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Abstract 

Three-mode PCA is very computer demanding. It requires a large amount of storage space and many floating 
point operations (FLOPS). By using three-mode B-spline compression of three-mode data arrays, the original data 
array can be replaced by a smaller coefficient array. Three-mode principal component analysis (PCA) is then 
performed on the much smaller coefficient array instead of on the original array. For the compression approach to 
be efficient the three-mode data array is assumed to be well approximated by smooth functions. The smoothness 
affects the dimensions of the coefficient array. It is always possible to approximate the data to any precision but the 
reward in reduced computation time and storage is lost when the dimensions of the coefficient array approach the 
dimensions of the original array. 

1. Introduction 

N-mode arrays represent extensions of two- 
mode arrays, i.e., matrices. There are several 
other names for these objects: tensors, N-way 
arrays, N-arrays, and multilinear forms. We will 
here refer to such data objects as N-mode arrays 
or N-arrays. 

Several analytical instruments produce data 
sets of the N-array type. Such arrays can be very 
useful for obtaining, e.g., information about con- 
stituents in solutions [1,2] or atom assignment of 
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crosspeaks in multidimensional NMR [3]. Unfor- 
tunately, the N-arrays present serious storage 
and computational problems. The number of data 
elements increases rapidly and the need for some 
reduction and improvement in the data handling 
procedure is necessary. In previous papers [4-61 
we have suggested that compression by B-splines 
or by means of another suitable basis may be an 
efficient way of partially solving the increased 
data size problem. 

There are two main types of compressions: 
lossless and lossy [7]. Lossless compression re- 
stores the data perfectly but does not attain large 
compression ratios as in lossy compression. The 
B-spline method used here is a lossy compres- 
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sion. What is an acceptable error in the recon- 
struction compared to the original array must be 
decided by the investigator and must be consid- 
ered to be problem dependent. 

In this article we focus on three-mode princi- 
pal component analysis (3MPCA) which is com- 
puter demanding [S] for arrays of size larger than 
150 X 50 X SO]. In such cases powerful worksta- 
tions are necessary. If data from an instrument 
should be analyzed directly, arrays of, e.g., di- 
mensions [lo00 X 500 X 5001 are realistic, Exam- 
ples of instruments giving rise to such data sets 
are, e.g., three-dimensional NMR spectra or 
two-dimensional IR versus time/ temperature. 
Inserting such an array without any compression 
or pretreatment into a standard 3MPCA program 
would require a very powerful computer. Fortu- 
nately, the spectra from analytical instruments 
often contain some smoothness which enables the 
use of compression methodology. The compres- 
sion part of course, must not be too computer 
demanding in itself. 

Before reading the next section the reader is 
encouraged to read the appendix which explains 
the different notations used in this article. 

2. Three-mode PCA 

In singular value decomposition (SVD) for 2- 
arrays an X matrix can be decomposed as: 

X = uS’/*Vr (1) 

where U and V are column-wise orthonormal 
matrices and S’/* is a diagonal matrix containing 
the square root of eigenvalues of the two covari- 
ante matrices XXT and XTX. The two associated 
eigen-equations are: 

XXTU = us (2) 

XTXV = vs (3) 

In SVD for 3-arrays an X array can be decom- - 
posed as: 

X = GD( HT 8 ET) (4) 

where X and D are unfolded representations of 
the 3-array (see Appendix) and G, H and E are 
column-wise orthonormal loading matrices for 

each mode. Eq. 4 is the Tucker3 model [8,9]. It 
should be stressed that the 3-arrays (represented 
as matrices) in Eq. 4 must be unfolded in the 
same way. D is the core matrix (or core array). 
Eq. 4 written in explicit summation is: 

P Q R 

Xijk = C C C giphjqekApqr (5) 
p=l q=l r=l 

There are different methods for solving the 
Tucker3 model. A method similar to the ap- 
proach used for SVD of 2-arrays (see Eqs. 2 and 
3) is the Tucker Method I [8,9] which obtains 
estimates for the loading matrices E, H and G by 
extracting all eigenvectors corresponding to non- 
zero roots of the three covariance matrices with 
elements: 

