Part III indicated that octadecyl 1is a stable
material for at least one month, even if used extensively.

14.2 The choice of the mobile phase compositions

Binary- and ternary mobile phase compositions were chosen for the
development of calibration schemes for reversed-phase HPLC. The exact
compositions are given in Table IV.1b and shown in Fig 1. These
compositions were chosen in such a way that reasonable capacity
factors of the test solutes (see Table IV.2 and IV.3, Section 14.3)
are obtained (roughly between 1 and 40) and the compositions are
regularly spread in the mixture triangle, see Chapter 4. Note that
two aspects of a mobile phase are incorporated in this design. First,
moving from wml to wm3 the eluent becomes stronger, the same holds
for aml to am3 and wal to wa3. Second, the kind of organic modifier
is changed moving from water/methanol to water/acetonitrile mixtures.

14.3 The choice of the test solutes

Test solutes should fulfil certain conditions. First, test solutes
should have reasonable retention behaviour in mobile phases as chosen
in Section 14.2, hence basic solutes are not very appropriatel'z. In
fact, in some experiments at the indicated mobile phases, the solutes
N-methyl-aniline and aniline were incorporated, but they were omitted
because of their very bad reproducibility and repeatability.

Second, it is convenient that the test solutes are easily detect-
able by a UV wvariable wavelength detector. Third, the test solutes

should encompass a range of functional groups. Fourth, in this
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ACN MeOH

Figure IV.l1. Mobile phase compositions used in the calibration of
the octadecyl stationary phases. For the exact compositions, see
Table IV.1.

special case the test solutes should not differ too much because the
calibration strategies have been developed to work in case of a given
separation problem, which is often limited to "related compounds™ .

In related studies (see Chapter 6 and 7) benzene derivatives were
often used as test compounds. This choice was also made here, con-
sidering the above mentioned conditions. Some other solutes-
steroids, phenobarbital - were incorporated to investigate their
mark-power and ability to be predicted. In Table IV.2 cthe test
solutes are shown, together with their structural formulas.

14.4 Experimental details

Methanol (MeOH) was of analytical grade and acetonitrile (ACN) was
of chromatographic quality (Merck, Darmstadt, G.F.R.). Water was
obtained fresh from a milli-Q water purifier (Millipore, Bedford,
USA). The sixteen test solutes were obtained from various firms. The
dead time was measured as the retention time of uracil and was in the
range of 60 to 70 seconds. The concentrations of the injected solutes
ranged from 0.02 to 0.08 mg/ml. The flow rate was 0.5 ml /min.

The six stationary phases were different batches of Chromspher
Octadecyl material (Chrompack, The Netherlands), with characteristics
as explained in Section 14.1. The average diameter of the silica
particles was 5.0um, the average pore volumes were 0.63+0.08 ml/g for
both silica batches, the poresize was 118+10 A and 131+10 A for
silica batches 1 and 2, respectively (Table IV.1). All columns were
100 mm long (3.0 mm i.d.).

The first series of measurements, stationary phase A, was performed
with a LDC-Milton Roy Mini HPLC-pump, a Chromatronix 230 dual-wave-
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length detector (operated at 254 mnm, except for EE (280 nm)), an
injection valve (Rheodyne 7125) fitted with a 20-pl loop, and a Kipp
BD40 recorder. The second series (stationary phase B) was performed
with a LDC-Milton Roy Mini HPLC-pump, a Shimadzu SPD6A variable-
wavelength detector (operated at 254 nm, except for EE (205 nm)), an
injection valve (Rheodyne 7125) fitted with a 20-pl loop, and a Kipp
BD40O recorder. The last four series (stationary phase C to F) were
performed with a Waters 6000A HPLC pump, a Kratos Spectroflow 757
variable-wavelength detector (operated at 205 nm), an injection valve
(Rheodyne 7010) fitted with a 10-pl loop, and an Omniscribe recorder
(Houston Instruments).

The k values are reported in Table IV.3, together with the mobile
phase compositions at which the measurements were made. The corres-
ponding ln k values are reported in Table IV.6. The reproducibility
and repeatability of the measurements are discussed separately in
Section 14.5.

Details regarding the used software are already reported in
Section 9.4.

14.5 Reproducibility and repeatability

The difference between the concepts reproducibility and repeata-
bility is already explained in Section 9.5. On each stationary phase
measurements started with the mobile phase wm2, which will be re-
ferred to as the test mobile phase composition. For stationary phase
A and B this test mobile phase composition was used again in the
middle and at the end of the whole series of mobile phase composi-
tions. So three reproduced measurements, regularly spaced in the
mobile phase series, of a retention time of a solute on stationary
phases A and B at mobile phase composition wm2 are available. Analog-
ous, four reproduced measurements, also regularly spaced, are avail-
able for stationary phases C to F. The standard deviation of the k
(or 1n k) values for each solute of these reproduced measurements is
a yardstick of the reproducibility.

Contrary to the experiment described in Part III, no pattern
emerged from the reproduced measurements. There was mno clear drift
visible in the three (or four) reproduced k values. The assumption of
a constant relative error of the k values on a stationary phase can
be judged with the coefficients of variation (CV). This assumption
seems reasonable, except for stationary phase B. In the following
calibration calculations this assumption is adopted and a logarithmic
transformation of the k values is performed. The relative error in k
of a solute, at constant mobile phase composition, on the six sta-
tionary phases shows variation. It is therefore questionable whether
the assumption of a constant relative error in k holds also if
different stationary phases are considered. For the moment, however,
this assumption is adopted for the sake of convenience. Assuming a
constant relative error in k, a logarithmic transformation produces
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In k wvalues with an approximately constant absolute error (see
Section 9.5) which is convenient in the following model-building
strategies. Summarizing, an In k value is assumed to have a constant
measurement error, not depending on the mobile phase composition, the
stationary phase or the particular solute. Note that the average CV
values of both stationary phase B and F are relatively high, these
stationary phases have a relatively bad reproducibility,

Examining the repeatabilities (Table IV.5) a vague pattern emerges,
already described in Section 9.5. Often the stronger eluent wml gives
lower standard deviations of the repeated k values (each standard
deviation is calculated from two repeated measurements) than wm3.
This is in agreement with the above mentioned assumption regarding
the error structure of k. Analogous reasoning holds for the water/
acetonitrile- and the ternary mixtures.

The reproducibilities and repeatabilities in ln k terms are given
in Table IV.7. The S:epeat values are outcomes of the pooled standard
deviations (actually: square root of pooled variances) over the
mobile phase compositions (not only the wm2 mixture), which is
allowed if the assumption of constant error variance holds. The
difference between the Srepeat 8nd S..,., 1is not as large as in Part
ITI. Only for stationary phase D and F large differences can be
observed. Because no clear drift was visible in the reproduced
measurements, the s, . ., values reflect day-to-day variation, which
is wusually higher than within-day variation, reflected by Siepeat -
The reason for the high Srepro values relative to the Srepeat Values
of stationary phases D and F is not clear. Note that the bad reprodu-
cibility of stationary phase B is reflected in the S:epeat values of
that phase, indicating one of the causes of that bad reproducibility.

14.6 Univariate description of the data set

The univariate description of the data set is divided in two parts.
The first part is devoted to the variation of 1n k values of a solute
on a stationary phase due to changing the mobile phase composition,
some representative examples are shown in Figures IV.2a to IV.2f. The
second part shows the dependence of the 1n k value of a solute on the
stationary phases, at fixed mobile phase compositions (Figures IV.3a
to IV.3d).

Examining Figures IV.2a to IV.2f, very regular patterns emerge. The
dependence of the ln k of a solute on the mobile phases with the same
kind modifier but of different elution strength (e.g wml, wm2, wm3)
i1s almost everywhere linear. These lines are the steepest for solute
EE, thereby showing the strongest dependence on elution strength.
Non-linear mixing behaviour is often present to some extent, e.g.
comparing the 1ln k of PE on stationary phase B at mobile phase
compositions wm2, wa2 and am2 shows that the ln k value of PE at am?
is not the mean of the 1ln k values at wm? and wa2.

The differences between the stationary phases, at the constant
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Figure IV.2. Ln k values of some of the test solutes on the differ-
ent stationary phases A, B, and C. The numbers 1 to 9 correspond to
the mobile phase compositions wml, wm2, wm3, aml, am2, am3, wal, waZ,
and wa3 (see Table IV.1), respectively.
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Figure IV.2 (continued). Ln k values of some of the test solutes on
the different stationary phases D, E, and F. For the numbers 1 to 9
see Fig.IV.2a.
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mobile phase composition wm2, are shown for each solute separately in
Figures IV.3a to 1IV.3d. The vertical bars in the figures give the
standard deviation of the associated value. It appears that station-
ary phases D, E, F and, to some extent, A are rather similar. Sta-
tionary phase B has generally lower In k values than the other
phases, whereas stationary phase C has higher ln k values. Although
the stationary phases differ only in batch, all solutes show differ-
ences between the stationary phases.

14.7 Three-way description of the data set

Two three-way analysis methods are used to analyze the data set at
hand, realizing that the data can be arranged in a data cube with
three directions (modes): the solutes, the mobile phase compositions
and the stationary phases. The three-way principal component analysis
as described in Section 1.6 is discussed first. The data cube 1is
unfolded in such a way that the direction of the stationary phases is
left intact, thereby treating the stationary phases as objects (see
Figure I1.5). A datamatrix consisting of 6 objects and 9x16 (144) -
variables is obtained. A variable is a combination of a mobile phase
composition (j=1,...,9) and a solute (k=1,...,16). Because interest
focusses primarily on differences between the stationary phases,
centering the data cube in the direction of the stationary phases
seems appropriate. This means that, after the centering operation,
the six retention values of the stationary phases for each solute/mo-
bile phase combination, gathered in a column of the 6x144 matrix, sum
up to zero. The data are not scaled because the data are measured in
the same units and the influence of scaling in three-way approaches
is complex. The model used to describe the data is then:

g
X; 5 = xmeang + 2 T Poyx t o€k (IV.1)
s=1

where x;;, 1s the 1n k value of solute k at mobile phase composition
j on stationary phase i, g 1is the number of components (latent
variables) in the model, Xmeanmk=(injk)/6 (summation over i) and
€55k LS the error with constant variance.

The results of this analysis are reported in Table 1v.8. If the
data cube is centered in the above described way, the mean value of
all entries in one stationary phase layer (see Figure I1.3), therefore
averaged over all mobile phase composition/solute combinations, gives
an indication of the average deviation of this stationary phase
relative to a "hypothetical stationary phase" as estimated in the
centering operation. The most deviating stationary phases are A and
B, with the highest and lowest value for the mean, respectively. In
Section 14.6 stationary phase C was found deviating, but there only
the wm? mixtures were investigated. A measure of the variation of the
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Figure IV.3. Ln k values of the solutes at mobile phase composition
wmZ2 on the six stationary phases. The numbers 1 to 6 correspond to
stationary phases A to F, respectively. The 1 sigma bars are in-
cluded. If such a bar is not shown, this bar was smaller than the

symbol used to indicate the measured value.
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Figure IV.3 (continued).

entries in a stationary phase layer relative to the "hypothetical
stationary phase" is given by MS, .., the mean squared entries in the
layer prior to the decomposition in components. This variation is
large, of course, for the stationary phases A and B. But also sta-
tionary phase C and, to a lesser extent, stationary phase F have
considerable variation. A natural yardstick to compare the M5,
values with is the s%epro, as calculated for each stationary phase by
pooling the appropriate individual estimates of every solute. The
MS,.; values of stationary phases A, B and C are much higher than the
corresponding s?,,,, values. The average signal-to-noise ratio 1is
approximately 2 (27.87/15.46). The importance of precise measurements
is illustrated: if all s%epro values are low, all stationary phases
would have meaningful variation and could contribute to the decom-
position. Consequently, a calibration data set with reproduced
measurements at all mobile phase compositions would be advantageous
and result in higher average signal-to-noise ratios than 2 because
the precision of the retention values increases.

If the number of components in model (14.1) is estimated with
cross-validation (see Sections 1.2 and 1.6) three significant compo-
nents are found. Examining the average sé .., and the average MS. .
after applying the first and second component (Table IV.8a), indic-
ates that the systematic part of the data cube can be described by
(at most) two components. These two components describe 86% of the
variation in the data cube. The MSyog values for each individual
stationary phase show that the variation of stationary phase B is
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almost completely explained by the first component. Similarly, the
second component is responsible for the strong reduction of unex-
plained variation of stationary phase A. These phenomena are reflec-
ted in the scores on the first two components, see Table IV.8b.
Stationary phase B scores high (in absolute wvalue) on the first
component and stationary phase A on the second. The scores on the
first two components are depicted in Figure IV.4a. It can be observed
that the stationary phases A and B are the most deviating. Note that
the difference between stationary phases of the same batch but used
by a different analyst/apparatus combination (A,F and B,E) is larger
than the difference between batches measured by the same analyst/
apparatus combination (C,D,E,F).

The loadings of the 144 variables on the two components are shown
in Figure IV.4b. High locadings (extreme values in Figure IV.4b) are
observed for: ACP (wa3), ACT (am2,wa2,wa3), EAB (wa3), PHB (wa3), EE
(wml,wm2,wal,aml,am?2), PBL (wml,wal,waZ,wa3), PRE (wml,wal,am2), and
PRS (wml,wal,wa3). A decision with regard to solute/mobile phase
combinations most representative to the structure of the data cube is
not easy to make. As markers the solutes ACT, EE, PBL and either PRE
or PRS can be chosen. The mobile phase compositions are more diffi-
cult to select, wa3 would be part of this set in any case. The
problem is that a combination of a solute and a mobile phase composi-
tion has to represent the variation in the data in order to be a
suitable marker/mobile phase combination. But a high loading of a
variable can be caused not only by representativeness but also by
outlier characteristics. Therefore, a more quantitative method is
needed to select promising combinations and validating this selec-
tion.

Tables IV.8c and 1IV.8d give an impression of the modelling power of
the components with regard to the solutes and the mobile phase
compositions, respectively. The MS,_,, values are calculated within
the appropriate layer of the data cube. Especially EE and PBL are
hard to model (high MS_._ ., values), despite the high loadings. This
might be due to their high MS, . values. The MS,,, values of the
solutes reflect variations due to the mobile phase compositions, the
stationary phases and specific combinations of those. Figures IV.3a
to IV.3d do not reveal extreme dependence of EE and PBL on the
stationary phases. For the solute EE this high MS,,.; is probably due
to its sensitiveness towards elution strength (see Section 14.6).
Both solutes EE and PBL show relatively strong non-linear mixing
behaviour (see Figures IV.2a to IV.2f), which also contributes to
MSy.¢. The In k values of both EE and PBL are relatively low for the
water/acetonitrile mobile phases, especially the wa3 mixture. Note
that the  influence of a specific mobile phase/stationary phase
combination on the k values of EE and PBL cannot be inferred easily
by Figures IV.2 and IV.3. The retention values at the mobile phases
aml and, to a lesser extent, wml are not explained very well by a
principal component model with two components. The retention at the
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Figure IV.4. Score (a) and loading plot (b) of a three-way PCA on
the data cube with the six stationary phases as objects. Legend: a)
the capitals A to F refer to the stationary phases in Table IV.I; b)
6=EAB at wml, 7=FEE at wml, 11=PBL at wml, 16=TOL at wml, 22=EAB at
wm?2, 23=EE at wm2, 27=PBL at wm2, 46=PRE at wm3, 55=EF at aml, 62-PRE
at aml, 66=ACT at am?, 71=EE at am2, 78=PRE at am?, 84=CRE at am3,
98=ACT at wal, 103=EE at wal, 107=PBL at wal, 109=PHB at wal, 110=PRE
at wal, 111=PRS at wal, 114=ACT at wa2, 118=EAB at wal2, 121=MHB at
wa?, 123=PBL at waZ2, 129=ACP at wa3, 130=ACT at wa3, 134=EAB at wa3,
139=PBL at wa3, 141=PHB at wa3, 143=PRS at wa3, all other variable
combinations are not shown because the loadings were far less ex-
treme.

water/acetonitrile mixtures are modelled well due to their high
loadings (see above). Examining the individual residuals (not given)
associated with the six stationary phases and mobile phase aml,
reveals that the residuals of stationary phases A and B are small for
every solute. PBL has always large residuals on the other four
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stationary phases and EE two times. Yet other solutes, e.g. ANS, EAB,
PE and PRE have also large residuals. It is not clear whether the
observed non-linear mixing behaviour, especially in the case of PBL
and EE, is responsible for the high MS,_ . values of aml and wml.

The second three-way analysis is done with the PARAFAC method. The
corresponding model is (adopting again the notation Ri5x )

8

= xmean;, + Z aisbjscks + o€ 5y
s=1

X (IV.2)

ijk

where g, RMean;; and €; 4y have the same meaning as in (IV.1). The
results are reported in Table IV.9.

The reduction in unexplained variation due to the first two compo-
nents (the difference between the MS, ., and MS, ., (2) columns in Table
IV.9) is more evenly spread over the stationary phases than in case
of the unfold principal components analysis. The variation associated
with stationary phases A and B is not completely absorbed in the
second and first PARAFAC component, respectively, as was the case in
the unfold solution. The total explained variation is 72% with the
PARAFAC model, slightly less than the unfold solution. But, as stated
earlier (Section 1.6), the percentage of explained variation, or the
size of the residuals, is not the ultimate yardstick to compare the
performance of three-way decompositions with. The scores of the
stationary phases on the PARAFAC components cannot be compared
directly with the scores on the principal components because of scale
arbitrariness of both the principal component and the PARAFAC solu-
tion (if all t;, values in (IV.l) are multiplied by a constant and
all tg;, are divided by that same constant an equivalent solution is
obtained, the same holds for the PARAFAC decomposition). A score plot
of the PARAFAC solution is shown in Figure IV.5. Contrary to the
scores In Figure IV.4a (the unfold solution), these scores are not
uncorrelated. Stationary phases B and C are the most deviating in the
PARAFAC solution.

