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Abstract

Ž .An extension of the parallel factor analysis PARAFAC methodology is presented to allow accurate and reliable quanti-
tative and qualitative analysis of nonlinear data collected from hyphenated instrumentation. The weighted PARAFAC method

Ž .is applied to high-performance liquid chromatography-ultravioletrvisible HPLC-UVrVis diode array spectrometry analy-
sis. It is demonstrated that this method improves the quantitative errors when spectroscopic nonlinearities from solvent–so-
lute interactions or detector saturation are introduced. As much as 50% improvements in the root mean squared errors of
estimation are realized for test samples. This weighted PARAFAC algorithm implicitly treats nonlinear data as missing val-
ues. A method requiring no a priori information is presented, that facilitates determination of the nonlinear regions and opti-
mal application of the weighted PARAFAC algorithm. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž . w xParallel factor analysis PARAFAC 1–3 based
calibration has been demonstrated to be a powerful
method for extracting qualitative and quantitative in-
formation from collections of multiway data such as
that from high-performance liquid chromatography-

Ž .ultravioletrvisible HPLC-UVrVis diode array
Ž .spectrometers and excitation-emission matrix EEM

w xfluorescence spectrometers 4–12 . Theory states that,
when applied appropriately, PARAFAC exploits the
structure of such data to uniquely resolve the under-

) Corresponding author. Scotia Lipid Teknik, P.O. Box 6686,
S-113 84, Stockholm, Sweden

lying instrumental profiles and the relative concen-
w xtrations of each component in the system 13 . Thus,

by employing only a small number of standards, an
analyte profile can be accurately extracted from a
mixture containing unknown, uncalibrated interfer-
ents. This is known as the ‘second order advantage’
w x14 .

PARAFAC assumes that a trilinear model accu-
rately describes all sources of variance in the three-
way collection of data. With this model comes the
implicit assumption that, for a pure component, any
sample analyzed will yield a matrix of rank equal to
1. Furthermore, the observed signal of each analyte
is independent of concentration and the presence of
any interferents. That is to say, the final observed
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signal of any mixture is the linear combination of
signals from all constituents. The theory and imple-
mentation of PARAFAC and other linear three-way
methods are further covered in the tutorial by Bro
w x15 .

It should be noted that problems do occur when
directly applying the trilinear PARAFAC modelral-
gorithm to data that deviates from the ideal trilinear

w xmodel. Booksh and Kowalski 16 have catalogued
five broad classes of deviations from the trilinear
model that are common with chemical data. In some
of these cases, methods like the extended trilinear

w xdecomposition 17 , constrained Tucker models
w x18,19 , and second order standard addition method
w x20 may be employed to preserve the second order
advantage. However, when the observed deviations
from the trilinear model result from a nonlinear de-
tector response, no solution for accurate modeling of,
and calibration with, this type of data was proposed.

This paper presents a method for maintaining the
second order advantage when analyzing three-way
data of the type collected with a nonlinear detector
Ž .i.e., one that deviates from Beer’s law . A weighted
PARAFAC algorithm is employed to eliminate the
observations with the largest deviation from the tri-
linear model. The method is tested with Monte Carlo
simulations and applied HPLC-UVrVisDAS data. It
is demonstrated that this weighted PARAFAC
method yields accurate and precise estimates of re-
solved analyte chromatograms, spectra, and concen-
trations even when a significant fraction of the ob-
served data for a given sample is in the nonlinear
range of the detector. It is further demonstrated that
the weighted PARAFAC method is also capable of
accurate quantization when other concentration de-
pendant nonlinearities, such as solvent–solute inter-
actions, are present in UVrVis data.

2. Theory

PARAFAC employs the trilinear model
N

ˆ ˆ ˆR s X Y Z qE . 1Ž .Ýi jk i n jn k n i jk
ns1

Where the k th slice of R is the I=J matrix of data
collected from the instrumental analysis of the k th
sample. In the case of HPLC-UVrVisDAS, each of

these matrices contain I spectra of J discretely digi-
tized wavelengths. Thus, the N columns in the matri-

ˆ ˆ ˆces X, Y, and Z are the PARAFAC estimates of the
chromatograms, spectra, and relative concentrations
of the N species that coexist in R. Only the number
of factors employed in the model, N, is supplied by
the analyst. E is the collection of model and random
errors residual from fitting this trilinear model to R.

