
ELSEVIER

Chemometrics and
intelligent
laboratory systems

Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42

Speed improvement of multivariate algorithms by the method
of postponed basis matrix multiplication

Part I. Principal component analysis

Bj@rn IS. Alsberg *, Olav M. Kvalheim
Department of Chemistry, University of Bergen, All&t. 41, 5007 Bergen, Norway

(Received 28 October 1993; accepted 14 February 1994)

Abstract

Compression is one way of making analysis of large data matrices faster. Compression is here defined as the case
when a large matrix X is replaced by a smaller coefficcienr matrix C. The coefficients are obtained by least squares
fitting to some compression basis. When performing, e.g., principal component analysis (PCA) of C, the results are
comparable but not equal to the results from analyzing X. In this paper we suggest a solution to this problem by
rewriting the PCA algorithm in terms of C and the compression basis matrices. This has been accomplished by
applying a method where speed improvement is achieved by postponing basis matrix calculations in key steps of the
PCA algorithm. The method suggested can also be applied to other (but not all kinds of) multivariate algorithms.

1. Introduction

The analysis of large data arrays is emerging as
a problem in analytical chemistry. New instru-
ments produce huge quantities of data which
need some kind of reduction in order to be
practical to analyze. One approach to this prob-
lem is compression. In the scheme suggested by
our laboratory [1,2] the original data table X
(which may be an N-mode data table) is com-
pressed to produce a matrix C using B-splines
[3,4] or any other suitable compression basis. C
has a much lower number of elements than X and

* Corresponding author. e-mail: alsberg@kj.uib.no.

is used instead of the original representation in
numerical analyses. Of course, the compression
must be such that the loss of significant informa-
tion is minimized. So far principal component
analysis (PCA) [5-71 has been studied and will be
the subject of this study also. A drawback of
using the C matrix instead of X is that scores and
loading vectors cannot be perfectly transferred to
the original domain. This problem can be demon-
strated by observing that X is assumed to be well
described by the smaller coefficient matrix C and
two B-spline basis sets B, and B,:

2 = B&B; (1)

In practice we have that 2 # X, but it is as-
sumed that k retains the important aspects of the

0169-7439/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved
SSDI 0169-7439(94)00013-9

32 B.K Alsberg, O.M. Kualheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42

structure in X. The estimation of C can be formu-
lated using least squares approximation as:

(2)
By decomposing C with PCA the following is

obtained (the subscript c is used to designate
matrices and vectors associated with the com-
pressed representation 0:

C=T,P,T+E, (3)

which is comparable to:

X=TPT+E (4)

The dimensions of the matrices are: Dim(X) =
[N x M], Dim(C) = [n X ml, Dim(T) = [N x A],
Dim(P) = [M x Al, Dim(T,) = [n X Al, Dim(P,)
= [m xA], Dim(B,) = [Nx n] and Dim(B,) =
[Mxm],n<N,m<Mand A isthetotalnum-
ber of extracted PCA factors. It is tempting to
use the basis sets B, and B, to get estimates of

l-----l X

X

the scores and loading matrices in the original
domain as follows:

P; = PTBT c 2

and

(5)

T, = B,T, (6)

Fig. 1 gives an illustration of the compression
process and the different matrices involved.

Eqs. 5 and 6 do not, however, produce the
true scores and loadings. Neither T, nor Pz are
orthogonal as required for the true scores and
loadings. This can be demonstrated by writing:

JT = T;T, = T,T(B;B,)T, (7)

Jr = P;P, = P,T(B;B,)P, (8)

JT will be a diagonal matrix containing the
eigenvalues if BTB, is the identity matrix. Jp will
similarly be the identity matrix if BTB, is the

Fig. 1. The various matrices used in the compression and PCA analysis. By utilizing the fact that X can be represented by linear
combinations of compression bases, C can be used instead. It is a problem, however, that the scores and loadings vectors from
analysis of C, T, and P,’ cannot be the true estimates of T and PT of X. This is the reason for using PBM-PCA which compensates
for this and yet reduces the number of FLOPS.

