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Structure-seeking multilinear methods for the analysis of fMRI data
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In comprehensive fMRI studies of brain function, the data structures

often contain higher-order ways such as trial, task condition, subject,

and group in addition to the intrinsic dimensions of time and space.

While multivariate bilinear methods such as principal component

analysis (PCA) have been used successfully for extracting information

about spatial and temporal features in data from a single fMRI run, the

need to unfold higher-order data sets into bilinear arrays has led to

decompositions that are nonunique and to the loss of multiway linkages

and interactions present in the data. These additional dimensions or

ways can be retained in multilinear models to produce structures that

are unique and which admit interpretations that are neurophysiolog-

ically meaningful. Multiway analysis of fMRI data from multiple runs

of a bilateral finger-tapping paradigm was performed using the

parallel factor (PARAFAC) model. A trilinear model was fitted to a

data cube of dimensions voxels by time by run. Similarly, a quadri-

linear model was fitted to a higher-way structure of dimensions voxels

by time by trial by run. The spatial and temporal response components

were extracted and validated by comparison to results from traditional

SVD/PCA analyses based on scenarios of unfolding into lower-order

bilinear structures.
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Introduction

Multilinear modeling is a widely applicable paradigm that could

well be a key informatics tool in the analysis of data from

functional neuroimaging experiments using MRI as well as other

imaging modalities such as PET. This paradigm simply recognizes

that in functional imaging studies, the data are acquired from what

chemists would call a ‘‘higher-order’’ instrument. For example, in

the setting of functional MRI (fMRI) scanning for the mapping of

brain activation, the data acquired represent repeated measure-

ments over time of the spatial MR image intensity distribution

across a brain volume. The image intensity is sensitive to the local
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changes in blood flow that accompany primary sensory and motor

as well as higher cognitive brain processes. By systematic raster

scanning of the spatial-domain data, mimicking the form in which

the data are naturally stored in a linear fashion on computer disk

media, the measurements can be interpreted as entries in a two-

dimensional (‘‘bilinear’’) unfolded data matrix structure. The true

matrix dimensions are ‘‘voxels’’ (volume elements) and ‘‘time’’

samples. A typical data set from an fMRI scan involving human

subjects may contain 64 � 64 � 40 voxels sampled at 128

consecutive time instants, producing a single unfolded matrix

observation with shape 163,840 voxels by 128 time points.

Multiple scans on a given subject in the presence of either the

same stimulus or across different experimental conditions and co-

registered spatially, so as to align voxels across scans, produce an

intrinsic higher-dimensional ‘‘cube’’ of data. Increasingly often,

complex investigations of human brain function generate data

arrays of order three and higher.

Furthermore, a comprehensive neuroimaging study generally

involves scans from a large number of subjects so that inferences

pertaining to the underlying population can be made (Friston et al.,

1999a). Scans from multiple subjects are routinely normalized

geometrically by affine transformations to conform to standardized

stereotaxic voxel coordinates (Talairach and Tournoux, 1988),

thereby adding yet another dimension to the data array. Data sizes

are typically quite large as well, about 5–10 GB. Traditionally, the

analysis and data reduction have been carried out separately for

each brain voxel by using univariate linear regression to ‘‘collapse’’

across time and across subjects with the objective of generating

statistical parametric maps of the spatial distribution of brain

activation for a particular task or stimulation paradigm (Frackowiak

et al., 1997). Such methods are very efficient for analyzing region-

ally specific effects and for the detection of focal brain activation.

However, they fall short in the analysis of functionally connected

brain systems (‘‘functional organization’’), since information on the

multivariate and spatially correlated structure of the data is ignored.

Spatial smoothing has been used commonly to increase the

signal-to-noise ratio and as an ad hoc approach for enhancing the

depiction of spatially connected voxels (see for instance Kesler-

West et al., 2001; Kiebel et al., 1999; Smith et al., 1999).

Additionally, cluster analysis methods or Gaussian field theory

have been invoked to more formally characterize the spatial extent

of brain activation patterns (Friston et al., 1994; Worsley, 1994).

However, there is still much to learn on how to jointly characterize



Fig. 1. Decomposing a data cube into a signal matrix composed of two components, each of which consists of three profiles and an error term.

Fig. 2. Illustrating the unfolding of a three-way structure (a) of dimensions

I � J � K into two-way bilinear structures by either (b) arranging side by

side creating a matrix of dimensions I � JK or by (c) stacking to create a

matrix of dimensions IK � J.
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the strength, spatial extent, and functional connectivity of brain

activation patterns along with the dependence of these features on

subject and task (Friston et al., 1999c). Also, since the data are

most often collapsed across subjects within a group by averaging

(Fox et al., 1988) or by conjunction (Friston et al., 1999b), linkage

information about subject-specific effects and inter-subject hetero-

geneity is inherently lost.

Likewise, task-specific effects from scans acquired under mul-

tiple experimental conditions are difficult to analyze. Some of these

issues can be addressed by careful design of the experimental

paradigms using for instance hierarchical designs (Martin et al.,

1996) or cognitive conjunctions (Price and Friston, 1996). Univar-

iate approaches to data post-processing by voxel-wise one-way

ANOVAwith tasks as factor levels tend to have a random salt- and-

pepper appearance and exhibit very little if any structure due to

their failure to capitalize on the spatially extended and correlated

nature of the brain activation patterns for the separate tasks.

