

 University of Groningen

Some mathematical results on three-way component analysis
Tendeiro, Jorge

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Tendeiro, J. (2010). Some mathematical results on three-way component analysis. Groningen: s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-01-2020

https://www.rug.nl/research/portal/en/publications/some-mathematical-results-on-threeway-component-analysis(74352613-1326-41ce-8ef2-69e275592610).html
https://www.rug.nl/research/portal/en/persons/jorge-tendeiro(32cdfee6-dd8d-4f6b-b10e-5c26023656c5).html
https://www.rug.nl/research/portal/en/publications/some-mathematical-results-on-threeway-component-analysis(74352613-1326-41ce-8ef2-69e275592610).html

Some mathematical results on three-way

component analysis

Jorge Tendeiro

@ 2010 Jorge Tendeiro

Cover design: Ridderprint BV

Printing: Ridderprint BV

This research was supported by a grant from POPH/FSE (Programa Operacional

Potencial Humano/Fundo Social Europeu).

RIJKSUNIVERSITEIT GRONINGEN

Some mathematical results on

three-way

component analysis

Proefschrift

ter verkrijging van het doctoraat in de

Gedrags- en Maatschappijwetenschappen

aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus, dr. F. Zwarts,

in het openbaar te verdedigen op

donderdag 28 oktober 2010

om 16.15 uur

door

Jorge Nunes Tendeiro

geboren op 26 december 1977

te Port Kembla, Australië

Promotores: Prof. dr. J. M. F. Ten Berge

Prof. dr. H. A. L. Kiers

Beoordelingscommisie: Prof. dr. P. J. F. Groenen

Prof. dr. P. M. Kroonenberg

Prof. dr. R. Rocci

ISBN: 978-90-367-4613-7

Contents

Introduction 7

Notation 13

1 Matrices and arrays 15

1.1 Introduction . 15

1.2 The k-rank of a matrix . 16

1.3 Vectors and matrices: special products and operators 16

1.4 Eigenvalue Decomposition . 17

1.5 Singular Value Decomposition (SVD) 19

1.6 Simultaneous diagonalization of square matrices 20

1.7 Principal Components Analysis (PCA) 22

1.8 Three-way arrays . 24

2 Three-Way Component Analysis 29

2.1 Introduction . 29

2.2 3PCA . 30

2.3 CANDECOMP/PARAFAC (CP) . 31

2.4 INDSCAL . 34

2.5 Constrained 3PCA . 34

2.6 Discussion . 35

3 Uniqueness in 3PCA and CP 37

3.1 Introduction . 37

3.2 Non-uniqueness in 3PCA . 38

3.3 Uniqueness in CP . 40

3.4 Discussion . 50

4 Degeneracy 51

4.1 Introduction . 51

4.2 Characterization of degeneracy . 51

4.3 What causes degeneracy? . 53

4.4 How to avoid degeneracy . 54

5 Simplicity 57

5.1 Introduction . 57

5.2 Computational approaches . 59

5.3 Example of simplicity for two families of arrays 62

5.4 Maximal simplicity . 63

5.5 Discussion . 63

6 Simplicity for symmetric-slice arrays 65

6.1 Introduction . 65

6.2 Setting S=T . 67

6.3 A symmetric version of the OCM . 68

6.4 Simple forms for some families of symmetric-slice arrays 69

6.5 Applications to typical rank . 74

6.6 Maximal simplicity . 75

6.7 Revisiting the 3× 3× 3 case . 75

6.8 Discussion . 77

7 First and second order derivatives for CP and INDSCAL 79

Summary 81

References 83

Appendices 95

Appendix I . 97

Appendix II . 115

Samenvatting (Summary in Dutch) 127

Acknowledgements 131

Introduction

One can define the general purpose of Component Analysis as finding summarizers

of the relationships among observed variables. More precisely, Component Analysis

aims at finding a small set of conceptual (non-observed) variables called components.

Components are expected to explain, to a large extent, the existing relations among

the set of observed variables at hand.

The study of the relations between variables goes back to K. Pearson and G. U. Yule

(late 19th century), who were interested in studying the pairwise correlations between

variables (Mulaik [62], pp. 5-6). The merit of pioneering Component Analysis is usu-

ally credited to Pearson [71] and Hotelling [32] (Jolliffe [34], p. 7). It should be noted

that Common Factor Analysis also arose in around the same period (with Spear-

man [81]). Both Component and Common Factor Analysis are techniques which

seek to perform a variable reduction, but they are different in nature. This thesis is

primarily focused on Component Analysis techniques.

The idea of extending the concepts of Component Analysis to higher dimensions

occured naturally. Two-way component models do not fit well data that arise from

processes where there are at least three sources of variation present. For instance,

consider a situation where data matrices concerning a group of subjects on several

variables were collected on a weekly basis. Such data has typically a three-way struc-

ture: each data entry is triply indexed according to the corresponding subject, variable

and week. Although one could think of applying two-way procedures to each dataset

one at a time, it should be stressed that such an analysis would endanger disregarding

the joint interactions inherent in the data. A more adequate way of tackling such data

is precisely by resorting to three-way, or more generally, multi-way methods.

The multi-way analysis of data had its origins with Hitchcock [29, 30]. Tucker

in the 1960s was the first to formulate principal component techniques for three-

way data. His three-way Principal Component Analysis is one of the most common

multi-way components models used. Later, Harshman [24] and Carroll and Chang [11]

8 Introduction

independently rediscovered the model previously proposed by Hitchcock. They named

their (equivalent) models as PARAFAC and CANDECOMP, respectively. These mo-

dels quickly became quite popular due to its appealing algebraic properties. Since

then much has been achieved in the multi-way world. New models and algorithms

have been proposed, and applications to real data show how useful these methods can

be. Nowadays there are several models suitable for analyzing three- and higher-way

data sets. The choice model to use depends on the type of data at hand and on the

objectives that one wishes to accomplish.

In spite of this, the use of multi-way models is still far from being widespread. The

mathematical complexity of these models can be hard to grasp, thus inhibiting its use

by less technical users. Also, multi-way techniques are still scarcely implemented (if

at all) in the major statistical packages. Therefore, it seems pertinent to contribute

to making multi-way tools more accessible.

This thesis is thought as a contribution in further understanding some core pro-

perties in the multi-way field, specifically in three-way analysis. Some of the most

important concepts in three-way analysis are introduced and discussed in the course

of this thesis. Also, some new results will be presented. Their main purpose is to

further enlighten the potential and the limitations of multi-way methods.

Organization of this thesis

This thesis can be thought of as consisting of two main parts. The first main part

includes Chapters 1-5, and the second main part includes Chapters 6-7 together with

the appendices.

First part of the thesis: Chapters 1-5

The first part of the thesis (Chapters 1-5) was written with two main goals in mind.

The first goal was to present some relevant concepts and results in the field of three-

way analysis. The second goal was to prepare the readers who wish to follow the

second part of the thesis (Chapters 6-7 and appendices).

We did not intend to perform a full literature coverage. We were mainly focused

on our research needs, and the choice of subjects covered in these Chapters reflects

this fact. Our hopes are that this part of the thesis can prepare the reader who wishes

to read Chapters 6-7, which directly concern our research. The reader of this thesis

should keep this idea in mind when approaching Chapters 1-5.

Introduction 9

Almost all the material to be found in Chapters 1-5 is not new. The main ex-

ceptions are the proof of Lemma 1 (p. 43), and a reference to a proof for Theorem 3

(p. 47), for which an alternative proof was written together with Jos ten Berge (this

ultimately lead to a publication, see Ten Berge and Tendeiro [112]).

In Chapter 1 some concepts and notation are introduced. The idea is to provide

an easy access to definitions that will occur in all subsequent chapters of this thesis.

The focus is given to special types of matrix operators (outer product of vectors,

Kronecker product, Khatri-Rao product, Hadamard product, vec operator), matrix

decompositions (eigenvalue decomposition, singular value decomposition, principal

components analysis), higher order structures called arrays and some of its properties.

Also, the issue of simultaneous diagonalization of square matrices is addressed; this

also serves as an introduction to the contents of Chapters 5 and 6.

Chapter 2 serves to present the most important three-way models that were in the

core of our research project. These models are 3PCA, CANDECOMP/PARAFAC

(CP) and INDSCAL. Constrained 3PCA models are also covered; these form a family

of models, which can be seen as a bridge between 3PCA and PARAFAC. Important

considerations for each model are detailed. Algorithms are not introduced but refe-

rences to the literature are given. It should be noted that there are more models in

multi-way analysis than the ones presented here, but we do not introduce them in

detail since they were not part of our research.

Chapter 3 concerns the property of uniqueness of the solutions provided by the

3PCA and CP models. It is explained that a 3PCA solution is usually non-unique:

for a given array there exist an infinity of different solutions providing the same fit.

Therefore, solutions apparently different might pertain to the same array. We shall

discuss this aspect, as it is one of the important motivations for the issue of simplicity

(Chapters 5 and 6). In contrast with the non-uniqueness of 3PCA solutions, it is

explained that a CP solution is unique up to trivial transformations of components,

under relatively mild conditions. This property also plays a role in Chapter 7, both

in the theory and in applications.

Chapter 4 revolves around the problem of degeneracy in CP. Degeneracy is a com-

mon problem that sometimes affects the execution of the algorithm of CP. Typically,

a CP sequence is said to be degenerate when the convergence of the algorithm be-

comes extremely slow, while some components become more and more correlated as

10 Introduction

the algorithm progresses. In this Chapter we look into the specificities of degene-

racy. We discuss what degeneracy consists of, what are the reasons that can lead

to degeneracy, and what can be done in order to try to avoid degeneracy. At this

stage, it is important to understand that one must try to avoid degeneracy as much as

possible, since degenerate solutions are not interpretable. Our motivation to discuss

degeneracy in this dissertation is directly linked to Chapter 7. It will be argued that

the occurence of degeneracy highly limitates the use of the tools that are developed

in that Chapter.

In Chapters 5 and 6 we discuss simplicity of a 3PCA solution. Recall that in

Chapter 3 it is explained how the 3PCA model is characterized by non-uniqueness.

Therefore, one can try to think about ways of transforming 3PCA solutions into

“more suitable” solutions. The idea would be to try to transform a 3PCA solution

into another solution which is easier to interpret. Such transformation is supposed to

be done without loss of fit involved. This simplicity problem in 3PCA is very similar

to the rotational problem in two-way Principal Components Analysis.

Simplifying a 3PCA solution can be considered from two possible perspectives.

One might want to find an equivalent solution with “simpler” components, counter-

transforming the core array accordingly. Alternatively, one might want “simple”

weights, counter-transforming the components accordingly. By “simple weights” we

usually mean “having as many zeros as possible”. Usually it is not possible to pursue

both simplifications simultaneously. The approach in our research was the latter: we

were interested in developing techniques that allow to find simple weights. Hence,

our goal was to find methods that allow to transform (some) 3PCA solutions into

equivalent 3PCA solutions in which many of the weights are transformed to zero.

The question of simplicity can be put in more general mathematical terms. It

may be noted that the weights of a 3PCA solution can be organized in a three-way

array. Therefore, simplifying the weights of a 3PCA solution is a case of simplifying an

array. In fact, the methods of simplification of three-way arrays that will be presented

can be applied in the wider framework of tensor theory. The simplification of 3PCA

solutions is only one of the possible applications of these simplification procedures.

In Chapter 5 we discuss some computational approaches to simplicity transfor-

mations that are already available in the literature (SIMPLIMAX, the Orthogonal

Complement Method, multiple orthonormality transformation). A couple of specific

examples about simplicity are given. Also, the concept of maximal simplicity is in-

troduced. The topics covered in this Chapter are supposed to prepare the reader to

better understand the new results about simplicity that can be found in Chapter 6.

Introduction 11

Second part of the thesis: Chapters 6-7

The second part of the thesis includes the main results that were found during our

research. We divided the contents in two Chapters: Chapter 6 concerns research

about simplicity for arrays with symmetric frontal slices, and Chapter 7 concerns a

generalization of a study done by Bennani Dosse and Ten Berge [3].

The contents of each Chapter were recently submitted for publication. We added

the published papers as Appendix I (p. 97) and Appendix II (p. 115). Because of

this, we decided that the contents of both Chapters 6 and 7 should not repeat all

the details already present in the papers. This means that these Chapters only give

general overviews of the research that was done. The reader interested in a more

detailed description of the performed research is invited to consult the appendices at

the end of this dissertation.

In Chapter 6 we deal with the simplification of three-way arrays with symmetric

frontal slices. The specificity of these arrays usually forbids applying any of the me-

thods described in Chapter 5. The reason is that we are interested in maintaining the

symmetry of the frontal slices after the transformation is performed. Therefore, spe-

cific methods were developed for this type of situation. These methods are presented

on a case-by-case basis, due to the difficulty of finding unifying procedures that solve

the problem for larger families of arrays.

Some applications illustrating the usefulness of simplification of arrays are shown.

These applications revolve around the concepts of typical rank and maximal simplicity

of an array.

In Chapter 7 we take a look into the differential structure of the loss function for

CP and INDSCAL. The idea is to develop a tool that allows to classify stationary

points of the optimization criteria, using information provided by the Jacobian and

Hessian matrices. The motivation for this research came after Bennani Dosse and

Ten Berge [3], who showed that there were specific INDSCAL decompositions that

could only correspond to saddle points (stationary points which are not local optima)

of the corresponding loss function. Bennani Dosse and Ten Berge [3] only analysed

the situation with r = 1 component. Therefore we were interested in picturing what

happens for solutions with more than one component.

Firstly, we rewrite the optimization functions for CP and INDSCAL. Afterwards,

we compute the first and second order derivatives using matrix differential calculus.

Both unconstrained and constrained situations are inspected. We also discuss some

12 Introduction

numerical problems that can arise during the computation of the Jacobian and Hessian

matrices.

Three applications are worked out as exemplifications of how the classification of

stationary points can be useful. The first application consists of revisiting Ten Berge,

Knol and Kiers [106], which discussed results concerning an algorithm for INDSCAL

under orthonormality constraints. The last two applications consist of simulation

studies designed to inspect the nature of the stationary points that seem to occur in

CP and INDSCAL, when more than one component is retained.

We end this thesis with a Summary, where the most important facts discussed in

the thesis are presented.

Notation

In this Section we summarize most of the notation to be used throughout this thesis.

In general, we will denote scalar values with lower case italic font: a, x, λ. Ma-

trices will be denoted with upper case bold-face font: A, X, Λ. Arrays (defined in

Section 1.8) will be indicated by an underlined upper case bold-face font: A, X, Λ.

Because vectors are special cases of matrices, they will be denoted with lower case

bold-face font: a, x, λ.

Entries of matrices will often be indexed by the row and column of the matrix

they belong to. For example, entry (i, j) of matrix C is cij . The (i, j, k) entry of

array X will be denoted by xijk.

The transpose of matrix A will be indicated by A′. The j-th column of matrix A

will be denoted by aj . The i-th row of A will receive no special notation, so a′i shall

denote the transposed i-th column of A. Specific notation will be introduced whenever

there is need to refer to a row of a matrix. The trace of A is denoted by tr(A). vec(A)

reshapes A into a column vector by stacking the columns in sequence, one below the

other. diagV(A) is the column vector holding the diagonal of A. vec∗(A) denotes the

vec of A′. The k-rank of A (Section 1.2) will be denoted by kA.

For given matrices A and B, A ⊗ B, A ∗ B and A � B denote the Kronecker,

Hadamard and Khatri-Rao products of A and B, respectively. These products will

be presented in Section 1.3.

A matrix that admits an inverse is said to be invertible or nonsingular.

Given a vector d, diagM(d) denotes the diagonal matrix whose diagonal is equal

to d.

Given array X, we will denote Xa as matrix [X1| · · · |XK], Xvec as matrix [vec(X1)|
· · · |vec(XK)], Xvec∗ as matrix [vec∗(X1)| · · · | vec∗(XK)], and xa will denote vector

vec(Xvec).

14 Notation

Special matrices

0mn is the zero matrix of order m × n. The vector of order n with only zero (unit)

elements will be denoted by 0n (1n). The identity matrix of order n will be denoted

by In or simply I, when its order is clear from the context. Similarly, the unit

superdiagonal array of order n × n × n will be denoted by In or just I. This array

satisfies I(i, j, k) = 1 if i = j = k, and I(i, j, k) = 0 elsewhere.

Cmn is the mn×mn commutation matrix, i.e., Cmnvec (A) = vec (A′); Tn is the

n2 × n matrix with unit entries in position ((i − 1)n + i, i) for i = 1, . . . , n and zero

elsewhere, and En = In2 −TnT′n. For example for n = 3

T3 =



1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1


, E3 =



0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0


.

Chapter 1

Matrices and arrays

1.1 Introduction

In this Chapter some fundamental concepts are introduced. These concepts include

nomenclature, mathematical operations and matrix decompositions, among others.

Some sections can be skipped by readers that are familiar with the concepts to be

presented.

There is no general consensus regarding notation and terminology in Multiway

Analysis. For examples on tutorials about good notation in the field we can refer to

Kiers [41] and Harshman [26]. Here we will follow Kiers’ approach whenever possi-

ble. In the following sections of this Chapter we will introduce the most important

terminology to be used.

It is assumed that the reader has already some experience with basic Linear Al-

gebra. Specifically, it is expected that the reader is familiar with the following con-

cepts concerning matrices: addition and multiplication, rank, inverse, determinant,

trace, partitioned matrices. Other fields from Linear Algebra that are expected to

be familiar are: solving (systems of) linear equations, vector spaces, quadratic forms.

Clarifications related to any of these concepts will be given whenever it is deemed

useful.

The notion of k-rank is introduced in Section 1.2. Some useful operators for

matrix computations are presented in Section 1.3. In Sections 1.4 and 1.5 we will

present two matrix decompositions: the Eigenvalue Decomposition and the Singular

Value Decomposition, respectively. Simultaneous diagonalization of matrices will be

addressed in Section 1.6. A general overview of Principal Components Analysis (PCA)

16 Chapter 1

is introduced in Section 1.7. Arrays will be presented in Section 1.8.

Each of the topics discussed in this Chapter is relevant for better understanding

the remaining of this dissertation. A general guideline is sketched below:

Section. . .

1.2

. . . is relevant for. . .

Chapter 3

1.3 Chapters 2-3, 5-7

1.4 Chapters 3, 5-7

1.5 Chapters 2-3, 5-7

1.6 Chapters 5-6

1.7 Chapter 2

1.8 Chapters 2-7

1.2 The k-rank of a matrix

Kruskal [49] used a special concept of matrix rank which has been named k-rank after

him by Harshman and Lundy [27]. Throughout this thesis we will use the notation

kA to denote the k-rank of matrix A.

The k-rank of a matrix is the largest value of m such that every subset of m

columns of the matrix is linearly independent. It is clear from the definition that the

k-rank of a matrix never exceeds its rank. Moreover, rank and k-rank coincide for

matrices of full column rank.

The k-rank of a matrix is insensitive to premultiplication by a nonsingular matrix.

1.3 Vectors and matrices: special products and ope-

rators

The outer product of vectors u and v is the matrix given by u ◦ v = uv′. The

columns of this matrix are all proportional to u, therefore it has rank one if u and v

are nonzero vectors.

Consider now matrices A and B of order p × r and k × s, respectively. The

Kronecker product A⊗B is the pk × rs matrix defined by

A⊗B =


a11B · · · a1rB

...
. . .

...

ap1B · · · aprB

 . (1.1)

The Khatri-Rao product is defined for matrices with the same column order.

Given matrices A and B of order p× r and k × r, respectively, A�B is the pk × r

Matrices and arrays 17

matrix defined by [a1 ⊗ b1| · · · |ar ⊗ br]. So the Khatri-Rao product of A and B is

the columnwise Kronecker product of A and B.

The elementwise or Hadamard product, denoted by the symbol ∗, applies to ma-

trices of the same order. Given matrices A and B of order p× r,

A ∗B =


a11b11 · · · a1rb1r

...
. . .

...

ap1bp1 · · · aprbpr

 . (1.2)

A useful operator often applied to matrices is the “vec” operator. For a p × r
matrix A, vec(A) is the pr × 1 vector that consists of all columns of A stacked

vertically, one below another. So, vec reshapes any matrix into a vector form. A

useful property of the vec operator is

vec(ABC) = (C′ ⊗A)vec(B). (1.3)

Some authors define the vec of A as the column vector containing all transposed rows

of A, one below another. This vector equals vec (A′), and will be denoted by vec∗(A).

In this dissertation both versions of vec will be used.

Several properties associated to these operations can be found, for instance, in

Magnus and Neudecker [60].

1.4 Eigenvalue Decomposition

We will be using the eigenvalue decomposition throughout this thesis, with special

focus on Chapter 6. Here we recover some of the most important concepts associated

to the eigenvalue decomposition.

The eigenvalue decomposition, or eigendecomposition, is defined for square matri-

ces. Given a square matrix A of order n, λ is an eigenvalue of A with an associated

eigenvector k if it satisfies

Ak = λk, (1.4)

where k is a nonzero vector or order n. The set of all eigenvalues of A can be

found by solving the characteristic equation det(A − λIn) = 0. The number of

times each root occurs is called the algebraic multiplicity of the eigenvalue. For each

eigenvalue λ, the associated eigenvectors are found by computing the right null of

(A − λIn). Eigenvectors associated to the same eigenvalue define a vector space,

since any linear combination is still an eigenvector associated to the same eigenvalue.

18 Chapter 1

The dimension of this space is called the geometric multiplicity of the eigenvalue. The

geometric multiplicity does not exceed the algebraic multiplicity, but it can be smaller

A matrix of order n has n eigenvalues, real or complex. Eigenvectors associated

to different eigenvalues are linearly independent. If A admits an n-dimensional basis

of eigenvectors, then the eigendecomposition can be written in matrix notation

A = KΛK−1, (1.5)

where Λ is a diagonal matrix holding the eigenvalues and K holds the corresponding

eigenvectors as columns. Almost every matrix admits this decomposition. Matrices

that do not have a basis of eigenvectors are called defective. They are characterized

by having eigenvalues with geometric multiplicity smaller than the algebraic multi-

plicity. Defective matrices will not be of concern to us mainly for two reasons. One

reason is that we mostly work with matrices randomly sampled from a continuous

distribution, therefore with all eigenvalues distinct. Secondly, symmetric matrices are

never defective, which will also help us to avoid this problem.

It is well-known that, for a symmetric matrix S, K is orthogonal (its columns are

mutually orthogonal) and it can always be made orthonormal (K′K = In = KK′).

So, for symmetric matrices the eigendecomposition reads

S = KΛK′, (1.6)

where K is orthonormal and Λ is diagonal. Depending on the signs of the eigenvalues,

S is said to be positive (semi)definite if the eigenvalues are all positive (non-negative),

negative (semi)definite if the eigenvalues are all negative (non-positive), and indefinite

otherwise.

If S is singular of rank r (r < n) then the decomposition can be written as

S = KrΛrK
′
r, (1.7)

where Λr is the r× r diagonal matrix holding the nonzero diagonal entries of Λ, and

Kr holds the corresponding columns of K. Note that Λr is nonsingular and Kr is

columnwise orthonormal (K′rKr = Ir).

It is helpful to retain some results associated to the eigenvalue decomposition. We

shall state these results without proof (see, for example, Magnus and Neudecker [60]).

Proposition 1

1. A real symmetric matrix has only real eigenvalues.

Matrices and arrays 19

2. The sum of the eigenvalues equals the trace of the matrix.

3. The product of the eigenvalues equals the determinant of the matrix.

4. The rank of a matrix equals the number of its nonzero eigenvalues.

5. A symmetric matrix is positive definite (positive semidefinite) if and only if all

its eigenvalues are positive (non-negative).

1.5 Singular Value Decomposition (SVD)

Unlike the eigenvalue decomposition, the Singular Value Decomposition (SVD) can

be applied to any matrix.

Let M be a p× q matrix, p > q, of rank r. The SVD of M is the decomposition

M = PDQ′, (1.8)

with P′P = Iq, Q′Q = QQ′ = Iq, and D diagonal with non-negative diagonal

elements arranged from high (upper left) to low (lower right). The diagonal elements

of D are called the singular values of M. The SVD decomposes M as a weighted sum

of rank-one matrices,

M =

q∑
i=1

di(pi ◦ qi), (1.9)

where pi and qi are the i-th columns of P and Q, respectively, and di is the i-th

diagonal entry of D.

The rank of a matrix equals the number of its nonzero singular values. In fact,

rank(M) = rank(M′M) = rank(QD2Q′) = rank(D), (1.10)

and the rank of a diagonal matrix is the number of nonzero entries in its diagonal.

When M is not of full rank (i.e. r < q), the SVD can be simplified to

M = PrDrQ
′
r, (1.11)

where Pr (resp. Qr) is the matrix containing the first r columns of P (resp. Q), and

Dr is the upper left r×r submatrix of D. Notice that Pr and Qr are both columnwise

orthonormal and Dr is nonsingular. Since M has rank r, no summation with less than

r rank-one matrices is possible.

Another way of writing the SVD that is used, for example, by Matlab, is

M = P1D1Q
′, (1.12)

20 Chapter 1

where P1 is p× p orthonormal matrix (completed from P by adding columns), D1 =[
D

0

]
, and Q′Q = QQ′ = Iq.

For horizontal matrices (p < q) we will use the SVD of its transpose.

The best rank-k approximation to M in the least squares sense is given by∑k
i=1 di(pi ◦ qi), Eckart and Young [20]. This means that X =

∑k
i=1 di(pi ◦ qi), the

truncated SVD of X using the first k singular vectors/values, minimizes the function

f(X) = ‖X−M‖2 subject to the constraint that X be of rank k or less.

There is a close relation between the eigenvalue decomposition and the SVD for

symmetric matrices. Let S be a symmetric matrix with eigendecomposition

S = KΛK′. (1.13)

If Λ has no negative diagonal elements then (1.13) is also a SVD. Otherwise, define

a diagonal matrix T, with the same order as Λ, such that tii = 1 if λii > 0, and

tii = −1 if λii < 0. Then S = (KT)(TΛ)K′ is a SVD for S.

1.6 Simultaneous diagonalization of square matri-

ces

In this Section we are interested in describing ways of simultaneously transforming a

pair of matrices of the same order, say A and B, into diagonal form. We will assume

that at least one of the matrices, say A, is nonsingular.

1.6.1 General situation

Suppose we have two square matrices A and B of the same order. We wish to

simultaneously diagonalize A and B, that is, to find invertible matrices S and T such

that

S′AT = Φ1, S′BT = Φ2, (1.14)

where Φ1 and Φ2 are diagonal matrices. For a nonsingular matrix A, a necessary

and sufficient condition to simultaneously diagonalize A and B is that A−1B has a

real eigendecomposition A−1B = KΦK−1, that is, K and Φ do not have complex

elements. In fact, if the eigendecomposition of A−1B is real, take S′ = K−1A−1 and

T = K. Conversely, suppose that A and B are simultaneously diagonalizable. This

means there exist invertible matrices S and T such that S′AT = Φ1 and S′BT = Φ2,

Matrices and arrays 21

where Φ1 and Φ2 are diagonal matrices. Solving the last equalities in terms of A and

B renders A = (S′)−1Φ1T
−1, B = (S′)−1Φ2T

−1, so

A−1B = TΦ−11 S′(S′)−1Φ2T
−1 = TΦ−11 Φ2T

−1, (1.15)

which is a real eigendecomposition of A−1B.

1.6.2 Special situation: symmetric matrices

Let A and B be symmetric matrices of the same order, A nonsingular.

We have seen in the previous section that a necessary and sufficient condition for

simultaneously diagonalizing A and B is that A−1B has real eigenvalues. Moreover,

the symmetry of A and B makes it possible to take S equal to T when the eigenvalues

of A−1B are real: write the eigendecomposition A−1B = KΦK−1 and make S =

T = K. To see that K′AK and K′BK are indeed diagonal matrices, observe that

AK = BKΦ−1 and hence the (i, j)-th element of K′AK, with i 6= j, is given by

k′i(Akj) = φ−1j k′iBkj (1.16)

or, alternatively,

(k′iA)kj = φ−1i k′iBkj , (1.17)

where ki and kj are columns i and j of K, and φi, φj are the i-th and j-th diagonal

entries of Φ. Both expressions for k′iAkj are equal if and only if k′iBkj = 0, under

the hypothesis that A−1B is nondefective (this happens almost surely). Therefore,

K′BK is a diagonal matrix. Swapping A with B in the preceding argument proves

that K′AK is also diagonal.

Another sufficient condition for simultaneously diagonalizing A and B is that one

of the matrices, say A, is positive definite (all eigenvalues are positive). This can

be understood using the fact that A−1B and A−1/2BA−1/2 have the same nonzero

eigenvalues; these eigenvalues must be real due to the symmetry of the latter matrix.

1.6.3 When simultaneous diagonalization of symmetric matri-

ces fails

Suppose that A and B are symmetric matrices of the same order such that A−1B

has complex eigenvalues. It is possible to transform both matrices to a block-wise

diagonal form using a procedure by Uhlig [115]. First consider n = 2. Compute the

22 Chapter 1

eigendecomposition A−1B = KΛK−1 and define T = [real(k1)|imag(k2)], where ki

is the i-th column of K (i = 1, 2). Then

[T′AT|T′BT] =

[
a b c d

b −a d −c

]
. (1.18)

In general, suppose that A and B are symmetric of order n such that A−1B has n1

real eigenvalues and n2 = n− n1 complex eigenvalues. Write the eigendecomposition

A−1B = KΛK−1 such that the first n1 eigenvalues are real and the last n2 eigenvalues

are complex conjugate and placed contiguously. Define

T =

[
k1| · · · |kn1

∣∣real(kn1+1)|imag(kn1+2)| · · · |real(kn−1)|imag(kn)

]
. (1.19)

Then [T′AT|T′BT] has the form

. . .
. . .

ri si
. . .

. . .

aj bj cj dj

bj −aj dj −cj
. . .

. . .


,

i = 1, . . . , n1, j = 1, . . . , n2/2.

1.7 Principal Components Analysis (PCA)

Principal Components Analysis (PCA), Pearson [71], is a popular statistical method.

For a given matrix with scores of a set of individuals on a set of variables, PCA

finds a reduced set of components. These components are linear combinations of the

original variables that capture most of the information contained in the original data.

This allows to reduce the dimension of the data set while losing the smallest possible

amount of information.

Formally, let X be an I × J data matrix with standardized scores of I individuals

on J variables. A PCA decomposition with R components reads

X = AB′ + E, (1.20)

where A is an I × R matrix, B is an J × R matrix and E is the residual matrix. A

is called the component score matrix ; its columns are the principal components. B is

Matrices and arrays 23

called the loading matrix ; the loadings are the weights that allow to reconstruct the

original variables as linear combinations of the principal components. A different way

to present the PCA decomposition is by the expression

X =

R∑
i=1

aib
′
i + E, (1.21)

which shows that PCA tries to fit X as a sum of R rank-one matrices (the outer

product of two vectors).

The criterion to find the component scores and the loadings is to minimize the

sum of squared residuals,

min‖E‖2 = min‖X−AB′‖2, (1.22)

where ‖·‖2 denotes the Frobenius norm (i.e., the sum of squares of all matrix entries).

Recalling that the truncated SVD of X minimizes the same criterion (Eckart and

Young [20], see Section 1.5), we can exhibit a PCA decomposition of X with R

components in terms of its truncated SVD decomposition: from X = PDQ′ define

A1 = I1/2PR(= I1/2XQRD−1R), B′1 = I−1/2DRQ′R. This expresses the components

as uncorrelated and normalized linear combinations of the variables of X: I−1A′1A1 =

IR. Another way of computing a PCA decomposition can be given as follows: write

the eigendecomposition of the correlation matrix R = KΛK′ (R = I−1X′X) with

the eigenvalues arranged in decreasing order in Λ, and take A2 = XM, B2 = RM,

where KR holds the first R columns of K and M = R−1/2KR. Component matrices

A1 (resp. B1) and A2 (resp. B2) can be seen to be equal up to column signs.

The minimum number of components that give perfect fit is the number of nonzero

singular values of X. This implies that the minimum number of PCA-components

required to have perfect fit is equal to the rank of X. An immediate consequence

is that there is no need to take a number of components R larger than the number

of variables J . Usually the number of components R maintained is much smaller

than the number of variables. Retaining more components than needed is commonly

known as overfactoring, and it should be avoided.

A measure of the amount of information that a PCA solution is able to recover

from the initial data is given by
∑R
i=1 λi/tr(Λ). The remaining,

∑J
i=R+1 λi/tr(Λ),

is the part of information in the residuals, that is, the part not accounted for by the

decomposition.

There is more than one solution possible. Notice that AB′ is equal to (AT)(BT′−1)′,

for any R×R nonsingular T. Thus, without loss of fit, we can take as components any

24 Chapter 1

base of the column space of A, as long as we perform a compensation on the loading

matrix. This consists of a transformation of the original components (columns of A)

into new ones (columns of AT), thus a change of base is performed. Matrix T is also

referred to as rotation matrix when its columns are unit length. The new components

are referred to as rotated principal components. The rotation is orthogonal or oblique

depending on T being orthogonal or not. The entries of the loading matrix can be

regarded as the signed lengths of projections of the variables on the vector space

generated by the components, when the columns of A have unit length.

The property of non-uniqueness of PCA decompositions usually implies that the

researcher needs a post-processing step, in order to find a suitable rotation that fa-

cilitates the interpretation of the solution. There are several options of rotations

available, depending on the desired goal.

1.8 Three-way arrays

The contents of this thesis revolve around higher order structures that we refer to

as arrays (also known as tensors). Although the concept of array is applicable in

the n-way sense, our focus will remain on three-way arrays. As a general rule in this

thesis, the word “array” should be interpreted as “three-way array”.

Three-way arrays are straightforward generalizations of matrices to the three-

dimensional world. They are structures of three ways or modes (we will avoid the

use of the word “dimension” in this context). Usually we settle which are the first,

second and third modes, or modes A, B and C, respectively. This choice does not

intend to categorize the modes in order of importance; the sole intention is to clarify

notation and simplify computations. For instance, for a statistical data array of scores

of individuals on several variables in different occasions, it is standard to take the first

mode as the set of individuals, the second mode as the set of variables and the third

mode as the set of occasions. The number of elements in each of the three ways

defines the order of the array.

We will denote arrays with underlined upper case bold-face font: A, X, Λ.

An array X of order I × J × K has I entities or levels for mode A, J entities

for mode B and K entities for mode C. We will only consider real entries, so X will

always be an element in RI×J×K . Arrays are also known by the more general term

tensor.

Arrays are important per se as mathematical objects. They have been subject

of research due to their inherent theoretical properties. But practical applications

Matrices and arrays 25

Figure 1.1: Representation of a three-way array (I = 3, J = 4, K = 5).

of arrays are also relevant. The most obvious examples are the numerous statistical

collections of data that typically comprise three different sources of variation. For

example (Kiers and Van Mechelen [43]), measurements on various anxiety scales of a

number of individuals in various situations; data on the strength of various symptoms

observed in various patients by a number of clinicians; data on the importance of

various job requirements for various jobs, according to different job analysts; and

positron-emission tomography scan data representing different areas of the brain,

measured for various individuals performing a number of different mental tasks.

