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This paper presents a dedicated investigation and practical description of how to apply PARAFAC

modeling to complicated fluorescence excitation-emission measurements. The steps involved in
finding the optimal PARAFAC model are described in detail based on the characteristics of
fluorescence data. These steps include choosing the right number of components, handling

problems with missing values and scatter, detecting variables influenced by noise and identifying

outliers. Various validation methods are applied in order to ensure that the optimal model has been
found and several common data-specific problems and their solutions are explained. Finally,
interpretations of the specific models are given. The paper can be used as a tutorial for investigating
fluorescence landscapes with multi-way analysis. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluorescence spectroscopy has been used in many scientific
fields, such as chemistry, medicine, environmental and food
science. However, fluorescence signals can be rather com-
plex and, therefore, the analysis might become complicated
owing to interferences, scatter, overlapping signals, etc.
When autofluorescence of every sample is measured at
several emission wavelengths for several excitation wave-
lengths, the interpretation can be facilitated by the use of
multi-way models such as PARAFAC [1], Tucker and N-PLS
[2-4]. If the data are approximately trilinear, curve resolution
is possible by the use of PARAFAC, possibly providing
estimates of the spectra and concentration profiles of the
underlying chemical analytes, thus relating the measured
autofluorescence of mixtures to chemical knowledge about
the material [2,5]. When modeling fluorescence data,
interference from scattered light (primarily Rayleigh and
Raman scattering) can give a slight model inadequacy
influencing the estimated model parameters. Furthermore,
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other factors such as quenching and instrumental noise can
cause problems. Therefore, consideration of the various
influential contributions is important when analyzing
fluorescence excitation-emission data and when interpreting
the derived models.

Several studies have explored and described the under-
lying chemical phenomena in fluorescence spectral data by
applying multi-way modeling such as PARAFAC. For
example, Ross et al. [6] described the underlying structure
of fluorescence spectra obtained from pigment complexes in
pea thylakoids. In other studies, PARAFAC models based on
fluorescence landscapes of sugar solutions were used to
obtain information regarding both sugar quality and process
parameters [7,8]. It was shown that tryptophan and tyrosine
and also high molecular weight Maillard reaction polymers
and polyphenolic compounds were important fluorophores.
In an investigation of the interactions between a non-
fluorescent DDT-type pesticide and a fluorescent dye,
PARAFAC was employed to find the fluorescence profiles
of complexed dye states [9]. Furthermore, the ability to
quantify trace pesticides and polycyclic aromatic hydro-
carbons by fluorescence spectroscopy and PARAFAC
modeling was investigated by Jiji et al. [10]. They showed
the possibility of resolving the analyte spectra from over-
lapping fluorescence signals, scatter and instrumental back-
ground. PARAFAC was also applied to describe and predict
the amount of dissolved chlorophyll and pheophytin
pigments [11]. Dioxin contents of fish oils were estimated
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by PARAFAC modeling of fluorescence landscapes [12]. It
was suggested that the relations obtained were due to
quenching effects or other complex chemical factors in the
fish oils.

There are several publications describing the theory and
giving examples of PARAFAC modeling [1,3,4,13,14].
Furthermore, the applications given above illustrate the
advantages of using PARAFAC for analyzing fluorescence
spectroscopic data and show how PARAFAC can be applied
to interpret such data. However, no articles have discussed
in depth the practical aspects of using PARAFAC for
decomposing fluorescence excitation-emission matrices
(EEMs). Important practical issues such as how to determine
the optimal number of components, how to handle disturb-
ing scatter signals and how to deal with missing values, find
outliers and validate the model are mostly just described
superficially.

This paper demonstrates in detail how the use of a suitable
mathematical model such as PARAFAC can help under-
standing the underlying spectral and chemical phenomena
in a complex system. In particular it provides guidelines and
tools for the proper handling of many of the typical problems
that arise in the modeling of fluorescence excitation-
emission data. Hence the paper can be used as a tutorial
for investigating fluorescence landscapes with multi-way
analysis. Measurements on fish muscle extracts are used as
an example and illustrate the possibility of using fluores-
cence spectroscopy for on-line quality monitoring in the fish
industry. Additionally, fluorescence excitation-emission
matrices of solutions with known concentrations of four
fluorophores are analyzed. Including both data sets in the
presentation provides an illustration of how both well-
characterized (and well-behaved) data and less well-charac-
terized data can be analyzed.

2. MATERIALS AND METHODS
2.1. Fish data

A factorial design with two frozen storage temperatures
(—20°C and —30°C), four frozen storage periods (3, 6, 9 or 12
months) and five chill storage periods (0, 3, 7, 14 or 21 days at
2°C) was used. Cod (Gadus morhua) from a single catch were
caught in February 1999 in the Barents Sea. Experiments
after 3 months of frozen storage at —20°C were left out for
practical reasons, giving a total of 35 storage conditions. The
chill storage was made in modified atmosphere (40% CO,/
40% N»/20% O,). Three packs with each storage treatment
were analyzed, giving a total of 105 samples.

Aqueous extracts were made by homogenizing 25 g of fish
muscle with 75 ml of water. The pH was reduced to 5.2 with
2 M HCl and the mixture was heated to 70°C, cooled to room
temperature and filtered to remove precipitated proteins.
This treatment provides a clear solution containing a number
of fluorophores but of lower chemical complexity than if the
raw fish muscles were measured. The extracts were stored at
—30°C.

The extracts were measured spectrofluorimetrically at
22°C in a 10 x 10 mm thermostated quartz cuvette on a
Perkin-Elmer LS50B spectrofluorimeter. Raw non-smoothed
data were recorded. For every sample, an excitation-

Copyright © 2003 John Wiley & Sons, Ltd.