The reduction in unexplained variation of retention values of the
solutes are given in Table IV.9c. For the mobile phase compositions,
analogous values are given in Table IV.9d. After applying two compo-
nents in the PARAFAC model, the retention of solutes EE and PBL
remains largely unexplained. This effect was also observed in the
unfold solution, but less dramatically. The same causes as mentioned
above with respect to this phenomenon may apply for the PARAFAC
solution. If the loadings of the solutes PBL and EE on both PARAFAC
components are examined (see Table IV.9e), PBL appears to load high
on these components contrary to the solute EE. Yet these high loa-
dings of PBL do not model the retention of the solute PBL properly,
but better than the retention of solute EE. The retention values at
mobile phase compositions wml, aml and am2 still have high unex
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Figure IV.5. Score plot of the PARAFAC model, the capitals A to F
refer to the stationary phases, see Table IV.I.

plained variation after applying the PARAFAC model (Table 1IV.9d).
Reference is given to the discussion above regarding the modelling of
retention at the mobile phase compositions with the unfold decomposi-
tion. Both mobile phase compositions aml and wal load high on both
PARAFAC components (see Table IV.9f). Retention at mobhile phase com-
position wal is modelled well, whereas retention at aml is not. Note
that it is easier to select solute/mobile phase combinations which
represent the systematic variation in the data cube with the use of
the PARAFAC loadings than the unfolding ones. From separate loading
plots - one loading plot of the solutes (Table IV.9%e) and one of the
mobile phases (Table IV.9f) - markers and mobile phases can be
selected. Moreover, the PARAFAC decomposition is rotation invariant?®
and the rotation dependence hampers the selection of variables on the
basis of loadings from a PCA (see Section 1.2). From Table IV.9%e it
can be inferred that ACP, ACT, PBL and PRS are suitable markers,
whereas wm3, aml, wal and wa2 seem suitable mobile phase composi-
tions. A good validation procedure is needed to evaluate this choice
quantitatively.

It is hard to derive conclusions with regard to the potential of
both methods (unfold and PARAFAC) to decompose the data cube. An
important difference between PARAFAC and unfold-PCA is the number of
degrees of freedom. In applying PARAFAC with two components 206
(16x9+2x16+2x9+2x6) parameters have to be estimated, whereas this
number is 444 (16x9+16x9+16x9+2x6) in case of unfold-PCA with two
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components. Therefore, a considerable gain in degrees of freedom is
obtained if PARAFAC is used. It is claimed* that the PARAFAC decom-
position is more restrictive then the unfolding decomposition, which
seems to be a reasonable claim considering equations (IV.1l) and
(Iv.2). This difference in restrictiveness has two different con-
sequences. The unfold decomposition is more flexible than PARAFAC,
but leaves the principal components the freedom to explain retention
on stationary phases A and B completely. This is only reasonable if
these stationary phases are really extremely informative, otherwise
outlying behaviour is modelled. The PARAFAC approach is more restric-
ted, explaining less of the total variation than the unfold solution,
but the stationary phases contribute more regularly to the compo-
nents. Besides, in case of the PARAFAC decomposition a choice has to
be made whether the components are orthogonal (which is the same as
uncorrelated for the mode where centering is performed) or not. This
is a model assumption which has to be made on the basis of the
knowledge of the process generating the data. With the unfold-PCA
method the scores are always orthogonal, so there is no choice. In
the PARAFAC decomposition as applied above no orthogonality was
assumed, because there was no clear reason to do this and the demand
of orthogonality restricts the decomposition.
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Chapter 15 Two-way approach

15.1 The choice of the training- and test set

In order to illustrate a calibration strategy as described in
Subsection 8.1.2, three stationary phase are chosen. Two of these
stationary phases will constitute the training set, whereas the
remaining one will be the test set. Based on the scores on the first
two components in both the wunfold and PARAFAC  solutions
(Section 14.7), the stationary phases A, B and C are a reasonable
choice, because these stationary phases represent the most deviating
ones. Referring to Table IV.1l, it is clear that these three station-
ary phases comprise different analyst/apparatus combinations and do
not incorporate duplicate stationary phase materials.

Two analysis of wvariance (ANOVA) calculations are performed to
illustrate the differences between the stationary phases. The first
ANOVA is a one-way set up. The (only) factor is the stationary phase
(varied at three levels), with three reproduced measurements for
stationary phases A and B, and four reproduced measurements for
stationary phase C, at mobile phase composition wm2. This ANOVA is
performed for each solute separately. With the use of Scheffé confid-
ence intervals, differences between the stationary phases can be
visualized for each solute. The results are given in Table IV.10a.
The level of significance is 5%. If a solute is reported in this
table, the null hypothesis that the stationary phases do not differ
with respect to the 1ln k values of that solute is rejected. Stated
otherwise, the variation because of changing stationary phases is
significant larger than the reproducibility of that solute. Two
conclusions can be drawn from Table IV.10a. First, stationary phase C
is the most deviating from the three. Second, the differences between
the stationary phases depend on the solutes.

The second ANOVA is performed with two factors: the stationary
phases (varied at three levels) and the amount of organic modifier in
the mobile phase (varied at three levels). This two-way ANOVA is
performed for each type of mobile phase: once with the binary water/
methanol mixtures, once with the binary water/acetonitrile mixtures
and once with the ternary mixtures as second factor. Again the three
ANOVA's are performed for each solute separately. The results are
reported in Table IV.10b. If a solute is shown in Table IV.10b, this
means that the null hypothesis "no difference between the stationary
phases" is rejected at a significance level of 5%. By comparing the
results of the two-way ANOVA performed with the different types of
mobile phases, it is clear that the differences between the station-
ary phases are not only dependent on the solutes but also on the type
of the mobile phase. The differences between the stationary phases if
water/methanol mixtures are considered, only show up for p-cresol
(CRE). The differences between the stationary phases are much more
pronounced in water/acetonitrile mixtures, which is in agreement with

287



PART IV CHAPTER 15 TWO-WAY APPROACH

the remarks made in Sections 14.6 and 14.7. This stresses the notion
that the measured differences between the stationary phases depend on
the solutes, the kind of mobile phase and combinations of these
factors.

The whole calibration procedure is illustrated with the use of
stationary phase C in the test set, because retention on this sta-
tionary phase is expected to be the most difficult to predict (see
the ANOVA results).

15.2 Selection of the markers.

The data set from which the markers are selected can be arranged
according to Figure II.8, Subsection 8.1.2. The data are column-mean
centered. In this instance the subject of scaling is not investig-
ated. No scaling is performed because all ln k values are measured in
the same units. The markers are selected with the induced-variance
criterion (see Section 1.3). In Section 11.5 the determinant cri-
terion was found to be a reasonable alternative, but the induced-
variance criterion fits theoretically better the purpose of predic-
tion.

Two versions of the calibration procedure are discussed. Version
one (labelled as I) uses all mobile phase compositions in the train-
ing set, whereas version two (labelled as II) only uses the extreme
mobile phase compositions 1i.e. wml, wm3, aml, am3, wal and wa3.
Version I thus makes use of 9x2 objects to chose the markers and to
calculate the model with, whereas version II only uses 2x6 objects.
The marker choice in case of version I is discussed first.

The four variables ANS, DMP, EE and PRE explain the highest per-
centage of variation in X (P=99.833%), and are therefore chosen as
markers (Table IV.1lla). Two of these solutes - ANS and PRE - were
already expected to describe differences between the stationary
phases A and B (see Table IV.10a).

The second and third best subsets are DMP, EE, PRE, TOL and ANS,
DMP, EE, PRS. These subsets explain respectively 99.830% and 99.828%,
illustrating the exchangeability of the three subsets of markers. The
exchange of ANS and TOL between subsets one and two can be explained,
as they belong to the same selectivity group (VII) as proposed by
Snyder®, and TOL is also sensitive towards differences between A and
B. The solutes PRE and PRS are chemically related and can be ex-
changed.

Note that the markers represent moderate and slow eluting com-
pounds, and not the fast eluting ones. This may cause problems if
fast eluting compounds are to be predicted.

In case of wversion 1II, the marker choice is presented in
Table IV.1lb. The data matrix from which the markers are chosen is a
12x16 matrix with column mean-centered entries and is again not
scaled. The resulting marker sets resemble the ones from version I,
except for the presence of the solute PBL instead of the solute EE.
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Whether this exchange of PBL and EE is related to the particular
behaviour of these solutes as indicated in Section 14.7, is intuit-
ively reasonable but difficult to prove.

15.3 Results of the predictions on the new stationary phase

The results of the predictions with version I are discussed first-
ly. The solutes ANS, DMP, EE and PRE are selected as markers. The PLS
method is used to model the relationship between the behaviour of the
markers and non-markers. The ln k values are ordered as indicated in
Fig I1.9, Subsection 8.1.2. All columns in X[M] and X[NM] are mean-
centered, no scaling is performed.

With two dimensions in the PLS model, 99.5% of the variation in
X[M] is used to explain 99.2% of the variation in X[NM]. These two
dimensions are considered sufficient to reflect the relation between
X[M] and X[NM].

The final step in the prediction procedure is the calibration of
the new stationary phase G with the markers. As the measurements of
the markers are available on stationary phase C at the same mobile -
phase compositions as in the training set, predictions on the new
stationary phase are performed at these nine mobile phase composi-
tions. It is not necessary to predict at the same mobile phase
compositions as in the training set, but it is convenient with the
data set at hand. The 1ln k values of the markers are used to predict
the 1n k values of the non-markers, at the nine mobile phase composi-
tions, on the new stationary phase (see Figure I1.10, Subsec-
tion 8.1.2).

The results of the calibration of the new stationary phase are
shown in Table IV.12. The root mean squared error of prediction
(RMSEP 1) values are calculated with the use of predictions at all
nine mobile phase compositions and can be compared with the s, ..,
values of the solutes on stationary phase C. The average RMSEP value
is three times the average S..;:. value, indicating some systematic
prediction error. The percentage of explained variation in the test
set ranged from 98.56% for TOL to 99.69 for EAB and PHB. The predic-
tions can be considered good except for MHB, PBL, PRS and TOL. To get
an impression of the performance of the calibration, the observed
versus the predicted capacity factors of ACP and TOL are given (Table
IV.12¢c, version I). The solutes represent, respectively, the best and
worst calibration.

The relatively bad predictions of PBL and MHB are discussed first-
ly. This was expected: both compounds are fast eluting. Yet other
fast eluting compounds - ACP, CRE, EAB, PE - are predicted well.
Closer examination shows that PBL is worse predicted at the ternary
mixtures. This could be expected because the two-way ANOVA showed
differences between the measurements of PBL on the stationary phases
with respect to the ternary mixtures, which is related to the non-
linear mixing behaviour of PBL as discussed in Section 14.7. The
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conclusion is that the selective differences shown by PBL in ternary
mixtures are not completely represented by the markers. The variable
MHB is worse predicted at the aml and wa3 mixtures. This may be due
to an analogous cause as in case of PBL, see Table IV.10b. For both
mobile phase systems (water/acetonitrile and water/methancl/acetoni-
trile), MHB shows differences between stationary phases A,B and B,C
as calculated with Scheffé intervals (with a 95% confidence level).
The retention values of other solutes, e.g. EHB and PHB, show also
differences between the stationary phases: for both water/acetoni-
trile and the ternary mixtures differences occur between stationary
phases A,B and B,C. But the retention of these solutes is predicted
well, so extrapolation beyond the "markers-scale" is probably one of
the reasons for relatively bad predictions of MHB.

Two slow eluting markers are incorporated but nevertheless PRS and
TOL are badly predicted. In a related study®, relatively bad predic-
tions were also observed for slowly eluting compounds. It has been
suggested in that study, that this might be caused by the inherent
increase in relative error associated with the measurement of long
retention times. But the s, .., values of both PRS and TOL on sta-
tionary phase C is 0.018, so large measurement errors are not
present. Because the solutes TOL and PRS are contained in the second
and third best marker subsets, respectively, the suggestion is that
these solutes are sensitive to the differences between the station-
ary/mobile phase combinations in the training set. This makes these
solutes relatively difficult to predict. The solute TOL is known to
be sensitive to stationary phase differences’.

Table 1IV.12b gives an idea of the predictive performance at the
different mobile phase compositions. Especially predictions at mobile
phase aml seem troublesome. The variables MHB, PBL and PRS contribute
most to the prediction errors at aml. The prediction of the retention
of these solutes is already discussed.

The results of the version II calibration procedure are discussed
briefly. The solutes ANS, DMP, PBL and PRE are selected as markers.
The training set consists of 6x2 objects and the data are again
arranged in a X[M] and a X[NM] matrix (column-mean-centered). The
PLS method was used to model the relationship between X[M] and X[NM].
Two PLS components used 99.71% of the variation in X[M] to explain
99.62% of the variation in X[NM], these two components are regarded
sufficient. Note that the gain of the version II procedure is in the
smaller training set. In the prediction stage the markers have to be
measured at the mobile phase compositions where predictions are
needed, similar to the version I procedure. Predictions are made at
the same mobile phase compositions as in case of version I. The root
mean squared errors of prediction are given in Table IV.12a, version
IT. The average RMSEP value is slightly higher than the version I
analogon. The predictions of the variables TOL and PRS are again
troublesome as with version I. EE, a marker in case of version I, is
predicted badly, especially at the ternary mobile phase compositions.
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Reference is give to the discussion on the behaviour of EE in Sec-
tion 14.7.

The consequences of not incorporating the wm2, am2 and wa2 mixtures
in the training set can be evaluated with the use of the RMSEP values
of the individual mobile phase compositions (Table IV.12b). For the
wm mixtures holds that the predictions at wm2 and wm3 are slightly
worse in relation to the version I case. At the aml mixture the
predictions are bad, the high RMSEP value of aml is largely deter-
mined by a large residual of EE (if this residual is omitted, the
RMSEP wvalue of aml is 0.053). A slight worsening of the predictions
at am? and wa? is observed. In order to get an impression of the
quality of the version II procedure, the predicted versus observed k
values of ACP and TOL are incorporated in Table IV.1l2c.

The question can be asked whether the above described prediction
procedures really account for the variation in In k values due to
stationary phase differences. Stated otherwise, do these procedures
merely model the variation due to the mobile phase influence or do
they explain more? It is difficult to answer this question in depth
but a good indication can be obtained by examining the following
prediction procedure. Let the two stationary phases in the training
set be represented by two layers in the data cube (see Figure II.7,
Subsection 8.1.2). Then predictions at a third layer can be obtained
straightforwardly by calculating the averages of the two In k values
of each solute/mobile phase combination. The ln k value of a specific
solute/mobile phase combination on the new stationary phase can be
predicted by the average of the two corresponding values of the
training set stationary phases. Because no preliminary knowledge of
the new stationary phase is available prior to the predictions on
that stationary phase, this procedure is called the "blind" proce-
dure. Note that the specific properties of the new stationary phase
do not play a role in this blind procedure, whereas they do in the
version I and II calibration procedures through the In k values of
the markers. Only the mobile phase variation is predicted with the
blind procedure.

The root mean squared prediction errors (not given) of the blind
procedure range from 0.061 (for NBZ) to 0.126 (for PBL) with an
average of 0.086. The difference between the average RMSEP value of
the blind procedure and the corresponding value of wversion 1 is
roughly twice the average s,.,., value of stationary phase C and is
therefore an important difference. This means that information of the
specific properties of the new stationary phase is valuable. As
stated earlier in Part III, a small difference in predictive perform-
ance can have large consequences for a predicted chromatogram.
Predicted versus observed values of ACP and TOL as the outcome of the
blind procedure are incorporated in Table IV.l2c.
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Chapter 16 Three-way approcaches

16.1 Selection of the markers and mobile phase compositions

The issue of the choice of the marker selection criterion is not
pursued. In the two-way approaches, the criterion which is used to
select the markers has to consider the multicollinearity in the
resulting model. This is not the case in the three-way approaches.
The influence of the markers and, therefore, of the marker selection
criterion on the performance of three-way calibration has to be
established still. The induced-variance criterion is adopted due to
its theoretical advantage if prediction is at hand. A method is used
that allows the selection of solute/mobile phase combinations repres-
entative for the structure in the data set. Each stationary phase is
omitted subsequently.

Suppose the first stationary phase is completely omitted from the
data cube. The remaining part of the data cube is depicted in Fig-
ure IT.12, Subsection 8.1.2 (no scaling has taken place yet). First,
the data cube is unfolded in such a way that the direction of the
solutes is left intact and the solutes are treated as variables. This
results in a (9x5)x16 data matrix. After column mean-centering of the
data set thus obtained, the solutes are selected in the regular way
from the centered matrix with the use of the induced-variance cri-
terion, as explained in Section 1.3. The outcome of these calcula-
tions are given in Table IV.13a under the heading: Stationary phase A
left out. The markers ANS, DMP, EE and PRS are selected and explain
99.852% of the variation in the unfolded data matrix. This outcome is
in agreement with the marker selection outcome given in Section 15.2.

If this whole procedure is repeated for each subsequently omitted
stationary phase, the results are as shown in Table IV.13a. The best
and second best marker sets are always the same, indicating a stable
choice of the markers.

An analogous procedure can be followed for the selection of the
mobile phases. The first stationary phase is again omitted and the
data cube is unfolded so that the direction of the mobile phases is
left intact and the mobile phases are treated as wvariables. This
results in a (5x16)x9 data matrix. Note that all solutes are kept in
the data cube, not only the previously selected markers. After column
mean-centering the data matrix, the mobile phases are selected that
explain most of the variation at the non-selected mobile phases
(induced-variance criterion). The outcome of this selection is shown
in Table IV.13b, where the results are shown of the selection proced-
ure where all stationary phases are omitted subsequently. The best
choice is the mixtures wml, wm3, wal and wa3, which is very appealing
because those mobile phase combinations are the most extreme ones in
the mixture space, see Section 14.3. The second and third best
choices are always wm3, aml, wal, wa3 and wm3, aml, wa2 and wa3,
respectively. The appearance of aml in the second and third best
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subsets is in agreement with the results obtained in Section 14.7 and
Section 15.3. In the three-way decompositions (Section 14.7) the
residuals for aml were large. The predictions at mobile phase com-
position aml were troublesome as indicated in Section 15.3.