Ž .The parameters of Eq. 1 are found by an alter-
nating least squares procedure where the PARAFAC
algorithm begins with an initial guess of the X-way
and Y-way starting profiles. The initial Z-way pro-
files are determined by solving

R sCZT 2aŽ .C

ˆ q qsuch that ZsC R with C being the generalizedC

inverse of C that can be calculated from the normal
equations or singular value decomposition of C. In

Ž .Eq. 2a , R is a I) J=K matrix constructed byC

unfolding the K slices of R in the IJ plane where
R . Similarly, C is a I) J =N matrixC sRŽ jy1. Iq i,k i, j,k ˆ ˆformed from the N columns of X and Z where
C sX Y .Ž jyi. lqi,n i,n j,n

Updated estimates of the X-way and Y-way pro-
files are found by solving

R sAXT 2bŽ .A

ˆ qsuch that XsA R , andA

R sBY T 2cŽ .B

ˆ qsuch that Y s B R where R and R are con-B A B

structed analogously to R by unfolding R in the YZC

and XZ planes, respectively. This forms a J) Z= I
matrix for R and a X ) Z=J matrix for R . Simi-A B

larly to C, A sY Z and B sŽky1. jqk ,n j,n k ,n Žky1. lqk ,n

X Z . The algorithm proceeds iteratively, cyclingi,n k ,n
Ž . Ž . Ž .through Eqs. 2a , 2b and 2c until the conver-

gence criterion is satisfied. At each step, the most re-
ˆcent estimates of X and Y are used to determine Z

ˆŽor Y and Z to determine X, or X and Z to determine
ˆ .Y, depending on the equation currently being solved .
Thus, the squared residual error penalty function,

N ˆ ˆ ˆ 2ŽŽ . .Ý R y Ý X Y Z is minimized byi , jk i jk ns 1 i n jn k n
ˆ T 2 ˆ T 25 5 5 5minimizing R y AX ,, R y BY , andF FA B

ˆ T 25 5R yCZ at each appropriate step in the itera-FC
5 5 2 I J 2tive cycle. Note that Q sÝ Ý Q and is theF is1 js1 i, j

squared Frobenius, or Euclidian, norm of Q.
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However, any optimization penalty function may
ˆ ˆ ˆbe employed to determine X, Y, and Z. In this work,

it is realized that some elements of 5 contain a high
degree of deviation from the underlying trilinear
model and are best left unmodeled. These elements,
once determined, are assigned a weight of zero rela-
tive to the other elements. The weight matrix, W isi jk

thus constructed by determining the observed value
for the onset of nonlinearities. If R is less than thei jk

cut-off value, W is assigned a weight of unity; ifi jk

R is greater than or equal to the cut-off value, Wi jk i jk

is assigned a weight of one. This yields an overall
N ˆ ˆ ˆ 2Ž Ž . .penalty function of Ý W R Ý X Y Zi, j,k i jk i jk ns1 i n jn k n

5 Žwhich is minimized by minimizing W ` R yA A
ˆ T 2 ˆ T 2.5 5 Ž .5 5 ŽAX , W ` R yBY , and W ` R yF FB B C C
ˆ T 2.5CZ at each appropriate step in the iterative cy-F

cle where ` is the element wise, or Hadamard,
product. Here, W , W , and W are constructed byA B C

unfolding: equivalently to unfolding R to construct
R , R , and R .A B C

3. Experimental

3.1. Programs and analysis

The PARAFAC algorithm and all modifications
Žwere written in-house in the Matlab 5.2 Math-

.Works, Natick, MA environment. Matlab was
Ž .launched on a 200 MHz Pentium Intel with 96MB

ŽRAM under the Windows95 operating system Mi-
.crosoft, Redmond, WA .

3.2. Simulations

Simulated HPLC-UVrVisDAS instrumental pro-
files of 50 spectra, each with 100 digitized wave-
lengths, were constructed for three components. Cor-
relation coefficients in the HPLC-way ranged from
0.73 to 0.78 and correlation coefficients in the
UVrVis-way ranged from 0.49 to 0.88. A 33 experi-
mental design was employed to create 27 simulated
instrumental responses scaled to have a maximum in-
tensity of 3000 mAU. When appropriate, normally
distributed random errors with a mean of zero and
standard deviation of 50 mAU were added to the 27
simulated instrumental responses.

Two types of nonlinearities were induced in the
data. The first simulated a nonlinear detector re-

sponse. The data remained linear up to 1500 mAU.
Above 1500 mAU the instrumental response deviates

Ž .significantly from Beer’s law Fig. 1, dashed line .
The second nonlinearity studied simulates 5% stray

w xlight in a UVrVisDAS system 21 . This is a contin-
uously nonlinear function where no true linear region

Ž .exists Fig. 1, dotted line .

