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Abstract 

Compression is one way of making analysis of large data matrices faster. Compression is here defined as the case 
when a large matrix X is replaced by a smaller coefficcienr matrix C. The coefficients are obtained by least squares 
fitting to some compression basis. When performing, e.g., principal component analysis (PCA) of C, the results are 
comparable but not equal to the results from analyzing X. In this paper we suggest a solution to this problem by 
rewriting the PCA algorithm in terms of C and the compression basis matrices. This has been accomplished by 
applying a method where speed improvement is achieved by postponing basis matrix calculations in key steps of the 
PCA algorithm. The method suggested can also be applied to other (but not all kinds of) multivariate algorithms. 

1. Introduction 

The analysis of large data arrays is emerging as 
a problem in analytical chemistry. New instru- 
ments produce huge quantities of data which 
need some kind of reduction in order to be 
practical to analyze. One approach to this prob- 
lem is compression. In the scheme suggested by 
our laboratory [1,2] the original data table X 
(which may be an N-mode data table) is com- 
pressed to produce a matrix C using B-splines 
[3,4] or any other suitable compression basis. C 
has a much lower number of elements than X and 
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is used instead of the original representation in 
numerical analyses. Of course, the compression 
must be such that the loss of significant informa- 
tion is minimized. So far principal component 
analysis (PCA) [5-71 has been studied and will be 
the subject of this study also. A drawback of 
using the C matrix instead of X is that scores and 
loading vectors cannot be perfectly transferred to 
the original domain. This problem can be demon- 
strated by observing that X is assumed to be well 
described by the smaller coefficient matrix C and 
two B-spline basis sets B, and B,: 

2 = B&B; (1) 

In practice we have that 2 # X, but it is as- 
sumed that k retains the important aspects of the 
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structure in X. The estimation of C can be formu- 
lated using least squares approximation as: 

(2) 
By decomposing C with PCA the following is 

obtained (the subscript c is used to designate 
matrices and vectors associated with the com- 
pressed representation 0: 

C=T,P,T+E, (3) 

which is comparable to: 

X=TPT+E (4) 

The dimensions of the matrices are: Dim(X) = 
[N x M], Dim(C) = [n X ml, Dim(T) = [N x A], 
Dim(P) = [M x Al, Dim(T,) = [n X Al, Dim(P,) 
= [m xA], Dim(B,) = [Nx n] and Dim(B,) = 
[Mxm],n<N,m<Mand A isthetotalnum- 
ber of extracted PCA factors. It is tempting to 
use the basis sets B, and B, to get estimates of 

l-----l X 

X 

the scores and loading matrices in the original 
domain as follows: 

P; = PTBT c 2 

and 

(5) 

T, = B,T, (6) 

Fig. 1 gives an illustration of the compression 
process and the different matrices involved. 

Eqs. 5 and 6 do not, however, produce the 
true scores and loadings. Neither T, nor Pz are 
orthogonal as required for the true scores and 
loadings. This can be demonstrated by writing: 

JT = T;T, = T,T(B;B,)T, (7) 

Jr = P;P, = P,T(B;B,)P, (8) 

JT will be a diagonal matrix containing the 
eigenvalues if BTB, is the identity matrix. Jp will 
similarly be the identity matrix if BTB, is the 

Fig. 1. The various matrices used in the compression and PCA analysis. By utilizing the fact that X can be represented by linear 
combinations of compression bases, C can be used instead. It is a problem, however, that the scores and loadings vectors from 
analysis of C, T, and P,’ cannot be the true estimates of T and PT of X. This is the reason for using PBM-PCA which compensates 
for this and yet reduces the number of FLOPS. 
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identity matrix. This is almost never the case. It 
must be emphasized that orthogonalization/ 
orthonormalization of T, and Pz do lzof produce 
the correct results. Visual comparison of both T, 
with T and T, with T often reveals similar trends 
albeit somewhat distorted. The same observation 
applies for the loading matrices. For many prob- 
lems this is satisfactory but it is possible to imag- 
ine situations where it is not, i.e., where the 
quantitative information is more important than 
the qualitative information. The aim of this arti- 
cle is to present a method which can be applied 
to rewrite algorithms to compensate for the dis- 
tortion effects observed when using a coefficient 
matrix C instead of the original matrix X. In 
addition, we wish to minimize the number of 
floating point operations (FLOPS) needed for the 
analysis. It should be kept in mind that the 
method of postponed basis matrix multiplication 
(PBM) cannot be applied to any multivariate 
algorithm. The basic idea of PBM is to separate 
the basis matrix multiplication parts from expres- 
sions included in time consuming iterations. The 
following criteria must be met for the different 
expressions in an iteration for the PBM method 
to work: 
- An expression must be expandable in terms of 
the compression model. 
- Each term in a sum must be pre- or/and 
postmultiplied by the same basis matrices. 
- Equations that cannot be written in terms of 
the compression model can be included in the 
iteration unless they depend on the whole un- 
compressed input matrix. 
- There must be no non-linear operations on the 
uncompressed input matrix X or the basis matri- 
ces. 