J K 

I,,, = c c XijkXiljk 

j=l k=l 
(6) 

I K 

mjjt = C C xijkxijtk 

i=l k=l 

n kk’ = i i XijkXijk’ (8) 
i=l j-1 

Using the estimated three loading matrices, 
Eq. 5 shows the core array D can be expressed as: - 

d pqr = f: i 5 giphjqekrXijk (9) 
i-1 j=lk=l 

This equation is also shown in Fig. 1 using the 
diagram notation. 

In practice an investigator is often interested 
in only the first largest eigenvectors of E, H and 
G. Using the Tucker Method I, however, the 
estimators for dpqr will no longer be least-squares 
ones. In order to achieve least squares estimates 

ql 

Fig. 1. A diagram equation which shows how to obtain the 

core array given the loading matrices G, H, E and the original 
data array X. 
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an alternating least squares (AL9 algorithm [8] 
can be used. The ALS approach is a common 
method for solving the Tucker3 model. The algo- 
rithm is initiated by first computing estimates of 
the loading matrices G,, E, and H, by the Tucker 
Method I. G,, E, and H, are subsequently in- 
serted into the following iteration steps: 

For i = 1 to iterations 
begin 

A=XI(Hi_I 8 Ei-1) 

Gi = eig(AAT) 

A= X2(Ei_, Q Gi) 

Hi = eig(AAT) 

A = X,(G, 8 Hi) 

Ei = eig(AAT) 

end 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Matrix A temporarily stores the results and is 
overwritten when new values are assigned to its 
matrix elements. The function eig returns the 
first largest eigenvectors of AAT (this is a reduced 
decomposition). This algorithm is also formulated 
in the diagram notation in Fig. 2. Xi, X, and X, 
are unfolded representations of the original 3- 
array with dimensions Dim(X,) = [N X (MK)], 

Dim(X,> = [A4 X (AK)], DidX,) = [K X (NM)]. 

The number of iterations can be determined by 
minimizing the error of fit of the model to the 
observed data. This approach, however, is not 
used in the present paper. The reason for this is 
to ensure total control with respect to the num- 
ber of iterations when investigating the FLOPS 
usage of the ALS algorithm applied to different, 
but comparable, data representations. 

3. FLOPS estimations 

The 3MPCA program is written in MATLAB 
[lo] which is very powerful for matrix computa- 
tions. In order to obtain a measure of the effi- 
ciency of the ALS algorithm on uncompressed 
and compressed representations the flops com- 
mand in MATLAB was employed. The FLOPS 

= EIG 

Fig. 2. Illustration of the ALS algorithm using diagram formu- 
lation. 

equation and observed performance of the ALS 
algorithm presented in this paper are based on 
the results from this command. In Table 1 a few 
examples are given where the FLOPS equations 
for simple matrix expressions are presented. For 
each matrix expression in an algorithm the FLOPS 
formula is found and the total FLOPS consump- 
tion is obtained by summing over the different 
contributions. Only the most important parts of 
an algorithm are investigated. All WHILE loops 

Table 1 
This table shows the number of FLOPS required for some 
example matrix operations 

Matrix operation FLOPS required Dimensions of matrices 

XY 2nmk 

XY 2nm 

YTY 2m 
x+x nm 
X=X-tpT 3nm 

MY)Z 2nk(m + r) 

Dim(X) = [n X ml, 
Dim(Y) = [m X k I 
Dim(X) = [n X ml, 
Dim(y)=[m Xl] 
Dim(y)=[m Xl1 
Dim(X) = [n X m] 
Dim(X) = [n X ml, 
Dim(t)=[nXll 
Dim(p)=[mXll, 
Dim(X) = [n X ml, 
Dim(Y) = [m X k I 
Dim(Z)=[k X rl 
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are changed to FOR loops to determine the 
FLOPS consumption for such steps. 