3.3. HPLC-UVrVisDAS data

HPLC data were collected on a Shimadzu LC-
10AS liquid chromatograph with a Shimadzu SPD-

ŽM10AVP diode array detector Shimadzu, Kyoto,
.Japan . Separations were performed on a 15 cm=4.6

Ž .cm Supelcosil C18 column Supelco, Bellefonte, PA .
All data were converted to ASCII flat files and im-
ported into Matlab via a Matlab program written in-
house.

Two sets of HPLC-UVrVisDAS were collected.
The first set contained 33 standards and mixtures of

Ž .naphthalene Fisher, Pittsburgh, PA , toluene
Ž . ŽFisher , and p-xylene Sigma-Aldrich, St. Louis,

.MO . Maximum standard sample concentrations were
0.328 ppt, 6.0 ppt, and 8.0 ppt, respectively. Nine
ternary and three binary mixture samples were pre-
pared with concentrations of 1, 3r4, 1r2 and 1r4 of
the standards as appropriate. The entire experimental
design was repeated with a two-fold dilution of all
samples. An additional standard of 20% of the maxi-
mum concentration for each component was pre-
pared. Each sample was run in duplicate to yield 66
total HPLC-UVrVis spectra. The flow rate was set

Žto 2.5 mlrmin with a 95% methanol Mallinckrodt,
.Phillipsburg, NJ r5% distilled water isocratic mo-

bile phase. Spectra were collected at 1 nm intervals
from 240 nm to 300 nm. A sampling frequency of 1
UVrVis spectrum per 0.24 s was employed. Spectra
were collected from 48 s to 72 s following injection.
This resulted in a 100=60=66 data cube from the
experiment. Spectra and chromatograms from the
standards are shown in Fig. 5a and Fig. 7a, respec-
tively.

The second set contained 34 standards and mix-
tures of naphthalene, toluene, p-xylene, and ethyl-

Ž .benzene Sigma-Aldrich . Maximum standard sam-
ple concentrations were 0.328 ppt, 3.2 ppt, 4.0 ppt,
and 3.2 ppt, respectively. Seven quaternary and four
ternary mixture samples were prepared with concen-
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Fig. 1. Observed vs. latent response for the two types of nonlinearities investigated in the simulation. The piece-wise nonlinear function
Ž . Ž .1.5 Ž .dashed line is given by Ry0.5) Ry1.5 for R)1.5. The continuously nonlinear function dotted line simulates 5% stray light,

Ž Ž yR ..log 1.05r e q0.05 .10

trations of 1, 3r4, 1r2 and 1r4 of the standards as
appropriate. The entire experimental design was re-
peated with a two-fold dilution of all samples. An
additional standard of 20% of the maximum standard
concentration for each component was prepared. Each
sample was analyzed in duplicate to yield 68 total
HPLC-UVrVis spectra. The flow rate was set to 2.0
mlrmin for a 90% methanolr10% distilled water
isocratic mobile phase. Spectra were collected at 1 nm
intervals from 240 nm to 300 nm. A sampling fre-
quency of 1 UVrVis spectrum per 0.63 s was em-
ployed as the data were collected from 72 s to 105 s
following injection. This resulted in a 50=60=68
data cube from the experiment. Spectra and chro-
matograms from the standards are shown in Fig. 5b
and Fig. 7b, respectively.

4. Results and discussion

4.1. Choice of PARAFAC models

The traditional trilinear PARAFAC model was
applied in analysis of all simulations and data sets. A

three-factor model was employed for the simulations
and first data set. A four-factor model was employed
for the second data set. These models were deemed
optimal based on knowledge of the number of real
factors employed to construct the datarsamples and
visual inspection of the estimated profiles. The esti-
mated profiles were compared, as appropriate, to the
profiles employed for construction of the data set or
to the profiles of pure compounds analyzed on the
HPLC-UVrVisDAS. Also, estimated profiles from
PARAFAC models employing one fewer and one
additional factor were compared to the instrumental
profiles and known concentrations of the standards to
further insure that the model employed was the most
accurate.