2. The method of postponed basis matrix multi- 
plication 

The steps of the PBM method are: 
1. The data matrix X at hand is modeled by one 

or two basis matrices: {B,, B2} and a coeffi- 
cient matrix C. This means that one of the 
three possible compression models is possible: 

ji=B,C (9) 

2. 

3. 

4. 

k=CB; (10) 

2 = B,CB; (11) 

The choice of compression model depends on 
whether it is possible or necessary to compress 
along a mode. 
For N-mode arrays the number of basis matri- 
ces may be equal to N and there are in gen- 
eral 2N - 1 different compression models. 
Results (e.g., scores and loading vectors from 
PCA) in the algorithm are assumed to be 
linear combinations of one or both of the basis 
matrices (here B, or B2). 
When corresponding basis matrices can be 
found at both sides of the equation sign as 
pre- and/or postmultiplication this multiplica- 
tion is postponed until the end of an iteration, 
This is the case for PCA where an iteration 
must converge for each factor. 
The new algorithm produces vectors and ma- 
trices which are comparable to the C matrix in 
size. The basis matrices are pre-or post-multi- 
plied with the result vectors/matrices to ob- 
tain the correct results. 

2.1. The PBM method applied to the NIPALS 
algorithm 

The main idea of this paper is to utilize the 
compressed description of the data matrix X in 
the nonlinear iterative partial least squares 
(NIPALS) algorithm such that most of the time 
consuming steps in the algorithm are performed 
effectively on the coefficients and at the same 
time avoiding the undesirable transformations of 
the scores and loadings. 

The standard NIPALS algorithm is here in- 
cluded because it will clarify how each step is 
transformed by the PBM method. The following 
steps are repeated until convergence for each 
factor: 

p;f = tgx (12) 

P;f 
PT = (p;pO)1’2 (13) 

t, = XP, (14) 
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Here subscripts 0 and 1 are used to distinguish 
between current (1) and previous (0) iteration 
steps of the two estimates of the scores and 
loading vectors. 

The norm I( t, - t, II is used to decide on the 
termination of the iteration for a given factor. 
Subsequently the obtained score and loading vec- 
tors are subtracted from the X matrix: 

X=X-t,pT 

It is assumed that 

(15) 

%=B,CB; (16) 

pT = vTB; (17) 

t = B,u (18) 

where t is the score vector and pT the loading 
vector of a factor. Hereafter it will be assumed 
that X = X. The vectors u and vT are the corre- 
sponding compressed representations. It is im- 
portant to emphasize here that u and vT are not 
in general equal to t, and p: described in the 
introduction. That is the reason for not adopting 
those names for the vectors. 

Note that score and loading vectors without a 
numerical subscript are assumed to have con- 
verged for the current factor. 

The first step to be investigated is Eq. (12). 
The first estimate of the vector u can, e.g., be a 
column in C. In the following we rewrite step by 
step each expression in the traditional NIPALS 
algorithm presented in Eqs. (12)-(14) in terms of 
the compression model matrices and vectors 
(B,, B,, C, u, v). The equations are formulated 
such that the B, matrix is always premultiplied 
and the B, matrix is always postmultiplied in an 
expression. This is to follow the compression 
model for the X matrix in Eq. (16). 