Multivariate approaches such as principal components analysis

(PCA) and the related singular value decomposition (SVD) have

been used by several groups as data-driven methods for eliciting

information about intrinsic structure, both spatial and temporal, in

data sets from fMRI and other neuroimaging modalities (Andersen

et al., 1999, 2002; Benali et al., 1995; Friston et al., 1996a; Strother

et al., 1995a; Worsley et al., 1997; Zhang et al., 2000). Many of

these works have been based on some form of collapsing of the

inherently higher-way data sets into two-way bilinear structures. In

the original work by Friston et al. (1993) in the context of PET, the

data were initially averaged across subjects to create a two-way

structure of dimension ‘‘voxels by number of repeated trials within

subjects.’’ A different variation of PCA, referred to in the neuro-

imaging literature as the ‘‘scaled subprofile model,’’ unfolds an

inherently three-way data structure to yield by concatenation an

array of dimension ‘‘voxels by (subject times number of repeated

trials within subjects)’’ (Hansen et al., 1999; Lautrup et al., 1995;

Strother et al., 1995b). This particular scheme of unfolding allows

for a partitioning of the total PC variance into contributions from

within- and between-subject variability, thus retaining some, but

not all, of the information pertaining to the heterogeneity across

subjects. A particular attraction of PCA/SVD-based models has

been the orthogonality property to where components in the

expansion can be computed independently of one another irre-

spective of the chosen model order.

In summary, data collected from neuroimaging experimental

designs are inherently higher-way data. Univariate analyses or

bilinear methods are not generally capable of adequately capturing

nor uncovering the interrelated and nested structures in these higher-

way data, even when the data are reduced to two-way through

collapsing in some manner. It has been well established in the

multiway literature that forcing a bilinear analysis on genuinely

higher-way data can lead to models that are too complex, lack
predictive power, and are impossible or very difficult to interpret

owing to confounding across collapsed ‘‘ways.’’ Most importantly,

the multiway linkages are lost in the modeling process and the

resulting structures are not unique due to an inherent invariance

under rotation. As will be mentioned below, such linkages are

preserved in multilinear analyses and the structures that emerge are

unique (see e.g., Andersen et al., 2000; Bro, 1997; Field and Graupe,

1991; Möcks, 1988; Pham and Möcks, 1992; Sidiropoulos and Bro,

2000; Smilde, 1992; Smilde andDoornbos, 1992;Wang et al., 2000).

In the present study, we have applied multilinear models to

intrinsically higher-way data structures from a functional neuro-

imaging experiment. Multiway analyses of fMRI data from mul-

tiple runs of a bilateral finger-tapping paradigm were performed

using the PARAFAC (parallel factor) model. A trilinear model was

fitted to a data cube of dimensions voxels by time by run.

Similarly, a quadrilinear model was fitted to a higher-way structure

of dimensions voxels by time by trial by run. Subsequently, the

spatial and temporal response components were compared with

results from traditional SVD/PCA analyses based on scenarios of

unfolding into bilinear structures.
Theoretical background

Multilinear models

Extensions of and analogies to the well-known bilinear para-

digms have created a substantial literature on so-called multiway



Fig. 3. Illustrating the activation pattern from one run of a bilateral finger tapping experiment in a single subject ( P < 0.05, uncorrected). The activation map

has been interpolated for purpose of the display, but no spatial smoothing was used. The green lines indicate the position of the corresponding orthogonal

sections.
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structure-seeking methods. The conceptual similarity to bilinear

methods is indicated in the schematic below (Fig. 1), wherein a

cube of data is decomposed into two components, each of which

consists of three ‘‘profiles.’’ Taken as triples in an outer product,

the profiles are assumed to characterize the cube. These techniques

originated in psychology and continue to be used widely in both

that field as well as within chemistry (see e.g., Bro, 1997, 1999;

Bro and Heimdal, 1996; Burdick, 1995; Carroll and Chang, 1970;

Harshman, 1972; Harshman and Lundy, 1984a,b; Kroonenberg,

1983, 1989; Kruskal, 1984, 1989; Leurgans and Ross, 1992;

Mitchell and Burdick, 1994; Rayens and Mitchell, 1997; Sanchez

and Kowalski, 1988, 1990; Sidiropoulos and Bro, 2000; Tucker,

1966; Wold et al., 1987).

Multilinear models have been described in the brain mapping

literature as well. In particular, trilinear models have been proposed

in the analysis of multichannel-evoked potentials in EEG data

(Field and Graupe, 1991; Möcks, 1988; Pham and Möcks, 1992;

Wang et al., 2000, 2001). In this context, these tools have been

called topographic component (TC) models. Although the field is

far from unified, with several different multiway models and even

different methods of implementing those models, the literature is

growing in statistical sophistication and the successes of many

applications are undeniable.

Mathematical notation

Tensor algebra is needed to fully describe the structure of

multiway models. So that the presentation might stay brief and
Fig. 4. Illustrating the unique spatial modes from trilinear modeling of a 635 � 11

black = min. negative values.
the notation tractable, we will present our technical overview in the

context of trilinear methods. Extensions to higher-way arrays are

straightforward. Notation from Burdick (1995) is used in the

following.

