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Abstract

In an attempt to improve the speed of multi-way algorithms, this paper investigates several different implementations of
the Tucker3 algorithm. The interest is specifically aimed at developing a fast algorithm in the MATLABe environment that
is suitable for large data arrays. Nine different implementations are developed and tested on real and simulated data. In a
subsequent paper, it will be demonstrated that a fast algorithm for the Tucker3 model provides a perfect basis for improving
the speed of other multi-way algorithms. From the Internet address http:__newton.mli.kvl.dk_ foodtech.html, the developed
algorithms can be downloaded. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Tucker3 model, or N-way PCA, is one of the
most basic multi-way models used in chemometrics.
It originates from psychometrics from the pioneering

w xwork of Tucker 1 , and the algorithmic solution for
estimating the model was later substantially im-

w xproved by Kroonenberg and de Leeuw 2 and ten
w xBerge et al. 3 . Several successful applications have

been demonstrated in quite different areas such as
w x w xchromatography 4 , environmental analysis 5 and

w xperson perception analysis 6 . Having an efficient
algorithm especially for large data sets is therefore of
utmost importance. Several different algorithms have
been described in the literature. Almost all are based
on least squares regression, singular value decompo-

) Corresponding author. E-mail: ca@kvl.dk.
1 E-mail: rb@kvl.dk.

Ž . Ž .sition SVD , Gram–Schmidt GS orthogonaliza-
Ž .tion, or a modified Bauer–Rutishauer BR estima-

tion. In this paper, all steps in the Tucker3 algorithm
will be optimized with respect to speed. The focus
will be on three-way models, but all results are

w xequally applicable on models of higher orders 7 . In
the sequel, nine different algorithms will be com-
pared as they have been implemented in MATLAB,
and it will also shortly be described how the algo-
rithms can be modified to handle missing values and
data with different uncertainties.

The sizes of the arrays considered are such that the
computer has physical memory to hold the array and
intermediate working arrays. If the array size ex-
ceeds what the physical computer memory can hold,
other problems arise and other algorithms may be

Ž w x.better see Refs. 8–10 . These algorithms do not
work with exact least-squares solutions, but rather try
to approximate the solution by finding suitable bases
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for the different modes. An efficient algorithm for the
w xcase of one large mode has also been proposed 11 .

For arrays whose size does not exceed the potential
computer power, it is not necessary to compress the
array prior to modelling as most Tucker3 algorithms
are quite fast. The purpose of this paper is to provide
the fastest way of estimating the Tucker3 model, and
implicitly providing suitable bases for the modes of
large arrays.

2. Theory

In the following, scalars are indicated by italics,
vectors by bold lower-case characters, bold capitals
are used for two-way matrices, and underlined bold
capitals for three-way arrays. The letters I, J, and K
are reserved for indicating the dimension of the three
different modes. The ijk th element of X is called x ijk

and is the element in the ith row, jth column, and k th
tube of X. When three-way arrays are unfolded to
matrices, the following notation will be used: If X is
an I=J=K array and is unfolded to an I=JK ma-
trix, the order of J and K indicates which indices are
running fastest. In this case, the indices of J are run-
ning fastest, meaning that the first J columns of X
contain all variables for ks1 and for js1 to jsJ.
In short, we will term the I=JK matrix X Ž1., where
the superscript indicates that it is the first mode that
is preserved. Likewise X Ž2. is a J= IK matrix and
X Ž3. a K= IJ matrix. If the arrangement of the array
is clear from the context, the superscript will not be
shown.

An I = J = K array X is given and a Tucker3
model of ranks RA, RB, and RC respectively is
sought. Written in matrix notation letting X Ž1. be the
I = JK unfolded array, and m denoting the Kro-
necker product, the Tucker3 model reads

X Ž1.sAGŽ1. CT mBT qEŽ1. , 1Ž . Ž .
Ž1.Ž T T . Ž1. Ž1.where AG C mB is the model of X , E is

the unmodelled part, i.e., the residuals of the model,
and GŽ1. is the core array G arranged as an RA =

B C Ž . AR R matrix. In Eq. 1 , A has size I=R , B has
size J=RB, and C has size K=RC and the matri-
ces hold the loadings in the first, second, and third
mode, respectively. In the following, we will omit the
residual part for simplicity. We restrict ourselves to

estimate the Tucker3 model with orthonormal A, B,
and C. We further restrict ourselves to algorithms
based on iteratively estimating one of the four sets of
parameters A, B, C, and G conditionally on the re-
maining parameters. In most cases, such an algo-
rithm will be a so-called alternating least squares
Ž .ALS algorithm.