The first estimate of p for factor u (see Eq. 
(12)) is: 

p;f = u;(B;B,)CB; (19) 

where tl = u;fBT and X = B&B: have been in- 
serted into the formula pz = t$X. It is nothing 
more than a reformulation of the existing equa- 
tion. Eq. (19) is equal to 

p;f = v;B; (20) 

where 

v; = u;(BTB,)C (21) 

The scaling of the loading function is (refor- 
mulation of Eq. (13)): 

PT = [ v~(B~B~)v~]~‘~ B’ 
(22) 

This is equal to 

p; = v;B; 

where 

(23) 

VT = [ v~(B~B,)v,] “’ 
(24) 

The new estimate of the score vector can be 
written as (reformulation of Eq. (14)): 

t, = B,C(B;B,)v, (25) 

This is equal to 

t, = B,u, (26) 

where u1 is: 

ui = C(B;B,)v, (27) 

By observing closely the steps in the NIPALS 
algorithm it is observed that the large matrices B, 
and B, do not participate in the key steps of the 
equations. All the equations have one of the 
following forms: 

Biarray, = Biarray, (28) 

array,BT = array,BT (29) 

B,array,BT = B,array,B$ (30) 

where ‘array’ means either a vector or a matrix. 
When such equations are involved in an iteration 
the pre- and/or postmultiplications of the basis 
matrix are redundant and thus the total consump- 
tion of FLOPS is reduced by postponing the 
multiplication to after the iteration has termi- 
nated. Figuratively speaking they have a property 
similar to enzymes: necessary for the reaction but 
not taking part in the reaction itself. The steps 
containing the BTB, and BTB, matrices will of 
course require more FLOPS than using the coef- 
ficients alone. This is the price which must be 
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Table 1 
Central steps in the PBM method applied to the NIPALS algorithm. Here P, = BTB, and P, = BZB, 

Traditional NIPALS NIPALS with compression model Necessary kernel (PBM) 

v=B= 02 = u=T 01 CB= 2 n==u=r 0 0 1 c 

“=B= = V;f 
BT VT= 

v;f 

' 2 (v;r2vo)"2 (v;r2u,)"2 

t, = xp; B,u,= B;Cr,V, u1 =CI-~Y, 
to=t* 
X=X-t,pT 

B,u,, = Bru, uo=ul 
B,CB; = B&B: - B,u,Y;B; c = c - U,UT 

paid in order to get the correct estimates of the 
reconstructed models. 

Table 1 presents the effects of applying the 
PBM method to the NIPALS algorithm. In the 
table the traditional NIPALS algorithm is located 
at the left side, the algorithm rewritten in terms 
of its basis matrices and coefficient matrix in the 
middle and to the right side the necessary kernel 
when the multiplication of the basis matrices is 
postponed to after all the factor iterations have 
finished. In the Appendix 6, a MATLAB pro- 
gram is presented which shows an implementa- 
tion of the PBM-PCA algorithm. 

The output from the PBM algorithm is two 
matrices U (scores like matrix) and V (loadings 
like matrix) which do nor share the orthogonality 
properties of the traditional NIPALS algorithm. 
Thus UTU # D where D is a diagonal matrix 
(eigenvalues along the diagonal) and VTV # I. 
On the other hand, however, we have that T, = 
B,U and Pz =VTBT do have these properties: 
TZT, = UTr,U = D and PZP, = VTI’,V = I, 

Table 2 
Number of FLOPS required for some example matrix operations 

where Pi = BTB, i E 11, 2}. The last projections 
are much less time consuming than using a lot of 
computer resources to find the eigenvectors of 
very large covariance matrices. 

2.2. FLOPS estimations 

The equations giving the estimate of required 
FLOPS have been developed to be in concor- 
dance with the results obtained by using the flops 

command in MATLAB. Table 2 describes the 
FLOPS equations for some simple linear algebra 
operations. 

By analyzing the PCA algorithm it was found 
that the approximate number of FLOPS con- 
sumed can be expressed by the following equa- 
tion: 

2, =A[4,(4AW+ 5M) + 3NM] (31) 

where Dim(X) = [N x Ml, A is the total number 
of factors extracted and q0 is the number of 
iterations per factor. 

