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Abstract 

Compression is one way of making analysis of large data arrays faster. Compression is here defined as the case 
when a large array X is replaced by a smaller coefficcient array C. The coefficients are obtained by least squares 
fitting to some compression basis. This paper will deal with three-mode arrays. When performing, e.g., three-mode 
principal component analysis of C the results are comparable but not equal to the results from analyzing X. In this 
paper we suggest a solution to this problem by rewriting the three-mode PCA algorithm which utilizes C and the 
compression basis matrices. This has been accomplished by applying a method where speed improvement is achieved 
by postponing basis matrix calculations in key steps of the three-mode PCA algorithm. 

1. Introduction 

Compression of raw data from analytical in- 
struments is useful for storage and faster compu- 
tation of large arrays [1,2]. The approach advo- 
cated by us is to fit the original data to a suitable 
chosen basis set and use the coefficients obtained 
from the fitting instead of the original data. When 
using such coefficients in, e.g., a principal compo- 
nent analysis (PCA) scores and loadings are not 
directly comparable to the corresponding scores 
and loadings of the uncompressed array. One way 
to circumvent this problem is to premultiply the 
scores and loading matrices with the compression 
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matrices used [3]. This multiplication, however, 
does not produce orthogonal scores and loading 
vectors. A simple orthogonalization/orthonor- 
malization of the transformed matrices does not 
provide the correct result. In Part I of this article 
[41, a method was developed for PCA of two-mode 
arrays which solved the problem. This method is 
referred to as the method of postponed basis 
matrix multiplication (PBM) where the central 
idea is to postpone the multiplication of large 
basis matrices until after the converged PCA 
solution is obtained for all factors. The aim of 
this work is to show the PBM method can be 
applied to PCA of three-mode arrays. The method 
can be extended to N-mode PCA also. 

A three-array & is assumed to be modeled by 
three compression matrices {B,, B,, BJ. After 
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compression the original three-array can be rep- 
resented by a much smaller three-array of coeffi- 
cients C_. g is the reconstructed array which is 
constructed exclusively from C_ and the basis ma- 
trices ({B,, B,, B,)). Of course it is not necessary 
to compress along all the modes. This is the case 
if some modes are much smaller than the other 
modes or uncompressible by the chosen basis. If 
the error E = & - g is large and contains impor- 
tant components the compression will not be 
satisfactory and the coefficient representation 
does not reflect the essential structures in X. The 
scores and loadings from the analysis of C_ have 
smaller dimensions since the coefficient array is 
much smaller than g and & As was mentioned 
above a premultiplication of the basis matrix as- 
sociated with each mode can be used to increase 
the dimensions of the scores and loadings vectors 
obtained from analysis from C to the dimensions 
of the scores and loadings vectors of g or X. 
When these reconstructed scores and loadings 
vectors of g are compared to the corresponding 
vectors of X, it is found that a distortion has been 
introduced. Sometimes this distortion is so small 
that it has no practical consequence. For other 
problems the distortions can be quite large. Sim- 
ple orthogonalizations/orthonormalizations or 
other transformations have been unsuccessful in 
trying to nullify the distortions. The PBM method, 
however, solves the problem by rewriting the al- 
gorithm in question such that when the basis 
matrices are premultiplied with the PBM scores 
and loadings they are identical to the scores and 
loadings obtained from direct analysis of g. 

A diagram notation [5] is used to represent the 
three-mode array equations and the reader is 
encouraged to study the Appendix for an expla- 
nation of the notation used. 

2. Three-mode PCA 

It is instructive to start an explanation of 
three-mode PCA by first looking at how singular 
value decomposition (SVD) is performed. In SVD 
for matrices (two-arrays) an X matrix can be 
decomposed as 

X = uS’/2Vr (1) 

where U and V are columnwise orthonormal ma- 
trices and S112 is a diagonal matrix containing the 
square root of eigenvalues of the two covariance 
matrices XXT and XTX. The two associated eigen 
equations are 

XXTU = us (2) 

XTXV = vs (3) 

