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Abstract. This work identifies the limitations of n-way data analysis
techniques in multidimensional stream data, such as Internet chatroom
communications data, and establishes a link between data collection and
performance of these techniques. Its contributions are twofold. First, it
extends data analysis to multiple dimensions by constructing n-way data
arrays known as high order tensors. Chatroom tensors are generated by a
simulator which collects and models actual communication data. The ac-
curacy of the model is determined by the Kolmogorov-Smirnov goodness-
of-fit test which compares the simulation data with the observed (real)
data. Second, a detailed computational comparison is performed to test
several data analysis techniques including svd [1], and multiway tech-
niques including Tucker1, Tucker3 [2], and Parafac [3].

1 Introduction and Background

Internet Relay Chat (IRC) is a multi-user, multi-channel and multi-server com-
munication medium that provides text-based, real-time conversation capability
[4]. Chatroom communication data offer valuable information for understanding
how social groups are established and evolve in cyberspace. Recently, there has
been intense research focus on discovering hidden groups and communication
patterns in social networks (see [5, 6, 7, 8, 9] and references therein).

Chatrooms are attractive sources of information for studying social networks
for several reasons. First, chatroom data are public, and anyone can join into
any chatroom to collect chat messages. Second, real identities of chatters are de-
coupled from the virtual identities (i.e., nick names) that they use in a chatroom.
For example, a 50-year old male chatter can participate in a teenager chatroom
with multiple virtual identities one of which could be associated with a female
persona. Thus, there is no privacy in chatroom communications. Indeed, it is
partially this total lack of privacy that makes chatrooms vulnerable to malicious
intent and abuse, including terrorist activities. Third, chatroom data are ob-
tained from streaming real-time communications, and contain multidimensional
and noisy information. Extracting structure information without understanding
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the contents of chat messages (i.e., without semantic information) to determine
how many topics are discussed, or which chatters belong to the same conversa-
tion topics, is quite challenging.

There are several efforts to extract information from chatroom communi-
cations [10, 11, 12, 8, 9]. However, current techniques have limited success since
chatroom data may have high noise and multidimensionality. Thus, data anal-
ysis techniques, such as Singular Value Decomposition (SVD) [1] that rely on
linear relationships in two-dimensional representation of data, may fail to cap-
ture the structure. In this work, we extend chatroom data analysis to multiple
dimensions by constructing multiway data arrays known as high order tensors.
In particular, we consider three-way arrays (i.e., cubes) with dimensions: (1)
users (who), (2) keywords (what), (3) time (when). Accordingly, we consider
generalization of SVD to higher dimensions to capture multiple facets of chat-
room communications. Multidimensional SVD has been a focus of intensive re-
search [13, 14, 15, 16, 17, 18, 19]. It is well understood that there is no “best” way
to generalize SVD to higher dimensions. Computational methods favor greedy
algorithms based on iterative computations such as alternating least squares
(ALS) [16, 15, 13]. For example, most popular multiway data analysis techniques
Tucker3 [2] and Parafac [3] use ALS. While special cases (such as tensors
with orthogonal decompositions [16]) are possible, in general enforcement of con-
straints in ALS remains as a challenge.

1.1 Our Contributions

The main goal of this work is to identify the limitations of n-way data analysis
techniques, and establish a link between data collection (i.e., tensor construc-
tion) and performance of these techniques. More precisely, this paper has several
contributions:

i. We present a model and its statistical verification using actual chatroom
communications data. The model is used to implement a simulator for gen-
erating three dimensional chatroom tensors with user × keyword × time.

ii. We examine how two-way data analysis techniques such as SVD would per-
form on chatroom tensors to extract the structure information. We show
that SVD may fail on chatroom tensors even with quite simple structure
while three-way data analysis techniques such as Tucker1 and Tucker3
are successful.

iii. We investigate how the construction of chatroom tensors would impact the
performance of both SVD and three-way data analysis techniques. In par-
ticular, we investigate the importance of noise filtering and dimensions of
chatroom tensors, and show how sensitive the analysis techniques are.