Definition 1

� Let x be in RI and y in RJ. A tensor product of column vectors

x and y is defined as the outer product x � y = xyt, where t

denotes the transpose.
� Let z = (zk) be a vector in R

K and X be an I by J matrix. A tensor

product of X and z is given by X � z = (z1X z2X. . .zKX)I�JK.

Typically, a bilinear errors-in-variables model employed to

extract structure from AI � J has the form of AI � J = SI � J +

NI � J , which can be interpreted as a signal matrix added to a noise

or error matrix. The issue becomes one of how you decide to model

the structure in the signal matrix. The typical bilinear approach

assumes that there exist vectors {xr}o RI, {yr}o RJ such that the

signal matrix S can be modeled as a tensor product or outer product

expansion S = Srxr � yr. Of course, this approach suffers from the

well-known lack of uniqueness in that there are infinitely many

vectors xr and yr that can describe the bilinear structure or matrix S

equally well from the point of view of fit. Hence, it becomes very

difficult to interpret xr and yr. This problem is popularly called the

rotation problem. When the model is extended to higher-way data

structures, the so-called PARAFAC (parallel factor) model emerges

(Harshman and Lundy, 1984a,b).
0 � 2 data cube. The image gray scale goes from white = max. positive to



Table 1

Amplitude-scaled vector elements crzkr for k = 1, 2 (runs) and r = 1, 2, 3

(component number) in a trilinear model

Component one Component two Component three

1st run 0.6373 0.8932 0.9053

2nd run 0.8223 �0.2683 0.2082
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Definition 2. The PARAFAC model presumes there exist vectors

{xr}o RI, {yr}o RJ and {zr}o RK such that S =Sr
Rxr� yr� zr , for

some appropriate number of tensor products,R, which is often called

the ‘‘rank’’ of the array.

Definition 3. Let A be an I by J by K array with coordinates aijk.

The Mode X fibers of A are the vectors a.jk obtained from A by

fixing the indices j and k and letting the index i vary. Similar for

Mode Y and Mode Z fibers.

Definition 4. Let A be an I by J by K array with coordinates aijk.

The Mode X slabs of A are the J by K matrices obtained as

subarrays ai.. of A by fixing the i index and letting j and k vary.

Similar for Mode Y and Mode Z slabs.

Unlike PCA and a host of other bilinear methods, PARAFAC

components are not orthogonal and cannot be derived sequentially

without causing a potentially serious reduction in model fit.

Hence, a four-component model cannot be found by just employ-

ing the first four components of a five-component model. This is

viewed by some as a desirable aspect of PARAFAC since

components now are freer to reflect true underlying structure.

Regardless, this makes the determination of the right number of

components a more difficult task than with bilinear methods.

Practically speaking, however, similar structures are likely to be

found in models estimated to have a similar number of compo-

nents and, hence, appropriately broad-brush conclusions typically

will not change. When the purpose of the analysis is focused on

the component scores—say, for use in a subsequent regression—

then the issue of orthogonality is not important, computational

issues aside. If it is necessary to require the component loadings to

be orthogonal, and goodness-of-fit is not an issue, then standard

algorithms for fitting PARAFAC allow this (e.g., see Andersson

and Bro, 2000).

Unfolding of three-way arrays to bilinear structures

When three-way arrays are unfolded, a choice of mode is made

and the slabs (subarrays) for that mode are then extracted and
Fig. 5. Illustrating the unit-norm temporal modes from trilinear modeling of

a 635 � 110 � 2 data cube.
arranged side by side or stacked. For instance, A may be unfolded

from an I � J � K array to yield a two-way bilinear I � JK array

by extracting the K individual Mode Z slabs and juxtaposing them

side by side (Fig. 2b) or to a bilinear IK � J array by stacking

(Fig. 2c). It is not hard to see that the trilinear PARAFAC model

amounts to a presumption that there is an underlying latent

structure common to all of the Z-slabs, but invoked in proportions

that are Z-slab-specific. This is similar to the original Carroll and

Chang (1970) INDSCAL model for multidimensional scaling

wherein multiple subjects are modeled as having the same so-

called group map, but each individual reshapes the dimensions of

that map according to these proportions.

In terms of fMRI data sets where I, J, and K may represent the

dimensions of space, time, and trials, respectively, the spatiotem-

poral patterns in a multilinear model will be common across the K

trials but possibly of different amplitude. In the context of bilinear

models from unfolded data, however, the spatiotemporal patterns

themselves may vary arbitrarily from trial to trial.

Likewise, it is well known that the rank of the bilinear array

resulting from unfolding a trilinear array is always less than the

rank of the trilinear array, regardless of the mode used to do the

unfolding. Hence, one can say that, in this sense, a bilinear model

can always be expected to fit the unfolded data better than a

trilinear model can fit the original array. This is a deceptive virtue,

however, since the issue typically is not goodness of fit, but rather

the extent of overfit.

Algorithms

The PARAFAC multilinear model is usually implemented in

one of two ways: using eigenbased methods (Leurgans and Ross,
Fig. 6. Illustrating the unit-norm temporal modes from SVD modeling of an

unfolded 1270 � 110 bilinear data array. (The amount of variance explained

is 3.39%, 2.65%, and 2.22%, respectively.)