In SVD for 3-arrays an & array can be decom- 
posed as shown in Fig. 1. This equation is the 
Tucker3 model [6,7]. The diagram equation in 
Fig. 1 can also be expressed in explicit summation 
notation: 

p=l q=l r=l 

There are different methods for solving the 
Tucker3 model. A method similar to the ap- 
proach used for SVD of two-arrays (see Eqs. (2) 
and (3)) is the Tucker Method I [6,7] which 
obtains estimates for the loading matrices H, G, E 
by extracting all eigenvectors corresponding to 
non-zero roots of the three covariance matrices 
with elements, see Fig. 2: 

lij, = f: 5 XijkXitjk (5) 
j=l k=l 

I K 

??ljjl= C C XijkXijsk 

i=l k=l 

n kk’ = i i XiikXijk’ (7) 
i=l j=l 

Using the estimated three loading matrices, 
Eq. (4) shows the core array _D can be expressed 
as 

d pqr = i i 2 hipgjgekrXijk 
i=l j-1 k-1 

(8) 

This equation is also shown in Fig. 3 using the 
diagram notation. 

In practice an investigator is often interested 
in only the first largest eigenvectors of H, G, E. 
Using the Tucker Method I, however, the estima- 
tors for dpqr will no longer be least-squares ones. 
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t j 

Fig. 1. Illustration of the Tucker3 model. 

In order to achieve least squares estimates an 
alternating least squares (ALS) algorithm 161 can 
be used. The diagram formulation of this algo- 

rithm is presented in Fig. 4. The ALS algorithm is 
very computer demanding and the idea of using 
the compressed representation C_ instead of X to 

Fig. 2. Construction of the covariance like matrices L, M, and N used in the Tucker I algorithm. In the Tucker3 model the 

eigenvectors of these matrices are used as initial estimates before entering the alternating least squares iterations. 

Fig. 3. How to find the core array using a Tucker Method I (here p = i, q = j, and r = k). For cases when p < i, q <j, and r < k, 

the solution is more complicated. 
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enable faster computations on three-mode arrays 
is promising [2,8]. When using C_ the ALS algo- 
rithm returns the much smaller loading matrices 
I-I,, G, and E,. The incorrect transformation 
back into the original domain by premultiplica- 
tion of the corresponding compression matrices 
as mentioned in Part I of this article is formu- 
lated as 

H, = B,H, (9) 

G, = B,G, (10) 

E, = B,E, (11) 

The PBM method will provide different H,, 
G,, and E, which subjected to proper premultipli- 
cation of basis matrices are identical to the load- 
ing matrices obtained from direct analysis of g. 

3. The PBM method on three-mode PCA 

For an introduction to the PBM method please 
consult Part I of this article. 

There are two different places in the ALS 
algorithm where postponing of basis matrix multi- 
plication can be made: 

1. The computation of matrices which are to 
be diagonalized. These steps are the array equa- 
tions as described in detail for one of the three 
loadings matrices in Fig. 5. These steps are re- 
ferred to as the ‘ALS iteration steps’. 

2. The eigenvalue decomposition algorithm 
which is used to obtain estimates of the loading 
matrices H,, G,, E,. 

The following two subsections will discuss in 
detail how each of the two parts of the ALS 

-GA--- 

---@- 

-a- 

= EIG 

= EIG 

= EIG 

Fig. 4. Central part of the AL!5 algorithm. Here estimates of the loadings matrices for each mode are generated. The figure shows 
one iteration. 



B.K. Alsberg, O.M. Kvalheim /Chemometrics and Intelligent Laboratory Systems 24 (1994) 43-54 47 

algorithm is changed according to the PBM 
method. 

3.1. PBM eigenvalue decomposition 

In Fig. 4 the word ‘EIG’ is used to indicate 
that the resulting matrix of the diagram expres- 
sion inside the parentheses is diagonalized (EIG 
returns the A largest eigenvectors). Using the 
PBM method it is easy to see that the basis 
matrix associated with the mode is redundant and 
unnecessary for the computation of eigenvalues 
and eigenvectors. 