iv. Finally we compare three-way analysis techniques with each other as a func-
tion of several metrics, such as number of components, explained variation,
number of parameters and interpretability of the models. We show that high
model complexity (w.r.t. the parameters), which is an indication of more
modeling power and more explained variation, does not necessarily capture
the right structure when data are noisy.
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Organization of the paper: This paper is organized as follows. Section 2 de-
scribes the data collection procedure from chatroom channels and verifies the
simulation model. In Section 3, we discuss the impact of data construction on
two-way and multiway analysis techniques using both special cases and simula-
tion data. This section also compares the performance of different data analysis
techniques in extracting the internal structure of data.

2 Modeling and Simulating Chatroom Data

Data Collection: We have implemented an IRC bot similar to one used in [8].
The bot connects to an IRC server, and joins to given channel. It logs public mes-
sages and control sequences (nick, quit, kick, leave, etc.) flowing in the channel.
We have collected 24 hours, 20 days (November 2004) of logs from philosophy
channel in dallas.tx.us.undernet.org undernet server 1. The log file is 25 MB in
size, and includes 129,579 messages.

The logs are processed for 4-hour period between 16:00-20:00 for 20 days.
There are average of 10 to 20 active users during this period. We keep track of
join and change nick messages to determine a chain of nicks (e.g., change nick
from A to B, B to C, etc.), and associate the chain with a single user.

Table 1 shows interarrival statistics obtained over 20-days of data. Rows of
the table show the statistics when the interarrival time is bounded by the given
value. Note that, 99.82% of the interarrival times are less then 300 seconds. Thus,
we assume that no conversation could survive 300 seconds of silence.

Table 1. Interarrival time statistics over 20-day of log

Interarrival Number of % of
Time Mean Median STD Skewness Kurtosis Messages Messages

≤ 60 11.97 8 11.6 1.57 2.36 103,997 97.36

≤ 180 13.73 5 16.75 3.37 17.6 106,449 99.66

≤ 300 14.08 9 18.9 4.86 40.65 106,624 99.82

Table 2 presents the statistics for message interarrival time, message size
in terms of word counts and number of messages per user. Message size and
interarrival time fit to exponential distribution with parameters (µ = 0.0801)
and (λ = 0.0677), respectively. Number of messages per user obeys to a power
law distribution with exponent (α = −1.0528).

Identifying Keywords: Users in a chatroom talk about several topics which
may overlap in time domain. We define a conversation as a sequence of posts
made by at least two topic members.

1 There was no specific reason for choosing the philosophy channel. It is one of the
many channels with less junk information.



Modeling and Multiway Analysis of Chatroom Tensors 259

Table 2. Results of analysis on 4-hour x 20-day of log for message size, interarrival

time and number of messages per user

Mean Std Skewness Kurtosis # Samples Distribution

Message Size 12.47 11.17 1.86 4.83 18,483 f(x) = 0.0801 e−0.0801x

Interarrival Time 14.76 19.29 4.68 37.58 18,430 f(x) = 0.0677e−0.0677x

# Mess. per User 21.24 33.78 2.88 10.00 870 f(x) = 0.2032x−1.0528

It is possible to find a set of specific keywords for each topic which are fre-
quently used by the topic members. However, care must be taken to handle
irregular verbs or verbs with −ed, −ing, −s to treat them as the same word. We
consult to the online webster (www.webster.com) dictionary to find the simple
forms of these words. We consider common words among several topics as noise
if they are not specific keywords of any topic. Noise also includes typos or other
unresolved words by webster.

Model: We developed a model for chatroom communications based on the sta-
tistical observations on the real data. Model accepts five parameters: (i) distri-
bution for interarrival time, (ii) distribution for message size in terms of word
count, (iii) distribution for number of messages per user, (iv) noise ratio (NR),
and (v) time period.

