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Abstract 

The application of a new method to the multivariate analysis of incomplete data sets is described. The new method, called 
maximum likelihood principal component analysis (MLPCA), is analogous to conventional principal component analysis 
(PCA), but incorporates measurement error variance information in the decomposition of multivariate data. Missing 
measurements can be handled in a reliable and simple manner by assigning large measurement uncertainties to them. The 
problem of missing data is pervasive in chemistry, and MLPCA is applied to three sets of experimental data to illustrate its 
utility. For exploratory data analysis, a data set from the analysis of archeological artifacts is used to show that the principal 
components extracted by MLPCA retain much of the original information even when a significant number of measurements 
are missing. Maximum likelihood projections of censored data can often preserve original clusters among the samples and 
can, through the propagation of error, indicate which samples are likely to be projected erroneously. To demonstrate its utility 
in modeling applications, MLPCA is also applied in the development of a model for chromatographic retention based on a 
data set which is only 80% complete. MLPCA can predict missing values and assign error estimates to these points. Finally, 
the problem of calibration transfer between instruments can be regarded as a missing data problem in which entire spectra are 
missing on the ‘slave’ instrument. Using NIR spectra obtained from two instruments, it is shown that spectra on the slave 
instrument can be predicted from a small subset of calibration transfer samples even if a different wavelength range is 
employed. Concentration prediction errors obtained by this approach were comparable to cross-validation errors obtained for 
the slave instrument when all spectra were available. 
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1. Introduction 

Over the past few decades, the development of 
increasingly more complex analytical instrumentation 
has demanded the subsequent development of sophis- 
ticated models to better extract information from 
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collected data. Of all the different techniques available 
to analyze multivariate data sets, none is more widely 
used than principal component analysis (PCA), which 
has been applied to problems such as mixture analysis, 
calibration, and exploratory data analysis [ 1,2]. The 
strength of F’CA stems from its ability to represent 
multivariate data using a smaller number of variables, 
called principal components. To do this, the informa- 
tion in many variables is compressed into the first p 
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principal components. If these reproduce the data 
within experimental error, then p represents the intrin- 
sic rank, or pseudorank, of the data. However, for PCA 
to be implemented directly, a complete data set (i.e. no 
missing measurements) is needed, and this is not 
always the case. 

Incomplete data sets commonly arise in a number of 
situations in chemistry. When modeling chemical data 
or in exploratory data analysis, it is conceivable that 
some measurements for a particular sample may not 
have been recorded or are impossible to obtain experi- 
mentally. In other instances, insufficient sample may 
be available for all measurements, or some measure- 
ments may be excluded as erroneous. In the analysis of 
a time series (i.e. in multivariate statistical process 
control), measurements may be missing due to sensor 
failure for a period of time. The problem of calibration 
transfer, where one wishes to transfer calibration 
results from a ‘master’ instrument to a ‘slave’ instru- 
ment based on a small subset of samples, can also be 
regarded as a missing data problem. In this case, whole 
spectra from the slave instrument are unavailable. 
Given the pervasiveness of the missing data problem, 
it would be extremely useful to have a simple and 
reliable technique for minimizing the influence of 
missing measurements in PCA without excluding 
the incomplete samples entirely. Furthermore, such 
a method should be have a sound theoretical basis 
and be capable of predicting missing measure- 
ments according to some recognized criterion of 
optimality. 

A number of methods have been developed over the 
years to handle missing measurements in the multi- 
variate analysis of chemical data [3-81. Most of these 
exploit the fact that the intrinsic rank of the data matrix 
is substantially smaller than the full rank. However, 
there has been no consensus on a procedure that allows 
PCA to address this problem in an optimal manner. In 
this paper, a new approach to the missing data problem 
is introduced through the application of maximum 
likelihood principal component analysis (MLPCA), a 
method described in an earlier paper [9] and recently 
applied to the problem of multivariate calibration [lo]. 
MLPCA is a generalized form of PCA which allows 
estimates of measurement uncertainty to be incorpo- 
rated in the decomposition step. Thus, missing data 
can be accommodated simply by assigning very large 
variances to these measurements prior to implement- 

ing MLPCA. In this work, the feasibility and advan- 
tages of this approach are demonstrated using a 
number of experimental data sets. 