PARAFAC modeling of fluorescence excitation-emission data 201

emission matrix (EEM) was obtained by measuring the
emission spectra from 270 to 600 nm at 2 nm intervals with
excitation at every 10 nm from 250 to 370 nm. These wave-
lengths were chosen from a preliminary experiment based
on which areas showed the highest variability (not shown).
The measurements started with the highest excitation
wavelength and ended with the lowest in order to minimize
photodecomposition of the sample [15]. Based on the visual
appearance of the preliminary experiments, the excitation
and emission slit widths were both set to 7 nm and the scan
speed was 750 nm s .

All measurements were made within a few days to
minimize the effect of instrumental drift and changes in
lamp intensity. Such changes could have required suitable
standardization [16]. A solution of 15g of ordinary white
sugar per 100 ml of doubly deionized water was used as a
standard and measured three times a day to verify that
instrumental changes did not influence the results [16]. No
substantial variations among the sugar samples were found.
The fish muscle extracts were measured in random order.

2.2. Data with known fluorophores

This data set contains fluorescence landscapes of 27 samples
containing different concentrations of four fluorophores
with fairly similar spectral properties [17]. The four com-
pounds are phenylanaline, 3,4-dihydroxyphenylalanine
(DOPA), 1,4-dihydroxybenzene and tryptophan.

The measurements were performed on the same Perkin-
Elmer LS50 B fluorescence spectrometer as the fish data with
excitation wavelengths ranging between 200 and 315nm
(5 nm intervals) and emission wavelengths ranging from 250
to 459 nm (1 nm intervals). Both the excitation and emission
slit widths were set to 5 nm and the scan speed was 1500 nm

min~ L.

2.3. Multi-way data analysis
Ideally, the data arranged in an I x J x K three-way array
will be trilinear [2]. The first index (I) refers to the samples,
the second () to the emission wavelengths and the third (K)
to the excitation wavelengths (Figure 1).

PARAFAC [1,13] was used to model the data. The
PARAFAC model can be written as

F
xig = > abycis + e
=

i=1...,Lj=1,....]; k=1,...,K
where x; is the intensity of the ith sample at the jth variable
(emission mode) and at the kth variable (excitation mode) a;;,
bjs and ¢ are parameters describing the importance of the
samples/variables to each component and the residuals, e;j,
contain the variation not captured by the model.

The PARAFAC components will be estimates of the
signals from the individual fluorophores if the data are
approximately low-rank trilinear and when the correct
number of components is used. In that case, the scores in
aimay be interpreted as the relative concentration of analyte
fin sample i. The J-vector by with elements by (j=1, ..., ]) is
the estimated emission spectrum of this analyte and likewise
¢s is the estimated excitation spectrum. In order for the
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Figure 1. Arrangement of the data in a three-way structure.

decomposition to be unique and provide meaningful
estimates, some mathematical conditions must be fulfilled.
For example, no two spectra may be identical. In fact, if all
spectra and concentration profiles are linearly independent,
the decomposition is unique. More relaxed conditions can
also be given [18]. The model states that for each analyte, the
contribution to the measured excitation-emission matrix is
u,-fbfch, which is the landscape of a pure analyte scaled by
the concentration. This reflects that additivity and linearity
of the signal is assumed to be valid. A change in
concentration only changes the magnitude of the contribu-
tion (a;r) not the actual shape (bfch). Both concentrations and
spectra are only determined up to a scaling because, e.g., the
vector by may be exchanged with 1/2bs as long as, for
example, ¢ is exchanged with 2¢x Such a change will not
change the contribution to the model (aijcbfch = a1/ 2bf2ch).

Inner-filter effects caused by high concentrations, scatter-
ing and quenching can disturb the trilinearity of the data.
Furthermore, abundance of missing data (see later) and
spectral similarities can lead to uncertain estimates. There-
fore, the chemical interpretation should be exercised with
care. In the following it is shown how a PARAFAC model
can be validated using fit values, visual assessment of the
loadings, residual analysis, core consistency diagnostic, jack-
knifing and by a split-half analysis [19].

For further in-depth descriptions of PARAFAC theory and
algorithms we refer to other publications [1,2,4,5,13,14]. All
analyses were performed with the N-way toolbox (www.
models.kvl.dk) and Matlab version 5.3 (The MathWorks,
Natick, MA, USA).

2.4. Data pretreatment

For the fish data set, emissions from 270 to 280 nm were
removed from the data to reduce the amount of Rayleigh
scatter and missing values. This gives a three-way array of
the size 105 x 161 x 13. For the data set with the four known
fluorophores, the size of the array is 27 x 210 x 24.

There is no emission below the excitation wavelength as
this would correspond to higher energy being emitted than
the energy causing the emission. Therefore, below the
excitation wavelength, the emission is zero (or some noise
equivalent to zero), regardless of the chemistry. Hence, for a
complete EEM landscape a triangular part will be trivially
zero, which has to be respected by the subsequent model.
These zero values do not conform to the trilinear model,
which is valid for the remaining part of the data. If this is not
respected, misleading results can be obtained. The most
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common way to handle this problem is to set these values to
missing in the analysis.

It is worth considering in more detail why emission below
excitation cannot generally be simply set to or kept at zero in
PARAFAC modeling. Emission wavelengths below the
excitation wavelength do not exhibit any fluorescence and
the measured intensity is therefore zero up to noise.
However, part of an estimated excitation spectrum may
have non-zero values at wavelengths higher than the
corresponding estimated emission spectrum. An example
of this is given for tyrosine in Figure 2 (top part). The
PARAFAC model of a measured excitation-emission land-
scape is found as the outer product of the estimated
excitation and emission spectrum. Hence, for emission
below excitation, the model will have non-zero values as
shown for tyrosine. However, this is physically impossible in
practice. No fluorescence will occur and only zero signal
(plus possible scatter) will be measured. Hence the trilinear
PARAFAC model will not be valid for this part.