Let K be a symmetric matrix which is to be 
subjected to an eigenvalue decomposition and 
assumed to be generated from 

K=R=R (12) 

where 

R=WB= (13) 

i.e., a result from a compression model (BT is the 
compression basis matrix). An alternative formu- 
lation of K is 

K=BW=WB= (14) 

- - 

~~~~~~- 

This basis matrix is redundant in 

the iteration and the multiplication 

is therefore POSTPONED 

Fig. 5. The central part of the PBM method is illustrated for one part of the ALS iteration steps using diagram notation. When the 
model equations are written out it is possible to discover that redundant multiplication of large basis matrices is present. The 
multiplication of these large basis matrices is postponed to after the iteration has converged. 
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The algorithm chosen for the eigenvalue de- 
composition of real symmetric matrices is a power 
method approach [9]. For each component the 
following is iterated: 

uO = Ku, (15) 

(16) 

ug = 241 (17) 
After each such step the difference between 

earlier iteration steps is measured and the itera- 
tion will halt when this difference is small enough. 
The following updating of the symmetric K ma- 
trix is performed after termination of the itera- 
tion: 

A = u;Ku, 

K=K-hu,u; 

where A is the eigenvalue. 

(18) 

(19) 

Two new vectors a and f are introduced which 
have the same dimensions as a row or a column 

of W and the following relations are assumed to 
be true: 

u=Be (20) 

v=Bf (21) 

Using this information it is possible to refor- 
mulate the eigenvalue decomposition iteration: 

Bf, = BWTWBTBa, (24 

Ba, = 
Bfll 

( f:BTBfo)1’2 (23) 

Ba, = Ba, (24) 

Setting r = BTB and observing that the pre- 
multiplication by B is redundant in the iteration, 
the PBM iteration will look like: 

j-a = wTwra, (25) 

fcl 

a1 = (fo’rfo)1’2 

Fig. 6. The iteration steps in the ALS algorithm written in terms of the compression model. 
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a,=a, 

The updating steps now become: 

(27) 

A = a;frwrwra, (28) 

WTW = WTW - ha,a: (29) 

If the compression is perfect, the eigenvalue A 
from the PBM method is identical to the original 
eigenvalue of the uncompressed representation. 

3.2. PBM applied to the ALS iteration steps 

In Fig. 5 the matrix to be diagonalized (i.e., the 
matrix inserted into the ‘EIG’ routine) in order to 
obtain a current estimate of the G loading matrix 
is shown. The computations for the other load- 
ings are analogous. The upper part of Fig. 5 can 
be said to be a three-mode analogue to a covari- 
ante matrix (similar to the L, M, N matrices 
mentioned above). One way to understand the 
PBM method is to write out the compression 
model for each of the arrays in the equation. It is 
assumed that a loading matrix for a particular 
mode can be written as linear combinations of 
the basis matrix for that mode, i.e., 

H, = B,h (30) 

G, = B,g (31) 

E, = B,e (32) 

where (h, g, e) are matrices not vectors. The 
lower part of Fig. 5 shows the upper part of the 
figure written out in terms of the compression 
models. Rectangles with dotted lines are drawn 
around important parts together with a small 
label symbol in the upper left of the rectangles to 
indicate which rectangles are comparable. The 
rectangle labeled ‘a’ shown in the upper part of 
the figure encircles the uncompressed X array 
while in the lower part this array is written in 
terms of its compression model. The rectangles 
‘b’ and ‘c’ contain the expressions for the loading 
matrices H and E, respectively. Since the basis 
matrix does not change from one iteration to 
another it is redundant in the expressions of the 
ALS algorithm. The redundant basis matrix is 
indicated with arrows in Fig. 5. Fig. 6 shows the 
rewriting of the equations for all the loading 

matrices. Thick lines are used to designate large 
modes (see Appendix for a short introduction to 
the diagram notation). By removing the redun- 
dant basis matrices on each side of the equation 
sign and using the PBM version of the eigenvalue 
decomposition algorithm described above (desig- 
nated ‘PBM-EIG’ in the figure) the new algo- 
rithm depicted in Fig. 7 is obtained. No thick 
lines are ‘exposed’ or ‘free’ and thus there are no 
large modes in the calculation. Of course it must 
again be stressed that the Grammian matrices 