The core array G can be found conditional on A,
B, and C by a simple projection of X onto A, B, and
C. In matrix notation this reads

GŽ1.sAT X Ž1. CmB 2Ž . Ž .
If the model is perfect, then G will express all

variation of X. For completeness, note that G can also
be computed from X arranged as J=IK or a K=IJ
matrices:

GŽ2.sBT X Ž2. CmA , and GŽ3.sCT X Ž3. BmA ,Ž . Ž .
3Ž .

From the definition of G it follows that the
Tucker3 model of X can be stated

AGŽ1. CT mBT sAAT X Ž1. CmB CT mBTŽ . Ž . Ž .
sAAT X Ž1. CCT mBBT 4Ž . Ž .

For B and C fixed it follows that finding the opti-
Žmal A is equal to minimizing the norm of X y

T . Ž T T .AA M , where MsX CC mBB . Using that
TT T T TCC mBB CC mBBŽ . Ž .

s CCTCCT mBBT BBT s CCT mBBT ,Ž . Ž .
5Ž .

and by tr denoting the trace of the square argument
matrix, the sought norm is

TT Ttr XyAA M XyAA MŽ . Ž .ž /
s tr XXT y2tr AAT MXTŽ . Ž .

q tr AAT MMTAATŽ .
s tr XXT y2tr AAT MXTŽ . Ž .

q tr AAT MXTAAT . 6Ž . Ž .
Ž T .As tr XX is fixed, minimizing this expression is

equal to minimizing

y2tr AAT MXT q tr AAT MXTAATŽ . Ž .
y2tr AT MXTA q tr AT MXTATŽ . Ž .
y tr AT MXTAT 7Ž . Ž .
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and hence the optimal A is found by maximizing

tr AT MXTAT s tr AT MMTA 8Ž . Ž . Ž .
which shows that A is the RA largest eigenvectors of
MMT or equivalently the first RA left singular vec-
tors of a singular value decomposition of M.

For estimating B and C similar relations hold, and
these relations form the basis for an algorithm for es-
timating the Tucker3 model. The essentials of such an
algorithm are outlined in the generic algorithm be-
low:

1. Initialize B and C.

2. Calculate MŽ1. from B, C and X Ž1.. Calculate A.

3. Calculate MŽ2. from C, A and X Ž2.. Calculate B.

4. Calculate MŽ3. from A, B and X Ž3.. Calculate C.

5. Goto step one until convergence

6. Calculate the core G

Before going into the details of the algorithm, it is
appropriate to elaborate on the computation of M and
MMT. As A is a basis for the column space of the

A Ž Tbest fitted rank R approximation of MsX CC m
T .BB , it follows that A can also be determined from

Ž .the much smaller matrix X CmB . The cross-prod-
uct of M is derived from

TT T T TX CC mBB X CC mBBŽ Ž . Ž .Ž .
sX CCT mBBT XTŽ .

Ts X CmB X CmB 9Ž Ž . Ž . Ž .Ž .
and can hence also be computed from the smaller

Ž .matrix X CmB .
There are several important steps in actually im-

plementing the Tucker3 algorithm for large prob-
Ž .lems: i avoiding the use of Kronecker products and

Ž .unnecessarily large working matrices, ii a good ini-
Ž .tialisation method, iii if possible, avoiding interme-

diate estimation of the core array, which is algorith-
Ž .mically unnecessary, and iv a fast method for esti-

mating an F-component orthonormal basis for a ma-
trix. In the following, we will use the update of A as
an example.

Ž .Ad i It is very common to express the Tucker3
model and algorithm using Kronecker products.

While intuitively appealing for providing simple ma-
trix expressions for array models, this approach
should not be adopted in the actual implementation,
as it leads to very large intermediate arrays and ex-
cessively many elementary operations. Instead, one
should rearrange the arrays continuously as exempli-
fied below. This approach is justified by the fact that
rearranging a matrix is very fast, as it only requires
changes in indices, not real computations.

Ž .The projections X CmB can be written in ma-
trix notation:

W Ž2.sBT X Ž2.

V Ž3.sCT W Ž3.

X Ž1. CmB sV Ž1.Ž .
Though complicated to look at, this way of com-

puting the projections is much faster than directly us-
ing the Kronecker products—in particular for large
arrays. From version 5.0 of MATLAB, general ar-
rays are supported, thus eliminating the need to
specifically program these rearrangements.