B.R Alsberg, O.M. Kvalheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42 33

identity matrix. This is almost never the case. It
must be emphasized that orthogonalization/
orthonormalization of T, and Pz do lzof produce
the correct results. Visual comparison of both T,
with T and T, with T often reveals similar trends
albeit somewhat distorted. The same observation
applies for the loading matrices. For many prob-
lems this is satisfactory but it is possible to imag-
ine situations where it is not, i.e., where the
quantitative information is more important than
the qualitative information. The aim of this arti-
cle is to present a method which can be applied
to rewrite algorithms to compensate for the dis-
tortion effects observed when using a coefficient
matrix C instead of the original matrix X. In
addition, we wish to minimize the number of
floating point operations (FLOPS) needed for the
analysis. It should be kept in mind that the
method of postponed basis matrix multiplication
(PBM) cannot be applied to any multivariate
algorithm. The basic idea of PBM is to separate
the basis matrix multiplication parts from expres-
sions included in time consuming iterations. The
following criteria must be met for the different
expressions in an iteration for the PBM method
to work:
- An expression must be expandable in terms of
the compression model.
- Each term in a sum must be pre- or/and
postmultiplied by the same basis matrices.
- Equations that cannot be written in terms of
the compression model can be included in the
iteration unless they depend on the whole un-
compressed input matrix.
- There must be no non-linear operations on the
uncompressed input matrix X or the basis matri-
ces.

2. The method of postponed basis matrix multi-
plication

The steps of the PBM method are:
1. The data matrix X at hand is modeled by one

or two basis matrices: {B,, B2} and a coeffi-
cient matrix C. This means that one of the
three possible compression models is possible:

ji=B,C (9)

2.

3.

4.

k=CB; (10)

2 = B,CB; (11)

The choice of compression model depends on
whether it is possible or necessary to compress
along a mode.
For N-mode arrays the number of basis matri-
ces may be equal to N and there are in gen-
eral 2N - 1 different compression models.
Results (e.g., scores and loading vectors from
PCA) in the algorithm are assumed to be
linear combinations of one or both of the basis
matrices (here B, or B2).
When corresponding basis matrices can be
found at both sides of the equation sign as
pre- and/or postmultiplication this multiplica-
tion is postponed until the end of an iteration,
This is the case for PCA where an iteration
must converge for each factor.
The new algorithm produces vectors and ma-
trices which are comparable to the C matrix in
size. The basis matrices are pre-or post-multi-
plied with the result vectors/matrices to ob-
tain the correct results.

2.1. The PBM method applied to the NIPALS
algorithm

The main idea of this paper is to utilize the
compressed description of the data matrix X in
the nonlinear iterative partial least squares
(NIPALS) algorithm such that most of the time
consuming steps in the algorithm are performed
effectively on the coefficients and at the same
time avoiding the undesirable transformations of
the scores and loadings.

The standard NIPALS algorithm is here in-
cluded because it will clarify how each step is
transformed by the PBM method. The following
steps are repeated until convergence for each
factor:

p;f = tgx (12)

P;f
PT = (p;pO)1’2 (13)

t, = XP, (14)

34 B.K Al&erg, O.M. Kvalheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42

Here subscripts 0 and 1 are used to distinguish
between current (1) and previous (0) iteration
steps of the two estimates of the scores and
loading vectors.

The norm I(t, - t, II is used to decide on the
termination of the iteration for a given factor.
Subsequently the obtained score and loading vec-
tors are subtracted from the X matrix:

X=X-t,pT

It is assumed that

(15)

%=B,CB; (16)

pT = vTB; (17)

t = B,u (18)

where t is the score vector and pT the loading
vector of a factor. Hereafter it will be assumed
that X = X. The vectors u and vT are the corre-
sponding compressed representations. It is im-
portant to emphasize here that u and vT are not
in general equal to t, and p: described in the
introduction. That is the reason for not adopting
those names for the vectors.

