Sumary

Multivariate techniques wused in this thesis are described in
Part I. Techniques to select markers are of special interest. Quanti-
tative methods like the induced-variance- and determinant criterion
work well in practice. Other techniques - DISNORM, Procrustus ana-
lysis and variants - are worth trying. Another important issue is the
use of three-way methods. These methods provide a general framework
for thinking about calibration problems.

Part II gives recent relevant developments in the field of station-
ary- and mobile phase optimisation of reversed-phase systems; calib-
ration in GC, TLC and RP-HPLC and related miscellaneous topics. One
of the important conclusions of Part II is the idea that correction
of retention values to compensate for changing measurement conditions
is performed best with a set of compounds similar to the
compounds of interest. The calibration strategies presented in
Chapter 8 rely on this principle: reference standards (markers) are
selected which are specific for the separation problem at hand.

The calibration strategies, presented in Chapter 8, are divided in
two groups: the two- and three-way approaches. If a stationary phase
is conceived as an object, then a training set of retention values
on, at least, five stationary phases is needed to perform the three-
way approach. If the training set is smaller, the two-way approaches
have to be used.

The two-way approaches have two versions. The first version tries
to model the relationship between retention values of markers and of
non-markers in the training set. This relationship is used sub-
sequently to predict the retention of non-markers on a new stationary
phase using the retention values of markers on that new stationary
phase. This version is tested in Parts III and IV. The second version
tries to model the relationship between retention values of markers
on the initial stationary phase(s) and the new one(s). Predictions of
retention values of non-markers on the new stationary phase(s) can be
obtained using this relation and the measured retention values of the
non-markers on the initial phase(s). This second version has not been
tested.

Both tested three-way strategies bear the same characteristics. The
training set can be represented by a data cube in which a stationary
phase, the object, is characterised by the capacity factors of
solutes obtained at different mobile phase compositions. This data
cube is decomposed. On a new stationary phase, retention values of
the markers have to be measured at a limited number of mobile phase
compositions. Predictions of the retention values of the non-markers
at the mobile phase compositions used in the training set, can be
obtained using the previously developed decomposition. The same holds
for the retention values of the markers at the non-selected mobile
phase compositions.

It is important to understand clearly the differences between the
two- and three-way approaches. These differences can be explained
keeping in mind two aspects.

First, the two-way approaches differ from the three-way approaches
with respect to the experimental effort in the training- and calib-
ration step. The three-way methods need a large training set whereas
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the two-way methods do not. In the calibration step only a few
measurements are needed to calibrate a new stationary phase if a
three-way approach is chosen. On the contrary, with a two-way ap-
proach more measurements are needed in the calibration step.

Second, the two-way approaches differ from the three-way approaches
with respect to the way in which the mobile phase composition is
handled. The calibration with two-way approaches is discussed first-
ly. If predictions of retention values on a new stationary phase are
desired at a specific mobile phase composition, the new stationary
phase has to be calibrated by measuring the retention values of the
markers at that mobile phase composition. This particular mobile
phase composition is not necessarily one of the mobile phases used in
the training set (the initial stationary phases). For the three-way
approaches the situation is different. Predictions of retention
values on a new stationary phase can only be obtained at the mobile
phase compositions present in the training set. However, for the
calibration of a new stationary phase and contrary to the two-way
case, it is not necessary to measure the retention values of the
markers at each mobile phase composition on that new stationary
phase. Marker retention values at a small number of selected mobile
phase compositions suffice to calibrate the whole new stationary
phase in the three-way case.

In Part III, the first version of the two-way approach and both
three-way approaches are tested. Of this first version of the two-way
approach, two different wvariants are used. One variant uses the
mobile phase compositions explicitly in the model, contrary to the
second variant. A training set of retention measurements of nine test
solutes on a Cl, a Cl8 and a CN stationary phase at six mobile phase
compositions (mixtures of water, acetonitrile and methanol) is used.
Retention is predicted on a C6, a C8 and a Phenyl stationary phase.
For detailed discussions and conclusions, reference is made to the
respective sections. The results of the two-way approaches are
summarized and discussed firstly.

Four different sets of markers are evaluated: markers selected with
the induced-variance criterion; selected with the determinant cri-
terion; a homologous series and bad markers. The design matrices of
these four marker-sets differed considerably with respect to the
degree of multicollinearity. The design matrix of the homologous
markers has a very high degree of multicollinearity, the design
matrix of the bad markers and the markers chosen with the induced-
variance criterion have a high degree of multicollinearity. The
design matrix of the determinant markers has a moderate degree of
multicollinearity.

The predictions based on the models where the induced-variance- and
determinant markers are used are good: relative prediction errors of
the capacity factors are between 5 and 10%. The homologous- and bad
markers performed clearly worse. The predictive performance of the
induced-variance- and determinant markers does not differ much. Both
marker-choice criteria are sensitive to outliers; the retention of
the solute paracetamol is badly predictable and therefore this solute
can be regarded as an outlier. However, both the induced-variance-
and determinant criterion select this solute as a marker.