The calibration procedures are performed with the solutes anisole,
dimethylphtalate, ethynylestradiole and prednisolone as markers and
the (binary) mobile phase compositions wml, wm3, wal and wa3 as
calibration mobile phases.

16.2 Results of the calibration with unfold-PIS

In Subsection 8.2.1 a description of the unfold approach was
already given (see Figures II.13 and II.1l4, Subsection 8.2.1). This
approach will be illustrated with the data set at hand. Each station-
ary phase is omitted once and retention on that stationary phase is
predicted thereafter with the use of PLS on the unfolded data cube.
The marker/mobile phase combinations used for the calibration of the
new stationary phase are ANS, DMP, EE and PRS at wml, wm3, wal and
wa3 (discussed in Section 16.1). Prior to the PLS calculations, the
data cubes X[MaMPh] and X[NMaMPh] are unfolded. The matrices X [MaMPh]
and X[NMaMPh] are column-mean-centered, because interest focusses on
the differences between the stationary phases. Note that the rank of
these column-centered matrices is only four, so the number of PLS
dimensions in the model is very restricted.

First the results are presented if only one component 1s used in
the unfold-PLS model. An impression of the adequacy of the use of
only one component can be obtained by comparing the average s,.,,, of
the measurements in the training set with the standard deviations of
the residuals in the X[MaMPh] and X[NMaMPh] block, after applying one
component (not given). If each stationary phase is omitted sub-
sequently, six different training sets are obtained. Each training
set is used to build the model with and to predict retention on the
omitted stationary phase. Four of these training sets contain both
stationary phase A and B. Only these four training sets show that one
component is not sufficient if the above mentioned comparison is
made. This indicates the importance of both stationary phases in the
modelling process.

The results of the unfold-PLS calibration with one component are
presented in Table IV.1l4, in the same way as in Chapter 13. For a
detailed discussion on the interpretation of Table IV.1l4, reference
is given to Section 13.3. One of the first striking conclusions is
the bad prediction of the retention values on stationary phases A and
B (high MS__,. values). Application of the model is (almost) useless.
For stationary phase B this could already be inferred from the low
percentage of explained variation in the X[NmaMPh] block: the model
is not very good. Moreover, the percentage of variation of the
markers at the selected mobile phase compositions used for calcula-
ting the score of stationary phase A and B on the PLS component is
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only 0.2% and 0.6%, respectively. Despite the fact that the variation
of the markers, as measured with MS, .k, does represent systematic
variation, this variation is hardly used. The bad predictions on
stationary phase A and B may be due to the low number of PLS compon-
ents in the model. An evaluation of these bad predictions is post-
poned to the discussion on results of two components unfold-PLS.

With regard to the predictions on the other stationary phases the
following can be said. The predictions on stationary phase C show
lack-of-fit: reduction of the unexplained variation is obtained, but
not enough (the unexplained variance is still higher than sfepro).
The root mean squared prediction error on stationary phase C is 0.047
(the square root of 21.98x107%), which is lower than the correspond-
ing values in the two-way calibration procedures presented in Section
15.3, respectively 0.051 and 0.060 for the versions I and version II
calibrations (see Table IV.12a). Note that for the calibration of
stationary phase C in Section 15.3 the retention of four markers at
nine mobile phase compositions had to be measured, whereas in the
unfold-PLS case only the retention of four markers at four mobile
phase compositions must be available. The pay-off is clear: at the
cost of more observations in the training set less measurements are
needed to calibrate a new stationary phase with. On stationary phase
D, the retention values show hardly systematic variation to explain
(compare 12.33 with 11.56), so conclusions cannot be drawn. Retention
on stationary phase E is explained well with the one component model,
the MS..,, is only slightly higher than the sﬁepro. Systematic vari-
ation which has to be explained on stationary phase F is not present
(19.34 is much lower than 38.44). Conclusions cannot be drawn,
therefore.

The diagnostic value of %MARK is reasonable, except for stationary
phase F. The reason of this failure is in the large difference
between MS . ., and MS, .., for this stationary phase. The MS, .. Vvalue
of stationary phase F is slightly higher than the $2¢pro Of this
statlonary phase, whereas the MS, ., value is much lower than sfepro.
Note that, in case of the other stationary phases, MS is a
reasonable estimator of MS, ., -

The root mean squared error of prediction (RMSEP) values of the
individual mobile phase compositions are given in Table IV.l4b. Note
that the RMSEP values for the mobile phases wml, wm3, wal, and wa3l
are averaged over the non-markers, whereas the corresponding values
of the other mobile phases are averaged over all solutes because the
retention of the markers are also predicted at the mobile phase
compositions wm2, aml, am2, am3, and wa2. Focussing on the predic-
tions on stationary phases A and B, the most difficult mobile phase
compositions to predict at are the water/acetonitrile mixtures, this
holds especially for stationary phase B.

The results of the calibration of the six stationary phases if two
components in the unfold-PLS model are applied, are presented in
Table IV.15. For all six training sets hold that the average s

mark

repro
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is always higher than the standard deviation of the residuals in the
X[MaMPh] and X[NMaMPh] blocks (not given). The incorporation of a
third PLS component is, therefore, not appropriate.

The percentage of explained variation in X[NMaMPh] if stationary
phase B is omitted, is still low. The %MARK is again a reasonable
estimator of the percentage of variation explained in the test set
except for stationary phase F, which is already discussed. TFor
stationary phase A, $%$MARK becomes lower than in the one component
case, which is reflected in the worse predictions of the two compon-
ent model on stationary phase A. On average the predictions with the
two component unfold-PLS model are slightly better than with the omne
component model.

The predictions on stationary phase D are improved, especially at
mobile phases wm3, aml, am2, wal, and wa2 (see Table IV.l4b and
Table IV.15b) by using one extra component in the unfold-PLS model,
but this improvement is not significant compared with the Srepro
value of stationary phase D. Moreover, since the MS_._ , of stationary
phase D becomes lower than sfepro, the danger of overfitting is
present. The predictions on stationary phases E and F do not profit -
from the extra component: stationary phase C still shows lack-of-fit.

The predictions on stationary phase B become slightly better than
in the one component model, but are still not good. High prediction
errors are observed for stationary phase B at the water/acetonitrile
mixtures wa2 and wa3 (see Table IV.15b). This is related to the
conclusion in Section 15.1 (see Table IV.10b) where the water/aceto-
nitrile mixtures were found to show differences between the station-
ary phases A, B, and C with regard to the retention of 12 solutes.
Focussing on the RMSEP values of the individual solutes (see
Table IV.15¢c) on stationary phase B, it appears that the solutes ACP,
ACT, and MHB show high RMSEP values. All these solutes were present
in the ANOVA tables (Table IV.10) of Section 15.1 and the three-way
PCA performed on all stationary phases, discussed in Section 14.7,
showed large loadings on the two principal components for the solutes
ACP and ACT in combination with the water/acetonitrile mixtures.
Closer examination of the prediction errors of these solutes on
stationary phase B (Table 1IV.16), reveals that these prediction
errors are systematic. Nearly all errors have a negative sign and are
especially high at the water/acetonitrile mixtures.

An explanation of the bad predictions on stationary phase B may be
given by the following consideration. Suppose that a systematic
difference between the measurements on the stationary phase B and the
other stationary phases has been introduced by the analyst/apparatus
combination which was not used in the training set. This systematic
error may result in a constant absolute difference between the
measurements on stationary phase B and the corresponding average
values of the other five stationary phases. It is questionable
whether unfold-PLS, in the way applied here, can handle this situ-
ation. Incorporation of wvariables in the model, that describe and
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handle the above mentioned systematic differences, can perhaps
improve the predictions. The bad predictions of retention on station-
ary phase A are not discussed explicitly, but notice that retention
values on this stationary phase are also measured by another ana-
lyst/apparatus combination as the training set values: reference is
given to the discussion on the bad predictions on stationary phase B.

16.3 Results of the calibration with the PARAFAC model

The calibration procedure with the use of the PARAFAC model was
explained in Subsection 8.2.2 and an example has already been given
in Section 13.4. The same set up of the six calibrations is chosen as
in the unfold-PLS case, in the previous chapter, only now the PARAFAC
model is applied to describe the systematic variation in the training
set. The same markers and selected mobile phase compositions and the
same type of centering as in the unfold-PLS case are used.

After applying one component in the PARAFAC model, the standard
deviation of the residuals (not given) was always lower than the
average s...,.,. A one component model would be the most appropriate,
but for the sake of comparison with the unfold-PLS calibration, a two
component PARAFAC model was also calculated. The results of the
calibration with the one component PARAFAC model is presented first-

ly.
Table IV.17a is partly a replicate of Table IV.l4a; for the sake of
convenience the values g? MS and MS, ., are repeated. The

repro? mark ’

meaning of $MARK and MS.,. 1s already explained (Section 13.4) and
100xR%*, . ,;, 1is the percentage of variation explained by the one
PARAFAC component in the training set, an analogous value to
$X[{MaMPh] and %X[NMaMPh] in the unfold-PLS case.

If the results of the one component PARAFAC calibration are com-
pared with the results of the one component unfold-PLS calibration,
differences are noticable. Calibration of stationary phases A and D
is better with the PARAFAC model as shown by the appropriate MS. ..
values, also indicated by the $MARK value. The stationary phase E is
calibrated worse with PARAFAC, alsc indicated by $MARK. All the other
stationatry phases are predicted with errors in the same order of
magnitude as the unfold-PLS one component case. Note that the 3MARK
for stationary phase F is a more realistic value in the PARAFAC case
than in the unfold-PLS case.

The gain for stationary phases A and D in calibrating with PARAFAC
is obtained at the ternary mixtures (aml-am3) and the binary mixtures
wal and wa2. The connection between this observation and the concep-
tual difference between the PARAFAC and unfold-PLS (or unfold-PCA),
as discussed in Section 13.1, is subject of further research. The
loss in calibrating with PARAFAC for stationary phase E is not
attributable to a specific mobile phase composition. Note that,
although the same RMSEP values are reported for the wm2 mixture on
stationary phase D in Table IV.14b and Table IV.17b, the percentages
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of explained variation differ. This is due to rounding errors in the
RMSEP value and a low mean sum of squared variation to explain for
the wm? mixture making the percentage of explained variation calcula-
tion very sensitive to small differences in unexplained variation.

Comparison of Table IV.17c with Table IV.l4c shows that the loss,
respectively gain, in calibrating with the PARAFAC model instead of
unfold-PLS for stationary phases E, respectively stationary phase D,
cannot be attributed to specific solutes.

The results of the two component PARAFAC model are presented in
Table IV.18. Stationary phase B and D profit from the addition of the
second component in the PARAFAC model, also indicated by $%MARK.
However, retention on stationary phase B is still predicted with
lack-of-fit and stationary phase D has a MS.,, considerably lower
than s%epro indicating that the two component PARAFAC model overfits
with respect to stationary phase D. The predictions on stationary
phase A become worse by applying the extra component, but this is not
indicated by %MARK. For stationary phase E holds that the inclusion
of an extra PARAFAC component does not correct for the lack-of-fit
with which retention on this stationary phase is predicted with the
one component PARAFAC model. Calibration on stationary phases C and F
is performed approximately with the same prediction error using the
one- or two component PARAFAC model.

The deterioration of the predictions on stationary phase A, if an
extra component is used in the PARAFAC model, 1is especially present
at the wml, wm2, aml, and am2 mixtures. All solutes (except EE) are
predicted worse with two components on stationary phase A.

In comparing the performance of the one- and two component PARAFAC
models with respect to the calibration of stationary phase B, mo
pattern is wvisible that indicates which mobile phase composition
profits most (see Tables IV.18b and IV.17b) from the extra component.
The variation in retention values on stationary phase B at the water/
acetonitrile mixtures remains hard to explain. If an analogous
comparison is made with respect to the solutes, it is striking that
all solutes profit from the extra component except the steroids EE,
PRS, and PRE. In Section 14.7 it was shown that these solutes load
high on the unfold-PCA components. Moreover, EE could not be ex-
plained by the PARAFAC model on the data cube consisting of all
stationary phases. The question rises whether the data set at hand is
homogeneous enough to use the three-way models, perhaps the steroids
should be discarded.

The results of the PARAFAC two component model and the unfold-PLS
two components model in calibrating the stationary phases can be
compared with the use of Tables IV.15 and IV.18. Significant dif-
ferences can be observed in the calibration of stationary phases B
and E. In case of stationary phase E the unfold-PLS model with two
components predicts without lack-of-fit, contrary to the two compon-
ent PARAFAC model. Whether such differences may be explained by the
already discussed conceptual differences between the PARAFAC model
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and the unfold-PLS (or unfold-PCA) model is subject of further
investigation. Diagnostic tools to check the assumption of biline-
arity in mode B and mode C, as made by the PARAFAC model, are needed.

Stationary phase B 1is calibrated much better with the use of
PARAFAC than unfold-PLS, considering the two components models, but
still the predictions are not good. Examining Table IV.18c it appears
that, as was the case with the unfold-PLS calibration, some of the
solutes are responsible for the bad predictions, especially at the
water/acetonitrile mixtures. Table IV.19 shows that the In k wvalues
of the solutes ACP, ACT, and EAB are again overestimated (higher
predicted than observed values) at the water/acetonitrile mixtures,
with large error. The retention of solute EE is badly predicted at
the ternary mixtures. Note that this solute is a marker, thus meas-
urements of this solute at wml, wm3, wal, and wa3 are available.
Despite this, the predictions at the ternary mixtures are bad,
finding probably its reason in non-linear mixing behaviour of the
retention values of EE on stationary phase B, see Section 14.6 and
Table 1IV.6. Yet the PARAFAC model is capable of predicting non-
linear behaviour as can be checked by comparing the average of the
predictions at wm3 and wa3 (1.8464) and the prediction at am3:
2.3003. It may, however, be profitable to incorporate ternary mobile
phase compositions in the set of selected mobile phases.

The idea of the difference in restrictiveness - the conceptual
difference - between unfold-PLS and PARAFAC 1is supported by the
following observations. The retention of the solute EE is worse
predicted with PARAFAC than unfold-PLS, on stationary phase B,
whereas the retention of the solutes ACP, ACT, and MHB is worse
predicted with unfold-PLS on the same stationary phase. Assuming that
EE shows deviating behaviour with regard to both three-way models
PARAFAC and unfold-PCA (see Section 14.7), the unfold-PLS solution is
more distorted by this deviating behaviour and predicts, therefore,
the retention of ACP, ACT, and MHB worse. The PARAFAC solution is
less distorted, but a consequence is that the retention of EE is not
predicted well.

High RMSEP values for the individual solutes, applying the two
components PARAFAC model, for the stationary phases other than
stationary phase B are, if present, always for the solutes EE and
PBL. This is in agreement with the conclusion in Section 14.7 where
the retention of these solutes were left largely unexplained by the
two components PARAFAC model applied there.

16.4 Some comments on the selected marker/mcbile phase combinations

For illustrative purposes, a different set of solute/mobile phase
combinations is selected to calibrate new stationary phases. This
selection is based on the loadings of the solutes and mobile phases
on the PARAFAC components, as indicated in Section 1.6. I1f, for
example, stationary phase B is omitted, the resulting data cube,
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after the usual centering, can be decomposed with the use of two
PARAFAC components. The loadings of the solutes and mobile phase
compositions are given in Table IV.20b. The variables PBL, PRE, and
PRS load high on both components. The fourth solute is harder to
select but ACP seems a reasonable choice. In case of the mobile
phases the subset wml, wm2, aml and wa3 is a good choice. Table
1V.20a lists the chosen combinations for each omitted stationary
phase. Ternary mixtures are always incorporated, contrary to the
induced-variance results in Section 16.1. Some of the solutes present
in the subsets chosen with the loadings and not selected with the
induced-variance criterion - ACP, EAB, PBL, ACT - give trouble if
their retention 1is predicted with the induced-variance markers
(Sections 16.2.and 16.3). This sheds again some light on the bad
predictions of these solutes.

If predictions with a two component PARAFAC model of the non-
selected solute/mobile phase combinations on stationary phase B are
calculated, the result is an RMSEP value of 0.118 (see Table IV.20a).
This is clearly higher than the analogous RMSEP value of stationary
phase B using the solutes/mobile phases selected with the induced- -
variance criterion (0.089, see Section 16.3). Each stationary phase
is omitted once and all prediction results are presented in
Table IV.20a. For all stationary phases the predictions are worse
than the "induced-variance" predictions in Section 16.3.

It is obvious that good procedures to select solute/mobile phase
combinations capable of screening and calibrating a new stationary
phase are needed. Extensions of quantitative methods presented in
Section 1.3 for the three-way case have to be developed.

16.5 Conclusions and suggestions for further research

1. A comparison of the two- and the three-way approaches is done with
the results for stationary phase C. The average RMSEP value using the
blind two-way approach (no calibration measurements on the new
stationary phase) is 0.086. Note that only predictions at the mobile
phases where calibration measurements were performed in the training
set can be obtained. The predictions on stationary phase C, if
calibration measurements are performed at the mobile phases where
prediction is needed, have average RMSEP values of 0.051 and 0.060
using version I and TII, respectively. The difference in the blind
two-way procedure and the version I and II two-way approaches lies in
the measurements needed to calibrate the new stationary phase with.
The use of calibration measurements lowers the prediction errors. One
step further is the prediction with the unfold-PLS and PARAFAC
approaches. Only a few calibration measurements are needed and RMSEP
values of 0.046 and 0.048 are obtained. The draw-back of these three-
way approaches is the large training set needed to build the model
with. Perhaps a number of four stationary phases in the training set
is sufficient in the three-way methods provided that the measurements

299



PART IV CHAPTER 18 THREE-WAY APPROACHES

are very precise, but the stationary phases in the training set have
to be a representative sample. Representativeness is a problem, the
retention values of the markers measured at selected mobile phase
compositions are supposed to describe the properties of the new
stationary phase. This is only possible if the training set is a
representative sample from the stationary phases. The exact pay-off
between the size of the training set, the precision of the measure-
ments and the prediction errors on a new stationary phase is subject
of further research.