Note that score and loading vectors without a
numerical subscript are assumed to have con-
verged for the current factor.

The first step to be investigated is Eq. (12).
The first estimate of the vector u can, e.g., be a
column in C. In the following we rewrite step by
step each expression in the traditional NIPALS
algorithm presented in Eqs. (12)-(14) in terms of
the compression model matrices and vectors
(B,, B,, C, u, v). The equations are formulated
such that the B, matrix is always premultiplied
and the B, matrix is always postmultiplied in an
expression. This is to follow the compression
model for the X matrix in Eq. (16).

The first estimate of p for factor u (see Eq.
(12)) is:

p;f = u;(B;B,)CB; (19)

where tl = u;fBT and X = B&B: have been in-
serted into the formula pz = t$X. It is nothing
more than a reformulation of the existing equa-
tion. Eq. (19) is equal to

p;f = v;B; (20)

where

v; = u;(BTB,)C (21)

The scaling of the loading function is (refor-
mulation of Eq. (13)):

PT = [v~(B~B~)v~]~‘~ B’
(22)

This is equal to

p; = v;B;

where

(23)

VT = [v~(B~B,)v,] “’
(24)

The new estimate of the score vector can be
written as (reformulation of Eq. (14)):

t, = B,C(B;B,)v, (25)

This is equal to

t, = B,u, (26)

where u1 is:

ui = C(B;B,)v, (27)

By observing closely the steps in the NIPALS
algorithm it is observed that the large matrices B,
and B, do not participate in the key steps of the
equations. All the equations have one of the
following forms:

Biarray, = Biarray, (28)

array,BT = array,BT (29)

B,array,BT = B,array,B$ (30)

where ‘array’ means either a vector or a matrix.
When such equations are involved in an iteration
the pre- and/or postmultiplications of the basis
matrix are redundant and thus the total consump-
tion of FLOPS is reduced by postponing the
multiplication to after the iteration has termi-
nated. Figuratively speaking they have a property
similar to enzymes: necessary for the reaction but
not taking part in the reaction itself. The steps
containing the BTB, and BTB, matrices will of
course require more FLOPS than using the coef-
ficients alone. This is the price which must be

B.K Al&erg, O.M. Kvalheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42 35

Table 1
Central steps in the PBM method applied to the NIPALS algorithm. Here P, = BTB, and P, = BZB,

Traditional NIPALS NIPALS with compression model Necessary kernel (PBM)

v=B= 02 = u=T 01 CB= 2 n==u=r 0 0 1 c

“=B= = V;f
BT VT=

v;f

' 2 (v;r2vo)"2 (v;r2u,)"2

t, = xp; B,u,= B;Cr,V, u1 =CI-~Y,
to=t*
X=X-t,pT

B,u,, = Bru, uo=ul
B,CB; = B&B: - B,u,Y;B; c = c - U,UT

paid in order to get the correct estimates of the
reconstructed models.

Table 1 presents the effects of applying the
PBM method to the NIPALS algorithm. In the
table the traditional NIPALS algorithm is located
at the left side, the algorithm rewritten in terms
of its basis matrices and coefficient matrix in the
middle and to the right side the necessary kernel
when the multiplication of the basis matrices is
postponed to after all the factor iterations have
finished. In the Appendix 6, a MATLAB pro-
gram is presented which shows an implementa-
tion of the PBM-PCA algorithm.

The output from the PBM algorithm is two
matrices U (scores like matrix) and V (loadings
like matrix) which do nor share the orthogonality
properties of the traditional NIPALS algorithm.
Thus UTU # D where D is a diagonal matrix
(eigenvalues along the diagonal) and VTV # I.
On the other hand, however, we have that T, =
B,U and Pz =VTBT do have these properties:
TZT, = UTr,U = D and PZP, = VTI’,V = I,

Table 2
Number of FLOPS required for some example matrix operations

where Pi = BTB, i E 11, 2}. The last projections
are much less time consuming than using a lot of
computer resources to find the eigenvectors of
very large covariance matrices.