The middle-left plot in Figure 2 shows that similar spectra
are obtained for different excitation wavelengths when the
model of the data is set to missing for emission below exci-
tation. The plot also shows that a one-component bilinear
model can model the data adequately because all spectra
have the same shape regardless of excitation. The relevant
parts of the plot are shown in detail in the bottom-left part of
Figure 2 (indicated by a circle in the middle plot). When the
emission is set to zero as in the middle-right plot, an
interesting phenomenon appears. Every emission spectrum
is now different in shape because the zeros appear at
different places for different excitations. Clearly, such a data
set cannot be modeled by a single bilinear component as is
the model in PARAFAC. In fact, many components are
needed in order to handle the fact that every emission
spectrum is different. This is contradictory to the underlying
assumptions and hence the incorporation of zeros hinders
adequate analysis of data.

In the above example, the problematic area is only the
emission wavelengths slightly below the excitation wave-
lengths. The problem is that the chemical model, which is
only valid for emission above excitation, is extended below
for mathematical reasons. Emissions far below the excitation
wavelength, however, are mostly zero both physically and
mathematically. Hence in these areas it is less problematic to
introduce zeros. However, other problems than the above-
mentioned can cause zeros to be invalid. For example, for a
double-fluorophoric molecule, a double peak might occur in
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Figure 2. lllustration of the inadequate use of PARAFAC for fluorescence emission below the excitation
wavelength. Top plots show the emission and excitation spectrum of tyrosine. The left middle plots show the
emission spectra measured at several excitation wavelengths with emission below excitation set to missing.
A smaller fraction indicated by the circle is shown blown up below. The right middle and bottom plots show
the same but with emission below excitation set to zero. As can be seen at bottom-right, a rank-one
approximation is not valid when zeros are present because the different emission spectra no longer have

the same shape owing to the incorporated zeros.

both the excitation and the emission spectra of the molecule
and this can lead to ghost peaks in the emission below
excitation area. These will then be incorrectly forced to zero
if zeros are maintained in this area. Before discussing the
possible ways to handle emission below excitation, another
problematic feature of EEM data is described.

Scattering (or reflection) is brought about by small
particles in the samples, and causes the light to deviate from
its original path and spread in all directions. The scattering
does not contain any information on the fluorescence
properties of the sample. Even non-fluorescent samples give
rise to several peaks in a fluorescence spectrum. These peaks
arise from elastic Rayleigh scatter, inelastic Raman scatter
and complex, but predictable, harmonic order reflections of
these same scatter peaks caused by the diffraction grating
employed in the monochromator of the instrument (zeroth,
first, etc., order scattering). In fluorescence EEMs, the scatter
effects show up as diagonal lines across the landscapes. For
elastic scattering there is no energy loss, so the scattered
emission wavelength is identical with that of the exciting
light. For inelastic scattering there is an energy loss asso-
ciated with the scattering light, i.e. the scattered emission is
shifted to longer wavelengths compared with the incident
light. Both the Rayleigh and Raman scattering intensities will
vary with solvent type and the quantity of dissolved
particles in solution but Rayleigh scatter is often the most
troublesome to handle [15]. Owing to Rayleigh scatter,
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emission in a window around the excitation wavelength
does not conform to a trilinear model or, rather, the emission
above the excitation has a contribution from the trilinear
fluorescence signal as well as from the non-trilinear scatter
signal.

There are several ways to deal with the non-chemical areas
(the zeros and the scatter). In this case, the emission
measurements up to slightly above the excitations are
simply set to missing. Emissions obtained at the wavelengths
around twice the excitation wavelength will be influenced by
second-order Rayleigh scatter and are also replaced with
missing values. The algorithms used to handle the missing
data were described by Bro [4]. In the literature, other
approaches have also been adopted [14,20-24], such as using
zeros or down-weighting elements where emission is lower
than excitation. The purposes of using these alternatives are
basically the same (minimize the influence of non-trilinear
parts) and no systematic investigations have yet been made
to compare them. The current experience is that as long as
the influence of the most significant Rayleigh scatter
containing parts is minimized, the results are often similar.

3. RESULTS AND DISCUSSION

The steps and problems involved in finding a valid
PARAFAC model for describing fluorescence excitation-
emission data are given below. The appropriate number of
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components is determined based on several different
criteria. For example, the visual appearance of the loadings
is a useful diagnostic because fluorescence spectra of liquids
are typically characterized by broad and often unimodal
peaks. Furthermore, the variance explained by the model,
the number of iterations and the so-called core consistency
diagnostic [4] are used. An important discussion on the
influence of scatter and missing values is included in the
following. How to correct for possible artifacts from these by
constraining the model is described next. Only the determi-
nation of the number of components for the fish data set is
illustrated in detail, since the procedure is similar for the
other data set. An evaluation of the reliability of the score
values by a jack-knife based approach is used together with
the leverage and the distribution of sample residuals for
identifying outlying samples. After removing grossly dis-
turbing outliers, the models are validated by a split-half
analysis. All diagnostic tools used to assess the models have
pitfalls and only by using several quantitative and qualita-
tive tools can a thorough conclusion be reached.

3.1. Building the PARAFAC model

3.1.1. Fish data

3.1.1.1. Initial PARAFAC modeling. Unconstrained
PARAFAC models are calculated using from one to five
components. It is expected that a two-component model is
optimal since the fluorescence landscapes contain two
visually recognizable peaks (Figure 3). However, peaks of
fluorophores with a low quantum yield or low concentration
may not be seen because of the dominant response of other
fluorophores. This is especially so when their excitation and
emission maxima are in the same wavelength areas as the
dominant ones. Therefore, it is possible that more than two
fluorophores contribute to the fluorescence spectra obtained
here.