2. The choice of the markers/mobile phase combinations at which
calibration measurements have to be performed is not exhaustively
treated and is still an open question. The results of Section 16.4
indicate that choosing with the induced-variance criterion is better
than the approach using loadings. The effect of the use of either the
induced-variance- or the determinant criterion on the quality of the
calibration can, to some extent, be foreseen in the two-way ap-
proaches. But in the three-way approaches this is more complicated.
Other marker selection criteria (see Chapter 1) are available and
should be tested. A procedure that simultaneously selects markers and
mobile phases is perhaps the most promising to use in the three-way
calibrations. The incorporation of ternary mixtures to describe non-
linear mixing behaviour is worth trying.

3. A thorough analysis of the training set, which in the three-way
case consist of five stationary phases, by means of three-way ana-
lysis methods is advisable. Some of the peculiarities in the calibra-
tions were already foreseen in the three-way analyses of the whole
data cube, see the discussions on the solutes EE, PBL and the cali-
bration of stationary phase B.

4. Outliers do influence the three-way methods. With respect to the
solutes, this means that the two- and three-way calibrations are only
useful for the calibration of a set of structural related compounds,
which is in agreement with the conclusions drawn in Section 7.5. The
steroids in the used data set are probably deviating and some doubt
in this respect concerns PBL. A separation problem including steroids
should be calibrated using steroid-like markers. The pay-off between
the degree of heterogeneity of the calibration set of solutes, which
incorporates non-related compounds, and the generality of the cali-
bration performance has to be established.

5. Referring to conclusion 2 in Section 13.5, it can be observed that
the values $MARK, MS_,.,, and s%epro are important diagnostic tools
to judge the performance of the calibration with.

6. The bad calibration of stationary phases A and B shows the con-
sequences of non-representativeness of stationary phase samples. The
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different analyst/apparatus combinations have large influence and

cause, in the three-way set ups chosen here, deviating behaviour of

these stationary phases. Two solutions for this problem will be
sketched. The first solution is the explicit incorporation of (dummy)

variables that describe the specific analyst/apparatus combination in

the three-way models; this leads to hybrid models. Such hybrid models

contain MANOVA aspects to account for systematic differences between

the analyst/apparatus combinations, and latent structure aspects that

account for pure differences between stationary phases. The second

solution is less complex and uses a different kind of centering in

the data cube. Suppose that centering is done across the modes

containing the solutes and mobile phases. The result is that all

retention values on one stationary phase are expressed as deviations

from the average of the retention values of all solutes at all mobile

phases on that stationary phase. This average retention value, for a

given stationary phase, can be considered an estimate of the re-

tentive power of a stationary phase. The retentive power of a mnew

stationary phase can be estimated by averaging the retention values

of the markers at the selected mobile phase compositions. Prediction -
of the non-selected solute/mobile phase combinations 1is then along
the same lines as presented previously, in Sections 16.2 and 16.3.
Preliminary calculations (not shown) indicate that the second solu-
tion is promising.

7. The choice between unfold-PLS and PARAFAC as calibration methods
is not an easy one. Some remarks are appropriate. First, the number
of degrees of freedom if the PARAFAC model is used is higher than for
the unfold-PLS model, see Section 13.7 where this was shown for the
comparison of PARAFAC and unfold-PCA. This may be an advantage of the
PARAFAC model. Second, if it is reasonable to model the retention
values of the solutes at the mobile phase compositions on one sta-
tionary phase with a bilinear model (PCA) then a matural extension to
the three-way case is the PARAFAC model which is trilinear, contrary
to unfold-PLS®. Third, referring to the remark made in conclusion &
with respect to the heterogeneity of the training set, the robustness
of both three-way methods with respect to deviating solutes and
stationary phases has to be established. Fourth, a version of PARAFAC
which reckons with the distinction between independent and dependent
variables, like unfold-PLS, is worth developing. Finally, referring
to conclusion 2 in Section 13.5, diagnostic tools besides %MARK,
MS RZ etc have to be developed to validate the three-way

mark? train
calibration procedures.

8. The reasons for the difference in performance between the three-
way approaches used for the calibration of the octadecyl stationary
phases (Chapter 16) and used for the calibration of the different
types of stationary phases (Chapter 13) are three-fold. First, the
signal-to-noise ratios for the different types of stationary phases
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were much higher than for the octadecyl phases, as expected. Second,
all retention values on the different types of stationary phases were
measured by the same analyst/apparatus combination. Finally, the set
of solutes are more homogeneous in case of the calibration of the
different types of stationary phases than in the octadecyl calibra-
tion, but this statement is hard to prove.

9. The two components in the PARAFAC model were mnot forced to be
orthogonal. Some remarks with this respect were already made in
Section 14.7. The calculation of the PARAFAC factor loadings is
performed with an iterative procedure. The stability of the solution
can be checked by performing the calculations several times, each
time with other starting values. No large instabilities were observed
during the calculations. Yet the stability may improve by demanding
orthogonality of the PARAFAC components in some of the modes. Prelim-
inary calculations support this suggestion. Moreover, the least
squares step in which the scores of the new stationary phase are
calculated might profit from orthogonality.

10. The size of the prediction errors must be evaluated keeping in
mind that in optimization procedures, where the mobile phase is
manipulated in order to obtain an optimal separation, relatively
small prediction errors can result in non-optimal separations. Very
precise predictions are, therefore, necessary.
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TABLE IV.l. Stationary- and mobile phase characteristics

a) stationary phases

S.Phase Cl1l8 batch Si batch Analist/apparatus
A 1 1 1
B 2 2 2
C 3 1 3
D 4 2 3
E 2 2 3
F 1 1 3

b) mobile phase compositions

water acetonitrile methanol
wml 0.63 0.00 0.37
wm?2 0.55 0.00 0.45
wm3 0.47 0.00 0.53
aml 0.71 0.11 0.18
am2 0.63 0.15 0.22
am3 0.54 0.19 0.27
wal 0.78 0.22 0.00
wa2 0.70 0.30 0.00
wa3l 0.62 0.38 0.00

Legend: the mobile phase compositions are noted down in v/v fractions. Note
that the mixtures aml to am3 are ternary mixtures,

304



PART 1V TABLES

TABLE IV.2. The test solutes

nr name

1 acetophenone (ACP)

3 anisole (ANS)

0 — CHs

5 nitrobenzene (NBZ)

7 toluene (TOL)

Syeon

9 2-phenylethanol (PE)

CzH40OH

nr

10

name
acetanilide (ACT)

0

(o

p-cresol (CRE)

HO <::> CHs

ethylaminobenzoate (EAB)

—
/ \ l
HzN@C_O _ CizHs

ethylhydroxybenzoate (EHB)

O==0

HO e O — CaHs

methylhydroxybenzoate (MHB)

0
HO,<3§£2§>_Q__O__CH3
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TABLE IV.2 (continued).

nr name

11 ethynylestradiol (EE)

13 prednisone (PRE)

15 prednisolone (PRS)
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nr

12

14

16

name

dimethylphtalate (DMP)

0
[
Q C— 0 —CHs
C
/ ~
O/' O\\\

phenobarbital (PBL)

propylhydroxybenzoate (PHB)
0
I

HO C— 0 —CsHy
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TABLE 1IV.3.

TABLES

The capacity factors of the

Stationary phase A

ACP
wml 4. 44
w2 2.30
wm3 1.37
aml 6.49
am2 3.44
am3 1.86
wal 7.21
wa2 3.64
wa3 2.03
MHB
wml 3.35
wm2 1.66
wm3 0.90
aml 4,88
am?2 2.25
am3 1.16
wal 4,13
wa? 1.83
wal 0.99
Stationary
ACP
wml 4.26
wm?2 2.16
wm3 1.26
aml 5.61
am?2 3.24
am3 1.66
wal 5.94
wa? 3.06
wa3 1.47
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TABLE IV.3 (continued).

Stationary phase C

ACP ACT ANS CRE DMP EAB EE EHB
wml  4.46 1.66 9.66 4.47 6.43 5.03 108.79 8.57
wm2  2.41 .97 5.55 2.51 2.77 2.22 28.46 3.97
wm3  1.27 .55 2.98 1.32 1.25 1.02 8.53 1.75
aml  6.59 2.26 14.49 6.83 10.93 8.01 150.23 12.80
am2  3.09 1.12 7.09 3.13 4.42 3.26 33.97 4.81
am3 1.85 .71 4.08 1.83 2.25 1.70 10.67 2.37
wal 6.53 1.80 16.40 6.10 10.54 7.66 87.22 9.53
wa2  3.61 1.02 8.89 3.14 4.70 3.53 17.70 3.79
wad  2.09 .67 4.69 1.74 2.43 1.82 5.37 1.84

MHB NBZ PBL PE PHB PRE PRS TOL
wml  3.52 5.58 3.75 3.59 22.70 14,02 20.26 26.33
wm2 1.80 3.25 1.71 2.06 9.38 4.57 6.95 14.08
wm3 .87 1.80 .79 1.11 3.72 1.68 2.55 7.08
aml  5.03 9.39 5.70 4.56 35.49 20.82 24.77 35.11
am2  2.15 4.85 2.30 2.21 11.53 5.25 6.22 17.81
am3 1.17- 2.80 1.17 1.29 5.08 2.02 2.57 9.28
wal 3.91 11.80 4.03 3.20 25.60 7.35 7.11 42.58
wa2 1.85 6.47 1.66 1.72 8.44 1.85 1.65 20.72
wa3 1.04 3.60 .84 1.02 3.51 .77 .68 10.01
Stationary phase D

ACP ACT ANS CRE DMP EAB EE EHB
wml 4,32 1.63 9.13 4.36 6.27 4.71  105.02 8.43
wm2  2.23 .93 5.08 2.33 2.61 2.06 26.66 3.71
wm3  1.22 .55 2.84 1.27 1.22 .98 7.98 1.67
aml 5.88 2.09 12,75 6.09 10.21 7.20  145.98 11.65
am2  3.14 1.16 7.02 3.21 4.38 3.29 33.46 4.79
am3 1.77 .69 3.87 1.77 2.18 1.66 10.33 2.29
wal 6.42 1.84 15.83 5.95 10.18 7.82 84.07 9.10
wa2  3.39 1.02 8.17 3.02 4.45 3.42 17.05 3.58
wa3 1.93 .64 4.33 1.66 2.29 1.78 5.13 1.73

MHB NBZ PBL PE PHB PRE PRS TOL
wml  3.47 5.35 3.64 3.55 22.19 14.02 20.17 24.11
wm2 1.70 3.04 1.58 1.92 8.74 4.28 6.47 12.88
wm3 .84 1.72 .79 1.08 3.53 1.59 2.40 6.75
aml 4.62 8.39 5.02 4.12 31.88 17.87 22.34 32.54
am2 2.1l4 4.86 2.23 2.18 11.54 5.47 6.43 16.55
am3 1.15 2.71 1.13 1.24 4.89 2.01 2.43 8.63
wal 3.75 11.76 3.76 3.33 24.28 7.48 7.26 39.98
wa2 1.75 6.16 1.50 1.68 7.97 1.81 1.65 19.36
wa3 .97 3.32 .79 .96 3.30 .73 .66 9.34
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TABLE IV.3 (continued).

Stationary phase E

ACP ACT ANS CRE DMP EAB EE EHB
wml 4,32 1.59 9.23 4.29 6.02 4.63 96.27 8.39
wm2 2.28 .97 5.20 2.44 2.64 2.17 26.83 3.80
wm3 1.25 .56 2.90 1.29 1.25 1.03 8.24 1.69
aml 6.19 2.21 13.25 6.41 10.44 8.19 146.95 11.76
am2 3.26 1.21 7.23 3.32 4.58 3.46 34,87 4.94
am3 1.77 .71 3.86 1.75 2.15 1.66 10.07 2.26
wal 6.64 1.92 16.28 6.14 10.74 8.16 88.61 9.53
wa2 3.52 1.05 8.48 3.04 4.56 3.50 17.15 3.69
wal 1.98 .64 4.40 1.65 2.32 1.80 5.14 1.76

MHB NBZ PBL PE PHB PRE PRS TOL
wml 3.45 5.37 3.50 3.53 22.06 13.82 19.36 23.95
wm2 1.75 3.10 1.64 1.98 8.91 4.40 6.92 13.10
wm3 .86 1.77 .81 1.11 3.55 1.65 2.42 6.87
aml 4.71 8.84 5.59 4.40 31.87 19.50 23.85 33.08
am2 2.22 4.98 2.48 2.31 11.78 5.54 6.72 17.25
am3 1.13 2.72 1.16 1.27 4.80 2.05 2.48 8.58
wal 3.96 11.92 4.40 3.49 25.34 7.71 7.43 41.86
wa2 1.83 6.42 1.74 1.74 8.10 1.90 1.69 19.75
wa3 .99 3.37 .88 1.00 3.32 .77 .67 9.42
Stationary phase F

ACP ACT ANS CRE DMP EAB EE EHB
wml  4.39 1.58 9.53 4.33 5.80 4.70 90.43 8.39
wm2  2.23 .92 5.23 2.39 2.58 2.10 26.57 3.71
win3 1.27 .58 2.99 1.36 1.25 1.03 8.20 1.76
aml  6.09 2.10 13.51 6.23 9.89 7.45 132.19 11.56
am2 3.26 1.18 7.32 3.33 4. 47 3.56 32.73 4.93
am3 1.82 .71 3.97 1.79 2.20 1.68 10.11 2.32
wal 6.79 1.92 16.91 6.38 10.82 8.63 88.74 9.98
waZ 3.53 1.03 8.64 3.12 4.62 3.66 17.19 3.77
wa3 2.03 .63 4.64 1.71 2.39 1.88 5.50 1.85

MHB NBZ PBL PE PHB PRE PRS TOL
wml 3.44 5.32 3.37 3.48 22.18 13.42 19.52 24 .48
wm2 1.69 3.07 1.62 1.95 8.73 4.27 6.58 13.62
wm3 .89 1.81 .83 1.14 3.71 1.68 2.54 7.13
aml  4.61 8.75 5.34 4.29 31.45 18.38 21.69 33.84
am2 2.22 5.00 2.42 2.32 11.82 5.45 6.47 17.34
am3 1.16 2.78 1.19 1.30 4.92 2.06 2.46 8.90
wal 4.10 12.27 4.44 3.55 26.71 7.80 7.54 43.22
wal 1.84 6.47 1.75 1.71 8.32 1.86 1.68 20.38
wa3 1.03 3.53 .91 1.00 3.57 .77 .71 9.98
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TABLE IV.4. Reproducibility (k-values)

S.Phase Solutes

ACP ACT ANS CRE DMP EAB EE EHB

A wm2

mean k 2.30 .96 5.16 2.31 2.58 2.02 24.76 3.63

Srepro .026 .013 .009 .052 .045 .026 .585 .014
1.11 1.33 .18 2.25 1.75 1.27 2.36 0.38

B wm2

mean k 2.16 .89 4.79 2.16 2.37 1.96 24.74 3.34

Srepro .019 .054 .142 .045 .163 .038 .357 .216
.086 6.11 2.96 2.08 6.89 1.93 1l.44 6.48

C wm2

mean k 2.41 .97 5.55 2.51 2.77 2.22 28.46 3.97

Srepro .008 .018 044 .027 .033 .034 .908 .080
L343 1.84 .787 1.09 1.18 1.55 3.19 2.01

D wm?2

mean 'k 2.23 .93 5.08 2.33 2.61 2.06 26.66 3.71

Srepro .074 .045 .121 .081 .087 .089 1.47 .073
3.34 4,83 2.38 3.50 3.35 4,33 5.50 1.96

E wm?2

mean k 2.28 .97 5.20 2.44 2.64 2.17 26.83 3.80

Srepro .040 . 045 .064 .082 .048 .053 1.06 .017
1.75 4,69 1.23 3.35 1.82 2.44 3.97 .450

F wm2

mean k 2.23 .92 5.23 2.39 2,58 2.10 26.57 3.71

Srepro .136 049 .195 .106 .164 .160 1.61 .233

cv 6.10 5.37 3.72 4.43 6.37 7.61 6.05 6.27
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PART IV

TABLE IV.4 (continued).