Fig. 7. Illustrating the spatial score maps from SVD modeling of a 1270 � 110 bilinear data array.
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1992; Sanchez and Kowalski, 1988, 1990) or by using an

alternating least squares routine, unfortunately also called PAR-

AFAC (Appellof and Davidson, 1981; Harshman, 1972; Harsh-

man and Lundy, 1984a,b; Rayens and Mitchell, 1997). The

PARAFAC routine exploits the conditional linearity of the model

bearing the same name. Two of the so-called factor matrices, say

X and Y, are fixed and linear regression is used to obtain the

other factor matrix Z. Then Y and Z are fixed and X is

estimated, and similar for Y. This procedure of alternating fits

continues iteratively until some convergence criterion is met.

Recent work by Bro and De Jong (1997) and by Bro and

Andersson (1998) and others, directed toward speeding up the

convergence of PARAFAC, have helped make this recursive

solution the most popular.

Yet, there is an exact solution, in a sense. That is, Sanchez

and Kowalski (1988) were able to fit the PARAFAC model by

solving a generalized eigenanalysis problem. This solution, exact

for K = 2 slabs and under the assumption of perfect signal, was

later adapted to the case of K > 2 and an approximate eigenso-

lution derived (Sanchez and Kowalski, 1990). Eigenbased meth-

ods are attractive because no iterative scheme is apparent to the

user. However, these methods have been found to yield complex

eigenstructures if there are significant deviations of the data from

the underlying trilinear assumptions. Most often, the eigensolu-

tions are used as intelligent starting points for the iterative

PARAFAC. Still, it is useful to recognize that the PARAFAC

model can be formulated as an eigenanalysis problem. This

underscores the extensions of and analogies to two-way bilinear

paradigms, which traditionally have been approached using

eigenbased methods such as singular value decomposition

(SVD) or PCA.
Fig. 8. Illustrating the spatial modes from SVD modeling of a 635 � 220 bilinear

respectively.)
Methods

Motor activation paradigm

Functional MRI was used to map brain activation associated

with a self-paced bilateral finger-tapping task. A single subject

underwent two runs in a single session. Each run contained 11

trials repeated back to back. A trial consisted of rest, finger

tapping, and rest periods. fMRI data were collected on a 1.5-T

Siemens Vision imager from 24 axial, 3-mm-thick slices with an

in-plane resolution of 3.438 � 3.438 mm using a gradient echo EPI

sequence (TR/TE = 2500/45 ms, FA 90j, matrix 64 � 64). The

duration of each trial corresponded to 10 image time frames. A

single trial was defined as consisting of a pattern of task states OFF

OFF OFF ON ON ON ON ON OFF OFF to allow for a return to

baseline. Changes in task state between rest and activation periods

were initiated using an auditory cue. The 3D EPI volumes were

motion corrected using SPM99 (Friston et al., 1995). Fig. 3 shows

the activation map from the first run and derived from a univariate

analysis based on correlation of the observed time series response

in each voxel with a fixed-effect square wave reference profile

reflecting the blocked experimental design.

Furthermore, we have used these data to demonstrate the

potential of multilinear models as appropriate informatics tools

for use in fMRI analysis. The resulting spatial patterns or modes

are validated by visual inspection and by correlation in terms of the

expected result from a traditional univariate analysis model. For

comparison, we have also included the results from standard

multivariate analyses using SVD/PCA models with unfolded

two-way bilinear arrays. A single axial slice at the level in Fig. 3

and containing the motor cortex was chosen, and time series
data array. (The amount of variance explained is 3.63%, 2.59%, and 2.34%,



Fig. 9. Illustrating the unit-norm temporal profiles of scores from SVD

modeling of an unfolded 635 � 220 bilinear data array.
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response data from 635 voxels within the brain were extracted. If

we are not interested in analyzing the variability between trials

due for instance to motor learning or the interaction of trials with

spatial modes, then the data structure can be viewed as a cube of

dimensions 635 voxels � 110 time points � 2 runs. This

structure can be readily described using a trilinear model as

demonstrated below. A scenario where higher-way, multilinear

models are used to capture also the variability between trials is

presented subsequently.

Trilinear PARAFAC model of dimensions 635 voxels � 110 time

points � 2 runs

Let A be a three-way array of dimensions I by J by K with

coordinate elements aijk, where I is the number of brain voxels in

each time-frame image slice (I = 635), J is the number time points

( J = 110), and K is the number of repeated runs (K = 2). In keeping

with the notation of Definition (2), the PARAFAC model presumes

that for the appropriate rank R, there exist unique unit-norm vectors

{xr} o RI, {yr} o RJ, and {zr} o RK such that

A ¼
XR

r¼1

crxr � yr � zr ð1Þ

where the coefficients cr are amplitude scaling factors. That is, xr
models the spatial pattern of activation, yr models the temporal

response, and zr models the effect of run.
Fig. 10. Illustrating the spatial modes from quadrilinear
Quadrilinear PARAFAC model of dimensions 635 voxels � 10 time

points � 11 trials � 2 runs

In the context of an event-related experimental design, these

data can also be interpreted in a natural way as representing 11

repeated trials of a finger-tapping task per run. This view leads to

a four-way data structure of dimensions 635 voxels � 10 time

points � 11 trials � 2 runs. It is very compelling here to attempt

using a quadrilinear model representation of these data to help

explain variations across trials. The vector yr now models the

temporal response within a trial and tr the effect of trial.