2.2. FLOPS estimations

The equations giving the estimate of required
FLOPS have been developed to be in concor-
dance with the results obtained by using the flops

command in MATLAB. Table 2 describes the
FLOPS equations for some simple linear algebra
operations.

By analyzing the PCA algorithm it was found
that the approximate number of FLOPS con-
sumed can be expressed by the following equa-
tion:

2, =A[4,(4AW+ 5M) + 3NM] (31)

where Dim(X) = [N x Ml, A is the total number
of factors extracted and q0 is the number of
iterations per factor.

Matrix operation FLOPS required Dimensions of matrices

XY 2nmk

XY 2nm

YTY 2m
x+x nm
X=X-tp= 3nm

Dim(X) = [n X ml, Dim(Y) = [m X kl
Dim(X) = [n X ml, Dim(y) = lm X 11
Dim(y) = [m X 11
Dim(X) = [n X m]
Dim(X) = [n X m], Dim(t) = [n X 11
Dim(p) = [m X 11,

(XWZ

X(YZ)

2nk(m + r)

2mr(k + n)

Dim(X) = [n x ml, Dim(Y) = [m X kl
Dim(Z) = [k X r]

36 B.K Alsberg, 0.M Kvalheim / Chemometrics and Intelligent Laboratory Systems 24 (I 994) 31-42

The approximate FLOPS consumption for the
PBM-PCA algorithm is expressed as

flZ =A[q,(4nm + 2m2 + 3m + 2)

+3nm + 2n2m + 2nm2]

+ 2n2N + 2m2M + 2n2m + 2nm2 (32)

where Dim(C) = [n x ml. As can be seen the
dimensions of the coefficient matrix must be much
smaller than the original matrix dimensions in
order to obtain significant FLOPS ratios (the
number of FLOPS required for standard NI-
PALS algorithm divided by the number of FLOPS
required for the PBM algorithm). Based on these
equations it is possible to get an approximate
FLOPS ratio given the rz, m, N, M, A, qa vari-
ables. If the following simplifications are made
that n=m, N=M, A=5and q,=lOitispossi-
ble to investigate the properties of the PBM-PCA
algorithm by selecting ranges for N and n. Here
the additional simplification has been made that
n = N/r where r signifies the compression and is
assumed to be the same for both modes. The
following ranges were selected: NE 1200, 10001,
r E [2, 301. The results are presented in Fig. 2.

2.3. Sparse representations

Significant reductions in the FLOPS require-
ments for PBM algorithms can be accomplished
by using sparse technology [8]. This is a standard
way of speeding up algorithms which operate on
matrices containing a large number of zero ele-
ments. The main idea behind sparse technology is
to efficiently perform matrix operations on the
nonzero elements only. The storage of the matri-
ces are not in arrays but in lists of nonzero
elements with information about their values and
positions in the array. B-spline compression basis
matrices are to some extent sparse in their struc-
ture and this can be utilized to make the PBM
algorithms run faster. The multiplication of the ri
matrices in the PBM methods will be the largest
contributor to the increase in FLOPS compared
to just using the coefficient matrix on standard
methods.

The density di of an array can be defined as

FLOPS ratio PCWPBM-PCA. Not spars-2

160

140.
N denotes the size of an [N x Nl matriX

IZO-
N=ZCil

Compression factor r

Fig. 2. FLOPS ratio between PCA and PBM-PCA algorithms
when using various values for N and r. N denotes the size of
a matrix X of dimensions [N X N], r is the compression along
each mode. The compressed C has dimensions [N/r X N/r].
No sparse representation is assumed here and thus the FLOPS
ratios are smaller.

the number of nonzero elements divided by the
total number of elements in the array. It will
always be such that d, E [O,l] where di = I repre-
sents a full matrix with no zeros and the sparse
representation will not reduce the required num-
ber of FLOPS for such cases. In the equations for
the PBM algorithm, densities of two different
matrix types will be considered: (i) di which is the
density of the compression matrix B,; (ii) gi which
is the density of the Grammian matrix B’B,.