A generic element of X will be denoted by xijk, for i = 1, . . . , I, j = 1, . . . , J ,

k = 1, . . . ,K. These elements are organized in terms of sets of matrices, usually

referred to as slices or slabs: the horizontal, lateral and frontal slices (see Figure 1.2).

Slices are characterized for having one mode fixed while the other two modes run over

their entities. The choice of modes A, B and C is usually made so that one looks

preferably at the frontal slices of the array, either for computational or for depiction

purposes. The frontal slices are characterized for having their third mode fixed. This

way, if we refer to “slice k of X” we mean the k-th frontal slice of order I × J and we

shall denote it by Xk.

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure 1.2: Three-way array, cut into slices.

Alternatively, X can be viewed as a set of vectors or fibers or tubes (see Figure 1.3).

26 Chapter 1

These fibers can be taken in the vertical, horizontal and depth direction. Fibers are

characterized for having two modes fixed while the third mode runs over its entities.

(a) Horizontal fibers (b) Vertical fibers (c) Depth fibers

Figure 1.3: Three-way array, cut into fibers.

It is common practice to rearrange the entries of an array into matrix-shape. One

way to do this is, known as matricizing or unfolding, concatenates the slices of different

levels in one mode side by side. Typically an array is unfolded in the third mode, i.e.,

by concatenating the frontal slices side by side (figure 1.4). This allows to write the

array as an I × JK supermatrix Xa = [X1| · · · |XK]. Similarly, the horizontal slices

can be stacked side by side in a J ×KI supermatrix Xb, and the lateral slices can be

stacked side by side in a K × IJ supermatrix Xc.

Figure 1.4: Unfolding an array.

A different way to rearrange the entries of an array uses the vec operator applied

to the frontal slices of X, so X can be rearranged in an IJ ×K matrix Xvec =

[vec(X1)| · · · |vec(XK)]. Still another way of rearranging the entries of X is by stacking

all vertical fibers one below the other: xa = vec(Xvec). This way the array can be

regarded in vector shape. Forms analogous to Xa, Xvec and xa can also be computed

for the other two possible directions.

Matrices and arrays 27

There is a special kind of transformation for arrays which is referred to as slice-

mixing throughout this thesis. Slice mixing an array in the depth direction, for

example, consists of replacing the frontal slices by an invertible set of linear combina-

tions of them. This kind of operation is specially useful because it allows to transform

an array (into “simpler” forms, for example) while preserving some of its properties.

This will be further discussed in Section 3.3.2 (p. 43).

1.8.1 The rank of an array

It is well-known that the rank of a matrix is defined as the smallest number of rank-one

matrices that generate the matrix as their sum. A rank-one matrix is the outer pro-

duct of two vectors, therefore it has all rows proportional and all columns proportional.

Moreover, pre- or postmultiplying a matrix by an invertible matrix is rank-preserving.

This means that we can modify a matrix by taking any invertible linear combination

of rows and/or columns and still preserve the rank.

A similar situation occurs with three-way arrays. The rank of a three-way array

X is defined as the smallest number of rank-one arrays that generate X as their sum,

Hitchcock [29, 30]. A rank-one array is the outer product of three vectors, so the

slices are proportional in each of the three possible directions. Also, any invertible

linear combination of the slices of the array, taken in any of the three possible ways,

does not affect the rank of the array (an argument supporting this fact can be found

on p. 43).

However, the correspondence between the matrix and the array situations ends

here. In fact, the rank of three-way arrays has some very particular features,

Kruskal [51]. For example, consider the concepts of typical rank and maximum rank.

The typical rank of a matrix/array order is the rank that occurs with positive prob-

ability, when the elements of the matrix/array are sampled from a continuous distri-

bution. The maximum rank is the highest rank possible that can occur amongst all

matrices/arrays of a given order. Both the typical and the maximum rank of a p× q
matrix (p > q) are q. For three-way arrays, however, the typical rank and maximum

rank need not be equal. Moreover, typical rank may be twofold. For example, a

2× 2× 2 array has maximum rank 3 but typical rank 2 or 3 (both ranks occur with

positive probability).

It is not easy to determine the rank of an array. A practical approach to this pro-

blem will be addressed in Section 2.3; see also Choulakian [14] for a recent develop-

ment. Although general formulas for maximal or typical rank of any array format are

still absent, some results are available for some formats. Some references in this field

28 Chapter 1

are Kruskal [49, 51], Strassen [92], Ten Berge and Kiers [103], Catalisano, Geramita

and Gimigliano [12], Lathauwer, Moor and Vandewalle [18], Ten Berge [94, 96, 97, 98],

Ten Berge and Stegeman [110], Friedland [23], Comon, Ten Berge, De Lathauwer and

Castaing [15], Stegeman and Comon [87] and references therein.

Chapter 2

Three-Way Component

Analysis

2.1 Introduction

Attempts to develop generalizations of Factor Analysis (FA) and Principal Component

Analysis (PCA) to higher dimensions go back to Hitchcock [29, 30]. Tucker [114],

Carroll and Chang [11] and Harshman [24] rediscovered Hitchcock’s idea of tensor

decomposition, as they presented some of the most important models used nowadays.

Tucker’s model is the more general model that we present in this thesis, in the

sense that CP and INDSCAL, the other models covered in this thesis, can be regarded

as constrained versions of this model. There are several names associated to this

method that are spread over the literature: three-way PCA, Tucker-3 model, three-

mode PCA, three-mode Factor Analysis (3MFA), Tucker3 PCA, 3PCA. In this thesis

we will use the acronym “3PCA”. This model will be introduced in the second section

of this Chapter.

Carroll and Chang’s CANDECOMP and Harshman’s PARAFAC are the same

model, proposed independently. Therefore, we will refer to it as the CANDECOMP/

PARAFAC or simply the CP model. In the third section we will present the CP

model, as well as its relation to 3PCA.

A model closely related to the CP model and suited for arrays with symmetric

slices in one direction is INDSCAL. This model will be presented in Section 2.4.

In Section 2.5 we discuss how models can be derived by constraining the 3PCA

model.

30 Chapter 2

There are more models available in the literature (example: Tucker2, Tucker1,

PARAFAC2, CANDELINC). These models were not object of research during this

project, so they were not included in this dissertation.

2.2 3PCA

The 3PCA model has been proposed by Tucker [114]. Given an array X of order I ×
J×K, 3PCA determines component matrices for each of the three modes (individuals,

variables and occasions) and a three-way array called the core array, which holds the

weights for the joint impact of any triple of components (one from each mode). The

model can be described by

X =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr(ap ◦ bq ◦ cr) + E, (2.1)

where ap, bq, cr are columns of the component matrices for individuals A (I × P),

for variables B (J ×Q) and for occasions C (K ×R), respectively, gpqr is an element

of the P ×Q×R core array G, and E is the array of residuals.

We can write (2.1) elementwise:

xijk =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr + eijk. (2.2)

Alternatively, an equivalent way to write the 3PCA model is by using the Kro-

necker product. Matricizing X, E and G as Xa = [X1| · · · |XK], Ea = [E1| · · · |EK]

and Ga = [G1| · · · |GR], respectively, we have

Xa = AGa(C′ ⊗B′) + Ea. (2.3)

Applying the vec operator to both sides of (2.3) and using property (1.3), we can

derive a vectorized version of the 3PCA model,

xa = (C⊗B⊗A)ga + ea, (2.4)

where xa = vec(Xvec), ga = vec(Gvec) and ea = vec(Evec).

Yet another way of presenting the decomposition is to display one slice at a time:

Xk = A

(
R∑
r=1

ckrGr

)
B′ + Ek, (2.5)

Three-Way Component Analysis 31

for k = 1, . . . ,K.

Notice that the 3PCA decomposition is fully symmetric in A, B and C. This

means that the component matrices can switch places, as long as we switch the modes

and the array of residuals accordingly.

The parameters of 3PCA are usually estimated by minimizing the sum of squared

residuals for fixed number of components in each mode,

‖E‖2 =

∥∥∥∥∥X−
P∑
p=1

Q∑
q=1

R∑
r=1

gpqr(ap ◦ bq ◦ cr)

∥∥∥∥∥
2

, (2.6)

see TUCKALS-3 procedure in Kroonenberg and De Leeuw [48]. Some enhancements

are available in Weesie and Van Houwelingen [116], Ten Berge [101], Andersson and

Bro [1], Paatero and Andersson [70], Pravdova, Estienne, Walczak and Massart [72].

Several computational implementations are available for use, see for example the N -

way Toolbox for MATLAB (Andersson and Bro [2]) and 3WayPack by Pieter Kroo-

nenberg (http://three-mode.leidenuniv.nl/).

The 3PCA model can be seen as a generalization of PCA to three-way arrays. In

PCA a matrix is decomposed as a sum of outer product of two vectors, see (1.21).

Similarly, 3PCA decomposes an array as a sum of outer products of three vectors, one

per mode (see (2.1)). However, unlike PCA, all impacts of components are taken into

account in 3PCA. In this sense we can say that 3PCA has a much richer structure

than PCA, since 3PCA allows more interactions between components.

It is possible to extend the 3PCA model to higher dimensions, although this was

not the subject of this thesis. The interested reader may refer to Lastovicka [55],

Kapteyn, Neudecker and Wansbeek [35], Sidiropoulos and Bro [79].

2.3 CANDECOMP/PARAFAC (CP)

The CP model is a special case of 3PCA. It was proposed independently by Carroll

and Chang [11] and Harshman [24]. In the CP model the number of components is

the same for each mode, say R. The core array is completely constrained to be a

superdiagonal R×R×R array
g111 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 g222 · · · 0 . . . 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 0 0 · · · gRRR

 . (2.7)

32 Chapter 2

Therefore, the CP model can be written as follows (compare with (2.1) and (2.2)):

X =

R∑
r=1

grrr(ar ◦ br ◦ cr) + E (2.8)

xijk =

R∑
r=1

grrrairbjrckr + eijk. (2.9)

Another usual way to present the model is by rewriting the core array as the

constant superdiagonal R×R×R array

Ia =


1 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0 . . . 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1

 . (2.10)

The parameters grrr are absorbed by the component matrices A, B, C. This decreases

the number of parameters to be estimated. Using the specific form (2.10), definitions

(2.1)-(2.5) of 3PCA may be written for the CP model as follows:

X =

R∑
r=1

(ar ◦ br ◦ cr) + E (2.11)

xijk =

R∑
r=1

airbjrckr + eijk. (2.12)

Xa = AIa(C′ ⊗B′) + Ea = A(C�B)′ + Ea (2.13)

xa = (C�B�A)1R + ea (2.14)

Xk = ACkB
′ + Ek, (2.15)

where Ck is a diagonal matrix containing the elements of row k of C in the diagonal.

Another useful formulation for Xvec = [vec(X1)| · · · |vec(Xk)] is

Xvec = (B�A)C′ + Evec. (2.16)

There are several algorithms available for the CP model. However, it should

be made clear that not all the methods are equivalent. Before applying any of the

methods available, the researcher must certify which is the model that better suits his

needs. For more details please refer to Hopke, Paatero, Jia, Ross and Harshman [31],

Faber, Bro and Hopke [21], Tomasi and Bro [113].

Three-Way Component Analysis 33

The common optimization criterion is the least squares loss function, in which the

estimation of the component matrices A, B, C attempts to minimize

‖E‖2 =

∥∥∥∥∥X−
R∑
r=1

grrr(ar ◦ br ◦ cr)

∥∥∥∥∥
2

, (2.17)

where ‖·‖2 denotes the Frobenius norm. Some of the available algorithms to fit the

CP model do not follow this rule. In this dissertation we will settle for the least

squares criterion (2.17) as the optimization function to work with.

The optimization problem of the CP model can be re-stated as follows: fitting the

CP model consists of finding the best rank-R approximation of X, i.e.

minimize ‖X−Y‖ (2.18)

subject to Y ∈ DR,

where DR is the set of I × J ×K arrays of rank R or less

DR = {Y : I × J ×K with rank 6 R} , (2.19)

Stegeman [83]. This type of formulation of the CP problem is very useful when

addressing the issue of degeneracy, see Stegeman [82, 83] and Chapter 4 for more

details.

A property intrinsic to the CP model is that the smallest number of components

that allows a perfect fit (E ≡ 0) equals the rank of the array. In fact, (2.11) gives

a decomposition of X as a sum of rank-one arrays when E, the array of residuals,

is zero. This feature of the CP model can be used in practice to assess the rank

of an array: run CP with the smallest number of components such that the sum of

squared residuals is zero; the rank of the array will equal the number of components

used in this CP decomposition. There is however some uncertainty associated to

this approach: In practice the fit is never exactly zero, so one might question how

“perfect” the fit is. A different approach that avoids such subjective considerations

can be found in Choulakian [14].

The rank of an array can also be defined as the smallest number R such that every

frontal slice can be written as a linear combination of a single collection of R matrices,

Kruskal [51]. In fact, when E = 0 we see from (2.15) that

Xk = ACkB
′ = ck1(a1b

′
1) + · · ·+ ckR(aRb′R), (2.20)

which shows that any frontal slice Xk can be written as a linear combination of R

matrices a1b
′
1, . . . , aRb′R. The number R is, moreover, invariant to the direction of

the array.

34 Chapter 2

The CP model shares some features with PCA. Indeed, the CP model decomposes

an array as a sum of outer products of three vectors, one per mode. Each compo-

nent in each mode is used only once in the decomposition. This is exactly what

happens with PCA, compare (1.21) for PCA and (2.11) for the CP model. Also, in

a similar fashion as for matrices in PCA, the minimum number of rank-one arrays

for which CP performs a full decomposition equals the rank of the array. In spite of

these similarities, there are some fundamental differences between both models. For

example, an iterative algorithm is needed to solve the CP model, whereas a closed

form solution for PCA exists (for example using the SVD, Eckart and Young [20]).

Also, usually it is not possible to rotate a CP decomposition without losing fit, see

Chapter 3. Furthermore, scaling and centering in the multi-way case is not as simple

as for two-way data, see for example Kroonenberg [46], Harshman and Lundy [28],

Bro [5], Kiers [41].

2.4 INDSCAL

INDSCAL (Carroll and Chang [11]) is a model related to the CP model that has been

specifically designed for arrays with symmetric slices in one direction. Consider an

I × I ×K array X with K symmetric frontal slices Xk of order I × I, k = 1, . . . ,K.

INDSCAL decomposes the slices as

Xk = ACkA
′ + Ek, k = 1, . . . ,K, (2.21)

with Ck diagonal and nonnegative. Therefore, INDSCAL is the CP model with

constraints A = B and entries of C nonnegative. In this dissertation we will ignore the

constraint on C. All results to be discussed under the INDSCAL model (Chapter 7)

were worked out under this principle.

2.5 Constrained 3PCA

Depending on the data that need to be analysed and on the needs of the researcher, it

might be useful to impose some constraints on a 3PCA solution. Many models can be

derived from 3PCA by imposing restrictions on the component matrices and/or the

core array. The CP model is the most well-known example, but others do exist. There

is a myriad of ways of constraining a 3PCA solution, but not all of them concern well

defined models.

Three-Way Component Analysis 35

When imposing constraints one should be careful enough to introduce adequate

and active restrictions. By adequate we mean that the constraints should reflect con-

jectures or properties inherent to the situation under study. By active we mean that

the constraints should really define a truthful model and not just an arithmetic arte-

fact. For example, to constrain the component matrices of a 3PCA decomposition to

be columnwise orthogonal can be regarded as an inactive constraint, because usually

any 3PCA solution can be transformed into one where this condition is met with no

loss of fit involved. In this case we would say that the model is trivial. Trivial models

are just arithmetic artefacts and do not add anything new as a tool of analysis, and

should therefore be avoided. We will discuss this matter further in Chapters 5 and 6.

We refer to Ten Berge and Smilde [109] and Ten Berge [98] as examples of studies

of constrained 3PCA models. In both papers it is proven that two models that arose in

Chemometrics are, indeed, non-trivial. In both cases arguments involving the concept

of (typical) rank were used.

2.6 Discussion

In this Chapter we presented the most important three-way models that are used

throughout this thesis. Tucker’s 3PCA model, as well as constrained 3PCA models in

general, will be referred to in Chapters 5 and 6. There we will argue how techniques

that allow assessing simplicity of arrays can be applied under such models. CP and

INDSCAL, on the other hand, are in the core of Chapter 7. In that Chapter we will

analyse the differential structure of the loss functions associated to each model.

3PCA and PARAFAC are the most common models used for decomposing a three-

way array. INDSCAL is used in the context of arrays with symmetric slices.

Some interesting properties regarding these models concern the uniqueness of the

decompositions and the possibility of finding such decompositions in “simple form”.

The following chapters are devoted to study these features for the models presented

in this Chapter.

Chapter 3

Uniqueness in 3PCA and CP

3.1 Introduction

A well-known property of PCA is the indeterminacy of its decomposition. We can

replace the principal components by nonsingular linear combinations of them, as long

as we compensate this transformation in the loading matrix. No information is lost

after rotating the principal components.

A similar phenomenon occurs in 3PCA. There is freedom to rotate each of the

component matrices, as long as a counter-operation is applied to the core array G.

This will be explained in the second section of this Chapter.

In the CP model the situation is not the same. The specificity of the superdiagonal

core array I withdraws most of the indeterminacy that existed in the 3PCA model.

Under mild conditions it can be shown that a CP solution is, in fact, essentially

unique. What is meant by “essentially unique” and which are these “mild conditions”

is to be discussed in the third part of the Chapter. Operations that can be applied to

a CP decomposition while preserving the uniqueness property will also be discussed.

The issue of uniqueness is specially important in this dissertation when we reach

Chapter 7. As will be discussed in that Chapter, the analysis of the eigenstructure of

the second-order derivatives of the loss functions for the CP and INDSCAL models

can be affected by the presence of (non-)unique decompositions. Therefore, at this

point it is important to understand what uniqueness is and how it can be dealt with.

38 Chapter 3

3.2 Non-uniqueness in 3PCA

Since 3PCA was presented it has been clear that a solution can always be transformed

without loss of fit, Tucker [114]. To see this, we recover the matricized formulation of

the model,

Xa = AGa(C′ ⊗B′) + Ea. (3.1)

If we consider nonsingular matrices S (P × P), T (Q × Q) and U (R × R), we can

rewrite the fitted part in the last expression as

AGa(C′ ⊗B′) = A(S′)−1S′Ga(U⊗T)(U−1 ⊗T−1)(C′ ⊗B′)

= A(S′)−1︸ ︷︷ ︸S′Ga(U⊗T)(U−1C′︸ ︷︷ ︸⊗T−1B′︸ ︷︷ ︸). (3.2)

This shows how we can change the component matrices from A, B, C to A(S′)−1,

B(T′)−1, C(U′)−1, respectively, and maintain the fit. We just need to change the

core array accordingly, from Ga = [G1| · · · |GR] to S′Ga(U⊗T). Other useful ways

to present the transformed core array are in vec- and vec∗-form: (T′⊗S′)GvecU and

(S′ ⊗ T′)Gvec∗U, respectively. These transformations of 3PCA solutions are known

as Tucker transformations, Tucker [114].

As mentioned before, postmultiplying the component matrices of a 3PCA decom-

position by invertible transformation matrices can always be counter-balanced with

an appropriate compensation in the core array. This means that the component ma-

trices can be transformed without changing the slices of the original array. Such a

transformation can therefore be regarded as array-preserving. The process can also

be inversely considered: It is possible to transform the core array in any of the three

directions possible, as long as a compensating operation is applied to the component

matrices in the corresponding directions.

In practical applications we assume P � I, Q � J , R � K. More specifically,

Tucker [114] explains how Tucker transformations can be used to transform all com-

ponent matrices into full column-rank matrices, if needed. For instance, suppose that

A has linearly dependent columns. Then it is possible to find an invertible matrix S

such that A(S′)−1 has one or more columns containing all zero entries. These zero

columns of the transformed A can be discarded along with the corresponding rows

of the transformed core array, thus reducing the column order of A and row order of

Ga (Tucker [114], p. 288). Since we can proceed this way for all component matrices,

we conclude that it can be always assumed that A, B, C have full column ranks.

The previous reasoning has a direct consequence: there is no point in considering

3PCA solutions with P × Q × R core arrays where P > QR (Q > PR, R > PQ),

Uniqueness in 3PCA and CP 39

which is known as overfactoring. To see this, suppose P > QR. Then Ga has linearly

dependent rows, so it is possible to find an invertible S such that S′Ga has one or

more zero rows. These rows may be discarded, as well as the corresponding columns

of A(S′)−1. So we conclude that we need only consider 3PCA solutions with core

arrays such that P 6 QR.

We can still impose an extra condition on the component matrices to be found

by a Tucker transformation, namely, that they are to be columnwise orthonormal.

In fact, it suffices to find the appropriate S, T, U such that A(S′)−1, B(T′)−1,

C(U′)−1 are orthonormal. We illustrate how to do this for component matrix A.

Define S = KΛ1/2, where A′A = KΛK′ is an eigendecomposition. Then A(S′)−1 is

columnwise orthonormal, because

(A(S′)−1)′(A(S′)−1) = Λ−1/2K−1A′A(K′)−1Λ−1/2 = IP . (3.3)

The same applies to B and C.

Alternatively, one can use the freedom of rotation in 3PCA to find specific form

representations of the core array, while the component matrices are counter-transfor-

med. For instance, the core array can be made orthogonal in the three directions.

More precisely, if Ga, Gb and Gc are full row rank then they can be jointly trans-

formed to orthogonality, in the sense that GaG
′
a, GbG

′
b and GcG

′
c are proportional to

an identity matrix, Ten Berge et al. [105]. To see this (following Weesie and Houwelin-

gen [116]), suppose we perform an orthogonal rotation in one mode, say
∼
Ga = TGa,

for an orthonormal matrix T. This is equivalent to transforming Gb and Gc into
∼
Gb = Gb(T

′ ⊗ IR) and
∼
Gc = Gc(IP ⊗ T′), respectively. However,

∼
Gb

∼
G′b = GbG

′
b

and
∼
Gc

∼
G′c = GcG

′
c, which shows that an orthogonal transformation in one mode

does not affect the inner products for the other modes. Therefore, all we need is

to rotate Ga, Gb and Gc to orthogonality, one at a time. This can be achieved by

premultiplying Ga by K′a (from the eigendecomposition GaG
′
a = KaΛaK

′
a), then

premultiplying
∼
Gb by K′b (from the eigendecomposition

∼
Gb

∼
G
′

b = KbΛbK
′
b), and fi-

nally premultiplying
≈
Gc by K′c (from the eigendecomposition

≈
Gc

≈
G′c = KcΛcK

′
c).

Weesie and Houwelingen [116] noted that, when TUCKALS-3 is run with compo-

nent matrices constrained by orthonormality, then the resulting core array is already

orthogonal in the three directions. Hence, the transformation described in the previ-

ous paragraph is not needed in this situation.

40 Chapter 3

3.2.1 (Non-)triviality of three-way models

As we have just discussed (see also Section 2.5), the freedom to transform a 3PCA

decomposition must be taken into account. This is specially clear when defining new

models, in which specific constraints are chosen. The researcher must make clear that

the constraints are active, thus bringing new and meaningful properties to the model.

A constrained core array that can be achieved almost surely by means of Tucker

transformations does not represent a real model. It is just a mathematical artifact with

little statistical meaning. Therefore, researchers interested in constructing constrained

3PCA models should aim at non-trivial core array models, that is, models with active

constraints.

This (non)triviality of 3PCA models is an important issue to address. In Chap-

ters 5 and 6 we will discuss some possible approaches to help avoiding problems related

to triviality of models.

3.3 Uniqueness in CP

Under conditions called “mild” (e.g. Ten Berge [98], p. 17), CP has the property of

essential uniqueness. This means that the only transformations we are allowed to

perform on A, B and C are joint permutations and rescaling of their columns. An

advantage of uniqueness is the unambiguity inherent to the decomposition. That is,

the researcher does not need to decide which is the best solution possible, since there

is only one possibility (assuming that the model underlies the structure of the data).

This property of CP is, in fact, in the very genesis of the method. When Harsh-

man [24] proposed CP for the first time, he explained that one of the reasons that

guided him was the “Principle of Parallel Proportional Profiles” or “Simultaneous

Simple Structure” discussed by Cattell [13]. According to this principle, the factors

underlying two similar sets of variables on similar population samples should be the

same, being that the loadings of each factor may change proportionally. Although this

principle concerns the rotation problem of two-way factor analysis, Harshman had the

insight to apply it to three-way arrays. He realized that it was possible to decompose

an array using “parallel proportional profiles”, which would lead to unique decom-

positions. In other words, if there exists a true factor structure underlying the data,

then more than being able to represent points in a reduced dimensional space, the

orientation of the fitting axes of that space is uniquely defined. This is useful in the

sense that it eliminates the need to rotate the fitting solution after its computation.

The location of the axes is, therefore, an intrinsic feature of the factor decomposition

Uniqueness in 3PCA and CP 41

itself. Many applications of the CP model in practice are based on this property, see

Smilde et al. [80, Chapter 10] for some examples in chemometrics.

In the first part of this Section we will formally define uniqueness in the CP model.

We will prove that joint permutations and rescaling of columns of the component

matrices are always possible in a CP decomposition. This kind of operations will

be considered to be trivial for that reason. In the second part of this Section we

will present operations that can be applied to a CP decomposition while preserving

the uniqueness property. These operations are specially important for us since they

provide a link between the uniqueness and simplicity properties (Chapters 5 and 6).

In the third and fourth parts of this Section we will discuss sufficient and necessary

conditions for uniqueness to hold.

3.3.1 Definition of uniqueness

Given the array X of order I×J×K, consider a CP decomposition withR components:

Xk = ACkB
′ + Ek, (3.4)

for k = 1, . . . ,K. This decomposition is said to be (essentially) unique if, for any

other alternative CP solution with R components and equal residuals Ek

Xk = GDkH
′ + Ek (3.5)

we have

G = AΠΛ1, H = BΠΛ2, D = CΠΛ3, (3.6)

for some permutation matrix Π and diagonal matrices Λ1, Λ2 and Λ3 with Λ1Λ2Λ3 =

IR.

Expression (3.6) means that the corresponding component matrices of both CP

solutions are essentially the same, i.e., component matrices may only differ in the

order of the components (due to the column permutation matrix Π) and the scaling

of the components (due to matrices Λi). The permutation of the components is

the same for the three pairs of component matrices, and the scaling factors for all

correspondent components multiply to unity so that the overall value of the product

of the components is not affected. Notice that ΠΛi has only one nonzero element per

row and per column.

Two CP solutions that are equal up to column joint permutation and scaling

are considered the same solution. This indeterminacy can not be avoided: from the

rank-one decomposition
∑R
r=1(ar ◦ br ◦ cr) we notice that joint column permutation

42 Chapter 3

is just a rearrangement of the order of the summation, whereas the scaling reflects

the equality

ar ◦ br ◦ cr = (Λ1(r, r)ar) ◦ (Λ2(r, r)br) ◦ (Λ3(r, r)cr) (3.7)

with Λ1(r, r)Λ2(r, r)Λ3(r, r) = 1. We can reconfirm this fact via (2.16):

(H�G)D′ = (BΠΛ2 �AΠΛ1)(CΠΛ3)′ (3.8)

= (BΠ�AΠ)Λ1Λ2Λ3Π
′C′

= (B�A)ΠΠ′C′

= (B�A)C′.

3.3.2 Operations that preserve uniqueness

Consider an I × J ×K array X with a CP solution Xk =
∼
Xk + Ek = ACkB

′ + Ek,

for k = 1, . . . ,K. We will write (A,B,C) to denote this specific CP solution. As ob-

served before, in case of uniqueness, there is a one-to-one correspondence between the

component matrices A, B, C and the fitted part of X (up to scaling and permutation

of the columns of the component matrices). However, in non-uniqueness situations

there is more than one triple of component matrices corresponding to
∼
Xk.

We are interested in identifying algebraic operations that can be performed on
∼
X, or to its CP decomposition accordingly, such that the uniqueness property is

preserved. This means that, after the operations are applied, the transformed array

shares the (non-)uniqueness property with
∼
X. A useful application of these operations

is to transform
∼
X into a “simpler” array (possibly even smaller), in the sense that

the inspection of the uniqueness property is easier. Notice that the operations we

seek will change the slices of
∼
X, that is, these operations are not array-preserving.

Although such transformations will destroy the original array entries, they may allow

finding simpler arrays which are equivalent to
∼
X in terms of the uniqueness property.

This contrasts with Tucker transformations of 3PCA solutions, which transform the

component matrices while preserving the array under decomposition.

We will start by considering slice mixing operations. Recall that slice mixing an

array in the depth direction, for example, consists of replacing the frontal slices by

an invertible set of linear combinations of them. This can be done by premultiply-

ing the component matrix C by an invertible matrix. The same idea is valid for

mixing horizontal and lateral slices, now applied to component matrices A and B,

respectively.

Uniqueness in 3PCA and CP 43

We have observed in Section 1.8.1 that slice mixing is an array rank preserving

operation. Indeed, it is clear that transforming the component matrices does not add

components (the number of columns of the component matrices remain equal). Since

we only deal with invertible transformations, it is ensured that no component is lost

with the transformation, because the process can be reversed.

Next we present our proof for the fact that slice mixing, besides preserving the

rank, also preserve uniqueness (see also Ten Berge and Sidiropoulos [107], p. 401):

Lemma 1

Let X be an array with CP solution Xk = ACkB
′, k = 1, . . . ,K. Let S, T, and U be

nonsingular transformations yielding an array Y with solution (SA,TB,UC). Then

(A,B,C) is a unique solution for X if and only if (SA,TB,UC) is a unique solution

for Y.

Proof Let (A,B,C) be a unique solution for X. Then every other solution

(G,H,D) that satisfies Xk = ACkB
′ = GDkH

′ for k = 1, . . . ,K is related to

(A,B,C) by G = AΠΛ1, H = BΠΛ2 and D = CΠΛ3. Now consider a transfor-

mation, first by S only, yielding transformed slices SXk = SACkB
′, k = 1, . . . ,K.

Suppose (SA,B,C) is not a unique solution for this transformed array. Then there

exists another solution (M,L,E) such that at least one of these conditions is violated:

1. M is essentially equal to SA,

2. L is essentially equal to B,

3. E is essentially equal to C.

However, from SXk = SACkB
′ = MEkL

′ we have Xk = ACkB
′ = S−1MEkL

′,

k = 1, . . . ,K. Because M is essentially equal to SA if and only if S−1M is essentially

equal to A, it can be seen that (S−1M,L,E) is an alternative solution for X, with

violation of at least one of the three essential equality conditions. So we have arrived at

a contradiction. Therefore, uniqueness of (A,B,C) for X is equivalent to uniqueness

of (SA,B,C) for the transformed array that has slices SACkB
′, k = 1, . . . ,K.

Using the symmetry of the CP decomposition to apply the same principle to B

and C, we can then say that when (A, B, C) is an essentially unique CP solution

then (SA, TB, UC) is an essentially unique CP solution, for arbitrary nonsingular

matrices S, T and U. The converse statement follows immediately by supposing that

(SA, TB, UC) is unique and then mixing the slices of the array using the inverses

of S, T and U.

44 Chapter 3

In addition, both the rank and k-rank of the component matrices are also preserved

(because premultiplying a matrix by an invertible matrix preserves its rank and the

linear (in)dependence of columns). So, we may use this freedom of manipulation to

change the component matrices in useful ways, being assured that the rank and the

uniqueness property will be preserved in the newly computed array.

We can use this property to define a new useful operation (the idea for this proof

can be found in Ten Berge and Sidiropoulos [107], p. 401):

Lemma 2

Let X be an array with CP solution Xk = ACkB
′, k = 1, . . . ,K. Transforming A

and/or B and/or C to reduced versions of full row rank leads to a (smaller) new array

whose transformed CP solution preserves the uniqueness property.

Proof We will do the proof for A (the argument also applies to B and C by

symmetry).

Write the SVD A = PDQ′, with P′P = PP′ = II , Q′Q = IrA (rA denotes the

rank of A) and D (general) diagonal I × rA with the singular values of A in the

diagonal (in decreasing order). Making S = P′ we have that SA = DQ′ has all rows

zero except the first rA. Because of Lemma 1 we know that (SA,B,C) preserves

uniqueness. Finally, eliminating the I − rA last rows of A does not affect uniqueness.

It is important to underline the power of what has been proved so far. Using

Lemma 2, one can now simplify the component matrices by reducing the number of

rows of A, B, C from I, J,K to rA, rB, rC, and still maintain rank and uniqueness

properties concerning the related CP solutions. This, in fact, means that one can

simplify a given I × J ×K array to a rank- and uniqueness-equivalent rA × rB × rC
array. After this transformation, each component matrix has full row rank.

Now, using the fact that component matrices have full row rank (A, B, C of order

rA × R, rB × R, rC × R respectively), we can still simplify the component matrices

in special cases. For instance consider, without loss of generality, that the first rA

columns of A are linearly independent. Taking the nonsingular rA × rA submatrix

of A using its first rA columns (A = [A1|A2]), and premultiplying A by the inverse

Uniqueness in 3PCA and CP 45

of that submatrix gives

A−11 A =
[
IrA |A

−1
1 A2

]
=


1 0 · · · 0

0 1 · · · 0 A−11 A2

...
...

. . .
...

0 0 · · · 1

 . (3.9)

In general,

Lemma 3

Every full row rank matrix A can be transformed into the form [IrA | · · ·] while pre-

serving uniqueness (and rank). The transformation may require a permutation of

columns (if the first rA × rA submatrix is not invertible).

The same applies to B and C.

3.3.3 Sufficient conditions for uniqueness

The question of whether a CP solution is unique or not was raised alongside with CP

itself (Harshman [24]). Since then, several efforts have been made to develop criteria

to assess this property. In this Section we will make a summary of the main results

available in the literature.

Harshman [24] presents a result attributed to R. I. Jennrich as being the pioneer

in this topic.

Theorem 1 (Jennrich 1970)

If matrices A, B, C have full column rank, then the CP solution (A, B, C) is

essentially unique.

Note: we will refer to the condition that “A, B, C have full column rank” as condition

(J).

What this theorem states is that we may look for uniqueness in a solution with R

factors if each mode of the array has at least order R (due to the full column-rank

conditions of A, B, C). Harshman ([24], p. 61) argued that this condition appeared

to be a stronger requirement for uniqueness than was found necessary in the empirical

experiments.

Harshman [25] succeeded in relaxing Jennrich’s assumption on matrix C. We now

introduce this result, as well as a proof due to Ten Berge and Tendeiro [112], which

is more compact than the original proof by Harshman.

46 Chapter 3

Theorem 2 (Harshman 1972)

Suppose A and B have full column rank, and suppose that there exist C1,C2 (inver-

tible diagonal matrices with rows of C in the diagonal) such that C1C
−1
2 has distinct

diagonal elements. Then the CP solution (A, B, C) is essentially unique.

Proof Suppose we have two possible solutions

Xk = ACkB
′ = GDkH

′, k = 1, . . . ,K. (3.10)

Notice that A and G span the same column space, as well as B and H. Since both

have full column rank, there exists a nonsingular R×R matrix S such that G = AS.

Similarly, there exists a nonsingular matrix T such that H = BT. Then from (3.10)

we can write ACkB
′ = ASDkT

′B′. We can eliminate A and B′ in this equation

(they admit left inverses since they have full column rank), so we get Ck = SDkT
′,

k = 1, . . . ,K.