A ¼
XR

r¼1

crxr � yr � tr � zr ð2Þ
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Results

Trilinear PARAFAC model of dimensions 635 voxels � 110 time

points � 2 runs

A three-component (R = 3) trilinear PARAFAC model as

described in Eq. (1) was fitted to the 635 � 110 � 2 three-way

data structure. Fig. 4 shows the resulting unique spatial modes,

which have been scaled to unit norm and interpolated for purpose

of the display. The spatial pattern of the first expansion component

closely resembles the activation map from a univariate analysis

model, and the corresponding time-course profile shown in Fig. 5

mimics the ON/OFF pattern of the blocked motor task (dashed

line). The second and third components appear to capture BOLD-

effect signal from venous drainage vessels on the surface of the

brain. The loadings across runs in Table 1 show the first compo-

nent as capturing features that are common across the two runs,

whereas the second and third components largely reflect structure

present in the first run but not in the second. The difference

between runs may be due to variations in partial voluming for

the superficial vessel from slight differences in head position. Data

were motion corrected within runs separately but not between runs.

Unfolded bilinear model of dimensions 1270 voxels � 110 time

points

Traditional multivariate analysis using either an SVD or PCA

would be based on an unfolded two-way bilinear structure of

dimensions 1270 � 110 corresponding to a 110-point time series

response observed across 1270 (635 � 2) voxels. This would
modeling of a 635 � 10 � 11 � 2 data structure.



Fig. 12. Illustrating the unit-norm loadings tr on trials from quadrilinear

modeling of a 635 � 10 � 11 � 2 higher-way data structure (solid: 1st

component; dash: 2nd component; dot: 3rd component).

Fig. 11. Illustrating the unit-norm temporal modes yr from quadrilinear

modeling of a 635 � 10 � 11 � 2 higher-way data structure (solid: 1st

component; dash: 2nd component; dot: 3rd component).
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represent a scenario of unfolding by stacking as illustrated in

Fig. 2c. The loading profiles of the orthonormal eigenvectors are

the temporal modes. Fig. 6 shows the first three time-course

profiles derived from the SVD model. The corresponding spatial

maps depicted in Fig. 7 have been computed as the average values

of voxel scores across the two runs. Note that the information on

loadings across runs in the trilinear model, and the ability to

directly model interactions have been lost due to unfolding of

the inherently higher-way data structure. While the ON/OFF

pattern of the motor task is reflected in the first time course profile,

the spatial distributions of scores suggest that the effect is in fact

not captured in a single component but rather is distributed across

the first and second components. (An SVD model of the 635 � 110

data subset from only the first run does not reveal the motor

activation response manifested in any one component.) A subse-

quent rotation may help bring the response into the direction of the

first component. However, the inherent uniqueness of the trilinear

model above has been lost.

Unfolded bilinear model of dimensions 635 voxels � 220 time

points

If one takes the view that the data structure in the natural order in

which it is acquired represents a distribution of MR image voxel

intensities observed across time, then a traditional multivariate

analysis using either an SVD or PCA would be based on an

unfolded two-way bilinear array of dimensions 635 voxels � 220

time points. This would be a scenario of unfolding by concatenation

side by side as illustrated in Fig. 2b. The loading profiles of the

orthonormal eigenvectors are now the spatial modes. Fig. 8 shows

the resulting spatial modes, which have all been scaled to unit norm
Table 2

Amplitude-scaled vector elements crzlr for l = 1, 2 (runs) and r = 1, 2, 3

(component number) in a quadrilinear model

Component one Component two Component three

1st run 1.0663 1.0169 0.7424

2nd run 1.2583 1.1426 �0.1324
and interpolated for purpose of the display. The corresponding time-

course profiles in Fig. 9 have been computed as the average values

of the time-point sample scores across the two runs. The informa-

tion on loadings across runs in the trilinear model above, along with

the ability to directly model interactions, have been lost due to

unfolding of the data cube. We notice from the spatial modes as well

as from the temporal response profiles that the pertinent cyclic

response of the motor task is not manifested in a single component

but rather is distributed across several modes due to the rotation

indeterminacy of bilinear models.

In a combination of these two scenarios of unfolding, Wang et

al. (2000) proposed a trilinear modeling approach based on

temporal modes derived from an SVD of the 1270 � 110 voxel-

by-time data set unfolded and concatenated as in Fig. 2c paired

with spatial modes derived from an SVD of the 635 � 220 voxel-

by-time data set unfolded and concatenated as in Fig. 2b. Subsets

of the respective modes were subsequently rotated in such a way as

to diagonalize the 635 � 110 voxel-by-time matrix obtained by

averaging across runs or slabs. The tensor products then became

the spatiotemporal components common to all runs.

Quadrilinear PARAFAC model of dimensions 635 voxels � 10 time

points � 11 trials � 2 runs

A three-component (R = 3) quadrilinear PARAFAC model as

described in Eq. (2) was fitted to the 635 � 10 � 11 � 2 four-way

data structure. Fig. 10 shows the resulting unique spatial modes,
Fig. 13. Illustrating the concatenated trial responses (
P2

r¼1 cryr � tr )

reconstructed from the first two components in the quadrilinear model of a

635 � 10 � 11 � 2 data structure.



