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Flgure 5. ESCA spectra of S 2p level of lead ISE membrane (a) 
without treatment, (b) treated with EDTA solution, and (c) treated with 
“30, solution. 

the angular distribution XPS studies now in progress will give 
us more insight on this phenomenon. 
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Strategies for Analyzing Data from Video Fluorometric 
Monitoring of Liquid Chromatographic Effluents 

C. J. Appellof and E. R. Davldson* 

Department of Chemistry BG- IO, University of Washington, Seattle, Washington 98 195 

A method for qualltative analysls of a multicomponent fluor- 
escent mixture Is developed. Thls method analyzes a three- 
dlmenslonnl matrix obtained by passlng the effluent of a 
high-performance liquld chromatograph (HPLC) through the 
vldeo fluorometer and provldes an estimate of the number of 
components In the mixture as well as the emlssion and ex- 
cltatlon spectra and HPLC profile for each component. The 
theory of this method, and Its appllcatlon to several sets of 
synthetic trnd real data, is presented. 

Fluorescence emission spectrometry is a technique for 
quantitative analysis of multicomponent mixtures of aromatic 

hydrocarbons. A common problem with this type of analysis 
is spectral overlap. That is, the fluorescence emission spectra 
of two components in a solution may be very similar, leading 
to difficulties in quantifying these components. Warner et 
al. (1) showed that by measuring a two-dimensional emis- 
sion-excitation matrix (EEM) some of this difficulty could 
be overcome. There still may exist high spectral overlaps, even 
with this method of measurement, so Johnson et al. (2) have 
proposed adding a third dimension (e.g., pH) to the data 
matrix to provide more separation between the different 
components. Recently, Hershberger et al. (3) developed a 
flow-cell cwet te  which can be attached to a high-performance 
liquid chromatograph (HPLC) and can be placed in the 
sample chamber of a video fluorometer (4,5). This allows the 

0003-2700/81/0353-2053$01.25/0 0 1961 American Chemical Society 



2054 ANALYTICAL CHEMISTRY, VOL. 53, NO. 13, NOVEMBER 1 

Table I. Parameters for Simulated HPLC Profilesa 
C t W 

I 
Two-Componen t 

PER 20.0 5.0 1.0 
FLU 1.0 5.2 1.0 

I1 
Three-Component 

PER 5.0 3.0 1.0 
FLU 1.0 5.0 1.0 
TET 10.0 6.0 1.0 

I11 
Four-Component 

PER 5.0 5.0 1.0 
FLU 1.0 5.8 1.0 
TET 10.0 6.6 1.0 
DMA 20.0 7.4 1.0 

a PER refers to perylene, FLU to fluoranthene, TET to 
tetracene, and DMA to 9,lO-dimethylanthracene. 

I981 

measurement of a three-dimensional matrix of data in which 
the dimensions represent excitation wavelength, emission 
wavelength, and elution time. 

In this paper, a method is developed for analyzing such a 
three-dimensional data matrix to provide an estimate of the 
number of components in solution and estimates of the ex- 
citation and fluorescence emission spectra of each component 
of the sample. These estimates are unique, in contrast to the 
ambiguous estimates obtained from analysis of two-dimen- 
sional EEM’s (1). While HPLC/EEM data are used to il- 
lustrate the method, it applies equally well to any data which 
satisfies eq 4. 

EXPERIMENTAL SECTION 
Several sets of simulated data were generated in the following 

way: The true excitation and emission spectra for perylene, 
fluoranthene, tetracene, and 9,lO-dimethylanthracene (DMA) were 
obtained by eigenanalysis (I) of EEMs taken by the video fluo- 
rometer (6). Then, several different HPLC elution profiles for 
each compound were simulated as Gaussian peaks. 

(1) 
where cp is a normalization constant, t is the peak position, wp 
determines the width of the synthetic &LC peak for component 
p, and t k  is the kth sampling time. The parameters for the 
simulated mixtures (1-111) are listed in Table I. 