This last equation implies that C1C
−1
2 = SD1D

−1
2 S−1, so (C1C

−1
2)S = S(D1D

−1
2),

where both C1C
−1
2 and D1D

−1
2 are diagonal. This shows that S holds the eigenvec-

tors of C1C
−1
2 , which holds distinct diagonal entries by hypothesis. This implies that

we can write S = ΠAΛA, where ΠA is a permutation matrix and ΛA is a diagonal ma-

trix (S has only one nonzero element per column and per row). A similar conclusion

applies to T (since Ci is symmetric we have Ck = TDkS
′, so C1C

−1
2 T = TD1D

−1
2),

so T = ΠBΛB (ΠB permutation matrix, ΛB diagonal matrix).

Replacing S and T in Ck = SDkT
′ gives Ck = ΠA(ΛADkΛB)Π′B . The symmetry

of Ck implies that ΠA = ΠB , so Ck = Π(ΛADkΛB)Π′. This equation leads to

Π′CkΠ = DkΛAΛB , which is equivalent to CΠ = DΛAΛB , so D = CΠΛ−1A Λ−1B .

Writing ΛC = Λ−1A Λ−1B completes the proof.

Matrix C can be premultiplied by any nonsingular matrix without affecting essen-

tial uniqueness (see Lemma 1, p. 43). So, instead of supposing that C has two rows

such that C1,C2 are invertible and C1C
−1
2 has distinct diagonal elements, we can

impose the condition “the row space of C contains a pair of vectors such that CiC
−1
j

has distinct diagonal elements, for some 1 6 i < j 6 K”. This condition is, in fact,

equivalent to supposing that kC > 2, where kC denotes the k-rank of C, (Section 1.2):

Lemma 4

The row space of C holds two vectors such that CiC
−1
j has distinct diagonal elements,

for some 1 6 i < j 6 K, if and only if kC > 2.

Uniqueness in 3PCA and CP 47

Therefore, Harshman’s result can be enhanced by relaxing the condition on C, as

follows:

Theorem 3

Suppose A and B have full column rank and kC > 2. Then the CP solution (A, B,

C) is essentially unique.

Proof (Lemma 4 and Theorem 3) See Leurgans, Ross and Abel [56] for a proof of

Theorem 3. Ten Berge and Tendeiro [112] present an alternative proof for the same

result.

Note: we will refer to this relaxed sufficient condition as condition (Hr).

It is easy to see that condition (J) implies condition (Hr), but we may have situa-

tions where Harshman’s condition is met but Jennrich’s is not (example: R = 3, A

and B full column rank, C =
[
1 1 2
2 2 4
1 2 3

]
). So condition (Hr) can be considered more

general than (J).

In short, if A and B have full column rank, then we should look at C; if kC > 2,

then essential uniqueness is fulfilled. If any of the previous conditions fail then (Hr)

does not apply.

The next major development for assessing uniqueness was given by Kruskal [49],

who proposed a sufficient condition for uniqueness which relies on the concept of

k-rank. Kruskal’s (sufficient) condition is the following:

Theorem 4 (Kruskal 1977)

A CP solution (A, B, C) is essentially unique if

kA + kB + kC > 2R+ 2. (3.11)

Note: we will refer to Kruskal’s sufficient condition as condition (K).

The proof given by Kruskal is quite inaccessible. Stegeman and Sidiropoulos [89] and

Rhodes [75] devised simpler and more intuitive proofs. Here we decide to omit any

proof; the reader may refer to any of these references.

We can relate Harshman’s and Kruskal’s conditions. When R > 2 it is straightfor-

ward that (Hr) implies (K). The reverse implication is true for R = 2, 3 (trivial) but

false otherwise (for example, when R = 4 we may have kA = 4, kB = 3, kC = 3, thus

(K) is met but (Hr) is not). This implies that (3.11) is a stronger sufficient condition

for R > 3. When R = 1, (K) does not apply but (Hr) does.

48 Chapter 3

The overall conclusion is that Kruskal’s sufficient condition is the preferred when

R > 2.

There is a result due to Sidiropoulos and Bro [79] that generalizes Kruskal’s con-

dition to N -way arrays, N > 3. It states that there is essential uniqueness if the sum

of the k-ranks of all the component matrices is equal to or exceeds 2R+ (N − 1).

More recently, Jiang and Sidiropoulos [33] proved two equivalent sufficient (and

necessary) conditions for what they called “restricted CP models”, that is, CP solu-

tions with a full column rank component matrix, say C. Notice that the assumption

that C is full column rank is typically not restrictive in applications, so both condi-

tions can be useful in practical analysis.

De Lathauwer [16, p. 652] proved a sufficient uniqueness condition which is similar

to one of the conditions presented by Jiang and Sidiropoulos [33]. De Lathauwer [16]

also proposed a sufficient condition for uniqueness of restricted CP models. Stegeman

et al. [91] made a link between Jiang and Sidiropoulos [33] and De Lathauwer [16].

3.3.4 Necessary conditions for uniqueness

So far we have only dealt with sufficient conditions. Now our concern will turn to

properties that essentially unique solutions must have.

Leurgans et al. [56] discussed the next result.

Result 1

It is necessary for uniqueness that neither A, nor B, nor C has a pair of proportional

columns. In other words, it is necessary to have kA > 2, kB > 2, kC > 2.

Proof Assume, without loss of generality, that the first two columns in C are

proportional. We can write A = [A(1)|A(2)], B = [B(1)|B(2)], C = [C(1)|C(2)], where

in each case the first block comprises the first two columns and the second block the

remaining R− 2 columns. So CP formula may be put as

Xk = ACkB
′ = A(1)C

(1)
k (B(1))′ + A(2)C

(2)
k (B(2))′. (3.12)

Since the first two columns of C are proportional, there is a K-vector c and a 2-vector

Uniqueness in 3PCA and CP 49

d such that C(1) = cd′. Then we derive that C
(1)
k = ckDiag(1d′). Now,

A(1)C
(1)
k (B(1))′ = A(1)

(
ckDiag(1d′)

)
(B(1))′ (3.13)

= A(1)T︸ ︷︷ ︸ ckI2︸︷︷︸T−1Diag(1d′)(B(1))′︸ ︷︷ ︸
= G(1)D

(1)
k (H(1))′,

for any nonsingular 2× 2 matrix T. This shows that the first two columns in A and

B are determined up to a nonsingular transformation, hence the first two components

are not unique.

The reasoning used is symmetric in A, B and C.

About the previous proof, Krijnen [44, p. 29] observes that the non-uniqueness

only occurs in the first two columns of A and B. This implies that, when R > 2,

proportional columns in C lead to rotational freedom only for the corresponding

columns in A and B. Therefore, we can find CP solutions that are not essentially

unique, but some of its components are. This is a situation of partial uniqueness.

Another necessary condition is due to Liu and Sidiropoulos [58]:

Result 2 (Liu and Sidiropoulos)

It is necessary for uniqueness that B �A (and C �A and C � B) has full column

rank.

Proof (as given by Ten Berge and Sidiropoulos [107, p. 400])

Suppose B�A does not have full column rank. Then there exists a nonzero vector n

orthogonal to the rows of B�A. Adding n to any column of C′ preserves the product

(B �A)C′, but changes C by more than column permutation and/or rescaling. So

there is no uniqueness.

Another candidate for a necessary condition for uniqueness was, for many years,

Kruskal’s condition (3.11) when R > 1. For R = 2 it is, in fact, necessary (it follows

readily from Result 1). Kruskal had the belief that (3.11) was necessary for R > 2, but

there was neither a proof nor a counterexample until Ten Berge and Sidiropoulos [107]

settled the issue. They proved that the condition is, indeed, necessary for R = 2, 3 but

not necessary for R > 3. It is interesting to note that the proof given by Ten Berge

and Sidiropoulos starts by using operations that transform an array while preserving

the uniqueness property, which we previously discussed in Section 3.3.2.

50 Chapter 3

Ten Berge and Sidiropoulos [107] proved that Kruskal’s condition is necessary

when the ranks of the component matrices equal their k-ranks when R = 4. They

conjectured that Kruskal’s condition would be necessary for all cases of rank 4 and

higher where ranks and k-ranks coincide. Stegeman and Ten Berge [90] refuted this

conjecture.

3.4 Discussion

Uniqueness is a property that limits the possibilities of transforming the component

matrices of the decompositon of an array (and the core array in the case of 3PCA),

while the reconstruction of the array remains unaffected.

We have seen that 3PCA is characterized by freedom to rotate columnwise any of

the component matrices. The compensation is given by transforming the core array

in accordance. The CP model, on the other hand, essentially has much less freedom

of rotation. Under mild conditions, only joint column permutation and rescaling are

allowed.

It was also seen how some algebraic manipulations to arrays and CP decomposi-

tions do not affect their uniqueness feature. Specifically, slice mixing and reduction of

the component matrices to full row rank preserve uniqueness. This way, dealing with

uniqueness issues may be greatly simplified. For example, Ten Berge and Sidiropou-

los [107] used these transformations to prove that Kruskal’s condition is necessary for

R = 2, 3 but not necessary for R > 3.

The freedom available in 3PCA can be used to our advantage. Since we are given

the chance to transform the component matrices and/or the core, one might think

of special useful ways to do so. In particular, transformations that “simplify” the

components or the core array are relevant. Chapters 5 and 6 will deal, precisely, with

this topic.

Chapter 4

Degeneracy

4.1 Introduction

In some situations the execution of a CP algorithm shows some abnormal behaviours.

Harshman and Lundy [28] referred to such solutions as being “degenerate” ([28,

p. 271]).

In this Chapter we intend to focus our attention on this feature of CP which is

commonly known as “degeneracy”. The main motivation for treating degeneracy in

this thesis is that degeneracy plays an important role in Chapter 7. Therefore, it

is relevant at this point to understand the main ideas concerning degeneracy. Also,

one should remember that degenerate solutions are not desirable. The reason is that

it is hard to defend the contribution of degenerate components to the fit in a CP

decomposition (we will explain why in this Chapter). Thus, degenerate solutions

should be discarded.

A characterization of degeneracy will be given. Some hypotheses concerning the

reasons for degeneracy to occur will be addressed. The possibility to avoid degenerate

situations will also be discussed.

4.2 Characterization of degeneracy

Sometimes running a CP program leads to solutions which are not well defined. In

these situations the convergence of the program is extremely slow, and some compo-

nents become more and more correlated as the program progresses.

In order to better present the degeneracy pattern we shall present the CP model

52 Chapter 4

as follows (relate to (2.8), p. 32): given an I×J×K array X, find component matrices

A, B, C and weights ωr such that

X =

R∑
r=1

ωr(ar ◦ br ◦ cr) + E, (4.1)

where the vectors ar, br, cr have unit length, ωr is the weight of the r-th outer

product array, and E is the residual array minimized in the least squares sense.

Kruskal, Harshman and Lundy [54] describe the so-called two-factor degeneracy

where exactly two components, say components s and t, display the following pattern:

• the columns s and t in A, B and C become nearly equal up to sign, the product

of these signs equal to −1;

• the weights ωs and ωt become very large.

Such behaviour cannot be overcome by letting the CP algorithm run further: the

collinearity of the columns just becomes stronger and stronger, while the weights

become larger and larger. Furthermore, the degenerate rank-1 component arrays

give almost opposite contributions to the fit: they nearly cancel themselves out, but

together they do help to improve the fit of the model to the data. Components with

this behaviour are also referred to as being divergent, Stegeman [84].

Three-or-more factor degeneracies can be described in a similar fashion, Harsh-

man and Lundy [28], Stegeman [82, 84], Paatero [69], De Silva and Lim [19]. The

contributions of some of the degenerate factors nearly cancels the contribution of the

remaining factors, while all the factors together contribute to improve the fit of the

CP model.

Degeneracy of this type– such that the improvements in loss become smaller, the

collinearity of some of the components increases, and some of the weights become

arbitrarily large when the algorithm runs longer– is known as strong degeneracy, un-

bounded degeneracy or diverging CP components, Harshman and Lundy [28], Stege-

man [86]. Another type of degeneracy is when an optimal CP solution does exist,

but the algorithm gets caught in swamps, Mitchell and Burdick [61], Paatero [69].

A swamp is typically a part of the CP sequence where the decrease in the loss fit is

very small, and collinear components can occur. The algorithm may spend a lot of

iterations in a swamp, thus the computation time can increase significantly. However,

the weights do not get arbitrarily large, and eventually the algorithm might be able

to get out of the swamp and finally converge to the desired solution. This kind of

degeneracy is known as weak or bounded, Stegeman [86]. However, it is possible that

Degeneracy 53

swamps last for a long time. Eventually the algorithm might never be able to recover

from a swamp, which can force the CP algorithm to halt due to a false convergence

alarm.

Paatero [69] showed that, for rank-2 approximations to 2× 2× 2 arrays of rank 3,

temporary swamps may occur when X is close to the boundary of D2 with D3

(see (2.19)). In some situations the CP sequence never recovers from its degeneracy

problem.

4.3 What causes degeneracy?

Harshman and Lundy [28] discussed possible causes for the occurence of degeneracy.

For example, retaining more components than the ones actually present in the data

may lead to collinear components. Also, not preprocessing the data appropriately

may lead to degeneracy problems. These types of degeneracies may be overcome

by proper dimensioning of the model and/or processing the data. Harshman and

Lundy [28] referred to these types of degeneracies as being “soft”. Still, Harshman

and Lundy [28] state that degeneracy can occur even though the previous scenarios

do not apply. They refer to this as “hard-core” degeneracy, as there seems to exist

deeper reasons for such ill situations to occur. This “hard-core” degeneracy is the

hardest to understand and explain.

Kruskal et al. [54] present a claim (with no proof) that sheds some light on what

can cause two-factor degeneracy in general: degeneracy occurs when the loss function

does not admit a minimum (only an infimum), i.e., when the array has no best rank-R

approximation. In particular, it is always possible to improve the fit of any solution,

although these improvements become smaller and smaller. Kruskal et al. [54] argue

that, in this case, collinear components with very large weights are due to occur.

There are two problems concerning this claim: under which conditions do best rank-R

decompositions fail to exist, and when do such cases lead to degeneracy situations.

Krijnen, Dijkstra and Stegeman [45] answered the second part of the problem: all

CP sequences that lack an optimal limiting solution will exhibit degeneracy features.

However, it is still not clear when does an optimal CP solution exist or not.

Ten Berge et al. [104] present a specific 2 × 2 × 2 array of rank 3 such that CP

sequences of rank-2 approach an infimum without ever reaching it. Also, De Silva

and Lim [19] proved that there are sequences of rank-2 arrays that do converge to a

rank-3 array. Specifically, it was shown that

An = n

(
x1 +

1

n
y1

)
◦
(

x2 +
1

n
y2

)
◦
(

x3 +
1

n
y3

)
− nx1 ◦ x2 ◦ x3 (4.2)

54 Chapter 4

is a sequence of rank-2 arrays that converges to

A = x1 ◦ x2 ◦ y3 + x1 ◦ y2 ◦ x3 + y1 ◦ x2 ◦ x3. (4.3)

De Silva and Lim [19] also showed that CP sequences of lower rank that approach

an array of higher rank always have the property that some of the weights ωi must

become arbitrarily large, which is a usual feature in degenerate CP sequences.

Stegeman [82, 83] confirmed the claim of Kruskal et al. [54] for generic p × p × 2

arrays of rank p + 1 with R = p, generic 3 × 3 × p arrays with symmetric slices of

rank p + 1 with R = p, p = 4, 5, generic 3 × 3 × 5 arrays of rank 6 with R = 5, and

for generic 8× 4× 3 arrays of rank 9 with R = 8.

De Silva and Lim [19] further clarified the issue by proving the following facts:

• The problem of determining a best rank-R approximation for a tensor in Rd1×···×dk

has no solution in general for R = 2, . . . ,min(d1, . . . , dk) and k > 3.

• The set of tensors that fail to have a best low-rank approximation has positive

volume.

The first fact can be put in topological terms as follows (applying this result to three-

way arrays): the set

DR = {Y : I × J ×K with rank 6 R} (4.4)

is not closed for any R ∈ {2, . . . ,min(I, J,K)}. This is equivalent to say that there

exist sequences in DR that converge to a limit that does not belong to DR. Therefore,

it is possible that CP sequences end up converging to points that do not belong to

DR, which by Krijnen et al. [45] leads to degeneracy.

Stegeman [82, 83] proved that, indeed, all sequences that converge to points outside

DR are degenerate, for arrays with two slices. This was done by fully caracterizing

the sets DR, in order to better understand under which conditions it is possible to

have diverging CP sequences.

4.4 How to avoid degeneracy

In some situations it is possible to avoid degeneracy. For instance, following the

suggestions given by Harshman and Lundy [28], one can try to adjust the number

of components of the CP decomposition to be computed. Also, preprocessing the

data might help eliminating the problem. Giving different random starts to CP is

Degeneracy 55

also worth a try, in case of bounded degeneracies. One can also consider refining the

stopping criterion in order to prevent false convergence halts.

Another possible approach to avoid degeneracy is to impose constraints on the

CP decomposition such that degeneracy is prevented from occuring. One possibility

is to constrain the component matrices to orthogonality, Harshman and Lundy [28].

Lim [57] shows that if X is nonnegative and the component matrices are constrained

to be nonnegative, then degeneracy will also not occur. In both cases it is guaranteed

that degeneracy will not occur. The price to pay is some loss in the fit of the CP

decomposition.

There are some improved algorithms that try to compute optimal CP solutions

while avoiding degeneracy, e.g. Rayens and Mitchell [74], Kiers [39], Cao, Chen, Mo,

Wu and Yu [10], Rajih, Comon and Harshman [73], Zhao [117], Navasca, De Lath-

auwer and Kindermann [66], Stegeman [86]. These methods try to speed up the CP

algorithm once it enters a swamp. Such methods are useful in weak or bounded

degeneracies situations. However, they do not solve cases like the ones studied by

Stegeman [82, 83], since in these cases no optimal CP solution exists and all sequences

converging to boundary points of DR that do not belong to DR are necessarily de-

generate.

A possible workaround for this problem is given in Stegeman and De Lathauwer [88].

It is based on the generalized Schur decomposition (GSD), see De Lathauwer et al. [18].

A method to compute the GSD of I × J × 2 arrays is proposed. One good feature

of this method is that an optimal GSD always exists. Moreover, in [88] it is shown

that, for I × J × 2 arrays, the set of feasible GSD solutions equals the closure of the

set of feasible CP solutions. This allows to conclude that optimal GSD solutions are

the limit points for CP sequences, either convergent or divergent. In divergent cases,

the limit array can either be decomposed into a nondiverging CP part and a sparse

3PCA part, or a nondiverging CP part and a smaller GSD part. If a nondiverging

CP solution exists, then only the nondiverging CP part is present in these decompo-

sitions. Therefore, even in degeneracy cases it is possible to find the limiting point

of CP sequences. Although mathematically appealing, the interpretation of a GSD

solution differs from interpretation of a CP solution in practical terms. This makes

the application of the GSD method harder in practical terms.

Chapter 5

Simplicity

5.1 Introduction

One of the practical concerns in PCA is the simplicity of the decomposition. After

computing the component scores and loading matrices, it is good practice to rotate

the loading matrix to a simple form. This usually means to have either high or low

loadings (in absolute value), preferably with only one high loading per row of the

loading matrix. This helps to understand what kind of information is stored in each

component. Even so, interpretation of the (rotated) principal components may be

difficult.

In 3PCA we deal with a similar problem. As was seen in Chapter 3, there is

ample freedom of rotation in 3PCA. We might want to make use of this possibility

to find a solution with equal fit but that is easier to interpret. A relevant question

to answer is: in what sense can a solution be “simpler” than other? One can observe

that the interpretation of a 3PCA solution can be rather difficult because we have to

evaluate the impact of each triple of components to explain the data. In fact, (2.1)

shows that a 3PCA decomposition has as many rank-one terms as there are nonzero

entries in G. Transforming the core array into an array with a large majority of

zero elements may simplify interpretation, because there will be less interactions of

triples of components to explain (see, for example, Rocci and Ten Berge [78]). This

may indeed ease the statistical interpretation of the model, provided that the rotated

components can easily be interpreted.

Whenever we mention that our goal is to “simplify a 3PCA decomposition”, we

mean that we like to rewrite it with as many zeros possible in the core array. Aiming

58 Chapter 5

at simple forms for the component matrices will not be our goal in this research.

A word of caution is in order here. Murakami [63] gave an example where the

components tend to collinearity when the core array is transformed to extreme sim-

plicity (Rocci and Ten Berge [78]). These degenerate solutions are not desirable and

should be avoided whenever possible.

More often than not, we will consider the simplicity issue from a more general

point of view. Given an array Xa = [X1| · · · |XK] of order I × J ×K, we wish to find

nonsingular matrices S, T and U such that the transformed array,

S′Xa(U⊗T) =

[
S′

(
R∑
r=1

ur1Xr

)
T
∣∣∣ · · · ∣∣∣S′(R∑

r=1

urRXr

)
T

]
, (5.1)

has as many zeros as possible. Matrices S, T, U can be seen as slice mixers from

the three possible directions (horizontal, lateral and frontal direction, respectively).

Therefore, our search for simplicity can be posed in terms of simplifying arrays in

general, instead of only simplifying 3PCA decompositions. The application of sim-

plicity results for arrays in general to 3PCA decompositions becomes direct once we

apply such results on the core arrays of the decompositions.

Rocci and Ten Berge [78] (pp. 352-353) mention two more important implications

that simplicity can lead to. One is the fact that maximal simplicity can help the

study of the core’s rank (and typical rank in general). This is because the number

of nonzero elements in a three-way array is a universal upper bound to the rank,

and performing Tucker transformations is rank-preserving. The other implication is

that simplicity can be a good tool to assess the (non-)triviality of a model. Triviality

can be avoided by imposing additional or different constraints to the core array, thus

achieving a real model.

It can be concluded that simplicity has several important applications within three-

way analysis in particular and tensor theory in general.

Three computational methods that bring simplicity in arrays are presented in

Section 5.2: SIMPLIMAX (Kiers [37, 40]), the Orthogonal Complement Algorithm

(Rocci and Ten Berge [78]), and the multiple orthonormality approach (Ten Berge et

al. [105]). Both SIMPLIMAX and the multiple orthonormality approach are iterative

methods, whereas the Orthogonal Complement Algorithm provides a closed-form so-

lution. Other methods are available but were not covered in this thesis, like rotating

cubic core arrays such that the frontal slices become diagonal (for example MacCal-

lum [59], Kroonenberg [47], Brouwer and Kroonenberg [7]), or such that the core

array becomes superdiagonal (Kiers [36]).

Simplicity 59

Section 5.3 presents closed-form simplicity results for two families of arrays. Fi-

nally, in Section 5.4 the issue of maximal simplicity will be discussed.

5.2 Computational approaches

5.2.1 SIMPLIMAX

SIMPLIMAX was originally devised for two-way PCA (Kiers [37]). The goal is to look

for an oblique rotation of the loading matrix so that, after rotation, the m smallest

elements have a minimal sum of squares (m specified in advance).

Kiers [40] extended this procedure to three-way arrays. Three-way SIMPLIMAX

finds oblique rotations (in the three directions) of the core array that minimize the

sum of squares of the m smallest elements of the rotated core array, with m specified

in advance. It is not known a priori which entries will be the smallest ones, so the

algorithm will internally solve this issue. Rotating the core array to a non-predefined

target was not a new idea, but also not very common. Prior to SIMPLIMAX we

can mention Murakami [64] who attempted to rotate the transposed supermatrix of

frontal core planes to simple structure by means of varimax rotation, Kruskal [50]

who worked on a procedure for maximizing a combination of normalized quartimax

functions, and Kiers [42] who worked on an orthomax rotation of the core to simple

structure.

The fact that the rotating target is not fixed a priori has the side effect of SIM-

PLIMAX finding locally optimal solutions. This problem can be circumvented by

using a large number of randomly started runs of the algorithm.

An adapted version of SIMPLIMAX allows to fix, in advance, the position of the

m entries whose sum of squares we intend to minimize. This way it is possible to

rotate arrays having a specific target array in mind. The quality of the fit of the

rotated array to the specified target can be controled by analysing the sum of squares

of the m elements in the fixed positions.

Kiers implemented SIMPLIMAX in Matlab. His program was extensively used to

find hypothesis about which simplicity transformations might be possible in specific

situations, see Chapter 6.

5.2.2 The Orthogonal Complement Method (OCM)

The Orthogonal Complement Method (OCM) is a method that permits transforming

an array to simple form by using the previously known simplicity of a “complemen-

60 Chapter 5

tary” array. This will allow to get simplicity for some arrays of orders not contem-

plated so far. A treatment of this topic can be found with detail in Rocci and Ten

Berge [78].

Consider an I×J ×K array X, and its matricized vec∗-form: Xvec∗ = [vec∗(X1)|
· · · |vec∗(XK)], see p. 13 for notation. We will assume that X has linearly independent

slices in all directions, and that IJ > K (avoiding overfactoring, see p. 38). Under

these assumptions Xvec∗ is a vertical matrix with full column rank. It is always

possible to append an IJ × (IJ −K) block to Xvec∗ , say X
(c)
vec∗ , so that [Xvec∗ |X(c)

vec∗]

is an invertible matrix of order IJ . Notice that X
(c)
vec∗ can be seen as the vec∗-version of

an array of order I×J×(IJ−K), called the complementary array of X (and denoted

by X(c)). As an example, consider Xa =
[

1 −1
0 2

∣∣ 0 1
2 1

]
. Then Xvec∗ =

[
1 −1 0 2
0 1 2 1

]′
.

A possible complementary block is X
(c)
vec∗ =

[
1 2 1 2
−1 2 1 1

]′
([Xvec∗ |X(c)

vec∗] is invertible),

which is the vec∗-version of X(c)
a =

[
1 2
1 2 | −1 2

1 1

]
.

So, arrays of size I ×J ×K are complementary to arrays of size I ×J × (IJ −K).

However, we are interested in finding specific complementary matrices for Xvec∗ .

Specifically, we are interested in choosing X
(c)
vec∗ so that its columns span the space

orthogonal to the column space of Xvec∗ , that is, X′vec∗X
(c)
vec∗ = 0 (the reason for

this will be clear in the next paragraph). Array X(c) is said to be an orthogonal

complement to X. In the example of the previous paragraph consider X
(c)
vec∗ =[−2 −2 1 0

−3 −1 0 1

]′
(note that X′vec∗X

(c)
vec∗ = 02), whose associated complementary array

is X(c)
a =

[−2 −2
1 0

∣∣ −3 −1
0 1

]
.

The main advantage associated to this procedure is that arrays in simple form

have orthogonal complementary arrays that are also in simple form (Rocci and Ten

Berge [78, p. 357]). So, as a general rule, simple arrays induce simple complementary

arrays, which broadens the types of arrays we are able to simplify.

For the OCM to work, it is essential to know how to compute orthogonal comple-

ments and how to simplify the complementary type of array. Rocci and Ten Berge [78]

present the algorithm as follows:

1. given the array Xvec∗ , compute an orthogonal complement X
(c)
vec∗ ;

2. compute H
(c)
vec∗ = (S−1 ⊗ T−1)X

(c)
vec∗V in such a way that H

(c)
vec∗ is in simple

form;

3. find the orthogonal complement of H
(c)
vec∗ in simple form, say Hvec∗ ;

4. find matrix U such that Hvec∗ = (S′ ⊗ T′)Xvec∗U, or equivalently, Ha =

S′Xa(U⊗T) (in accordance with (5.1)).

Simplicity 61

It should be noticed that the procedure above is corrected for a typing error in Rocci

and Ten Berge [78] (namely in step 4).

With this method we are able to simplify infinitely many arrays, just by knowing

at the start how to simplify one array. For instance, by knowing how to simplify the

3×3×2 array we can simplify the array 3×3×7 as a complement, which in turn has

the 3× 18× 7 as a complement, which in turn has the 3× 18× 47 as a complement,

and so on (Rocci and Ten Berge [78, p. 359]).

This algorithm was often used during our research for simplicity of symmetric slice

arrays. We will defer the presentation of more practical examples until Chapter 6.

5.2.3 Multiple orthonormality

It is straightforward to transform full row (full column) rank matrices into rowwise

(columnwise) orthonormal matrices. An m × n matrix M is said to be columnwise

orthonormal when M′M = In, and rowwise orthonormal when MM′ = Im. A more

relaxed concept of orthonormality defines M as columnwise orthonormal when M′M

is proportional to In, and as rowwise orthonormal when MM′ is proportional to Im.

This relaxed concept of orthonormality allows that the columns/rows of a matrix have

a constant fixed length other than unity, but otherwise it is the same as the usual

concept.

Ten Berge et al. [105] address the question of achieving multiple orthonormality

for three-way arrays, recall Section 3.2. They focus on the three possible matricized

versions of an array (unfolding the frontal, lateral or horizontal slices), and use the

relaxed definition of orthonormality. Unfortunately, the question of achieving triple

orthonormality is much harder to answer. Ten Berge et al. [105] present an iterative

algorithm to alternately orthonormalize two modes. It is shown how this process

always converges, but not necessarily to the desired double orthonormality situation.

Some conditions were proven that clarify which are the cases where convergence to

double orthonormality is to be expected.

As for triple orthonormality, the problem is still open. Ten Berge et al. [105]

indicate that transformation to double orthonormality often tends to give triple or-

thonormality as a bonus, but it is not clear under which conditions this works.

Multiple orthonormality can be used as a tool to search for array simplicity. In

fact, transforming an array to multiple orthonormality may give simplicity as an extra.

For example, Ten Berge et al. [105] present the case of arrays of order 4× 3× 2, that

often have 18 of 24 elements zero after multiple orthonormality transformation.

62 Chapter 5

5.3 Example of simplicity for two families of arrays

At this point we present two examples of families of arrays for which simple forms

exist already. These examples are supposed to serve as an illustration of what is to

be found in Chapter 6, where new results about simplicity will be presented.

5.3.1 P ×Q×R arrays, when P = QR and P = QR− 1

We can always consider the dimensions of the core array G to satisfy P 6 QR, in

order to avoid overfactoring situations.

In the situation P = QR we have Ga square, so taking S = G−1a , T = IQ, U = IR

shows that SGa(U ⊗T) = IP . Therefore, when P = QR the core can be simplified

to have (P 2 − P) zero elements (Murakami, Ten Berge and Kiers [65, p. 256]). It

should be noted that, for all practical purposes, core arrays that result from the

application of the 3PCA model seem to behave as if they were randomly generated

from a continuous distribution function, Rocci and Ten Berge [78, p. 362]. Therefore,

the existence of G−1a when P = QR is almost surely satisfied.

Murakami et al. [65] provide a closed form solution for nonsingular transformations

S, T, U such that only a few nonzero elements in SGa(U⊗T) remain, for any G of

order P ×Q×R with P = QR− 1 and such that Ga has full row rank. This case is,

therefore, the closest that can be taken to the P = QR situation. Their simple form

is a columnwise permuted version of the matrix[
IQR−R 0

0 M(R−1)R

]
, (5.2)

with M usually with nonzero entries. For example, the simple form for the 5× 3× 2

array is 
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

? 0 0 0 ? 0

 , (5.3)

where ? represents a nonzero entry.

5.3.2 P ×Q× 2 arrays

Ten Berge and Kiers [103] gave an explicit solution to transform arrays with dimen-

sions P ×Q× 2 when Q < P < 2Q. Specifically, array Ga = [G1|G2] is transformed

Simplicity 63

into Ya = [Y1|Y2] where Y1 =

[
IQ

0

]
, Y2 =

[
0

IQ

]
. This transformation is

proven to work almost surely. It is curious to notice that their solution does not

require slab-mixing (U = IR).

The only case of this family not covered so far is array Xa = [X1|X2] with two

square frontal slices of order P . The solution can be found in Rocci and Ten Berge [78];

it applies to the situations when at least one of the slices is invertible and X−11 X2

is non-defective (recall the concept of defective matrix on p. 18). It depends on the

eigenvalues of X−11 X2, called the generalized eigenvalues of X. For example, a 3×3×2

array with two complex generalized eigenvalues can be simplified to the form 1 0 0 0 0 0

0 1 0 0 0 µ

0 0 1 0 −µ 0

 . (5.4)

5.4 Maximal simplicity

When an array is simplified into a simple form with many zeros, one can always ask

if it is possible to simplify it even more. Maximal simplicity concerns the Tucker

transformation that introduces the maximum number possible of zero entries.

Rocci and Ten Berge [78] proved that both simplicity transformations presented

in Section 5.3 are optimal in this sense. They also clarified the question of maximal

simplicity for arrays of order I × J ×K when K = IJ − 2 and I > J .

Maximal simplicity is an issue that we will address several times in Chapter 6.

Some transformations to simple form will be presented there, and it will be proven

that the newly found simple forms have maximal simplicity.

5.5 Discussion

In this Chapter we addressed the issue of simplicity in 3PCA. We argued that there are

good reasons that justify transforming arrays into simple form, both from a statistical

as well from a mathematical point of view. We presented three computational ap-

proaches (SIMPLIMAX, OCM, Multiple orthonormality) that allow, in some cases,

to reach simple forms. Finally, we presented two practical examples of families of

arrays for which simple forms have already been found in the literature.

A special situation occurs when the array to be simplified has symmetric frontal

slices. The results that apply to the general situation are not suited in this framework,

64 Chapter 5

because usually the transformations to be made will ultimately destroy the symmetry

of the frontal slices.

Some attention was given to this special situation during our research. In the next

Chapter we will present and discuss the results that were found.

Chapter 6

Simplicity for symmetric-slice

arrays

6.1 Introduction

Recall from last Chapter (Section 5.1) that there are several reasons that justify

the importance of studying simplicity techniques. Namely, transforming arrays into

simple forms can help: interpreting 3PCA decompositions, distinguishing between

tautologies and non-trivial models, and studying some mathematical properties of

arrays (such as typical rank, for example). This Chapter revolves around the issue

of simplicity transformations applied to symmetric-slice arrays, that is, arrays with

symmetric slices in one direction. The contents to be found in this part of the thesis

are the result of research that we carried out during the first part of our project.

Research concerning simplicity of arrays in general is available, e.g., Kiers [36, 40],

Murakami, Ten Berge and Kiers [65], Ten Berge and Kiers [103], Ten Berge et al. [105],

and Rocci and Ten Berge [78]. However, whatever closed-form simplicity results have

been obtained, they apply to arrays the elements of which are randomly sampled

from a continuous distribution. In practice, data sets frequently contain symmetric

slices (for example, sets of correlation matrices collected over time). For such cases

the above results do not hold. Research on simplicity for arrays that have symmetric

slices in one direction is still absent. In this Chapter we discuss some results for the

latter type of array.

From now on we assume that X is an I × I ×K array with K symmetric frontal

slices Xk of order I × I, k = 1, . . . ,K. We assume that these slices are linearly

66 Chapter 6

independent. If this is not the case, we start by transforming the superfluous slices to

zero via a suitable Tucker transformation, reducing the dimensionality of the problem.

This transformation is relevant from a mathematical point of view but not from a

practical one, because 3PCA core arrays with K > Kmax are usually associated with

overfactoring (see p. 38). Therefore, a good choice of number of components in 3PCA

should avoid this problem altogether.

The space of real symmetric matrices of order I × I has dimension I(I + 1)/2.

Therefore, the number K of symmetric slices to consider should not exceed Kmax =

I(I + 1)/2.