The detailed description of how a FLOPS for- 
mula is constructed will not be presented. 

Using the same approach to the ALS algo- 
rithm the following equation is obtained: 

F,,,=Z[2A(3NMK+NMA+NKA+MKA 

+N2/4+M2A+K%4) +Ns+Ms+K3] 

(16) 

where the last entries N3 + M3 + K3 stem from 
the eigenvalue decomposition which is approxi- 
mately a third degree increase in FLOPS. Here it 
is assumed that the core array is symmetric, i.e., 
its dimensions are [A X A X A]. This will also be 
the case in the examples presented below. Z is 
the number of iterations. Note that this formula 
slightly underestimates the number of FLOPS 
required but is close to the true FLOPS count. 

4. B-splines 

B-splines [11,12] can be used to fit almost any 
type of function. Significant compression, how- 
ever, is obtained if the data at hand have some 
smoothness. A one-dimensional B-spline is a lin- 
ear combination of basis functions b,: 

u-a-1 

f(x) = C cjbj(x) 
j=l 

(17) 

where f(x) is the function to be approximated, cj 
the B-spline coefficients, u is the number of knot 
points and (Y the local polynomial degree. The 
basis functions bj(x) (which for discrete repre- 
sentations are located in a matrix called B) are 
defined by the knot vector h. Knots are points 
located along the independent axis which define 
the shape and location of the B-spline basis func- 
tions. The basis can be constructed by a recursive 
formula [12,13] using the information in the vec- 
tor h. The knot vector h is therefore stored 
instead of the much larger B-spline basis matrix 
B. 

For compression of N-mode arrays N B-spline 
basis matrices (or N h vectors) are needed. 

Fig. 3. Illustration of the steps for finding the knot vectors for 

the three different modes. For each unfolding we find a 

representative vector (RV) which is said to represent the 

current mode. In this case the RV is the standard deviation 

vector (indicated as ‘std. vector’ in the figure). The maximum 

entropy method as described in ref. [4] is applied to the 

standard deviation vector and a knot vector is obtained. 

The steps for obtaining the knot vectors for 
each mode are: 

(i) The original data array is unfolded to a 
matrix. One mode of this matrix corresponds to 
the current mode of the original data array for 
which the knot vector is to be found. 

(ii) A representative vector (RV) is obtained 
for the current mode. An RV can be, e.g., the 
mean or the standard deviation vector of the 
unfolded matrix along the current mode. In this 
paper the standard deviation vector is used as the 
RV. 

(iii) The so-called maximum entropy method 
[4,14] is applied to the RV and the interval vector 
from this procedure is used as the knot vector for 
the current mode. 

See Fig. 3 for a graphical illustration of the 
method. 

Given three knot vectors named h,, h,, and 
h, three corresponding basis matrices B,, B, and 
B, can be generated (by using a recursive for- 
mula [12,13]). The three different modes were 



B.K_ Alsberg, O.M. Kvalheim /Chemometrics and Intelligent Laboratory Systems 23 (1994) 29-38 33 

.i 
j 

cj Brn 

Fig. 4. Diagram of the three mode B-spline model. Illustration 
of how the three knot vectors for three-mode B-spline com- 
pression divide the data array into segments. 

thus labeled IZ, m and k. If the three-mode data 
matrix X has dimensions [N X M X K] then the 
dimensi&s of the basis matrices are [N X n,] for 
B,, [M x m,] for B, and [K X k,] for B,. Let 

( a,,a,,ak} be the local degree of polynomial for 
the spline and Dim(hi) be the number of ele- 
ments in a knot vector, then we have that n, = 
Dim(h,) -a, - 1, m, = Dim(h,) - a,,, - 1 and 
k, = Dim(h,) - cxk - 1. It is desirable to have 
small values of n,, m, and k, without too much 
error. The coefficient array C has thus dimen- 
sions [n, x m, X k,]. The model assumption for 
the three-mode B-spline model is shown in Fig. 4 
which has the same index topology as the Tucker3 
model. The equation for the generation of the 
core array C is shown in Fig. 5. - 

4.1. Compression of a subset of modes 

As mentioned earlier an efficient compression 
ratio is achieved if the data array can be well 
represented by smooth basis functions. It is a 
problem when some of the modes are not smooth. 
B-spline compression may still be of benefit if 
applied to the smooth modes only. In spectral 
problems it is realistic to encounter, e.g., three- 
mode arrays where only two of the modes are 

smooth. The third mode may also be much smaller 
than the smooth modes. 