Some real data matrices were obtained by passing the effluent 
of an HPLC column through a flow cell in the video fluorometer 
(7). The data consist of successive EEMs taken during the HPLC 
elution process. Sample IV was a two-component solution of 
benzo[e]pyrene and 9-methyhthacene, while sample V consisted 
of benzo[a]pyrene, benzo[e]pyrene, and 9-methylanthracene. 

THEORY 
The data forms a three-dimensional matrix M,, which 

corresponds to the fluorescence intensity of a sample measured 
at  time tk which emits light a t  wavelength A, when excited by 
light of wavelength Xj. For a sample which contains only one 
fluorophore, the data matrix will have a simple form: 

where c is a wavelength and time-independent factor which 
expresses the quantum efficiency, molar absorptivity, and 
concentration of the compound in the sample. The sequenced 
sets of numbers ( x i )  and {yj) can be thought of as the digitized 
and normalized emission and excitation spectra of the sample. 
The set (zk) corresponds to the varying concentration of the 
compound in the HPLC effluent normalized to unit peak area. 
For a dilute solution of N independently emitting components, 
the data matrix is a simple linear combination of pure com- 
ponent matrices 

zkp = cp exp[(tk - tp)/wpI2 

M j j k  = C X f i j Z k  (2) 

N 

s=l 
Mijk  = C c s x i Y j s z k s  (3) 

The analysis consists of determining N and c, x ,  y, and z for 
all N components. For convenience, c is absorbed into x ,  y, 
and z ,  and recovered later by normalization so the model 
becomes 

N 

s=l 
M i j k  = C X i a Y j s Z k s  (4) 

To accomplish the analysis of a data matrix M, the quantity 
N 

(5 )  

is minimized where M is the observed data matrix. Setting 
derivatives with respect to the parameters x i s ,  yjs, and z k #  to 
zero generates three sets of equations: 

S I k 

These can be expressed as three matrix equations 
XQ(w)  = Pbz) (9) 
YQ(xz) = P(xz) (10) 
Z Q ~ Y )  = P(xY) (11) 

where Q(yz) corresponds to a matrix whose stth element is 
the quantity in brackets in eq 6, and the itth element of P(yz) 
is the right hand side of (6). The other Q and P matrices are 
similarly defined by eq 7 and 8. 

Following Carrol and Chang (€9, we use Wold’s procedure 
(9) of nonlinear iterative least squares (NILES) to solve this 
system of equations. A guess is made for the number of 
components N in the solution. Then a guess is made for the 
Y and Z matrices, eq 9 is solved for X. 

X = PCyz)Q-l(yz) (12) 
giving a least-squares estimate of X based on the current 
estimates for Y and Z. Then the new X and the estimate of 
Z are used to solve eq 10 for a new estimate of Y. Similarly, 
eq 11 is solved for Z. This procedure is repeated until the 
spectral matrices X, Y, and Z converge. 

The raw data matrices which we have chosen in order to 
illustrate this method have dimensions 30 X 30 X 10, so a 
determination of the spectra in a three-component sample, 
for instance, would require the determination of 210 param- 
eters. To reduce the size of the problem and to eliminate 
redundancy in the raw data matrix, we first applied factor 
analysis. The covariance matrix for the n dimension 

ciit(X) = E M i j k M i j j k  (13) 
j k  

was formed and eigenanalyzed. The number of eigenvalues 
that are large compared to the entire set should give an ap- 
proximation to the number of independent emitters in the 
mixture. The L eigenvectors corresponding to the few highest 
eigenvalues were retained as a basis for the x dimension of 
the data matrix and labeled as ul, u2, ..., ub Similarly, the 
covariance matrices C(y) and C(z) were formed and eigen- 
analyzed to provide the basis vectors v and w for the y and 
z dimensions of the data matrix, respectively. These vectors 
were arranged into three matrices: 