Fig. 16. Illustrating the relative mean-squared goodness-of-fit error vs. the

degree of freedom ratio for the bilinear and multilinear models of order 1–6.Fig. 14. Illustrating the unit-norm temporal modes from SVD modeling of

an unfolded 13970 � 10 bilinear data array (solid: 1st component; dash:

2nd component; dot: 3rd component; the amount of variance explained is

11.81%, 10.60%, and 10.26%, respectively).
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which have all been scaled to unit norm and interpolated for

purpose of the display. The spatial pattern of the first expansion

component closely resembles the activation map from a univariate

analysis, and the corresponding time-course profile (solid line) in

Fig. 11 mimics the ON/OFF pattern of the motor task (the task states

corresponding to the ten acquisition time points across a single trial

were OFF OFF OFF ON ON ON ON ON OFF OFF). Note that the

response components take on both positive and negative values,

rather than riding on a baseline of zero during the OFF state, due to

the implicit centering in PARAFAC. The third component appears

to capture BOLD-effect signal from a distal venous drainage vessel

on the surface of the brain. The loadings across runs listed in Table 2

show that the first and second components capture features that are

common across the two runs, whereas the third component largely

reflects structure present in the first run but not in the second.

Whereas the component profiles themselves are unique for a

chosen number of components R in the expansion, the determina-

tion of the appropriate number of components to use depends on

the nature of the data and the structure information we seek to

extract. We chose R = 3 components throughout our analysis

scenarios for consistency. In the trilinear model, the structure of

the first component remains largely unaffected if the number of

components were increased or reduced to R = 2. In the quadrilinear

model, however, a minimum of R = 3 components are required to
Fig. 15. Illustrating the spatial score maps from SVD
capture the two unique temporal response components and to

model differences in structure between runs.

Fig. 12 depicts the loadings across trials within a run. These

may be interpreted naturally as reflecting adaptation or learning of

the task. Friston et al. (1996b) used an SVD on an unfolded

bilinear data array to illustrate an effect of trial. The somewhat

construed unfolding strategy yielded a so-called spatiotemporal by

trial array. Illustrated in terms of the present data from a single run,

this would correspond to the modeling of a 6350 time-voxels � 11

trials data array. (Frutiger et al. (2000) used a canonical variates

analysis to study learning curves across trials.)

From both the spatial and the temporal maps, it appears that the

second component is very highly correlated and nearly collinear

with the first but of opposite polarity (r = �0.9322). This

occurrence has been observed as well by investigators who have

employed trilinear modeling of event-related EEG data to derive

topographic and temporal response components (Field and Graupe,

1991). While this may be an artifact of so-called degenerate

solutions caused by the least-squares optimization of the PAR-

AFAC algorithm (Harshman and Lundy, 1984a), it may also reflect

actual structure in the data. The temporal response structure

explained by the second component is slightly delayed with respect

to the first component. We speculate that the two similar compo-

nents are in fact required to model a variable time-of-onset delay in

the response across individual trials, much the same way that sine

and cosine components can be combined linearly to model wave-

forms of arbitrary delay (Field and Graupe, 1991; Hopfinger et al.,
modeling of a 13970 � 10 bilinear data array.



Table 3

Correlation coefficients among spatial modes based on the first model component

Univariate

square wave

Multilinear

635 � 110 � 2

Bilinear

1270 � 110

Bilinear

635 � 220

Multilinear 635 �
10 � 11 � 2

Bilinear

13,970 � 10

Univariate square wave 1.0 0.8523 0.7738 0.5507 0.8705 0.8577

Multilinear 635 � 110 � 2 0.8523 1.0 0.8355 0.5561 0.9566 0.8998

Bilinear 1270 � 110 0.7738 0.8355 1.0 0.8671 0.9180 0.8502

Bilinear 635 � 220 0.5507 0.5561 0.8671 1.0 0.6782 0.6157

Multilinear 635 � 10 � 11 � 2 0.8705 0.9566 0.9180 0.6782 1.0 0.9423

Bilinear 13,970 � 10 0.8577 0.8998 0.8502 0.6157 0.9423 1.0
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2000; Möcks, 1986). This is difficult to ascertain, however, due to

the coarse temporal resolution of these particular data and the

voluntary nature of the task. Also, since we are not imposing any

orthogonality constraint on the Y-mode fibers, we would not

expect to uncover a temporal mode that is the time-derivative of

another component as seen previously in the trilinear modeling of

multichannel-evoked potentials from EEG data (Field and Graupe,

1991) and in bilinear modeling of real and simulated hemodynamic

response MRI data (Andersen et al., 2001). Fig. 13 illustrates the

trial response fits reconstructed from the first two expansion

components as
P2

r¼1 cryr � tr , where yr models the temporal

response and tr models the effect of trial. The apparent polarity

difference of the spatial-mode components seen in Fig. 10 has been

incorporated into the amplitude scaling factors cr, and the model

fits have been concatenated temporally to allow for comparison

with the response profiles of the trilinear model for an entire run in

Fig. 5. Note that Fig. 13 exhibits the same temporal delay at the

beginning and advance at the end of a run as seen in the first

component of the trilinear model.