4.2. Simulations

The first computer test set simulated the HPLC-
UVrVisDAS response with a detector nonlinearity

Ž .above 1.5 absorbance unit AU . The instrumental
response is linear below 1.5 AU and contains a sharp
nonlinearity above 1.5 AU. Fig. 2a presents the sim-
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Ž . Ž .Fig. 2. a Simulated nonlinear HPLC-UVrVisDAS instrument response with b associated weight matrix at 1.5 AU cut-off.

ulated instrumental response of the most intense
sample as a 3-D mesh plot. Note that the broad peak

to the rear of the figure flattens as the peak’s inten-
sity increases above 1.5 AU. The weight matrix ap-



( )G.G. Andersson et al.rChemometrics and Intelligent Laboratory Systems 49 1999 195–213200

plied to this sample, for a 1.5 AU cut-off, is shown
in Fig. 2b. If a greater intensity was used as cut-off,
a greater percentage of the sample would receive
non-zero weights. Simultaneously, if a lesser cut-off
value were adapted, a greater proportion of the sam-
ple would be assigned weights of zero. Conse-
quently, fewer of the measurements would be em-
ployed to determine the underlying instrumental and
concentration profiles in the data.

Fortunately, in many cases, the data collected for
PARAFAC analysis is greatly mathematically over-
determined. Therefore, accurate estimation of the
model parameters can be achieved with only a small
fraction of the data. The ability to accurately decon-
volve the spectral profiles with weighted PARAFAC

Ž .is evident in Fig. 3 open symbols . When no ran-
dom errors are added to the data, the root mean

Ž .squared error RMSE of estimating the concentra-
tions of the three species in all 27 samples markedly
increases when a cut-off above 1.5 AU is employed.
Here, only 58% of the individual measurements, 34%
of the integrated signal intensity, are available for

Ž .parameter concentration estimation. The RMSE of
all three components in the most intense sample is
3.8=10y4 ; consistent with the RMSE of the other 26
samples. Also, there is little loss in accuracy when a
cut-off as low as 0.4 AU is employed. At this cut-off,
only 17% of the individual measurements, or 2% of
the integrated intensity, is employed for parameter
estimation. A 5.0 =10y4 RMSE of estimating the
concentration of all three components in the most in-
tense sample is still realized. Theoretically, the lower
limit of the cut-off is governed by the available de-
grees of freedom for estimating the PARAFAC pa-
rameters.

When random, instrumental errors are present,
there is a practical limit on the acceptable cut-off
levels. As with the error free data, employing a cut-
off above the linear region will add a bias to the esti-
mated parameters in the model. This is evident in the

Žrapidly increasing RMSE seen in Fig. 3 solid sym-
.bols as the cut-off becomes increasingly greater than

1.5 AU. At the higher cut-offs, the bias in the
PARAFAC model predominates and the RMSE for

Ž . Ž .Fig. 3. Root mean squared error RMSE for piece-wise nonlinear three component mixture set without added random errors open symbols
Ž .and with added random errors solid symbols .
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the noiseless and noise-added data are equivalent. At
lower cut-offs, the signal averaging advantage is lost
with the degrees of freedom and the RMSE rapidly
increases.

A second, realistic, nonlinearity that occurs in
HPLC-UVrVisDAS data is induced by stray light
impinging on the detector. For the second simula-
tion, the ability of weighted PARAFAC to mitigate
the effect of stray light was investigated. Since there
is no true linear region with this type of data, no ex-
plicit cut-off exists that completely constrains the
model to a linear region of the data. Instead, since the
data becomes increasingly nonlinear as the ab-
sorbance increases, the RMSE decreases with de-

Ž .creasing cut-off Fig. 4, open symbols . However,
when random, instrumental errors are present, signal
averaging advantages are eventually lost as fewer and
fewer individual measurements are employed to esti-
mate the PARAFAC model parameters. Thus, there
are two competing effects; systematic errors from bias
increase as the cut-off level increases and random er-
rors from precision increase as the cut-off level de-

Ž .creases Fig. 4, closed symbols . Consequently, the
minimum RMSE occurs with a 1 AU cut-off in this
application with a cut-off range of 1.0 to 1.5 AU
yielding equivalent RMSEs.

4.3. HPLC-DAS data

4.3.1. Preliminary analysis
The nonlinear response imbedded in this dataset is

Ž .demonstrated in the plot of normalized unit area
Ž .spectra of the three analytes Fig. 5a . Here, the

UVrVis spectra of each analyte are collected
throughout the chromatographic peak of the most
concentrated standard. The relative intensities of the
toluene 271 nm and p-xylene 276 nm peaks decrease
compared to the toluene 263 nm and p-xylene 271
nm peaks, respectively. Little change is seen in the
naphthalene spectrum, although a slight relative de-
crease is observed in the 278 nm peak. It is probable
that this nonlinearity is not derived from the detector
response but is a result of concentration dependent