It was found that the FLOPS requirements for
different matrix operations of sparse matrices
were dependent on the density of the matrices
involved. If we take the first example in Table 2 it
would look like

2nmkd,d, (33)

where d, is the density of X and d, is the density
of Y.

2.4. FLOPS estimations of PBM with sparse repre-
sentation

For B-spline bases their Grammian matrices
are diagonally dominant which results in several
matrix elements of zero value. An example illus-

B.K. Alsberg, O.M. Kualheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42 37

trates the saving in FLOPS using sparse repre-
sentation. A B-spline basis set with dimensions
Dim(B) = [991 X 361 was constructed from a ho-
mogeneous knot vector with polynomial degree 3.
The number of FLOPS consumed for the F =
BTB operation without sparse technique was
2568672. The number of FLOPS with sparse
representation was 31204, i.e., the sparse opera-
tions required 82.3 times less FLOPS! In the
PBM method the I matrix is a part of the projec-
tion of vectors. A vector projection vTF required
2592 FLOPS for non-sparse and 480 for the sparse
representation, which is 5.4 times faster.

The FLOPS Eq. (32) including sparsity is

s, =A [q,(4nm + 2m2g, + 3m + 2)

+3nm + 2n2mg, + 2nm2g,]

+ 2n2Ndf + 2m2h4di + 2n2mg, + 2nm*g,

(34)

Where d, is the density of basis matrix B,, d,
is the density of basis matrix B,, g, the density of
matrix BFB, and g, the density of matrix BTB,.
It was found that gj = 2d,. It is now possible to
repeat the simulation above with selected values
for (di, gi}. Of course, small enough densities will

FLOPS ratio PCAIPBM-PCA. Sparse

N denotes the size of an [

Compression lacror r

Fig. 3. FLOPS ratio between PCA and PBM-PCA algorithms
when using various values for N and r. Here sparse represen-
tation is assumed. N denotes the size of a matrix X of
dimensions [N x N], r is the compression along each mode.
The compressed C has dimensions [N/r X N/r]. The follow-
ing densities d, = d, = 0.1 and g, = g, = 0.2 are assumed.

Table 3
Parameter settings for the two basis matrices used in data set
1. The parameters a, b, c are included in the formula for
Gaussian curves

a b (range) C No. of curves

0.5 [- 0.8,l.O) 0.2 7
0.2 [- 0.5,0.6] 0.1 12

give rise to enormous FLOPS ratios but it is more
interesting to investigate the case when the den-
sity is not too small, e.g., d, = d, = 0.1. Fig. 3 is
the same simulation as in Fig. 2 with sparse
representation. The results are approximately ten
times better, i.e., PBM-PCA for this particular
choice of densities of the basis matrices will run
ten times faster than PBM-PCA without sparse
matrix representation.

3. Results

3.1. Data set I

This is a data set where the basis set perfectly
describes the data, i.e., X = X. Two basis matrices
were constructed using Gaussian curves. A
Gaussian curve can be described by the formula
f(x) = ae -(X-h)2/C. The different parameter set-
tings for the two Gaussian basis sets are pre-
sented in Table 3. Both basis sets are constructed

Data set 1

20 40 60 80 loo 120 140 160 180 200

Fig. 4. Data set 1, Dim(X) = [200x 200).

38 B.K AL&erg, O.M. Kvalheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42

by shifting a single Gaussian curve along the x
axis and this explains the range of b values in the
table.