The explained variance indicates that three components
are optimal because the increase obtained with more than
three components is small relative to the increase in
explained variance obtained using up to three components
(Table I). Additionally, the percentage of variance explained
using three components is adequate for this type of data.
This is known from experience but can also be quantitatively
evaluated based on the pooled standard deviation of
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Table I. Explained variance as a percentage vs the number of
components for PARAFAC models of the fluorescence data with
1 -5 components

No. of components

1 2 3 4 5
Explained variance (%) 84.7 98.1 99.4 99.6 99.8
Core consistency (%) 100 100 37 31 10

replicate measurements, which is found to vary between
0.9 and 9.3. Comparing this with the pooled residuals of the
three-component model of 4.3 and 6.5 for the two-compo-
nent model shows that, for both the two-component and the
three-component models, the amount of unmodeled varia-
tion in the data agrees with the variation between replicates
and therefore the un-modeled part of the data can largely be
attributed to expected residual variation. The pooled
residual variation is found as the average standard deviation
for all data elements.

The core consistency diagnostic is an approach suggested
for finding the number of components to use in multi-way
models such as PARAFAC [4]. A so-called Tucker3-like core
array is calculated from the data and the PARAFAC
loadings. The relative sum-of-squared difference between
this core and a superdiagonal core of ones is called the core
consistency. It is usually expressed as a percentage. A
PARAFAC model can be represented as a constrained
Tucker3 model where the core has been forced to a
superdiagonal of ones (trilinearity) and the consistency
provides a quantitative measure of how well the loadings
represent variation in the data consistent with this assump-
tion. If the core consistency is not close to 100%, the model
does not give an appropriate description of the data and a
lower number of components should be chosen (see Bro [4]
for more details). Core consistencies for the five models are
shown in Table I. A two-component model gives a core
consistency of 100%. The core consistency of the three-
component model of 37% indicates that this model might not
be stable and hence core consistency points to two
components being optimal. However, as noted above, the
percentage of variation explained for these data points to
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Figure 3. Examples of fluorescence excitation—emission landscapes. Emission spectra were collected from 280 to
600 nm after excitation from 250 to 370 nm. Note that triangular parts of the landscapes have been set to missing.
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Figure 4. Emission and excitation loadings of two- and three-component PARAFAC
models. The lines indicate component one (solid), component two (dotted) and

component three (dashed).

three components possibly being adequate. It is not
uncommon that different diagnostics point to different
numbers of components, especially in this early stage of an
analysis. Further elaboration will help to clear up such
controversies and no final conclusions are drawn at this
stage.

When fitting a model several times from random starting
positions, the same solution is typically obtained for all or
most models if the right number of components is chosen.
When too many components are extracted, the number of
local minima (different model fit values when fitting from
different starting points) often increases. In the actual
situation, the three-component model repeatedly converged
to the same solution. This does not provide conclusive
evidence, but together with the conclusions from looking at
the fit values, it does indicate that three components may be
feasible.

A so-called two-factor degeneracy is a situation in which
two of the components are virtually identical but of opposite
sign [25]. This typically occurs when too many components
are extracted. Here, no degeneracy is found for the three-
component solution. Although the absence of local minima
and degeneracies are only to be used as very ad hoc diag-
nostics, these signs together with the fit values do indicate
that three components might be an option upon further
analysis.

3.1.1.2. Visual appearance of the loadings. When the
fluorescence data follow a trilinear model, the correctly
validated PARAFAC emission and excitation loadings are
estimates of the pure analyte fluorescence spectra when the
correct number of components is used. Figure 4 shows the
loadings of the two- and three-component models. The
emission spectra in both models have characteristics that are

Copyright © 2003 John Wiley & Sons, Ltd.

not consistent with the expectations. The sharp peaks around
300nm and the large negative regions indicate that the
models are not correctly identifying spectra of pure chemical
components.

Probably the high and narrow peak in the estimated
emissions of component three (Figure 4) is an artifact caused
by a combination of the large amount of low-emission
missing data (Figure 3) and the presence of small amounts of
scatter remaining in the specific area. This will be elaborated
on below.

3.1.1.3.  Jack-knife validation of the loadings. One way to
evaluate the stability of the model is by an exploratory use of
the jack-knife method. Jack-knifing is a resampling method
that can be used for assessing the uncertainty of the model
parameter estimates such as scores and loadings [26].
Multiple models are fitted by leaving out one sample at a
time. For these data, then, 105 versions of the loadings are
obtained, which can be used for evaluating the model
stability and for outlier detection [27]. Figure 5 shows the
standard errors of the 105 estimated emissions for the three-
component model. Large standard errors are obtained for
component three in the wavelength area with the high and
narrow peak (Figure 4). Also for component two, part of the
wavelengths corresponding to areas with supposedly
unreliable loadings have high standard errors. This compo-
nent shows emission loadings with both a negative and a
positive peak.

3.1.1.4. Explaining artifactual loadings. By jack-knifing, a
quantitative measure of the uncertainty is obtained, but no
explanation for the problematic loading shapes can be
obtained from these results directly. The sharp low-
wavelength peak is, in fact, a spurious result of the pattern

J. Chemometrics 2003; 17: 200-215
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Figure 5. Standard errors of the loadings of the three-component
PARAFAC model (Figure 4) obtained by jack-knife validation.
Jack-knife is performed by leaving one sample out at a time. The
lines indicate component one (solid), component two (dotted) and
component three (dashed).