Unfolded bilinear model of dimensions 13970 voxel-trials � 10

time points

The traditional multivariate analysis in the context of an event-

related design and using either an SVD or PCAwould be based on

an unfolded two-way bilinear array of dimensions 13970 � 10

corresponding to a 10-point time series response for each trial

observed across 13970 voxel trials. The orthonormal eigenvectors

of loading profiles are the temporal modes. Fig. 14 shows the first

three time-course profiles derived from the SVD model. The

corresponding spatial maps depicted in Fig. 15 have been com-

puted as the average values of voxel scores across the 22 (11 � 2)

repeated trials. While the spatial maps depicting the average scores

appear to reflect the pattern of the activation map in Fig. 3 obtained

from univariate analysis using a fixed-effect model, the informa-

tion on loadings across trials and runs in the quadrilinear modeling

scenario above along with the ability to directly model interactions

have been lost due to unfolding.
Table 4

Correlation coefficients among temporal modes based on the first model compon

Univariate

square wave

Multilinear

635 � 110 �

Univariate square wave 1.0 0.5683

Multilinear 635 � 110 � 2 0.5683 1.0

Bilinear 1270 � 110 0.4647 0.8220

Bilinear 635 � 220 0.3897 0.7308

Multilinear 635 � 10 � 11 � 2a 0.5438 0.9002

a Using concatenated reference profile from Fig. 13 reconstructed with the first tw
Data reduction and goodness of fit

Fig. 16 illustrates the relative mean-squared error of the

respective fits for multilinear and bilinear models of order 1–6.

(In comparison, the relative mean-squared error for the fixed-effect

univariate analysis with a square-wave reference is 0.9842.) The

activation induced signal changes in fMRI experiments are quite

weak (about 1% corresponding to typical contrast-to-noise ratio

values of 0.5 or less), and the activation is manifested in only a

small fraction of the total number of image voxels collected within

the brain. Therefore, the amount of variability explained in

multivariate models is generally quite low. The goodness-of-fit

mean-squared error in turn becomes large and by itself is not an

appropriate measure of validity of the models. It is not surprising

that the bilinear models from unfolded data achieve lower mean-

squared error measures. However, these models tend to ‘‘overfit’’

to where they fit separately to the response in separate trials and/or

runs without regard to the presence of common structure across

trials and runs. These linkages are preserved in the multilinear

models. Also, it is important to consider the amount of data

reduction achieved. Data reduction has been quantified by the

degrees of freedom ratio (DFR-Carroll and Chang, 1970), defined

as the ratio of degrees of freedom for the model (the number of free

parameters) to degrees of freedom for the actual data (the total

number of data points minus the number determined by prepro-

cessing.) Multilinear models generally achieve a higher degree of

data reduction corresponding to smaller DFR values for a particular

model order.

In images of the spatial modes and in plots of the temporal

response profiles, we have made qualitative comparisons with the

activation map derived from the univariate analysis model and with

the square-wave pattern of the underlying activation paradigm.

Tables 3 and 4 contain quantitative measures of the correlation

coefficient between pairs of modes, both spatial and temporal, for

the various analysis scenarios. Whether we look at the spatial

modes or the temporal response profiles, the first multilinear

component in all instances exhibits a higher degree of correlation

with the fixed-effect analysis model based on a square-wave
ent

2

Bilinear

1270 � 110

Bilinear

635 � 220

Multilinear 635

� 10 � 11 � 2a

0.4647 0.3897 0.5438

0.8220 0.7308 0.9002

1.0 0.9380 0.8279

0.9380 1.0 0.7573

0.8279 0.7573 1.0

o components in the multilinear model.
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reference than do the corresponding unfolded bilinear analysis

models. While the bilinear analysis models chase variability in the

data, the multilinear models appear to capture salient spatial and

temporal features that are common across runs and across trials and

in agreement with the underlying activation paradigm.
Discussion

In this paper, we have presented a compelling application of

multilinear models in the analysis of intrinsically higher-way data

from a functional neuroimaging experiment. In comprehensive

fMRI studies of brain function, the data structures often contain

higher-order ways such as trial, task condition, subject, and group

in addition to the intrinsic dimensions of time and space. While

multivariate bilinear methods such as PCA have been used

successfully for extracting information about spatial and temporal

features in data from a single fMRI run, the need to unfold higher-

order data sets into two-way bilinear arrays leads to decomposi-

tions that are unnecessarily complex and badly nonunique. In

addition, any hope of understanding the multiway linkages and

interactions present in the data is lost. As we have pointed out,

these additional dimensions can be retained in multilinear models

with interpretations that are neurophysiologically meaningful.

In the analysis scenarios presented above, the extracted multi-

linear modeling components exhibited these paradigm-related

structures first in the hierarchy of component importance, or in

the first two components when a subspace was required, while

PCA often relegated them to lower echelons or combined them

across different components. This was one empirical advantage

that the multilinear modeling approach seemed to enjoy. However,

it is not necessarily the most important advantage. In fact, many

bilinear methods have been adapted to intelligently rearrange

component order, or to perhaps direct in a supervised fashion the

search for component structures toward meaningful design pat-

terns. Indeed, in most analysis approaches that employ PCA,

principal component analysis is only the first step of data reduc-

tion. While the salient features may be captured in the subspace

spanned by a subset of the PCs, it is highly unlikely that a

physiologically meaningful brain response will be captured in the

first PC or even that it is manifested in a single PC. When this

occurs, ad hoc techniques range from simply extracting the one PC

that mostly reflects the experimental paradigm to preprocessing

steps for the removal of high-variability structured noise compo-

nents so as to allow the PC that summarizes task-related variability

to ‘‘rise to the top.’’