We are looking for symmetry-preserving Tucker transformations of X which yield

an array H with a large number of zero elements. So, our goal is to determine

nonsingular matrices S, U such that

Hl = S′

(
K∑
k=1

uklXk

)
S, l = 1, 2, . . . ,K, (6.1)

where ukl is an element of U, has as many zero entries as possible. The number of

nonzero entries in H will be referred to as the weight of H.

It may be noted that we have tacitly assumed in (6.1) that S and T of (3.2) can be

constrained to be equal. In fact, this is a simplification, because symmetry preserving

transformations with S and T different do exist. However, this is possible only for

two-slice arrays. This will be proven in Section 6.2. It should be observed that setting

S and T equal for arrays with two frontal slices has not been detrimental at all in our

search for transformations that minimize the weight of arrays.

In Appendix I (p. 97 ff.) we proved a number of simplicity results for arrays with

symmetric slices of order 2 × 2, 3 × 3 and 4 × 4. At this point we will only present

the main conclusions.

We observe that the main reason for treating arrays (with symmetric slices) of

order 2×2, 3×3 and 4×4 is methodological. The proofs that we devised are specific

to each case, because it is difficult to develop a unifying approach to larger families

of arrays.

In Section 6.3 we present an adaptation of the OCM (Orthogonal Complement

Method, section 5.2.2) to the special situation of symmetric-slice arrays. Section 6.4

presents the simple forms that were found for arrays with symmetric slices of order

2 × 2, 3 × 3 and 4 × 4. The case when the array has the maximum possible number

of symmetric frontal slices is also treated. Finally, considerations about typical rank

and maximal simplicity are to be found in Sections 6.5 and 6.6, respectively.

Simplicity for symmetric-slice arrays 67

6.2 Setting S=T

Consider an I × I ×K array X with symmetric frontal slices. We are interested in

Tucker transformations of X that preserve the symmetry of the frontal slices. This

means that we are only interested in finding nonsingular matrices S, T and U such

that

Hl = S′

(
K∑
k=1

uklXk

)
T (6.2)

is symmetric, l = 1, 2, . . . ,K. For Hl to be symmetric, it suffices to search for S and

T such that S′XkT is symmetric, k = 1, . . . ,K.

It is straightforward to observe that having S equal to T is a sufficient condition

for S′XkT to be symmetric, for all k = 1, 2, . . . ,K. We will next prove that this

condition is necessary for K > 3 but not when K = 2, under the assumption that

X is randomly drawn from a continuous distribution. It will be shown how suitable

Tucker transformations with S and T different can be computed when K = 2.

First consider the case K = 2, therefore X has two symmetric frontal slices,

X1 and X2. Randomly generate an S, and define T = X−11 X2S. Then S′X1T =

S′X1X
−1
1 X2S = S′X2S is symmetric, and S′X2T = S′X2X

−1
1 X2S is symmetric.

This shows how different S and T can be computed such that the symmetry of both

frontal slices of X is preserved after transformation.

Now consider K > 3. We will prove that it is necessary to have S = T for K = 3,

which immediately implies the same result for K > 3. Suppose that there exist

matrices S and T such that (i = 1, 2, 3)

S′XiT = T′XiS. (6.3)

Observe that, for i 6= j,

(S′XiT)−1(S′XjT) = (T′XiS)−1(T′XjS), (6.4)

or, equivalently,

T−1X−1i XjT = S−1X−1i XjS. (6.5)

Using the eigendecompositions X−11 X2 = K1Λ1K
−1
1 and X−11 X3 = K2Λ2K

−1
2 , we

derive that

(T−1K1)Λ1(T−1K1)−1 = (S−1K1)Λ1(S−1K1)−1 (6.6)

(T−1K2)Λ2(T−1K2)−1 = (S−1K2)Λ2(S−1K2)−1. (6.7)

68 Chapter 6

Each of the previous two equations are equalities between eigendecompositions. Since

the diagonal entries of Λi (i = 1, 2) are almost surely distinct, this means that T−1Ki

and S−1Ki are columnwise proportional. So there exists a diagonal matrix Di such

that S−1Ki = T−1KiDi, or equivalently,

TS−1 = KiDiK
−1
i , (6.8)

for i = 1, 2.

Suppose α is an eigenvalue of TS−1 with algebraic multiplicity m < I (see Section 1.4

for the definitions of algebraic and geometric multiplicities of an eigenvalue). Equa-

tions (6.8) give 2m eigenvectors associated to eigenvalue α. Because the Xi’s were

randomly generated, it is almost sure that the dimension of the eigenspace associated

to α (i.e., the geometric multiplicity) will be at least min{2m, I}. This would imply

a geometric multiplicity greater than an algebraic multiplicity, which is impossible.

Therefore, α must have algebraic multiplicity equal to I, that is, TS−1 has equal

eigenvalues. So D1 and D2 are equal and proportional to identity, hence TS−1 = αI

(for some real α) and T = αS. This shows that S and T must be equal up to a scalar.

6.3 A symmetric version of the OCM

The Orthogonal Complement Method (OCM; see Section 5.2.2 for an overview) has

played a key role in obtaining some important simplicity results. However, to be

useful in the symmetric context, it needed to be adjusted in two respects. First,

the dimensionality of the space of I × I matrices is I2 in general, but it is only

I(I+1)/2 in case of symmetry. So Xvec∗ = [vec∗(X1)| . . . |vec∗(XK)] can be regarded

as an I(I + 1)/2×K matrix, after eliminating all rows that appear repeated due to

symmetry. Second, we wish to constrain the transformations such that S and T are

equal, as this ensures that symmetry of frontal slices is preserved after transformation.

This amounts to the following general setup of OCM for symmetric-slice arrays:

1. given the array Xvec∗ , compute an orthogonal complement X
(c)
vec∗ ;

2. compute H
(c)
vec∗ = (S−1 ⊗ S−1)X

(c)
vec∗V in such a way that H

(c)
vec∗ is in simple

form;

3. find the orthogonal complement of H
(c)
vec∗ in simple form, say Hvec∗ ;

4. find matrix U such that Hvec∗ = (S′ ⊗ S′)Xvec∗U .

Simplicity for symmetric-slice arrays 69

6.4 Simple forms for some families of symmetric-

slice arrays

In this Section we present the main simplicity results that were found during our

research. For more details and proofs see Appendix I (p. 97).

6.4.1 Simplifying symmetric-slice I × I ×Kmax arrays

When the number of slices of X is Kmax = I(I+1)/2 it is always possible to transform

the array into a simple form with weight I2 (Rocci and Ten Berge [77]). For example,

symmetric-slice array of order 3× 3× 6 can be simplified into 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

 . (6.9)

This simple form for the I × I ×Kmax symmetric-slice array is also useful when we

are dealing with tall I × I ×K arrays, i.e., with K > Kmax. In this case the frontal

slices are linearly dependent. Starting by performing a suitable slice mix in order to

set the slices in excess to zero allows to reduce the number of frontal slices. When

Kmax linearly independent slices remain, the above simplification is possible.

6.4.2 Simplifying symmetric-slice 2× 2×K arrays

There are three cases to consider when X is a 2× 2×K array: K = 1, 2, or 3.

The situation Kmax = 3 was already solved in the previous Section; the simple

form associated to X is [1 0
0 0 | 0 0

0 1 | 0 1
1 0].

When K = 1 the array is merely a symmetric matrix X. It can be diagonalized

using the eigendecomposition. Therefore, a weight 2 simple form is almost surely

possible.

Two possibilities arise when K = 2:

• if the eigenvalues of X−11 X2 (the generalized eigenvalues of X) are real and

X−11 X2 is nondefective, then X can be transformed into the weight 2 simple

form [1 0
0 0 | 0 0

0 1];

• otherwise, the weight 4 simple form
[
α 0
0 −1

∣∣ 0 1
1 0], where α is a real number, is

almost surely possible.

70 Chapter 6

6.4.3 Simplifying symmetric-slice 3× 3×K arrays

For symmetric-slice 3 × 3 × K arrays we have Kmax = 6. The simple form for

symmetric-slice 3 × 3 × 6 arrays was already presented, see (6.9). Simple forms for

K =1, 2, 4 and 5 will be discussed next. The case K = 3 remains an open issue.

When K = 1 the array is a matrix. The diagonalization via the eigendecomposi-

tion leads to a simple form with weight 3.

Simple forms for arrays X when K = 5 arise as the orthogonal complement of

3× 3× 1 arrays. A weight 10 simple form which is almost surely possible is 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 α 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 β 0 0 0 1 0 0 0 1 0

 , (6.10)

where α, β are real entries. When there are eigenvalues of X(c) of both signs, the

following weight 9 target is possible: 0 0 0 0 0 0 0 1 0 0 0 1 α 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

 . (6.11)

Symmetric-slice 3× 3× 2 arrays can be simplified according to the type of gene-

ralized eigenvalues involved:

• if the generalized eigenvalues are real, X has slices that can be diagonalized

simultaneously; this leads to the weight 4 simple form 0 0 0 β 0 0

0 α 0 0 0 0

0 0 1 0 0 1

 , (6.12)

where α, β are real entries. An alternative simple form (with higher weight),

that will prove useful in later applications of the OCM, is: −α 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

 ; (6.13)

• if the generalized eigenvalues of X are complex, a weight 5 simple form is −α 0 0 0 0 0

0 1 0 0 0 1

0 0 −1 0 1 0

 , (6.14)

where α is real, is almost surely possible.

Simplicity for symmetric-slice arrays 71

A simple form for 3×3×4 can be found applying the OCM. Both (6.13) and (6.14)

lead to the following simple form for the complement, 1 0 0 1 0 0 0 1 0 0 0 1

0 α 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 δα 0 0 0 1 0 0

 , (6.15)

where α has the same meaning as in (6.13) and (6.14), and δ = 1 in the first case and

−1 in the second case. So, almost surely, a 3 × 3 × 4 symmetric-slice array can be

simplified to a weight 8 simple form.

The only situation left to analyze is the 3 × 3 × 3 symmetric-slice array. In this

case the OCM is not useful, because the orthogonal complement of a 3× 3× 3 array

with symmetric slices is also a 3 × 3 × 3 array. So far, a closed-form transformation

to simple form for this array format has not been found. However, some numerical

simulations were carried out in order to inspect for possible simple forms. The most

interesting simple form that was found in this way is a model studied by Kiers, Ten

Berge and Rocci [42]:  ∗ 0 0 0 0 ∗ 0 ∗ 0

0 0 ∗ 0 ∗ 0 ∗ 0 0

0 ∗ 0 ∗ 0 0 0 0 ∗

 . (6.16)

SIMPLIMAX succeeded to transform 179 out of 200 randomly generated 3 × 3 × 3

symmetric-slice arrays into simple form (6.16). It is still not clear what mathematical

property (if any) is shared by the 21 arrays that failed to be transformed into simple

form (6.16). In Section 6.7 we shall come back to this particular problem; we will pro-

vide an argument that shows a way for finding a possible closed-form transformation

of 3× 3× 3 symmetric-slice arrays into simple form (6.16).

6.4.4 Simplifying symmetric-slice 4× 4×K arrays

In the 4× 4×K case we have Kmax = 10. So the 4× 4× 10 case has been solved. We

present simple forms for K = 1, 2, as well as for their complementary counterparts

K = 9, 8, respectively. The remaining cases are still open.

Arrays (=matrices) X of order 4 × 4 × 1 can be diagonalized by means of the

eigenvalue decomposition, so a weight 4 diagonal matrix D is possible almost surely.

Alternative forms, specially useful to compute the 4× 4× 9 complement, are possible

when X has eigenvalues of both signs. Specifically, denoting the eigenvalues of X by

72 Chapter 6

d1, d2, d3, d4, we may attain the forms
d1 0 0 0

0 d2 0 0

0 0 0 2d3

0 0 2d3 0

 , (6.17)

when d1, d2, d3 > 0 and d4 < 0, and
0 2d1 0 0

2d1 0 0 0

0 0 0 2d3

0 0 2d3 0

 , (6.18)

when d1, d3 > 0 and d2, d4 < 0.

Applying the OCM to the simple forms found for symmetric-slice 4× 4× 1 arrays

(D, (6.17) and (6.18)), we can find various simple forms for X of order 4× 4× 9. The

form of simplicity of the complement of X is important, since it may lead to different

weights via the OCM. When the complement is D, we have
1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0

0 α 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 β 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 γ 0 0 0 0

∣∣∣∣∣∣∣∣∣ (6.19)

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0


of weight 18 (α, β, γ are real entries). When the complement is (6.17) we have

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 α 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

∣∣∣∣∣∣∣∣∣ (6.20)

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 β 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0



Simplicity for symmetric-slice arrays 73

of weight 17 (α, β are real entries). When the complement is (6.18), we have
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣ (6.21)

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 α 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 α 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0


of weight 16 (α is a real entry). The conclusion is that, in general, a simplification

of a 4 × 4 × 9 symmetric-slice array into a weight 18 simple array (6.19) is always

possible. This result can be improved, when the signs of the eigenvalues of the or-

thogonal complement of X permit, to a weight 17 or weight 16 array (6.20) or (6.21),

respectively.

Symmetric-slice 4× 4× 2 arrays can be simplified according to the type of gene-

ralized eigenvalues involved:

• if the generalized eigenvalues are real, X has slices that can be diagonalized

simultaneously; this leads to the weight 6 simple form
0 0 0 0 γ 0 0 0

0 α 0 0 0 0 0 0

0 0 β 0 0 0 δ 0

0 0 0 1 0 0 0 1

 (6.22)

• if there is exactly one pair of complex generalized eigenvalues, the following

weight 7 simple form is possible almost surely
α 0 0 0 γ 0 0 0

0 β 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 −1 0 0 1 0

 (6.23)

• if there are two pairs of complex generalized eigenvalues, a weight 8 simple form

is possible almost surely,
γ1 0 0 0 0 δ1γ3 0 0

0 −γ1 0 0 δ1γ3 0 0 0

0 0 γ2 0 0, 0 0 δ2γ4

0 0 0 −γ2 0 0 δ2γ4 0

 , (6.24)

74 Chapter 6

with δ1 = ±1, δ2 = ±1.

Finally, applying the OCM to (6.22), (6.23) and (6.24) leads to simple forms for

arrays of order 4× 4× 8. The first two cases lead to a complement of weight 18,
−2β 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 2α 0 0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 βγ 0 0 −β 0 0 0 0 0 0 0 0 0

0 0 βγ 0 0 0 0 0 0 0 0 −βδ 0 0 0 0

∣∣∣∣∣∣∣∣∣ (6.25)

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

 ,
where α, β and γ have the same meaning as in (6.22) and (6.23), and δ =1 in the first

case and −1 in the second case. The third case leads to a complement of the form
1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −γ1γ−12 0 0 0 0 0 0 0 0 α

0 0 0 0 0 0 0 0 0 0 0 γ1γ
−1
2 0 0 α 0

∣∣∣∣∣∣∣∣∣ (6.26)

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

 ,
with α = −δ1δ−12 γ3γ

−1
4 , again of weight 18. The overall conclusion is that a symmetric

4× 4× 8 array can almost surely be simplified into one out of two weight 18 arrays.

6.5 Applications to typical rank

How simplicity may help to analyze the (typical) rank of an array was discussed in

Section 5.1. Appendix I shows how the simple forms of symmetric-slice arrays of order

3 × 3 × 4 and 3 × 3 × 5 can be used to determine the typical rank of the associated

arrays. The procedure used follows closely the one used by Ten Berge et al. [108], but

the simple forms used greatly simplify the procedure.

For example, Ten Berge et al. [108] proved that 3 × 3 × 4 symmetric-slice arrays

have typical rank {4, 5}. Their criterion to decide whether the rank is 4 or 5 relies on

Simplicity for symmetric-slice arrays 75

the evaluation of the roots of a certain fourth degree polynomial to see if they are real

and distinct. With the approach proposed in Appendix I, one can determine the rank

of the array by simply inspecting if two specific entries of the array are positive or

not. Moreover, exhibiting closed-form CP decompositions in these cases also becomes

an easy task.

Also, Ten Berge et al. [111] show that 4×4×8 and 4×4×9 arrays with symmetric

slices have typical ranks {8, 9} and {9, 10}, respectively. Their proofs rely on the

simple forms (6.25)–(6.26) and (6.19)–(6.21), respectively, that were introduced in

the previous Section.

6.6 Maximal simplicity

The maximal simplicity of the arrays considered in Section 6.4 was treated in Ap-

pendix I. The overall conclusion is that all the presented simple forms for symmetric-

slice arrays of order I × I ×Kmax, 2× 2×K and 3× 3×K have maximal simplicity.

This means that, in these cases, it is almost surely not possible to decrease the weight

of the simple forms.

As for the symmetric-slice arrays of order 4 × 4 ×K treated in Section 6.4.4, no

closed form proofs were found that ensure the maximal simplicity of the simple forms

previously presented. However, simulations were conducted trying to address this

issue. The results given by SIMPLIMAX showed that, for the arrays with 4× 4 sym-

metric slices we considered, weight 18 does indeed seem to be the maximal simplicity

to expect for K = 8 slices. As for 4× 4× 9 symmetric-slice arrays, simulations seem

to indicate that weight less than 16 indeed does not happen. Moreover, the situations

for which weight 18 and 17 simple forms (6.20) and (6.21) were developed do not seem

to admit simpler forms.

6.7 Revisiting the 3× 3× 3 case

In Section 6.4.3 we mentioned how a simple form for 3× 3× 3 symmetric-slice arrays

has eluded us. Simulations showed that simple form ∗ 0 0 0 0 ∗ 0 ∗ 0

0 0 ∗ 0 ∗ 0 ∗ 0 0

0 ∗ 0 ∗ 0 0 0 0 ∗

 (6.27)

seems to be attainable around 90% of the times. Therefore, we tried to transform a

generic 3× 3× 3 symmetric-slice array into simple form (6.27). Although a full proof

76 Chapter 6

is still not available, we will present an argument that might provide the key for a

solution in the near future.

Following an idea by Ten Berge and Sidiropoulos [107, p. 406], we use the fact that

it is almost surely possible to transform any 3 × 3 × 3 symmetric-slice array into an

array of the form

H =

 x3 + 1 1 1 1 1 1 1 1 1

1 1 1 1 y3 + 1 1 1 1 1

1 1 1 1 1 1 1 1 z3 + 1

 , (6.28)

for real numbers x, y, z. In fact, H is possible because the component matrices of a

perfect CP solution of the initial array can be transformed by premultiplication into

form

A =

 x 0 0 1

0 y 0 1

0 0 z 1

 , (6.29)

and Hi = AAiA
′ (i = 1, 2, 3), where Ai is the 4× 4 diagonal matrix holding the i-th

row of A in the diagonal. This implies that all frontal, lateral and horizontal slices of

H are symmetric matrices. Moreover, the corresponding slices in every direction are

equal, ie, the i-th frontal, horizontal and lateral slices coincide for i = 1, 2, 3.

We want to investigate if it is possible to further transform H into the simple form

Hsimp =

 k1 0 0 0 0 1 0 1 0

0 0 1 0 k2 0 1 0 0

0 1 0 1 0 0 0 0 k3

 , (6.30)

for unknown real numbers k1, k2, k3. Similarly to H, array Hsimp also holds symmetric

slices in all directions. Hence, it would be helpful to find a matrix B such that B is

the CP component matrix (the same in the three directions) for Hsimp. Moreover,

we should look for a matrix B that spans the same rowspace of A: B = SA, for

some nonsingular 3 × 3 matrix S. If we succeed in finding such a matrix B, then

transforming H into Hsimp boils down to using the transformation matrix S in each

direction for H. That is, Hsimp = S′Ha(S⊗ S), recall (5.1).

In short, we will have succeeded transforming H into Hsimp if we manage to find

a 3 × 4 matrix B which: (1) is in the row space of A, and (2) is the CP component

matrix for Hsimp (the same in the three directions). Notice that k1, k2, k3 need also

to be estimated in the process.

Start by rescaling the rows of B to have the first element 1. Also, note that

the rows of B must be orthogonal to the null of the rowspace of A, since A and B

Simplicity for symmetric-slice arrays 77

must span the same rowspace. The null of the rowspace of A is [1/x, 1/y, 1/z, −1]
′
.

Therefore, we can write B as

B =

 1 a b 1/x+ a/y + b/z

1 c d 1/x+ c/y + d/z

1 e f 1/x+ e/y + f/z

 . (6.31)

B is completely defined if we are able to compute a, b, c, d, e, f .

The fact that B is the CP component matrix in all directions for Hsimp leads to

the following six equations (necessary conditions):

1 + a2c+ b2d+ (1/x+ a/y + b/z)2(1/x+ c/y + d/z) = 0 (6.32)

1 + ac2 + bd2 + (1/x+ a/y + b/z)(1/x+ c/y + d/z)2 = 0 (6.33)

1 + a2e+ b2f + (1/x+ a/y + b/z)2(1/x+ e/y + f/z) = 0 (6.34)

1 + ae2 + bf2 + (1/x+ a/y + b/z)(1/x+ e/y + f/z)2 = 0 (6.35)

1 + c2e+ d2f + (1/x+ c/y + d/z)2(1/x+ e/y + f/z) = 0 (6.36)

1 + ce2 + df2 + (1/x+ c/y + d/z)(1/x+ e/y + f/z)2 = 0. (6.37)

These equations originate from decomposing each of the zero entries of Hsimp in terms

of the entries of component matrix B.

Thus, solving the 6 equations (6.32)–(6.37) with respect to a, b, c, d, e, f would

solve the problem. However, solving this system of equations has revealed to be harder

than expected. Resorting to computational software (Mathematica 7.0, Maple 12) did

not help in finding a solution. Attempts were made to apply techniques relying on

Groebner basis (Buchberger [9]). Unfortunately adequate solutions were not found so

far. The only solutions that did come out lead to matrices B of rank 1. These solutions

are useless because they would imply that the slices of Hsimp are proportional, which

is clearly not the case, see (6.30).

6.8 Discussion

We have worked under the assumption that the arrays are randomly sampled from a

continuous distribution, with the constraint of symmetry in the frontal slices. This

means that we have ignored cases that arise with probability zero. However, one

may question the “random” nature of a core array arising from a 3PCA procedure,

as it is a product of an iterative algorithm. As Rocci and Ten Berge [78, p. 362]

78 Chapter 6

argue, “. . . we cannot infer that simplicity transformations which work almost surely

for random arrays will also work for Tucker-3 core arrays. Fortunately, all Tucker-3

core arrays encountered so far do seem to behave as if randomly sampled from a

continuous distribution, and do allow transformations to simplicity. . . ”. Notice that

the core array of a 3PCA solution, although not randomly generated (it is even three-

way orthogonal), behaves as such in what concerns the techniques of typical rank and

maximal simplicity that we have explored in this Chapter. Still, a formal proof for

this is lacking.

The results of this Chapter have direct implications for the possibility of simplify-

ing core arrays in 3PCA. However, the realm of possible applications is more general.

Matrix theory on the simultaneous reduction of pairs of matrices to sparse forms is

abundant, but results for more than two matrices seem absent. The present Chapter

explores the possibilities of filling this gap. For instance, it has been shown that

3 × 3 × 4 arrays of symmetric slices can almost surely be reduced to a form where

each of the four slices has weight 2. This is an extension of matrix theory that will

be of interest beyond the realm of 3PCA.

Several simplicity situations for symmetric-slice arrays were addressed in this

Chapter. We covered the following situations: symmetric-slice 2 × 2 ×K arrays (all

possible K’s); symmetric-slice 3× 3×K arrays (all cases except K = 3); symmetric-

slice 4× 4×K arrays (K = 1, 2, 8, 9, 10 or more). We showed how simplicity results

can be used to address questions related to typical rank and maximal simplicity.

The 3 × 3 × 3 symmetric-slice case is left open. It was argued how a weight 9

simple pattern seems to apply in the vast majority of the cases. It is still not clear

whether all 3× 3× 3 symmetric-slice arrays can be transformed into a simple form of

weight 9, or which conditions must be satisfied in order for a simple form of weight 9

to be attainable.

Chapter 7

First and second order

derivatives for CP and

INDSCAL

In Sections 2.3 and 2.4 we introduced the CP and INDSCAL models, respectively.

Given a p × q ×m array X with frontal p × q slices Xi (i = 1, . . . ,m), CP aims at

finding the component matrices A (p × r), B (q × r) and C (m × r) that minimize

the function

f(A,B,C) =

m∑
i=1

‖Xi −ACiB
′‖2, (7.1)

where Ci is the diagonal matrix holding row i of C in the diagonal. For the special

case when the array has symmetric frontal slices, say S1, · · · ,Sm of order p× p, one

can use INDSCAL, which minimizes the function

g(A,C) =

m∑
i=1

‖Si −ACiA
′‖2. (7.2)

Minimizing f can be done in various ways. Carroll and Chang [11] and Harsh-

man [24] proposed an alternating least-squares method that has become known as the

CP-algorithm. However, other approaches have also been proposed, see for instance

the references given in Section 2.3.

Minimizing g directly seems difficult, however. Carroll and Chang [11] suggested

minimizing f instead. They conjectured that, after convergence, A and B will be

equal or, at least, columnwise proportional (ie, the columns of B can be rescaled to

80 Chapter 7

match the columns of A, while the columns of C absorb the inverse scaling). Such

matrices will be referred to as being equivalent.

Carroll and Chang’s conjecture seems to be valid in practical applications. How-

ever, counter-examples have already been constructed. Ten Berge and Kiers [102]

proved that equivalence may be violated at global minima of f if the slices Si are

indefinite. When the slices are nonnegative definite and r = 1 then equivalence can

be violated only at stationary points that do not correspond to global minima. Ten

Berge and Kiers [102] conjectured that such stationary points would be local minima.

However, Bennani Dosse and Ten Berge [3] proved that such stationary points must

be saddle points. This was achieved by analysing the first and second order deriva-

tives of a specific optimization function derived from the loss function of CP. Notice

that the result by Bennani Dosse and Ten Berge [3] concerns the case where r = 1

component is used. The conjecture of Carroll and Chang seems to be an open issue

when r > 1 components are used. In our research (see Appendix II (p. 115) for the

paper where all details can be found) we aimed at finding a second-order sufficient

condition that classifies CP decompositions with r ≥ 1 components as (local) optima

or saddle points. With this tool at hand we conducted a simulation study which sheds

some light on the equivalence problem. A similar second-order sufficient condition,

this time applied to INDSCAL, was also derived.

In Appendix II (p. 115) we present all the necessary derivations to compute the

second-order conditions for CP and INDSCAL. Also, applications of the conditions

that were derived are presented in the Appendix.

Summary

In Chapter 1 we presented several definitions and concepts whose comprehension was

crucial to fully understand all the subsequent chapters of this thesis. These concepts

consist of matrix operators, matrix decompositions, and higher order structures called

three-way arrays.

In Chapter 2 we introduced the main three-way models that were in the core of

the remainder of the thesis. 3PCA, CP, INDSCAL and the idea of constrained 3PCA

models were introduced. Several properties concerning each model were discussed.

Chapter 3 was devoted to the uniqueness of 3PCA and CP solutions. We have

shown that 3PCA solutions are typically non-unique. This means that there is some

freedom to rotate the component matrices and/or the core array to “simpler” forms.

CP solutions, on the other hand, are essentially unique under mild conditions. Several

types of necessary and sufficient conditions for uniqueness in CP were discussed.

Also, it was argued that some algebraic operations for arrays preserve the uniqueness

property. These operations can be useful if one desires to analyse whether a specific

CP solution is unique or not.

Degeneracy was the subject of Chapter 4. We explained what characterizes a

degenerate CP solution, what can cause degeneracy, and what can be done to try to

avoid degeneracy.

In Chapter 5 the issue of simplicity of a 3PCA solution was addressed. The subject

was put in more general terms as simplicity of a three-way array in general. Some

computational approaches to instill simplicity in three-way arrays were discussed. We

presented examples of simplicity transformations for particular families of three-way

arrays. The notion of maximal simplicity was also explored.

Chapter 6 was an extension of simplicity concepts introduced in Chapter 5 to

arrays with symmetric slices. Some results were presented for arrays with 2× 2, 3× 3

and 4× 4 symmetric slices. Applications of the proven simplicity results to questions

around typical rank and maximal simplicity were carried out. We have also explained

82 Summary

that a closed-form transformation to simple form for 3× 3× 3 symmetric-slice arrays

has eluded us. However, an argument possibly leading to a solution in the future was

presented.

In Chapter 7 we studied the first and second order derivatives of optimization

functions directly related to CP and INDSCAL. The goal was to present a criterion

that allows to characterize a stationary point of the optimization functions. Con-

ditions were devised in both unconstrained and constrained scenarios. Applications

showed how the differential tools that were worked out can be used.

References

[1] Andersson, C. A., & Bro, R. (1998). Improving the speed of multi-way algorithms:

Part I. Tucker3. Chemometrics and Intelligent Laboratory Systems, 42, 93-103.

[2] Andersson, C. A., & Bro, R. (2000). The N -way Toolbox for MATLAB. Chemo-

metrics and Intelligent Laboratory Systems, 52, 1-4.

[3] Bennani Dosse, M., & Ten Berge, J. M. F. (2008). The assumption of proportional

components when Candecomp is applied to symmetric matrices in the context of

Indscal. Psychometrika, 73, 303-307.

[4] Bennani Dosse, M., Ten Berge, J. M. F., & Tendeiro, J. (2009). Some new results

on orthogonally constrained Candecomp. Submitted.

[5] Bro, R. (1997). PARAFAC, Tutorial and applications. Chemometrics and Intel-

ligent Laboratory Systems, 38, 149-171.

[6] Bro, R. (1998). Multiway analysis in the food industry. Models, algorithms and

applications. Doctoral dissertation, University of Amsterdam.

[7] Brouwer, P., & Kroonenberg, P. (1991). Some Notes on the Diagonalization of

the Extended Three-Mode Core Matrix. Journal of Classification, 8, 93-98.

[8] Browne, M. W. (1972). Oblique rotation to a partially specified target. British

Journal of Mathematical and Statistical Psychology, 25, 207-212.

[9] Buchberger, B. (1965). An Algorithm for Finding the Basis Elements of the

Residue Class Ring of a Zero Dimensional Polynomial Ideal. Doctoral disser-

tation, University of Innsbruck. English translation by Michael Abramson in

Journal of Symbolic Computation (2006), 41, 475-511.

84 References

[10] Cao,Y. Z., Chen, Z. P., Mo, C. Y., Wu, H. L., & Yu, R. Q. (2000). A PARAFAC

algorithm using penalty diagonalization error (PDE) for three-way data array

resolution. The Analyst, 125, 2303-2310.

[11] Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multi-

dimensional scaling via an n-way generalization of Eckart-Young decomposition.

Psychometrika, 35, 283-319.

[12] Catalisano, M. V., Geramita, A. V., & Gimigliano, A. (2002). Ranks of tensors,

secant varieties of Segre varieties and fat points. Linear Algebra and its Applica-

tions, 335, 263-285. Erratum, Linear Algebra and its Applications, 367, 347-348.

[13] Cattell, R. B. (1944). “Parallel Proportional Profiles” and other principles for

determining the choice of factors by rotation. Psychometrika, 9, 267-283.

[14] Choulakian, V. (2009). Some numerical results on the rank of generic three-way

arrays over R. arXiv:0906.0198v1 [stat.CO], 1 June 2009.

[15] Comon, P., Ten Berge, J. M. F., De Lathauwer, L., & Castaing, J. (2009). Generic

and typical ranks of multi-way arrays. Linear Algebra and its Applications, 430,

2997-3007.

[16] De Lathauwer, L. (2006). A link between the Canonical Decomposition in

Multilinear Algebra and Simultaneous Matrix Diagonalization. SIAM J. Matrix

Anal. Appl., 28, 642-666.

[17] De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear singular

value decomposition. SIAM J. Matrix Anal. Appl., 21, 1253-1278.

[18] De Lathauwer, L., De Moor, B., & Vandewalle, J. (2004). Computation of the

canonical decomposition by means of a simultaneous generalized Schur decom-

position. SIAM J. Matrix Anal. Appl., 26, 295-327.

[19] De Silva, V, & Lim, L.-H. (2008). Tensor rank and the ill-posedness of the best

low-rank approximation problem. arXiv:math/0607647v2 [math.NA], 1 Apr 2008.

[20] Eckart, G, & Young, G. (1936). The approximation of one matrix by another of

lower rank. Psychometrika, 1, 211-218.

[21] Faber, N. M., Bro, R., & Hopke, P. K. (2003). Recent developments in CANDE-

COMP/PARAFAC algorithms: a critical review. Chemometrics and Intelligent

Laboratory Systems, 65, 119-137.

References 85

[22] Fackler, P. L. (2009), Notes on Matrix Calculus. Retrieved on 3 February 2009,

from http://www4.ncsu.edu/∼pfackler/MatCalc.pdf.

[23] Friedland, S. (2009). On the generic rank of 3-tensors.

ArXiv:0805.3777v3[math.AG], 29 July 2009.

[24] Harshman, R. A. (1970). Foundations of the Parafac procedure: models and con-

ditions for an “explanatory” multimodal factor analysis. UCLA Working Papers

in Phonetics, 16, 1-84.

[25] Harshman, R. A. (1972). Determination and proof of minimum uniqueness con-

ditions for PARAFAC1. UCLA Working Papers in Phonetics, 22, 111-117.

[26] Harshman, R. A. (2001). An index formalism that generalizes the capability of

matrix notation and algebra to n-way arrays. Journal of Chemometrics, 15, 689-

714.

[27] Harshman, R. A., & Lundy, M. E. (1984). The PARAFAC model for three-

way factor analysis and multidimentional scaling. In: H. G. Law, C. W. Snyder,

J. A. Hattie, R. P. McDonald (Eds.), Research Methods for Multimode Data Ana-

lysis (pp. 122-215). New York: Praeger.

[28] Harshman, R. A., & Lundy, M. E. (1984). Data preprocessing and the extended

PARAFAC model. In: H. G. Law, C. W. Snyder, J. A. Hattie, R. P. McDonald

(Eds.), Research Methods for Multimode Data Analysis (pp. 216-284). New York:

Praeger.

[29] Hitchcock, F. L. (1927). Multiple invariants and generalized rank of a p-way ma-

trix or tensor. Journal of Mathematics and Physics, 7, 39-70.

[30] Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of

products. Journal of Mathematics and Physics, 6, 164-189.

[31] Hopke, P. K., Paatero, P., Jia, H., Ross, R. T., & Harshman, R. A. (1998). Three-

way (Parafac) factor analysis: examination and comparison of alternative compu-

tational methods as applied to ill-conditioned data. Chemometrics and Intelligent

Laboratory Systems, 43, 25-42.

[32] Hotelling, H. (1933). Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology, 24, 417-441, 498-520.

86 References

[33] Jiang, T., & Sidiropoulos, N. D. (2004). Kruskal’s permutation lemma and the

identification of Candecomp/Parafac and bilinear models with constant modulus

constraint. IEEE Transactions on Signal Processing, 52, 2625-2636.

[34] Jolliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag: New York,

2nd Edition.

[35] Kapteyn, A., Neudecker, H., & Wansbeek, T. (1986). An approach to n-mode

component analysis. Psychometrika, 51, 269-275.

[36] Kiers, H. A. L. (1992). TUCKALS core rotations and constrained TUCKALS

modeling. Statistica Applicata, 4, 659-667.