S.Phase

A wm2
mean k

Srepro

B wm2
mean k

Srepro

CcvV

C wm2
mean k

Srepro

D wm?2
mean k

Srepro

E wm2
mean k

Srepro

cv

F wm2
mean k

Srepro
cv

Legend:
or four

TABLES

Solutes

MHB NBZ
1.66 3.07
.013 .048
.762 1.57
1.53 2.91
.095 .041
6.25 1.42
1.80 3.25
.035 .031
1.93 .972

1.70 3.04

.034 .101
2.01 3.33
1.75 3.10
.012 .030
.677 .971
1.69 3.07
.116 .181
6.88 5.88

PBL

1.55
.016
1.05

1.42
.120
8.39

1.71
.022
1.32

1.58
.050
3.15

l.64
.030
1.85

1.62
.105
6.50

PE

1.97
.011
.573

1.74
.215
12.3

2.06
.028
1.37

1.92
.073
3.81

1.98
.005
.232

1.95
.144
7.41

PHB

8.53
.070
.819

7.88
449
5.69

9.38
.203
2.17

8.74
171
1.96

8.91
047
.528

8.73
.533
6.11

PRE

4.33
.116
2.67

4.16
.014
.332

4.57
.043
.947

4.28
.156
3.65

4.40
.028
.648

4.27
.381
8.94

PRS

6.46
.049
.761

6.27
.096
1.53

6.95
.128
1.85

6.47
.244
3.77

6.92
.403
5.82

6.58
.264
4.01

TOL

12.73
.239
1.88

11.85
.236
1.99

14.08
.251
1.78

12.88
.197
1.53

13.10
.164
1.26

13.62
.252
1.85

the s,,,:, Values are calculated with the use of three (A and B),
(C to F) measurements, see also Table I1I1.2 and text.
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TABLE IV.5. Repeatability (k-values)

Stationary phase A

ACP ACT ANS CRE DMP EAB EE EHB
wml .096 .043 .032 .032 .032 .000 .319 .032
wm2 .064 .021 .074 .043 .032 .011 .383 .053
wm3 .000 .000 .043 .011 .032 .022 .011 .022
aml .136 .052 .010 .000 .052 .021 .890 .010
am2 .000 .043 .032 .011 .043 .043 .140 .022
am3 .033 .022 .011 .000 .000 011 .000 .000
wal .135 .011 .011 .022 .034 011 .337 .045
wa2 .034 .000 .046 .011 .023 .023 .046 .023
wal .035 .024 .224 .024 .024 .000 .000 .012

MHB NBZ PBL PE PHB PRE PRS TOL
wml .011 .043 011 .000 .064 .149 .032 .011
w2 .011 .053 .000 .011 .085 .011 .085 .106
wm3 .011 .000 .011 .022 .000 .000 .011 .011
aml .021 .210 .000 .000 .084 .314 .073 .063
am?2 .022 .000 .054 .000 .000 .173 .032 .151
am3 .022 .033 .000 .011 .022 011 .000 .033
wal .000 .112 .022 .000 .090 .045 .022 .090
wa2 .000 .046 .011 .000 .011 .023 .000 .023
wal .012 .035 .024 .024 .024 .000 .024 .012

Stationary phase B

ACP ACT ANS CRE DMP EAB EE EHB
wml .131 .101 .081 .020 .020 .000 .010
wm2 .184 .039 .058 .145 .203 .107 .523 .165
wm3 .020 .010 .020 .010 .010 .020 .000 .000
aml .067 .029 .058 .077 .077 .048 .548
am2 .040 .010 .030 .010 .020 .020 .000 .060
am3 .020 .020 .030 .010 .000 .020 .020 .020
wal .038 .009 .047 .000 .076 .028 .009
wa2 .028 .000 .057 .009 .019 .000 .000 .236
wa3 .020 .071 .283 .091 .202 .010 .121 .040
MHB NBZ PBL PE PHB PRE PRS TOL
wml .000 .162 .000 .030 .040 .596 .000 .040
wm?2 .068 .194 .223 .349 .562 .155 .048 .232
wm3 .000 .010 .010 .020 .010 .010 .000 .020
aml .250 .087 .048 .029 1.097 .135 .058 .096
am?2 .030 .010 .010 .000 .100 .060 .020 .010
am3 .010 .030 .000 .010 .051 .010 .010 374
wal .000 114 .000 .019 .057 .047 .028 .038
wa2 .151 .066 .019 .000 .415 .009 .132 .075
wa3 .061 .071 .000 .081 .020 .030 .010 .303
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TABLE IV.5 (continued).

Stationary phase C

ACP ACT ANS CRE DMP EAB EE EHB
winl .000 .000 .012 .012 .058 .000 2.689 .023
wm2 .006 .006 .006 .000 .019 .008 .257 .008
wm3 .000 .011 .000 .000 .011 .000 .011 .000
aml .023 .000 .046 .012 .081 .012 3.060 .151
am?2 .012 ,000 .012 .000 .000 .012 .071 .012
am3 .000 .000 .024 .000 .000 .012 .012 .000
wal .012 .000 .024 .000 .106 .012 1.508 .165
wa2 .012 .000 .061 .000 .012 .000 .012 .000
wa3l .000 .000 .012 .000 .012 .000 .000 .000

MHB NBZ PBL PE PHB PRE PRS TOL
wml .012 .012 .046 .000 .070 .046 .000 .046
wm?2 .000 .017 .013 .014 .014 .044 .015 .064
wm3 .000 .011 .000 .000 .011 .000 011 .000
aml .046 .220 .046 .093 .533 .556 .023 .696
am? .000 .000 .000 .012 .071 .024 .000 .012
am3 .000 .024 .000 .000 .000 .024 .012 .012
wal .082 .047 .047 .000 401 .047 .012 .330
wa2 .012 .012 .000 .000 .012 .012 .012 .012
wal .000 .000 .000 .000 .000 .000 .000 .012

Stationary phase D

ACP ACT ANS CRE DMP EAB EE EHB
wml .011 .000 .011 .000 .055 .011 442 .011
wm2 .011 .006 .012 .008 .029 .008 .373 .008
wm3 .000 .011 .000 .000 .000 .000 .022 .000
aml .000 .011 .000 .011 .067 .011 .713 .134
am2 .000 .000 .000 .000 .011 .000 L430 .023
am3 .000 .000 .000 .000 .023 .000 .232 .012
wal .035 .000 .081 .000 .023 .000 .742 .046
wa2 .000 .000 .000 .000 .036 .012 .264 .000
wa3 .000 .000 .000 .000 .000 .000 .012 .012

MHB NBZ PBL PE PHB PRE PRS TOL
wml .000 011 .044 .000 .155 .088 .000 .309
wm?2 .010 .010 .020 .008 .033 .008 .017 .077
wm3 .000 .011 .000 .000 .011 .000 .000 .011
aml .067 .000 .045 .000 .200 .011 .200 .022
am?2 .000 .034 .000 .0600 .079 .011 011 .023
am3 .000 .012 .023 .012 .012 .012 .023 .058
wal .023 .197 .035 .000 .116 .023 .000 .023
wa?2 .000 .012 .012 .000 .012 .000 .012 .168
wa3l .012 .012 .000 .012 .012 .012 .000 .012
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TABLE IV.5 {(continued).

Stationary phase E

ACP ACT ANS CRE DMP EAB EE EHB
wml .023 .011 .057 .023 .103 .023 2.874 .046
wm2 .012 .010 .019 .014 .019 .010 .198 .051
wm3 .011 .011 .011 .000 .011 .000 .274 .011
aml .011 .000 .011 .011 .091 .034 1.277 .068
am?2 .000 .000 .023 .012 .058 .000 .997 .012
am3 .01 .000 .000 .000 .000 .011 .057 ©.011
wal .012 .012 .060 .060 .300 .012 2.541 .012
wa2 .000 .000 .000 .012 .037 .000 .085 .000
wa3 .000 .000 .000 .012 .012 .012 .024 .000

MHB NBZ PBL PE PHB PRE PRS TOL
wml .023 .000 .068 .000 .068 .000 .103 .228
wm2 .031 .051 .013 .034 .114 .057 .092 .030
wm3 .011 .000 .000 .000 .023 .000 .000 .046
aml .023 .023 .057 .000 .114 .091 .194 .137
am2 .012 .012 .046 .000 .035 .023 .000 .151
am3 .000 .011 .000 .011 .023 .011 .000 .023
wal .012 .048 .156 .000 .024 .024 .060 .527
wa2 .000 .012 .024 .000 .000 .000 .024 .037
wa3 .012 .037 .000 .024 .012 .012 .000 .037

Stationary phase F

ACP ACT ANS CRE DMP EAB EE EHB
wml .012 .012 .012 .023 .116 .012 .185 .023
wm2 .006 .006 .014 .012 .030 .012 .366 .015
wm3 .011 .000 .011 .000 .011 .000 .000 .011
aml .000 .012 .012 .000 .166 .226 1.331 .083
am2 .012 .000 .024 .012 .000 .035 .118 .000
am3 .012 .012 .000 .000 .012 .012 .000 .012
wal .049 .012 .110 .024 .110 .305 1.561 .049
wa2 .000 .000 .000 .024 .049 .024 171 .012
wa3 .000 .000 .012 .000 .000 .012 .000 .025
MHB NBZ PBL PE PHB PRE PRS TOL
wml .000 .012 .081 .000 .070 .012 .139 . 255
wm2 .008 .012 .022 .006 .054 .045 .072 .104
wm3 .000 .000 .011 .034 .011 .000 .011 .023
aml .048 .024 .095 .012 .048 .143 .024 475
am2 .000 .000 .000 .000 .000 .000 .024 .012
am3 .012 .000 .012 .000 .012 .000 .000 .000
wal .024 .110 .085 .000 .146 .061 .012 .098
wa2 .000 .012 .037 .000 .012 .000 .012 .195
wa3 .012 .012 .000 .000 .049 .000 .012 .012

Legend: see text. Empty spots indicate absence of repeated measurements
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TABLES

TABLE IV.6.

Stationary phase A

wml
wm2
wm3
aml
am?2
am3
wal
wa2
wa3

wml
wm2
wm3
aml
am?2
am3
wal
wa2
wa3l

ACP

.21
.51
.10
.59
.81
.14
.42
.60
.01

ACT

NBZ

1.68
.12
.65
.21
.65
.04
.54
.90
.25

[

P

Stationary phase B

wml
wm2
wm3
aml
am?2
am3
wal
wa?2
wa3

wml
wm?2
wm3
aml
am?2
am3
wal
wa?2
wa3l

ACP

1.18
42
-.16
1.43
.68
.02

42

ACT

N
~
=~

RN e RO B N
0
0

PBL

a4

.89
.14

.56

.18
.57
.06
.49
.87
.31
.67
.05
.36

[ O I N N N

PBL

.35

-.22

.78
.08

.35

CRE

.84
.30

.58
.87

[

.49

PE

CRE

.77

.22

.62

.96
.36

PE

.54

.10

.87
.19

L4l

DMP

.95
.27

.81
.45

N

.85

PHB
.07

.34
.54
.50

.34
.16
.19

=R W N W W

DMP

.86
.21
2.27
1.41
.74
2.26
1.44
.70

R WHNWR N W
I~
[e]

.70
.09

1.24
.52

PRE

.66
.4l
.62

N

77

.71

2.66
1.43

.55
2.99

zz

1.77

2.07
.54

Logarithms of the capacity factors of the solutes

23
t=1

RPN WULN WS
(V%)
[+

3.01
1.87
.99

1.95
.95
2.17
.58

=3
=

.69

.18
.14
.30

.54
.80
.51

=R WU WS

PRS

.97
3.14
1.89

.93
2.02

.40

B W W RN W N W
[od
o

R W R R W NDW
~I
(=)}

(U5
-
w



PART IV

TABLE IV.6 (continued).

TABLES

Stationary phase C

wml
wm?2

aml
am?2
am3
wal
wal
wa3

wml
wm2
wm3
aml
am2
am3
wal
wa?l
wal

Stationary phase

wml
w2
wm3
aml
am?2
am3
wal
wa2
wal

AGP

ACP

1.46
.80
.20
.77
1.15
.57
.86
1.22

.66

o

[

e )

.68
.11
.54
.13
.58
.00
.46
.82
.20

R RN R e R
[Xe
o

1.32

-.23
1.74
.83
.16

.50

ANS

.21
.62
.04
.55

.35
.76

H NN NN
v
o

47

PBL

46

-.23

.80
.12

CRE

.92
.28
1.92
1.14
.60
1.81
1.14
.55

1.28
.72

.79
.25

.54
.02

1.27
.65
.08

.78
.21

.52

DMP

=

.86

.22

1.49

.81

.89

PHB

.12
.24

.57
45
.63
.24

R W MW= N W

.26

PHB

.10
.17
.26
.46
.45
.59
.19
.08
.19

B R W = RO W0 RO W

EAB

.02

.53
.04

¥l

.60

PRE

.52
3.04
1.66

.70
1.99

.62

EAB

-.02
1.97

.50

.57

PRE

.46

1.70
.70
2.01
.60

=
=

RS WU N WS
v
(V%)

=
=

.65
.28
.08
.98
.51
.33
.43
.84
.63

RPN PENWERN W

PRS

.87
3.11
1.86

.89
1.98

.50

EHB

.56
2.55
1.57

.86

.61

TOL

.27
.64
.96
.56
.88
.23
.75
.03
.30

RNWWwWwr N WERE N W

EHB

.51
2.45
1.57

.83

1.27
.55

RR W R R W R W
[e<
—
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TABLE IV.6 (continued).

Stationary phase E

ACP ACT ANS CRE DMP EAB EE EHB
wml 1.46 .46 2.22 1.46 1.80 1.53 4.57 2.13
w2 .83 -.03 1.65 .89 .97 .78 3.29 1.34
wm3 .22 -.59 1.06 .25 .22 .03 2.11 .52
aml 1.82 .79 2.58 1.86 2.35 2.10 4.99 2.46
am2 1.18 .19 1.98 1.20 1.52 1.24 3.55 1.60
am3 .57 -.35 1.35 .56 .77 .51 2.31 .82
wal 1.89 .65 2.79 1.82 2.37 2.10 4.48 2.25
wa2 1.26 .05 2.14 1.11 1.52 1.25 2.84 1.31
wa3 .68 -.45 1.48 .50 .84 .59 1.64 56

MHB NBZ PBL PE PHB PRE PRS TOL
wml 1.24 1.68 1.25 1.26 3.09 2.63 2.96 3.18
wm2 .56 1.13 .50 .68 2.19 1.48 1.93 2.57
wm3 -.15 .57 -.22 11 1.27 .50 .88 1.93
aml 1.55 2.18 1.72 1.48 3.46 2.97 3.17 3.50
am?2 .80 1.60 .91 .84 2.47 1.71 1.91 2.85
am3 .12 1.00 .15 .24 1.57 .72 .91 2.15
wal 1.38 2.48 1.48 1.25 3.23 2.04 2.01 3.73
wa2 .60 1.86 .55 .55 2.09 .64 .52 2.98
wa3 -.01 1.22 -.13 .00 1.20 -.27 -.40 2.24
Stationary phase F

AGP ACT ANS CRE DMP EAB EE EHB
wml 1.48 .46 2.25 1.47 1.76 1.55 4.50 2.13
wm2 .80 -.09 1.65 .87 .95 .74 3.28 1.31
wm3 .24 -.55 1.10 .31 .22 .03 2.10 .56
aml 1.81 .74 2.60 1.83 2.29 2.01 4.88 2.45
am2 1.18 .17 1.99 1.20 1.50 1.27 3.49 1.60
am3 .60 -.35 1.38 — .58 .79 .52 2.31 .84
wal 1.92 .65 2.83 1.85 2.38 2.15 4.49 2.30
wa2 1.26 .03 2.16 1.14 1.53 1.30 2.84 1.33
wa3 .71 -.45 1.54 .54 .87 .63 1.71 .62

MHB NBZ PBL PE PHB PRE PRS TOL
wml 1.24 1.67 1.21 1.25 3.10 2.60 2.97 3.20
wm2 .52 1.12 .48 .66 2.16 1.45 1.88 2.61
wm3 -.12 .59 -.19 .13 1.31 .52 ©.93 1.96
aml 1.53 2.17 1.67 1.46 3.45 2.91 3.08 3.52
am?2 .80 1.61 88 84 2.47 1.70 1.87 2.85
am3 .15 1.02 .18 26 1.59 .72 .90 2.19
wal 1.41 2.51 1.49 1.27 3.28 2.05 2.02 3.77
wa2 .61 1.87 .56 53 2.12 .62 .52 3.01
wal .03 1.26 -.09 00 1.27 -.26 -.34 2.30
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TABLE 1IV.

S.Phase

A wm2

mean lnk
s

Srepro

repeat

B wm2

mean lnk
s

Srepro

repeat

C wm2

mean lnk
s

Srepro

repeat

D wm2

mean 1lnk
s

Srapro

repeat

E wm2

mean lnk
s

Srepro

repeat

F  wm2

mean lnk
s

Srepro

repeat
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7. Reproducibility and repeatability (In k values)

Solute

ACP

.83
.017
.011

.77
.032
.009

.88
.002
.003

.80
.003
.033

.83
.005
.017

.80
.004
.061

ACT

-.04
.024
.013

-.12
.055
.061

-.03
.007
.018

-.08
.007
.047

-.03
.009
.047

-.09
.007
.054

1.64
.019
.002

1.57
.025
.030

1.71
.003
.008

1.62
.002
.024

1.65
.003
.012

1.65
.003
.037

CRE -

.84
.009
.023

.77
.032
.021

.92
.001
.011

.84
.002
.035

.89
.005
.033

.87
.004
.045

DMP .

.95
.011
.018

.86
046
.072

1.02
.007
.012

.96
.008
.033

.97
.012
.018

.95
.011
.065

.70
.009
.013

.67
.020
.020

.80
.003
.016

.72
.003
.043

.78
.004
.024

.74
.015
.078

EE

3.21
.006
.024

3.21
.055
.014

3.35
.012
.032

3.28
.012
.055

3.29
.018
.040

3.28
.010
.061

EHB

1.29
.007
.004

1.20
.036
.066

1.38
.006
.020

1.31
.005
.019

1.34
.009
.005

1.31
.006
.064



PART 1V

TABLE IV.7 (continued).

S.Phase

A wm2

mean lnk
s
s

repeat

repro
B wm2

mean lnk
s

Srepro

repeat

C wm2

mean 1lnk
s
s

repsat

repro
D WIRZ
mean lnk

s
S

repest

repro

E wm2

mean lnk
s

Srepro

repsat

F wm2

mean lnk
s

Srepro

repeat

Legend: see text.

TABLES

Solute

MHB

.51
.00%
.008

42
.048
.064

.59
.007
.019

.53
.007
.020

.56
.012
.007

.52
.006
.070

NBZ

1.12
.012
.016

1.07
027
.014

1.18
.008
.010

1.11
.006
.033

1.13
.010
.010

1.12
.004
.059

PBL

Jab
.015
,010

.35
.058
.089

.54
.007
.013

46
.011
.031

.50
.014
.018

.48
.015
.066

PE

.68
.011
.006

.54
.085
.136

.72
.007
.014

.65
.006
038

.68
.012
.002

.66
.009
.075

PHB

2.14
.005
.008

034
059

2.24
.007
022

005
020

2.19
.008
005

2.16
.006
.062

PRE

1.47
.012
.627

1.43
025
LG03

1.52
.01
009

145
L0053
036

1.48
L0309
006

1.45
.07
L090

PRS

1.87
.013
.008

1.84
036G
L0158

1.94
.003
.018

1.87
.005
.038

1.93
Q0%
.058

1.88
009
040

2.47
.020
L0206

2.64
.007
.018

2.56
.006
.015

2.57
006
013

2.61
007
018

(S
=
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TABLE IV.8. Results of PCA on the unfolded data cube

a) results for the stationary phases

S.Phase mean 8% epro  MSp,s MS. . (1) MS_,.(2)
A 0.0337 2.25 30.56 26.69 0.28
B -0.0693 31.36 82.66 0.50 0.41
c 0.0282 2.89 22.60 10.86 8.45
D -0.0163 11.56 8.90 8.30 3.26
E 0.0093 6.25 7.35 4.24 3.62
F 0.0144 38.44 15.14 7.93 7.23
average O 15.46 27.87 9.76 3.87

Legend: MS is the abbreviation of Mean Sum of Squares. MS,_, is the mean
sum of squares before the PCA calculation. MS,_, (k) is the Mean Sum of
Squared residuals after applying k components in the model. The cumulative
percentages explained Sum of Squares of the first two components are 65.0%
and 86.1%. All numbers, except the mean values, must be multiplied by 1074,

b) scores of the stationary phases on the first two Principal Components

PCl PC2
A 0.24 -0.62
B -1.09 -0.04
c 0.41 0.19
D -0.09 0.27
E 0.21 0.10
F 0.32 0.10
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TABLES

TABLE IV.8 (continued).

c) results for the solutes

Solute

ACP
ACT
ANS
CRE
DMP
EAB
EE

EHB
MHB
NBZ
PBL
PE

PHB
PRE
PRS
TOL

average

d) results for the

M.Phase

wml
wm2
wm3
aml
am2
am3
wal
wa?2
wa3

average

s2

8.
19.
5.
9.
18.
15.
16.