In refs. [15,16] Kiers et al. presented two effi- 
cient algorithms for the PARAFAC and TUCK- 
ALS3 algorithms for cases when the size of one 
of the modes is much larger than the other two. 
These algorithms do not cover the case discussed 
in this article when all modes are large, but it is 
possible to imagine that two large modes are 
compressed and the third is handled by the algo- 
rithms developed by Kiers et al. 

5. Experiments 

5.1. Data set 

The data used for this example are the three- 
dimensional electron density distribution of the 
inhibitory neurotransmitter y-aminobutyric acid 
(GABA). This distribution was calculated for the 
molecule using the AM1 quantum mechanical 
model [17]. The electron density surface was com- 
puted on a grid of size [71 X 38 x 441. 

5.2. Results 

The h, knot vector was generated by using the 
maximum-entropy method [4,14] on the standard 
deviation vector obtained from the unfolded ma- 
trix of size [(38 * 44) X 711. Correspondingly the 
h, vector was generated from the unfolded ma- 
trix of size [(71* 44) x 381 and h, from the un- 
folded matrix of size [(71 .38) x 441. The MAT- 
LAB B-spline toolbox [18] was used to produce 
the basis matrices. The sizes of the knot vectors 
after assuming third degree polynomial B-splines 
for the n and k mode and second degree polyno- 

Fig. 5. Diagram of how to find the coefficient core matrix in three-mode B-spline compression. This diagram is obtained by solving 
for C in Fig. 4. _ 
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Table 2 
Dimensions of matrices involved in the experiment 

Matrix Dimensions 

G [71 x 31 
H [38x3] 
E [44x 31 

G, [30x31 

H, [13x31 

E, [17x31 

mial for the m mode were [l X 341 for h,, [l X 161 
for h, and [l X 211 for h,. The basis matrix B, 
had size [71 X 301, B, had size [38 X 131 and B, 
had size [44 X 171. The resulting C 3-array from 
the B-spline compression had cckequently di- 
mensions [30 x 13 x 171 which is a compression 
ratio of ca. 

71.38 ’ 44 

30 * 13.17 
= 17.9 

The 3MPCA program was used on both the origi- 

Two sets of loading matrices were produced: 

nal representation X and the compressed repre- 

{G, H, E) for the original uncompressed represen- 

sentation C. - 

tation and (G,, H,, E,) for the compressed repre- 
sentation. Three factors were extracted for both 

O- 
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Fig. 6. Comparison between estimated and original represen- Fig. 8. Comparison between estimated and original represen- 
tation of the G matrix. The dotted line indicates the estimated tation of the H matrix. The dotted line indicates the estimated 
G matrix. The upper figure is the first factor, the middle H matrix. The upper figure is the first factor, the middle 
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Fig. 7. Comparison between estimated and original represen- 
tation of the E matrix. The dotted line indicates the estimated 
E matrix. The upper figure is the first factor, the middle 
figure is the second factor and the bottom figure is the third 
factor. 

representations. The sizes of the different loading 
matrices are shown in Table 2. 