[37] Kiers, H. A. L. (1994). SIMPLIMAX: Oblique rotation to an optimal target with

simple structure. Psychometrika, 59, 567-579.

[38] Kiers, H. A. L. (1997). Three-mode orthomax rotation. Psychometrika, 62, 579-

598.

[39] Kiers, H. A. L. (1998). A three-step algorithm for CANDECOMP/PARAFAC

analysis of large data sets with multicollinearity. Journal of Chemometrics, 12,

155-171.

[40] Kiers, H. A. L. (1998). Three-way SIMPLIMAX for oblique rotation of the three-

mode factor analysis core to simple structure. Computational Statistics & Data

Analysis, 28, 307-324.

[41] Kiers, H. A. L. (2000). Towards a standardized notation and terminology in mul-

tiway analysis. Journal of Chemometrics, 14, 105-122.

[42] Kiers, H. A. L., Ten Berge, J. M. F., & Rocci, R. (1997). Uniqueness of three-mode

factor models with sparse cores: the 3× 3× 3 case. Psychometrika, 62, 349-374.

[43] Kiers, H. A. L., & Van Mechelen, I. (2001). Three-way component analysis: Prin-

ciples and illustrative application. Psychological Methods, 6, 84-110.

[44] Krijnen, W. P. (1983). The analysis of three-way arrays by constrained PARAFAC

methods. Leiden: DSWO Press.

[45] Krijnen, W. P., Dijkstra, T. K., & Stegeman A. (2008). On the non-existence

of optimal solutions and the occurrence of “degeneracy” in the CANDE-

COMP/PARAFAC model. Psychometrika, 73, 431-439.

References 87

[46] Kroonenberg, P. M. (2008). Applied Multiway Data Analysis. John Wiley & Sons,

Inc.

[47] Kroonenberg, P. M. (1983). Three-mode Principal Component Analysis. Theory

and Applications. Leiden: DSWO Press.

[48] Kroonenberg, P. M., & De Leeuw, J. (1980). Principal component analysis of

three-mode data by means of alternating least squares algorithms. Psychome-

trika, 45, 69-97.

[49] Kruskal, J. B. (1977). Three-Way Arrays: Rank and Uniqueness of Trilinear De-

compositions, with Applications to Arithmetic Complexity and Statistics. Linear

Algebra and its Applications, 18, 95-138.

[50] Kruskal, J. B. (1988). Simple structure for three-way data: A new method inter-

mediate between 3-mode factor analysis and PARAFAC-CANDECOMP. Paper

presented at the 53rd Annual Meeting of the Psychometric Society, Los Angeles.

[51] Kruskal, J. B. (1989). Rank, decomposition, and uniqueness for 3-way and N-way

arrays. In: R. Coppi and S. Bolasco (Eds.), Multiway Data Analysis (pp. 7-18).

Amsterdam, Netherlands: North-Holland.

[52] Kruskal, J. B., Harshman, R. A., & Lundy, M. E., Some relationships between

Tucker’s three-mode factor analysis and PARAFAC/CANDECOMP. Paper pre-

sented at the annual meeting of the Psychometric Society, Los Angeles, 1983.

[53] Kruskal, J. B., Harshman, R. A., & Lundy, M. E., Several mathematical relation-

ships between PARAFAC-CANDECOMP and three-mode factor analysis. Paper

presented at the annual meeting of the Classification Society, St. John’s, New-

foundland, 1985.

[54] Kruskal, J. B., Harshman, R. A., & Lundy, M. E. (1989). How 3-MFA data can

cause degenerate Parafac solutions, among other relationships. In: R. Coppi and

S. Bolasco (Eds.), Multiway Data Analysis (pp. 115-122). Amsterdam, Nether-

lands: North-Holland.

[55] Lastovicka, J. L. (1981). The extension of component analysis to four-mode ma-

trices. Psychometrika, 46, 47-57.

[56] Leurgans, S. E., Ross, R. T., & Abel, R. B. (1993). A decomposition for three-way

arrays. SIAM J. Matrix Anal. Appl., 14, 1064-1083.

88 References

[57] Lim, L.-H. (2005). Optimal solutions to non-negative Parafac/Multilinear NMF

always exist. Talk at the Workshop on Tensor Decompositions and Applications,

29 August-2 September, CIRM, Luminy, Marseille, France.

[58] Liu, X., & Sidiropoulos, N. D. (2001). Cramer-Rao lower bounds for low-rank

decomposition of multidimensional arrays. IEEE Transactions on Signal Pro-

cessing, 49, 2074-2086.

[59] MacCallum, R. C. (1976). Transformation of a three-mode multidimensional sca-

ling solution to INDSCAL form. Psychometrika, 41, 385-400.

[60] Magnus, J. R., & Neudecker, H. (2007). Matrix Differential Calculus with Ap-

plications in Statistics and Econometrics. John Wiley & Sons: Chichester/New

York, 3rd Edition.

[61] Mitchell, B. C., & Burdick, D. S. (1994). Slowly converging Parafac sequences:

swamps and two-factor degeneracies. Journal of Chemometrics, 8, 155-168.

[62] Mulaik, S. A. (1972). The foundations of factor analysis. McGraw-Hill.

[63] Murakami, T. (1999). A simple core does not necessarily facilitate interpretations

in three-mode principal components analysis. Research Memorandum. Nagoya,

Japan: Nagoya University.

[64] Murakami, T. (1983). Quasi three-mode principal component analysis-A method

for assessing factor change. Behaviormetrika, 14, 27-48.

[65] Murakami, T., Ten Berge, J. M. F., & Kiers, H. A. L. (1998). A case of extreme

simplicity of the core matrix in three-mode principal components analysis. Psy-

chometrika, 63, 255-261.

[66] Navasca, C., De Lathauwer, L., & Kindermann, S. (2008). Swamp reducing tech-

nique for tensor decomposition. Proceedings of the 16th European Signal Proces-

sing Conference (EUSIPCO 2008), Lausanne, Switzerland, 25-29 August 2008.

[67] Paatero, P. (1997). A weighted non-negative least squares algorithm for three-way

‘PARAFAC’ factor analysis. Chemometrics and Intelligent Laboratory systems,

38, 223-242.

[68] Paatero, P. (1999). The Multilinear Engine– a Table-Driven, Least Squares Pro-

gram for Solving Multlinear Problems, Including the n-way Parallel Factor Ana-

lysis Model. Journal of Computational and Graphical Statistics, 8, 854-888.

References 89

[69] Paatero, P. (2000). Construction and analysis of degenerate PARAFAC models.

Journal of Chemometrics, 14, 285-299.

[70] Paatero, P., & Andersson, C. A. (1999). Further improvements of the speed of the

Tucker3 three-way algorithm. Chemometrics and Intelligent Laboratory Systems,

47, 17-20.

[71] Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in

Space. Philosophical Magazine, 2, 559-572.

[72] Pravdova, V., Estienne, F., Walczak, B., & Massart, D. L. (2001). A robust ver-

sion of the Tucker3 model. Chemometrics and Intelligent Laboratory Systems,

59, 75-88.

[73] Rajih, M., Comon, P., & Harshman, R. A. (2008). Enhanced line search: a novel

method to accelerate Parafac. SIAM J. Matrix Anal. Appl., 30, 1148-1171.

[74] Rayens, W. S., & Mitchell, B. C. (1997). Two-factor degeneracies and a stabi-

lization of PARAFAC. Chemometrics and Intelligent Laboratory Systems, 38,

173-181.

[75] Rhodes, J. (2010). A concise proof of Kruskal’s theorem on tensor decomposition.

Linear Algebra and its Applications, 432, 1818-1824.

[76] Rocci, R. (2001). Core matrix rotation to natural zeros in three-mode factor

analysis. In S. Borra, R. Rocci, M. Vichi, M. Schader (Eds.). Advances in classifi-

cation and data analysis (pp. 161-168). Berlin, Germany: Springer-Verlag.

[77] Rocci,R., & Ten Berge, J. M. F. (1994). A simplification of a result by Zellini on

the maximal rank of symmetric three-way arrays. Psychometrika, 59, 377-380.

[78] Rocci, R., & Ten Berge, J. M. F. (2002). Transforming three-way arrays to maxi-

mal simplicity. Psychometrika, 67, 351-365.

[79] Sidiropoulos, N. D., & Bro, R. (2000). On the uniqueness of multilinear decom-

position of N -way arrays. Journal of Chemometrics, 14, 229-239.

[80] Smilde, A., Bro, R. & Geladi, P. (2004). Multi-way analysis. Applications in the

Chemical Sciences. John Wiley & Sons, Ltd.

[81] Spearman, C. (1904). General intelligence, objectively determined and measured.

American Journal of Psychology, 15, 201–293.

90 References

[82] Stegeman, A. (2006). Degeneracy in Candecomp/Parafac explained for p× p× 2

arrays of rank p+ 1 or higher. Psychometrika, 71, 483-501.

[83] Stegeman, A. (2007). Degeneracy in Candecomp/Parafac and Indscal explained

for several three-sliced arrays with a two-valued typical rank. Psychometrika, 72,

601-619.

[84] Stegeman, A. (2008). Low-rank approximation of generic p × q × 2 arrays

with diverging components in the Candecomp/Parafac model. SIAM J. Matrix

Anal. Appl., 30, 988-1007.

[85] Stegeman, A. (2009). On uniqueness conditions for Candecomp/Parafac and Ind-

scal with full column rank in one mode. Linear Algebra and its Applications, 431,

211-227.

[86] Stegeman, A. (2009). Using the simultaneous generalized Schur decomposition as

a Candecomp/Parafac algorithm for ill-conditioned data. Journal of Chemome-

trics, 23, 385-392.

[87] Stegeman, A., & Comon, P. (2009). Subtracting a best rank-1 approximation

may increase tensor rank, arXiv:0906.0483v1 [math.AG], 2 June 2009.

[88] Stegeman, A. & De Lathauwer, L. (2009). A method to avoid diverging com-

ponents in the Candecomp/Parafac model for generic I × J × 2 arrays. SIAM

J. Matrix Anal. Appl., 30, 1614-1638.

[89] Stegeman, A., & Sidiropoulos, N. D. (2007). On Kruskal’s uniqueness condition

for the Candecomp/Parafac decomposition. Linear Algebra and its Applications,

420, 540-552.

[90] Stegeman, A., & Ten Berge, J. M. F. (2006). Kruskal’s condition for uniqueness in

Candecomp/Parafac when ranks and k-ranks coincide. Computational Statistics

& Data Analysis, 50, 210-220.

[91] Stegeman, A., Ten Berge, J. M. F., & De Lathauwer, L. (2006). Sufficient condi-

tions for uniqueness in Candecomp/Parafac and Indscal with random component

matrices. Psychometrika, 71, 219-229.

[92] Strassen, V. (1983). Rank and optimal computation of generic tensors. Linear

Algebra and its Applications, 52, 645-685.

References 91

[93] Ten Berge, J. M. F. (1984). A joint treatment of Varimax rotation and the pro-

blem of diagonalizing symmetric matrices simultaneously in the least-squares

sense. Psychometrika, 49, 347-358.

[94] Ten Berge, J. M. F. (1991). Kruskal’s polynomial for 2× 2× 2 arrays and a gene-

ralization to 2× n× n arrays. Psychometrika, 56, 631-636.

[95] Ten Berge, J. M. F. (1993). Least squares optimization in Multivariate

Analysis. DSWO Press, Leiden. Retrieved on 3 October 2006, from

http://www.rug.nl/psy/onderzoek/onderzoeksprogrammas/pdf/

leastsquaresbook.pdf.

[96] Ten Berge, J. M. F. (2000). The typical rank of tall three-way arrays. Psychome-

trika, 65, 525-532.

[97] Ten Berge, J. M. F. (2004). Partial uniqueness in CANDECOMP/PARAFAC.

Journal of Chemometrics, 18, 12-16.

[98] Ten Berge, J. M. F. (2004). Simplicity and typical rank of three-way arrays, with

applications to Tucker-3 analysis with simple cores. Journal of Chemometrics,

18, 17-21.

[99] Ten Berge, J. M. F. (2007). Simp442.m. Why does it work?. Unpublished Note,

Heymans Institute of Psychological Research, University of Groningen, The

Netherlands.

[100] Ten Berge, J. M. F. (2007). The intersecting subspace idea and the 3-3-3 array

(symmetric). Unpublished Note, Heymans Institute of Psychological Research,

University of Groningen, The Netherlands.

[101] Ten Berge, J. M. F., De Leeuw, J., & Kroonenberg, P. M. (1987). Some addi-

tional results on principal components analysis of three-mode data by means of

alternating least squares. Psychometrika, 52, 183-191.

[102] Ten Berge, J. M. F., & Kiers, H. A. L. (1991). Some clarifications of the Cande-

comp algorithm applied to Indscal. Psychometrika, 56, 317-326.

[103] Ten Berge, J. M. F., & Kiers, H. A. L. (1999). Simplicity of core arrays in three-

way principal component analysis and the typical rank of P×Q×2 arrays. Linear

Algebra and its Applications, 294, 169-179.

92 References

[104] Ten Berge, J. M. F., Kiers, H. A. L., & De Leeuw, J. (1988). Explicit CANDE-

COMP/PARAFAC solutions for a contrived 2× 2× 2 array of rank three. Psy-

chometrika, 53, 579-583.

[105] Ten Berge, J. M. F., Kiers, H. A. L., Murakami, T. & Van der Heijden, R. (2000).

Transforming three-way arrays to multiple orthonormality. Journal of Chemo-

metrics, 14, 275-284.

[106] Ten Berge, J. M. F., Knol, D. L., & Kiers, H. A. L. (1988). A treatment of the

Orthomax rotation family in terms of diagonalization, and a re-examination of a

singular value approach to Varimax rotation. Computational Statistics Quarterly,

3, 207-217.

[107] Ten Berge, J. M. F., & Sidiropoulos, N. D. (2002). On uniqueness in Cande-

comp/Parafac. Psychometrika, 67, 399-409.

[108] Ten Berge, J. M. F., Sidiropoulos, N. D., Rocci, R. (2004). Typical rank and

indscal dimensionality for symmetric three-way arrays of order I×2×2 or I×3×3.

Linear Algebra and its Applications, 388, 363-377.

[109] Ten Berge, J. M. F., & Smilde, A. K. (2002). Non-triviality and identification of

a constrained Tucker3 analysis. Journal of Chemometrics, 16, 609-612.

[110] Ten Berge, J. M. F., & Stegeman, A. (2006). Symmetry transformations for

square sliced three-way arrays, with applications to their typical rank. Linear

Algebra and its Applications, 418, 215-224.

[111] Ten Berge, J. M. F., Stegeman, A., & Bennani Dosse, M. (2009). The Carroll

and Chang conjecture of equal Indscal components when Candecomp/Parafac

gives perfect fit. Linear Algebra and its Applications, 430, 818-829.

[112] Ten Berge, J. M. F., & Tendeiro, J. N. (2009). The link between sufficient con-

ditions by Harshman and by Kruskal for uniqueness in Candecomp/Parafac.

Journal of Chemometrics, 23, 321-323.

[113] Tomasi, G., & Bro, R. (2006). A comparison of algorithms for fitting the

PARAFAC model. Computational Statistics & Data Analysis, 50, 1700-1734.

[114] Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis.

Psychometrika, 31, 279-311.

References 93

[115] Uhlig, F. (1973). Simultaneous block diagonalization of two real symmetric ma-

trices. Linear Algebra and its Applications, 7, 281-289.

[116] Weesie, H. M., & Van Houwelingen, J. C. (1983). GEPCAM User’s Manual. Un-

published manuscript, University of Utrecht, Institute for Mathematical Statis-

tics, The Netherlands.

[117] Zhao, H.-G. (2008). A heuristic method for computing the best rank-r approxi-

mation to higher-order tensors. International Journal of Comtemporary Mathe-

matical Sciences, 3, 471-476.

Appendices

Appendices 97

Appendix I

Tendeiro, J. N., Ten Berge, J. M. F., & Kiers, H. A. L. (2009).

Simplicity transformations for three-way arrays with symmetric slices, and applica-

tions to Tucker-3 models with sparse core arrays.

Linear Algebra and its Applications, 430, 924-940.

Linear Algebra and its Applications 430 (2009) 924–940

Contents lists available at ScienceDirect

Linear Algebra and its Applications

j ourna l homepage: www.e lsev ie r .com/ loca te / laa

Simplicity transformations for three-way arrays with

symmetric slices, and applications to Tucker-3 models

with sparse core arrays

Jorge N. Tendeiro∗, Jos M.F. Ten Berge, Henk A.L. Kiers

Department of Psychology, University of Groningen, 9700 AV Groningen, The Netherlands

A R T I C L E I N F O A B S T R A C T

Article history:

Received 21 February 2008

Accepted 2 September 2008

Available online 22 November 2008

Submitted by R.A. Brualdi

AMS classification:

15A69

Keywords:

Three-mode component analysis

Candecomp

Parafac

Typical tensorial rank

Tucker transformations

Maximal simplicity

Sparse arrays

Tucker three-way PCA andCandecomp/Parafac are twowell-known

methods of generalizing principal component analysis to threeway

data. Candecomp/Parafac yields component matrices A (e.g., for

subjects or objects), B (e.g., for variables) and C (e.g., for occasions)

that are typically unique up to jointly permuting and rescaling

columns. Tucker-3 analysis, on the other hand, has full transforma-

tional freedom. That is, the fit does not change when A,B, and C are

postmultiplied by nonsingular transformation matrices, provided

that the inverse transformations are applied to the so-called core

array G. This freedom of transformation can be used to create a

simple structure in A,B,C, and/or in G. This paper deals with the

latter possibility exclusively. It revolves around the question of how

a core array, or, in fact, any three-way array can be transformed to

have a maximum number of zero elements. Direct applications are

in Tucker-3 analysis, where simplicity of the core may facilitate the

interpretation of a Tucker-3 solution, and in constrained Tucker-3

analysis, where hypotheses involving sparse cores are taken into

account. In the latter cases, it is important to know what degree of

sparseness can be attained as a tautology, by using the transforma-

tional freedom. In addition, simplicity transformations have proven

useful as amathematical tool to examine rank andgeneric or typical

rank of three-way arrays. So far, a number of simplicity results have

been attained, pertaining to arrays sampled randomly from con-

tinuousdistributions. These resultsdonotapply to three-wayarrays

with symmetric slices in one direction. The present paper offers a

number of simplicity results for arrays with symmetric slices of

order 2 × 2, 3 × 3 and 4 × 4. Some generalizations to higher orders

∗ Corresponding author.

E-mail addresses: j.n.tendeiro@rug.nl (J.N. Tendeiro), j.m.f.ten.berge@rug.nl (J.M.F. TenBerge), h.a.l.kiers@rug.nl (H.A.L. Kiers).

0024-3795/$ - see front matter © 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2008.09.020

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 925

are also discussed. As a mathematical application, the problem

of determining the typical rank of 4 × 3 × 3 and 5 × 3 × 3 arrays

with symmetric slices will be revisited, using a sparse form with

only eight out of 36 elements nonzero for the former case and 10

out of 45 elements nonzero for the latter one, that can be attained

almost surely for such arrays. The issue ofmaximal simplicity of the

targets to be presented will be addressed, either by formal proofs

or by relying on simulation results.

©2008 Elsevier Inc. All rights reserved.

1. Introduction

Twoof themost popularmethods of component analysis for three-way arrays are Candecomp/Para-

fac, henceforth CP [1,3], and Tucker three-way PCA [17], henceforth 3PCA. For a three-way data

array X of format I × J × K , CP yields component matrices A(I × R), B(J × R), and C(K × R), such that∑K
k=1 tr(E

′
k
Ek) is minimized in the decomposition

X =
R∑

r=1

(ar ◦ br ◦ cr) + E, (1)

where ar , br , cr are columns r of A,B, and C, respectively, and Ek denotes the kth slice of order I × J

of the residual array E. It can be seen that an R-component CP solution approximates the data as the

sum of R outer products of the form (ar ◦ br ◦ cr), r = 1, . . .,R. Equivalently, each frontal slice Xk of X is

decomposed as

Xk = ACkB
′ + Ek , (2)

where Ck is the diagonal matrix holding the elements from row k of C.

LikeCP,3PCAapproximates thedataarrayasa sumofouterproductsof columnsofA(I × P),B(J × Q),

and C(K × R), but now every outer product of one of the P columns ofA, one of theQ columns of B, and

one of the R columns of C is involved, with P, Q , and R possibly different. In addition, each of these PQR

outer products isweightedwhen it enters the sum. Theweights are collected in the so-called core array

G of format P × Q × R. Specifically, 3PCA minimizes the function
∑K

k=1 tr(E
′
k
Ek) in the decomposition

X =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr(ap ◦ bq ◦ cr) + E, (3)

where ap, bq, cr are columns p, q, r of A,B, and C, respectively, and gpqr are entries from G. Equivalently,

3PCA can be expressed as

Xk ≈ A

⎛⎝ R∑
r=1

ckrGr

⎞⎠B′, k = 1, 2, . . .,K , (4)

where Xk and Gr denote frontal slices of X and G, respectively. The parameters are estimated by

minimizing the sum of squared residuals for fixed numbers of components in each mode [7].

Undermild conditions, a solution for CP is essentially unique [4,8,9]. That is, only joint permutations

and rescaling of columns of A, B and C will leave the fitted part of the solution unaltered. In 3PCA, on

the other hand, there is no such uniqueness. In fact, the core array can be transformed in the three

directions, as long as the inverse transformations are applied to the component matrices. Specifically,

the slabs G1, . . . ,GR can be transformed to G∗
1
, . . . ,G∗

R by means of the Tucker transformation

G∗
l = S′

⎛⎝ R∑
r=1

urlGr

⎞⎠T, l = 1, 2, . . .,R, (5)

where S, T, and U, holding elements url , are nonsingular, provided that the component matrices are

counter-transformed into A∗ = A(S′)−1, B∗ = B(T′)−1 and C∗ = C(U′)−1 [12,17]. Expression (5) can also

be written as

926 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

G∗
Vec = (T′ ⊗ S′)GVecU, (6)

where GVec = [Vec(G1)|· · ·|Vec(GR)] is a vectorised version of G, and G∗
Vec is defined analogously.

One of the problems that are often associated to 3PCA is the difficulty to interpret a solution. The

main reason is that the solution involves somany triplets of components. The number of these triplets

is the number of relevant nonzero entries in the core array. This situation can be improved if it is

possible to transform the core array so that it holds as many zero entries as possible. Such a “simple”

core will decrease the number of joint impacts of triples of components from A, B and C, which may

facilitate the interpretation. This is a first reason for considering simplicity transformations for core

arrays.

Results on simplicity transformations may also be useful to distinguish between tautologies and

non-trivial models. Often, researchers impose constraints on the core, based on theory. Once it is

proven that a certain simple form is achievable almost surely (via Tucker transformations) for arrays

of a given format, then that simple form adds nothing new as a model. The theory is then beyond

falsification, and the researcher needs to impose more or different constraints in order to construct a

meaningful model.

Apart from being useful for applied 3PCA with or without constraints on the core, transformations

to simplicity alsomay serve as a tool itself for themathematical study of three-way arrays. For instance,

Ten Berge and Kiers [13] and Ten Berge [14] have given results on typical rank (over the real field) of

array formats that becameobvious after certain simplicity transformations. It is important to note that,

although an array is altered when Tucker transformations are used, the rank remains unaffected. This

means that one has the freedom to transform an array by Tucker transformations without affecting its

rank.

2. Symmetry preserving Tucker transformations

Simplicity transformations for three-way arrays have received considerable attention, e.g. Kiers

[5,6], Murakami et al. [10], Ten Berge and Kiers [13], Ten Berge et al. [15], and Rocci and Ten Berge

[12]. However, whatever closed-form simplicity results have been obtained, they apply to arrays the

elements of which are randomly sampled from a continuous distribution. In practice, data sets fre-

quently contain symmetric slices. For such cases the above results do not hold. Research on simplicity

for arrays that have symmetric slices in one direction is still absent. The present paper offers simplicity

results for the latter type of array.

From now on we assume that X is an I × I × K array with K symmetric frontal slices Xk of order

I × I, k = 1, . . .,K . We assume that these slices are linearly independent, otherwise, we transform the

superfluous slices to zero via a suitable transformation (5), reducing thedimensionality of theproblem.

Because the space of real symmetric matrices of order I × I has dimension I(I + 1)/2, the number K of

symmetric slices to consider will not exceed Kmax = I(I + 1)/2.

We will usually work under the assumption that X is randomly sampled from a continuous distri-

bution, with the constraint that slices are symmetric in one direction. Phenomena that arise “almost

surely” are those that arise with probability one under this circumstance.

We are looking for symmetry-preserving transformations of X which yield an array Hwith a large

number of zero elements. So our goal is to determine nonsingular matrices S, U such that

Hl = S′
⎛⎝ K∑

k=1

uklXk

⎞⎠ S, l = 1, 2, . . .,K , (7)

where ukl is an element of U, has as many zero entries as possible. The number of nonzero entries in

H will be referred to as the weight of H.

Itmay be noted thatwehave tacitly assumed in (7) that S and T of (5) can be constrained to be equal.

In fact, this is a simplification, because symmetry preserving transformations with S and T different

do exist. However, this is possible only for two-slice arrays. Moreover, setting S and T equal has not

been detrimental at all in our search for transformations that minimize the weight of arrays.

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 927

3. A symmetric version of the orthogonal complement method

Rocci and TenBerge [12] have developed the so-called orthogonal complementmethod (henceforth

OCM), which permits transforming an array to simple form by using the previously known simplicity

transformation of a so-called complementary array. For instance, the seven frontal slices of a 3 × 3 × 7

array X form a 7-dimensional subspace in 9-space, and a complementary array Xc would be any

3 × 3 × 2 array, the slices of which are linearly independent, and trace-orthogonal to the seven slices

of X. OCM is based on the observation that transformations that simplify Xc may also be used to

simplify X itself. For instance, suppose Xc can be transformed to contain two diagonal 3 × 3 matrices.

The subspace spanned by the seven slices of X contains one diagonal matrix and six matrices having

just one nonzero element. Finding the linear combinations that produce those seven matrices in a

known subspace is easy, which means that the OCM will transform X into an array that has 54 zero

elements out of 63.

The OCM has played a key role in obtaining some important results of this paper. However, to be

useful in the present context, it needed to be adjusted in two respects. First, the dimensionality of the

space of I × I matrices is I2 in general, but it is only I(I + 1)/2 in case of symmetry. So X can be written

in a slice-wise vectorised version XVec = [Vec(X1)|· · ·|Vec(XK)] of order (1/2I(I + 1)) × K . Second, we

need to constrain the transformations to have S and T equal. This amounts to the following general

setup of OCM for symmetric slice arrays:

Step 1. Compute an orthogonal complement of XVec, say Xc
Vec.

Step 2. Compute Hc
Vec = (S−1 ⊗ S−1)Xc

VecV in such a way that Hc
Vec is in simple form.

Step 3. Compute a simple orthogonal complement of Hc
Vec, say HVec.

Step 4. Find the matrix U such that HVec = (S′ ⊗ S′)XVecU. Array H, reconstructed from HVec, is the

simple form found for X.

In the next sections, simplicity results for various array formats will be presented. We will denote

the array to be simplified byX, with symmetric frontal slicesX1, . . .,XK . The simple form to be obtained

from X will be denoted by H, with symmetric frontal slices H1, . . .,HK .

We start with the case where the set of symmetric slices in an array is space-filling.

4. Simplifying symmetric slice I × I × Kmax arrays

When we have the maximum number of linearly independent symmetric frontal slices, the set of

the frontal slices forms a basis for the space of symmetric I × I matrices. Denote the ith column of II
by ei. A simple basis for the same space is formed bymatrices eie

′
i
for i = 1, 2, . . ., I, and (eie

′
j
+ eje

′
i
) for

1 � i < j � I [11]. For example, when I = 3 the basis is⎡⎣1 0 0

0 0 0

0 0 0

⎤⎦ ,

⎡⎣0 0 0

0 1 0

0 0 0

⎤⎦ ,

⎡⎣0 0 0

0 0 0

0 0 1

⎤⎦ ,

⎡⎣0 1 0

1 0 0

0 0 0

⎤⎦ ,

⎡⎣0 0 1

0 0 0

1 0 0

⎤⎦ ,

⎡⎣0 0 0

0 0 1

0 1 0

⎤⎦ . (8)

Therefore, there is a nonsingular Kmax × Kmax matrix U such that Hl = ∑Kmax

k=1
uklXk , l = 1, 2, . . .,Kmax,

where the matrices Hl represent the elements of the simple basis. That is, H holds the elements of the

simple basis as frontal symmetric slices. This simple form has weight (number of nonzero elements)

I2, which means that the proportion of nonzero elements is 1/Kmax = 2/(I(I + 1)). Clearly, the relative

weight gets smaller as the size of the array increases.

This simple form for the I × I × Kmax symmetric slice array is also useful when we are dealing with

tall I × I × K arrays, i.e., with K > Kmax. In this case the frontal slices are linearly dependent. We start

by performing a suitable slice mix in order to set the slices in excess to zero, thus we may reduce the

number of frontal slices. When Kmax linearly independent slices remain, then the above simplification

is possible.

928 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

5. Simplifying symmetric slice 2 × 2 × K arrays

When X is a 2 × 2 × K array, there are three cases to consider, that is, we have K = 1, 2, or 3.

The 2 × 2 × 3 case was already dealt with before (Kmax = 3). In the 2 × 2 × 1 case there is merely a

symmetric matrix X of order 2. Computing the eigenvalue decomposition X = KDK′ we get K′XK = D.

Rescaling D to make one of its entries unity, we conclude that the diagonal matrix[
1 0

0 α

]
(9)

is a weight 2 simple form for X. An alternative simple form for D with the same weight is possible if

its diagonal entries, say d1 and d2, have opposite signs, namely,

S′DS =
[

0 2d1
2d1 0

]
(10)

with S =
[
1 1
k −k

]
and k2 = −(d1/d2). So X can be transformed into

[
0 1
1 0

]
(after rescaling (10)) when

the eigenvalues of X have opposite signs.

For a 2 × 2 × 2 array X = [X1|X2], the simple form can be computed using the OCM, since 2 × 2 × 2

is complementary to 2 × 2 × 1. It is straightforward that a simple formwhich is complementary to (9)

is given by[
α 0 0 1

0 −1 1 0

]
. (11)

If the orthogonal complement of X has eigenvalues with different signs (that is, if α in (9) is negative),

then Xc can be simplified as in (10), entailing the complementary array[
1 0 0 0

0 0 0 1

]
. (12)

Any array derived from (12) via a Tucker transformation such that one of the slices is invertible,

say X1, will have an X−1
1

X2 with real eigenvalues only. Conversely, a 2 × 2 × 2 symmetric array X =
[X1|X2] such that X−1

1
X2 has only real eigenvalues can always be simultaneously diagonalized as

in (12), thus implying an orthogonal complement matrix with one eigenvalue positive and one

negative.

To sum up, a weight 4 simple form for a 2 × 2 × 2 symmetric array is almost surely possible. If Xc

has both a positive and a negative eigenvalue, or equivalently, if X−1
1

X2 has real eigenvalues, then a

weight 2 simple target is possible.

6. Simplifying symmetric slice 3 × 3 × K arrays

For 3 × 3 × K arrays, Kmax = 6. We will search simplicity for cases K = 1, 2, 4, 5. Note that the case

Kmax = 6 has already been solved. The case K = 3 remains an open issue and is not covered in the

present paper.

The 3 × 3 × 1 array (=matrix) can be diagonalized using its eigenvalue decomposition, say D =
diag(d1, d2, d3). An alternative simple form with the same weight is possible if there is a pair of di’s

with opposite signs, in the same manner as was done to deduce (10). So, if d2d3 < 0 then

S′DS =
⎡⎣d1 0 0

0 0 2d2
0 2d2 0

⎤⎦ , (13)

with S =
[
1 0 0
0 1 1
0 k −k

]
and k2 = −(d2/d3).

The array format 3 × 3 × 5 is complementary to 3 × 3 × 1. We can therefore simplify a 3 × 3 × 5

symmetric array X using the OCM and the known simple form for the 3 × 3 × 1 complementary array

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 929

Xc. Matrix Xc can always be diagonalized, which in terms of the orthogonal complement means that

the following weight 10 simple form is always possible:⎡⎣1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 α 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 β 0 0 0 1 0 0 0 1 0

⎤⎦ . (14)

When Xc has a pair of eigenvalues with opposite signs, then it can be simplified into form (13), which

leads to a weight 9 simple form,⎡⎣0 0 0 0 0 0 0 1 0 0 0 1 α 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

⎤⎦ . (15)

To sumup, a 3 × 3 × 5 symmetric array can almost surely be simplified into theweight 10 simple array

(14). In the special case that the orthogonal complement of X has eigenvalues of both signs, then the

weight 9 target (15) is possible. This is the reason why (13) is to be preferred to the diagonal form for

the 3 × 3 × 1 case, whenever possible.

Next, we deal with the 3 × 3 × 2 case X = [X1|X2]. Define M = X−1
1

X2. We divide our analysis in

two cases, depending on the number of complex eigenvalues in M.

• M has all eigenvalues real

In this case, array X has rank 3 [16], and there is a CP-solution Xk = ACkA
′ (k = 1, 2), where A is

nonsingular and Ck is diagonal. So we can write Ck = A−1Xk(A
−1)′, which is a way of diagonalizing

both slices of X. Note thatM = X−1
1

X2 = (A′)−1(C−1
1

C2)A
′, which is an eigenvalue decomposition ofM.

Therefore, an easy way to perform the double diagonalization is to compute the eigendecomposition

M = KLK−1, so A = (K−1)′, and compute [K′X1K|K′X2K] = [C1|C2].
Almost surely, C−1

1
C2 has a pair of distinct diagonal elements, say c1 and c2. Array [C1|C2] may be

transformed to [C2 − c1C1| − C2 + c2C1], which has both slices diagonal of rank two. Notice that the

slice mix that was performed consists of a nonsingular transformation in the third direction. So we

conclude that a possible weight 4 simple form for the 3 × 3 × 2 symmetric array, in the case when M

has all three eigenvalues real, is⎡⎣0 0 0 β 0 0

0 α 0 0 0 0

0 0 1 0 0 1

⎤⎦ . (16)

When all eigenvalues are real, this simplification can be generalized to any array X = [X1|X2] holding
two symmetric slices of order I × I. The obtained simple form will have weight (2I − 2).

We shall now show how to get a simple form with weight 5. Although for the 3 × 3 × 2 case this

means a loss of simplicity, it will be useful for the complementary 3 × 3 × 4 array. We start by con-

sidering array [C1|C2 − cC1], where c is an eigenvalue of C−1
1

C2. If all eigenvalues of C
−1
1

C2 are distinct

(this happens almost surely), then for at least one of the eigenvalues, say c, we have that C2 − cC1 will

be diagonal, of rank 2, holding two entries with opposite signs in the diagonal. Rescaling both frontal

slices of [C1|C2 − cC1] allows us to get the form⎡⎣1 0 0 0 0 0

0 a 0 0 1 0

0 0 b 0 0 c

⎤⎦ (17)

with c < 0. Entry cmaybe set to−1bypre- andpostmultiplying both slices bydiag
(
1, 1, 1√|c|

)
. Subtract

(a − b)/2 times the second slice from the first slice to get⎡⎣1 0 0 0 0 0

0 d 0 0 1 0

0 0 d 0 0 −1

⎤⎦ (18)

with d = (a + b)/2. Next, pre- and postmultiplying both slices by

[
1 0 0

0
√
0.5

√
0.5

0
√
0.5 −√

0.5

]
leads to

930 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

⎡⎣1 0 0 0 0 0

0 d 0 0 0 1

0 0 d 0 1 0

⎤⎦ . (19)

Afinal rescaling of thefirst slice allowsus to conclude that the following simple form is alwayspossible:⎡⎣−α 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

⎤⎦ (20)

with α nonzero. This form will be of use when deriving a simple form for the 3 × 3 × 4 case.