Given a topic-tuple T1, · · · , Tn of n topics, the model computes the number
of messages mj,k posted by user j on topic k. This number is assigned according
to a power law distribution which is obtained from the statistics collected over
real data. Once mj,k is determined, message posting probability for a user h
is calculated as mh,k/

∑
∀j mj,k. For the philosophy channel, interarrival time

obeys exponential distribution which is generated by a Poisson arrival process
with arrival rate of λ. Thus, conversation duration for a topic-tuple becomes:∑

∀j

∑
∀k mj,k ∗1/λ. We model a chatroom log as a queue with multiple Poisson

arrival processes. Suppose there are T1, ..., Tn of n topics each with M1, ...,Mn

messages respectively. Then, the arrival rate for each topic will be λ1, ..., λn

respectively where:

λi =
Mi ∗ λ
∑

∀j Mj
, 1 ≤ i ≤ n

Noise Modeling: In this work we use Gaussian noise to introduce a model
parameter noise ratio (NR) as: NR = (Topic Specific Words + Noise Words) /
Noise Words. Once message size is decided for a user, number of specific topic
words and number of noise words are decided based on this ratio. Specific words
are selected uniformly at random from the keyword set of the topic. Noise words
are randomly selected according to Gaussian distribution. Gaussian distribution
selects some of the words very frequently and some others very rarely. Frequently
selected words represent the type of noise words which are used frequently by
everybody in the chatroom. Rarely selected words represent typo like noise words
which are used rarely in the chatroom. When all selected users in a topic post,
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Fig. 1. System architecture for data collection, modeling and simulator

Table 3. Kolmogorov-Smirnov goodness-of-fit test (KS-test) results. Interarrival time,

message size and number of messages per user data from model is compared to real

chatroom data for the listed significance levels. KS-test does not reject null hypothesis

which states that both synthetic and chatroom data come from the same distribution

Synthetic Data Chatroom Data Asymptotic Significance
# Samples # Samples P-value Level

Interarrival Time 962 18,430 0.1800 10%

Message Size 1,034 18,483 0.2022 10%

# Mess. per User 57 870 0.0521 5%

number of posts for these selected users is decremented, and posting probabilities
are recalculated.

Verification: Based on the model, we implement a simulator in Perl. Simulator
receives its parameters from a configuration file, and generates chatroom-like
communication logs according to the model to be used for verification. Figure 1
presents overall data flow. We perform goodness-of-fit test over synthetic and
real data. Table 3 represents Kolmogorov-Smirnov goodness-of-fit test (KS-test)
results for the listed significance levels. For all the cases, KS-test does not reject
null hypothesis which states that both synthetic and chatroom data come from
the same distribution.

3 Computational Comparison of 2-way and 3-way Data
Analysis Techniques

We use specific datasets and simulation data to assess two-mode and three-
mode analysis techniques. We demonstrate that two-way methods are not as
powerful as three-way techniques in capturing the structure of data broken into
a number of user groups. We define “user group” as the set of users who share
a maximal keyword set in a given time period. Our analyses are conducted in
Matlab using Tensor Class [20] for tensor operations and N-way ToolBox[21] for
implementations of Tucker and PARAFAC models.
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3.1 Impact of Tensor Data Construction

There are two types of data used in this section: (i) manually created data,
and (ii) simulation data. For three-mode analysis, we rearrange the data into a
tensor, T ∈ Ru×k×t, defined by user x keyword x time modes, where Tijk shows
the number of keyword j sent by user i during time slot k. For two-mode analysis
based on SVD, we prepare two matrices: UK ∈ Ru×k, where u and k are the
number of users and keywords, respectively. Each entry UKij shows the number
of keyword j sent by user i. Second matrix is matrix UT ∈ Ru×t, where t is
the number of time slots and UTij indicates the number of total keywords sent
by user i in time slot j. Our objectives are twofold (i) to construct examples
where SVD fails to discover the structure while three-way methods Tucker1 and
Tucker3 succeed, and (ii) to generate tensors with the same properties as the
actual chatroom-like communication data using the simulator and examine the
impact of noise and time window size on the performance of analysis techniques.