Dim(X) = [200 X 2001 and the dimensions of
the coefficient matrix is Dim(C) = [7 X 121. Here
the basis set has such a structure that sparse
representation will not give any reduction in
FLOPS. The original data are depicted in Fig. 4.
The number of MFLOPS used for the PCA on
the original data set was ca. 5. The corresponding
number of MFLOPS consumed using the PBM-
PCA was ca. 0.11. The same number of iterations
in both algorithms was used to get comparable
results. The PBM algorithm is approximately 45
times faster than the original algorithm on this
data set. Three sets of matrices were computed.
The -first set is the scores and loading matrices
based on Eqs. 5 and 6, T, and Pz. The second set
of matrices are the estimated scores and loading
matrices using the PBM method, T, = B,U and
Pl= VTBT. The third set of matrices are the
scores and loading matrices from the PCA of the
uncompressed matrix, T and PT. The first and the

T(4) T(5)

Fig. 5. Results from analysis of data set 1. Upper row shows
the comparison between true score vectors (T is printed as
T (i 1 in the figure where i is the ith factor) for the first five
components versus the estimated score vectors based on stan-
dard PCA on the coefficient matrix alone and multiplied by
the respective basis matrix (T, is printed as T b (i 1 in the
figure). The lower part shows the comparison between true
score vectors versus PBM-estimated score vectors CT, is
printed as T h (i) in the figure).

3

E F
P(3)

3

z P
P(4)

6

E PI
P(5)

Fig. 6. Results from analysis of data set 1. Upper row shows
the comparison between true loading vectors (PT is printed as
P (i) in the figure where i is the ith factor) for the first five
components versus the estimated loading vectors based on
standard PCA on the coefficient matrix alone and multiplied
by the respective basis matrix (Pz is printed as P b (i 1 in the
figure). The lower part shows the comparison between true
loading vectors versus PBM-estimated loading vectors (P,’ is
printed as P h (i) in the figure).

second set of matrices were each compared with
the third set. This is illustrated in Figs. 5 and 6.
The upper part of Fig. 5 shows T versus T, for
each of the five factors. The lower part of Fig. 5
shows T versus T, for each of the five factors. As

Uncomwessed FT-IR data

Wavenumber direction

Fig. 7. The temperature-IR data set. Dim(X) = [80X 8691.

B.K Al&erg, O.M. Kvalheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42 39

expected T, is equal to T. The upper part of Fig.
6 shows PT versus Pz for each of the five factors.
The lower part of Fig. 6 shows PT versus Pz for
each of the five factors. It is observed that the
result Pz from the PBM method is equal to PT.

3.2. Data set 2

The details of the preparation of this data set
have been described elsewhere [9]. This is a data
matrix (see Fig. 7) obtained from a two-dimen-
sional infrared experiment (temperature versus
IR spectrum) of a pyrolysis. The process was
started at 200°C and increased to 397.7”C with a
step of 2.5”C. The spectral range was 4000-
650 cm-‘. The dimensions of the data set were
180 x 8691.

Before PCA the original X matrix was pre-
pared by removing the mean. X was analyzed
with traditional PCA using NIPALS. C, B, and
B, were the input arguments to the PBM-PCA
algorithm. PBM-PCA has two output arguments:
U and VT. It is important to remember that none
of these two matrices are orthogonal as explained
previously in this article. If U and VT are multi-

Factor 1 Factor 2

.0.4- 20 40 60 I 20 40 60 60

Factor 3 Factor 4

0.04, t 0.031 I

Fig. 8. Comparison of the scores vectors for PCA on uncom-
pressed matrix (dash-dotted lines) and PBM-PCA using com-
pression model (solid lines). Results from analysis of data set
2.

Factor 1 Factor 2

0.2

w

0.15

0.1 0.1

0 0.05

-0.1 0

-0.21 -0.051
200 400 600 600 200 400 600 600

Factor 3 Factor 4

0.27 0.2-j

0.1. 0.1

LL P

. 0 ’

-0.1

-0.21
200 400 600 600

-0.21
200 400 600 600

Fig. 9. Comparison of the loadings vectors for PCA on uncom-
pressed matrix (dash-dotted lines) and PBM-PCA using com-
pression model (solid lines). Results from analysis of data set
2.