Matrix operation FLOPS required Dimensions of matrices 

XY 2nmk 

XY 2nm 

YTY 2m 
x+x nm 
X=X-tp= 3nm 

Dim(X) = [n X ml, Dim(Y) = [m X kl 
Dim(X) = [n X ml, Dim(y) = lm X 11 
Dim(y) = [m X 11 
Dim(X) = [n X m] 
Dim(X) = [n X m], Dim(t) = [n X 11 
Dim(p) = [m X 11, 

(XWZ 

X(YZ) 

2nk(m + r) 

2mr(k + n) 

Dim(X) = [n x ml, Dim(Y) = [m X kl 
Dim(Z) = [k X r] 
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The approximate FLOPS consumption for the 
PBM-PCA algorithm is expressed as 

flZ =A[ q,(4nm + 2m2 + 3m + 2) 

+3nm + 2n2m + 2nm2] 

+ 2n2N + 2m2M + 2n2m + 2nm2 (32) 

where Dim(C) = [n x ml. As can be seen the 
dimensions of the coefficient matrix must be much 
smaller than the original matrix dimensions in 
order to obtain significant FLOPS ratios (the 
number of FLOPS required for standard NI- 
PALS algorithm divided by the number of FLOPS 
required for the PBM algorithm). Based on these 
equations it is possible to get an approximate 
FLOPS ratio given the rz, m, N, M, A, qa vari- 
ables. If the following simplifications are made 
that n=m, N=M, A=5and q,=lOitispossi- 
ble to investigate the properties of the PBM-PCA 
algorithm by selecting ranges for N and n. Here 
the additional simplification has been made that 
n = N/r where r signifies the compression and is 
assumed to be the same for both modes. The 
following ranges were selected: NE 1200, 10001, 
r E [2, 301. The results are presented in Fig. 2. 

2.3. Sparse representations 

Significant reductions in the FLOPS require- 
ments for PBM algorithms can be accomplished 
by using sparse technology [8]. This is a standard 
way of speeding up algorithms which operate on 
matrices containing a large number of zero ele- 
ments. The main idea behind sparse technology is 
to efficiently perform matrix operations on the 
nonzero elements only. The storage of the matri- 
ces are not in arrays but in lists of nonzero 
elements with information about their values and 
positions in the array. B-spline compression basis 
matrices are to some extent sparse in their struc- 
ture and this can be utilized to make the PBM 
algorithms run faster. The multiplication of the ri 
matrices in the PBM methods will be the largest 
contributor to the increase in FLOPS compared 
to just using the coefficient matrix on standard 
methods. 

The density di of an array can be defined as 

FLOPS ratio PCWPBM-PCA. Not spars-2 

160 

140. 
N denotes the size of an [N x Nl matriX 

IZO- 
N=ZCil 

Compression factor r 

Fig. 2. FLOPS ratio between PCA and PBM-PCA algorithms 
when using various values for N and r. N denotes the size of 
a matrix X of dimensions [N X N], r is the compression along 
each mode. The compressed C has dimensions [N/r X N/r]. 
No sparse representation is assumed here and thus the FLOPS 
ratios are smaller. 

the number of nonzero elements divided by the 
total number of elements in the array. It will 
always be such that d, E [O,l] where di = I repre- 
sents a full matrix with no zeros and the sparse 
representation will not reduce the required num- 
ber of FLOPS for such cases. In the equations for 
the PBM algorithm, densities of two different 
matrix types will be considered: (i) di which is the 
density of the compression matrix B,; (ii) gi which 
is the density of the Grammian matrix B’B,. 

It was found that the FLOPS requirements for 
different matrix operations of sparse matrices 
were dependent on the density of the matrices 
involved. If we take the first example in Table 2 it 
would look like 

2nmkd,d, (33) 

where d, is the density of X and d, is the density 
of Y. 

2.4. FLOPS estimations of PBM with sparse repre- 
sentation 

For B-spline bases their Grammian matrices 
are diagonally dominant which results in several 
matrix elements of zero value. An example illus- 



B.K. Alsberg, O.M. Kualheim / Chemometrics and Intelligent Laboratory Systems 24 (1994) 31-42 37 

trates the saving in FLOPS using sparse repre- 
sentation. A B-spline basis set with dimensions 
Dim(B) = [991 X 361 was constructed from a ho- 
mogeneous knot vector with polynomial degree 3. 
The number of FLOPS consumed for the F = 
BTB operation without sparse technique was 
2568672. The number of FLOPS with sparse 
representation was 31204, i.e., the sparse opera- 
tions required 82.3 times less FLOPS! In the 
PBM method the I matrix is a part of the projec- 
tion of vectors. A vector projection vTF required 
2592 FLOPS for non-sparse and 480 for the sparse 
representation, which is 5.4 times faster. 