U = [ul, ..., ul, ..., uL] for the x dimension 
V = [vl, ..., v,, ..., vL] for the y dimension 
W = [wl, ..., w,, ..., wL] for the z dimension 
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Table 11. Overlap Matrices for Standards in Simulated Matricesa 
PER FLU 

PER 
FLU 
TET 
DMA 

PER 
FLU 
TET 
DMA 

HPLC I 
PER FLU 

PER 1.000 
FLU 0.982 1.000 
TET 
DMA 

Emission 
1.000 
0.121 1.000 
0.781 0.141 
0.438 0.506 

1.000 
0.883 1.000 
0.556 0.720 
0.583 0.621 

Excitation 

HPLC I1 
PER FLU TET 
1.000 
0.135 1.000 
0.011 0.589 1.000 

a See footnote to Table I and eq 19-21. 

For the examples presented here, we have chosen L to be 5. 
The data matrix was then transformed to this new basis: 

M l m n  C U i l U j m W k n M i j k  t 14) 
ijk 

The initial estimates of X, Y, and Z in the raw data space were 
also transformed to the new basis 

Rls = C U i l x i s  (15) 
i 

TET DMA 

1.000 
0.286 1.000 

1.000 
0.169 1.000 

HPLC I11 
PER FLU TET DMA 
1.000 
0.711 1.000 
0.279 0.732 1.000 
0.056 0.276 0.745 1.000 

For these examples, the dimension of M was (5 X 5 X 5), so 
there are only 45 parameters fh, Y,, and 2, to be determined 
for a three-component system. The residual retains the same 
form in this space 

In fact, if the eigenvectors form complete sets for the nonnull 
subspaces of their respective covariance matrices, the trans- 
formed residual will be equal to the original residual. This 
transformation should also eliminate some of the random noise 
in the data, since the eigenvectors discarded correspond to 
low eigenvalues, and these are usually presumed to contain 
most of the noise (10). 

In analyzses of two-dimensional EEM data, it is found that 
the resulting emission and excitation spectra are not unique 
(1). This problem is common to all two-dimensional factor 
analyses. The advantage of having a three-dimensional data 
matrix is that if a factorization is found, it is unique. 

RESULTS AND DISCUSSION 
To assess the applicability of the NILES method for the 

analysis of a three-dimensional fluorescencechromatographic 
data matrix, we analyzed simulated data matrices I through 
111. It will hie useful to define the scalar products 

spq(x) = cxipxiq (19) 
1 

These give a measure of the spectral and temporal overlap 

A EnlSSION EMISSION 

i' 
EXCITATIW EXCITATION 

- CALC - C N C  
?-ETH7L#NWQACENE 0 TRUE ENZN El PYREX 0 T M E  

Flgure 1. Sample IV. Comparison of true emission and excitation 
spectra (0) to those calculated by NILES (solid Ilne) for a sample 
containing 9-rnethylanthracene (A) and benzo[ elpyrene (6). 

between components p and q. The overlaps between the 
components are shown in Table 11. 

For the two-component simulated data the calculated 
spectra are very close to the true ones and the concentrations 
agree almost exactly. It is very encouraging that the input 
spectra can be reconstructed to such accuracy using the 
three-dimensional data. This is in contrast to a two-dimen- 
sional analysis of a similar mixture, which would have some 
ambiguity in the calculated spectra due to spectral overlaps 
(1). The results for tho three-component mixture are nearly 
as good. 

For the four-component system (III), the situation is worse. 
While convergence to the correct result could be obtained from 
a very good initial guess, crude initial guesses led to conver- 
gence to false minima and a nonzero value for the final re- 
sidual. The true spectra of the three most concentrated 
components have fairly high overlaps with the spectra cal- 
culated by NILES at the false minima, but there was a 
problem with fluoranthene. This is not surprising, since 
fluoranthene has a fairly high spectral overlap with the other 
components in the synthetic sample, and it is also the least 
concentrated. 