Ž .Fig. 4. RMSE for continuously nonlinear three component mixture set without added random errors open symbols and with added random
Ž .errors solid symbols .
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Ž . Ž . Ž .Fig. 5. Unit area normalized spectra from a three component data set and from b four component data set of toluene solid lines , naph-
Ž . Ž . Ž .thalene dashed lines , p-xylene dotted lines and ethylbenzene bold lines .

changes in the toluene and p-xylene UVrVis spec-
tra. This assertion stems from the fact that the maxi-

mum naphthalene and p-xylene signals are 1.60 AU
and 1.62 AU, respectively, and the toluene standard’s
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maximum absorbance is 1.30 AU. Yet naphthalene
shows little nonlinearity compared to the less intense
toluene. Furthermore, when the chromatographic
profiles are plotted for each wavelength, toluene and
p-xylene show significant flattening at the top of the
chromatographic peaks at 271 nm and 276 nm, re-
spectively. The second data, collected at lesser aver-
age concentrations, demonstrated no significant non-

Ž .linearity in the toluene spectra 1.59 AU maximum
and increased nonlinearity in the naphthalene 278 nm

Ž .peak Fig. 5b . The nonlinearity observed in p-xylene
Ž .1.49 AU maximum is comparable to the nonlinear-
ity observed with p-xylene in the first data set; al-
though a plot of absorbance at 276 nm vs. ab-

Ž .sorbance at 271 nm or 263 nm shows that the sec-
ond data set demonstrates a slightly greater degree of
nonlinearity. The increased nonlinearity could be a
result of increased solvatochromatic effects in the
90:10 methanol:water mobile phase compared to the
95:5 methanol water mobile phase. No appreciable

Žnonlinearity is observed with the ethylbenzene 0.9
.AU maximum .

( )4.3.2. Three-analyte data set high concentrations
Employing the weighted PARAFAC significantly

improves the RMSE of prediction for all three ana-

lytes in the first data set. The RMSE of naphthalene
is reduced 24.4% from 19.9 ppm to 14.9 ppm.
Toluene prediction error is reduced 38.9% from 537.1
ppm to 328 ppm and the RMSE for p-xylene de-
creases 31.6% from 384 ppm to 263 ppm. Therefore,
the overall accuracy of analysis improves from ap-
proximately 10% of maximum concentration to only
3% to 4% for these analytes. The correlation be-
tween cut-off employed for the weighted PARAFAC
and the RMSE is presented in Fig. 6. Toluene and
p-xylene experience a minimum in the RMSE when
a cut-off of 1.1 AU is employed; naphthalene is min-
imized with a cut-off of 1.3 AU. The minima of these
curves are quite broad, "0.2 AU, so exact determi-
nation of the optimal cut-off is not critical. Choosing
an intermediate cut-off value of 1.2 AU does not
drastically degrade the predictive accuracy. The
RMSE for p-xylene increases by 1.6 ppm while
toluene and naphthalene increase by 0.2 and 0.02
ppm, respectively.

( )4.3.3. Four-analyte data set low concentrations
Investigation of optimal cut-off values for the four

component, lower concentration, data set yields addi-
tional insights for the application of weighted
PARAFAC to nonlinear three-way data.

Ž . Ž .Fig. 6. RMSE as a function of applied cut-off calculated from the three component data set for toluene circles , naphthalene stars and
Ž .p-xylene triangles .
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4.3.3.1. Ethylbenzene. In general, ethylbenzene is not
precisely predicted at any cut-off level. The best

ŽRMSE of ethylbenzene is 354 ppm 11% error rela-

.tive to maximum concentration in this data set com-
pared to 80 ppm for the other analytes in the same
concentration range and does not systematically

Ž . Ž . Ž .Fig. 7. Pure component chromatograms from a three component data set and from b four component data set of toluene solid lines ,
Ž . Ž . Ž .naphthalene dashed lines , p-xylene dotted lines and ethylbenzene bold lines . Each analyte is shown at maximum concentration and 1r2

maximum concentration.
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change with varying the cutoff level. Precise resolu-
tion of the spectral, chromatographic, and concentra-
tion profiles are hindered in part due to the large
spectral similarity between ethylbenzene and toluene
Ž .Fig. 5b and large chromatographic similarity with

Ž .naphthalene Fig. 7b . The signal overlap between
components, theoretically, does not degrade the per-
formance of PARAFAC to a great extent. However,
the chromatographic irreproducibility between sam-
ples is significant compared to the difference in re-
tention times for naphthalene and ethylbenzene. Re-
tention time reproducibility has been demonstrated to
be a limiting factor in successful application of

w xthree-way calibration models 4,22,23 . Weighted
PARAFAC does not attempt to alleviate modeling
problems associated with chromatographic shifts. The
effects of retention time shifts are also seen in the er-
rors of model fit for each sample. The majority of
model errors display strong time dependent deriva-
tive features that are indicative of chromatographic
shifting among the samples.