The FLOPS Eq. (32) including sparsity is 

s, =A [ q,(4nm + 2m2g, + 3m + 2) 

+3nm + 2n2mg, + 2nm2g,] 

+ 2n2Ndf + 2m2h4di + 2n2mg, + 2nm*g, 

(34) 

Where d, is the density of basis matrix B,, d, 
is the density of basis matrix B,, g, the density of 
matrix BFB, and g, the density of matrix BTB,. 
It was found that gj = 2d,. It is now possible to 
repeat the simulation above with selected values 
for (di, gi}. Of course, small enough densities will 

FLOPS ratio PCAIPBM-PCA. Sparse 

N denotes the size of an [ 

Compression lacror r 

Fig. 3. FLOPS ratio between PCA and PBM-PCA algorithms 
when using various values for N and r. Here sparse represen- 
tation is assumed. N denotes the size of a matrix X of 
dimensions [N x N], r is the compression along each mode. 
The compressed C has dimensions [N/r X N/r]. The follow- 
ing densities d, = d, = 0.1 and g, = g, = 0.2 are assumed. 

Table 3 
Parameter settings for the two basis matrices used in data set 
1. The parameters a, b, c are included in the formula for 
Gaussian curves 

a b (range) C No. of curves 

0.5 [ - 0.8,l.O) 0.2 7 
0.2 [ - 0.5,0.6] 0.1 12 

give rise to enormous FLOPS ratios but it is more 
interesting to investigate the case when the den- 
sity is not too small, e.g., d, = d, = 0.1. Fig. 3 is 
the same simulation as in Fig. 2 with sparse 
representation. The results are approximately ten 
times better, i.e., PBM-PCA for this particular 
choice of densities of the basis matrices will run 
ten times faster than PBM-PCA without sparse 
matrix representation. 

3. Results 

3.1. Data set I 

This is a data set where the basis set perfectly 
describes the data, i.e., X = X. Two basis matrices 
were constructed using Gaussian curves. A 
Gaussian curve can be described by the formula 
f(x) = ae -(X-h)2/C. The different parameter set- 
tings for the two Gaussian basis sets are pre- 
sented in Table 3. Both basis sets are constructed 

Data set 1 

20 40 60 80 loo 120 140 160 180 200 

Fig. 4. Data set 1, Dim(X) = [200x 200). 
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by shifting a single Gaussian curve along the x 
axis and this explains the range of b values in the 
table. 

Dim(X) = [200 X 2001 and the dimensions of 
the coefficient matrix is Dim(C) = [7 X 121. Here 
the basis set has such a structure that sparse 
representation will not give any reduction in 
FLOPS. The original data are depicted in Fig. 4. 
The number of MFLOPS used for the PCA on 
the original data set was ca. 5. The corresponding 
number of MFLOPS consumed using the PBM- 
PCA was ca. 0.11. The same number of iterations 
in both algorithms was used to get comparable 
results. The PBM algorithm is approximately 45 
times faster than the original algorithm on this 
data set. Three sets of matrices were computed. 
The -first set is the scores and loading matrices 
based on Eqs. 5 and 6, T, and Pz. The second set 
of matrices are the estimated scores and loading 
matrices using the PBM method, T, = B,U and 
Pl= VTBT. The third set of matrices are the 
scores and loading matrices from the PCA of the 
uncompressed matrix, T and PT. The first and the 

T(4) T(5) 

Fig. 5. Results from analysis of data set 1. Upper row shows 
the comparison between true score vectors (T is printed as 
T ( i 1 in the figure where i is the ith factor) for the first five 
components versus the estimated score vectors based on stan- 
dard PCA on the coefficient matrix alone and multiplied by 
the respective basis matrix (T, is printed as T b ( i 1 in the 
figure). The lower part shows the comparison between true 
score vectors versus PBM-estimated score vectors CT, is 
printed as T h ( i ) in the figure). 