15
16

8.
23.

43

13.

17

11.

3

15.

52

15

15

repro

85
25
10
05
82
56
90
.42
45
70
05
.00
83
.09
70
.01

46

repro

.46

.46

Msbef

32.
35.
20.
22.
18.
31.
42.
19.
.01
.90
W43
20.
24,
26.
31.
23.

26
16
52

27

38
60
90
06
83
58
83
64

41
25
37
83
87

.87

[ ~N

U PR WH WU WWOO
U
-

-
-
N
w

mobile phases

Msbef

16.
20.
10.
35.
20.
10.
41.
35.
59.

27

97
97
17
34
50
32
39
33
83

.87

Legend: see Table IV.8a.

MS

X.‘BB(

10.68
5.77
8.80

16.77

10.21
2.56

18.85
4.83
9.37

9.76

w

(93]

NN WWNOMR SR OUMWNRNWN

WS WON WO
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TABLE IV.9. PARAFAC results

a) results for the stationary phases

S.Phase s%,..., MS,.¢ MS, ., (1) MS_, ,(2)
A 2.25 30.56 22.11 8.25
B 31.36 82.66 14.76 10.78
c 2.89 22.60 13.07 10.11
D 11.56 8.90 7.09 3.96
E 6.25 7.35 5.36 4.87
F 38.44 15.14 10.39 8.80
average 15.46 27.87 12.13 7.79

Legend: see Table IV.8, the cumulative percentages explained sum of squares
of the first two components are 56.5% and 72.0%.

b) scores of the stationary phases on the first two PARAFAC components

(1) (2)
A -0.52 1.56
B -3.34 3.51
c 1.70 -2.07
D 0.25 -0.74
E 0.71 -0.83
F 1.19 -1.43
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TABLE IV.9 (continued).

c¢) results for the solutes

Solute

ACP
ACT
ANS
CRE
DMP
EAB
EE

EHB
MHB
NBZ
PBL
PE

PHB
PRE
PRS
TOL

average

d) results for the

M. Phase

wml
w2
wm3
aml
am2
am3
wal
wa?2
wal

average

Legend:

g2

15

g2

15

repro

.85
.25
.10
.05
.82
.56
.90
W42
.45
.70
.05
.00
.83
.09
.70
.01

46

repro

.46

15.46

Msbef

32.
35.
.90
.06
.83
.58
.83
.64
.01
.90
.43
.41

27.

38
60

87

12.

mobile phases

MSbsf

16

20.
10.
35.
20.
10.
41,
35.
.83

59

27.

.97

97
17
34
50
32
39
33

87

see Table IV.9%a.

MS; s (1)

13

8.
8.

17
16

4.
17.
4.
17.

12.

.76
02
94
.94
.32
23
83
62
50

13

=

[%2]
13
[
]
~

N
~

PO UNODWWWONWSsWOYWL

~

MS

r

12.
5.
3.

12.

14,
3.

5
3
9

7.

Bl(

76
59
13
12
53
82
.51
.63
.04

79
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TABLE IV.9 (continued).

e) loadings of the solutes on the first two PARAFAC components

(D (2)
ACP -0.48 0.22
ACT -0.46 0.21
ANS -0.33 0.13
CRE -0.32 0.13
DMP -0.35 0.16
EAB -0.39 0.16
EE -0.32 0.19
EHB -0.33 0.14
MHB -0.37 0.14
NBZ -0.32 0.14
PBL -0.49 0.22
PE -0.36 0.16
PHB -0.40 0.18
PRE -0.41 0.24
PRS -0.47 0.26
TOL -0.33 0.12

Legend: all numbers must be multiplied by 107!,

f) loadings of the mobile phases on the first two PARAFAC components

L (2)
wml -0.81 1.01
wm2 -0.90 0.55
wm3 -1.42 2.78
aml -2.62 4.17
am2 -1.39 2.35
am3 -1.20 1.69
wal -3.38 5.65
wa?2 -2.58 3.58
wal -1.61 0.95
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TABLE IV.10. Analysis of variance (ANOVA)

a) one-way ANOVA: solutes that differ between the stationary phases
A,B and C
A B
B ACP,ANS ,CRE,NBZ
PRE, TOL
C ACP,ANS,CRE,EAB ALL SOLUTES
EE,NBZ,PHB,PRE
PRS, TOL
b) two-way ANOVA: solutes that differ between the stationary phases
A,B and C
Water/methanol Water/methanol/acetonitrile Water/acetonitrile
CRE ANS,DMP, EHB ,MHB ACP,ACT,ANS,CRE
PBL, PHB, TOL DMP,EAB, EHB ,MHB

NBZ,PE, PHB, TOL
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TABLE IV.11, Choice of the markers

a) markers of the version I calibration

markers percentage explained variation
ANS ,DMP,EE, PRE 99.833
DMP,EE, PRE, TOL 99.830
ANS ,DMP, EE, PRS 99.828
DMP, EE, PRS, TOL 99.825
ANS ,EAB,EE,PRE 99.825

b) markers of the version II calibration

markers percentage explained variation
ANS,DMP, PBL,PRE 99.901
DMP, PBL, PRE, TOL 99.899
DMP,PBL, PHB, PRE 99.896
ANS ,DMP, PBL, PHB 99.896
ANS ,EAB, PBL,PRE 99.893
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TABLE IV.1

a) root mean squared errors of prediction of the solutes

solute s

ACP
ACT
ANS
CRE
DMP
EAB
EE

EHB
MHB
NBZ
PBL
PE

PHB
PRE
PRS
TOL

average

b) root mean squared errors of prediction at the mobile phases

TABLES

2.

repro

.003
.018
.008
.011
.012
.016
.032
.020
.019
.010
.013
.014
.022
.009
.018
.018

.017

mobile phase

wml
wm2
wm3
aml
am?
am3
wal
wa?2
wa3l

average

Legend: The RMSEP values are calculated as J[E(yi-ﬁi)z/n], where the
summation index is i =1,..,n.

RMSEP I

.036
.049

.037
.037

.040
.054
.040
.070
.036
045

.071
.071

.051

RMSEP 1

.045
.055
.034
.072
041
.047
.053
.047
.054

.051

Results of the version I and II calibrations

RMSEP II

.042
.044

.026

.028
.126
.035
.040
044

.043
.054

.077
.084

.060

RMSEP 11

.045
.066
.049
.091
.050
.051
.063
.061
.051

.060
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TABLE IV.12 (continued).

c) observed versus predicted k values for some solutes

observed predicted
ACP version I version II
wml 1.49 1.52 1.51
wm2 0.88 0.89 0.88
wm3 0.24 0.27 0.24
aml 1.89 1.88 1.92
am?2 1.13 1.17 1.19
am3 0.61 0.62 0.64
wal 1.88 1.89 1.88
wa?2 1.28 1.24 1.23
wa3 0.74 0.66 0.66
TOL
wml 26.33 24 .46 24.31
wm2 14.08 12,72 12.54
wm3 7.08 6.64 6,44
aml 35.11 35.97 37.46
am?2 17.81 17.24 17.55
am3 9.28 9.77 9.89
wal 42.58 37.91 37.42
wa?2 20.72 19.36 19,00
wa3 10.01 10.55 10.42
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.01
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TABLE IV.13. Marker and mobile phase selection with induced-variance

a) selection of the markers

St.Phase
left out

A

markers

ANS ,DMP,EE, PRS
DMP,EE, PRS, TOL
ANS ,EAB,EE, PRS
EAB,EE, PRS,TOL
DMP,EE,PHB, PRS

'ANS ,DMP, EE, PRS

DMP,EE,PRS,TOL
DMP,PBL,PRS,TOL
ANS ,DMP, PBL, PRS
ANS ,EAB,EE, PRS

ANS ,DMP,EE, PRS
DMP,EE,PRS,TOL
ANS ,EAB,EE, PRS
EAB,EE,PRS,TOL
DMP,EE, PHB, PRS

ANS ,DMP,EE, PRS
DMP,EE,PRS,TOL
ANS  EAB,EE, PRS
DMP,EE, PHB, PRS
EAB,EE,PRS, TOL

ANS,DMP, EE, PRS
DMP, EE, PRS , TOL
ANS ,EAB,EE, PRS
DMP,EE, PHB, PRS
EAB,EE,PRS, TOL

ANS ,DMP,EE,PRS
DMP,EE,PRS,TOL
ANS,EAB,EE, PRS
EAB,EE,PRS,TOL
DMP,EE, PHB, PRS

explained variation

99.
99.
99.
99.
99.

99

99.
99.
99.
99.

99.
99.
.816
99.
99.

99

99.
99.
.843
99.
99.

99

99.
.827
99.
99.
99.

99

99

99.
99.
99.
99.

852
848
839
838
829

.878

873
870
866
865

831
829

816
809

858
853

841
839

832
816

815
814

.832

827
823
818
809
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TABLE IV.13. (continued).

a) mobile phase selection

St.Phase mobile phases explained variation
left out
A wml,wn3,wal,wa3 99.856
wm3,aml,wal,wa3 99.852
wm3, aml,wa2,wal 99,835
wml,wm3,wal,wa?2 99.826
wm3, aml,am2,wa?2 99.825
B “wml,wm3,wal,wa3 99.877
wm3,aml,wal,wa3 99.858
wm3,aml,wa?2,wa3 99.845
wml,wm3,wal,wa?2 99.841
wm2,aml,wal,wa3 99.834
C wml,wm3,wal, wa3l 99.857
wm3, aml,wal, wa3l 99.839
wm3, aml,wa2, wa3l 99.835
wml,wm3, aml,wa3 99.828
wm2 ,wm3, aml,wa?2 99.824
D wml,wm3,wal wa3 99.848
wm3, aml,wal,wa3 99.837
wm3, aml,wa2,wa3 99,825
wm2 ,wm3, aml,wa2 99,824
wml,wm3,wal,wa2 99.823
E wml,wm3,wal,wal 99.843
wm3,aml,wal,wa3 99.821
wm3,aml,wa2,wa3 99,807
wm2,wnm3,wal,wal 99.800
wml,wm3,wal,wa?2 99.799
F wml,wm3,wal,wa3l 99.840
wm3, aml,wal,wa3 99.825
wm3,aml,wa2,wa3 99.808
wml,wm3,wal,wa2 99.805
wm2 ,wm3,aml,wa2 99.799
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TABLE IV.l4. Results of the unfold-PLS predictions: one component

a) results for the stationary phases

S.Phase 2 opro $X[MaMPh] ®X[NMaMPh] MS,,., SMARK MS.o., MS:,,
expl. expl.
A 2.25 79.5 78.3 59.32 0.2 42.09 40.84
(3.0)
B 31.36 58.3 50.7 123.3 0.6 118.5 119.9
(---)
C 2.89 62.2 68.1 24.83 26.8 33,51 21.98
(34.4)
D 11,56 = 63.6 67.6 16.71 0.0 12.33 12.33
(0.0)
E 6.25 60.5 . 65.3 11.04 24.0 10.53 6.55
(37.8)
F 38.44  58.8 68.0 41.48 49.3 19.34 15.77
(18.5)
average 15.46  63.8 66.3 46.11 16.8 39.38 36.23
(8.0)

Legend: the values sztepro, MS ark: MSpoexs and M5, ., must be multiplied by
10" %. The value in parenthesis under MS . . is the percentage of explained
variation in the test set. When this value becomes negative, this is
reported as ---. See also legend Table ITI.59.

b) root mean squared errors of prediction for the mobile phases

St.Phase

A B o D E F
M.Phase
wml 048 .068 .053 .031 .016 1,031
(---) (10.6)  (32.7) (---) (27.7)  (---)
wm?2 v .029 .095 .062 .014 .024 042
(---) (4.1) (38.8) (0.1) (48.4)  (---)
wm3 067 .027 .020 .047 .024 .015
(0.8) (---) (---) (0.0) (---) (58.0)
aml .077 .104 .065 .052 .029 .081
(1.7) (---) (36.8) (0.0) (31.3)  (---)
am?2 064 .085 .048 .034 .032 .020
(---) (1.9 (1.9) (---) (36.0) (62.1)
am3 .033 .073 .029 .018 .021 .019
(10.3)  (---) (42.3)  (0.0) (---) (32.5)
wal .104 .136 .057 .048 .023 .020
(6.4) (---) (---) (0.1) (49.9)  (89.3)
wa? .065 .145 .022 .033 .021 .030
(12.2)  (---) (69.3) (0.1) (58.0) (47.3)
wa3l .067 .180 .038 .020 034 .043
(---) (2.3) (73.1)  (---) (47.6) (71.1)
average .064 110 .047 .035 .026 .040
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TABLE IV.1l4 (continued).

¢) root mean squared errors of prediction of the solutes

S.Phase
A B C D E
solute
ACP .065 .134 .043 .030 .013
(9.1) (---) (49.4) (0.0) (61.2)
ACT .071 .139 .049 .028 .025
(5.9) (---) (27.0) (---) (55.9)
ANS .032 .099 .055 .030 .015
(16.9) (---) (39.8) (6.1) ---)
CRE .035 .110 .043 .021 .020
(13.0) (---) (38.2) (0.0) (39.3)
DMP .049 .090 .042 .015 .019
(8.6) (---) (37.9) (0.1) (34.9)
EAB .042 .126 ,051 .031 .033
(6.4) (0.3) (17.6) (0.0) (41.1)
EE .120 .101 .046 .041 .049
(---) (14.1) (41.9) (---) (32.5)
EHB .048 .098 .040 .026 .018
(8.0) (---) (44.0) (0.1) (13.2)
MHB 040 124 .039 022 016
(13.5) (---) (46.1) 0.1 (63.1)
NBZ .052 .090 .039 .029 .012
(8.7) (---) (37.3)  (0.1) (---)
PBL .099 .124 .056 .070 .052
(---) (4.5) (32.3) (0.0) (40.4)
PE .048 .102 .044 .032 .017
(9.8) (---) (19.9) (0.0) (61.6)
PHB .058 .106 .046 .027 .024
(6.4) (---) (40.8) (0.0) (---)
PRE .101 .073 .051 .054 .017
(---) (---) (5.0) (0.0) (41.7)
PRS .070 .065 .052 .036 .027
(1.2) (---) (---) (0.0) (24.6)
TOL .034 .109 .051 .024 .019
(9.7) (---) (48.0)  (0.1) (---)
average .064 .110 .047 .035 .026
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TABLE IV.15.

s

Results of the unfold-PLS predictions: two components

a) results for the stationary phases

S.Phase s?
A 2
B 31.
c 2.
D 11.
E 6
F 38
average 15.

repro

.25

36

89

56

.25

A

46

$X[MaMPh] $X[NMaMPh] MS,, .

expl.

93

84.

92.

88.

87.

90.

89.

.0

4

Legend: see Table IV.l4a.

expl.

89.

68.

91.

85.

86.

89.

85.

7

5

4

7

7

9

3

59.32

123.3

24.83

16.71

11.04

41.48

46.11

SMARK MS, .., MS

17

28

41,

52

54.

32.

- 42

.09

.0 118.5

.8 33.

.9 10.

b) root mean squared errors of prediction for the mobile

M.Phase

wml

wm2

wm3

aml

am?2

am3

wal

wa2

wa3l

average

St.Phase

(44.5)
.132
(13.3)
.169
(14.7)
.106

6 12.

9 19.

5 39.

51
33
53
34

38

ph

res

41.99
(0.2)
113.0
(4.6)
21.04
(37.2)
6.64
(46.1)
6.93
(34.2)
15.11
(21.9)
34.12
(13.4)

ases
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TABLE IV.15 (continued).