Ž .Ad ii There is no need for initializing the first
mode, i.e., A, as this is given by X Ž1., B and C in the
first iteration according to the algorithm in question.
The most straightforward method for initializing B
and C is to use the RB and RC left singular vectors
from an SVD of X Ž2. and X Ž3.. A slight change is
suggested here. As above, matrix B is the first RC left
singular vectors from an SVD of the J= IK matrix
X Ž2.. Subsequently, C is obtained as the RC first left

Ž T Ž2..Ž3.singular vectors from an SVD of B X . In this
way, the initial B and C are likely to be closer to the
solution than results from the SVDs on the separated
modes would be. In addition, C is derived from a
matrix of size K=RBI. As such, this initialization
scheme requires fewer computations than if the sepa-
rate SVDs should be calculated. The order in which
the component matrices B and C are calculated is of
no importance, and one should choose the smallest of
the two first.

Ž .Ad iii As the core array of the model is implic-
itly given by A, B and C, one can simply calculate it
once after convergence. But, instead of estimating the
full model of X to determine the error after each iter-
ation, the sum of the squared core entries provides a
robust and monotonically increasing parameter that
may be used to detect convergence. During itera-
tions, the sum of the squared residuals, E, is mini-



( )C.A. Andersson, R. BrorChemometrics and Intelligent Laboratory Systems 42 1998 93–10396

5 5 2mized. Denoting by , the square of the 2-norm of2

5 5 2the argument, we formulate this as min E s2

5 5 2 5 5 2 5 5 2 5 5 2min X y M s min X y M . Since M s2 2 2 2

5 5 2G for orthonormal factors, this corresponds to2

5 5 2maximizing G . Thus, in the implementations un-2

der discussion, we calculate the core to use the sum
of the squared core elements to detect convergence.

Ž .Ad iv The very essential part of the Tucker3 al-
gorithm is the derivation of orthonormal loading ma-
trices. Using M, the size of the matrix from which A

Ž .is calculated is I=JK. Using X CmB the size is
A B Žonly I=R R . In addition, the computation of X C

. Ž TmB is much faster than the computation of X CC
T .mBB . The following procedures have been tested

Ž .for determining A given the matrix X CmB :
Ž .Ø SVD on X CmB

ŽØ Approximate Bauer–Rutishauser on X C m
Ž Ž ..TB X CmB

Ž .Ž ŽØ Exact Bauer–Rutishauser on X C m B X C m
..TB

ŽØ Gram –Schmidt orthogonalization of X C m
.Ž Ž ..TB X CmB

Ž .Ž Ž ..TØ NIPALS on X CmB X CmB
Preliminary investigations did include QR factor-

Ž Ž Ž ..Tization of X CmB X CmB , but since this ap-
proach invariably gives results similar to GS, we
chose to leave this approach out of the discussion.

2.1. Algorithms

We will shortly describe the implemented varia-
tions of the Tucker3 algorithm by showing the up-
date of the first mode loadings in pseudo-code. It is
assumed that only the first RA principal vectors are
used in SVD and NIPALS. By baurut we mean an
algorithm that estimates eigenvectors according to the
principle of Bauer–Rutishauser and by gsm we mean
an algorithm that orthonormalizes according to the
Gram–Schmidt procedure. It should be noted that the
calls to the baurut and nipals algorithms use the pre-
vious iterates of the factors as initial guesses in order

w xto save computing time. Kroonenberg et al. 11 have
compared the Gram–Schmidt orthogonalization with
the method of Bauer–Rutishauser.

T1: SVD-based algorithm

Ž .MsX CmB

w x Ž .A,S,V ssvd M

T2: Bauer-Rutishauser I algorithm. One-step up-
date in each mode

Ž Ž ..Ž Ž ..TMs X CmB X CmB

w x Ž T 2 .U,S,V ssvd A M A

AsMAUSy1r2

T3: Bauer–Rutishauser II algorithm. Three-step
update in each mode

Ž Ž ..Ž Ž ..TMs X CmB X CmB

for is1 to 3

w x Ž T 2 .U,S,V ssvd A M A

AsMAUSy1r2

end

T4: Bauer–Rutishauser III algorithm. Repeated
update in each mode until convergence of A

Ž Ž ..Ž Ž ..TMs X CmB X CmB

while A has not converged

w x Ž T 2 .U,S,V ssvd A M A

AsMAUSy1r2

endwhile

T5: Bauer–Rutishauser IV algorithm. Advanced
BR algorithm

Ž Ž ..Ž Ž ..TMs X CmB X CmB

Ž .Asbaurut M,A

T6: Gram–Schmidt I algorithm. One-step update in
each mode

Ž Ž ..Ž Ž ..TMs X CmB X CmB

Ž .Asgsm MA
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T7: Gram–Schmidt II algorithm. Three-step up-
date in each mode

Ž Ž ..Ž Ž ..TMs X CmB X CmB

for is1 to 3

Ž .Asgsm MA

end

T8: Gram–Schmidt III algorithm. Repeated up-
date in each mode until convergence of A

Ž Ž ..Ž Ž ..TMs X CmB X CmB

while A has not converged

Ž .Asgsm MA

endwhile

T9: NIPALS-based algorithm.