3 

E F 
P(3) 

3 

z P 
P(4) 

6 

E PI 
P(5) 

Fig. 6. Results from analysis of data set 1. Upper row shows 
the comparison between true loading vectors (PT is printed as 
P ( i ) in the figure where i is the ith factor) for the first five 
components versus the estimated loading vectors based on 
standard PCA on the coefficient matrix alone and multiplied 
by the respective basis matrix (Pz is printed as P b ( i 1 in the 
figure). The lower part shows the comparison between true 
loading vectors versus PBM-estimated loading vectors (P,’ is 
printed as P h ( i ) in the figure). 

second set of matrices were each compared with 
the third set. This is illustrated in Figs. 5 and 6. 
The upper part of Fig. 5 shows T versus T, for 
each of the five factors. The lower part of Fig. 5 
shows T versus T, for each of the five factors. As 

Uncomwessed FT-IR data 

Wavenumber direction 

Fig. 7. The temperature-IR data set. Dim(X) = [80X 8691. 
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expected T, is equal to T. The upper part of Fig. 
6 shows PT versus Pz for each of the five factors. 
The lower part of Fig. 6 shows PT versus Pz for 
each of the five factors. It is observed that the 
result Pz from the PBM method is equal to PT. 

3.2. Data set 2 

The details of the preparation of this data set 
have been described elsewhere [9]. This is a data 
matrix (see Fig. 7) obtained from a two-dimen- 
sional infrared experiment (temperature versus 
IR spectrum) of a pyrolysis. The process was 
started at 200°C and increased to 397.7”C with a 
step of 2.5”C. The spectral range was 4000- 
650 cm-‘. The dimensions of the data set were 
180 x 8691. 

Before PCA the original X matrix was pre- 
pared by removing the mean. X was analyzed 
with traditional PCA using NIPALS. C, B, and 
B, were the input arguments to the PBM-PCA 
algorithm. PBM-PCA has two output arguments: 
U and VT. It is important to remember that none 
of these two matrices are orthogonal as explained 
previously in this article. If U and VT are multi- 

Factor 1 Factor 2 

.0.4- 20 40 60 I 20 40 60 60 

Factor 3 Factor 4 

0.04, t 0.031 I 

Fig. 8. Comparison of the scores vectors for PCA on uncom- 
pressed matrix (dash-dotted lines) and PBM-PCA using com- 
pression model (solid lines). Results from analysis of data set 
2. 

Factor 1 Factor 2 

0.2 

w 

0.15 

0.1 0.1 

0 0.05 

-0.1 0 

-0.21 -0.051 
200 400 600 600 200 400 600 600 

Factor 3 Factor 4 

0.27 0.2-j 

0.1. 0.1 

LL P 

. 0 ’ 

-0.1 

-0.21 
200 400 600 600 

-0.21 
200 400 600 600 

Fig. 9. Comparison of the loadings vectors for PCA on uncom- 
pressed matrix (dash-dotted lines) and PBM-PCA using com- 
pression model (solid lines). Results from analysis of data set 
2. 

plied by the two basis matrices B, and B, the 
resulting scores and loading matrices are orthog- 
onal. In Ref. [9] only two principal components 
were found adequate to explain the X. Even 
though the importance of later factors (3 and 4) 
for data set 2 are low they were still extracted to 
investigate when the PBM approximation was 
deviating from the true eigenvectors. Fig. 8 shows 
the scores matrix T compared to T, for each 
factor. Each score vector in T is illustrated as a 
dash-dotted line. For the fourth factor some devi- 
ation from the true spectrum is observed. Note 
that the deviations are due to the fact that the 
compressed representation is not perfect, i.e., it 
has nothing to do with the PBM-PCA algorithm 
itself. One explanation for deviation may be that 
the noise level is increased for later factors and 
thus the deviations from the compression model 
become more pronounced. Fig. 9 shows the load- 
ing matrix PT compared to Pz for each factor. 
Each loading vector in PT is illustrated as a 
dash-dotted line. Again some deviations from the 
true line are observed for the fourth factor. The 
ordinary PCA used approximately 20 times more 
FLOPS than PBM-PCA. The FLOPS F, = 
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Bl basis matrix 
0 I ......... ......... ......... 

...................................... 

............................................. 

5- 
................................................... ........................................................ ............................... ........................... ......................... 

lo- 
.......................... ..................... _ ................ ........... ...... 

0 10 20 30 40 50 60 70 80 
lU=3t?4 

82 basis matrix 

0 100 200 300 400 500 600 7ml 800 
nr = 3359 

Fig. 10. Spars& of the two basis matrices B, and B, used on 
data set 2. nz stands for the number of nonzero elements in 
the matrix. 