¢) root mean squared error of prediction for the solutes

solute
ACP

ACT

CRE

DMP

EAB

EE

EHB

NBZ

PBL

PE

PHB

PRE

PRS

TOL

average

334

St.Phase

A B C D E

.064 .135 .044 .017 .014
(10.9) (---) (47.7) (66.8) (50.3)
.073 .140 .046 .023 .032
(---) (---) (36.6) (33.8) (26.0)
.030 .100 .057 .025 .015
(25.5) (---) (35.5) (32.3) (---)
.036 .106 .043 .018 .021
(7.3) (6.8) (38.5) (22.2) (34.0)
. 046 .104 .043 .008 .022
(16.8) (---) (33.1) (74.7) (8.6)
.047 .108 .049 .027 .037
(---) (26.4) (23.5) (24.5) (27.3)
.118 .099 .044 014 .032
(---) (16.2) (47.0) (88.0) (71.7)
.048 .100 .041 017 .016
(7.9) (---) 42.9) (57.5) (31.7)
.041 .121 .036 .015 .018
(11.4) (3.4) (54.8) (50.8) (55.5)
.052 .087 .040 .020 .012
(8.7) (---)  (34.8) (54.7) (---)
.103 .103 .051 .060 .052
(~~-) (34.0) (45.7) (25.4) (41.1)
.051 .098 .043 .025 .024
(0.3) (3.4) (23.6) (38.3) (18.9)
.057 .108 047 .013 .019
(8.1) ---) (38.5) (75.4) (15.4)
.102 .070 .049 .030 .019
(---) (3.3) (13.2) (68.8) (30.2)
.070 .070 .053 .027 .036
(2.7) (---) (--=) (42.9)  (---)
.035 .106 .051 .020 .020
(5.7) (5.0) (47.9) (34.3) (---)
.065 .106 .046 .026 ,026
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TABLE 1IV.16.

wml
wm2
wm3
aml
am?2
am3
wal
wa2
wa3

wm2
wm3
aml
am2
am3
wal
wa?2
wa3l

Closer examination of stationary phase B: unfold-PLS

solute
ACP
obs

1.4500
L7707
.2302

1.7237

1.1754
.5051

1.7816

1.1184
.3862

MHB
obs

1.1765
L4223
-.1554
1.4303
.6753
.0212
1.2363
L4162
-.1388

pred

1.4838
.8553
L2435

1.8539

1.1513

.6014

.8835

.2635

.6987

e

pred

1.2437
.5569
-.1502
1.5971
.7653
L1462
1.3415
.5847
-.0063

error

-.0337
-.0846
-.0133
-.1302

L0241
-.0964
-.1018
-.1451
-.3126

error

-.0672
-.1346
-.0052
-.1668
-.0900
-.1251
-.1052
-.1685
-.1325

AGT

obs

L4779
-.1211
-.6038

L6514

.2427
- . 4646

L4932
-.1904
-.6838

pred

.5163
-.0348
-.5840
.8049
11569
-.3493
.6123
.0252
-.4336

error

-.0384
-.0863
-.0199
-.1535

.0858
-.1153
-.1191
-.2156
-.2502
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TABLE IV.17. Results of the PARAFAC predictions: one component

a) results for the stationary phases

S.Phase Szrepro thrain Msmurk $MARK Mstosx Msres
A 2.25 .66 59.32 20.4 42,09 36.74
(12.7)
B 31.36 .38 123.3 0.1 118.5 116.2
(2.0)
c 2.89 .60 24 .83 18.6 33.51 23.49
(29.9)
D 11.56 .59 16.71 10.2 12.33 9.93
(19.4)
E 6.25 .58 11.04 0.5 10.53 9.68
(8.1)
F 38.44 .60 41.48 23.9 16.34 15.60
(19.3)
average 15.46 .57 46,11 12.3 39.38 35.27
(10.4)

Legend: see Tables III.60 and IV.14.

b) root mean squared errors of prediction for the mobile phases

St.Phase
A B C D E F
M.Phase
wml .060 .072 .059 .036 .019 .028
(---) (---)  (18.1) (---) (L.O) (---)
wm2 .059 .097 .063 .014 .032 .036
(---) (---) (37.2) (9.4) (11.2) (---)
wm3 .063 .024 .021 044 .022 .016
(11.9) (6.7) (---) (12.9) (---) (48.6)
aml .057 .101 .061 .041 .033 .085
(45.9) (3.8) (44.0) (37.4) (7.2) (---)
am?2 .052 .085 .058 .029 .040 .026
(33.2) (2.0) (---) (25.2) (3.8) (34.8)
am3 .024 .070 .027 .015 .019 .018
(53.3) (2.5) (51.0) (31.2) (---) (34.1)
wal .071 .127 .062 .036 .030 .027
(55.6) (5.7) (---) (45.1) (13.2) (81.6)
wa?2 .033 .140 .019 .026 .030 .025
(76.9) (3.2) (78.3) (37.7) (14.5) (64.5)
wa3l .108 .183 .035 .036 044 .037
(---) (---) (77.6)  (---) (11.5) (78.9)
average .061 .108 .048 .032 .031 .039
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TABLE IV.17 (continued).

¢) root mean squared error of prediction for the solutes

solute

ACP

ACT

CRE

DMP

EAB

EE

EHB

NBZ

PBL

PE

PHB

PRE

PRS

TOL

average

St.Phase

A

.041
(63.4)

B

.131
(1.6)
.136
(2.0)
.096
(2.6)
.109
(1.7)
.087
(3.1)
.125
(1.6)
.108
(0.4)
.085
(2.7)
.122
(1.8)
.086
(3.2)
.126
(2.3)
.099
(2.0)
.103
(2.5)
.072
(==
.062
(4.2)
.108
(1.8)

.108

.046
(41.1)
.055
(9.4)
.054
(41.9)
.041
(43.9)
.039
(45.4)
.051
(19.2)
.056
(14.1)
.041
(42.9)
.036
(54.8)
.038
(38.6)
.061
(19.7)
.047
(9.0)
.045
(43.4)
.055

.018
(19.3)
.035
(13.1)

&4.9)
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TABLE IV.18. Results of the PARAFAC predictions: two components

a) results for the stationary phases

S.Phase Szrapro thrain Msmark $MARK Mstoex Msres
A 2.25 .77 59.32 35.4 42 .09 47.39
(---)
B 31.36 .60 123.3 27.7 118.5 79.81
(32.6)
c 2.89 77 24,83 43.3 33.51 22.59
(32.6)
D 11.56 .73 16.71 62.4 12.33 7.18
(41.8)
E 6.25 .74 11.04 25.8 10.53 9.43
(10.4)
F 38.44 .77 41.48 31.2 19.34 15.53
(19.7)
average 15.46 .73 46.11 37.6 39.38 30.32
(23.0)

Legend: see Table IV.l1l7a,

b) root mean squared errors of prediction for the mobile phases

St.Phase
A B C D E F
M.Phase
wml .101 .057 ,058 .036 .019 .033
(---) (37.4) (20.4) (---) (1.0) (---)
wm?2 .083 .036 .058 ,019 .024 . 045
(---) (85.9) (47.5) (---) (50.9) (---)
wm3 .050 .030 .019 .028 014 .019
43.9) (---) (---) (63.7) (57.9) (26.0)
aml 071 .095 .072 .028 .035 .081
(17.1) (15.0) (20.6) (70.4) (---) (---)
am? .076 L1111 .056 .029 . 046 .024
(---)  (---)  (---) (24.4) (---) (46.9)
am3 .026 .047 .028 014 .019 .018
(43.8) (56.5) (46.0) (43.2) (---) (34.1)
wal .074 .135 .053 .031 .037 .027
(52.6) (---) (---) (58.1) (---) (81.6)
wa2 .028 .110 .017 .030 .031 ,022
(83.3) (40.7) (81.8) (17.7) (10.3) (71.6)
wal .083 .116 .023 .022 .035 .033
(---) (59.4) (90.4) (---) (45.1) (83.7)
average .069 .089 .048 .027 .031 .039
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PART IV TABLES

TABLE IV.17 (continuedf.

¢) root mean squared error of prediction for the solutes

St.Phase
A B C D E F
solute
ACP .059 .103 . 044 .015 .017 .035
(23.8) (39.6) (46.0) (74.0) (32.5) (---)
ACT .062 .106 .052 .027 .036 .047
(26.7) (40.6) (19.9) (11.1) 9.3 (---)
ANS .053 .072 .054 .025 .016 .023
(---) (4&.4) (41.9) (30.7) (---) (22.5)
CRE .056 .089 .040 .015 .023 .030
(---) (33.6) (48.0) (46.3) (14.8) (42.0)
DMP .053 .069 .042 .008 .024 .048
(---) (38.0) (38.2) (72.2) (---) (---)
EAB .080 .100 .050 .024 .040 .040
(---) (36.7) (21.0) (38.6) (17.0) (55.5)
EE . 084 .145 .057 .043 .061 .089
(48.2) (---) (10.6) (---) (---) (---)
EHB .053 .069 .041 .019 .017 .028
(---) (47.9) (42.9) (49.2) (17.8) (37.5)
MHB .059 .096 .034 .017 .021 .030
(---) (39.2) (59.1) (40.8) (35.0) (41.8)
NBZ .046 .063 .038 .024 .013 .023
(28.0) (47.6) (38.6) (34.4) (---) (21.7)
PBL .130 .088 .060 .059 .063 .043
(---) (51.7) (24.4) (28.3) (14.4) (67.6)
PE .040 .071 .045 .024 .027 .030
(36.8) (50.0) (16.3) (43.5) 4.2) (---)
PHB .064 .078 .046 .014 .018 .035
(---) (44.2) (40.4) (72.4) (22.7) (30.2)
PRE .082 .094 .052 .028 .017 044
(33.5) (---) (2.7) (72.5) (43.7) (---)
PRS .066 .090 .057 .024 .036 .060
(13.3) (---)  (---)y (54.8) (---) (---)
TOL .058 .079 .051 .021 .018 .013
(---) (47.0) (48.1) (26.6) (---) (90.9)
average .069 .089 .048 .027 .031 .039
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PART IV TABLES

TABLE IV.18. C(Closer examination of stationary phase B: PARAFAC: two

components
solute
ACP ACT
obs pred error obs pred error
wml 1.4500  1.3927 .0573 L4779 L4029 .0750
wm2 .1707 L7420 .0286 -.1211 -.1355 .0144
wm3 .2302 .2130 .0172 -.6038 -.5928 -.0110
aml ~1.7237 1.6936 .0301 L6514 L6470 .0044
am2 1.1754  1.2120 -.0367 . 2427 L2134 .0293
am3 .5051 .5503 -.0453 -.4646 -.3902 -.0744
wal 1.7816 1.9087 -.1270 .4932 L6470 -.1550
wa2 1.1184  1.2285 -.1101 -.1904 .0022 -.1926
wal .3862 .6268 -.2406 -.6838 -.517¢6 -.1662
EAB EE
obs pred error obs pred error
wml 1.4553 1.4679 -.0126 4.6937  4.5584
wm2 .6730 .6666 .0064 3.2084 3.2099 -.0015
wm3 .0283 .0027 .0256 2.1779 2.0962
aml 1.9292 1.9126 .0167 5.1355 4.8986 .2369
am2 1.1309 1.2586 -.1276 3.3031 3.5184 -.2153
am3 .4877 L4737 .0139 2.3321 2.3003 .0319
wal 1.9411 2.0981 -.1570  4.5353 4.4994
wa2 1.0624 1.2305 -.1681 2.7957 2.8354 -.0398
wa3 L3814 .5221 -.1407 1.5071 1.5965

Legend: all numbers are ln k values.
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PART IV TABLES

TABLE 1V.19.
a) results of
S.Phase

A

F
average

b)

ACP
ACT
ANS
CRE
DMP
EAB
EE

EHB
MHB
NBZ
PBL
PE

PHB
PRE
PRS
TOL

wml
wm?2
wm3
aml
am2
am3
wal
wa2
wa3

PARAFAC with alternative marker/mobile phase combinations

the predictions
Markers

ACP,EAB,PBL,PHB
ACP,PBL,PRE,PRS
ACP,PBL,PRE, PRS
ACP,AGT,PRE,PRS
ACP,PBL, PRE, PRS

ACP,ACT,PRE,PRS

Mobile Phases

wml,wm2,aml,am3
wml,wm2,aml,wa3
wm3,aml,wal,wa2
aml,am2,wal,wa2
wm3,aml,wal,wa2

wm3,aml,wal,wa2

RMSEP
.076
118
054
.034
.037
.042

.067

loadings of the solutes and the mobile phase compositions on
the two PARAFAC components when stationary phase B is left

out
(L) (2)
1.036 0.978
0.977 0.949
0.874 0.915
0.727 0.792
0.911 0.938
0.820 0.922
1.074 0.814
0.873 0.925
0.719 0.780
0.903 0.872
1.240 1.482
0.842 0.803
1.022 1.077
1.545 1.357
1.318 1.250
0.719 0.812
Y (2)
1.035 -1.223
0.982 -1.224
0.744 -0.411
2.097 -1.962
-0.248 0.539
0.699 -0.634
0.489 0.089
0.730 -0.494
0.832 -1.022
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Sunmary

Multivariate techniques wused in this thesis are described in
Part 1. Techniques to select markers are of special interest. Quanti-
tative methods like the induced-variance- and determinant criterion
work well in practice. Other techniques - DISNORM, Procrustus ana-
lysis and variants - are worth trying. Another important issue is the
use of three-way methods. These methods provide a general framework
for thinking about calibration problems.

Part I1 gives recent relevant developments in the field of station-
ary- and mobile phase optimisation of reversed-phase systems; calib-
ration in GC, TLC and RP-HPLC and related miscellaneous topics. One
of the important conclusions of Part II is the idea that correction
of retention values to compensate for changing measurement conditions
is performed best with a set of compounds similar to the
compounds of interest. The calibration strategies presented in
Chapter 8 rely on this principle: reference standards (markers) are
selected which are specific for the separation problem at hand.

The calibration strategies, presented in Chapter 8, are divided in
two groups: the two- and three-way approaches. If a stationary phase
is conceived as an object, then a training set of retention values
on, at least, five stationary phases is needed to perform the three-
way approach. If the training set is smaller, the two-way approaches
have to be used.

The two-way approaches have two versions. The first version tries
to model the relationship between retention values of markers and of
non-markers in the training set. This relationship is wused sub-
sequently to predict the retention of non-markers on a new stationary
phase using the retention values of markers on that new stationary
phase. This version is tested in Parts III and IV. The second version
tries to model the relationship between retention values of markers
on the initial stationary phase(s) and the new one(s). Predictions of
retention values of non-markers on the new stationary phase(s) can be
obtained using this relation and the measured retention values of the
non-markers on the initial phase(s). This second version has not been
tested.

Both tested three-way strategies bear the same characteristics. The
training set can be represented by a data cube in which a stationary
phase, the object, 1is characterised by the capacity factors of
solutes obtained at different mobile phase compositions. This data
cube 1s decomposed. On a new stationary phase, retention values of
the markers have to be measured at a limited number of mobile phase
compositions. Predictions of the retention values of the non-markers
at the mobile phase compositions used in the training set, can be
obtained using the previously developed decomposition. The same holds
for the retention values of the markers at the non-selected mobile
phase compositions.

It is important to understand clearly the differences between the
two- and three-way approaches. These differences can be explained
keeping in mind two aspects.

First, the two-way approaches differ from the three-way approaches
with respect to the experimental effort in the training- and calib-
ration step. The three-way methods need a large training set whereas
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the two-way methods do not. In the calibration step only a few
measurements are needed to calibrate a new stationary phase if a
three-way approach is chosen. On the contrary, with a two-way ap-
proach more measurements are needed in the calibration step.

Second, the two-way approaches differ from the three-way approaches
with respect to the way in which the mobile phase composition is
handled. The calibration with two-way approaches is discussed first-
ly. If predictions of retention values on a new stationary phase are
desired at a specific mobile phase composition, the new stationary
phase has to be calibrated by measuring the retention values of the
markers at that mobile phase composition. This particular mobile
phase composition is not necessarily one of the mobile phases used in
the training set (the initial stationary phases). For the three-way
approaches the situation is different. Predictions of retention
values on a new stationary phase can only be obtained at the mobile
phase compositions present in the training set. However, for the
calibration of a new stationary phase and contrary to the two-way
case, it 1is not necessary to measure the retention values of the
markers at each mobile phase composition on that new stationary
phase. Marker retention values at a small number of selected mobile
phase compositions suffice to calibrate the whole new stationary
phase in the three-way case.

In Part III, the first version of the two-way approach and both
three-way approaches are tested. Of this first version of the two-way
approach, two different variants are used. One variant uses the
mobile phase compositions explicitly in the model, contrary to the
second variant. A training set of retention measurements of nine test
solutes on a Cl, a Cl8 and a CN stationary phase at six mobile phase
compositions (mixtures of water, acetonitrile and methanocl) is used.
Retention is predicted on a C6, a G8 and a Phenyl stationary phase.
For detailed discussions and conclusions, reference is made to the
respective sections. The results of the two-way approaches are
summarized and discussed firstly.

Four different sets of markers are evaluated: markers selected with
the induced-variance criterion; selected with the determinant cri-
terion; a homologous series and bad markers. The design matrices of
these four marker-sets differed considerably with respect to the
degree of multicollinearity. The design matrix of the homologous
markers has a very high degree of multicollinearity, the design
matrix of the bad markers and the markers chosen with the induced-
variance criterion have a high degree of multicollinearity. The
design matrix of the determinant markers has a moderate degree of
multicollinearity.

The predictions based on the models where the induced-variance- and
determinant markers are used are good: relative prediction errors of
the capacity factors are between 5 and 10%. The homologous- and bad
markers performed clearly worse. The predictive performance of the
induced-variance- and determinant markers does not differ much. Both
marker-choice criteria are sensitive to outliers; the retention of
the solute paracetamol is badly predictable and therefore this solute
can be regarded as an outlier. However, both the induced-variance-
and determinant criterion select this solute as a marker.

The degree of multicollinearity seems to affect the performance of
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cross-validation. The selection of the k and ¢ parameters in respect-
ively ridge- and Stein regression with cross-validation leads to
better results for the determinant markers (a lower degree of multi-
collinearity) than for the induced-variance markers. If the ‘induced-
variance markers are used, Hoerl's choice of the k parameter is
better than the cross-validatory choice. The cross-validatory choice
of the estimation method is also slightly better for a lower degree
of multicollinearity. The selection of a model with- or without the
explicit mobile phase compositions, 1is performed better with
Amemiya's prediction criterion than cross-validation for the induced-
variance markers. If the determinant markers are used, cross-valida-
tion performs slightly better in this respect. Again there seems to
be a relation between multicollinearity and the performance of cross-
validation.

There is no clear preference for an estimation method. If the test
set (the new stationary phase) does not resemble the training set,
e.g. with respect to the pattern of multicollinearity, OLS might give
higher prediction errors than ridge regression, Stein regression or
partial least squares. Criteria to judge the similarity between
training- and test set are important. With respect to multicolline-
arity, such a criterion is proposed and seems to work reasonable.
Yet, specific interactions between a solute, a mobile phase and a new
stationary phase on which retention prediction is desired may cause
high prediction errors if these specific Interactions are not present
in the training stage.