Fi = BTBi, i E [1,2,3] should be much smaller than 
the dual Grammian matrices B,BT, i E [1,2,3]. 
The results from this algorithm (the PBM loading 
matrices h, g, e) are similar to the PBM scores 
and loadings in standard (two-mode) principal 
component analysis as described in Part I of this 
article. They are not orthogonal, i.e., hTh # I, 
gTg # I and eTe # I. If premultiplication of the 
corresponding compression basis matrices is per- 
formed we get that H;fH, = hTr,h = I, GTG, = 
gTr,g = I and EZE, = e’r,e = I. 

4. FLOPS estimations 

AI1 FLOPS equations were generated on the 
basis of the j7ops command in MATLAB. Part I 
of this article discusses in more detail how FLOPS 
can be calculated for different types of matrix 
operations. The FLOPS equations below are con- 
structed on the assumption that the basis matri- 
ces are sparse [lo], which significantly reduces the 
number of FLOPS required. Sparsity means that 
a matrix contains a large number of zero ele- 
ments. See Part I of this article for more details. 

The expression for the estimate of the approxi- 
mate number of FLOPS required for the three- 
mode PCA is 

$,=1(2A(3NMK+NMA+NKA 

+MKA+N*A+M*A+K*A) 

+A[q,(2N* + 8N-t 1) + 5N2 + 3N] 

+A[s,(2M2 + 8M+ 1) + 5M2 + 34 

+A[q,(2K* + 8K+ 1) + 5K2 + 3K]}. 

(33) 
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where qa is the number of iterations per eigen- 
vector in the diagonalization routine. For the 
estimations performed here it is always assumed 
that the number of iterations is the same for each 
factor. This is of course not true, but is intro- 
duced to simplify the analysis of the algorithmic 
performance. Z is the number of ALS iteration 
steps, A is the maximum number of factors and 
N,M,K are the dimensions of the _X array. Before 
defining the FLOPS formula for the PBM algo- 
rithm it is convenient to define the formula for 
estimated number of FLOPS required for the 
PBM-EIG routine described above: 

= 2n*Nd: + 2n3g, 

+A[ q,(2n2 + 2n*g, + 3n + 1) 

+ 2n*g, + 5n2 + 3n + 2n3g,] (34) 

The approximate number of FLOPS for the 
PBM algorithm is 

g2 = 2m*Ag, + 2n*Ag, + Z(6knmA + 2kA*n 

+2k2A2 + 2k*Ag, + 2mA*k + 2m2A2 

+ 2m2Ag2 + 2nA*m + 2n2A2 + 2n*Ag,) 

+Z[J(n, d,, g,, A) +J(m, d2, g2, A) 

+J(k, d,, g,, A)] (35) 

where n, m, k are the dimensions of the C_ array; 
d,, d,, d, are the densities of the basis matrices 
B,, B,, B,. The density is the number of non-zero 
elements in a matrix divided by the total number 
of elements; g,,g,,g, are the densities of the 
Grammian matrices BTB,, BTB,, BTB,. 

In order to analyze the two FLOPS formulas 
some simplifications are introduced: N = K = M 
and n = k = m and n = N/r; r is a parameter for 

4-a - 

= PBM-EIG 

= PBM-EIG 

= PBM-EIG 

B3 B3 e g B2 B2 cc C C 

B2 B2 g 
e 

B3 B3 
j 

Fig. 7. Same as Fig. 6 except that the redundant basis matrix multiplications have been postponed to after the iteration has 
converged. Note that now we must use the PBM-EIG routine and not the usual eigenvalue algorithm for decomposition of each of 
the covariance like matrices. 
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14000 
FLOPS ratio 3-mode PCAm-mode PBM-PCA. Sparse 

N denotes the size of an [N x N x N] array 

Fig. 8. This figure uses the FLOPS formulas which are dis- 
cussed in the text and adequately estimates the FLOPS usage 
of the three-mode PBM-PCA algorithm. Here it is assumed 
that sparse technology can be used on the basis matrices. A 
density of 0.1 for every basis matrix is assumed and 0.2 for the 
corresponding Grammian matrices. 

the compression. In a general case this is a vector 
where each element is a parameter for the differ- 
ent modes. For this particular case the same 
compression parameter has been selected for each 
mode. It is desirable that the observed FLOPS 
ratio 

f$>l 

should be as large as possible. Fig. 8 shows the 
result of a calculation based on the formulas for 
F1 and .@z assuming the simplifications men- 
tioned above. The following ranges were selected: 
NE [200, 10001, r E [2, 301, five factors are as- 
sumed to be extracted and I = 5, q, = 15. The 
densities of the basis matrices were chosen to be 
0.1 and the densities of their Grammians to be 
0.2. This example corresponds to the one pre- 
sented in Part I of this article. The highest values 
of f is obtained when r is large and N is small. 