Ž .MsX CmB

w x Ž .A,P snipals M,A
Ž .As the principles of SVD Algorithm 1 and NI-

Ž .PALS Algorithm 9 are well known and widely used
in chemometrics, we will elaborate on the Bauer–
Rutishauser algorithm and the Gram–Schmidt or-
thogonalization. For the Bauer–Rutishauser algo-
rithm, we investigate four different methods: A sim-

Ž .ple one-step BR update Algorithm 2 as suggested by
w xKroonenberg et al. 12 , an approach repeating the

Ž .simple update three times Algorithm 3 and an ap-
proach, where the simple BR update is repeated until
convergence of the eigenvector estimates is reached
Ž .Algorithm 4 . In addition, we have implemented an
advanced algorithm, which is referred to as the full

Ž . ŽBauer–Rutishauser algorithm Algorithm 5 see
w x.Rutishauser 13 . To explore the continuity between

the two extremes, i.e., the simple Algorithm 2 and the
advanced Algorithm 5, we have added three-step and
convergence-based implementations of Algorithm 2.
The simple Algorithms 2 and 3 may be regarded as
being equal to Algorithm 5, merely with a looser
convergence criterion. Three implementations of the

Gram–Schmidt orthogonalization for estimating
eigenvectors are investigated. Algorithm 6 is a sim-
ple one-step GS update as suggested by Kroonenberg
w x14 , Algorithm 7 repeats the simple update three
times and Algorithm 8 repeats the simple GS update
until convergence is reached. By using repeated iter-
ations better estimates of the true eigensolutions are
obtained with a small computational effort, since the
working matrices are present in directly accessible
forms.

2.2. The Bauer–Rutishauser approach

w xIn 15 , Rutishauser proposes an algorithm that
improves the convergence order of the bi-iteration
method for estimating eigenvectors of matrices sug-

w x Ž .gested by Bauer 16 . Using that Y I= I , e.g., ob-
tained as XXT, is positive definite and symmetric, the
aim of Rutishauser’s algorithm is to achieve the good
numerical features offered by Bauer’s approach with
a high convergence order. Rutishauser sets forth sev-
eral suggestions to improve convergence as well as
robustness of the algorithm. For the present purpose,
we shall take a less general approach, since we do not
require extreme accuracy of the obtained eigensolu-
tions, and we desire to keep the computational re-
quirements at a minimum. Thus, the implementation
is kept simple and efficient in Algorithms 2, 3 and 4.
Rutishauser’s strongest suggestions are implemented
in the somewhat more advanced Algorithm 5 for
comparative reasons. In Algorithms 2, 3 and 4, new
orthogonal iterates of A are provided through one,
three or more Ritz-iterations such that the eigendirec-
tions, represented by matrix A , are defined by then

projected eigenvalue problem

AT Yy2A sDy2 AT A sI 10Ž .n n n n n

Ž A A .where D R = R is diagonal and holds then

eigenvalues of Y on the diagonal. A is found asn

A sYA Q Dy1 QTQ sI 11Ž .n ny1 n n n n

Ž A A .Q R =R and D are found by, e.g. an SVD,n n

according to

Q D2 Q sAT Y T YA sAT Y 2A 12Ž .n n n ny1 ny1 ny1 ny1

This approach gives results with improved numer-
ical stability and higher convergence rate than the

Ž .trivial rule A sYA ns1,2, . . . . The reader isn ny1
w xreferred to Refs. 13,16,17 for details and proofs. The
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method may be seen as an extension of the method
proposed by Bauer where

A sYA Ry1 13Ž .n ny1 n

Ž A A .and R R =R is an upper triangular matrix withn

positive diagonal elements which may be derived di-
rectly from an extended Gram–Schmidt orthogonal-

Ž w xization of YA see 17 for advanced algorithmicny1
.approaches in this direction . One may argue that an

Ž . Ž .algorithm based solely on Eqs. 10 – 12 is overly
simplified. Hence, we also implemented a more
complete Bauer–Rutishauser algorithm according to

w xsome of Rutishauser’s many suggestions 13 . In the
implementation used here, a series of eigenprojec-
tions are calculated with the significant termination
by a single Ritz iteration to estimate the orthogonal
eigenvectors according to the projected eigenvalue
problem.