It can be concluded that, for the 3 × 3 × 2 array whenM has all eigenvalues real, both the form (16)

and the form (20) are almost surely possible. Form (20) will appear useful later, to derive simplicity

for the complementary 3 × 3 × 4 format.

• M has one pair of complex eigenvalues

Assume that in the eigenvalue decomposition M = KLK−1 the real eigenvalue is L(1, 1). Consider

S1 = [k1| real(k2)| imag(k2)], where ki is the ith column of K. Then [18]

[S′
1X1S1|S′

1X2S1] =
⎡⎣a 0 0 d 0 0

0 b c 0 e f

0 c −b 0 f −e

⎤⎦ . (21)

Subtracting (d/a) times the first slice from the second, and then rescaling the second slice by the

inverse of entry (2,2) yields the form

[Y1|Y2] =
⎡⎣a 0 0 0 0 0

0 b c 0 1 f1
0 c −b 0 f1 −1

⎤⎦ (22)

Define S2 =
[
1 0 0
0 1 −s
0 s 1

]
for s = f1 +

√
f 2
1

+ 1, then

[S′
2Y1S2|S′

2Y2S2] =
⎡⎣a1 0 0 0 0 0

0 b1 c1 0 0 f2
0 c1 −b1 0 f2 0

⎤⎦ . (23)

A final linear combination of both slices allows us to have c1 = 0. Therefore, a simple form obtained

after a final rescaling is⎡⎣−α 0 0 0 0 0

0 1 0 0 0 1

0 0 −1 0 1 0

⎤⎦ . (24)

The overall conclusion for a general 3 × 3 × 2 symmetric slice array is that a weight 5 simple form is

always possible, see (20) and (24). In the case when X−1
1

X2 has all eigenvalues real, the weight 4 form

(16) has the smallest possible weight.

We will now apply the OCM to simplify the 3 × 3×4 array by using the known simple form of the

3 × 3 × 2 array. It is easy to verify that both (20) and (24) admit as an orthogonal complement an array

with form⎡⎣1 0 0 1 0 0 0 1 0 0 0 1

0 α 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 δα 0 0 0 1 0 0

⎤⎦ , (25)

where α has the same meaning as in (20) and (24), and δ = 1 in the first case and −1 in the second

case. So almost surely a 3 × 3 × 4 symmetric slice array can be simplified to a weight 8 simple form.

Interestingly, if we had used (16) as the simple array form for the orthogonal complement (in the real

eigenvalue situation), we would have obtained a weight 9 array as simple form for X, less simple than

(25).

There is still one case left, the 3 × 3 × 3 symmetric slice array. Although this array format seems to

allow a simple pattern of weight 9 more often than not, a formal proof of this has evaded us.

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 931

7. Simplifying symmetric slice 4 × 4 × K arrays

In the 4 × 4 × K case we have Kmax = 10. So the 4 × 4 × 10 case has been solved. We present sim-

ple forms for formats 4 × 4 × 1 and 4 × 4 × 2, as well as their complementary formats 4 × 4 × 9 and

4 × 4 × 8, respectively. The remaining cases are still open.

Arrays (=matrices) of order 4 × 4 × 1 can be diagonalized by means of the eigenvalue decompo-

sition. This means that D = diag(d1, d2, d3, d4), the diagonal matrix holding eigenvalues, is always a

possible simple form for the array. Alternative forms, specially useful for the 4 × 4 × 9 complement,

may be possible using the same process thatwas used to obtain (10) for the 2 × 2 × 1 case. Specifically,

we may attain the forms⎡⎢⎢⎣
d1 0 0 0

0 d2 0 0

0 0 0 2d3
0 0 2d3 0

⎤⎥⎥⎦ , (26)

when d1, d2, d3 > 0 and d4 < 0, and⎡⎢⎢⎣
0 2d1 0 0

2d1 0 0 0

0 0 0 2d3
0 0 2d3 0

⎤⎥⎥⎦ , (27)

when d1, d3 > 0 and d2, d4 < 0. Using the OCM for the 4 × 4 × 9 array and taking advantage of the

simple forms found for the 4 × 4 × 1 orthogonal complement D, (26) and (27), respectively, we have

various simple forms for X. When the complement is D, we have⎡⎢⎢⎣
1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 α 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 β 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

⎤⎥⎥⎦ (28)

of weight 18. When the complement is (26), we have⎡⎢⎢⎣
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 α 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 β 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

⎤⎥⎥⎦ (29)

of weight 17. When the complement is (27), we have⎡⎢⎢⎣
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 α

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 α 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎦ (30)

932 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

of weight 16. The conclusion is that, in general, a simplification of a 4 × 4 × 9 symmetric slice array

into a weight 18 simple array (28) is always possible. This result can be improved, when the signs of

the eigenvalues of the orthogonal complement of X permit, to a weight 17 or weight 16 array (29) or

(30), respectively.

Next, we treat the 4 × 4 × 2 case X = [X1|X2]. DefiningM = X−1
1

X2, three possibilities arise: either

all eigenvalues ofM are real, orM has one pair of complex eigenvalues, orM has two pairs of complex

eigenvalues.

• M has all eigenvalues real

When all eigenvalues are real, X has rank 4 [16]. As argued in the case of 3 × 3 × 2 arrays when all

eigenvalues are real, it is possible to perform a double diagonalization, followed by reducing the rank

of each slice to be 3, so we can have the weight 6 array⎡⎢⎢⎣
0 0 0 0 γ 0 0 0

0 α 0 0 0 0 0 0

0 0 β 0 0 0 δ 0

0 0 0 1 0 0 0 1

⎤⎥⎥⎦ . (31)

Another simple form that can be achieved using a procedure similar to the one that led to (20) is given

by ⎡⎢⎢⎣
α 0 0 0 γ 0 0 0

0 β 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0

⎤⎥⎥⎦ . (32)

Although (32) has weight 7, it will be useful in terms of the 4 × 4 × 8 complement.

• M has one pair of complex eigenvalues

Let, in the eigenvalue decomposition M = KLK−1, the real eigenvalues be L(1, 1) and L(2, 2). Con-

sider matrix S = [k1|k2| real(k3)|imag(k3)], where ki is the ith column of K. Then [18] we have

[S′X1S|S′X2S] =

⎡⎢⎢⎣
∗ 0 0 0 ∗ 0 0 0

0 a 0 0 0 d 0 0

0 0 b c 0 0 e f

0 0 c −b 0 0 f −e

⎤⎥⎥⎦ , (33)

where ∗ denotes a nonzero entry. The pair of lower-right 3 × 3 submatrices have an already known

form, see (21). Therefore, using here the same procedure used to simplify (21) applied to these blocks,

we obtain a weight 7 symmetric simple form⎡⎢⎢⎣
α 0 0 0 γ 0 0 0

0 β 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 −1 0 0 1 0

⎤⎥⎥⎦ , (34)

similar to (32). In fact, both arrays lead to 4 × 4 × 8 complements with the same pattern of (non)zeros.

• M has two pairs of complex eigenvalues

Rocci and Ten Berge [12] explain how to perform a slice mix of X1 and X2 such that for the new

slices X̃1, X̃2 we have that X̃−1
1

X̃2 has pure imaginary eigenvalues, so we will assume that X is already

in such form.Write the eigenvalue decomposition ofM = KLK−1 with L holding conjugate eigenvalues

placed next to each other, and consider S = [real(k1)|imag(k1)|real(k3)|imag(k3)], where ki is the ith

column of K. Then [18]

[S′X1S|S′X2S] =

⎡⎢⎢⎣
a b 0 0 e f 0 0

b −a 0 0 f −e 0 0

0 0 c d 0 0 g h

0 0 d −c 0 0 h −g

⎤⎥⎥⎦ . (35)

Denote these slices by Z1 and Z2. It is clear that Z
−1
1

Z2 has the same eigenvalues as M.

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 933

The next step consists of obtaining the eigenvalue decomposition Z1 = K1L1K
′
1
. Notice that Z1 has

two pairs of real eigenvalues differing only in signs. We shall prove next that [K′
1
Z1K1|K′

1
Z2K1] has the

symmetric form⎡⎢⎢⎣
∗ 0 0 0 0 ∗ 0 0

0 ∗ 0 0 ∗ 0 0 0

0 0 ∗ 0 0 0 0 ∗
0 0 0 ∗ 0 0 ∗ 0

⎤⎥⎥⎦ (36)

if L1 holds the opposite eigenvalues placed next to each other, e.g., λ1,−λ1, λ2,−λ2. This form can be

seen as related to (32) and (34), from the previous cases. We notice that the form of the first slice is

obvious (it is L1), but the form of the second slice deserves further inspection.

We start by observing that the 2 × 2 diagonal blocks in Z1 and Z2 are proportional to orthonormal

matrices. Therefore, we can write

Z1 =
[
γ1T1 0

0 γ2T2

]
, Z2 =

[
γ3T3 0

0 γ4T4

]
(37)

with T1, . . .,T4 symmetric and orthonormal, with eigenvalues 1 and −1. Then

Z−1
1

Z2 =
[
γ −1
1

γ3T1T3 0

0 γ −1
2

γ4T2T4

]
. (38)

First, consider the upper-left 2 × 2 block. Define G = T1T3 (so T3 = T1G); G is orthonormal with pure

imaginary eigenvalues. Consider its eigenvalue decomposition G = KGLGK
−1
G

with LG = diag(−iu, iu),

then G2 = −u2I2. This implies that det(G2) = u4, but we also have that det(G2) = det(G′G) = det(I2) =
1, and so u = ±1. Hence G2 = −I2. From this equality and the orthonormality of Gwe get that G = −G′,
so G is a skew matrix. Combining this fact with the orthonormality of G allows to conclude that

G =
[
0 −1
1 0

]
, up to sign. Next, since T1 has eigenvalues 1 and −1, we can write the eigenvalue decom-

position T1 = KT1LT1K
′
T1 with LT1 =

[
1 0
0 −1

]
andKT1 orthonormal. From thiswe haveK′

T1
T1KT1 = LT1

(diagonal) and

K′
T1
T3KT1 = K′

T1
T1GKT1 = K′

T1
KT1LT1K

′
T1
GKT1

= LT1K
′
T1GKT1 = ±LT1G = ±

[
0 1

1 0

]
(the second last equality is because K′

T1
GKT1 is orthonormal and skew, and therefore it equals G up

to sign). The same process can be applied to the lower-right 2 × 2 blocks of Z1 and Z2. We can con-

clude that if we pre and postmultiply the slices of the array [Z1|Z2] by K′
1
and K1, respectively, where

K1 =
[
KT1

0

0 KT2

]
is the matrix of eigenvectors of Z1, then

[K′
1Z1K1|K′

1Z2K1] =

⎡⎢⎢⎣
γ1 0 0 0 0 δ1γ3 0 0

0 −γ1 0 0 δ1γ3 0 0 0

0 0 γ2 0 0 0 0 δ2γ4
0 0 0 −γ2 0 0 δ2γ4 0

⎤⎥⎥⎦ (39)

with δ1 = ±1, δ2 = ±1.

We can use the simple forms that were deduced for symmetric 4 × 4 × 2 arrays to compute simple

forms for the 4 × 4 × 8 case using the OCM. So, depending on which situation we have for Xc, we may

haveHc as in (32), (34) or (39). The first two cases lead to a complement ofweight 18with the following

slices: ⎡⎢⎢⎣
−2β 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 2α 0 0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 βγ 0 0 −β 0 0 0 0 0 0 0 0 0

0 0 βγ 0 0 0 0 0 0 0 0 −βδ 0 0 0 0

934 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎦ , (40)

where α,β, and γ have the same meaning as in (32) and (34), and δ = 1 in the first case and −1 in the

second case. The third case leads to a complement of the form⎡⎢⎢⎣
1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −γ1γ
−1
2

0 0 0 0 0 0 0 0 α

0 0 0 0 0 0 0 0 0 0 0 γ1γ
−1
2

0 0 α 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎦ , (41)

with α = −δ1δ
−1
2

γ3γ
−1
4

, again of weight 18. The overall conclusion is that a symmetric 4 × 4 × 8 array

can almost surely be simplified into one out of two weight 18 arrays.

8. Applications to typical rank

Results concerning typical rank for several symmetric slice arrays are presented in Ten Berge et

al. [16]. Using the simplicity results presented above, we can now further clarify some of the results

deduced in [16]. We shall do this by revisiting the typical rank issue (over the field of real numbers)

for 3 × 3 × 4 and the 3 × 3 × 5 array formats, when slices are symmetric.

• Symmetric slice 3 × 3 × 4 arrays

Weproved that apossible simple formfor3 × 3 × 4symmetric slice arrays thatworks almost always

is given by (25). Ten Berge et al. [16] have proven that 3 × 3 × 4 symmetric slice arrays have typical

rank {4, 5}. The proof consists of constructing a rank four solution for a randomly sampled symmetric

slice array, and determining under which conditions we need a rank five solution. Here we shall do

the same, this time using (25). Our purpose is to put in evidence how helpful simple forms can be to

study the rank of an array.

We start by unfolding the array and vectorizing its frontal slices, so we get XVec = [Vec(X1)|· · ·
|Vec(X4)]. Noting that a CP decomposition can be written in the form XVec = (A • B)C′, where • stands

for the Khatri-Rao product, it can be concluded that a rank 4 solution exists if and only if there exists

a Khatri–Rao basis A • Bwhich generates XVec. Equivalently, wemay solve XVecW = A • B, withW =
(C′)−1. The problem sums up to finding four linearly independent vectorsw (columns ofW) such that

XVecw is the Kronecker product of two vectors (columns of A and B), which may be rescaled to be

a = [1 a1 a2]′ and b = [1 b1 b2]′, respectively, for scalars a1, a2, b1 and b2. We have

XVec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

α 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 δα 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and a ⊗ b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1
b2
a1

a1b1
a1b2
a2

a2b1
a2b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (42)

Solving XVecw = a ⊗ b for w yields a = b and w = [α−1 b2
1

δα−1 b2
2
b1 b2]′. There are two equations

left, b1b2 = 0 and b2
1

+ δb2
2

= α. The last two equations have four solutions if and only if δ = 1 and α is

positive, being the solutions b1 = 0, b2 = ±√
α and b1 = ±√

α, b2 = 0. With this we already have

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 935

A = B =
⎡⎣ 1 1 1 1

0 0
√

α −√
α√

α −√
α 0 0

⎤⎦ . (43)

We find C as C = (W−1)′, which is given by

C =

⎡⎢⎢⎣
0 0 0.5 0.5

0.5 0.5 0 0

0 0 0.5
√

α−1 −0.5
√

α−1

0.5
√

α−1 −0.5
√

α−1 0 0

⎤⎥⎥⎦ . (44)

We conclude that, when δ = 1 and α > 0, a unique rank four decomposition of X is given by Xk =
ACkA

′, k = 1, . . ., 4, with A and C given by (43) and (44).

When δ = −1 or α < 0, the rank of X is larger than 4. A rank 5 solution can be constructed as

follows. Consider array X temporarily augmented with a fifth slice X5 = diag(−δα2, δα, α), and define

Xaug = [Vec(X1)|. . .| Vec(X5)]. Proceeding as before, it is possible to find A(3 × 5) and Caug(5 × 5) such

thatXaug = (A•A)C′
aug.WefindC byeliminating thefifth rowofCaug. There aremany solutionspossible.

If we settle for

A =
⎡⎣1 1 1 1 1

0 0 1 −1 0

1 −1 0 0 0

⎤⎦ , (45)

then C will be

C =

⎡⎢⎢⎣
0 0 0.5α 0.5α 1 − α

0.5δα 0.5δα 0 0 1 − δα

0 0 0.5 −0.5 0

0.5 −0.5 0 0 0

⎤⎥⎥⎦ . (46)

This is a closed form solution for 3 × 3 × 4 symmetric slice arrays of rank 5.

The derivation above, based on the simplicity pattern (25), has enabled us to greatly simplify the

rank analysis of 3 × 3 × 4 symmetric slice arrays, compared to [16]. All it takes to determine the rank of

such an array is seeing whether or not α and δ of (25) are positive or not. This is easier than evaluating

the roots of a certain fourth degree polynomial to see if they are real and distinct, [16]. In fact, that

fourth degree polynomial has now been reduced to (λ2 − α)(λ2 − δα). In addition, finding a rank 5

solution when a rank four solution fails is now also trivially easy, as is clear from (45) and (46).

• Symmetric slice 3 × 3 × 5 arrays

In [16] it is proven that 3 × 3 × 5 symmetric slice arrays have typical rank {5,6}. We proved that

a possible simple form is given by (14). We can proceed as done before for the 3 × 3 × 4 situation.

Construct XVec = [Vec(X1)|· · ·|Vec(X5)]. For a rank 5 solution to exist we need to find a Khatri–Rao

basis which generates XVec = (A • B)C′. This is the same as solving XVecW = A • B, with W = (C′)−1.

Denoting rescaled columns of A and B by a = [1 a1 a2]′ and b = [1 b1 b2]′ respectively, for scalars

a1, a2, b1 and b2, we get

XVec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

α 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 1

0 β 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and a ⊗ b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1
b2
a1

a1b1
a1b2
a2

a2b1
a2b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (47)

SolvingXVecw = a ⊗ b forw implies that a = b andw = [α−1b2
1

β−1b2
2
b1 b2 b1b2]′. There is one condi-

tion that remains to be solved, which is equation α−1b2
1

+ β−1b2
2

= 1. This equation implies that there

is a solution (and therefore a rank 5 decomposition) if and only if α > 0 and/or β > 0. When the latter

936 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

condition is satisfied, we can deduce closed form solutions. There is an infinite number of solutions,

of which the ones presented next are only a possibility:

• if α > 0 and β > 0:

A =
⎡⎣ 1 1 1 1 1

0 0
√

α −√
α 0.5

√
α√

β −√
β 0 0

√
0.75β

⎤⎦ , (48)

C =

⎡⎢⎢⎢⎢⎢⎣
0 0 0.5 0.5 0

0.5 0.5 0 0 0

0 0 0.5
√

α−1 −0.5
√

α−1 0

0.5
√

β−1 −0.5
√

β−1 0 0 0

−2(
√
0.75 + 0.75)k 2(

√
0.75 − 0.75)k −1.5k 0.5k 4k

⎤⎥⎥⎥⎥⎥⎦ ,

(49)

with k =
√
3−1α−1β−1.

• if α > 0 and β < 0:

A =
⎡⎣ 1 1 1 1 1√

α −√
α

√
2α

√
2α −√

2α

0 0
√−β −√−β

√−β

⎤⎦ (50)

and

C =

⎡⎢⎢⎢⎢⎣
0.5 0.5 0 0 0

1 + √
0.5 1 − √

0.5 −0.5 −0.5 0

0.5
√

α−1 −0.5
√

α−1 0 0 0√
−0.5β−1 −

√
−0.5β−1 0 −0.5

√
−β−1 0.5

√
−β−1

−0.5
√

−α−1β−1 0.5
√

−α−1β−1 0.5
√

−0.5α−1β−1 0 −0.5
√

−0.5α−1β−1

⎤⎥⎥⎥⎥⎦ .

Whenthe rank is6, that is,whenα < 0andβ < 0, a simpledecompositionbasedon [11] is the following:

A =
⎡⎣1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

⎤⎦ , C =

⎡⎢⎢⎢⎢⎣
1 α 0 0 0 0

1 0 β 0 0 0

−1 −1 0 0 0 1

−1 0 −1 0 1 0

0 −1 −1 1 0 0

⎤⎥⎥⎥⎥⎦ . (51)

9. Maximal simplicity

We have presented simple forms for some symmetric slice arrays. A natural question that arises

concerns the optimality of the simple targets, described in terms of minimal weight. That is, have the

simple forms we presented the maximal simplicity possible?

For some cases it is possible to prove at once that the simple forms presented haveminimal weight.

For instance, the weight 9 form (8) for the 3 × 3×6 symmetric slice array has maximal simplicity.

In fact, if a simple form H with weight less than 9 were possible, then it would have at least four

slices of weight 1. The symmetry of these four slices implies that the weights must be placed in the

diagonal of each slice, which leads to the conclusion that H has linearly dependent slices. So weight

9 is associated to the maximal simplicity possible for 3 × 3 × 6 symmetric slice arrays with linearly

independent slices, or more generally, weight I2 is the optimal weight for I × I × Kmax symmetric slice

arrays with linearly independent slices.

Theweight of an array is an upper bound to the rank of an array. Usually this bound is larger than the

rank, but in cases of low order it might give some insight regarding maximal simplicity. For example,

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 937

it was shown that the 2 × 2 × 2 symmetric slice array X can be transformed into the simple formwith

weight 4 given by (11), and when α < 0 the weight 2 simple target given by (12) is also possible. It is

well known that X has rank 2 when α < 0 and rank 3 when α > 0. This immediately implies that (12)

has maximal simplicity when α < 0, since in this situation the weight equals the rank. On the other

hand, it is easy to show that there is no slice mix of (11) with rank 1 when α > 0, which implies that

no Tucker transformations applied to (11) can lead to slices of rank 1. This means that weight 4 is the

minimal possible in this case.

The OCM can also be used in this context. Consider, for instance, the 3 × 3 × 5 symmetric slice

array.We showed that a randomly generated array of this order can always be simplified into a weight

10 simple array (14), and in some situations a weight 9 array is also possible, see (15). The ques-

tion to answer at the moment is: is it possible to have a simpler (smaller weight) target? Assuming

that it is possible, we shall consider all simpler targets available. Noting that weight 6 or less would

imply linearly dependent slices, we are left with the following two types of arrays (without loss of

generality):

H1 =
⎡⎣0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

⎤⎦ (52)

and

H2 =
⎡⎣1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

⎤⎦ . (53)

Arrays (52) and (53) admit the following orthogonal complements, respectively,

Hc
1 =

⎡⎣1 0 0

0 0 0

0 0 0

⎤⎦ , Hc
2 =

⎡⎣0 0 0

0 0 1

0 1 0

⎤⎦ . (54)

When an orthogonal complement set contains a single symmetric matrix that is rescaled to unit sums

of squares, and rescaled to have a certain nonzero element positive (viz. the element (1,1) in Hc
1,

and the element (2,3) in
√

.5Hc
2), that complement matrix depends continuously on the given array.

Moreover, the determinant of a square matrix of order n is a real valued analytic function. Since the

determinant of orthogonal complement matrices of 3 × 3 × 5 symmetric slice arrays is not identically

zero, we can conclude that such matrices have determinant nonzero almost surely [2]. This implies

that both complements in (54) arise with probability zero, and so the simple forms (52) and (53) may

be discarded. It can be concluded that 3 × 3 × 5 arrays admit simple forms with weight less than 9

with probability zero.

It was proved in this paper that for 3 × 3 × 2 symmetric slice arrays X = [X1|X2] a weight 5 simple

form is always possible (arrays (20) or (24)), and in some situations weight 4 is possible (array (16)).

A simple form with weight 3 is not possible, because it can be seen that no slice mix from (20) or

(24) will ever lead to a rank 1 matrix. Therefore, the maximal simplicity for 3 × 3 × 2 symmetric slice

arrays is weight 4. Furthermore, when X−1
1

X2 has complex eigenvalues it is not possible to improve

the weight 5 simple form (24), since it can be seen that any weight 4 symmetric slice array has real

generalized eigenvalues.

Finally, consider the 3 × 3 × 4 symmetric slice arrays. We were able to simplify these arrays into

(25), which has weight 8. For this result to have maximal simplicity, we need to ensure that weight 7

or less can not occur with positive probability. It can be seen that any simple form of weight 6 or less

with at least three slices of rank 1 has a 3 × 3 × 2 orthogonal complement spanned by two slices that

do not admit a linear combination of rank 3, which is an event of probability 0. Also, simple formswith

weight 6 and only two rank 1 slices happen with probability zero, since their orthogonal complement

spaces are spanned by pairs of slices with joint weight 3. So we need to only focus on weight 7 targets.

There are two possible types of targets:

938 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

• We can have exactly two slices of rank 1, such as in array H1:

H1 =
⎡⎣1 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 α 1 0 0

⎤⎦ . (55)

There are 18different possibilities in total, but the reasoning to bepresented to only this example

applies to all. Notice that H1 is impossible almost surely, because its orthogonal complement

Hc
1,

Hc
1 =

⎡⎣0 0 0 0 −α 0

0 0 1 −α 0 0

0 1 0 0 0 2

⎤⎦ (56)

is a 3 × 3 × 2 symmetric slice array such that any slice mix will lead to three repeated real

generalized eigenvalues, an event of probability zero. In some of the cases the orthogonal com-

plement cannot even lead to full rankmatrices by linear combination of the slices, which is also

an event of probability zero.

• We can have exactly one slice of rank 1. One possibility, given by

H2 =
⎡⎣1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1 0

⎤⎦ (57)

can be ruled out since its complement Hc
2,

Hc
2 =

⎡⎣0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

⎤⎦ (58)

is a 3 × 3 × 2 symmetric slice array with only weight 2. There are nine possibilities left. Six of

them, such as H3,

H3 =
⎡⎣1 0 0 0 0 0 0 1 0 0 0 1

0 a 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

⎤⎦ (59)

lead to an orthogonal complement such that any slice mix with at least one invertible slice will lead to

a pair of repeated real generalized eigenvalues, which is an event of probability zero. The remaining

three possibilities have orthogonal complements that again do not admit full rank matrices as linear

combinations of their slices, which is an event of probability zero.

The conclusion is that weight 8 is indeed the maximal simplicity almost surely for 3 × 3 × 4 sym-

metric slice arrays.

10. Results from simulations: the SIMPLIMAX procedure

For many situations it is not easy to find simple forms, or assess maximal simplicity. When formal

proofs might be difficult, one can still use simulation as an informal way of making, reinforcing or

refuting one’s hypotheses. Kiers [6] has developed a procedure called SIMPLIMAX, which finds oblique

rotations that give theminimum sum of squares for a previously specified numberm of entries for the

rotated array. It is not known a priori which entries will be the smallest ones, so the algorithm will

internally solve this issue. This has the side effect of SIMPLIMAX finding locally optimal solutions. This

problem can be circumvented by using a large number of randomly started runs of the algorithm. An

J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940 939

adapted version of SIMPLIMAX allows to fix, in advance, the position of the m entries whose sum of

squares we intend to minimize. We shall refer to this as the fixed version of SIMPLIMAX, in contrast

with the not fixed version of the algorithm.

SIMPLIMAX had a crucial role in the research that led to the present paper. The modus operandi

was usually the following: for an array order for which we were interested in finding simple forms,

we randomly generated a family of 30 such arrays, fixed some values for m, and ran the not fixed

algorithm using MATLAB. A rotation was considered “successful” when the sum of squares of the m

smallest elements was below a fixed threshold (we settled for 10−15). For each array, we repeated

the algorithm with a random different starting configuration (to avoid locally optimal solutions) to

a maximum of 150 tries, unless a successful solution was found meanwhile. When we had found an

interesting simple form to look at, we used fixed SIMPLIMAX to test it directly (again 30 randomly

sampled arrays, 150 tries for each array). This gave us empirical probabilities of success for the targets

at hand. This could be done for several targetswith equal weight, as away of comparing performances.

Most of the rotations to simplicity that we proved in this paper for arrays with 3 × 3 or 4 × 4

symmetric slices were first suggested to us by SIMPLIMAX. Moreover, maximal simplicity was also

inspected. For each array orderwe examined,we ran not fixed SIMPLIMAX for 100 randomly generated

arrays, aiming for targetswith smallerweight than the simple formswepresent. The results concerning

orders 3 × 3 × K for K = 2, 4, 5 were consistent with the maximal simplicity we proved in this paper.

For the arrayswith 4 × 4 symmetric sliceswe considered, simulations indicate thatweight 18 seems to

be themaximal simplicity to expect forK = 8slices. As for4 × 4 × 9symmetric slice arrays, simulations

seem to indicate that weight less than 16 does not happen. Moreover, the situations for which weight

18 and 17 simple forms (28) and (29) were developed do not seem to admit simpler forms.

11. Discussion

We have worked under the assumption that the arrays are randomly sampled from a continuous

distribution, with the constraint of symmetry in the frontal slices. This means that we have ignored

cases that arise with probability zero. However, one may question the “random” nature of a core array

arising from a 3PCA procedure, as it is a product of an iterative algorithm. As Rocci and Ten Berge [12, p.

362] argue, “…we cannot infer that simplicity transformations which work almost surely for random

arrayswill alsowork for Tucker-3 corearrays. Fortunately, all Tucker-3 corearrays encountered so fardo

seem to behave as if randomly sampled from a continuous distribution, and do allow transformations

to simplicity …”. Still, a formal proof for this is lacking.

The results of this paper have direct implications for the possibility of simplifying core arrays in

Tucker 3-way PCA. However, the realm of possible applications is more general. Matrix theory on the

simultaneous reduction of pairs of matrices to sparse forms is abundant, but results for more than

twomatrices seem absent. The present paper explores the possibilities of filling this gap. For instance,

it has been shown that 3 × 3 × 4 arrays of symmetric slices can almost surely be reduced to a form

where each of the four slices has weight 2. This is an extension of matrix theory that will be of interest

beyond the realm of Tucker-3 PCA.

References

[1] J.D. Carroll, J.J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of Eck-
art–Young decomposition,Psychometrika 35 (1970) 283–319.

[2] F.M. Fisher, The Identification problem in Econometrics, McGraw-Hill, New York, 1966.
[3] R.A. Harshman, Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-model factor

analysis, University of California at Los Angeles. UCLA Working Papers in Phonetics, vol. 16, 1970, pp. 1–84.
[4] R.A. Harshman, Determination and proof of minimum uniqueness conditions for PARAFAC1, University of California at Los

Angeles. UCLA Working Papers in Phonetics, vol. 22, 1972, pp. 111–117.
[5] H.A.L. Kiers, TUCKALS core rotations and constrained TUCKALS modeling, Stat. Appl. 4 (1992) 659–667.
[6] H.A.L. Kiers, Three-way SIMPLIMAX for oblique rotationof the three-mode factor analysis core to simple structure, Comput.

Stat. Data Anal. 28 (1998) 307–324.
[7] P.M. Kroonenberg, J. de Leeuw, Principal component analysis of three-mode data by means of alternating least squares,

Psychometrika 45 (1980) 69–97.
[8] J.B.Kruskal, Three-wayarrays:Rankanduniquenessof trilineardecompositions,withapplications toarithmetic complexity

and statistics, Linear Algebra Appl. 18 (1977) 95–138.

940 J.N. Tendeiro et al. / Linear Algebra and its Applications 430 (2009) 924–940

[9] J.B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N-way arrays, in: R. Coppi, S. Bolasco (Eds.), Multiway
Data Analysis, North-Holland, Amsterdam, 1989, pp. 7–18.

[10] T. Murakami, J.M.F. Ten Berge, H.A.L. Kiers, A case of extreme simplicity of the core matrix in three-mode principal com-
ponents analysis, Psychometrika 63 (1998) 255–261.

[11] R. Rocci, J.M.F. Ten Berge, A simplification of a result by Zellini on the maximal rank of symmetric three-way arrays,
Psychometrika 59 (1994) 377–380.

[12] R. Rocci, J.M.F. Ten Berge, Transforming three-way arrays to maximal simplicity, Psychometrika 67 (2002) 351–365.
[13] J.M.F. Ten Berge, H.A.L. Kiers, Simplicity of core arrays in three-way principal component analysis and the typical rank of

p × q × 2 arrays, Linear Algebra Appl. 294 (1999) 169–179.
[14] J.M.F. Ten Berge, The typical rank of tall three-way arrays, Psychometrika 65 (2000) 525–532.
[15] J.M.F. Ten Berge, H.A.L. Kiers, T. Murakami, R. van der Heijden, Transforming three-way arrays to multiple orthonormality,

J. Chem. 14 (2000) 275–284.
[16] J.M.F. Ten Berge, N.D. Sidiropoulos, R. Rocci, Typical rank and Indscal dimensionality for symmetric three-way arrays of

order I × 2 × 2 or I × 3 × 3, Linear Algebra Appl. 388 (2004) 363–377.
[17] L.R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika 31 (1966) 279–311.
[18] F. Uhlig, A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil, Linear Algebra Appl. 14

(1976) 189–209.

Appendices 115

Appendix II

Tendeiro, J. N., Bennani Dosse, M., & Ten Berge, J. M. F. (accepted).

First and second order derivatives for CP and INDSCAL.

Chemometrics and Intelligent Laboratory Systems.

First and second-order derivatives for CP and INDSCAL☆

Jorge Tendeiro a,⁎, Mohammed Bennani Dosse b, Jos M.F. ten Berge a

a University of Groningen, The Netherlands
b University of Rennes 2, France

a b s t r a c ta r t i c l e i n f o

Article history:
Received 21 January 2010
Received in revised form 6 May 2010
Accepted 22 May 2010
Available online xxxx

Keywords:
CANDECOMP
PARAFAC
INDSCAL
Jacobian matrix
Hessian matrix

In this paper we provide the means to analyse the second-order differential structure of optimization
functions concerning CANDECOMP/PARAFAC and INDSCAL. Closed-form formulas are given under two types
of constraint: unit-length columns or orthonormality of two of the three component matrices. Some
numerical problems that might occur during the computation of the Jacobian and Hessian matrices are
addressed. The use of these matrices is illustrated in three applications.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Carroll and Chang [3] and Harshman [5] independently presented
two identical methods to analyse three-way arrays. The former is
CANDECOMP and the latter is PARAFAC; themethod is nowwell known
as CANDECOMP/PARAFAC or simply CP. Given a p×q×m array M with
frontal p×q slices Mi (i=1,…, m), CP aims at finding the component
matrices X (p×r), Y (q×r) and D (m×r) that minimize the function

f ðX;Y;DÞ = ∑
m

i=1
jjMi−XDiY

0jj2; ð1:1Þ

where Di is the diagonal matrix holding row i of D in the diagonal.
Minimizing f can be done in various ways. Carroll and Chang [3] and
Harshman [5] proposed an alternating least-squares method that has
become known as the CP decomposition. However, other approaches
have also been proposed. For instance, Paatero [12] has offered a
conjugate gradient algorithm.

The CP decomposition starts by initializing X, Y and D, and
alternately updates each component matrix while the others remain
constant. Iterations are terminated when the relative improvement in
f is smaller than a predefined threshold. It is not guaranteed that CP
converges; if it does converge, it is not guaranteed that the global

minimum is reached. To increase the chances of finding the seeked
minimum it is desirable to start CP with several initialization values.