Noise-Free Tensors with Disjoint Groups and Keywords: First dataset
has a structure as shown in Table 4(a). Group 1 and 2 talk about the same topic
using a common keyword set while Group 3 and 4 make use of a completely
different keyword set. Group 1 and 3 always speak at odd time slots whereas
Group 2 and 4 occupy even time slots. We note that data are noise-free thus
there are no words that are not keywords and there are no users that do not
belong to a group.

In such a setting, SVD on matrix UK tends to cluster the users using the
same keywords. Similarly, SVD of matrix UT forms clusters containing the users
that speak during the same time slots. Therefore, both methods fail to discover
the internal structure of data, which actually contains 4 separate groups.

There are, in total, 10 users and 2 keyword sets each containing 2 keywords.
Simulation time is 42 time slots. We can represent the sample data as a tensor
A of size 10 x 4 x 42 or an unfolded matrix M with dimensions 10 x 168.
Best ranks of matrices, UT, UK and M as well as best rank of each mode
of tensor A are determined for rank reduction. The users are mapped on the
spaces spanned by singular vectors chosen via rank reduction to identify the

Table 4. (a) First specific dataset where group membership and keywords are disjoint,

(b) Second specific dataset where groups have common members but keywords are

disjoint, and (c) Simulation dataset where groups have common members but keywords

are disjoint

Groups Members
(a) (b) (c)

1 User 1,2 User 1,2,3 User 1,2,3,4

2 User 3,4,5 User 2,3,4 User 3,4,5,6

3 User 6,7 User 5,6 User 7,8

4 User 8,9,10 User 7,8 User 9,10
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Fig. 2. SVD on user x time, UT and user x keyword, UK matrices are not powerful

enough to find all four user groups while Tucker1 and Tucker3 are capable of extracting

all groups from the data

clusters and the structure in the data. It is possible to have only two or three
significant singular vectors but higher than three depending on the structure of
data should also be anticipated. Let k be the number of most significant singular
values identified by rank reduction. We multiply k significant singular values with
their corresponding left singular vectors. If U ∈ Rnxm and S ∈ Rmxm represent
left singular vectors and singular values of the original matrix, respectively, we
compute matrix F = U(:, 1 : k) ∗ S(1 : k, 1 : k) and regard F ∈ Rnxk as a
multidimensional dataset where each row represents a user and each column is
one of the k properties of a user.

We represent the results of two-mode and three-mode methods using An-
drew’s curves [22], which transform multidimensional data into a curve, enable
us to visualize graphically the structure of data stored in matrix F (i.e., how
users are spread on the space spanned by more than 2 or 3 components) 1.
Noise Free Tensors with Overlapping Groups and Disjoint Keywords:
The second dataset shown in Table 4(b) is similar to the first one except that
overlapping user groups are allowed in order to inquire the performance of anal-
ysis methods in the presence of common users.

1 To visualize the behavior of user i, ith row of matrix F , Fi, is converted into a curve
represented by the following function:

fi(t) =

⎧
⎨

⎩

Xi,1√
2

+ Xi,2 sin(t) + Xi,3 cos(t) + ... + Xi,p cos( p−1
2

t) for p odd

Xi,1√
2

+ Xi,2 sin(t) + Xi,3 cos(t) + ... + Xi,p sin( p
2
t) for p even

where t ∈ [−π, π]
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SVD of matrices UK and UT both perform poorly for this case: it can dis-
tinguish common users; but overlapping users are treated as a separate cluster.
We consider this result as a failure because such analysis is capable of finding
subsets of groups while missing the whole group structure. We note that in this
case, Andrew’s curves are not sufficient to differentiate common users. Therefore,
we make use of an unsupervised clustering algorithm called fuzzy c-means [23],
which returns membership degrees of each user for each group. Among many
clustering algorithms, fuzzy c-means is an appropriate choice for chatroom data
because it allows a data point to be in more than one cluster. C-means algorithm
returns different membership values for each run since it is a nondeterministic
algorithm. The results presented in Table 5, are the cases that represent the
majority of 100 runs. SVD of UT gives the result in the table in 70% of the runs
and SVD of UK returns the recorded result in 85% of the runs. The results for
Tucker1 and Tucker3 are explained in detail below.

