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Abstract

This communication describes a free toolbox for MATLABw for analysis of multiway data. The toolbox is called ‘‘The
N-way Toolbox for MATLAB’’ and is available on the internet at http:rrwww.models.kvl.dkrsourcer. This communica-
tion is by no means an attempt to summarize or review the extensive work done in multiway data analysis but is intended
solely for informing the reader of the existence, functionality, and applicability of the N-way Toolbox for MATLAB. q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

The N-way Toolbox for MATLABw is a freely
available collection of functions and algorithms for
modelling multiway data sets by a range of multilin-
ear models. Several types of models are covered;
canonical decomposition–parallel factor analysis
Ž .CANDECOMP–PARAFAC , multilinear partial

Ž .least-squares regression PLSR , generalised rank
Ž .annihilation method GRAM , direct trilinear decom-

Ž .position DTLD and the class of Tucker models.
When denoting missing observations by not-a-num-
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Ž .ber NaN , the algorithms apply expectation maxi-
mization to obtain the parameters that minimize the
least-squares error term.

Selected types of optional constraints have been
built into the least-squares error minimization algo-
rithms for CANDECOMP–PARAFAC and Tucker
models; nonnegativity, unimodality, and orthogonal-
ity. Different constraints may be set up for the differ-
ent modes. In addition to these constraints, the struc-
ture of the Tucker models can be forced to allow only
selected factor interactions. Furthermore, three meth-
ods for core simplification by orthogonal rotations
have been implemented. Most of the algorithms in the

Ž .toolbox can handle any number of modes NG2 in
data.

The N-way Toolbox for MATLAB can be down-
loaded via internet from http:rrwww.models.kvl.
dkrsourcer. Two interactive internet courses ac-
company The N-way Toolbox for MATLAB, and
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they are freely available at http:rrwww.models.kvl.
dkrcourses. Both the Tucker and the PARAFAC
courses come with real and simulated multiway data
sets and are intended for training in applying the
models to different kinds of chemometric problems.

2. Requirements

The collection of functions, algorithms and
helper-files are provided as MATLAB source files
Ž .m-files , with no requirements for any add-ins
beyond the standard MATLAB installation. The tool-

Žbox has been developed under MATLAB 5.x, Math-
.Works , but the functions have been designed for op-

timal MATLAB 4.2c compatibility. Multiway data
tables require much memory by nature, typically
suggesting somewhat more than 32 MB RAM under
Microsoft Windows 9xrNTr2000. The computa-
tional requirements depend heavily on the size of the
data array and the number and types of constraints
applied. In particular, the Tucker3 models with or-
thogonality constraints is efficient with regards to
storage, convergence and computational require-
ments. Generally, due to the large data sets often en-
countered, the toolbox requires moderate to high nu-
merical processing capabilities of the computer.

With MATLAB Release 11.x, it is possible to use
multidimensional arrays. However, in order to keep
compatibility with MATLAB version 4.2c, which is
still widely used, multiway data structures are rear-

Ž .ranged into matrices two-way structures in such a
manner that the algorithms accommodate for the data
representation and estimate the parameters of the ac-
tual N-way models. Please note that future versions
of the N-way Toolbox will not be backwards com-
patible with version 4.2c.

3. Models and solution algorithms

The common types of multiway models are con-
tained in the toolbox — in particular models that have
found good applications in chemometrics. In the se-
quel, the implemented models are briefly presented
and references to various applications are given.

3.1. The CANDECOMP–PARAFAC model

The CANDECOMP–PARAFAC model was sug-
w xgested in 1970 10,12 and is usually referred to as

PARAFAC in chemometrics. Its inherent uniqueness
has made it a popular model in chemometrics for
resolution of pure underlying spectral components, as
component rotation is not possible. Given a three-way

Ž .data array X I = J = K , the three-way CANDE-
COMP–PARAFAC model may be formulated as in

Ž .Eq. 1 :

R

x s a b c qe . 1Ž .Ýi jk i r jr k r i jk
rs1

Using the PARAFAC function, the CAN-
DECOMP–PARAFAC model can be fitted in a
least-squares sense under optional nonnegativity,
unimodality and orthogonality constraints in the
components. The CANDECOMP–PARAFAC model
has been very successful in chemometrical applica-

w xtions of curve resolution 8,14 , as well as in other
w xapplications 20 .