12 131240 and FZ = 579 054 are measured under 
the same conditions, i.e., the number of iterations 
per factor was set to 10. This was done in order 
to get comparable results. The estimated number 
of FLOPS based on, the formula including sparse 
technology was 9, = 463 750 which gives a 
FLOPS ratio of ca. 26. The estimation formula 
overestimates the gain in FLOPS by using sparse 
representation. The densities of the basis matri- 
ces and their Grammians are: d, = 0.0336, d, = 
0.3692, g, = 0.0600 and g, = 0.5740. Fig. 10 illus- 
trates the sparsity of the two basis matrices B, 
and B,; only nonzero elements are indicated. 

The effect of using sparse matrix representa- 
tion is significant. Without sparse representation 
of the basis matrices in data set 2 the PBM 
algorithm would have used twice as many FLOPS 
as the standard PCA algorithm on the uncom- 
pressed X! Using C instead of X in ordinary PCA 
was approximately 40 times faster [9]. 

The calculations were performed on a HP 
9000/730 with 64 Mbyte RAM and 1.3 Gbyte 
hard disk. All programs were written in MAT- 
LAB using version 4.0. 

4. Discussion 

The PBM method can be applied to methods 
where some kernel of compression coefficients 

can be used without invoking the full basis set 
directly into the computation. It is assumed that 
several analyses of the same data set X will be 
done both by PCA or some other similar method 
(e.g., PLS) which means the compression initially 
will become more useful for each new computa- 
tion on the compressed representation. In the 
previous FLOPS calculations the computations of 
the BTB, and BTB, matrices 

FLOPS count, these matrices 
step. The PBM 

method 
N-mode data arrays. In such algorithms 

acute. To handle prob- 
lem compression 

shows that three-mode 
using the PBM method. 

steps in the algorithm contains unnecessary 
basis set matrices. 

FLOPS is proportional 
ratio. 

It is also possible using the 
PBM approach. useful 
for the iterative 

other regression 
along the object be used with 

caution. The reason is 
along the object 

should also be 
applied. choose 
the same set for both the X and Y 
space. Selecting different basis matrices 

cause the reduction 
other hand it may be 

unrealistic assume that both the X and Y 
can be well modeled by the same set. 

5. Conclusion 

The PBM method is capable of solving the 
problem with distorted models from analysis of a 
compressed representation. The cost is using an 
increased number of FLOPS. This cost can be 
significantly minimized by using sparse represen- 
tations of basis matrices if they have a large 
number of zero elements. B-spline bases have a 
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diagonally dominant structure which often gives 
rise to a large number of zero elements. 

In addition it is necessary to rewrite the actual 
algorithm to make use of the PBM method. 
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Appendix. PBM-PCA algorithm in MATLAB 4.0 
code 

function Cuu,vvl= 

pbmpca(C,A,B,comp) 

% tuu,vvl=pbmpca(C,A,B.comp); 

% A=is the basis set for the rows 

% B=is the basis set for the 

% columns 

% It is assumed that 

% X=A*C*B' 

% If X=CNXMl, C=CnXml then 

% A=CNXnl, B=CMXml 

% camp is the number of principal 

% components 

A=sparse(A); 

B=sparse(B); 

% The sparse command converts A and 

% B into sparse representations 

Gl =A'*A; 
Ge=B'*B; 

% These multiplications can be car- 

% ried out using approximately half 

% the no. of FLOPS by utilizing the 

% fact that 61 and G2 are symmet- 

% ric. This is not shown here (but 

% taken into consideration for the 

% FLOPS formulas presented in the 

% text) since it will complicate 

% the code. In addition, even if. 

% the no. of FLOPS consumed can be 

3: made less, the code presented 

% here is still faster in execution 

% time because MATLAB so ineffi- 

% ciently handles FOR loops 

Ql=Gl*C; 

Q2=C*G2; 

Ca,bl=size(C); 

stop=3; 

for i=l:comp 

av=std(C); 

CavZ,indxl=sort(av); 

uO=C(:, indxlb)); 

while stop>l, 

vO=uO'*Ql; 

vl=vO*(vO*G2*vO') Y-1/2); 

ul=QZ*vl'; 

if norm(ul-u0)<0.00005, 

uu(:, i)=ul; 

vv(i ,:)=vl; 

stop=o; 

end; 

uO=ul; 

end; 

stop=3; 

c=c-ul*vl; 

Ql=Gl*C; 

Q2=C*G2; 

end; 
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