of missing values. In order to see why the peak appears, the
structures described by components one and two of the
three-component model are subtracted from the original
data. Thus, only noise and the structure described by the
third component remains in these residuals and hence
represents the variation that component three is seeking to
explain. Visualizing this part of the data can help in under-
standing why the estimated emission profile is peculiar.
Figure 6(a) shows an example of these residuals illustrating
the peak caused by a chemical phenomenon corresponding
to the broad peak of component three. The high and narrow
peak around emissions at 300 nm is not visually detectable.
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In addition, the outer product of the emission and excitation
loadings of component three is given (Figure 6(b)). The outer
product provides a full landscape but if the missing elements
in the data are set to missing in the component three
landscape, Figure 6(c) is obtained. The high and narrow peak
in the emission loadings causes a narrow peak in the full
landscape positioned in a part where there are no measure-
ments. The peak arises because it is describing a small
remaining scatter peak in the original landscape in the low
excitation area (circle in Figure 6(a)). Owing to the pattern of
missing values, the size of this small peak relative to the
large chemical peak is largely unrelated. Thus, the magnitude
of the two peaks in component three cannot be compared
directly. The apparent large sharp peak is an artifact that
appears owing to the combined effect of the small amount of
Rayleigh scatter left and the missing data. As such the peak
is correct but its relatively high magnitude is disturbing from
an exploratory point of view. A similar explanation of the
inferior appearance of the loadings of component two can be
given even though the appearance of component two differs
from that of component three.

The above indicates that more data elements need to be set
to missing because there are still parts influenced by scatter.
However, setting more elements to missing would mean that
parts of the interesting chemical variation are also elimi-
nated, leading to a lower information level, which is not
feasible. There are several alternative ways of dealing with
this problem [4,24,28]. Below it will be shown how the
application of constraints on the parameters can be helpful to
this end. It is emphasized, however, that the apparently
artifactual peaks are not incorrect numerically but merely
annoying in visual interpretation of the parameters. Before
applying constraints an initial look at the currently obtained
score values is performed to check for extreme outliers.
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Figure 6. (a) Example of an excitation—emission matrix after removing components one and two
obtained from the three-component PARAFAC model; (b) outer products of emission and excitation
loadings of component three of the three-component PARAFAC model; (c) as in (b) with the wavelength
areas corresponding to missing values in the original data set to missing.
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3.1.1.5. Initial evaluation of score values. Extreme score
values in the sample mode indicate possible outliers. Figure
7 shows scatter plots of the scores obtained from the three-
component PARAFAC model (loadings are shown in Figure
4). All scores are of similar magnitude and no extreme
outliers are indicated on the basis of the score values.
However, there may be more subtle outliers, which cannot
be identified only by studying the score values. More
dedicated diagnostics will be needed for identification of
such outliers but is postponed as the immediate check for
gross outliers suffices at this stage of the analysis.

The score plot shows an unexpected partly collinear
behavior of the scores for two of the components. While this
may be due to chemical properties of the system, it is
disturbing that it apparently only occurs for a (major) part of
the data. If this is reflecting a real underlying phenomenon,
then likely an unfortunate sampling has been used. How-
ever, comparing with Figure 4, the corresponding emission
spectra seem to be partly confounded having a similarly
shaped low-emission peak. Most likely these two compo-
nents are hence partly describing the same underlying
phenomena, possibly caused by scattering. In the actual
model described later, the same phenomenon is not
observed, hinting at the appropriateness of the constraints
suggested next.

3.1.1.6. Applying constraints. Constraining the parameters
of the PARAFAC model can be helpful in terms of
interpretability, curve resolution and stability of the solution.
It may be argued that constraints should not be necessary if
the data behave according to the model. However, as
exemplified above, minor details in the data can impose
large changes in the estimated parameters that disturb
proper interpretation. Constraints can help to remedy such
problems. Caution is needed, however, to make sure that the
constraints are not otherwise disturbing the appearance of
important phenomena.
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The loadings shown in Figure 4 are unimodal apart from
the unstable part. It is expected that that the real spectra are
non-negative and thus, constraining with both non-nega-
tivity and unimodality could possibly help in modeling the
problematic part of the fluorescence landscapes. Various
combinations of non-negativity and unimodality constraints
in the three modes were tried and evaluated by explained
variance, core consistency and visual appearance of the
loadings. It was found that applying non-negativity in the
sample mode and both unimodality and non-negativity in
the two other modes (excitation and emission) performed
well. The loadings thus obtained for two- and three-
component models are illustrated in Figure 8. The visual
appearance of the loadings indicates that the constrained
models give a more appropriate description of the under-
lying spectral phenomena than the unconstrained models,
not being excessively influenced by the minor remaining
scatter variation. The second excitation component of the
two-component constrained model has a shoulder indicating
that the data contain more than two components.

In order to validate the appropriateness of constraints, the
changes caused by these must be explainable. For example,
for non-negative constraints the loadings should show peaks
at reasonable positions compared to the raw data but with
negative parts removed. The changes can be seen by
comparing Figure 8 with Figure 4. The loadings have been
forced to be unimodal whereby inferior peaks caused by
scatter and missing values have been removed. The danger
of applying constraints is that the parameters are forced to
correspond to the a priori knowledge without necessarily
being more adequate. However, by comparing the solutions
carefully, the risk of misleading models can easily be
avoided. In this case, the spectral profiles are similar to the
unconstrained profiles except that understood low-variance
artifacts are removed.

A core consistency of 59% for the three-component model
shows that systematic variation is present in all three factors.
Compared with the core consistency of the three-component

4000

(@]
3500 i
o o
e}
3000 e ]
o
SO
2500 | o 1
o ofé?
2000 | %§O S i
Q
@ O o
(]
IS o
1500 | 8@ o -
o
@
1000 | o % 1
o
e}
500 . .
0 5000 10000 15000

Scores of component one

Scatter plot of the score values obtained for the three-component PARAFAC model.