The total number of FLOPS consumed for the 
original data array was F = 75677508. The corre- 
sponding number of FLOPS using the com- 
pressed representation was F, = 4799174. The ra- 
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tio F/F, = 15.8 is in the same range as the com- 
pression ratio. Using the derived formula 16 for 
the number of FLOPS consumed by the ALS 
algorithm the estimated ratio was approximately 
14.7 which is in close agreement with the ob- 
served values. A comparison between the original 
loading matrices GZ Hnand E and the estimated 
loading matrices G, H and E from the com- 
pressed representation was made. The following 
equations were used: 

G = B,G, (18) 

fi = B,H, (19) 

E = B,E, (20) 

It must be stressed that these estimates are not 
strictly correct, i.e., they do not provide true 
estimates which should be column-wise orthonor- 
mal. Orthogonalization of the loading matrix does 
not produce the correct result. At the present this 
is the only way of obtaining such estimates with- 
out rewriting 3MPCA to compensate for distor- 
tion effects in backestimates. It is possible to 
construct a 3MPCA program which compensates 
for these effects. A detailed presentation of a 
solution to the problem is presented in two forth- 
coming papers [ 19,201. 

The comparisonPetween G and G can be seen 
in Fig. 6, between E and E in Fig. 7 and between 
H and H in Fig. 8. The results for this data set 
must be characterized as satisfactory. 

6. Discussion 

B-splines are not necessarily the optimal choice 
of basis functions for compression. B-splines can 
be viewed as a subset of the much broader class 
of wavelets [21] which has been used in several 
problems in physics, chemistry and image com- 
pression. The problem with compression as used 
in 3MPCA is that the estimates of later factors 
increasingly deviate from the true factors of the 
uncompressed array. The compression stage does 
remove information so there is a trade-off be- 
tween faster computations and accuracy. In addi- 
tion it has been stressed that the data must be 

smooth which is not always the case. For the case 
of non-smooth N-arrays when all the modes are 
large, no solution to the increased computational 
problem has yet been found. The use of coeffi- 
cients instead of the original data has similarities 
to the sparse matrix technology [22]. Both meth- 
ods utilize the special structure in data arrays to 
achieve compression and faster computation. 
Sparse algorithms can be constructed based on 
the fact that the matrix contains a large amount 
of zeros. These algorithms give the exact answer 
and therefore no errors are introduced because 
of the compressed representation. B-splines could 
have been fitted to the data such that it was 
perfect, but for real world data no compression 
or improvement in speed or storage would have 
been obtained. Still the development of more 
efficient higher mode algorithms is very impor- 
tant and should be used in combination with new 
ways of compressing/ representing the array 
structure. 
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Appendix A. Definitions and terminology 

A.1. Names of data objects 

The data objects discussed in the article are 
referred to by many different names. Some of the 
most common ones are tensor, N-order array, 
higher order array/ matrix, N-way array, N-array, 
N-mode array or N-dimensional array. Thus the 
names mode, order, way and dimension are used 
to designate the different indices in the array. In 
this article we have chosen to use the word ‘mode’ 
when discussing the different indices in the ar- 
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rays. A matrix has two indices and thus two 
modes. A 3-array has three indices and thus three 
modes and so on. 

A.2. Typographical notes 

All scalars are written as lowercase letters, 
e.g., k. All vectors are written as bold italic 
lowercase letters, e.g., U. All matrices are written 
as bold uppercase letters, e.g. P. We use under- 
lined, boldface uppercase letters to indicate an 
array with three modes, e.g. X. Transpose is indi- 

- cated by a superscript T. 

A.3. Definition of unfolding 

The word ‘unfolding’ is defined to be the 
reorganization of an N-mode array into a vector 
or a matrix. A more detailed description of un- 
folding can be found in refs. [23,24]. 

Appendix B. Notations for N-mode equations 

B.1. The Kronecker notation 

The 8 symbol signifies the Kronecker product 
[23]. The right-oriented Kronecker product of two 
matrices A and B of dimensions [n X m] and 
[k X j] is 

M=A@B=[:““. 1;; :_:1 (21) 

where M has dimensions [nk X mj]. 
If a 3-array X has dimensions [I X J X K] it can 

be rearranged%0 three essential matrices: [K x 

ZJ], [ZXZCZ] and [.ZxKIl (or [KxJZI, [ZXJKI 
and [.Z x ZK]). There are in general N! possible 
unfoldings or permutation of indices. The Kro- 
necker notation thus represents all N-arrays as 
ordinary matrices by unfolding. 