2. Background 

As noted above, there have been a number of 
techniques developed to address the problem of miss- 
ing data. The simpler of these involve preprocessing of 
the data prior to the decomposition step in PCA. If the 
number of missing values is small relative to the size 
of the data matrix, the usual approach is to discard 
either all of the samples or all of the sensors with 
missing measurements (i.e. delete entire rows and/or 
columns of the matrix). Unfortunately, potentially 
useful information from the eliminated sensors (or 
samples) will be lost. As the proportion of missing 
values increases, this loss of information can be very 
significant and, in some cases, the pattern of missing 
data makes this approach impossible. An alternative 
would be to ‘predict’ the missing values prior to PCA. 
The simplest variation of this approach involves the 
substitution of a zero wherever a missing point is 
encountered. In certain instances this type of prepro- 
cessing may produce acceptable results, but it is not 
recommended since it can seriously distort the under- 
lying structure of the data. Usually, a better estimate 
can be obtained via a substitution of the mean of the 
observed points [ll]. Contrary to a popular view, 
however, substitution of mean values is not neutral 
from a modeling perspective, and again serious dis- 
tortion can result. 

A more sophisticated approach uses a covariance 
calculation on the data. Usually, PCA is performed on 
the original m x n data matrix, X, using singular value 
decomposition (SVD) which gives the decomposition, 

x = usvT. (1) 

Alternatively, the covariance matrix of X can be 
decomposed by SVD yielding 

XTX = VS2VT (2) 

or 

XXT = US2UT. (3) 

If the covariance matrix of X can be calculated by 
excluding missing values and reducing the degrees of 
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freedom accordingly, it may be possible to estimate U 
or V in this manner. However, the decomposition will 
weight all of the matrix elements equally and therefore 
is unlikely to yield an optimum solution. Furthermore, 
in cases where there are a large number of missing 
values, this covariance calculation may not be possi- 
ble. 

An extension to the above procedure has been 
described by Wise in the PLS_Toolbox [ 121. In this 
method, the covariance matrix is calculated and then 
decomposed by SVD. The intrinsic rank of the data, p, 
is determined before the analysis and estimates of the 
missing points are obtained through a regression of the 
loadings. These values are then substituted into the 
original data matrix and this updated matrix is used to 
improve the estimates of the SVD model. This pro- 
cedure is performed iteratively until either the change 
in the estimated points falls below a predetermined 
tolerance or a maximum iteration value is reached. 
Although this technique proves useful in many 
instances, it is somewhat cumbersome and its statis- 
tical basis has not been explored. Also, if the number 
of missing values is large, the algorithm may become 
unstable. 

This work investigates the application of MLPCA 
to the missing data problem. This technique, described 
recently in the literature 191, performs a PCA-like 
decomposition of the data but, unlike PCA, uses 
measurement error variance information to choose 
the p-eigenvectors. The procedure generates a decom- 
position which is optimal in a maximum likelihood 
sense for a model of given dimensionality @) provided 
that the measurement errors are distributed as multi- 
variate normal and their variances/covariances are 
exactly known. In practice, this restriction is seldom 
met, but that does not detract from the utility of the 
method (in the same way that the assumptions 
implicit in linear regression do not limit its use to 
cases where those assumptions are valid). Usually, 
independent, normally distributed measurement 
errors are assumed and sample variances are used. 
Although these approximations may not be valid, 
they permit the application of the MLPCA algorithm, 
which will incorporate the variance information in 
the decomposition (in contrast to PCA which 
assumes equal error variances for all measurements). 
Similar to conventional regression methods, MLPCA 
minimizes a weighted residual sum of squares which 

is given by: 

p=~j:(“P--+J2, 
(4) 

i=i j=l rl 

where .?g is the maximum likelihood estimate of 
measurement xv, and rrg is the corresponding mea- 
surement error standard deviation. The MLPCA 
decomposition is carried out using a form similar to 
Eq. (1): 