J. Chemometrics 2003; 17: 200-215



208 C. M. Andersen and R. Bro

Two-component
constrained model

Emission loadings (mode 2)

600

300 400 500
nm

o)

o

= 0.8

[~

E

v’

» 0.6

=Y4]

£

= 0.4

=

=

= 0.2

Rt

£

g 0

= 250

Three-component
constrained model

0.8

0.6

0.4

0.2

250

Figure 8. Emission and excitation loadings of two- and three-component PARAFAC
models constrained with non-negativity in mode one and non-negativity and
unimodality in modes two and three. The lines indicate component one (solid),
component two (dotted) and component three (dashed).

unconstrained model of 37% (Table I), this shows that
applying constraints increases the model validity although
the core consistency is still lower than hoped for. This,
probably, reflects that the three components are somewhat
difficult to estimate. The explained variance increases from
97.6 to 99.1 on increasing the number of components from
two to three. The last value should be compared with the
explained variance of the three-component unconstrained
model of 99.4% (Table I). The fit of a constrained model will
be lower than that for an unconstrained model by definition,
but the similarity of fits shows that the constrained model is
mainly filtering off insignificant noise and not systematic
variation. Hence, the constraints seem valid also from this
perspective.

From the discussion above, the non-negativity and uni-
modality constrained three-component model is found to
give a valid description of the excitation-emission data.

3.1.2. Data with known fluorophores

Since the data set contains four analytical compounds, it is
expected that four PARAFAC components are appropriate
and the reliability of four components will be verified below.
Initial modeling indicates the presence of four or five
components as evaluated from the explained variance and
the number of iterations (Figure 9). When too many
components are included, the number of iterations will
typically increase dramatically as seen for the six-component
model. However, the number of iterations can only be used
as an indication since, e.g., highly correlated components
will often require many iterations and a model with too
many factors can sometimes be easy to fit. Furthermore, an

Copyright © 2003 John Wiley & Sons, Ltd.

unlucky initialization may lead to many iterations even
though the model is perfectly sound. Still, using ad hoc
measures such as the number of iterations, number of local
minima, etc., is useful in practice.

The five-component model indicates that the low excita-
tions are very noisy. This is seen in Figure 10, which shows
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Figure 9. Fit values and number of iterations as a function of the
number of components, all data included (top) and low excitation
and emission removed (bottom).
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Figure 10. Residuals of sample one from a five-component
PARAFAC model.

an example of the residuals of sample one. The reason for
this noise is to be found in the properties of the instrument.
In order to reduce the effect of the noise, excitations below
230nm were excluded, as were also emissions below
260 nm.

After excluding the noisy part it becomes clear that four
components provide a valid PARAFAC model. The four-
component model explains approximately 100% of the
variation in the data and the number of iterations increases
considerably when fitting more components. The reliability
is further verified by the excitation and emission loadings,
which have shapes resembling pure spectra (Figure 11).

3.2. Finding outliers
3.2.1. Fish data
The three-component model constrained with non-negativ-
ity in the first mode and non-negativity and unimodality in
both the second and third modes is chosen for further
detailed analysis and validation. After the initial analysis,
the possible presence of more subtle outliers should be
monitored for and possibly removed. Here, jack-knife
resampling and an investigation of the residuals is used for
the identification of outliers.

An identity match plot obtained from the jack-knife
procedure was suggested by Riu and Bro [27] for identifica-

Loadings

300 350 400 450
Emission (nm)
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tion of outliers. In the plot, the predicted score of the sample
left out is plotted against the score obtained by the overall
model. Potential outliers will be placed away from the ideal
identity line, showing that the quantitative information on
the samples differs markedly whether or not the sample is
included in the analysis. The plot is made for each of the
three components separately (Figure 12, top plots) showing
that sample number 42 is a clear outlier. Its score values
differ markedly depending on whether it is included in the
model or not. Hence its spectral characteristics are not
covered by those of the remaining samples which almost by
definition makes it an outlier. The fact that sample 42 is an
outlier is supported by the fluorescence landscape and the
residuals of this sample. The bottom-left plot in Figure 12
shows the fluorescence landscape. One of the peaks contains
elements with an intensity larger than what can be measured
with the given instrument settings (out of range). These
elements are given as missing values in the data set. Even
though this peak has a similar shape to the same peak in all
the other samples, it is possible that the larger amount of
missing values makes the modeling of the sample difficult or
uncertain. This is supported by the systematic variation left
in the residuals shown in the plot to the right. Thus, there is
significant structure in the fluorescence landscape of sample
42, which is not modeled.

Other diagnostics than the identity match plot can be used
for detecting outliers by the jack-knife technique. For
example, an outlying sample may have a large uncertainty
in the score values as estimated from the resampled models.
Furthermore, an indication of an outlier could be a sample
where the estimated loadings obtained when leaving out this
sample differ from the corresponding loadings obtained
from all samples. These approaches were also applied here,
but did not indicate additional outliers.

All samples should have low residuals compared with the
measured spectra. Furthermore, residuals should ideally be
randomly distributed, meaning that the remaining unex-
plained variations would only be caused by random noise.
Sometimes, however, systematic variation can remain in the
residuals, reflecting unmodeled scatter effects of chemical
interactions. The model may still be valid, as long the
estimated parameters can be properly validated.
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Figure 11. A four-component PARAFAC model on all calibration samples with low excitations
removed, emission mode loadings (left) and excitation mode loadings (right). The lines indicate
component one (black solid), component two (black dotted), component three (gray solid) and

component four (gray dotted).
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Figure 12. Top plots: identity match plots of the scores from the constrained three-component PARAFAC
model. Bottom-left plot: fluorescence excitation—matrix of sample 42. Bottom-right plot: residuals of sample
42 for a three-component PARAFAC model.

A constrained three-component PARAFAC model with left plot in Figure 13 shows the sum of squared residuals of
sample 42 left out shows that three other samples may be each sample. Fairly large values are observed for the samples
considered outliers as judged from their residuals. The top- 14, 37 and 82, which also have systematically distributed
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Figure 13. Plots illustrating possible outliers in a constrained three-component
PARAFAC model where sample 42 is removed. Sum of squared residuals for all samples
and distribution of residuals for samples 14, 37 and 82 are shown.
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Figure 14. Emission (left) and excitation (right) loadings for constrained three-
component PARAFAC models with sample 42 left out (black solid) and samples 14, 37,

42 and 82 left out (gray dashed).

residuals (Figure 13). Therefore, new models are evaluated
with those samples removed.