plied by the two basis matrices B, and B, the
resulting scores and loading matrices are orthog-
onal. In Ref. [9] only two principal components
were found adequate to explain the X. Even
though the importance of later factors (3 and 4)
for data set 2 are low they were still extracted to
investigate when the PBM approximation was
deviating from the true eigenvectors. Fig. 8 shows
the scores matrix T compared to T, for each
factor. Each score vector in T is illustrated as a
dash-dotted line. For the fourth factor some devi-
ation from the true spectrum is observed. Note
that the deviations are due to the fact that the
compressed representation is not perfect, i.e., it
has nothing to do with the PBM-PCA algorithm
itself. One explanation for deviation may be that
the noise level is increased for later factors and
thus the deviations from the compression model
become more pronounced. Fig. 9 shows the load-
ing matrix PT compared to Pz for each factor.
Each loading vector in PT is illustrated as a
dash-dotted line. Again some deviations from the
true line are observed for the fourth factor. The
ordinary PCA used approximately 20 times more
FLOPS than PBM-PCA. The FLOPS F, =

40 L3.K Akberg, O.M. Kvalheim / Chemometrics and Intelligent Laborarory Systems 24 (1994) 31-42

Bl basis matrix
0 I

......................................

...

5-
...

lo-
.......................... _

0 10 20 30 40 50 60 70 80
lU=3t?4

82 basis matrix

0 100 200 300 400 500 600 7ml 800
nr = 3359

Fig. 10. Spars& of the two basis matrices B, and B, used on
data set 2. nz stands for the number of nonzero elements in
the matrix.

12 131240 and FZ = 579 054 are measured under
the same conditions, i.e., the number of iterations
per factor was set to 10. This was done in order
to get comparable results. The estimated number
of FLOPS based on, the formula including sparse
technology was 9, = 463 750 which gives a
FLOPS ratio of ca. 26. The estimation formula
overestimates the gain in FLOPS by using sparse
representation. The densities of the basis matri-
ces and their Grammians are: d, = 0.0336, d, =
0.3692, g, = 0.0600 and g, = 0.5740. Fig. 10 illus-
trates the sparsity of the two basis matrices B,
and B,; only nonzero elements are indicated.

The effect of using sparse matrix representa-
tion is significant. Without sparse representation
of the basis matrices in data set 2 the PBM
algorithm would have used twice as many FLOPS
as the standard PCA algorithm on the uncom-
pressed X! Using C instead of X in ordinary PCA
was approximately 40 times faster [9].

The calculations were performed on a HP
9000/730 with 64 Mbyte RAM and 1.3 Gbyte
hard disk. All programs were written in MAT-
LAB using version 4.0.

4. Discussion

The PBM method can be applied to methods
where some kernel of compression coefficients

can be used without invoking the full basis set
directly into the computation. It is assumed that
several analyses of the same data set X will be
done both by PCA or some other similar method
(e.g., PLS) which means the compression initially
will become more useful for each new computa-
tion on the compressed representation. In the
previous FLOPS calculations the computations of
the BTB, and BTB, matrices

FLOPS count, these matrices
step. The PBM

method
N-mode data arrays. In such algorithms

acute. To handle prob-
lem compression

shows that three-mode
using the PBM method.

steps in the algorithm contains unnecessary
basis set matrices.

FLOPS is proportional
ratio.

It is also possible using the
PBM approach. useful
for the iterative

other regression
along the object be used with

caution. The reason is
along the object

should also be
applied. choose
the same set for both the X and Y
space. Selecting different basis matrices

cause the reduction
other hand it may be

unrealistic assume that both the X and Y
can be well modeled by the same set.

5. Conclusion

The PBM method is capable of solving the
problem with distorted models from analysis of a
compressed representation. The cost is using an
increased number of FLOPS. This cost can be
significantly minimized by using sparse represen-
tations of basis matrices if they have a large
number of zero elements. B-spline bases have a

B. K AMerg, O.M. Kvalheim / Chemometrics and intelligent Laboratory Systems 24 (1994) 31-42 41

diagonally dominant structure which often gives
rise to a large number of zero elements.