2.3. The Gram–Schmidt approach

The Gram–Schmidt algorithm may be used for
finding an orthonormal basis of any matrix. The or-
thogonalization is very cheap in terms of operations
and it is non-iterative. For the present purpose we
have applied a very simple GS algorithm with re-or-

w xthogonalization 13,17 . By the repeated eigenprojec-
tion of Y onto A the enforced response is re-ny1

turned in the new iterate A according ton

A sYA ns2,3 . . . 14Ž . Ž .n ny1

However, after applying the eigenprojection sev-
eral times, the columns of A tend to become corre-n

lated, thereby compromising orthogonality. To en-
sure the condition of the estimated base and to avoid
an uncontrolled increase in correlation between the
columns of A during iterations, we suggest to apply
the GS orthogonalization continuously. Thus, the re-
sulting sequence takes the form of

A sgsm YA ns2,3 . . . 15Ž . Ž . Ž .n ny1

where gsm represents the orthogonalization of the
matrix argument. To orthogonalize the columns of Z
Ž A .I=R , assuming that Z is non-singular, the GS
algorithm will return an orthonormal basis in V ac-
cording to the following pseudo MATLAB code, in

Ž .which V :,i designates the ith column of matrix V,

5 5V :,1 sZ :,1 r Z :,1Ž . Ž . Ž . 2

For is2 to RA

TV :,i sZ :,i yV :,1: iy1 V :,1: iy1Ž . Ž . Ž Ž . Ž .Ž .
=Z :,iŽ .

5 5V :,i sV :,i r V :,i 16Ž . Ž . Ž . Ž .2

end
Some important special variations of the Tucker3

model are: How to incorporate different uncertainties
for different elements and how to handle missing el-
ements. We will shortly discuss different ways to ap-
proach these special cases.

2.4. Incorporating uncertainties

If the uncertainties of the individual data elements
are known, it can be feasible to use these in the de-
composition. If the uncertainties are almost equal for
all elements, there is no need to change the algo-
rithm, but otherwise at least two different possibili-
ties exist. If the uncertainty of a given variable re-
mains almost the same over all modes, it will suffice
to scale the array accordingly, keeping in mind the

Ž‘rules’ for scaling multi-way arrays see Kroonen-
w x.berg 14 . After scaling, an unconstrained model is

estimated from the scaled array. If the uncertainties
vary also over variables, or if an iteratively re-
weighted solution is sought for robustness, then one
cannot estimate the model using eigenvector-based
methods, but has to use regression-based methods or
the weighted least squares approach suggested by

w xKiers 18 .

2.5. Missing elements

Missing elements can be effectively handled by the
current algorithm by iteratively replacing missing el-
ements with model estimates of the elements. The
model is thus estimated from an array with no miss-
ing elements, and after each iteration the model of X
is estimated from the parameters. All elements that
are missing are replaced with model estimates, and
the algorithm is repeated until the convergence crite-
rion is fulfilled and the estimates of the missing ele-
ments do not change significantly. That way, the
missing elements do not directly influence the out-
come of the model.
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3. Experimental

The aim of this investigation is to find the fastest
algorithm among the nine under discussion. The al-
gorithms are compared on the time needed to obtain

Ž . Ž .similar fits to i one measured and ii several syn-
thesized data sets. For each data set, a model with
many factors is estimated in order to ensure that all
systematic information is modelled. To facilitate a
discussion of the efficiency of the algorithms, we

Žhave shown the number of FLOPS floating opera-
.tions required to obtain the solutions. The matrices

A, B and C are initiated as previously suggested.
Due to the huge amounts of data handled during

iterations, there is a lot of so-called dead time. The
dead time of the algorithms has been estimated by
removing the code specifically related to the updat-
ing schemes and only keeping the data management
operations. By running 20 iterations of this void al-
gorithm, an estimate on the average dead time per it-
eration, t , caused by the size of the data array in0

question is obtained. After the various algorithms
have been applied, the number of iterations, N, is
known and the dead time may be subtracted from the
total time, T , to give a clearer picture of the time used
specifically by the updating schemes. The time used
on handling the data is of course required to obtain
any solution, but by removing the dead time, the
common background is subtracted, thereby allowing
us to discuss the sheer time differences caused by the
specific updating schemes.