4.3.3.2. p-Xylene. Application of weighted PARA-
FAC gains a 34% improvement on the RMSE. As in
the first data set, p-xylene demonstrates a sharp dip

Ž .in the plot of RMSE vs. cut-off Figs. 6 and 8 .
However, in the second data set, the minimum RMSE
occurs at 0.9 AU while the minimum for the first data
set occurs at 1.1 AU. This effect could be partially
due to the increased p-xylene nonlinearity in the sec-
ond data set such that additional signal should be ex-
cluded. While it is unlikely that the decrease in aver-
age p-xylene concentration in the second data set
compared to the first data set resulted in the shift in
optimal cut-off, confounding effects from variance in
chromatographic overlap and retention time repro-
ducibility between the two data sets make it difficult
to reliably attribute this change in optimal cut-off to
any particular cause.

4.3.3.3. Toluene. Analysis for toluene yields only a
2.3% improvement in RMSE. That the decrease in
RMSE for toluene with application of weighted
PARAFAC is much less than the improvement real-
ized with p-xylene is expected since the nonlinearity
associated with toluene is less than the nonlinearity
associated with p-xylene; the toluene spectra are
modeled well with high cut-off values even though
p-xylene spectra are not well-modeled with the
four-factor PARAFAC model.

Ž . Ž .Fig. 8. RMSE as a function of applied cut-off calculated from the four component data set for toluene circles , naphthalene stars and
Ž .p-xylene triangles .
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Table 1
Correlation coefficients for RMSE of each analyte as a function of interfering analytes

Interferent_analyte Naphthalene Ethylbenzene Toluene p-Xylene
Ž . Ž . Ž . Ž . Ž .cut-off none none 1.2 AU 0.9 AU

Naphthalene 0.00 0.20 y0.03 0.15
Ethylbenzene y0.41 0.00 y0.11 0.46
Toluene y0.23 y0.31 0.00 0.40
p-Xylene y0.21 0.01 y0.11 0.00

4.3.3.4. Naphthalene. Naphthalene showed no im-
provement in RMSE with decreasing cut-off in ap-
plication of weighted PARAFAC. In fact, a steady
increase in RMSE was observed with the most rapid
ascent at cut-offs less than 1.3 AU. The lack of im-
provement in naphthalene prediction is attributed to
the chromatographic instability coupled with the
chromatographic collinearity with ethylbenzene.
Table 1 presents the correlation coefficients between
the concentration each analyte with the prediction er-
ror for each analyte. The largest correlation coeffi-
cients were with ethylbenzene as an interferent over-
lapping p-xylene and naphthalene. Eliminating the
largest measurements primarily eliminates data in the
naphthalenerethylbenzene and ethylbenzener

toluene measurement areas. This would account for
the earlier, and more rapid, increase in RMSE with
decreasing cut-off for naphthalene and toluene.

4.3.3.5. Split data set. By splitting this data set in half
Žhigh concentration samples and low concentration

.samples , it can be seen that the observed behavior of
the weighted PARAFAC model with this data set
agrees with the observed behavior of the weighted
PARAFAC model in the Monte Carlo Simulation.
Fig. 9 presents a plot of RMSE vs. cut-off for the high
and low concentration halves of the four component
data set. When just the higher concentration samples

Ž .are analyzed for p-xylene solid triangles , a mini-
mum in the RMSE vs. cut-off is observed at 0.9 AU.

Ž .Fig. 9. RMSE as a function of applied cut-off calculated from the higher concentration half solid symbols and the lower concentration half
Ž . Ž . Ž . Ž .open symbols of the four component data set for toluene circles , naphthalene stars and p-xylene triangles .
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As with the p-xylene analysis, the RMSE for toluene
Žat higher concentrations Fig. 8 circles and Fig. 9

.solid circles begins to increase when a cut-off less
than 1.0 AU is employed. At this cut-off level, the
negative effect of the decreasing signal to noise in the
fitted data begins to surpass the positive effect of ap-
plying the PARAFAC model to the increasingly lin-
ear region of the data.

It is interesting to note that no improvement in
RMSE is observed when weighted PARAFAC is ap-

Žplied the lower concentration half of the data set Fig.
.9, open symbols . The lack of improvement is under-

stood by realizing that only a small fraction of the
data have an absorbance value greater than 1.0 AU.