Rows named as ”Groups”, show which group each user is assigned to accord-
ing to the results of membership values. SVD on UT, groups Users 1, 5 and 6

Table 5. Membership values for users given by fuzzy c-means clustering algorithm.

Each user belongs to a group with certain probability represented by membership

values. The highest probability determines the group each user belongs to

User1 User2 User3 User4 User5 User6 User7 User8

SVD of UT
Pr(Usr ∈ Grp1) 0.5000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 0.0000
Pr(Usr ∈ Grp2) 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Pr(Usr ∈ Grp3) 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000
Pr(Usr ∈ Grp4) 0.5000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 0.0000

Groups 1 or 4 2 2 3 1 or 4 1 or 4 3 3

SVD of UK
Pr(Usr ∈ Grp1) 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
Pr(Usr ∈ Grp2) 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Pr(Usr ∈ Grp3) 0.0000 0.0000 0.0000 0.0000 0.0016 0.0124 0.9984 0.9876
Pr(Usr ∈ Grp4) 0.0000 0.0000 0.0000 0.0000 0.9984 0.9876 0.0016 0.0124

Groups 1 2 2 1 4 4 3 3

Tucker1
Pr(Usr ∈ Grp1) 1.0000 0.0042 0.0055 0.0530 0.0000 0.0000 0.0000 0.0000
Pr(Usr ∈ Grp2) 0.0000 0.0005 0.0007 0.0499 1.0000 1.0000 0.0000 0.0000
Pr(Usr ∈ Grp3) 0.0000 0.9948 0.9931 0.8429 0.0000 0.0000 0.0000 0.0000
Pr(Usr ∈ Grp4) 0.0000 0.0005 0.0007 0.0541 0.0000 0.0000 1.0000 1.0000

Groups 1 3 3 3 2 2 4 4

Tucker3
Pr(Usr ∈ Grp1) 0.0596 0.0005 0.0007 0.0000 1.0000 1.0000 0.0000 0.0000
Pr(Usr ∈ Grp2) 0.8105 0.9927 0.9905 0.0000 0.0000 0.0000 0.0000 0.0000
Pr(Usr ∈ Grp3) 0.0653 0.0062 0.0080 1.0000 0.0000 0.0000 0.0000 0.0000
Pr(Usr ∈ Grp4) 0.0646 0.0006 0.0008 0.0000 0.0000 0.0000 1.0000 1.0000

Groups 2 2 2 3 1 1 4 4
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together although they just share the time space and do not form a group. We ob-
serve the same behavior for Users 4, 7 and 8. This is an expected outcome because
SVD on matrix UT maps the users with similar chatting pattern in time closer to
each other in the space spanned by left singular vectors. Another important point
is that common users are clustered as a completely separate group from other
users whom they are talking to. SVD on matrix UK, also shows the same behav-
ior. For overlapping groups model, SVD of matrix UK performs poorly compared
to SVD of matrix UT because it cannot capture that Users 1 and 4 are in dif-
ferent groups. However, it outperforms the results of SVD on time mode by cor-
rectly extracting Groups 3 and 4 from data. All in all, we observe that two -way
analysis results do not reflect the real structure of data. Similarly, at first sight,
neither Tucker1 nor Tucker3 seems to capture the exact structure but the cases
shown for Tucker1 and Tucker3 occur approximately 50% of the time. If User2
and User3 are clustered with User4 in half of the runs, then they are clustered
with User1 in the other half. Therefore, probability of User2 and User3’s being in
the same cluster with User1 and User4 are both close to 0.5. Thus, we can make
a hypothesis for group membership based on these probabilities.