An explained variation of 99.1% and a core consistency of
around 50% are obtained irrespective of the removal of
outliers or not. Figure 14 shows the loadings of PARAFAC
models with sample 42 left out and with the samples 14, 37,
42 and 82 left out. The loadings of the two models are similar,
indicating that the three samples (14, 37 and 82) are of similar
type as the remaining and hence help in supporting the

model. Therefore, these three samples are kept in the model.

3.2.2.  Data with known fluorophores

Another way to illustrate the presence of outliers is by a
residual and influence analysis. This is illustrated for the
four-component PARAFAC model made on the fluorescence
landscapes of the four analytes. Figure 15 shows that no
samples have very large residuals but samples 2, 3 and 4
seem to have somewhat large leverages. As for the other data
set, the influence of the high-leverage samples on the model
parameter estimates should be evaluated. It was found that
the loadings did not change on removing the possible
outliers and the samples should, therefore, be kept in the
model.

Samples 2, 3, and 4 have high concentrations of either
hydroquinone, tryptophan or DOPA. Hence the high
residuals may be due the high concentrations leading to
slightly changed lineshapes of the spectra, e.g. due to inner-
filter effects.

3.3. Split-half validations

In order finally to validate the appropriateness of the models
built on data with the chosen outliers removed, split-half
analysis [19] is applied. In split-half analysis, different
subsets of data are analyzed independently. Owing to the
uniqueness of the PARAFAC model, the same spectral
loadings will be obtained from different samples if the
samples reflect the same fluorophores, when the correct
number of components is chosen and enough data are
available in each subset.

Copyright © 2003 John Wiley & Sons, Ltd.

3.3.1. Fish data

A model constrained with non-negativity in the first mode
and unimodality together with non-negativity in the second
and third modes is used. In addition, one sample (42) has
been excluded as an outlier. The samples are divided
according to storage temperature. Thereby all variations in
the fluorescence spectra will be found in both data sets. The
loadings obtained from two split-half data sets are illustrated
in Figure 16. The differences between the two data sets can
hardly be discerned and the chosen model, therefore, seems
to give a reliable and adequate description of underlying
fundamental phenomena.

3.3.2.  Data with known fluorophores

The split-half analysis was performed by dividing the
samples into two subsets where both subsets contain
information on all four fluorophores. The splitting was
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Figure 15. Influence plot of four-component PARAFAC model.
The sum-of-squared residuals summed within the same mode
are plotted against the leverage of the first mode components.
Each sample is labeled by number.
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Figure 16. Results from a split-half analysis. The split-half is performed by dividing the samples into
groups depending on the storage temperature. Solid lines show samples stored at —30°C and

dotted lines show samples stored at —20°C.

made in two ways, giving four different subsets that were
pairwise independent. The graphical representation in
Figure 17 illustrates the reliability of four components.

3.4. Interpretation

3.4.1. Interpretation of scores and loadings of the fish
data

The estimated excitation spectra have maxima at 290 and
330 nm (Figure 8). This corresponds to the peaks in the raw
fluorescence landscapes (Figure 3). Components one and
two have the same position of the excitation maximum but
different positions of the emission maxima that are found at
360 and 330 nm for the two components, respectively. In fact,
the excitation loadings of those two components are almost
identical. The reason for the similarity of these loadings can
be that they reflect the same fluorophores but with different
substitutions, one or both are bounded to another molecule
or that they are identical fluorophores appearing in slightly
different electronic environments. This leads to slight
differences in spectral characteristics. This was also illus-
trated by Ross and Leurgans [5], who showed that the
estimated excitation spectrum of tyrosine dissolved in water
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was almost similar to the estimated excitation spectrum of
tyrosine bound to phosphate. However, the minor differ-
ences in the loadings were sufficient for estimating them
separately. The possibility of separating fluorophores with
similar excitation maxima shows the value of using
PARAFAC for curve resolution and for describing the
underlying  spectral phenomena. The fluorophore
described by component three has excitation maximum
around 330 nm and emission maximum around 400 nm.
Investigating press juices and aqueous extracts of fish
muscles, a fluorophore associated with dissolved muscle
proteins was earlier shown to have excitation/emission
maxima at 292/340 nm [29]. Thus, the two fluorophores
obtained in the present study with excitation maxima
around 290 nm might be related to the presence of muscle
proteins. Tryptophan, tyrosine and phenylalanine are the
amino acids responsible for the fluorescence of proteins.
Adding tryptophan in various concentrations to the cod
extracts and comparing the thus obtained fluorescence with
the fluorescence measured on pure extracts indicates the
presence of tryptophan. It is found that loadings of a
PARAFAC model made on fluorescence spectra of cod
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Figure 17. Results from split-half analysis, emission mode loadings (left) and excitation mode loadings

(right).
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Figure 18. (a) Emission and (b) excitation loadings for a three-component PARAFAC model made on
fluorescence spectra of cod extracts added with tryptophan (solid) and excitation and emission loadings for a
three-component PARAFAC model made on fluorescence spectra of the pure cod extracts (dotted). (c)
Relation between the score values of component 1 and the concentration of added tryptophan.

extracts with added tryptophan are similar to the loadings of
the PARAFAC model made on fluorescence spectra of the
pure cod extracts (Figure 18(a) and (b)). The presence of
tryptophan in the cod extracts is further substantiated by a
linear relation between the score values of component one
and the concentration of tryptophan added to the extracts
(Figure 18(c)). The fluorophore of component two, which has
the same excitation spectrum as the tryptophan component
but a different emission spectrum, might also be tryptophan
with a substituent or bound to another molecule. There is no
linear relation between the scores of this component and the
tryptophan concentration.