B.2. The diagram notation 

The diagram notation is fully described in ref. 
[25] and only a short summary will be given here. 

The diagram notation is a graphical visualization 
of the index topology in explicit summation nota- 
tion. The diagrams have the appearances of 
graphs and use of graph terminology is therefore 
appropriate [26]. A diagram contains nodes and 
edges. Nodes signify array elements (e.g., xijk) 
and one edge can signify either summation over 
one index or an index which is not involved in 
summation. An edge can be attached to one or 
several nodes. An edge connected to one node 
only is called unconnected. An edge connected to 
more than one node is called connected. It is 
possible to enable connection between more than 
two nodes by introducing a special sum nexus 
symbol, but this is not presented in this article. 
For more details see ref. [25]. A node with N 
unconnected edges will be the diagram represen- 
tation of a single array element not connected to 
any other. A connected edge signifies summation 
of one index. When two arrays share a common 
index a connected edge is drawn between them. 
The total number of unconnected edges of the 
expression is the number of modes (or the mode 
number) of the result. If, e.g., two 3-arrays com- 
bine by summing one common index the mode 
number of the result will be 3 + 3 - 2 = 4. In the 
center of the node the name of the array is 
placed. In the vicinity of the edges the correct 
index names can be written in order to clarify. 
The index names are written anti-clockwise from 
the first index. Sometimes it is necessary to indi- 
cate which edge signifies the first index. For this 
a small bar perpendicular to the edge is used; this 
mark is called the first index pointer or just the 

fiP* 
Fig. 9 shows a few examples of array diagram 

equations. The corresponding summation formu- 
las for the diagram equations presented are: 

C ‘Pi (A) 
i 

This is the standard inner product. 

~nikYkj 

This is a standard matrix product. 

C C 4ifkwkfj 
k f 

PI 

((7 
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A 

++@- B 

D 

Fig. 9. Examples of diagrams. (A) is an inner product of two 
vectors. (B) is a matrix product. (0 and (D) are examples of 
products between three-mode arrays. 

An array product between two three-mode ar- 
rays. The result is a matrix because the number 
of free or unconnected indices is two. 

CD) 

Here the result is a five mode array since five 
free indices are seen. 

Instead of using index names and fips for 
indicating the different modes of the arrays a 
shorthand notation has been constructed. There 
are especially two cases where a shorthand nota- 
tion has been found useful: (i) matrices with 
orthonormal column vectors; (ii) modes of large 
size. 

If W is a matrix with orthonormal column 
vectors we have that WT W = I where I is the 
identity matrix. If W is not square we have that 
WWT # I. Thus we need to discriminate between 
the two different modes of the matrix. Arrows 

* =+=- E 

Fig. 10. A diagram with arrows is used to mark the two 
different indices on orthogonal matrices. Here we have cho- 
sen the convention to let two arrows heading versus each 
other signify an identity. 

Large mode indicated by thick line 

Desirable situation Undesirable situation 

Fig. 11. For a SVD of a matrix of size [10X10000] it is 
desirable to avoid the large mode. The large mode is indi- 
cated by a thick line. 

have been chosen to distinguish between the 
modes. When two arrows meet head to head we 
have the case WTW = I. Fig. 10 illustrates the 
idea. The identity matrix is for convenience drawn 
as a connected or as an unconnected edge with 
no matrix element attached. 

In some problems it is necessary to avoid that 
large modes become unconnected edges. A sim- 
ple example from SVD illustrates the main idea. 
If the dimension of X is [lo X 100001 and the 
object is to find the eigenvalues the fastest method 
is to calculate the eigenvalues of the covariance 
matrix XX= which has a dimenzon of [lo X 101. 
The rank of X cannot be larger than 10 which 
means that eigenvalue decomposition of X=X (di- 
mension [lOOOO x lOOOO]> would be a waste of 
resources; see Fig. 11 for illustration. 
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