In addition it is necessary to rewrite the actual
algorithm to make use of the PBM method.

Acknowledgement

BKA wishes to thank the Royal Norwegian
Council for Scientific and Industrial Research
(NTNF) for financial support.

Appendix. PBM-PCA algorithm in MATLAB 4.0
code

function Cuu,vvl=

pbmpca(C,A,B,comp)

% tuu,vvl=pbmpca(C,A,B.comp);

% A=is the basis set for the rows

% B=is the basis set for the

% columns

% It is assumed that

% X=A*C*B'

% If X=CNXMl, C=CnXml then

% A=CNXnl, B=CMXml

% camp is the number of principal

% components

A=sparse(A);

B=sparse(B);

% The sparse command converts A and

% B into sparse representations

Gl =A'*A;
Ge=B'*B;

% These multiplications can be car-

% ried out using approximately half

% the no. of FLOPS by utilizing the

% fact that 61 and G2 are symmet-

% ric. This is not shown here (but

% taken into consideration for the

% FLOPS formulas presented in the

% text) since it will complicate

% the code. In addition, even if.

% the no. of FLOPS consumed can be

3: made less, the code presented

% here is still faster in execution

% time because MATLAB so ineffi-

% ciently handles FOR loops

Ql=Gl*C;

Q2=C*G2;

Ca,bl=size(C);

stop=3;

for i=l:comp

av=std(C);

CavZ,indxl=sort(av);

uO=C(:, indxlb));

while stop>l,

vO=uO'*Ql;

vl=vO*(vO*G2*vO') Y-1/2);

ul=QZ*vl';

if norm(ul-u0)<0.00005,

uu(:, i)=ul;

vv(i ,:)=vl;

stop=o;

end;

uO=ul;

end;

stop=3;

c=c-ul*vl;

Ql=Gl*C;

Q2=C*G2;

end;

References

[l] B.K. Alsberg, Representation of spectra by continuous
functions, Journal of Chemometrics, 7 (1993) 177-193.

[2] B.K. Alsberg and O.M. Kvalheim, Compression of nth-
order data arrays by B-splines. Part 1. Theory, Journal of
Chemometrics, 7 (1993) 61-73.

[3] G. Farin, Curves and Surfaces for Computer Aided Geo-
metric Design, a Practical Guide, Academic Press, Boston,
MA, 2nd edn., 1990.

[4] W. Cheney and D. Kincaid, Numerical Mathematics and
Computing, Brooks/Cole, Monterey, CA, 1980.

[S] H. Martens and T. Noes, Multivariate Calibration, Wiley,
New York, 1989.

[6] I. Cowe and J.W. McNicol, The use of principal compo-
nent in the analysis of near-infrared spectra, Applied
Spectroscopy, 39 (1985) 257-266.

[7] S. Wold, K. Esbensen and P. Geladi, Principal compo-
nent analysis, Chemometrics and Intelligent Laboratory
Systems, 2 (1987) 37-52.

12 B.K. Al&erg, O.M. Kvalheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42

[7] S. Wold, K. Esbensen and P. Geladi, Principal compo-
nent analysis, Chemometrics and Intelligent Laboratory
Systems, 2 (1987) 37-52.

[8] S. Pissanetsky, Sparse Matrix Technology, Academic Press,
London, 1984.

[9] B.K. Aisberg, E. Nodland and O.M. Kvalheim, Compres-
sion of nth-order data arrays by B-splines. Part 2. Appli-

cation to second-order FT-IR spectra, Journal of Chemo-
metrics, 8 (1994) 127-145.

[lo] B.K. Alsberg and O.M. Kvalheim, Speed improvement of
multivariate algorithms by the method of postponed basis
matrix multiplication. Part II. Three-mode principal com-
ponent analysis, Chemometrics and Intelligent Laboratory
Systems, 24 (1994) 43-54.