For the special case when the array has symmetric frontal slices,
say S1, . . . , Sm of order p×p, Carroll and Chang [3] proposed INDSCAL,
which minimizes the function

gðX;DÞ = ∑
m

i=1
jjSi−XDiX

0jj2: ð1:2Þ

Since minimizing g directly seems difficult, Carroll and Chang [3]
suggested minimizing f instead. They conjectured that, after conver-
gence, X and Ywill be equal or, at least, columnwise proportional (i.e.,
the columns of Y can be rescaled to match the columns of X, while the
columns of D absorb the inverse scaling). Such matrices will be
referred to as being equivalent.

Carroll and Chang's conjecture seems to be valid in practical
applications. However, counter-examples have already been con-
structed. Ten Berge and Kiers [16] proved that equivalence may be
violated at global minima of f if the slices Si are indefinite. When the
slices are non-negative definite and r=1 then equivalence can be
violated only at stationary points that do not correspond to global
minima. Ten Berge and Kiers [16] conjectured that such stationary
points would be local minima. However, Bennani Dosse and Ten Berge
[1] proved that such stationary points must be saddle points. This was
achievedby analysing thefirst and second-order derivatives of a specific
optimization function derived from the loss function of CP. Notice that
the result by Bennani Dosse and Ten Berge [1] concerns the case where
r=1 component is used. The conjecture of Carroll and Chang seems to
be an open issue when rN1 components are used. In this paper, we
aimed at finding a second-order sufficient condition that classifies CP

Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

☆ This research has been supported by POPH/FSE (Programa Operacional Potencial
Humano/Fundo Social Europeu).
⁎ Corresponding author. Heijmans Institute, University of Groningen, Grote Kruis-

straat 2/1, 9712 TS Groningen, The Netherlands. Tel.: +31 503636953.
E-mail address: j.n.tendeiro@rug.nl (J. Tendeiro).

CHEMOM-02232; No of Pages 10

0169-7439/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemolab.2010.05.013

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r.com/ locate /chemolab

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

decompositions with r≥1 components as (local) optima or saddle
points, see Section 3. With this tool at hand we conducted a simulation
studywhich sheds some light on theequivalenceproblem, see Section7.
A similar second-order sufficient condition, this time applied to
INDSCAL, was also derived, see Section 4.

We extended the research of Bennani Dosse and Ten Berge [1] to
the case where rN1 components are extracted. First and second-order
derivatives for optimization functions which follow directly from the
loss functions of CP and INDSCAL were derived. The reason why the
loss functions (1.1), (1.2) were not used is that it is possible to express
D as a function of X and Y (for f) or as a function of X (for g) at
stationary points, see Sections 3 and 4. This allows simplifying the
optimization problem: the task of minimizing f and g will be replaced
bymaximizing simpler (=with less variables) optimization functions.
Moreover, this is a necessary step if one is to use differential second-
order conditions. The main reason is that the Hessian matrix is
singular if no elimination of variables is performed, thus drawing
inferences about minima and maxima is unwarranted.

Another source of freedom that needs to be controlled is directly
related to the fact that the CPmodel is overparametrized. Namely, given
diagonal matrices Λ1, Λ2, Λ3 such that Λ1Λ2Λ3=Ir, both (X, Y, D) and
(XΛ1, YΛ2, DΛ3) represent the same solution. This scaling indeterminacy
is considered tobe trivial inCP.Nevertheless it does pose aproblemwhen
optimizing f using differential tools since one has f(X, Y, D)= f(XΛ1, YΛ2,
DΛ3), ie, for each (X, Y, D) in the domain of f there is an infinity of points
which are mapped onto f(X, Y, D). This has the effect of making the
second-order sufficient conditions useless, since in these conditions the
Hessian matrix will invariably fail to be non-singular. Therefore,
determining the nature of stationary points of f via its second-order
differential structure becomes unfeasible under the current setting.
Notice that a similar problem applies also to INDSCAL and its associate
function g, since an INDSCAL solution is also characterized by scaling
indeterminacy. Also, the new optimization functions that will be derived
from f and g suffer from the same problem. Since the analysis of second-
order structures is one of the goals in this paper, something had to be
done to overcome this issue. Constraining thedomainof the optimization
functions is a possible solution to the problem discussed in the previous
paragraph.We settled for two types of constraint:X andY constrained to
hold unit length columns (Case I), and X and Y constrained by
orthonormality (Case II). The first constraint is a so-called identification
constraint; it involves no loss of fit. The second constraint is active, thus a
loss of fit is due to happen when compared to the unconstrained
situation. Both constraints proved to eliminate the problemof singularity
of the Hessian matrix in the vast majority of the cases. Some exceptions
were found, as will be discussed in latter sections.

The utility of the second-order conditions that we present in this
paper extends beyond the study of the equivalence problem. In fact,
minimizing f is not a straightforward optimization problem. First of all,
there is usually no closed-form solution.Moreover, a solutionmight not
even exist. For example, the 2×2×2 symmetric slice array analysed by
Ten Berge, Kiers and De Leeuw [17] showed that the loss function (1.1)
has an infimumwhich is not a minimum.More recently, Stegeman [13]
showed that (1.1) does not have a minimum when p×p×2 arrays of
rank p+1or higher are decomposed into p rank-1 arrays and a residual
array (see also Stegeman [14] for a follow-up). Other problems that
might affect the search and quality of an optimal solution for f are:
preprocessing the data, the number of components to retain, the choice
of the initialization values for the algorithm, slow convergence of the
algorithm, existence, uniquenessor “illness”of the solution. The fact that
CP does not always converge, or that it might converge to non-optimal
points, raises questions concerning the nature of the limiting points of a
CP sequence. Similar questions apply to INDSCAL solutions and target
function (1.2). These observations reinforce the benefit of having
available a tool like the one we propose in this paper. Since our tool
allows to better characterize a CP or INDSCAL solution, we have a better
insight into the nature of such solution. Specifically, if a solution proves

to be a saddle point, then one is sure that it cannot correspond to the
seeked global minimum. Therefore a new run of the algorithm is
required, possibly with different (random) starting values.

There has been some research in the past concerning the study of the
differential structure of the optimization function for CP. Paatero [11,12]
has developed formulas for the Jacobian and Hessian matrices for loss
function (1.1).However, our approachdiffers fromPaatero's in twoways.
Firstly, Paatero does not perform variable elimination. Secondly, Paatero
derives a numerical approximation to the Hessian matrix, whereas we
propose in the present paper Hessian matrices in closed form.

In this paper we will use matrix differential calculus; definitions
and useful differential formulas are to be found in Section 2 and
Appendix A. All formulas and necessary derivations for the Jacobian
and Hessian matrices are the core of Sections 3 and 4.

The benefit of analysing second-order differential structures is first
illustrated in Section 5, where we revisit the data analysed by Ten
Berge, Kiers and De Leeuw [17]. It is shown that, for this data, saddle
points occur very often when the ALS algorithm is initialized by
randomly generating orthonormal component matrices A, B, C.

In Sections 6–8 we describe three simulation studies that were
carried out. In the first study we used an algorithm for INDSCAL with
orthogonality constraints (Ten Berge, Knol and Kiers [18]) to fit 3×3×3
arrays with positive definite slices and also 3×3×3 arrays with
indefinite slices. We wished to detect non-optimal solutions, and to
see whether they corresponded to saddle points or not. The goal was to
further clarify the characterization of the solutions found in the
simulation study of Ten Berge et al. [18]. In the second study we tried
to see how a result of Bennani Dosse and Ten Berge ([1], pg. 306)
extends to situations with rN1 components. In order to do this, we
generated random arrays with positive definite slices and also with
indefinite slices and then computed CP solutions with more than one
component. We analysed the second-order information for each
solution. The first goal was to check whether non-equivalence could
occur at all. In case it would occur, we were interested in verifying
whether such solutions correspond to saddle points (as it is proven to
happen when r=1) or to local optima. The contrast between arrays
with positive definite slices and indefinite sliceswas considered. In both
situations we analysed features such as degeneracy and occurrence of
different fit values. In the third study we expanded this type of analysis
to CP solutions of non-symmetric slice arrays, for 29 different scenarios.

We finish the paper with a Discussion section, where some
considerations about numerical stability of our second-order condi-
tions are to be found. It is argued that differentiation might not be
possible for degenerate solutions of CP or INDSCAL, since degenerate
solutions correspond to points where the optimal functions are nearly
non-differentiable. Some caution is therefore needed when analysing
cases of this kind.

2. Derivatives of matrix functions with respect to matrix variables

2.1. Notation

Scalars will be denoted by lower case italic font (a, x, λ), vectors by
lower case bold-face font (a, x, λ), matrices by upper case bold-face
font (A, X, Λ), and arrays by underlined upper case bold-face font (A,
X, Λ). Given matrix X, xi denotes the i-th column of X. The only
exceptions to this rule appear in definitions (3.2) and (4.2).

For given matrices A and B, A′ is the transpose of A; tr(A) is the
trace of A; vec(A) reshapes A into a column vector by stacking the
columns in sequence, one below the other; A⊗B, A⁎B and A⊙B
denote the Kronecker, Hadamard and Khatri-Rao products of A and B,
respectively; and diagV(A) is the column vector holding the diagonal
of A. Given a vector d, diagM(d) denotes the diagonal matrix whose
diagonal is equal to d. Im is the identity matrix of order m; 0mn is the
zero matrix of order m×n; Cmn is the mn×mn commutation matrix,
i.e., Cmnvec(A)=vec(A′); Tn is the n2×n matrix with unit entries in

2 J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

position ((i−1)n+ i, i) for i=1, …, n and zeroes elsewhere, and
En= In2–TnTn′. For example, for n=3

In Appendices B and C there can be found several matrix functions
(F1 to F8, and G1 to G16), as well as some associated derivatives. These
functions will be used throughout the derivations in Sections 3 and 4.

2.2. Differentiation of functions with respect to matrix variables

The Jacobian matrix of f: Rn→Rm is the m×n matrix of partial

derivatives whose entry (i, j) is
∂fiðxÞ
∂xj

, for x2Rn. This notion of

Jacobian matrix can be extended to matrix functions with matrix
variables: the Jacobian matrix of function A: Rp× r→Rm×n is the
mn×pr matrix given by ∂A

∂X = ∂vecðAÞ
∂vecðXÞ.

Given a scalar function f: Rn→R, the associated Hessian matrix
∂2f
∂X2 is the n×n matrix whose entry (i, j) is

∂2f ðxÞ
∂xj∂xi

, for x2Rn. The

concept of Hessian matrix can be extended to scalar functions with
matrix variables as follows: the Hessian matrix of function f: Rp× r→R
is the pr×pr matrix given by ∂2 f

∂X2 = ∂2 f
∂vecðXÞ2.

This is how the partial derivatives will be arranged in the sequel.
For example, the Jacobian matrix of a scalar function will be a row
vector. Also, all differential formulae that will be introduced are
adapted to this definition. Notice that there exist authors who choose
to display the partial derivatives of the Jacobian and Hessian matrices
in a different way than the one done in the present paper. See, for
example, Magnus and Neudecker ([10], Chapter 9) for a discussion on
this subject. Therefore, some caution is needed before going into the
derivations of the next sections.

2.3. Matrix differentiation formulas

In Table A1 (see Appendix A) we summarize the most important
formulas of matrix differentiation that are of use in this paper. In
Tables B1 and C1 (see Appendices B and C)we define functions F1−F8
and G1−G16, for which we present the relevant partial derivatives.
These functions appear useful during the differentiation process, as
they simplify the presentation of our results. In some functions we
add the superscript (i) to denote the dependency of the function on the
value of i=1, …, m.

3. Optimization of CP

The loss function of CP (1.1) can be written as

f ðX;Y;DÞ = ∑
m

i=1
jjMijj2 + tr YDiX

0XDiY
0� �
−2tr Y0M0

iXDi

� �� �
: ð3:1Þ

At stationary points we have

di = transposed row i of D = ðX0X ⁎ Y
0YÞ−1diagVðX0MiYÞ ð3:2Þ

and

trðYDiX
0XDiY

0Þ = trðY0M0
iXDiÞ: ð3:3Þ

Formula (3.2) can be directly derived from the equation ∂f
∂Di

= 0; it
allows to express D in terms of X and Y. Equality (3.3) can be seen as
follows: define ei=diagV(Y′Mi′X), and verify that tr(Y′M′iXDi)=ei′di,
tr(X′XDiY′YDi)=di′(X′X⁎Y′Y)di=di′ei. Thus, to optimize the loss
function of CP we can work with function

f ðX;YÞ = ∑
m

i=1
jjMijj2−tr Y0M0

iXDi

� �� �
; ð3:4Þ

for D defined as in Eq. (3.2). Minimizing Eq. (3.4) is equivalent to
maximizing

LCPðX;YÞ = ∑
m

i=1
tr Y0M0

iXDi

� �
; ð3:5Þ

for D defined by Eq. (3.2).
We wish to describe a sufficient condition for a stationary point of

LCP(X,Y) to be a (local) maximum. In order to do this, we will derive
the Jacobian and Hessian matrices for LCP(X,Y) in two different
scenarios: X,Y constrained to hold columns of unit length (Case I), and
X,Y constrained by orthonormality (Case II). The constrained situa-
tions will be dealt with by introducing Lagrange multipliers:

LCPc ðX;YÞ = ∑
m

i=1
trðY0M0

iXDiÞ−trðΛðX0X−IrÞÞ−trðΔðY0Y−IrÞÞ: ð3:6Þ

In the case that X and Y are constrained to have unit length
columns we have that Λ=Diag([λi]) and Δ=Diag([δi]) are diagonal
r×rmatrices holding Lagrange multipliers, and D is given by Eq. (3.2)
with the diagonal of X′X⁎Y′Y filled with 1's. If X and Y are constrained
by orthonormality then Λ=[λij] and Δ=[δij] are symmetric r× r
matrices holding Lagrange multipliers and D is given by Eq. (3.2) with
X′X⁎Y′Y= Ir.

3.1. Derivation of the Jacobian of Lc
CP

Define γi=tr(Y′M′iXDi); we have

∂γi

∂X = :vecðIrÞ0 Ir⊗Y0M0
i

� �
Di⊗Ip
� �

+ Ir⊗Xð ÞTr
∂di

∂X

� �
: ð3:7Þ

In Case I the partial derivative of di with respect to X is

∂di

∂X = diagVðX0MiYÞ0⊗Ir
� � ∂ X0X ⁎ Y0Y

� �−1

∂X + X0X ⁎ Y0Y
� �−1T0

r Ir⊗Y0M0
i

� �
;

ð3:8Þ

see Appendix B for the derivation of ∂ X0X ⁎ Y0Yð Þ−1

∂X . In Case II we have that

∂di

∂X = T0
rðIr⊗Y0M0

iÞ: ð3:9Þ

Analogously,

∂γi

∂Y = vecðIrÞ0 Ir⊗X0Mi

� �
Di⊗Iq
� �

+ Ir⊗Yð ÞTr
∂di

∂Y

� �
: ð3:10Þ

3J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

In Case I the partial derivative of di with respect to Y is

∂di

∂Y = diagVðX0MiYÞ0⊗Ir
� � ∂ðX0X ⁎ Y

0YÞ−1

∂Y + X0X ⁎ Y
0Y

� �−1T0
r Ir⊗X0Mi

� �
;

ð3:11Þ

see Appendix B for the derivation of
∂ðX0X ⁎ Y0YÞ−1

∂Y . In Case II we have
that

∂di

∂Y = T0
r Ir⊗X0Mi

� �
: ð3:12Þ

The Jacobian of LcCP is the 1×(p+q)r row vector

Jac LCPc
� �

= ∑
m

i=1

∂γi

∂X ∑
m

i=1

∂γi

∂Y

� 	
−2 vecðXÞ0ðΛ⊗IpÞ vecðYÞ0ðΔ⊗IqÞ
h i

:

ð3:13Þ

3.2. Derivation of the Lagrange multipliers

Tofindexpressions for the Lagrangemultipliers as functions ofX and
Ywe need to solve ∂LCPc

∂X = 0, ∂L
CP
c

∂Y = 0. We shall solve the first equation;
the process is the same for the second one. Equation ∂LCPc

∂X = 0 is
equivalent to∑m

i = 1
∂γi
∂X = 2vecðXÞ0ðΛ⊗IpÞ. This implies that

∑
m

i=1

∂γi

∂xk
= 2 ∑

r

j=1
λjkx

0
j; ð3:14Þ

for k=1,…, r. In case I Eq. (3.14) becomes ∑m
i = 1

∂γi
∂xk

= 2λkkx0
k,

which implies that

λkk =
1
2
∑
m

i=1

∂γi

∂xk
xk: ð3:15Þ

In case II we have

λjk =
1
2
∑
m

i=1

∂γi

∂xk
xj; ð3:16Þ

for j=1, …, r.

3.3. Derivation of the Hessian of Lc
CP

Next we derive the second-order derivatives. Define the following
constant matrices with respect to X: J1=vec(Ir)′(Ir⊗Y′M′

i); J2=–

diagM(vec(Y′Y))Er(Ir2+Crr); J3=T′r(Ir⊗Y′M′i). It can be seen that

∂2γi

∂X2 = Ipr⊗J1
� �½ Ir⊗Cpr⊗Ip

� �
Ir2⊗vec Ip

� �� �
Tr

∂di

∂X

+
∂di

∂X

� �0
⊗Ipr

� �
T0

r⊗Ipr
� �

Ir⊗Crr⊗Ip
� �

vecðIrÞ⊗Ipr
� �

+ Ipr⊗ Ir⊗Xð ÞTr

� �∂2di

∂X2 �;

ð3:17Þ

with
∂di

∂X given by Eq. (3.8) (in Case I) or Eq. (3.9) (in Case II). The term
∂2di

∂X2 is 0pr2,pr in Case II; to derive
∂2di

∂X2 in Case I we start by rewriting

Eq. (3.8):

∂di

∂X = FðiÞ4 J2 Ir⊗X0� �
+ X0X ⁎ Y0Y
� �−1J3; ð3:18Þ

where F4(i)=(diagV(X′MiY)′⊗ Ir)((X′X⁎Y′Y)−1⊗(X′X⁎Y′Y)−1), see
Appendix B. We can now write

∂2di

∂X2 = Ir⊗Xð ÞJ02⊗Ir
� � ∂F ðiÞ

4

∂X + Ipr⊗FðiÞ4
� �

Ipr⊗J2
� �

× Ir⊗Cpr⊗Ir
� �

vecðIrÞ⊗Ipr
� �

Cpr + J03⊗Ir
� � ∂ðX0X ⁎Y

0YÞ−1

∂X :

ð3:19Þ

We proceed in a similar way to derive the second-order deriv-
atives with respect to Y. Define the following constant matrices with
respect to Y: K1=vec(Ir)′(Ir⊗X′Mi); K2=–diagM(vec(X′X))Er(Ir2+
Crr); K3=T′r(Ir⊗X′Mi). It can be seen that

∂2γi

∂Y2 = Iqr⊗K1

� �½ Ir⊗Cqr⊗Iq
� �

Ir2⊗vecðIqÞ
� �

Tr
∂di

∂Y

+
∂di

∂Y

� �0
⊗Iqr

� �
T0
r⊗Iqr

� �
Ir⊗Crr⊗Iq
� �

vecðIrÞ⊗Iqr
� �

+ Iqr⊗ðIr⊗YÞTr

� � ∂2di

∂Y2 �;

ð3:20Þ

with
∂di

∂Y given by Eq. (3.11) (in Case I) or Eq. (3.12) (in Case II). The term

∂2di

∂Y2 is 0qr2,qr in Case II; to derive
∂2di

∂Y2 in Case I we start by rewriting

(3.11):

∂di

∂Y = FðiÞ4 K2ðIr⊗Y0Þ + ðX0X ⁎ Y0YÞ−1K3: ð3:21Þ

We can now write:

∂2di

∂Y2 = Ir⊗Yð ÞK0
2⊗Ir

� � ∂FðiÞ4
∂Y

+ Iqr⊗FðiÞ4
� �

Iqr⊗K2

� �
Ir⊗Cqr⊗Ir
� �

vecðIrÞ⊗Iqr
� �

Cqr

+ K0
3⊗Ir

� � ∂ðX0X ⁎ Y0YÞ−1

∂Y :

ð3:22Þ

In order to derive the crossed derivative define the following

constants with respect to Y: L1=vec(Ir)′; L2=(Ir⊗X)Tr; L3 =

−ErðIr2 + CrrÞðIr⊗X0Þ. We can rewrite
∂γi

∂X:

∂γi

∂X = L1 Ir⊗Y0M0
i

� �
Di⊗Ip
� �

+ L2
∂di

∂X

� �
: ð3:23Þ

Differentiating
∂γi

∂X with respect to Y gives us

∂
∂Y

∂γi

∂X

� �
= Di⊗Ip

� �
+

∂di

∂X

� �0
L02

� �
Ipr⊗L1
� � ∂ðIr⊗Y0M0

iÞ
∂Y

+ Ipr⊗L1ðIr⊗Y0M0
iÞ

� � ∂ Di⊗Ip
� �

∂Y + ðIpr⊗L2Þ
∂
∂Y

∂di

∂X

� �0
@

1
A;

ð3:24Þ

see Appendix B for the derivations of
∂ Ir⊗Y0M0

i

� �
∂Y and

∂ Di⊗Ip
� �
∂Y . We

have ∂
∂Y

∂di

∂X

� �
left to derive. Start by rewriting

∂di

∂X:

∂di

∂X = FðiÞ6 L3 + X0X ⁎ Y0Y
� �−1T0

r Ir⊗Y0M0
i

� �
for Case I ð3:25Þ

4 J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

∂di

∂X = T0
r Ir⊗Y0M0

i

� �
for Case II; ð3:26Þ

where FðiÞ6 = diag VðX0MiYÞ0⊗Ir
� �

X0X ⁎ Y0Y
� �−1⊗ X0X ⁎ Y0Y

� �−1
� �

diagM vecðY0YÞ� �
.

We have that

∂
∂Y

∂di

∂X

� �
= L03⊗Ir
� � ∂FðiÞ6

∂Y + Ir⊗MiYð ÞTr⊗Irð Þ ∂ðX
0X ⁎ Y0YÞ−1

∂Y

+ Ipr⊗ X0X ⁎ Y0Y
� �−1

� �
Ipr⊗T0

r

� � ∂ðIr⊗Y0M0
iÞ

∂Y

ð3:27Þ

for Case I, and

∂
∂Y

∂di

∂X

� �
= ðIpr⊗T0

rÞ
∂ðIr⊗Y0M0

i Þ
∂Y ð3:28Þ

for Case II.
The Hessian of LcCP is the (p+q)r×(p+q)r symmetric matrix

Hess LCPc
� �

=

∂2LCP

∂X2

∂
∂Y

∂LCP

∂X

 !

∂
∂X

∂LCP

∂Y

 !
∂2LCP

∂Y2

2
666664

3
777775−2

Λ⊗Ip 0
0 Δ⊗Iq

� 	
; ð3:29Þ

whe re ∂2LCP
∂X2 = ∑m

i = 1
∂2γi

∂X2 ;
∂2LCP
∂Y2 = ∑m

i = 1
∂2γi

∂Y2 ;
∂
∂Y

∂LCP
∂X

� �
=

∑m
i = 1

∂
∂Y

∂γi
∂X

� �
and ∂

∂X
∂LCP
∂Y

� �
= ∂

∂Y
∂LCP
∂X

� �� �0
.

3.4. Sufficient second-order conditions

A sufficient condition for a stationary point of LcCP to be a maximum
depends on the type of constraint:

• in Case I it is sufficient for a maximum that W0∂2LCPc
∂X∂YW is negative

definite, where W is the (p+q)r×(p+q−2)r matrix whose

columns span the subspace orthogonal to Ir⊙X 0
0 Ir⊙Y

� 	
;

• in Case II it is sufficient for a maximum that W0∂2LCPc
∂X∂YW is negative

definite, where W is the (p+q)r×(p+q−r−1)r matrix whose
columns span the subspace orthogonal to matrix

Ir⊙X 0
0 Ir⊙X j H1 0

0 H2

� 	
; ð3:30Þ

where

H1 =

x2 ⋯ xr ⋯
x1 x3 ⋯ xr ⋯

x2 ⋯
⋱ ⋱ ⋯

⋯ xr
x1 x2 ⋯ xr−1

2
6666664

3
7777775

ð3:31Þ

and H2 is similar to H1 with all occurrences of x's replaced by y's,
Magnus and Neudecker ([10], Chapter 7).

4. Optimization of INDSCAL

In a similar fashion as was done for CP, we can reformulate the
problem of minimizing the loss function (1.2) of INDSCAL as

equivalent to the problem of maximizing

LIND Xð Þ = ∑
m

i=1
tr X0SiX D̃i

� �
; ð4:1Þ

where D̃i is the diagonal matrix holding

d̃i = transposed row i of D̃ = X0X ⁎ X0X
� �−1diagV X0SiX

� � ð4:2Þ

in the diagonal. The Lagrangean is defined by

LINDc ðXÞ = ∑
m

i=1
tr X0SiX D̃i

� �
−tr Λ X0X−Ir

� �� �
; ð4:3Þ

where Λ=Diag([λi]) is a diagonal r×r matrix holding Lagrange
multipliers and D̃ is given by Eq. (4.2) with the diagonal of X′X⁎X′X
filled with 1's in Case I, or Λ=[λij] is a symmetric r×r matrix holding
Lagrange multipliers and D̃ is given by Eq. (4.2) with X′X⁎X′X= Ir in
Case II.

4.1. Derivation of the Jacobian of Lc
IND

Define σi = trðX0SiX D̃iÞ. We have

∂σi

∂X = vec Irð Þ0ð D̃iX
0⊗Ir

� �
Si⊗Irð ÞCpr + Ir⊗X0Si

� �

× D̃i⊗Ip
� �

+ Ir⊗Xð ÞTr
∂ d̃i

∂X

 !Þ:

ð4:4Þ

In Case I the partial derivative of d ̃i with respect to X is

∂ d̃i

∂X = diagV X0SiX
� �0⊗Ir

� � ∂ðX0X ⁎ X0XÞ−1

∂X

+ X0X ⁎ X0X
� �−1T0

r X0Si⊗Ir
� �

Cpr + Ir⊗X0� �
Ir⊗Sið Þ

� �
;

ð4:5Þ

see Appendix C for the derivation of
∂ðX0X ⁎ X0XÞ−1

∂X . In Case II we have
that

∂ d̃i

∂X = T0
r X0Si⊗Ir
� �

Cpr + Ir⊗X0� �
Ir⊗Sið Þ

� �
: ð4:6Þ

The Jacobian of LcIND is the 1×pr row vector

Jac LINDc

� �
= ∑

m

i=1

∂σi

∂X −2vecðXÞ0 Λ⊗Ip
� �

: ð4:7Þ

4.2. Derivation of the Lagrange multipliers

Proceeding in a similar fashion as done in Section 3, it is straight-
forward to verify that

λkk =
1
2
∑
m

i=1

∂σi

∂xk
xk ð4:8Þ

in Case I, and

λjk =
1
2
∑
m

i=1

∂σi

∂xk
xj ð4:9Þ

in Case II (j, k=1, …, r).

5J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

4.3. Derivation of the Hessian of Lc
IND

Now define the following matrices which are constant with respect
to X: N1=vec(Ir)′; N2=(Si⊗Ir)Cpr; N3 = ErðIr2 + CrrÞ. We can rewrite

∂σi

∂X = N1 GðiÞ
2 N2 + GðiÞ

6 + GðiÞ
7 Tr

∂ d̃i

∂X

 !
: ð4:10Þ

It can be seen that

∂2σi

∂X2 = Ipr⊗N1

� �ð N0
2⊗Ir2

� � ∂GðiÞ
2

∂X +
∂GðiÞ

6

∂X +
∂ d̃i

∂X

 !0
⊗Ir2

 !

× T0
r⊗Ir2

� � ∂GðiÞ
7

∂X + Ipr⊗GðiÞ
7 Tr

� � ∂2 d̃i

∂X2 Þ;

ð4:11Þ

with
∂ d̃i

∂X given by Eq. (4.5) (in Case I) or Eq. (4.6) (in Case II). To derive

∂2 d̃i

∂X2 in Case I we start by rewriting Eq. (4.5):

∂ d̃i

∂X = 2GðiÞ
14N3G

0
5 + G8T

0
rG

ðiÞ
16: ð4:12Þ

It can be seen that

∂2 d̃i

∂X2 = 2 G5N
0
3⊗Ir

� � ∂GðiÞ
14

∂X + 2 Ipr⊗GðiÞ
14

� �
Ipr⊗N3

� �
Cpr;r2

∂G5

∂X + ð4:13Þ

+ GðiÞ
16

� �0
Tr⊗Ir

� � ∂G8

∂X + Ipr⊗G8

� �
Ipr⊗T0

r

� �∂GðiÞ
16

∂X : ð4:14Þ

In Case II we have that

∂ d̃i

∂X = T0
rG

ðiÞ
16;

∂2 d̃i

∂X2 = Ipr⊗T0
r

� � ∂GðiÞ
16

∂X : ð4:15Þ

The Hessian of LcIND is the pr×pr symmetric matrix

Hess LINDc

� �
= ∑

m

i=1

∂2σi

∂X2 −2 Λ⊗Ip
� �

: ð4:16Þ

4.4. Sufficient second-order conditions

A sufficient condition for a stationary point of Lc
IND to be a

maximum depends on the type of constraint:

• in Case I it is sufficient thatW0 ∂2LINDc
∂X∂Y W is negative definite, whereW is

the pr×(pr−r)matrixwhose columns span the subspace orthogonal to
Ir⊙X;

• in Case II it is sufficient thatW0 ∂2LINDc
∂X∂Y W is negative definite, whereW

is the pr × pr−rðr + 1Þ
2

� �
matrix whose columns span the subspace

orthogonal to matrix

Ir⊙X jH½ �; ð4:17Þ
where H is the same as in Eq. (3.31).

5. Illustration: the KHL data

Ten Berge, Kiers and De Leeuw [17] analysed a contrived array
which they christened “KHL data”, due to previous work by Kruskal,
Harshman and Lundy [8,9]. The KHL data is the 2×2×2 array

We ran the ALS algorithm 200 times for Xwith r=2 components.
The component matrices were randomly initialized by orthonormal

matrices. In all runs the algorithm halted on solutions with loss f=2.
We wanted to test the nature of these solutions, i.e., whether these
solutions correspond to minima and/or saddle points.

We computed the Jacobian and Hessian for each of the 200
solutions under unit length constraint. In general, each of the 200
solutions displays a similar behaviour: A has rank 1, B and C are
orthonormal, Jac is approximately 01×8 (its entries are usually in the
order of 10−14), and the Hess is of the form

HessCP =

0 0 a b
0 0 −a −b
a −a 0 0
b −b 0 0

2
664

3
775; ð5:2Þ

for real numbers a, b. The eigenvalues of HessCP are typically {0, 0,−λ,
λ}, for real λ. Therefore, it can be concluded that each of the 200
solutions are, indeed, saddle points.

This example shows two things. On one hand, there exist cases for
which the occurrence of saddle points is a severe problem, like the
KHL data. On the other hand, it is relevant to have a tool available that
diagnoses whether a solution is a saddle point. Once spotted, such
solutions should be discarded at once.

Ten Berge, Kiers and De Leeuw [17] showed that the CP loss
function (1.1) has infimum 1 when 2 components are extracted. This
reinforces the fact that none of the 200 solutions that were found
could correspond to the global minimum. However, in the absence of
this information, the researcher would profit from knowing that all
solutions were saddle points and therefore useless. This is possible by
analysing the second-order differential structure as we have done
here.

The KHL data is a contrived example. The question of whether
similar behaviour is to be expected for real data is still unanswered.
The applications discussed in Sections 6–8 are intended to better
understand what happens in general.

6. Application I: INDSCAL under orthonormality constraint

Ten Berge et al. [18] discussed an algorithm for INDSCAL with
orthogonality constraints referred to as the SVD-approach. This
algorithm was originally deviced as a Varimax procedure based on
an SVD, but Ten Berge [15] observed that the problem could be
reformulated in terms of diagonalizing a set of symmetric matrices
simultaneously. The SVD-approach provides a direct procedure to fit
the INDSCAL model under orthogonality constraints.

The SVD-approach attempts to find a columnwise orthonormal X
such that LcIND(X) is maximized; it proceeds as follows:

Step 1 Initialize X (p×r orthonormal).
Step 2 Compute Di=diag(X′SiX), i=1, …, m.
Step 3 Compute the SVD∑ i=1

m SiXDi=PLQ′, and update X by X=PQ′.
Step 4 Repeat Steps 2 and 3 until the relative increase in Lc

IND(X) is
smaller than a predefined convergence criterion.

The SVD-approach to INDSCAL has been proved to converge
monotonically when the frontal slices of array S are positive or nega-
tive semidefinite, Ten Berge et al. [18]. Thus, we will work with
arrays holding semidefinite frontal slices in the remaining of this
section.

Ten Berge et al. [18] ran some experiments where they argue that the
SVD-approach to INDSCAL seems to be hampered by the occurrence of
local maxima of LcIND. However, the possibility of the occurrence of saddle
points was not considered. Notice that there exist contrived examples for
which saddle points do occur. For example, consider the 2×3×3 array

6 J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

with positive semidefinite slices (Ten Berge and Kiers [16])

S1 =
3 1 0
1 3 0
0 0 0

2
4

3
5; S2 =

3 −1 0
−1 3 0
0 0 1

2
4

3
5: ð6:1Þ

The (orthonormally constrained) INDSCAL optimal solution with r=2
components is

X =

ffiffiffiffiffi
:5

p
−

ffiffiffiffiffi
:5

pffiffiffiffiffi
:5

p ffiffiffiffiffi
:5

p
0 0

2
4

3
5; D = 4 2

2 4

� 	
; ð6:2Þ

it corresponds to the global minimum 1 of (1.2). There are, however,
non-optimal orthonormally constrained INDSCAL solutions
corresponding to saddle points. The following four solutions are
stationary points of (1.2) that correspond to non-optimal values of
(1.2) (5, 20, 22, 22, respectively). They are all saddle points.

Xð1Þ =
0 1
1 0
0 0

2
4

3
5; Dð1Þ = 3 3

3 3

� 	
ð6:3Þ

Xð2Þ =

ffiffiffiffiffi
:5

p
0ffiffiffiffiffi

:5
p

0
0 1

2
4

3
5; Dð2Þ = 4 0

2 1

� 	
ð6:4Þ

Xð3Þ =
0 1
0 0
1 0

2
4

3
5; Dð3Þ = 0 3

1 3

� 	
ð6:5Þ

Xð4Þ =
0 0
1 0
0 1

2
4

3
5; Dð4Þ = 3 0

3 1

� 	
: ð6:6Þ

The fact that such non-optimal solutions exist does not imply that the
SVD-approach algorithmwill converge to them. This is precisely the point
that we wanted to investigate in this application: is it possible that the
SVD-approach algorithm converges to saddle points? The answer to this
question can clarify the type of solutions that the SVD-approach usually
finds, therefore the interpretation of the solution is further enrichened.

A simulation study was carried out to test whether saddle points
occur (software: Matlab R2008a). We randomly generated 150
3×3×3 symmetric slice arrays with positive definite slices. Each
slice was generated as M′M, where M is a 3×3 matrix whose entries
were uniformly generated from the interval [−1, 1]. For each arraywe
ran the SVD-approach to INDSCAL with r=2 components using 10
different random initializations for X; eachXwas a 3×2matrix whose
entries were uniformly generated from the interval [−1, 1];
afterwards, Xwas orthonormalized via the Gram–Schmidt procedure.
The convergence criterionwas fixed at 1e−06. After convergence, the
Jacobian and Hessian for each INDSCAL solution (X, D) were
computed, and we inspected whether W0 ∂2LINDc

∂X∂Y W was negative
definite or indefinite (second-order sufficient condition).