Noisy Tensors and Impact of Noise Ratio: Using the simulator, we im-
plement a model where we demonstrate the effect of noise in extracting the
structure of data for two-way and three-way methods. Noise is introduced in
keywords mode by the use of a number of words shared by all user groups.

Experimental model consists of 4 groups of users as shown in Table 4(c). As
in the scenario of special cases, Group 1 and 2, and similarly Group 3 and 4
use the same keyword sets. Keyword sets are distinct and contain 10 keywords
each. Groups making use of distinct keyword sets can talk during the same time
period with equal probability.

We create separate chat logs for a simulation time of 4 hours for different
noise levels indicated by NR. We set the minimum and maximum number of
messages that can be sent by each user as 30 and 70, respectively. We assess
the relative performance of SVD, Tucker1 and Tucker3 models on different noise
levels and demonstrate our results in Table 6. After the selection of significant
components for user mode, we run fuzzy c-means clustering algorithm 100 times
to see how often the pattern discovered by clustering method coincides with the
internal structure of data. SVD on matrix UK fails to find the right data pattern
because it tends to cluster users talking about the same topic regardless of their
conversation slots. SVD on matrix UT can capture the structure with moderate
success ratios while Tucker1 and Tucker3 have the best results. As noise level
increases, we observe that all algorithms start to suffer at some threshold values.
Analysis results suggest that Tucker3 performs better than Tucker1 on noisy
tensor data.

There are different concepts of noise but our approach in introducing noise
tends to form a single keyword cluster. When we observe the behavior of singular
values under the effect of noise, we clearly see that noisy data approach to rank-1
in keyword mode while becoming full rank in user mode.
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Table 6. Impact of NR (noise ratio) on success ratios of two-way and three-way analysis

methods when time window is 240 seconds and tensor is of form 10x100x60

SVD SVD
NR userXkeyword userXtime TUCKER1 TUCKER3

No Noise 0% 56% 100% 100%

5 0% 55% 100% 100%

3 0% 47% 73% 100%

2 0% 0% 3% 16%

Impact of Sampling Time Window: On the same experimental set up, we
show how different time window sizes affect the performance of analysis tech-
niques. We work on a noise-free dataset to be able to observe solely the effect of
window size on success ratios. In this setting, minimum and maximum number
of messages sent by a user are 1 and 200, respectively. We create a single chat
log of 4 hours and generate data for different time window sizes. Analysis results
in Table 7 display that there exists a threshold window size below which none
of the analysis methods can discover the structure of data. When time window
is roughly 200-300 seconds, three way models have the best performance while
SVD on UT can capture the structure only to some extent. Under 180 seconds,
none of the methods succeeds. We also observe a performance degradation in
all methods as time window size increases considerably. This is an indication
of an upper bound on time window size over which users talking at different
time slots are considered in the same time period. This hides the communica-
tion pattern completely. It is important to observe the relative performance of
algorithms in Table 7 rather than exact success ratios or exact time window
threshold values.

Table 7. Impact of sampling time window on success ratios of two-way and three-way

analysis methods for noise-free data. Total simulation time is 14400 seconds. Tensor is

constructed asuser x keyword x time. As sampling time window changes, dimension of

the tensor in time mode is adjusted accordingly

Time Window SVD SVD
Tensor (seconds) userXkeyword userXtime TUCKER1 TUCKER3

10x20x1 14400 0% 0% 0% 0%

10x20x2 7200 0% 0% 13% 17%

10x20x8 1800 0% 0% 17% 22%

10x20x12 1200 0% 25% 24% 27%

10x20x24 600 0% 28% 26% 26%

10x20x48 300 0% 20% 100% 100%

10x20x72 200 0% 14% 100% 100%

10x20x80 180 0% 0% 0% 0%

10x20x160 90 0% 0% 0% 0%
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Similar to the effect of noise case, when we inspect the behavior of singular
values in user mode, we observe that as time window size gets smaller, we observe
a structure close to full rank.