The average relative prediction error for a capacity factor when
predicted by a three-way model, is 13%. It ranges from 3.6% (EHB on
¢8) to 35% (TOL on CN) for the unfold-PLS model. Although no clear
difference in predictive performance was noticed between both three-
way models (PARAFAC and unfold-PLS), it is worthwhile developing
validation criteria with which a choice can be made in practice.
Besides, more three-way models are available, but not tested in this
thesis. A direct comparison between the two- and three-way methods is
difficult because of the above mentioned differences between the two-
and three-way approaches. On the one hand, the two-way approaches
seem to predict better, but use more measurements to calibrate a new
stationary phase. On the other hand, more measurements are used to
build the calibration model with in the three-way case. One of the
problems in the three-way calibration is the presence of non-linear
behaviour of retention with respect to mixing mobile phase compo-
nents. Retention of a solute measured at a ternary mixture is not the
mean of the retention values of that solute at the two binary mobile
phases which are mixed fifty-fifty to make the ternary mobile phase
composition. Another problem which arises is drift in the measure-
ments. During the training stage, the stationary phases changed and
consequently drift in the measurements was observed. How this effects
the performance of three-way (and two-way) models is not yet clear.

Three-way models reckoning with non-linear mixing behaviour should
be developed. It is also worthwhile developing three-way models that
explicitly account for the influence of the mobile phase constitu-
ents. If such models are available, the prediction of retention at a
continuous range of mobile phase compositions is possible. This is of
great importance for optimisation of separations and correction
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strategies.

In Part IV a data set is used consisting of retention measurements
of sixteen test solutes on six octadecyl stationary phases from
different batches at nine mobile phase compositions (mixtures of
water, methanol and acetonitrile). Three different analyst/apparatus
combinations are used to build up this training set. The differences
between three of these octadecyl stationary phases, all three of them
measured by a different analyst/apparatus combination, are visualized
using analysis of wvariance. It appears that the retention values of
the solutes on the three stationary phases differ significantly. The
differences between the stationary phases with respect to the reten-
tion values depend on the mobile phase composition. These three
different stationary phases are chosen to test a two-way approach.

Two stationary phases are chosen as the training set and the third
stationary phase is used as test set. The prediction of capacity
factors on this third stationary phase is performed with an average
relative prediction error of 5-6%. A two-way variant in which no
calibration measurements have to be performed on the new stationary
phase, gives an average relative prediction error of 9%. This is
worse than the value of 5-6% above, because the reproducibility is
about 3%. The value of 9% can be regarded as the prediction error on
a new stationary phase if a priori knowledge of the new stationary
phase is not available. Prediction errors should be judged keeping in
mind that small prediction errors may disturb completely a chromato-
gram. Very good predictions are needed to predict a separation
correctly.

The application of three-way models for the calibration of the
octadecyl (Cl8) stationary phases was not completely successful. All
six stationary phase were used to evaluate the three-way approaches
with. The first problem is the selection of a combination of solutes
(markers) and mobile phase compositions which together are capable of
calibrating a new stationary phase and predicting retention of all
other solutes at all other mobile phase compositions. Statistical
techniques for the simultaneous selection of variables from two
categories, as in the three-way case, are not available. These
techniques have to be developed. A "quick and dirty" approach based
on the induced-variance is used in Part III and gives adequate
results. In Part IV, such an approach is also used and performes
better than an alternative strategy of variable selection.

Especially the aspect of the different analyst/apparatus combina-
tions influences the performance of the three-way models. This aspect
seems to hamper unfold-PLS more than PARAFAC. This may be due to the
more rigid model structure of PARAFAC. Two solutions for the problem
of different analyst/apparatus combinations in the training set (and
perhaps in the test set) are outlined. The first idea is to use a
different kind of centering and scaling in the data cube. The second
idea is to make hybrid models: models with an MANOVA aspect to
account for the differences between analyst/apparatus combinations
and latent variable three-way models to account for the differences
between the stationary phases.

Both three-way models are sensitive to outliers. The test solutes
comprised benzene derivatives, some steroids and phenobarbital. Some
of the test solutes - the steroids and phenobarbital - were badly
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predictable and showed deviating behaviour in the three-way models.
The connection between the degree of heterogeneity of the set of
solutes and the performance of the three-way models should be invest-
igated. Of utmost importance are diagnostic tools to evaluate the
three-way models. Some diagnostic tools are tested and seem to work
well.

The cause of the differences between the PARAFAC- and unfold-PLS
method with respect to their predictive performance is not clear.
Unfold-PLS is perhaps more flexible, but PARAFAC uses a lower number
of degrees of freedom to estimate the model parameters. Validation
criteria to assess the performance of both three-way methods should
be tested.

347



Samenvatting voor niet-ingewijden

De vloeistofchromatograaf is een modern instrument waarmee het
gehalte van een stof in een medium kan worden bepaald. Denk bv. aan
organische verbindingen in water, geneesmiddelresten in bloed en
urine, etc.

De probleemstelling die in dit proefschrift aan bod komt, wvalt in
twee delen uiteen.

Ten eerste: de vloeistofchromatograaf moet ingesteld worden. De
kunst is om de vloeistofchromatograaf optimaal te laten functioneren.
Dit is het eerste deel van de probleemstelling: in de vloeistofchro-
matograaf kunnen veranderingen worden aangebracht die de prestatie
van het instrument beinvloeden. Deze bedoelde veranderingen moeten
optimaal aangewend worden.

Een probleem bij het gebruik van de vloeistofchromatograaf is dat
een onderdeel van dat apparaat bij gebruik veroudert. De instelling
van het apparaat is niet langer optimaal na een periode van (inten-
sief) gebruik. Er zijn onbedoelde veranderingen opgetreden. Dus moet
de vloeistofchromatograaf opnieuw ingesteld worden. Dit is het tweede
gedeelte van de probleemstelling.

Zowel het aanwenden van de bedoelde veranderingen als het corrige-
ren voor onbedoelde veranderingen worden in dit proefschrift ijken
(calibratie) genoemd.

Dit proefschrift is opgebouwd uit vier delen. De eerste twee delen
zijn inleidingen: Deel I behandelt de statistiek die nodig is voor
het oplossen van bovengenoemde problemen en Deel II geeft achtergrond
informatie over de probleemstelling. Deel III behandelt een voorbeeld
van het aanwenden van bedoelde verschillen om de vloeistofchromato-
graaf optimaal in te stellen. Deel IV, tenslotte, behandelt een
voorbeeld van het opnieuw instellen van de vlceistofchromatograaf na
onbedoelde veranderingen,

Eerst een korte schets van Deel I. Een object (bv. "een spijker™)
kan worden gekarakteriseerd door eraan te meten. Als er één kenmerk
wordt gebruikt om het object te karakteriseren (bv. "lengte van de
spijker") 1s één meting voldoende: het object wordt univariaat
gekarakteriseerd. De statistiek die zich bezighoudt met dit soort

metingen heet "univariate statistiek". Een object zou ook kunnen
worden beschreven door meerdere kenmerken tegelijkertijd (bv. “"leng-
te", dikte" en "gewicht" van de spijker). Er moeten nu meerdere

metingen worden gedaan die in onderlinge samenhang het object be-
schrijven. Het moge duidelijk zijn dat deze "multivariate" aanpak
vaak meer zegt over het object. De statistiek die zich bezighoudt met
de analyse van dergelijke multivariate metingen heet "multivariate
statistiek".

Deel I bevat een kort overzicht van de multivariate technieken die
gebruikt zijn in het onderzoek, zoals gerapporteerd in de delen III
en IV. Een belangrijk gedeelte van Deel I is de beschrijving van de
methoden die in staat zijn de kenmerken (variabelen) te selecteren
die het meest zeggen over de objecten.

In de hoge-druk vloeistofchromatografie wordt gebruik gemaakt van
een vloeibare fase, die onder hoge druk door een kolom gevuld met een
vaste fase wordt gepompt. De vaste fase bestaat uit kleine poreuse
korreltjes waarbij een coating aan het oppervlak is gehecht. De
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vloeibare fase is een vloeistof: bv. een mengsel van water en een
aantal organische oplosmiddelen.

Aan het begin van de kolom wordt in de vloeistofstroom een mengsel
van te analyseren stoffen geinjecteerd. Elke stof in dit mengsel
heeft een bepaalde affiniteit met de vaste- en de vloeibare fase.
Deze affiniteit verschilt per stof. Als een stof graag verblijft in
de vaste fase, duurt het lang voor zo'm stof de kolom verlaat. De
stof ondervindt veel vertraging (veel retentie). Een stof die weinig
affiniteit vertoont met de vaste fase, maar liever verblijft in de
vloceibare fase verlaat de kolom snel (weinig retentie). Door gebruik-
making van de verschillen in affiniteit (het affiniteits-patroon) kan
een geinjecteerd mengsel van stoffen zo goed mogelijk in de tijd van
elkaar gescheiden met de vloeistofstroom de kolom verlaten. Door het
manipuleren van de vaste- en vloeibare fase (het maken van bedoelde
verschillen) en derhalve van het affiniteits-patroon van een groep te
scheiden stoffen, kan getracht worden dit mengsel van stoffen te
scheiden. Veel werk is verricht aan het systematisch manipuleren van
de vloeibare fase. Aan het systematisch manipuleren van de vaste fase
daarentegen nog weinig.

Een probleem bij het gebruik van hoge-druk vloeistofchromatografie
is de slechte reproduceerbaarheid van de vaste fase. Als de vaste
fase versleten is, moet deze vernieuwd worden, maar deze nieuwe vaste
fase heeft niet precies dezelfde eigenschappen als de vorige. Dus
zijn de omstandigheden van voorheen niet langer optimaal. Het vervan-
gen van de oude vaste fase door een nieuwe leidt tot onbedoelde
verschillen. De nieuwe vaste fase moet worden geijkt.

Deel II geeft een beschrijving van een aantal nieuwe ontwikkelingen
op het gebied van de hoge-druk vlceistofchromatografie. In Hoofd-
stuk 8 van Deel II worden verschillende ijk-strategieén geformuleerd,
die specifiek toegesneden zijn op de hierboven gesignaleerde proble-
men van de bedoelde en onbedoelde verschillen. Deze ijk-strategieén
bevatten twee ingrediénten. Ten eerste: de keuze van speciale refe-
rentie stoffen (markers) gekozen uit het mengsel van te analyseren
stoffen, met behulp waarvan de toestand van een systeem, bestaande
uit een vaste- en vloeibare fase, zo goed mogelijk kan worden geka-
rakteriseerd. Ten tweede: modellen (wiskundige formules) worden
verondersteld die een verband leggen tussen het gedrag van de markers
en de niet-markers (de overige stoffen in het te analyseren mengsel)
in de systemen van vaste- en vloeibare fasen. Met behulp van enkele
zorgvuldig gekozen metingen aan de markers kan de status van een
nieuwe vaste fase (of breder: van het nieuwe systeem) worden vastge-
steld. Het gedrag van de stoffen 4nders dan de markers, kan dan
worden voorspeld op het nieuwe systeem. Er worden twee rivaliserende
soorten modellen beschreven. Elk soort model wordt op zijn bruikbaar-
heid getest.

Deel III behandelt een voorbeeld van bedoelde variatie: het syste-
matisch manipuleren van vaste- en vloeibare fase om daarmee een
scheiding van een gegeven mengsel in zijn componenten te bewerkstel-
ligen. Een aantal methoden om de markers te selecteren wordt ge-
toetst. Deze methoden blijken beter te werken dan het lukraak kiezen
van markers of, zoals voorheen te doen gebruikelijk, het gebruik
maken van een speciale groep stoffen uit dezelfde familie (homologe
reeks). Modellen worden geévalueerd die het gedrag van de niet-
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markers op drie vaste fasen (de training set) in relatie tot het
gedrag van de markers op diezelfde vaste fasen beschrijven. Het
gedrag van de niet-markers op drie andere vaste fasen (de test set)
kan dan worden voorspeld door de retentie van de markers te meten en
door gebruik te maken van het model. Dit resulteert in een relatieve
voorspelfout van 5-10%. Deze voorspelfout is heel redelijk te noemen
daar de relatieve fout in een retentie-meting ongeveer 3% bedraagt.

Voordat een model gebruikt kan worden moeten eerst een aantal onbe-
kenden (parameters) uiltgerekend (geschat) worden. De metingen van de
retentiewaarden van alle stoffen op alle combinaties van de vloeibare
fasen en de drie vaste fasen in de training set kunnen worden gerang-
schikt in een tabel (matrix van getallen). Door geschikte manipulatie
van deze matrix kunnen de parameters uitgerekend worden. Eén van de
statistische problemen bij het schatten van de parameters is dat het
gedrag van de markers op de vaste fasen een zo sterke onderlinge
samenhang vertoont, dat de parameters slechts met grote onzekerheid
kunnen worden uitgerekend (multicollineariteit). Deze multicolline-
ariteit resulteert niet persé in slechte voorspellingen. Zodra dit
dreigt, kunnen er schattingsmethoden worden gebruikt die deze drei-
ging het hoofd bieden. Natuurlijk moet ook de betrouwbaarheid van het
model (en de schattingsmethode) worden vastgesteld: de modellen en
schattingsmethoden moeten worden gevalideerd. Een in chemometrische
kringen in zwang zijnde validatiemethode (cross-validation) wordt
getoetst en blijkt niet altijd betere resultaten te geven dan andere
in de statistiek bekende methoden. Speciaal het probleem van de
multicollineariteit gooit roet in het eten.

Bij de modellen zoals hierboven beschreven werden de gegevens
gerangschikt in een matrix en de bijbehorende modellen zijn twee-weg
modellen. Een ander soort model kan worden gebruikt door de gegevens
in een driedimensionale tabel te rangschikken. Het resultaat is nu
een "kubus" wvan getallen: een data kubus. Drie-weg methoden zijn
modellen die proberen zo goed mogelijk de getallen in de data kubus
te benaderen. Ook voor deze modellen geldt weer dat er parameters
geschat moeten worden. Het voordeel van de drie-weg modellen is dat
er heel weinig metingen nodig zijn om een nieuwe vaste fase te ijken.
Er zijn maar enkele metingen van de markers op de nieuwe vaste fase
nodig om het gedrag van de niet-markers te voorspellen. Een aantal
van deze drie-weg methoden wordt getest op hun bruikbaarheid. Het
blijkt mogelijk drie-weg modellen te maken die voorspellen met een
relatieve voorspelfout van 7-20%. Het nadeel van de drie-weg modellen
is dat ze een grote hoeveelheid meetgegevens vergen voor het uitreke-
nen van de parameters: er is een grote training set nodig.

Deel IV behandelt een voorbeeld van onbedoelde variatie: een aantal
vaste fasen die vrijwel identiek behoren te zijn, verschillen qua
eiegenschappen doordat ze in verschillende productiegangen gemaakt
zijn. Ook hier blijk het gedrag van de stoffen op een aantal van deze
vaste fasen goed te modelleren met behulp van de twee-weg modellen.
In elk geval voldoende om ook hier het gedrag op andere vaste fasen
goed te voorspellen.

Het gebruik van de drie-weg methoden wordt ook hier getest. Een
speciaal probleem bij deze drie-weg methoden is de selectie van de
variabelen. In geval van de twee-weg modellen Zijn er statistische
methoden beschreven voor deze selectie. Dergelijke methoden zijn er
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niet of nauwelijks voor de drie-weg modellen. Twee geimproviseerde
variabele selectie methoden worden gebruikt, waarbij de ene methode
jets betere resultaten oplevert dan de andere. Het voorspellen van de
retentie waarden van de niet-markers verloopt niet zo gunstig als in
Part III. De reden hiervoor is dat niet op elke vaste fase metingen
zijn verricht door dezelfde analist op hetzelfde apparaat. Dit levert
verschillen op die mniet direct te corrigeren zijn. Oplossingen
hiervoor worden aangegeven en suggesties voor verder onderzoek worden
gedaan.
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Massart en Prof. T.J. Wansbeek bedank ik voor hun bereidheid dit
proefschrift te beocordelen.

A special thanks goes to Prof. Svante Wold, Umed, Sweden. During my
stay at his laboratory in december 1986, I learned a lot from him. I
remember especially our discussions on biased estimation versus
maximum likelihood methods which opened my eyes. On the occasions
that I have met him after my first visit, he was always willing to
discuss statistical problems.

Het leeuwendeel van het experimentele werk is uitgevoerd door Chris
Bruins. De nauwgezetheid waarmee hij dit werk aanpakte, maakte dat ik
met een gerust hart de gegevens kon gebruiken voor de vele berekenin-
gen.

De leden (en ex-leden) wan de vakgroep Analytische Chemie en
Toxicologie bedank ik voor het feit dat ik mij, ondanks mijn afkomst,
nooit een vreemde eend in de bijt voel.

Al zwemmend, volleyballend, voetballend en voetbalkijkend heb ik
veel collega’s van het Universitair Centrum voor Farmacie ontmoet. Ik
ervaar deze contacten altijd als erg plezierig. Hetzelfde geldt voor
de collega's die ik heb onmoet in het bestuurlijk werk dat ik in de
loop van de tijd gedaan heb.

In een (te) laat stadium van mijn onderzoek heb ik Ton Steerneman
erbij betrokken. Zijn kennis van de multivariate statistiek en zijn
bereidheid om zich in problemen te verdiepen die niet direct op zijn
pad liggen, waardeer ik zeer. Bovendien stel ik zijn hartelijkheid en
vaderlijke raadgevingen zeer op prijs.

De bijvakstudenten Frank Wolbert en Jos Everts dank ik voor hun
bijdrage aan het experimentele werk van Part IV. Alhoewel niet direct
betrokken bij mijn onderzoek, heb ik de samenwerking met de bijvak-
studenten Anne Knevelman en Paul de Wolf op prijs gesteld. Met Piet
Hein van der Graaf heb ik vele gesprekken over mijn onderzoek gehad.
Zijn kritisch luisterend oor en zijn snelheid van werken waren voor
mij zeer stimulerend.

De wereld van de chemometrie is klein. De collega’'s in den lande
die ik vaak tegenkom op congressen of anderszins, dank ik voor het
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nieuwe uitdraaien van de laserprinter die toch vaak weer kladversies
bleken; Anita Sleurink nam een gedeelte van de PARAFAC berekeningen
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