X = ijSir’ (5) 

whereXismxn,~ismxp,8ispxpand~TispX~.It 
is important to point out here that one of the major 
differences between PCA and MLPCA is that MLPCA 
does not have nested solutions (i.e. MLPCA must be 
performed for each change in the rank estimate, p). 
Another difference, and a significant advantage, is that 
the projection of the original data onto the MLPCA 
eigenvectors is performed using a maximum likeli- 
hood projection, which weights the direction of the 
projection in proportion to the magnitude of the 
measurement error variances. That is to say, while 
PCA projections are orthogonal and take the form: 

ii = xitiT (6) 

where Xi is a row vector of X, and V is the loading 
matrix truncated to p principal components, MLPCA 
projections take the form: 

where Ci is the nxn covariance matrix for the row 
vector xi (diagonal matrix of variances for indepen- 
dent error). In a projection of this type, less importance 
will be given to those measurements with large uncer- 
tainties. When the errors in all the measurements are 
the same, Eq. (7) will reduce to Eq. (6). Readers are 
directed to the original work [9] for further clarifica- 
tion of the differences between PCA and MLPCA. 

In this study, the advantages of performing a max- 
imum likelihood decomposition on incomplete data 
sets will be demonstrated by showing that: (a) even 
when much of the data is missing, the loadings retain 
most of the original information; (b) missing data can 
be reliably predicted; and (c) MLPCA can be used as 
an alternative approach to calibration transfer and, 
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under the right conditions, produces results similar to 
those that would be observed if all the spectra on the 
slave instrument were measured. 

3. Experimental 

3.1. Data sets 

Three experimental data sets were employed to 
demonstrate the advantages mentioned above. Data 
Set 1 is a widely used archaeological data set 
described by Kowalski et al. [ 131. These data were 
obtained in a study intended to relate the origin of 
obsidian artifacts collected at three different locations 
to samples taken from four quarries and consist of 
X-ray fluorescence data on 10 elements for 75 samples. 
Data Set 2 consists of results compiled by de Ligny 
et al. [14] in a study of chromatographic retention 
characteristics. This set contains transformed retention 
data for 39 solutes with 2 eluents on 6 adsorbents, but 
is only about 80% complete. Data Set 3 was part of an 
Infometrix (Seattle, WA) calibration transfer study 
[15] and consisted of near infrared (MR) absorbance 
spectra acquired for 31 samples (mixtures of toluene, 
chlorobenzene and heptane) measured on two instru- 
ments. Further details on each of these data sets are 
included in Section 4. 

3.2. Computational aspects 

The calculations in this work were performed using 
MatLab (The Mathworks, Natick, MA) on two com- 
puter platforms: (1) a Pentium-based personal com- 
puter and (2) a Sun Microsystems SparcServer 1000 
with 230 Mb of memory and four 50 MHz Super- 
SPARC CPUs. A listing of the MatLab code for the 
MLPCA routine is given in Appendix A. Under nor- 
mal circumstances, convergence of the algorithm is 
quite reliable, although it is considerably slower than 
for conventional PCA. With missing data, the con- 
vergence times are often further extended and may be 
a problem in extreme cases. Results in this work 
required times ranging anywhere from under an hour 
to more than a day. Although this is a drawback to this 
method, we feel that its sound theoretical basis and 
versatility justifies its use and are confident that 
algorithmic improvements (particularly in obtaining 

initial estimates for the solution) will greatly improve 
its performance. 

4. Results and discussion 

4. I. Exploratory data analysis 

One of the methods commonly employed to visua- 
lize the characteristics of multidimensional data sets is 
to utilize a projection of the original data into the space 
described by the first two or three principal compo- 
nents. Samples with similar features often appear 
‘clustered’ together in space after this dimensionality 
reduction. As an illustration of this approach, we will 
consider Data Set 1. No pretreatment of the data was 
performed prior to analysis and, in the absence of 
other reliable information, uniform measurement 
errors with a variance of unity were assumed. In the 
case of a complete data set and uniform errors, the 
actual magnitude of the error variance is unimportant, 
since MLPCA is equivalent to PCA under these con- 
ditions. In the case of incomplete data, it is only 
important that the magnitude of variance for missing 
measurements is much greater than that for the mea- 
surements present (a factor of 10” was used in this 
case). 