The degree of multicollinearity seems to affect the performance of
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cross-validation. The selection of the k and ¢ parameters in respect-
ively ridge- and Stein regression with cross-validation leads to
better results for the determinant markers (a lower degree of multi-
collinearity) than for the induced-variance markers. If the induced-
variance markers are used, Hoerl's choice of the k parameter is
better than the cross-validatory choice. The cross-validatory choice
of the estimation method is also slightly better for a lower degree
of multicollinearity. The selection of a model with- or without the
explicit mobile phase compositions, is performed better with
Amemiya’'s prediction criterion than cross-validation for the induced-
variance markers. If the determinant markers are used, cross-valida-
tion performs slightly better in this respect. Again there seems to
be a relation between multicollinearity and the performance of cross-
validation.

There is no clear preference for an estimation method. If the test
set (the new stationary phase) does not resemble the training set,
e.g. with respect to the pattern of multicollinearity, OLS might give
higher prediction errors than ridge regression, Stein regression or
partial least squares. Criteria to judge the similarity between
training- and test set are important. With respect to multicolline-
arity, such a criterion is proposed and seems to work reasonable.
Yet, specific interactions between a solute, a mobile phase and a new
stationary phase on which retention prediction is desired may cause
high prediction errors if these specific interactions are not present
in the training stage.

The average relative prediction error for a capacity factor when
predicted by a three-way model, is 13%. It ranges from 3.6% (EHB on
C8) to 35% (TOL on CN) for the unfold-PLS model. Although mno clear
difference in predictive performance was noticed between both three-
way models (PARAFAC and unfold-PLS), it is worthwhile developing
validation criteria with which a choice can be made in practice.
Besides, more three-way models are available, but not tested in this
thesis. A direct comparison between the two- and three-way methods is
difficult because of the above mentioned differences between the two-
and three-way approaches. On the one hand, the two-way approaches
seem to predict better, but use more measurements to calibrate a new
stationary phase. On the other hand, more measurements are used to
build the calibration model with in the three-way case. One of the
problems in the three-way calibration is the presence of non-linear
behaviour of retention with respect to mixing mobile phase compo-
nents. Retention of a solute measured at a ternary mixture is not the
mean of the retention values of that solute at the two binary mobile
phases which are mixed fifty-fifty to make the ternary mobile phase
composition. Another problem which arises is drift in the measure-
ments. During the training stage, the stationary phases changed and
consequently drift in the measurements was observed. How this effects
the performance of three-way (and two-way) models is not yet clear.

Three-way models reckoning with non-linear mixing behaviour should
be developed. It is also worthwhile developing three-way models that
explicitly account for the influence of the mobile phase constitu-
ents. If such models are available, the prediction of retention at a
continuous range of mobile phase compositions is possible. This is of
great importance for optimisation of separations and correction
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tion values depend on the mobile phase composition. These three be tested.

different stationary phases are chosen to test a two-way approach.

Two stationary phases are chosen as the training set and the third
stationary phase is used as test set. The prediction of capacity
factors on this third stationary phase is performed with an average
relative prediction error of 5-6%. A two-way variant in which no
calibration measurements have to be performed on the new stationary
phase, gives an average relative prediction error of 9%. This is
worse than the value of 5-6% above, because the reproducibility is
about 3%. The value of 9% can be regarded as the prediction error on
a new stationary phase if a priori knowledge of the new stationary
phase is not available. Prediction errors should be judged keeping in
mind that small prediction errors may disturb completely a chromato-
gram. Very good predictions are needed to predict a separation
correctly.

The application of three-way models for the calibration of the
octadecyl (Cl8) stationary phases was not completely successful. All
six stationary phase were used to evaluate the three-way approaches
with. The first problem is the selection of a combination of solutes
(markers) and mobile phase compositions which together are capable of
calibrating a new stationary phase and predicting retention of all
other solutes at all other mobile phase compositions. Statistical
techniques for the simultaneous selection of variables from two
categories, as in the three-way case, are not available. These
techniques have to be developed. A "quick and dirty" approach based
on the induced-variance is used in Part III and gives adequate
results. In Part IV, such an approach is also used and performes
better than an alternative strategy of variable selection.

Especially the aspect of the different analyst/apparatus combina-
tions influences the performance of the three-way models. This aspect
seems to hamper unfold-PLS more than PARAFAC. This may be due to the
more rigid model structure of PARAFAC. Two solutions for the problem
of different analyst/apparatus combinations in the training set (and
perhaps in the test set) are outlined. The first idea is to use a
different kind of centering and scaling in the data cube. The second
idea is to make hybrid models: models with an MANOVA aspect to
account for the differences between analyst/apparatus combinations
and latent variable three-way models to account for the differences
between the stationary phases.

Both three-way models are sensitive to outliers. The test solutes
comprised benzene derivatives, some steroids and phenobarbital. Some
of the test solutes - the steroids and phenobarbital - were badly
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predictable and showed deviating behaviour in the three-way models.
The connection between the degree of heterogeneity of the set of
solutes and the performance of the three-way models should be invest-
igated. Of utmost importance are diagnostic tools to evaluate the
three-way models. Some diagnostic tools are tested and seem to work
well.

The cause of the differences between the PARAFAC- and unfold-PLS
method with respect to their predictive performance is not clear.
Unfold-PLS is perhaps more flexible, but PARAFAC uses a lower number
of degrees of freedom to estimate the model parameters. Validation
criteria to assess the performance of both three-way methods should
be tested.
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