Given the array X the error f to minimize is given
by

5 Ž1. Ž1. T T 5 2f A,B,C,G;X s X yAG B mC 17Ž . Ž . Ž .2

where X Ž1. is the frontal slice-wise unfolding X and
component matrices A, B and C contain the orthogo-
nal factors in their columns. All iterative procedures
require a criterion to indicate if a sufficiently accu-
rate model has been estimated. Given the dimension-
ality of the model, the desire of the analyst is to ob-
tain the lowest possible value of f in the shortest
possible time. As stated earlier, we do not calculate f
explicitly, but we use the sum of the squared core en-
tries instead, designated by g, as this is obtained with
much fewer computations. We seek to maximize the

Ž .value of g, since the variance of X described by the

model and g will be at maximum for the same set of
Ž .A, B and C rotation disregarded .

For checking convergence, we have taken one ap-
proach for the real data set and another for the 200
synthesized data sets. For the real data set, a mini-
mum value of the sum of squared core entries, re-
ferred to as g ) , will be used as stopping criterion.
The value of g ) has been set slightly below the
asymptotic value of g, which was found by inspec-
tion. With regards to the numerous synthesized data
sets, an unsupervised criterion to detect convergence
is required, and for the present application, this is
formulated as the maximum difference of g between
two successive iterations. We will return to this later.

3.1. Data

The measured data set originates from spectroflu-
orometric measurements on 65 samples, and has di-
mensions 65=40=311 representing approximately
6.5 MB of data. The values range from zero to ap-
proximately 1295. Investigations not reported here
have revealed that the rank is in the range 6 to 8.
Hence, a model of order 8=8=8 is estimated. By
inspection and evaluation of different solutions,
the value of g ) for this data set was set to
3.720345874925P1010. Using this value of g ) in all
algorithms applied to this data set, the fit of the mod-
els will be comparable from the viewpoint of the an-
alyst.

A number of 200 synthesized data sets of dimen-
sions 120=120=120 with PARAFAC rank not less
than 8 are produced by synthesizing factors from
Gaussian peaks in each of the three modes with ran-
domly distributed peak centres and peak widths, and

Ž .subsequently applying 5% homoscedastic additive
Ž .and 5% heteroscedastic multiplicative normally dis-

tributed noise. With regards to spectral data, the re-
sulting level of noise may be regarded as being high.
To ensure the rank, the peak centres were forced
to differ in locations within modes and the synthe-
sized cores consisted of random values between 0

Ž .and 1, where the diagonal elements 1,1,1 ,
Ž . Ž .2,2,2 , . . . , 8,8,8 were forced to be 1. The conver-
gence criterion was estimated for each synthesized
data array in the following way: The SVD-based al-

Ž .gorithm Algorithm 1 was applied with the criterion
that convergence was reached when two successive
fits differed by less than 0.0005. If the algorithm
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honoured this convergence criterion within 19 steps,
the convergence criterion was divided by two, and the
SVD-algorithm was restarted; this was repeated until
the number of required steps exceeded 20. This fea-
sible convergence criterion was then used for the re-
maining 8 algorithms. We estimate that at least 20 it-
erations are required to get accurate measurements on
the computational time. Since very slow convergence

Žof the most approximate algorithms i.e., small
.changes between iterations in Algorithms 2 and 6

could erroneously cause the algorithms to exit too
early, a subsequent evaluation of the errors of the fi-
nal models was performed to reject models that did
not fit data satisfactorily.

4. Results and discussion

The results from the models of the measured data
set are listed in Table 1. Standard deviations are neg-
ligible and are not listed. It is readily seen that Algo-
rithm 9 stands out with the lowest time consumption,
T , and the highest efficiency in terms of FLOPS. This
is likely due to the simplicity of the NIPALS algo-
rithm, which is used to estimate eigenvectors in each
of the three subproblems in this algorithm. Another
important observation is the high number of required
main iterations, N, for Algorithms 2 and 6. These two
algorithms have a high degree of simplicity in com-
mon, but whereas this was intended to decrease the
time consumption of the subproblems, the increase in
the overall number of main iterations renders these
approaches infeasible. Algorithms 2 and 6 provide too

inaccurate approximations to the eigensolutions;
hence, they require more iterations to reach the exact
eigensolutions. If the eigensolutions are inaccurately
determined in one iteration, then the next iteration
will suffer from this suboptimality in the posed prob-
lem. This is in contrast to the experiences reported by