Fig. l(a) shows the MLPCA projection of the 
uncensored data onto the first two eigenvectors. This 
projection is equivalent to the PCA projection because 
the measurement error variances are uniform. The 
grouping of results according to class (l-4 are differ- 
ent quarries; 5-7 are different artifact locations) is 
consistent with earlier studies and reveals an associa- 
tion between the quarries and the artifacts. However, 
the actual interpretation of the data is not of interest 
here, but rather the behavior of the principal compo- 
nents when data are deleted. 

To test the ability of MLPCA to deal with missing 
measurements, 10% of the measurements were elimi- 
nated in a systematic fashion. A ‘censoring’ mask, as 
shown in Fig. l(b), was applied to the original data 
and was generated by removing the first measurement 
from row 1 (sample 1). the second measurement from 
row 2, and so on, cycling back to the beginning when 
the end of each row was reached. Note that, because 
each sample has at least one measurement missing, 
this data set cannot be analyzed by conventional PCA 
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Fig. 1. (a) Projection of archaeological data onto the first two eigenvectors determined by MLPCA. (b) Pictorial representation of data 

censoring mask for 10% missing data (the white spaces indicate where the data have been removed). (c) Projection of original data into 

subspace determined by MLPCA for censored data. (d) Maximum likelihood projection of censored data into MLPCA subspace for censored 

data. 

by eliminating rows or columns. However, MLPCA that was contained in the original data. This conclu- 
easily handles this situation by employing inflated sion is verified by comparison of Fig. l(a) and lc, 
variances for the missing measurements and the pro- which are virtually identical. Fig. l(d) is a more 
jections are shown in Fig. l(c) and (d). Fig. l(c) accurate portrayal of what one would observe if the 
shows the projection of the original data (i.e. uncen- measurements were truly absent. In this case, max- 
sored) onto the first two eigenvectors which were imum likelihood projections of the censored data onto 
determined by MLPCA performed on the censored the MLPCA eigenvectors were used. Although there 
data set. This can be regarded as ‘cheating’ because if are small perturbations, it can be seen that the projec- 
the data set were indeed incomplete, the censored tion very closely resembles the projection for the 
measurements would not be available. However, the complete data set in Fig. l(a), particularly with regard 
intent is to demonstrate that even with the missing to the clusters observed. Slightly better results were 
data, the eigenvectors retain nearly all the information obtained when the data were mean-centered, but this 
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Fig. 2. (a) Projection of archaeological data onto the first two eigenvectors determined by MLPCA. (b) Pictorial representation of data censor- 

ing mask for 54% missing data (the white spaces indicate where the data have been removed). (c) Projection of original data into subspace 
determined by MLPCA for censored data. (d) Maximum likelihood projection of censored data into MLPCA subspace for censored data. 

method of preprocessing would not be valid if mea- 
surements were truly missing. Of course, the success 
of such an application will depend on the data set and 
the correlation of the measurements, but the avail- 
ability of a statistically optimal procedure for treating 
missing data is a significant advance. 

Data set 1 was also analyzed under more extreme 
conditions, with as many as 54% of the measurements 
removed at random. The ‘censoring’ mask used in this 
case is presented in Fig. 2(b). Under these circum- 
stances, the representation of the two-dimensional 
subspace remained quite good. This is illustrated in 

Fig. 2(c) which shows the projection of the original 
data onto the eigenvectors for the censored data. 
Although there is a reorientation of the eigenvectors, 
the spatial relationship among the samples is largely 
unchanged. As might be expected, projection of the 
censored data was not as successful. In this case, the 
projection is dominated by a few outlying samples 
which are missing critical measurements. If these are 
eliminated, the projection in Fig. 2(d) results. 
Although there is clearly a loss of information in 
this extreme case, some of the associations are still 
apparent. 
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As well as projecting the individual samples into the 
subspace, a similar treatment may be carried out on the 
uncertainties associated with the samples. If the nxl~ 
measurement error covariance matrix for a sample 
(i.e. a row of X) is given by Ci, then the pxp error 
covariance matrix for the scores of that sample, !IJi, 
will (by propagation of error) be given by 

Qi = pyq-‘. 