Although not being least-squares algorithms, the
GRAM and DTLD models are structurally similar to
the CANDECOMP–PARAFAC model in its three-
way version. Being noniterative, both methods are
very fast and are, in some instances, used for initial-
ization of the factor estimates prior to CANDE-
COMP–PARAFAC model estimation. For precise
trilinear data, GRAM and DTLD can even replace the
unconstrained CANDECOMP–PARAFAC model.
Applications of GRAM and DTLD have been illus-

w xtrated primarily in spectroscopic applications 4,5,14 .

3.2. The multilinear PLS regression algorithm

w xThe trilinear and multilinear PLS 7 algorithms
are straightforward extensions of the PLS algorithm.
For two-way bilinear PLS regression obtained in the
so-called multiway PLS regression, the multiway data
is actually rearranged to matrices such that no
knowledge of the multiway structure is used in the
decomposition. This can be unfortunate and lead to
less transparent and predictive models when a multi-
linear structure is, in fact, a good approximation of
the data. For example, for trilinear PLS regression, a
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CANDECOMP–PARAFAC-like trilinear structure of
the independent data is used. These trilinear compo-
nents, however, are calculated such that the scores are

Ž .predictive for the dependent variable s as in ordi-
nary two-way regression. Successful applications can

wbe found in many types of application areas 3,9,16–
x18 . Mostly, prediction quality is maintained or even

improved, compared to two-way analysis, but the
multilinear models always enable much simpler in-
terpretation and exploration, because the number of
Ž .free parameters is dramatically lowered.

3.3. Tucker models

The class of Tucker models was proposed in 1963
w xin psychometrics 19 as the extensions of ordinary

two-mode PCA to multimode equivalents. The three-
Ž .way Tucker3 model with P,Q, R components in the

1st, 2nd and 3rd mode may be formulated as in Eq.
Ž .2 :

QP R

x s a b c g qe . 2Ž .Ý Ý Ýi jk i p jq k r p qr i jk
ps1 qs1 rs1

In the case of orthonormal component, matrices
Ž . Ž . Ž .A I = P , B J = Q and C K = R , the three-way

Ž .array G P=Q=R reflects the importance of the
interaction between factors. Thus, the squared ele-
ment, g 2 , reflects the explained variation by thep qr

combination of factor p from the first mode, factor q
from the second and factor r in the third mode. In
contrast to the CANDECOMP–PARAFAC model, all
Tucker models suffer from rotational ambiguity; by
rotating the component matrices and counter-rotating
the core array, an infinite number of models with
equal fit to X can be obtained. In the N-way Tool-
box, the algorithms have been implemented with an
empirical scheme for determining the most efficient
method for estimating the components in each of the

w xmodes 1 . There are numerous applications of the
w xTucker3 model in psychometrics 15 and Chemo-

w xmetrics 6,11 .

3.4. Core rotations

Since the interpretation of the Tucker3 model is
based on the core, the rotational ambiguity of the

Tucker3 model can be exploited to yield a different
Žrepresentation of the same model i.e., component

.matrices and core array , which has as few signifi-
cant entries as possible, allowing for a more direct
and simple interpretation of the combinations of fac-
tors that really are important to understand data. As a
means to simplify the core of the Tucker3 models,
different measures have been implemented in the
toolbox for rotation of Tucker3 models to maximize
the simplicity of the core. The implemented mea-
sures include super-diagonality, slice-wise diagonal-

w xity and minimum variance-of-squares 13 . The im-
plementation of the rotation is based on a general
scheme for optimizing differentiable simplicity mea-

w xsures by means of orthogonal rotation matrices 2 ,
which has the desirable effect of preserving the fit of
the model.

3.5. Data sets

Measured, as well as simulated, data accompany
the toolbox. These data include quite different kinds
of multiway data. For instance, fluorescence process
data are included, which are relatively trilinear; while
the included sensory data set is quite far from trilin-
ear and, furthermore, it contains much ‘‘noise’’. The
data sets are used throughout the internet exercises at
http:rrwww.models.kvl.dkrcourses to illustrate the
different models and how they are used in practice.
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