In working with unfolded data from multiple subjects, Lautrup

et al. (1995) identified the PC that reflected a common pattern across

subjects as the first component in a set ranked by variance summary

that summarized more task-related within-subject variability than

between-subject variability. More refined techniques seek to per-

form an informed rotation within a subspace spanned by a few PCs.

Oriented PCA is posed as a generalized eigenvalue problem that

seeks to balance variance summary while steering away from a pre-

specified noise or error subspace (Diamantaras and Kung, 1996;

Rayens and Andersen, 2003). Canonical variates analysis (CVA)

has been used in this second step to implement a rotation based on

canonical vectors that define directions that maximize the between-

class variance while minimizing the within-class variance (LaConte

et al., 2003). Frackowiak et al. (1997) discussed CVA in the setting

of a generalized eigenvalue problem to derive the spatial modes or
canonical images that best express the paradigm-related activation

effects of interest relative to error effects, akin to denoising

techniques in EEG time series data analysis.

Other techniques such as partial least squares (PLS) have been

used to focus the structure extraction toward meaningful design

profiles, so that seemingly ad hoc rotations after-the-fact could be

avoided and the optimality of the extracted components defended.

PLS is inherently different from PCA, however, in that two blocks

of data are needed to implement PLS, one often thought of as

containing the bilinear features (e.g., voxels by time) and the other

as having the potential experimental paradigms (e.g., an ON/OFF

pattern). The feature block is then used to ‘‘predict’’ the paradigm

block, as is the nature of PLS, and the results of the prediction can be

viewed as an exploratory means of testing various hypotheses about

what the underlying experimental paradigm was perceived to be.

This basic idea was recently extended (Lin et al., 2003) to allow

the sample covariance matrix between features and hypotheses,

which is the core of a standard PLS analysis under orthogonal

constraints, to be further decomposed by either a subsequent PCA

or an independent component analysis (ICA). Similar approaches

were taken in McIntosh et al. (1996, 1998) and by Lobaugh et al.

(2001). Likewise, ‘‘target directed PLS’’ (Rayens and Andersen,

2004) was successful both at focusing the extraction on particular

hypothesized ‘‘target’’ profiles and at proving in what sense this

would always be a more optimal solution than an after-the-fact

rotation or regression involving PCA components. From a slightly

different perspective, ‘‘oriented PLS’’ (Rayens and Andersen,

2003) was introduced as a method of further orienting PLS that

allows the user to produce PLS-like structures that have been

oriented also away from undesirable confounds (e.g., structured

noise), confounds that do not have to be orthogonal to the signal of

interest. This new method was introduced and demonstrated within

the context of a brain mapping study of motor performance that

employed functional magnetic resonance imaging (fMRI).

Yet, the purpose of the present study has not been simply to

compare the ability of a multiway model to ‘‘reorder’’ components

to that of established bilinear methods, which has been done

elsewhere (e.g., Linder and Sundberg, 1998, 2002). This was a

desirable outcome, granted, that served to illustrate both the

usefulness and reasonableness of a multilinear approach. Perhaps,

far more important is the observation that bilinear methods have to

either operate on data that are inherently bilinear, for example,

from a single run in a single subject, or that have been transformed

either by concatenation or by collapsing across one or more

dimensions, thereby risking the loss of inherent multiway linkages

and interactions that are present in the data.

Further, multiway components are typically much easier to

interpret than those found from a bilinear analysis of unfolded

ways. An excellent example of this phenomenon is provided in the

field of chemometrics by Norgaard (1995) who used a PLS-

adapted version of multiway to predict the emission–excitation

profiles of the attending sugars from those of different juices. In

this example, the unfolded bilinear alternative was prohibitively

complicated to interpret, although there was less evidence that the

unfolded fit would predict badly. However, as Norgaard (1995)

pointed out, the ability of multiway fits to predict more robustly

than their bilinear counterparts seems to grow with the noise level

of the data. This is an important observation with implications for

neuroimaging data and especially for design-prediction paradigms,

such as mentioned above (Lin et al., 2003), where reliable

prediction is key to an empirical assessment of the validity of
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the design hypotheses. Nilsson et al. (1997) provide yet another

example of the increased prediction stability as well as the

increased interpretational simplicity of multilinear models. Future

studies based on synthetic neuroimaging data sets that incorporate

meaningful response features along the separate ways will be

required to further investigate the robustness of multilinear meth-

ods to noise, both structured and random.

Last, but certainly not least, multiway structures have a claim to

uniqueness that is not available for the bilinear methods discussed

above. Rotation flexibility is viewed by some analysts as positive

since it obviously affords the user a much greater chance of

uncovering features that are interpretable in the context. Such

rotation ambiguity, however, has long since been understood to

largely undermine a defense of any attending interpretation of the

structure. Hence, our examples produced constructs that not only

were more cleanly uncovered from intrinsic multiway data than

from bilinear alternatives based on unfolding, but constructs that

were much less likely to be the result of overfitting and impossible

to be merely the result of rotational capriciousness.
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