While this equation does not take into account the 
uncertainty in the eigenvectors, and so cannot be 
regarded as a true measure of variance in the scores, 
it is useful in identifying outliers which are the result 
of incomplete data. Normally, MLPCA reduces the 
influence of uncertain measurements through the pro- 
jection, but in some cases there is insufficient infor- 
mation to do this, resulting in an outlier (e.g. sample 4 
in the above example, which only has one measure- 
ment). For the archaeological data, a projection of the 
error covariance matrix for a given sample with uni- 
form, uncorrelated errors will yield a diagonal matrix 
(2 x 2) with measurement variances on the diagonal. If 
the projection of the covariance matrix for some 
samples with missing data differs from this, the mag- 
nitude of the difference will indicate the uncertainty of 
the scores in the new space. Error bars may be 
obtained by taking the square roots of the diagonal 
elements of the error covariance projection and error 
contours may be constructed utilizing the whole error 
covariance projection. While caution should be used 
in interpreting these as true variances of the scores, 
this approach is useful in the identification of outliers. 

4.2. Modeling 

The treatment of missing data is expected to be even 
more successful when strong correlations exist among 
the measurements. For Data Set 2, retention volumes 
(V,> were measured for 19 solutes (monosubstituted 
benzenes and polycyclic aromatic hydrocarbons), 2 
eluents (n-hexane and 35% v/v methylene chloride in 
n-hexane) and 6 silica-based adsorbents, and trans- 
formed according to: 

Y = log(KV/W), (9) 

where W is the weight of the adsorbent. Out of a 
possible 228 measurements, however, only 183 were 

available. These data have been analyzed in the past 
using a physical model proposed by Snyder [16] and 
three-way factor analysis by de Ligny [14]. The 
objective in the development of such models is to 
enable prediction of retention characteristics of 
solutes with a minimum number of parameters. Esti- 
mation of such parameters is made difficult by incom- 
plete data. 

Because this is a three-way data set, some prepro- 
cessing had to be performed prior to implementation 
of MLPCA. The easiest manipulation would be to 
analyze each adsorbent or eluent individually and 
combine the results. Unfortunately, if much or all of 
the data are missing for a particular solute in one 
subset, the predictive power of this technique will be 
greatly reduced. Therefore, it would be beneficial to 
use any extra information that may be contained in 
data for the other adsorbents or eluent in the decom- 
position step. For this work, the three-way data were 
‘unfolded’ to give a 19x 12 matrix where the first 6 
columns correspond to the transformed retention data 
for eluent 1 and the latter 6 for eluent 2. 

MLPCA was applied to this unfolded matrix and the 
simplest model that produced reliable results had a 
rank of 3. The maximum likelihood projections were 
then used to reconstruct the missing values, which are 
listed in Table 1. Also included in the table are the 
values predicted by de Ligny [14] and Snyder [16]. 
From the table, it is clear that the MLPCA estimates of 
the missing data are in excellent agreement with those 
determined by de Ligny [14] and, with the exception 
of the last entry, fall within the confidence intervals 
determined in that work. This agreement is somewhat 
remarkable given that de Ligny et al use a trilinear 
model (75 parameters) whereas we have used an 
unfolded bilinear model (84 parameters). For a com- 
parison, it would be useful to have an estimate of the 
uncertainty associated with the data predicted by 
MLPCA. This may be accomplished using an exten- 
sion to Eq. (8) which projects the covariance in the 
scores back into the original space: 

(10) 

The diagonal elements of CT’ will contain the 
variance information for a given sample. Although the 
magnitude of the uncertainties used in MLPCA will 
have no bearing on the decomposition as long as it is 
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Predictions of missing data for Data Set 2 (transformed chromatographic data) 