If, e.g., r = 20, N = 600, i.e., from a 1600 X 600 X 

6001 array to a [30 X 30 x 301 array the PBM 
algorithm will run approximately 3579 times 
faster. 

5. Results 

5.1. Data set 1 

An artificial three-mode data set was used for 
these experiments. A large ratio between the 
compressed and original representation was con- 
structed. Each basis matrix was given the same 
dimensions: Dim(Bi) = [84 X 71, i E {l, 2, 3}, i.e., 
each mode in the original representation was 
more than ten times the size of the coefficient 
array C_ with dimensions Dim(C_) = [7 X 7 X 71. 
The number of factors extracted was three and 
number of ALS iterations was set to five. The 
number of iterations per factor was set to 15. The 
number of FLOPS consumed for the uncom- 
pressed representation was F, = 118 803 325, and 
FZ = 486 025 FLOPS for the PBM algorithm. The 
FLOPS ratio is ca. 244. The theorftical estimates 
of theA FLOPS consumption are F1 = 118 787 625 
and S, = 591050 which gives a FLOPS ratio of 
ca. 200. In this case the formulas underestimate 
the effect of the PBM approach. 

A much larger example could have been cho- 
sen but the standard three-mode PCA program 
could not handle arrays of size larger than [90 x 

90 x 901. 
The calculations were performed on a HP 

9000/730 with 64 Mbyte RAM and 1.3 Gbyte 
hard disk. All programs were written in MAT- 
LAB (version 4.0). 

5.2. Data set 2 

The data matrix was a three-dimensional elec- 
tron density distribution of a molecule [8] with 
dimensions Dim(&) = [71 x 38 x 441. This data set 
was compressed using B-splines to a three mode 
array with dimensions Dim@) = [30 X 13 X 171. 
The compression parameters for the different 
modes are approximately r = [2.4, 2.9, 2.61. In this 
data set it was unfortunately not possible to com- 
press the original X further without losing signifi- 
cant information. The number of FLOPS con- 
sumed for the original data set was F, = 
16829025 and for the PBM algorithm FZ = 
2 146461 which corresponds to a FLOPS ratio of 
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ca. 8. In order to compare the different results 
the number of iterations per factor was set to 15. 
The estimated FLOPS were fii = 16 820415 and 
gZ = 2 074 699 which gives a FLOPS ratio of ca. 8 
also. The results from the PBM algorithm were 
converted to the original domain and compared 
with the results of the three-mode PCA of the 
original data set, see Fig. 9. The results for this 
data set are very satisfactory. In addition to a 
relatively modest compression the three basis ma- 
trices were not sparse enough. The densities of 
the three basis matrices were approximately 0.21, 
0.20, 0.12 and this is illustrated in Fig. 10. 

6. Conclusion 

The PBM method applied to three-mode PCA 
is efficient if the compression ratio is high and/or 
the basis matrices are sparse. The PBM should 
also be effective for N-mode PCA in general. 

Appendix. Notation 

A.1. Name of data objects 

Data objects which are extensions of matrices 
have different names. Some names used are: ten- 

E “s Eh, A=1 E “s Eh. A=2 E “s Eh. A=3 

“rjLJy _$gy ,nm 

20 40 60 20 40 60 20 40 60 

H vs Hh, A=1 H vs Hh. A=2 H vs Hh, A=3 

“.m _$q :ffjpj 
10 20 30 10 20 30 10 20 30 

G vs Gh, A=1 G vs Gh, A=2 G vs Gh, A=3 

Fig. 9. Reconstruction of loadings for three factors of data set 

2. It is in excellent agreement with the loadings from analysis 

of the uncompressed array. Dotted lines are the loadings from 

analysis of the uncompressed array. 

Basis matrix 81 

2;- 
0 20 40 60 

“z = 252 
Basis matrix 82 

0 10 20 30 
nz=lOQ 

Basis matrix 83 

0 20 40 
nz= 157 

Fig. 10. The densities of the basis matrices used in data set 2. 

sors; multilinear forms; multidimensional arrays; 
N-arrays; N-mode arrays; N-order arrays; N-way 
arrays. 

In this article we refer to such objects as 
arrays, N-arrays or N-mode arrays. 

A.2. The diagram notation 

The diagram notation for use in chemometrics 
is fully described in Ref. [5] and only a short 
summary is given here. The diagram notation is a 
graphical visualization of the index topology in 
explicit summation notation. The diagrams have 
the appearances of graphs and use of graph ter- 
minology is therefore appropriate [ll]. A diagram 
contains nodes and edges. An edge can be at- 
tached to one or several nodes. An edge con- 
nected to one node only is called unconnected. 