w x Ž .Kroonenberg 14 p. 87 , where he argues that it is
not worthwhile to solve for highly accurate eigenvec-
tors since the resulting algorithm will obtain an itera-
tion-in-iteration structure requiring too much compu-
tational effort, since after all, during iterations, the
eigenproblems posed are only formulated in terms of
intermediate factors. Whereas this may be true for
smaller sized problems, the compromise between
spending computational time on estimating accurate
eigensolutions and the overhead introduced by han-
dling the large data arrays, appears to favour the up-
dating schemes that are more accurate. From the
viewpoint of the analyst Algorithms 2 and 6 are sub-
optimal in terms of FLOPS as well as time; thus, we
will leave them out of the remaining discussion. With
regards to time consumption, T , we see that Algo-
rithms 1 and 4 use markedly more time on the same
number of iterations. By inspection of T , we con-c

clude that this is due to the time used in the updating
schemes. Algorithm 1 includes an SVD which is sta-
ble and accurate, but very time consuming. So, in
addition to the conclusions drawn from the very sim-

Žple algorithms i.e., that the eigenvectors must be ac-
.curate it is indicated that there is an upper limit to

the effort that should be used on improving the accu-
racy of the eigensolutions. When compared to Algo-

Table 1
Results from models of the measured data set

Algorithm Flops Number of Time, Corr. time Final value of
9 10Ž . Ž . Ž . Ž . Ž . Ž .number 10 iterations N T s TsTyN t s g g N 100

1 1.46 21 63.54 28.03 3.72034587493
2 1.75 35 74.40 15.22 3.72034587493
3 1.33 22 52.56 15.36 3.72034587493
4 1.41 21 54.02 18.51 3.72034587493
5 1.15 21 49.18 13.67 3.72034587493
6 1.64 35 71.48 12.30 3.72034587493
7 1.10 22 46.96 9.76 3.72034587493
8 1.10 21 47.78 12.27 3.72034587493
9 0.81 21 42.54 7.03 3.72034587493

Ž . Ž . Ž .All values of required number of FLOPS, number of iterations N , computation time T , and corrected time T are averages of 20 modelc

runs.
t s1.69 s ity1.0
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rithm 3, Algorithm 4 appears to iterate too many
times in the substeps judged from the value of T .c

This may be corrected by reducing the number of in-
ner iterations, e.g., by adjusting the convergence cri-
teria for the subiterations. Algorithms 5, 7 and 8 of-
fers almost similar performance in terms of FLOPS
and time consumption. In line with the findings of

w xKroonenberg et al. 12 , the efficiency of the GS ap-
proaches, especially Algorithms 7 and 8, are cer-
tainly of interest. With regards to repeating the sub-
steps, it holds for BR and GS that the three-step ap-
proaches significantly reduces the oÕerall time
needed to reach a solution. Since repeated applica-
tion of the GS update improves the accuracy of the
estimated eigensolutions, we attribute the decrease of
iterations to the increased adequacy of the subse-
quently posed eigenproblems. Comparing columns
four and three clearly shows that for all nine algo-
rithms, most time is spent on handling data and not
on solving the eigenproblems. Hence, improving the
speed of data handling will contribute significantly in
reducing the time consumption. The sum of squared

Ž .core elements in the last iterations, g N , in Table 1
verifies that the final models are actually comparable
in fit. Thus, the results from the measured data set
suggest that Algorithms 5, 7, 8 or 9 are fastest, with
Algorithm 9 being fastest for this data set.

The findings from the analysis of the 200 synthe-
sized data sets are listed in Table 2. Since the synthe-
sized data arrays are very different, we have listed the
standard deviation next to the parameters. It is imme-

diately recognized that the observed standard devia-
tions are high, thereby rendering interpretation diffi-
cult. This is mainly due to the very different proper-
ties of the data sets and not a matter of great con-
cern. However, the pattern found in the mean values
for T are verified by the fact that Algorithms 3, 7 and

Ž . Ž . Ž .9 are fastest in 41 21% , 63 32% and 84 42% of
the 200 models. Since the number of required inner
iterations for all updates depends strongly on the size
and the characteristics of the data under investiga-
tion, we investigated the correlation coefficients and
the condition number of the synthesized factor matri-
ces. Over all three modes, the synthesized factor ma-
trices had absolute correlation coefficients ranging
from 0.1319 to 0.8235 with a mean value of 0.5471
and a S.D. at 0.2852. Ranging from 2.01 P 101 to