Adsorbent Eluent Sample MLPCA de Ligny Snyder 

2 
2 
2 

3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
6 

1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

5 
18 
13 
18 
19 
18 
19 
18 
19 

9 
10 
8 

14 
18 

2 

8 
10 
13 

2 

8 
9 

10 
18 
19 

2 

8 
9 

10 
18 
19 

2 

8 
9 

10 
18 
19 

2.08f0.07 2.22f0.18 2.07 
0.53Ito.06 0.54f0.13 0.31 
0.90f0.03 0.91*0.12 0.53 
1.54f0.13 1.53+0.21 1.92 
2.29f0.13 2.25f0.23 3.07 
1.55f0.12 1.53f0.20 1.94 
2.3010.12 2.26f0.23 3.09 
1.61f0.13 1.64f0.22 2.00 
2.32f0.12 2.41kO.25 3.12 

-0.91+0.12 -0.83ztO.18 -0.86 
-0.86f0.08 -0.8110.15 -0.90 
-1.05f0.12 -0.96f0.19 -1.18 
-0.60f0.05 -0.66f0.13 -1.09 
-0.54+0.04 -0.56f0.12 -0.81 
-0.41f0.04 -0.42f0.13 -0.86 
-0.56f0.07 -0.58&0.16 -0.69 
-0.75f0.07 -0.78*0.17 -0.74 
-0.70f0.11 -0.69f0.20 -0.67 
-0.71+0.08 -0.78f0.17 -0.86 
-1.06f0.11 -1.05f0.23 -0.94 
-0.4kto.04 -0.45f0.12 -0.30 
-0.53f0.08 -0.52&0.17 -0.42 
-0.64ikO.08 -0.64f0.18 -0.65 
-0.52ztO.11 -0.49&O. 19 -0.48 
-0.48hO.09 -0.51f0.18 -0.64 
-0.42f0.07 -0.39f0.15 -0.28 
-0.99fO. 11 -0.94zkO.23 -0.54 

0.45+0.12 0.46f0.20 0.62 
1.07f0.12 1.08f0.23 1.62 

-0.4510.07 -0.50f0.17 -0.39 
-0.58f0.07 -0.65f0.18 -0.63 
-0.50f0.10 -0.52&0.19 -0.48 
-0.46f0.08 -0.54f0.18 -0.65 
-0.38f0.06 -0.41f0.15 -0.29 
-0.90+0.10 -0.9650.23 -0.56 

0.42f0.11 0.4kko.20 0.61 
1 .OO+o. 10 1.07f0.23 1.60 

-0.67xkO.10 -0.58-fO. 18 -0.36 
-0.75*0.10 -0.67f0.19 -0.51 
-0.58*0.13 -0.49f0.20 -0.23 
-0.54fO. 11 -0.51f0.19 -0.37 
-0.4810.08 -0.40f0.16 -0.02 
-1.18f0.13 - l.OO-fO.24 -0.24 

0.5410.15 0.50f0.22 0.89 
1.28f0.14 1.63f0.25 1.88’ 

the same for all of the data present, a valid estimate of 
measurement uncertainty is required for use in 
Eq. (10). De Ligny suggests that an approximate 
measurement error variance for known values may 
be obtained using the root-mean-squared error 

(RMSE) of the fit for the non-missing data. Confi- 
dence intervals may then be estimated for data points 
using: 

95%CI = 2, f 1.96(&jj)i. (11) 
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In this equation, Q is the predicted measurement 
and (5d i is the square root of thejth diagonal element 
of cp ml . It can be seen from Table 1 that the con- 
fidence intervals for the MLPCA prediction are much 
smaller than their respective counterpart predicted by 
de Ligny. This results from a better fit of the known 
data by the MLPCA approach (RMSE =0.041) than 
that obtained by de Ligny (RMSE =O.lO). Although 
there is a difference in the number of parameters used 
in the fit, the degree of improvement appears much 
greater than one would expect. 

While the MLPCA and de Ligny results were in 
good agreement with each other, the estimates by 
Snyder were often at the limits of the confidence 
interval of de Ligny and beyond those of the MLPCA 
model. This suggests that there may be some defi- 
ciencies in Snyder’s approach. Although MLPCA 
produced a better fit than de Ligny et al, it cannot 
be said with certainty which is the best approach since 
the models are substantially different. However, 
MLPCA does have certain advantages, namely: (1) 
it is based on a well-established statistical criterion 
and is easy to apply; and (2) if error estimates are 
available for the known data, these can be incorpo- 
rated into the decomposition step. 