An edge connected to more than one node is 
called connected. It is possible to enable connec- 
tion between more than two nodes by introducing 
a special sum nexus symbol, but this will not be 
presented in this article. For more details see 
Ref. [5]. A node with N unconnected edges is the 
diagram representation of a single N-mode array 
not connected to any other. A connected edge 
signifies summation of ooze index. For the contin- 
uous case a connected edge signifies an integra- 
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D 

Fig. 11. Presentation of examples from matrix algebra in 
diagram notation. (A) Scalar product; (B) product of two 
matrices; (C) and (D) equations involving products of three- 
mode arrays. 

lion. The total number of unconnected edges of 
an expression is the number of modes (or the 
mode number) of the result. If, e.g., two 3-arrays 
combine by summing one common index the mode 
number of the result is 3 + 3 - 2 = 4. In the cen- 
ter of the node the name of the array is placed. 
In the vicinity of the edges the correct index 
names are sometimes written in order to clarify. 
The index names are written anti-clockwise from 
the first index. Sometimes it is necessary to indi- 
cate which edge signifies the first index. For this 
we use a small bar perpendicular to the edge and 
this mark is called the first index pointer or for 
short the &. 

Mirror reflections of the diagrams are not al- 
lowed since this will change the unique place- 
ment of the different indices. If reflections were 
allowed it would not be possible to discriminate 
between, e.g., the four-mode array xijk, and the 
four-mode array xijkl (assuming a fip has been 
used to indicate that i is the first index). The 
consequence of this is that, e.g., when two identi- 
cal nodes which are connected through more 
than one edge, a crossing of edges will occur (as 
in Fig. 2). The crossings themselves have no 

-@-=- 

Fig. 12. For orthonormal matrices a shorthand notation is introduced which enables a faster manipulation of diagrams. Two arrows 
which meet head to head will result in an identity matrix. An identity matrix is drawn as a line. 

wL_/ Large mode indicated by thick line 

Desirable situation Undesirable situation 

Fig. 13. For a SVD of a matrix of size [lo x lOOGO] it is desirable to avoid the large mode. The large mode has been signified by a 
thick line. 
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meaning and are just a result of the topological 
constraints imposed on the notation. 

Fig. 11 shows a few examples of array diagram 
equations. The corresponding summation formu- 
las for the diagram equations presented are: 
(A) Ciuiui. This is the standard inner product. 
(B) Ckxik ykj. This is standard matrix product. 
(C) CkCfqifkwkfj. An array product between 

two three-mode arrays. The result is a ma- 
trix because the number of unconnected 
edges is two. 

CD) Ck&Pqlknikjehm* Here the result is a five- 
mode array since five free indices are seen. 

Instead of using index names and fips for 
indicating the different modes of the arrays a 
shorthand notation has been constructed. There 
are especially two cases where a shorthand nota- 
tion has been found useful: (i) matrices with 
orthonormal column vectors; (ii> modes of large 
size. 

If Q is a matrix with orthonormal column 
vectors we have that QTQ = I where I is the 
identity matrix. If Q is not square we have that 
QQT # I. Thus we need to discriminate between 
the two different modes of the matrix. Arrows 
have been chosen to distinguish between the 
modes. When two arrows meet head to head we 
have the case QTQ = I. Fig. 12 illustrates the idea 
(here we see ETE = I). The identity matrix is for 
convenience drawn as a connected or as an un- 
connected edge with no matrix element attached. 

In some problems it is necessary to avoid that 
large modes become unconnected edges. A sim- 
ple example from SVD illustrates the main idea. 
If the dimension of X is [lo X 100001 and the 
object is to find the eigenvalues the fastest method 

is to calculate the eigenvalues of the covariance 
matrix XX= which has a dimension of [lo x 101. 
The rank of X cannot be larger than 10 which 
means that eigenvalue decomposition of X=X (di- 
mension [lOOOO X 100001) would be a waste of 
resources; see Fig. 13 for illustration. 
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