6 Ž3.19P10 the condition numbers i.e., the ratio be-
.tween the largest eigenvalue and the lowest was

found to have a mean value at 3.69P104 with a S.D.
at 1.80P105. Based on these findings, we may con-
clude that the synthesized data sets were constructed
from factors that were somewhat correlated, thereby
introducing ill-posed subproblems. With regards to
the time spent on the updating schemes, T , Algo-c

rithms 2 and 6 were fastest, but the eigensolutions
provided within iterations were too simple and too
inaccurate. This is in accordance with the findings

Ž .from the measured data set. Thus, they consistently
required the highest number of iterations. We consol-
idate the findings from the analysis of the measured
data set; algorithms for analysis of large data arrays

Table 2
Ž . Ž . Ž .Mean values and standard deviations of required number of FLOPS, iterations N , computation time T , and corrected time T from 200c

synthesized data sets
9Ž . Ž . Ž . Ž .Algorithm FLOPS 10 Iterations N Time, T sec Corr. time, T sc

number Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1 2.48 0.80 28.80 9.29 107.54 35.59 24.45 7.89
2 2.43 0.81 35.33 11.66 107.08 35.62 5.15 1.82
3 2.21 0.65 30.20 8.88 93.99 27.82 6.86 2.09
4 2.86 0.86 28.80 9.30 103.68 32.13 20.59 5.59
5 2.24 0.67 29.02 8.82 100.41 30.03 16.70 4.62
6 2.38 0.79 35.33 11.70 106.61 35.46 4.68 1.67
7 2.07 0.61 30.20 8.91 92.94 27.49 5.81 1.78
8 2.23 0.70 28.80 9.34 98.93 30.90 15.84 4.34
9 1.92 0.61 28.81 9.22 90.75 28.58 7.65 2.28

Compare with Fig. 1.
For the synthesized data sets t is 2.89 s ity1.0
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must be based on fast, but accurate, algorithms for
estimating eigensolutions of the involved subprob-

Žlems. It should be noted that Algorithm 4 conver-
. Ž .gence-based BR and 8 convergence-based GS re-

quired the same number of outer iterations as Algo-
Ž .rithm 1 based on SVD for all data sets, verifying

that these three algorithms provide the same accurate
eigensolutions. In accordance with Table 1, Algo-
rithms 7 and 9 require less time and less FLOPS to
reach a solution. To conclude, we find that Algo-
rithm 9 offer the best combination of simplicity and
accuracy of the eigensolutions of the synthesized data
arrays.

Measurements of number of FLOPS, iterations N,
total computing time T , and corrected time T , werec

Ž .arranged as matrices of dimensions 200 data sets =
Ž .9 algorithms , one matrix for each parameter. To il-

lustrate the significant covariations of the parame-
ters, we have extracted one principal component from
each of the four matrices. The superposed factors for
the nine algorithms in Fig. 1 are scaled such that the
largest element in each factor has a value of one. The
figure illustrates the essence of this investigation. The
efficiency of the updating schemes in Algorithms 3,
7 and 9 are evident from the simultaneous low levels

Ž .of FLOPS, iterations N and the total time required

Fig. 1. Results from the models of 200 synthesized data sets with respect to the nine applied algorithms. The four superposed principal
Ž . Ž . Ž . Ž .components represent the number of FLOPS F , iterations N , the total computing time T , and corrected time T . Compare with Tablec

2. The three factors explain 76.57%, 76.50%, 76.47%, and 80.38% of the variation in the matrices. The factors are scaled such that the
largest element has a value of one.
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Ž .T as seen from Fig. 1. We notice that the simple
Ž .NIPALS algorithm Algorithm 9 , well known and

widely used in chemometrics, substantiates itself as
an excellent compromise between speed and accu-
racy. The huge gain in convergence when comparing

Ž .single-step implementations Algorithms 2 and 6 to
Ž .the three-step implementations Algorithms 3 and 7

is substantiated. The convergence-based iterations
Ž .Algorithms 4 and 8 are sensitive towards the
threshold of the convergence criteria, and the optimal
convergence criterion may depend on the data at
hand.

5. Conclusion

We have compared nine algorithms for solving the
Tucker3 model on very large data arrays. Through
modelling of one measured and several synthesized
data sets especially the NIPALS-based implementa-
tion appears to be feasible with regards to time con-
sumption and FLOPS. The implementations based on
three repeated simple Gram–Schmidt updates are
suggested as alternative algorithms. Furthermore, we
have found that accuracy, perhaps more than speed,
is required in implementations of Tucker3 models of
large data arrays to yield results in the shortest possi-
ble time.
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