ŽAt a cut-off of 0.9 AU, the most intense and theoret-
.ically informative 2.9% of the data are excluded

from analysis of the full data set with 5.6% of the high
half of the data set being excluded and only 0.6% of
the low half of the data set being excluded. Consider-
ing that 60.5% of the data are less than 10 mAU and
76.8% of the data are less than 100 mAU in the full
data set, a cut-off of 0.9 AU excludes between 7%
and 25% of the best quality data from the full data
set. In terms of spectral intensity, a cut-off of 0.9 AU
excludes 31.0%, 43.0%, 9% of the total signal from
the whole, high concentration half, and low concen-
tration half of the data set, respectively.

4.4. Determination of optimal cut-off

One method for determining the optimal cut-off is
to observe the RMSE of estimation. This is fine when
the analyte, or analytes, concentration is known in
many of the samples investigated and these known
samples exceed the linear range of signal intensities.
However, this is not always the case and possessing
and alternative, corroborating, means to assess the
proper cut-off is useful.

( )4.4.1. Simulations with linear region
Empirically, the optimal cut-off can be also be de-

termined by analyzing a plot of modeled data vs.
measured data. The modeled data is formed by re-
constructing one or more samples of the data set from
the estimated PARAFAC parameters. In the case of
data with an explicit linear range, this plot will be
linear up to the optimal cut-off value whenever a
cut-off less than or equal to the optimal cut-off is

chosen. This is shown in Fig. 10a for the most in-
tense sample in the simulation. If a cut-off greater
than the optimal cut-off is chosen, the plot will be
slightly nonlinear up to the optimal cut-off; larger
deviations from linearity will occur at greater intensi-

Ž .ties than the optimal cut-off Fig. 10a . In fact, when
a cut-off in the linear region is chosen, the plot of
modeled vs. measured data passes through the point
² :cut-off, cut-off . The greatest value that the plot
passes through a point with the same ordinate and
abscissa value is the maximum cut-off that includes
only linear data. The appropriateness of choosing
cut-offs in the linear region to model the data can be
seen in Fig. 10b. At cut-offs below 1.5 AU, the re-
constructed data from the PARAFAC model extrapo-
lates to the true underlying data before any nonlin-
earities were introduced. Concurrently, when data in
the nonlinear region are included in determining the
model parameters, deviations occur both above and
below the maximum linear region.

( )4.4.2. Simulations with no linear region
When no explicit linear region exists in the data,

the choice of optimal cut-off is more difficult. Fig.
11a presents a plot of model errors vs. modeled in-
tensity for four distinct cut-off levels applied to the
simulated stray light data with no added random er-
rors. The modeled data from the 2.0 AU cut-off
demonstrates a significant lack of fit to the measured
data both above and below the cut-off value. This
cut-off value does not result in accurate estimation of

Ž .analyte concentrations Fig. 4 . Concurrently, al-
though the degree of fit is very poor above the cut-off
value, the 0.5 AU cut-off fits the experimental data
accurately up to the employed cut-off. This cut-off
also yielded the lowest RMSE of estimation for ana-
lyte concentration. Comparing Fig. 11a to Fig. 4, the
strong correlation between fit of the model to the data
below the cut-off value to RMSE of prediction is ev-
ident. When the model fit is excellent below the cut-
off, the RMSE of prediction over the whole data set
is low. However, when the model fit below the cut-off
is poor, the RMSE of prediction is high throughout
the whole data set.

When random errors are added to the continu-
ously nonlinear data, a strong correlation between
model fit below the applied cut-off and RMSE is ob-
served. As with the errorless data, the 2.0 AU cut-off
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Ž .Fig. 10. a Modeled vs. true latent linear spectral intensities as a function of three separate cut-offs applied with weighted PARAFAC to
Ž .errorless simulated HPLC-UVrVis data. The optimal cut-off is 1.5 AU or less. b Modeled vs. measured spectral intensities as a function

of three separate cut-offs applied with weighted PARAFAC to errorless simulated HPLC-UVrVis data. The optimal cut-off is 1.5 AU or
less.
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Ž .Fig. 11. Model error vs. modeled intensity for four different cut-offs applied to continuously nonlinear simulated 5% stray light HPLC-
Ž . Ž .UVrVis data. a No random errors added, b random errors added.

Žmodel neither fits the data below the cut-off Fig.
. Ž .11b , nor yields a low RMSE of estimation Fig. 4 .