The scores of the model are estimates of the relative
concentrations of the fluorophores identified by the loadings
and are therefore measures of the amount of the fluoro-
phores present. For component two and perhaps also
component one, there are weak correlations to the chill
storage time (Figure 19). These relations could not be seen
when comparing visually the intensities of the two peaks
with the chill storage time. The change in fluorescence
intensity with storage time has been shown in other studies
[30,31]. However, the present study illustrates an explorative
way of identifying chemically meaningful quality par-
ameters that can possibly be monitored industrially.
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Figure 19. Relation between chill storage time and scores of the constrained three-component
PARAFAC model. Scores are corrected for the different weights of fish muscle used for making the
extracts. The lines indicate different freeze storage time: 3 months (solid black), 6 months (dotted
black), 9 months (solid gray) and 12 months (dotted gray).
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Another study using the same fish material showed a
correlation between the chill storage time and drip loss of
water and between chill storage time and the sensory
parameter juiciness [32]. When proteins degrade, smaller
peptides are produced. This reduces the ability of the muscle
to hold water and results in an increased drip loss related to
the development of smaller protein fragments. Thus, the
increase in the score values may reflect an increase in the
content of small peptides produced during chill storage. This
is also verified by the positions of peak maxima in the
excitation and emission loadings of components one and
two.

No relation was found between the score values and the
freeze storage temperature or between the score values and
the freeze storage time. This suggests that these two storage
conditions do not have an effect on the development or
disappearance of fluorescent chemical compounds in the
fish muscle extracts.

Fluorescence correlated with lipid oxidation was found to
have excitation maximum at 360-370 nm [33,34]. In the
present study, fluorescence with excitation higher than
370 nm was not measured because no emission was obtained
for excitation higher than 370 nm. Therefore, lipid oxidation
is probably not detected. NADH does have an important
impact on autofluorescence originating from fresh fish
muscle [35], but it has been found that the NADH content
of fish muscle has almost disappeared after freezing and
thawing [29] and probably NADH will have no or only very
little influence on the fluorescence spectra obtained in this
study. However, component three with excitation/emission
maxima around 330/400 nm may conform to the excitation
and emission maxima of NADH that are found at 340 and
450 nm, respectively [35]. The difference in peak maxima
between the component obtained here by PARAFAC and the
value for NADH given in the literature may be an effect of
the sample matrix in that the exact position of the peaks
depends on the sample composition and the measurement
conditions. However, if component three describes NADH,
an effect of the chill storage time is expected, which was not
seen. Nevertheless, the relation between fluorescence of fish
muscle and NADH or lipid oxidation should be investigated
more thoroughly because the NADH content decreases and
lipid oxidation develops during storage. Therefore, predic-
tion of these parameters by fluorescence spectroscopy could
be an indicator of fish freshness.

It is not possible to identify fully the underlying spectral
phenomena that PARAFAC found to be contributing to the
fluorescence of aqueous cod extracts. In order to do so,
several approaches can be feasible. Chromatographic se-
paration before fluorescence measurements, as was shown
by Baunsgaard et al. [7], may improve the identification of
the fluorophores. In addition, specific peptide sequences can
be separated by capillary electrophoresis. This may be used
for identifying the component with excitation maximum at
290 nm, which was not tryptophan. Furthermore, standard
addition can be used for verifying the presence of certain
fluorophores as shown for tryptophan.

3.4.2. Using the model on new data
Below it is shown how the parameters of the PARAFAC

Copyright © 2003 John Wiley & Sons, Ltd.

model can be used on new fluorescence spectroscopic data,
e.g. for the determination of analyte concentrations. In the
data set with the four fluorophores, the concentration of the
four analytes in each sample is known. Therefore, it is
possible to make a calibration model from the relation
between the score values and concentration of one of the
analytes. If the PARAFAC model is made only on a part of
the samples, the scores of the samples left out can be
estimated by fitting a new PARAFAC model with the
spectral loadings fixed to those of the original solution. From
the estimated scores, the concentration of the analyte can be
estimated from the calibration model.

The loadings of component four resemble the pure spectra
of tryptophan. Therefore, score values of this component and
the corresponding analyte concentrations are used for
making a univariate calibration model for tryptophan. Three
samples were not used in building the PARAFAC model and
the score values of these samples and also the analyte
concentration can be estimated from the model. Figure 20
shows the tryptophan concentration predicted from the
calibration model versus the known concentrations, illus-
trating that the calibration model performs well. The
concentration of tryptophan in the samples left out (test
samples) is obtained from the estimated score values and the
regression coefficient of the calibration model. In the
predicted versus measured plot it is seen that sample 5 is
not predicted well, whereas good predictions are obtained
for samples 10 and 15. A high residual and large leverage
were obtained in the estimation of the score values of sample
5. This reveals that it is an extreme sample and also explains
why the tryptophan concentration is not predicted well.

4. CONCLUSION

This paper has given a presentation of the steps involved in
finding an optimal PARAFAC model. The focus has been on

8Q T
©5
O Calibration
& @ Test
6q
50
=
£4q
L
=}
&
3q
.
2q
10 1
or 10 Calibration standard error :0.371 -
15 Calibration correlation ~ :0.998
1 1 A 1

9% 0 10 20 30 40 50 60 70 80
Reference

Figure 20. Predicted versus reference concentration of
tryptophan. Test samples are shown with solid circles.
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the practical application of PARAFAC modeling of complex
data. Problems with, e.g., scattering and missing values have

been given special attention. It has been shown when and
how to apply constraints, identify outliers and validate the
model. Finally, model interpretation and the possibility of
using the results of the PARAFAC model on new samples
are illustrated.
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