The rate of convergence, as well as the ability of the al- 
gorithm to produce the correct results, was also of concern. 
The NILES algorithm as outlined above proved to have un- 
satisfactory convergence properties for all three sets of artificial 
data. In an attempt to remedy the slow convergence, we used 
to Fletcher-Powell algorithm (11) to minimize the residual 
(6) directly. The convergence rate was no better and the 
computation time was significantly higher for this procedure. 
The Fletcher-Powell algorithm did produce correct results 
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rn C A 

E M I S S I O N  E M I S S I O N  

EXCl T A T I O N  E X C I T A T I M  E X C I T A T I O N  - C N C  - C N C  - C N C  
9-r€THILANTWCu+: 0 T R E  BENZW E) P Y R E W  0 TRLE BENZW A) PYREEE 0 TRUE 

Flgure 2. Sample V. Comparison of true emission and excltatlon spectra (0) to those calculated by NILES (solid line) for a sample containing 
9-methylanthracene (A), benzo[ elpyrene (B), and benzo[a Ipyrene (C). 

for spectra I and 11, but it also failed to find the correct 
minimum for 111. 

Another well-known method of accelerating the convergence 
of an iterative process is the Aitken extrapolation method. 
To initialize this procedure the NILES calculations were run 
for three iterations and the calculated vectors saved. With 
these three sets of vectors, the Aitken method was used to 
extrapolate to a new solution vector. The extrapolation was 
performed after every iteration thereafter, using the three 
previous sets of vectors. This produced a great increase in 
the rate of convergence. The two-component problem took 
only 20 iterations to converge with this scheme, vs. 150 iter- 
ations without it. This scheme produced correct results for 
cases I and 11, but it also failed to reach the correct minimum 
for 111. 

Some real three-dimensional data matrices (samples 1V and 
V) were then analyzed. Each data matrix was reduced to a 
5 X 5 X 5 matrix by the eigenvector transformation outlined 
above. The two-component system converged in 20 iterations 
using the NILES method with extrapolation. Camparison of 
the estimated excitation and emission spectra with those of 
the pure compounds shows excellent agreement (Figure 1). 
The three-component system had a high degree of spectral 
and chromatographic overlap among the three components. 
However, the calculated spectra show acceptable agreement 
with the true spectra (Figure 2). 

ERROR ANALYSIS 
As stated above, one method of estimating the number of 

components in a sample is to examine the number of eigen- 
values of the three covariance matrices that are high relative 
to the other eigenvalues. This method is not totally satis- 
factory, however, since it usually indicates more components 
than are actually present due to errors in the data. The error 
in estimation of the relative concentration for component s 
is 

(22) 
N 

ijk t = l  
g2(cJ = a2(M)C[ C ( Q - ’ ) , t ~ i t ~ j t z k t l ~  

where 
Qpq = spq(*lc) s,b) s W ( d  (23) 

where 2(M) is taken to be the residual divided by the number 
of points in the data matrix. Values for u2(cJ appear in Table 
I11 for sample V based on the assumption of different numbers 
of components in the sample, Note that the lowest relative 
error occurs for the assumption of the correct three-component 
model. This error analysis, then, seems to be useful also as 

Table 111. Error Calculation for 
Three-Component Mixture (V)(l 

normalization 

Two-Component Guess 
component constant std deviation 

1 3.3 x 105 4.9 x 103 
2 1.6 x 105 4.9 x 103 

Three-Component Guess 
2.94 x 105 2.23 x 1 0 3  
1.67 x 105 2.23 x 103 
1.63 x 105 2.23 x 103 

1 
2 
3 

Four-Component Guess 
1 5.11 x 105 3.70 x 103 
2 1.80 x 105 2.33 x 103 

1.32 x 105 2.31 x 103 
4 -3.55 x 105 3.68 x 103 
3 

Experimental data from an HPLC/EEM spectrum of a 
solution containing benzo[a Ipyrene, benzo[e Ipyrene, and 
9-methylanthracene. 

an indication of the number of components in a sample. The 
negative normalization constant for component 4 when four 
components are assumed is a further indication that this is 
the wrong number of components. 
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