Unlike the errorless data, the PARAFAC model based
on the 0.5 au cut-off yields large deviations from the
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experimental data and a relatively large RMSE of es-
timation compared to the minimum RMSE of fit ob-
served for the data in Fig. 4. The reversal in weighted
PARAFAC’s ability to quantitatively model the data
with this low cut-off is understandable since, in this
application, the signal-to-noise ratio of the data em-
ployed to estimate the model parameters is at most 10
for any given datum and usually much less. Interest-
ingly, the 1.0 AU and 1.5 AU cut-off models fit the
data almost identically over the whole range of mea-
sured intensities. Based on the fact that the two mod-
els fit the data in the range of 0 to 1.0 AU equiva-
lently, and that the 1.5 AU cut-off based model at-
tempts to model an additional set of slightly nonlin-

Žear data, it is understandable that the two models and
.those models in the continuum between them yield

roughly equivalent RMSE of estimation with the
model derived from the most linear region of data
yielding the lowest RMSE. However, the 1.0 AU
cut-off data yield lower errors of fit over its range of
intensities employed to calculate the model parame-

Ž .ters 0 to 1.0 AU that does the 1.5 AU cut-off based
Ž .model 0 to 1.5 AU and consequently, yields the

lowest RMSE of estimation.

4.4.3. HPLC-UVrVis data
The utility of estimating the optimal cut-off by

plotting the error of model fit error vs. the measured

Fig. 12. Model error vs. measured intensity for four different cut-off values applied with weighted PARAFAC to the three component
HPLC-UVrVis data. The solid line represents the value of the applied cut-off; the dashed line is the optimal cut-off as determined from Fig.
6.
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Ž .or modeled data seen in the analysis of Figs. 12 and
13. In figure set 12, the fit error plot is constructed

Žfor one of the more concentrated samples 4000 ppm
.toluene, 427 ppm naphthalene, 6000 ppm p-xylene .

For this data set, cut-off between 1.1 AU and 1.3 AU
were found to yield the minimum RMSE of estima-

Ž .tion. When either a cut-off of 0.9 AU Fig. 12a or
Ž .1.2 AU Fig. 12b are employed, the fit error plots do

not show significant model error at measured intensi-
ties below 1.1 to 1.3 AU. In both cases, the model
deviations do not occur at measured intensities less
than the chosen cut-off. This is consistent with hav-
ing employed a cut-off that is equal to or less than the

appropriate cut-off value. When higher cut-offs are
Ž .tested Fig. 12c and d , model errors are observed at

measured intensities both above and below the cho-
sen cutoff and above and below the optimal cut-off.
This error structure is consistent with choosing a cut-
off greater than the optimal cut-off value.

Concurrently, the choice of a 0.9 AU cut-off for
the optimization of p-xylene prediction can be seen
in figure set 13. Regardless of the applied cut-off,
large model deviations begin at measured intensities
greater than 0.9 AU. It is interesting to note that, these
errors are associated only with the p-xylene region of
the chromatogram-UVrVis data. From this, it is more

Fig. 13. Model error vs. measured intensity for four different cut-off values applied with weighted PARAFAC to the four component HPLC-
UVrVis data. The solid line represents the value of the applied cut-off; the dashed line is the optimal cut-off as determined from Fig. 9.
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understandable that weighted PARAFAC presented
little improvement for the prediction of well-mod-
eled naphthalene and toluene.

5. Conclusions

Weighted PARAFAC enables accurate quantita-
tive and qualitative analysis of nonlinear three-way
data. This method works by finding the most nonlin-
ear regions of the data set and eliminating these re-
gions from consideration during model construction.
Presented here is a limited view of the application and
utility of weighted PARAFAC. In this article, the
nonlinear regions have been treated as missing data
and assigned a weight of zero. Also, only nonlineari-
ties that increase with increasing signal were consid-
ered. However, it is also possible to use employ
weight along a continuous scale and to distribute
these weights with any number of different criteria.
From this starting point, weighted PARAFAC should
prove useful in extending the dynamic range of hy-
phenated instrumentation and increasing the applica-
bility of three-way analysis methods to more nonlin-
ear problems.

It should be noted that there is room for refine-
ment in determining the exact the weight matrix from
the assumed cut-off. As performed here, there will be
a small number of measurements that will be as-
signed to the wrong side of the cut-off due to ran-
dom instrumental errors. While this misassignment
would have a negligible, in most cases, where the
majority of the data lies in the linear region, a degra-
dation of precision and accuracy may be observed in
extreme cases when only a small fraction of the data
is ‘linear.’ Options to avoid potential problems asso-
ciated with such spurious rejection or acceptance of
data include basing the rejection on the average of

w xneighboring values 24 , and iterative reweighting
w xtechniques 25,26 .
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