4.3. Calibration transfer 

With the growing use of multivariate instruments in 
the workplace, a serious issue that has arisen is that of 
calibration transfer or instrumental standardization. 
The problem is that a calibration model determined 
for a particular instrument may lead to very poor 
prediction if used with data collected on another 
instrument. For example, calibration parameters 
obtained on a laboratory spectrometer may not yield 
the same results as an instrument used in an industrial 
setting, even if they are the same instrument model. A 
variety of sources may give rise to the failure of a 
calibration model, including variations in bandwidth, 
noise or sensitivity, differences in wavelength regis- 
tration, and changes in instrument characteristics with 
time or the operating environment. One solution to this 
problem is to rerun all of the calibration samples on 
each instrument. Unfortunately, this procedure can be 
very time-consuming, especially if the number of 
calibration samples and/or instruments is large. Com- 
pounding this, environmental changes may require 

frequent recalibration of an individual instrument, 
which may in turn require the maintenance of a large 
number of standards. Therefore, it would be desirable 
to obtain calibration data on a ‘master’ instrument and 
then transfer it to a ‘slave’ instrument using only the 
data from a few representative samples. The subject of 
calibration transfer has been addressed in several 
recent articles which introduce a variety of techniques 
[ 17-201. An alternative approach, based on MLPCA, 
is presented here to illustrate the potential of maxi- 
mum likelihood methods. This study is not intended to 
be comprehensive, and a more complete analysis and 
comparison with other calibration transfer methods 
will be the subject of future work. 

The approach to this problem is similar to the 
missing data examples addressed above, except whole 
samples from the slave instrument are now regarded as 
missing. For this work, Data Set 3 is used to illustrate 
the typical implementation of this technique. The data 
from the first spectrometer (NIPSystems Model 6500) 
has dimension 30x201 (A data, shown in Fig. 3(a)) 
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Fig. 3. (a) Plot of master (A) and slave (B) spectra for Data Set 3. 

(b) Graphical representation of augmented data matrix with 5 
representative samples from B. (c) Plot of reconstructed data 

following analysis by MLPCA. 
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and will be regarded as originating from the ‘master’ 
instrument (range is 1100-1300 nm with 1 nm 
resolution). The second spectrometer (Guided Wave 
Model 300P) represents the ‘slave’ and the data 
from this instrument (B data, also shown in 
Fig. 3(a)) has the same dimensionality (range is 
1100-1500 nm with 2 nm resolution). The data 
matrix used for analysis by MLPCA was an augmen- 
tation of the A data with part of the B data and 
has dimension 30x402. The left half of this 
matrix corresponds to the full A data matrix, while 
the right half consists of five representative samples 
(rows) from B. The remaining samples in B are 
represented by row vectors of zeros (shown in 
Fig. 3(b)). The ‘known’ spectra are assigned uniform 
variance (the actual value is unimportant, but for this 
work selected as unity) while the ‘missing’ spectra 
were assigned a measurement variance equal to 10”. 
The issue of which subset of samples best represents 
the B data was addressed using the procedure outlined 
by Kennard [21]. 

After application of MLPCA with a rank of 3 
(determined by cross-validation of A), the augmented 
data matrix was reconstructed (shown in Fig. 3c) 
using the maximum likelihood estimates of the 
scores and loadings. It can be seen that this 
reconstruction very closely resembles the original 
data (Fig. 3(a)), and therefore it appears that this 
is a valid technique for the transfer of spectral 
data from one instrument to another. Once the 
maximum likelihood estimates of the spectra on 
instrument B were obtained, they were used to 
build a calibration model for that instrument (also 
three factors). This model was then used to 
predict concentrations from the actual spectra 
obtained from instrument B. The RMS errors of 
prediction are listed in Table 2. For comparison, the 
results from the cross-validation of the original A 
and B data sets are also included in the table 
as RMS errors of cross-validation (RMSECV). 
From the table, it is clear that the prediction errors 
obtained after calibration transfer are comparable 
or slightly better than those obtained from the 
original data for instrument B. Of course there are 
many issues to be considered in more detail, such 
as the nature of the transfer subset and the rank 
of the transfer model. However, this work has 
shown that, when calibration transfer is regarded 