3.2 Performance Comparison of Multiway Techniques

We assess the performance of Tucker1, Tucker3 and PARAFAC with respect to
several metrics such as number of components, explained variation, number of
parameters and interpretability of models. Performance analysis results suggest
that Tucker3 model provides the best interpretation. In case of noise-free data,
there is no difference in using Tucker1 or Tucker3 decomposition in terms of data
interpretation. However, for Tucker1, number of parameters, which is the total
number of entries in matrices/ core tensors produced in tensor decomposition,
is much larger than the number of parameters in Tucker3 and more parameters
introduce complication in data interpretation. PARAFAC is not appropriate for
modeling our data because of its strict modeling approach. It does not allow
extraction of different number of components in different modes. Besides, while
Tucker3 model enables us to decompose a tensor into orthogonal component
matrices X,Y , and Z and estimate orthonormal bases, in PARAFAC, we can
only do that if tensor is diagonalizable. In Table 8 we present the results of

Table 8. Performance comparison of N-way analysis techniques for time window 240

seconds and tensor 10x100x60. Tucker1, Tucker3 and PARAFAC are compared based

on explained variation, number of parameters used in each model and success ratio of

capturing the structure. Comparison of the models is presented for two different noise

levels, NR=0 and NR=3

Number of Explained Number of
NR Components Variation Parameters Structure

Tucker1 0 5 84.6493 30050 100%

Tucker3 0 5 5 5 76.9814 975 100%

Tucker3 0 5 2 5 76.5944 600 100%

Parafac 0 5 48.753 850 0%

Tucker1 0 8 95.1406 48080 75%

Tucker3 0 8 8 8 84.8294 1872 100%

Tucker3 0 8 2 8 83.7563 888 100%

Parafac 0 8 49.4294 1360 0%

Tucker1 3 5 77.4148 30050 5%

Tucker3 3 5 5 5 62.7061 975 7%

Tucker3 3 5 2 5 62.2053 600 11%

Parafac 3 5 40.7648 850 0%

Tucker1 3 4 69.5659 24040 69%

Tucker3 3 4 4 4 58.3426 744 64%

Tucker3 3 4 2 4 58.2482 512 100%

Parafac 3 4 40.3238 680 0%
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performance comparison for multiway techniques. Note that even if we extract
the same number of components in each mode, Tucker3 model is more robust.

When data are noisy, we observe performance degradation in terms of inter-
pretability in Tucker1 while Tucker3 can still capture the structure successfully if
right number of components is determined for each mode. Table 8 demonstrates
the importance of right component numbers in success ratio of data interpre-
tation. Similarly, it gives an example of a case where selection of component
numbers just taking into fit of the model into account does not necessarily im-
ply better interpretation of data.

4 Conclusions

In this work we show how to generate three-way chatroom tensors and examine
the performance of data analysis algorithms. We show that three-dimensional
chatroom tensors contain multilinear structure that cannot be detected by SVD.
The performance gap between SVD and multiway analysis techniques Tucker1
and Tucker3 grows as a function of increasing noise in the data. We also show
that construction of the chatroom tensor with respect to sampling window size
has significant impact on the performance of analysis techniques. We examine the
performance of Tucker1, Tucker3 and PARAFAC with respect to several metrics
such as number of components, explained variation, number of parameters and
interpretability of the models. Our results suggest that there is no difference in
using Tucker1 or Tucker3 decomposition if the data are noise-free. In general,
Tucker3 model provides the best interpretation and has the advantage of less
number of parameters compared to Tucker1. We note that one of the challenges
left for further research is to determine the optimal number of components to
obtain the most accurate structure information. It is evident from our study that
how data are collected and represented have significant impact over discovering
the structure hidden in them.
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