The same procedure was repeated, this time for arrays with positive
semidefinite slices. Each slice was generated as M′M, where M is a 2×3
matrixwhose entrieswere uniformly generated fromthe interval [−1, 1].

All results were numerically stable, as expected. We verified that
the SVD-approach for INDSCAL never halted on saddle points. Also, it
was verified that local maxima occurred for 12 arrays (8% of the cases)
for arrays with positive definite slices, whereas for arrays with
positive semidefinite slices local maxima occurred for 17 arrays (11%
of the cases). Although these results do not formally prove that
convergence to saddle points is impossible, it can be concluded that
there are no indications to that effect.

7. Application II: INDSCAL equivalence problem in CP formulation

Carroll and Chang [3] suggested running CP in order to fit INDSCAL
because they conjectured that X and Y would end up equal or at least
columnwise proportional if CP converged. If Carroll and Chang's
conjecture is correct, CP can be used as an algorithm to compute
INDSCAL solutions for symmetric slice arrays. This conjecture seems to be
valid in practical applications. However, counter-examples have already
been constructed. Ten Berge and Kiers [16] proved that equivalencemay
be violated at global minima of f if the slices Si are not positive definite.
They considered the array (Ten Berge and Kiers [16])

S1 =
1 0 0
0 −1 0
0 0 1

2
4

3
5; S2 =

0 0 2
0 −2 0
2 0 0

2
4

3
5; ð7:1Þ

for which a global minimum of (1.1) with r=2 components and X not
equivalent to Ywas presented.We ran CP 500 timeswith r=2and r=3
components for the previous array. In both cases all runs converged to a
global minimum of (1.1) with X and Y non-equivalent. When r=1 the
algorithmsometimes did converge to a solutionwithX andY equivalent.

When the slices are nonnegative definite and r=1 then equiva-
lence can be violated only at stationary points that do not correspond
to global minima. In this case, Ten Berge and Kiers [16] conjectured
that such stationary points would correspond to local minima.
However, Bennani Dosse and Ten Berge [1] proved that such
stationary points can only be saddle points.

Bennani Dosse, Ten Berge and Tendeiro [2] showed that equivalence
occurs when the components are constrained by orthonormality, the
slices are positive semidefinite and the saliences are non-negative. It is
still not clear whether non-equivalence occurs or not under circum-
stances different from these, or whether CP converges to saddle points
or not. We conducted some simulations to try to understand what
happens in caseswhere components are not orthonormal, slices are not
necessarily positive semidefinite, and saliences are unconstrained.
Eleven situations were considered, revolving around arrays with 3×3
symmetric slices: 2×3×3 (r=2), 3×3×3 (r=2, 3), 4×3×3(r=2, 3),
5×3×3 (r=2, 3, 4), 6×3×3 (r=2, 3, 4). Both positive definite and
indefinite slice arrays were considered.

Onehundredarraysweregenerated for eachcase. Thepositivedefinite
slices were generated as M′M, where M is a 3×3 matrix whose entries
were uniformly generated from the interval [−1, 1]. The entries of the
diagonal and the upper-triangular parts of the indefinite slices were
uniformly generated from the interval [−1, 1]; the lower-triangular part
of each slicewasfilled in such that symmetrywouldoccur. Each arraywas
given100different randomstartups; the convergence criteriumwas set at
1e−08. No constraint was imposed on the saliences in D. A solution was
declared degenerate when at least one of the non-diagonal entries of the
so-called triple cosine matrix was below −0.95. Our main goal was to
check whether non-equivalence occurred or not, and to what kind of
stationary point it corresponded (local optimum or saddle point).

The Jacobian matrices associated to non-degenerate solutions were
analysed. Its entries were relatively small (usually with modulus smaller
than 1e−05), thus analysing the second-order differential structure
seems legitimate. Weworked under unit length constraints. Occurrences
of degeneracy andof different values for the loss functionwere registered.
The results found are summarized in Tables 1 and 2. The variables read:
NonEquiv=number of arrays for which at least one startup ended up
with non-equivalent CP solution; Deg=number of arrays with degener-
ate solutions, within the 100 startups (x+y: x=all 100 startups are
degenerate; y=b100 startups aredegenerate); SadPt=numberof arrays
forwhich at least one startup ended in a saddle point, non-degenerate (x/
y: x=for CP's Hessian; y=for INDSCAL's Hessian); DifFit=number of
arrays with at least two different values for CP's loss function within the
100 startups, with at least one non-degenerate solution. Some special
situations are marked with asterisks, as follows: (*)=the associated CP

7J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

solution is degenerate (all components are almost proportional); (**)=
one or more of the eigenvalues of the Hessian are relatively small in
magnitude (smaller than 1e−01), indicating that the Hessian is nearly
singular; (***)=for one startup of one array theHessian for CPwas nearly
singular, but the Hessian for INDSCAL was negative definite.

The first observation to bemade is that non-equivalencewas never
observed for non-degenerate solutions. Since no non-equivalent
solution was found for arrays with positive definite slices, it was not
possible to test whether the result of Bennani Dosse and Ten Berge [1]
for arrays with positive definite slices does apply to cases with rN1
components. Also, saddle points were rarely observed. In addition, we
can observe that arrays with indefinite slices are more prone to suffer
from degeneracy, occurrence of saddle points, and multiple fit values.

The cases reported with (**) are situations where it is not clear
whether we are facing a saddle point or not, since the Hessian matrix
seems to be almost singular. These cases should be treated with care,
since the second-order sufficient condition applies to non-singular
Hessian matrices. It is not clear why such points occur. An anonymous
reviewer suggested that the problem might be originated in rank-
deficient component matrices. We verified that this was true for five
of the situations reported by (**). It should be noted that these
componentmatrices were estimated rather than randomly generated,
and that these decompositions are not degenerate.

8. Application III: CP in general

A simulation study was conducted to inspect the occurrence of
saddle points for CP solutions of generic arrays. Twenty nine
situations were considered, for which uniqueness is proved to hold
due to Kruskal's sufficient condition for uniqueness (Kruskal [7]). One
hundred arrays were randomly generated for each situation, the
entries being uniformly generated from the interval [−1, 1]. Each
array was given 100 different random startups; the convergence
criterium was set at 1e−08. As before, we also registered the
occurrences of degeneracies and multiple fit values. Both r=1 and
rN1 situations were considered. We computed the Hessian under unit
length constraint. The results found are summarized in Table 3.

It can be seen that saddle points occur scarcely; almost all these
occurrences relate to a nearly singularHessianmatrix. It is not clearwhy
such solutions occur. In addition, we point out that retaining more
components seems to have the effect of increasing the number of
degenerate solutions.

9. Discussion

In this paper we dealt with first and second-order differential
structures of optimization functions related to CP and INDSCAL. Our
goal was to provide a tool to further characterize three-way solutions.
Closed form formulas for the Jacobian and Hessian matrices were
derived, under two different types of constraints.

Simulations that highlight the usefulness of Hessian structure
were performed. The results of the simulations seem to tell that saddle
points do not occur frequently, although they do occur with positive
probability. In some cases the Hessian matrix showed to be ill-
conditioned. The reasons for this phenomenon are still not clear and
need further investigation.

Some numerical problems occur whenwe consider degenerate CP/
INDSCAL solutions (Harshman and Lundy [6]). Typically, a degenerate
solution is one where some components become more and more
proportional, while some entries of these components become larger
and larger, as the algorithm progresses. In a degenerate solution, the
contributions of some of the degenerate components nearly cancel
the contributions of other degenerate components, while the com-
ponents together contribute to improve the fit.

The computation of the Jacobian and the Hessian matrices are free
of numerical problems for CP/INDSCAL solutions which are not
degenerate. However, degenerate solutions do lead to problems.
These problems are more or less severe depending on how many
degenerate components exist and how strong the degeneracy is. The
core of this problem resides in matrix Γ=X′X⁎Y′Y (for CP) and Γ=
X′X⁎X′X (for INDSCAL), recall Eqs. (3.2) and (4.2).When a CP/INDSCAL
solution is degenerate, Γ becomes almost rank deficient, which creates
numerical problemswhen computing Γ−1. Equivalently, the problem is
that the optimization function is (almost) non-differentiable at the

Table 2
Arrays with indefinite slices.

Dim. array # comps NonEquiv Deg SadPt DifFit

2×3×3 r=2 – 38+19 2/1 (**)(***) 32
3×3×3 r=2 – 21+39 3/3 62

r=3 3 (*) 63+11 1/1 (**) 19
4×3×3 r=2 – 24+39 – 64

r=3 3 (*) 55+15 − 26
5×3×3 r=2 – 23+39 – 72

r=3 2 (*) 59+15 1/1 (**) 25
r=4 1 (*) 81+5 1/1 (**) 10

6×3×3 r=2 – 20+48 – 76
r=3 – 63+16 1/1 27
r=4 – 86+5 – 7

Table 3
Arrays with generic slices.

Dim. array # comps Deg SadPt DifFit

2×2×2 r=1 – – 13
3×2×2 r=1 – – 25

r=2 18+2 1 (**) 1
3×3×2 r=1 – – 39

r=2 25+6 – 14
3×3×3 r=1 – – 43

r=2 19+15 1 30
r=3 50+12 1 (**) 17

4×2×2 r=1 – 1 32
r=2 22+2 1 (**) 2

4×3×2 r=1 – 1 43
r=2 17+12 – 22
r=3 54+4 1,2 (**) 4

4×4×2 r=1 – – 41
r=2 28+12 1 (**) 26
r=3 53+8 3 (**) 3

4×3×3 r=1 – 1 (**) 57
r=2 15+32 1 54
r=3 52+15 – 17
r=4 68+15 1,1 (**) 17

5×2×2 r=1 – – 36
r=2 22+0 – –

5×3×2 r=1 – – 44
r=2 23+11 1 (**) 29
r=3 59+0 – −

5×4×2 r=1 – – 57
r=2 14+14 1 (**) 27
r=3 47+11 1 (**) 15
r=4 78+6 1 (**) 7

Table 1
Arrays with positive definite slices.

Dim. array # comps NonEquiv Deg SadPt DifFit

2×3×3 r=2 – – – 4
3×3×3 r=2 – – – 12

r=3 – 2+2 – 5
4×3×3 r=2 – – – 17

r=3 – 3+0 – 8
5×3×3 r=2 – – – 10

r=3 – 0+1 – 7
r=4 – 40+7 – 20

6×3×3 r=2 – – – 10
r=3 – – – 7
r=4 – 45+7 2/2 (**) 7

8 J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

point corresponding to a degenerate solution. The problem might vary
frommild to severe, depending on how close or far is Γ from singularity.
In some severe situations the computations might need to be
completely disregarded. For instance, we observed solutions for which
the severity of the deficiency of Γ leads to loss of symmetry of the
Hessian, which is naturally a serious problem.

A CP solution is never degenerate under an orthonormality
constraint on X and Y, Harshman and Lundy [6]. Likewise, an INDSCAL
solution is not degenerate if X is constrained by orthonormality.
Therefore, orthonormality constraints typically avoid any numerical
problems. In any other case, we advise to first check whether the
solution at hand is degenerate or not. If the solution is not degenerate
then the use of the formulas to compute the Jacobian and the Hessian
is warranted. In case of degeneracy, one should do some prior analysis
on the rank deficiency of Γ. If the problem is not very severe, it is
possible that Γ−1 is relatively well defined, and therefore all the
computations will follow safely. A posterior test to the numerical
stability of the process is, for example, to compute the Hessian matrix
Hess and afterwards compute ρ=tr(Hess−Hess′); large values of ρ
(say, ρN1e−20) indicate that Hess is further from symmetry than it
should. Therefore, Hess should be discarded in such cases.

Appendix A. Matrix differentiation formulas

Consider the following matrices: A (m×n); B (p×q); d (n×1);
D=diagM(d).

Table A1 presents the most important formulas of matrix
differentiation that are of use in this paper.

The formulas in the first column can be found in Fackler [4]. The
formulas in the second column can be obtained as follows:

•

∂trðAÞ
∂X =

∂trðAÞ
∂A

∂A
∂X = vecðInÞ0

∂A
∂X

•

∂A
∂A =

∂vecðAÞ
∂vecðAÞ = Imn

∂A0

∂A =
∂vecðA0Þ
∂vecðAÞ =

∂CmnvecðAÞ
∂vecðAÞ = ðI1⊗CmnÞImn = Cmn

• entry (i, j) of A⁎B is equal to aijbij, where both aij and bij are functions
of X. Therefore we can apply the rule to differentiate a product to
each entry ofA⁎B. The derivative of A⁎Bwith respect toXwhen B is
constant is equal to diagM vec Bð Þð Þ ∂A∂X, and the derivative of A⁎Bwith
respect to X when A is constant is equal to diagM vec Að Þð Þ ∂B

∂X.
• ∂D

∂d = ∂vecðDÞ
∂d where vec(D) is the n2×1 vector [d10⋯0|⋯|0⋯0dn]′. The

derivative of vec(D) with respect to di is the zero vector except for
entry (i−1)n+ i where it is 1. Collecting all these derivatives side
by side in a n2×n matrix gives Tn.

• ∂D
∂X = ∂D

∂d
∂d
∂X = Tn

∂d
∂X

• ∂vecðAÞ
∂A = ∂vecðAÞ

∂vecðAÞ = Imn

Appendix B

Notation:M is a p×q×m array with p×q frontal slicesMi (i=1,…,
m), X is a p×r matrix, Y is a q×r matrix. Di is the diagonal matrix
defined by Eq. (3.2).

Table B1 summarizes the expressions of functions F1−F8. Also, the
partial derivatives that are relevant for the paper are presented.

Appendix C

Notation: S is a p×p×m array of symmetric frontal slices Si (i=1,
…, m), X and Y are p× r matrices. D̃i is the diagonal matrix defined by
Eq. (4.2).

Table A1
Matrix differentiation formulas.

∂AB
∂X = B0⊗Imð Þ ∂A∂X + Iq⊗A

� � ∂B
∂X ; if n = p ∂tr Að Þ

∂X = vec Inð Þ0 ∂A∂X ; ifm = n

∂AðBðXÞÞ
∂X = ∂AðYÞ

∂Y ⋅ ∂Y
∂X ;whereY = BðXÞ ∂A

∂A = Imn ;
∂A0

∂A = Cmn

∂A0A
∂A = In2 + Cnnð Þ In⊗A0ð Þ ∂A ⁎B

∂X = diagM vec Bð Þð Þ ∂A∂X
+ diagM vec Að Þð Þ ∂B

∂X∂A−1

∂A = − A−1
� �0

⊗A−1
� �

; ifm = n ∂D
∂d = Tn

∂A⊗B
∂A = In⊗Cqm⊗Ip

� �
Imn⊗vec Bð Þð Þ ∂D

∂X = Tn
∂d
∂X

∂A⊗B
∂B = In⊗Cqm⊗Ip

� �
vec Að Þ⊗Ipq
� � ∂vecðAÞ

∂A = Imn

Table B1
Functions F1 to F8 and some of their partial derivatives.

Function Derivative

F1=(X′X⁎Y′Y)−1 In Case I (X,Y constrained to hold unit length columns):
∂F1
∂X = −ðF1⊗F1ÞdiagM vec Y0Yð Þð ÞEr Ir2 + Crrð Þ Ir⊗X0ð Þ
∂F1
∂Y = −ðF1⊗F1ÞdiagM vec X0Xð Þð ÞEr Ir2 + Crrð Þ Ir⊗Y0ð Þ
In Case II (X,Y constrained by orthonormality):
∂F1
∂X = 0r2 ;pr;

∂F1
∂Y = 0r2 ;qr

FðiÞ2 = ðdiagV X0MiYð Þ0⊗IrÞ ∂FðiÞ2
∂X = Ir⊗vec Irð Þð ÞT0

r Ir⊗Y0M0
i

� �
∂FðiÞ2
∂Y = Ir⊗vec Irð Þð ÞT0

r Ir⊗X0Mið Þ
F3=F1⊗F1 ∂F3

∂X = Ir⊗Crr⊗Irð Þ Ir4 + Cr2r2ð Þ Ir2⊗vec F1ð Þð Þ ∂F1∂X
∂F3
∂Y = Ir⊗Crr⊗Irð Þ Ir4 + Cr2r2ð Þ Ir2⊗vec F1ð Þð Þ ∂F1∂Y

F4(i)=F2(i)F3 ∂FðiÞ4
∂X = F03⊗Irð Þ ∂F

ðiÞ
2

∂X + Ir2⊗FðiÞ2
� �

∂F3
∂X

∂FðiÞ4
∂Y = F03⊗Irð Þ ∂F

ðiÞ
2

∂Y + Ir2⊗FðiÞ2
� �

∂F3
∂Y

F5=diagM(vec(Y′Y)) In Case I (X,Y constrained to hold unit length
columns): ∂F5

∂Y = Tr2Er Ir2 + Crrð Þ Ir⊗Y0ð Þ
In Case II (X,Y constrained by orthonormality):
∂F5
∂Y = 0r4 ;qr

F6(i)=F4(i)F5 ∂FðiÞ6
∂Y = F05⊗Irð Þ ∂F

ðiÞ
4

∂Y + Ir2⊗FðiÞ4
� �

∂F5
∂Y

F7(i)= Ir⊗Y′M′i ∂FðiÞ7
∂Y = Ir⊗Cpr⊗Ir

� �
vec Irð Þ⊗Ipr
� �

Mi⊗Irð ÞCqr

F8(i)=Di⊗ Ip ∂FðiÞ8
∂Y = Ir⊗Cpr⊗Ip

� �
Ir2⊗vec Ip

� �� �
Tr

∂di
∂Y

Table C1
Functions G1 to G16 and some of their partial derivatives.

Function Derivative

GðiÞ
1 = X0SiX D̃i

∂GðiÞ
1

∂X = D̃iX0⊗Ir
� �

Si⊗Irð ÞCpr + Ir⊗X0Sið Þ D̃i⊗Ip
� �

+ Ir⊗Xð ÞTr
∂d̃i
∂X

� �
GðiÞ
2 = D̃iX

0⊗Ir
∂GðiÞ

2
∂X = Ip⊗Crr⊗Ir

� �
Ipr⊗vec Irð Þ� �

⋅ X⊗Irð ÞTr
∂d̃i
∂X + Ip⊗D̃i

� �
Cpr

� �

G3
(i)= Ir⊗X′Si

∂GðiÞ
3

∂X = Ir⊗Cpr⊗Ir
� �

vec Irð Þ⊗Ipr
� �

Si⊗Irð ÞCpr

GðiÞ
4 = D̃i⊗Ip

∂GðiÞ
4

∂X = Ir⊗Cpr⊗Ip
� �

Ir2⊗vecðIpÞ
� �

Tr
∂d̃i
∂X

G5= Ir⊗X ∂G5
∂X = Ir⊗Crr⊗Ip

� �
vec Irð Þ⊗Ipr
� �

G6
(i)=G3

(i)G4
(i) ∂GðiÞ

6
∂X = GðiÞ

4

� �0
⊗Ir2

� � ∂GðiÞ
3

∂X + Ipr⊗GðiÞ
3

� � ∂GðiÞ
4

∂X

G7
(i)=G3

(i)G5
∂GðiÞ

7
∂X = G0

5⊗Ir2
� � ∂GðiÞ

3
∂X + Ir2⊗GðiÞ

3

� �
∂G5
∂X

G8=(X′X⁎X′X)−1 In Case I (X,Y constrained to hold unit length columns):
∂G8
∂X = −2 G8⊗G8ð ÞdiagM vec X0Xð Þð ÞEr Ir2 + Crrð Þ Ir⊗X0� �
In Case II (X,Y constrained by orthonormality):

∂G8
∂X = 0r2 ;pr

GðiÞ
9 = diagVðX0SiXÞ ∂GðiÞ

9
∂X = T0

r X0Si⊗Ir
� �

Cpr + Ir⊗X0� �
Ir⊗Sið Þ

� �
(continued on next page)

9J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

Table C1 summarizes the expressions of functions G1−G16, with
the relevant partial derivatives.

References

[1] M. Bennani Dosse, J.M.F. Ten Berge, The assumption of proportional components
when Candecomp is applied to symmetric matrices in the context of Indscal,
Psychometrika 73 (2008) 303–307.

[2] M. Bennani Dosse, J.M.F. Ten Berge, J. Tendeiro, Some new results on orthogonally
constrained Candecomp, submitted for publication.

[3] J.D. Carroll, J.J. Chang, Analysis of individual differences in multidimensional
scaling via an n-way generalization of Eckart–Young decomposition, Psychome-
trika 35 (1970) 283–319.

[4] P.L. Fackler, Notes on Matrix Calculus, , 2009 Retrieved on 3 February 2009 from
http://www4.ncsu.edu/∼pfackler/MatCalc.pdf.

[5] R.A. Harshman, Foundations of the Parafac procedure: models and conditions for
an “explanatory” multimodal factor analysis, UCLA Working Papers in Phonetics,
16, 1970, pp. 1–84.

[6] R.A. Harshman, M.E. Lundy, Data preprocessing and the extended PARAFAC
model, in: H.G. Law, C.W. Snyder, J.A. Hattie, R.P. McDonald (Eds.), Research
Methods for Multimode Data Analysis, Praeger, New York, 1984, pp. 216–284.

[7] J.B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions,
with applications to arithmetic complexity and statistics, Linear Algebra and its
Applications 18 (1977) 95–138.

[8] J.B. Kruskal, R.A. Harshman, M.E. Lundy, Some relationships between Tucker's
three-mode factor analysis and PARAFAC/CANDECOMP, Paper Presented at the
Annual Meeting of the Psychometric Society, Los Angeles, 1983.

[9] J.B. Kruskal, R.A. Harshman, M.E. Lundy, Several mathematical relationships
between PARAFAC-CANDECOMP and three-mode factor analysis, Paper Pre-
sented at the Annual Meeting of the Classification Society, St. John's,
Newfoundland, 1985.

[10] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in
Statistics and Econometrics, 3rd EditionJohnWiley & Sons, Chichester/New York,
2007.

[11] P. Paatero, A weighted non-negative least squares algorithm for three-way
‘PARAFAC’ factor analysis, Chemometrics and Intelligent Laboratory systems 38
(1997) 223–242.

[12] P. Paatero, The multilinear engine — a table-driven, least squares program for
solving multlinear problems, including the n-way parallel factor analysis model,
Journal of Computational and Graphical Statistics 8 (1999) 854–888.

[13] A. Stegeman, Degeneracy in Candecomp/Parafac explained for p×p×2 arrays of
rank p+1 or higher, Psychometrika 71 (2006) 483–501.

[14] A. Stegeman, Degeneracy in Candecomp/Parafac and Indscal explained for several
three-sliced arrays with a two-valued typical rank, Psychometrika 72 (2007)
601–619.

[15] J.M.F. Ten Berge, A joint treatment of Varimax rotation and the problem of
diagonalizing symmetric matrices simultaneously in the least-squares sense,
Psychometrika 49 (1984) 347–358.

[16] J.M.F. Ten Berge, H.A.L. Kiers, Some clarifications of the Candecomp algorithm
applied to Indscal, Psychometrika 56 (1991) 317–326.

[17] J.M.F. Ten Berge, H.A.L. Kiers, J. De Leeuw, Explicit CANDECOMP/PARAFAC
solutions for a contrived 2×2×2 array of rank three, Psychometrika 53 (1988)
579–583.

[18] J.M.F. Ten Berge, D.L. Knol, H.A.L. Kiers, A treatment of the Orthomax rotation
family in terms of diagonalization, and a re-examination of a singular value
approach to Varimax rotation, Computational Statistics Quarterly 3 (1988)
207–217.

Table C1 (continued)

Function Derivative

G10
(i)=−((G9

(i))′⊗ Ir)
∂GðiÞ

10
∂X = − Ir⊗vec Irð Þð ÞT0

r X0Si⊗Ir
� �

Cpr + Ir⊗X0� �
Ir⊗Sið Þ

� �
G11=G8⊗G8

∂G11
∂X = Ir⊗Crr⊗Irð Þ Ir4 + Cr2r2ð Þ Ir2⊗vec G8ð Þð Þ ∂G8

∂X

G12
(i)=G10

(i)G11
∂GðiÞ

12
∂X = G0

11⊗Ir
� � ∂GðiÞ

10
∂X + Ir2⊗GðiÞ

10

� �
∂G11
∂X

G13=diagM(vec(X′X)) In Case I (X,Y constrained to hold unit length columns):
∂G13
∂X = Tr2Er Ir2 + Crrð Þ Ir⊗X0ð Þ
In Case II (X,Y constrained by orthonormality):
∂G13
∂X = 0r4 ;pr

G14
(i)=G12

(i)G13
∂GðiÞ

14
∂X = ðG0

13⊗IrÞ ∂G
ðiÞ
12

∂X + Ir2⊗GðiÞ
12

� �
∂G13
∂X

G15
(i)=X′Si⊗ Ir

∂GðiÞ
15

∂X = Ip⊗Crr⊗Ir
� �

Ipr⊗vec Irð Þ� �
Si⊗Irð ÞCpr

G16
(i) = G15

(i)Cpr+ G′5
(Ir⊗Si)

∂GðiÞ
16

∂X = C0
pr⊗Ir2

� � ∂GðiÞ
15

∂X + Ir⊗Si⊗Ir2ð ÞCpr;r2
∂G5
∂X

10 J. Tendeiro et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx

Please cite this article as: J. Tendeiro, et al., First and second-order derivatives for CP and INDSCAL, Chemometrics and Intelligent Laboratory
Systems (2010), doi:10.1016/j.chemolab.2010.05.013

Samenvatting

(Summary in Dutch)

Onderzoekers hebben vaak te maken met gegevens die boven de gebruikelijke “gege-

vens × variabelenstructuur” uitgaan. Soms bestaan de gegevens bijvoorbeeld uit

matrices die op verschillende tijdstippen zijn verzameld. Gegevens met een dergelijke

structuur worden meerweggegevens genoemd. Ze roepen de vraag op naar meer-

wegtechnieken.

Meerwegtechnieken vormen een natuurlijke uitbreiding van twee-wegtechnieken.

De eerste bijdrage stamt uit 1927 (Hitchcock [29, 30]). In 1966 kwam Tucker [114]

met een andere driewegcomponentenanalyse. In 1970 hebben Carroll and Chang [11]

en Harshman [24] de methode van Hitchcock herontdekt (Hoofdstuk 2). Sindsdien is

er veel nieuws bijgekomen: veel wiskundige eigenschappen van meerwegmodellen zijn

aan het licht gebracht en tal van nieuwe modellen zijn gëıntroduceerd.

In dit proefschrift ligt de nadruk op driewegmodellen. Een van onze doelstellin-

gen was een beknopt overzicht te geven van enkele lineair-algebräısche eigenschappen

van driewegarrays. Ook hebben we eigenschappen bestudeerd van diverse statistische

modellen voor de analyse van drieweggegevens. De eerste vijf hoofdstukken van dit

proefschrift bestaan voornamelijk uit het bij elkaar brengen van resultaten die ver-

spreid in de literatuur voorkomen. In Hoofdstuk 6 en 7 worden nieuwe resultaten

naar voren gebracht.

In Hoofdstuk 1 worden grondbegrippen inzake matrices en driewegarrays gëıntro-

duceerd. Doel is de lezers voor te bereiden op de latere hoofdstukken. Het accent

ligt op ontbindingstechnieken voor matrices, zoals de eigenontbinding, de singuliere

waarden-ontbinding en Principale Componentenanalyse, en op het begrip driewegar-

128 Samenvatting

ray.

Hoofdstuk 2 bevat een bespreking van driewegmodellen die nader onderzocht wor-

den. Het gaat om 3PCA (Tucker [114]), het CP-model (Carroll and Chang [11] en

Harshman [24]) en het INDSCAL-model (Carroll and Chang [11]). Voor elk model

wordt een aantal wiskundige formuleringen gegeven.

Hoofdstuk 3 gaat over uniciteit. Uitgelegd wordt waarom het 3PCA-model niet

gëıdentificeerd is, terwijl het CP-model dat normaliter wel is. Diverse uniciteitvoor-

waarden uit de literatuur worden behandeld. Daaraan worden nieuwe verkorte bewij-

zen voor Stelling 2 (p. 46) en Stelling 3 (p.47) toegevoegd.

In Hoofdstuk 4 worden gedegenereerde oplossingen behandeld. Uitgelegd wordt

waarom gedegenereerdheid problematisch is in de context van het CP-model, en

hoe het mogelijk is dat het CP-algoritme soms tot gedegenereerde oplossingen komt.

Verder worden manieren besproken om gedegenereerde oplossingen te vermijden.

Het begrip “simplicity” (eenvoud) staat centraal in Hoofdstuk 5. De rotatievrij-

heid in 3PCA maakt het mogelijk simplicity in de kern en/of in de componentma-

trices te bereiken. Transformatie van 3PCA-oplossingen naar eenvoudige vorm kan

de interpretatie van de oplossing vereenvoudigen. Maar dergelijke procedures zijn

ook wiskundig interessant. Met name de “typical rank” (waarschijnlijke rang) van

array-formaten is veel gemakkelijker te bepalen wanneer gebruik wordt gemaakt van

“simplicity transformations”.

In Hoofdstuk 6 worden nieuwe resultaten gepresenteerd inzake simplicity van

driewegarrays, met name inzake arrays die uit symmetrische matrices bestaan. Voor

dergelijke arrays zijn niet eerder simplicity-resultaten gevonden. Er wordt een uitge-

breide analyse gegeven voor arrays waarin de symmetrische matrices van orde 2× 2,

3× 3 en 4× 4 zijn. Er worden voorbeelden gegeven waarin simplicity-transformaties

de bepaling van waarschijnlijke rang vereenvoudigen. Ook wordt aandacht besteed

aan het bepalen van “maximal simplicity”.

In Hoofdstuk 7 worden eerste en tweede orde afgeleiden van optimalisatiefunc-

ties voor CP en Indscal gegeven. Doel is een gereedschap te ontwikkelen waarmee

we zadelpunten kunnen herkennen. Twee typen randvoorwaarden zijn daarbij in

acht genomen: kolommen van lengte 1 of orthonormaliteit, in twee van de drie com-

Samenvatting 129

ponentenmatrices. Enkele numerieke problemen die daarbij optreden (verwant aan

gedegenereerdheid) worden besproken. Ter illustratie worden drie toepassingen be-

handeld.

Acknowledgements

This section has been, by far, the most enjoyable to write. While organizing my

thoughts before writing these words, I realized that there are several people that had

a direct or indirect influence on this thesis. I will try not to forget anyone in the

following paragraphs.

I suppose that first things come first. And this means that the first person that I

want to thank is Jos ten Berge. It is not easy for me to accurately describe how much

Jos influenced the development of this thesis in particular and the whole project in

general. I have tried to give a more proper description of my thoughts by dividing

Jos into several kinds of Jos’s that I met during the last 4 years.

There is the “scientific” Jos: he is the ultimate researcher, in the sense that he is

always ready to dig into anything for which there is no available answer. I met no

exception to this rule during the 4 years of cooperation between us. His knowledge

and expertise still amaze me now, and it makes me realize that I still have a very long

way to go myself.

There is also the “supervisor” Jos: in the vast majority of times he helped me

choosing the best direction to proceed with my work. In the few cases that he did

not do so, either I blame myself or maybe it was because walking in the dark is just

what research is all about, even if you are being supervised.

There is also the “man” Jos, who gave me enough time to gather myself together

in times of suffering, and who understood that I am not a Dutch person (with all

that being a non-Dutch person implies). There were several “meetings” in his office

in which we did everything but work. Those moments I do not forget, as they were

only possible because Jos is how he is. Jos is also the guy who took a Sunday morning

to help me carry a lot of bags and boxes when I moved into a better room. He is the

one who borrowed me his seasonal card of FC Groningen several times, so I got to

see several Eredivisie matches for free. These are only some of the things that no one

132 Acknowledgements

can read in the theorems and proofs of this thesis, but that decisively (and indirectly)

contributed in the writing of them.

Finally, there is also the “child” Jos. The one who gets over-enthusiastic about

his beloved FC Groningen. The one who taught me how a smoker can still go out and

have a nice cappuccino downtown. The one who can find the most amusing joke in

the most normal aspects of life. At moments Jos made me feel that he was 6.5 years

old instead of 65. This part of Jos taught me more than he can ever imagine, and I

will treasure it forever.

Another person that I wish to thank for is Henk Kiers. Henk was the first person

that I ever met in Groningen, at the train station back in February 2006. He went

to big efforts to make me feel well in the Netherlands. These efforts included two

trips with his wife to the flower fields sometime in April 2007 and 2008, which I really

enjoyed. All my experience during the PhD was better due to these acts from a man

who already had so much to do but still found gaps in his agenda to stroll around

with some portuguese dude.

Henk always read my material, gave me loads of suggestions (and corrected a lot

of mistakes with which I adore to populate my manuscripts), and made me feel extra

safe with it. This thesis has a somehow different flavour since it was also developed

under the expertise of Henk. To him I also wish to thank very much.

I want to leave a general word of appreciation to my department. During these

four years I attended many research meetings, which directly or indirectly affected

the way this thesis turned out. I had the opportunity to present some of my results

during those meetings, which helped me a lot. The writing of this thesis was positively

influenced by those meetings. I thank everyone for it.

From the organizational point of view there are several persons or entities that I

wish to thank. These include Hanny and Greetje, who always put effort to help me

solving any problem that came about, while being extremely nice at the same time.

In a more general way I wish to thank all those who eventually helped me somehow:

these include P&O, informatic technicians, portiers, and workers at the canteen (my

wallet still hates you, though).

As for friends (Groningers!) who were closer to me, there are a few names that

I want to mention. These include Rink (my best man!, that says it all) and Arnout

(my first Dutch friends ever, up to this very day) and their partners Jana and Jantine

Acknowledgements 133

(and baby Sarah!), Radek (Groningen is not the same since he left. . .), Zhenya (and

little Sasha) and Aysa, Anne Fetsje (who, sadly for me, moved to an office far far

away, across the garden), Fabia, Inês, Berfu, Tejas, Sayaka, and the great Jan Pieter.

From Portugal there are also some names that I need to mention. They are part

of me, and therefore of this book. “Vocês sabem de quem eu estou a falar!”: João &

Titinha (and Luisinha!), João Pereira (Boda!!) & Xana, Śılvia & Jorge, Alberto &

Carla (e as suas duas princesas Rita e Joana), and Sofia (por falar em princesas).

I wish to send a gigantic hug to both my parents António e Maria da Conceição.

I wouldn’t be here without them. A part of this is dedicated to them. I also want to

send a big kiss to my sister, who I haven’t seen since before the PhD started.

I send a special kiss to my new Japanese family: Kotaro-san (幸太郎),

Tomoko-san (智子), Nobuo-san (信男) and Shun-san (峻).

ありがとう！　

Finally, I wish to send a gigantic kiss to my now wife Rei Monden (Tendeiro).

When I met her this project was half way. Since that moment she has always been by

my side, in ways that I cannot fully describe with words. What the hell, I did marry

her, right?, I don’t need to say anything more. God bless you, sweety.