Table 2 

Comparison of prediction errors from MLPCA calibration transfer 

with cross-validation errors from master (A) and slave (B) 

instruments (results in units of weight percent; based on five 

calibration transfer standards and a rank three PCR model) 

Component Instrument A Instrument B Calibration 

transfer 

RMSECV RMSECV RMSEP 

Toluene 0.23 0.30 0.29 

Chlorobenzene 0.25 0.27 0.24 

Heptane 0.12 0.12 0.11 

Total 0.21 0.24 0.23 

as an incomplete data problem, it is possible to 
use MLPCA to predict calibration spectra on the 
slave instrument and obtain a calibration model 
similar to that which would be obtained if all of 
the calibration samples were actually run on that 
instrument. 

5. Conclusions 

The problem of incomplete data sets is a pervasive 
one in the multivariate analysis of chemical measure- 
ments. In this work, it has been demonstrated 
that MLPCA is a convenient and reliable approach 
to solving this problem. While the assumptions 
for maximum likelihood estimation may not be 
generally valid for the application of MLPCA to all 
data sets (i.e. known variances, normally distributed 
errors), this does not diminish the utility of the 
method. Furthermore, MLPCA provides a legitimate 
statistical framework for addressing these problems. 
The application of MLPCA to a wide range of missing 
data problems in exploratory data analysis, modeling, 
and calibration transfer has shown its versatility and 
utility. 
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Appendix 

Listing of Matlab Code for MLPCA 

function [v,S,V,SQBJ,ErrFlag] = mlpca(X,stdX,p); 
% 
% This function performs MLPCA with missing 
% data. 
% 
% x 
%StdX 
% 
% 
% p 
% 

is the mxn matrix of observations. 
is the mxn matrix of standard deviations 
associated with X (zeros for missing 
measurements). 
is the model dimensionality. 

% U,S,V are the pseudo-svd parameters. 
% SQBJ is the value of the objective function. 
% ErrFlag indicates exit conditions: 
% 0 = nkmal termination 
% 1 = max iterations exceeded. 
% 
% Initialization 
% 
convlim=le-10; 
nWCite~50000; 
xX=x; 
varX=stdX.~2; 
[ij]=flnd(varX===tl); 
emnax=n=(n=(varX)); 
for k=l :length(i) 

varX(iQjQ)=lelO*errmax; 
end 
n=length(XX( 1, :)); 
% 
% Generate initial estimates 
% 
for i=l:length(X(:,l)) 

forj=l:length(X(:,l)) 
denom=min([nnz(X(i,:)) nnz(X(j,:))J); 
CV(ij)=(X(i,:)*X(i,:)‘)/denom; 

end 
end 

KJ,S,v)==WV,O); 
UO=U(:,l:p); 
% 
% L.oop for alternating least squares 
% 
C0unt=O; 
Sold=O; 
ErrFlag=-1; 
while ErrFlag< 

coun~unt+l; 
sobj=O; 
MLX=zeros(size(XX)); 
for i=l:n 

Q=spar@diag(varX(:,i).*(-1))); 
F=inv(UO’*Q*UO); 
MLX(:,i)==UO*F*UO’*Q*XX(:,i); 
d4CX(:,i)MLX(:,i); 
Sobj=Sobj+dx’*Q*dx; 

end 
if rem(cdunt_2)=1 

if (abs(Sold-sobj)/Sobj)<convlim 
ErrFlag=O; 

elseif count>maxiter 
ErrFlag=l; 

end 
end 
if ErrFlag< 

Sold=Sobj; 
lU,S,V==dWX’J); 
xX=xX’; 
varX=varX’; 
n=length(XX(l,:)); 
UO=V(:,l:p); 

end 
end 
% 
% Finished 
% 
tJJ,S,vl~~NJSB; 
U=U(:,l:p); 
S=S(l:p,l:p); 
V=V(:,l:p); 
SQBJ=!Wj; 
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