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SUMMARY 

The method of rank annihilation for multi-component determinations is extended to a 
threedimensional data array. The possibility of improved sensitivity over the twodimen- 
sional method is shown. An illustration using data of the type expected from a liquid 
chromatograph with a video-fluorimeter as detector is presented. Partial separation of the 
sample by the liquid chromatograph leads to improved sensitivity in the data analysis of 
the excitation or emission covariance matrices. 

The technique of twodimensional (2-D) rank annihilation has been used 
for the determination of fluorescent compounds in mixtures [ 1, 21. The 
major advantage over other data-processing techniques is that a single com- 
pound in a mixture can be quantified without knowing what other com- 
pounds are in the mixture. Sensitivity criteria have been developed which 
indicate that the accuracy of determination of a compound concentration 
using 2-D rank annihilation depends on the spectral overlap of that com- 
pound with the other components of the solution [2] . In this paper, we 
show that by using threedimensional (3-D) data, better accuracy should be 
obtained and possible spectral overlap problems avoided. The method is 
applied to data of the type expected from liquid chromatographic separation 
with video-fluorimetric detection (v.f./l.c.), but should apply equally well to 
other types of data. 

THEORY 

In 2-D rank annihilation [ 1, 21, the data processed is a two-dimensional 
emission-excitation matrix (EEM), M, the ij member of which is the fluores- 
cence emission intensity of a solution at wavelength Xi when excited by light 
of wavelength Xi. For a dilute solution of r components, the EEM is a linear 
combination of standard EEM matrices. 

Mij = ,Y? apxapYjp 
p=1 

(1) 

0003-2670/83/0000-0000/$03.00 o 1983 Elsevier Scientific Publishing Company 



10 

where xip is the normalized, digitized emission spectrum for component p, 
Yip is the normalized excitation spectrum, and the relative intensity (Ye is 
proportional to the concentration. The rank of the matrix M should be equal 
to the number of independent components in the sample. Other sources of 
two-dimensional data, such as gas chromatography/mass spectrometry, also 
produce data of this form, and are amenable to the same data-processing 
schemes. 

The determination of one compound in a multi-component solution by 
the method of rank annihilation proceeds by subtraction of a multiple of the 
standard EEM matrix N, for the pure solution, from the EEM matrix of the 
mixed solution to form a residual matrix E = M -ON. Then, the covariance 
matrix, D = ETE, of E is formed and eigenvectors are established. When the 
proper multiple (0) of the standard matrix of the analyte has been subtracted 
from the mixture matrix, the lowest non-zero eigenvalue, l*, of D should 
become zero. In practice, because of errors in the data, this eigenvalue does 
not become exactly zero, but does reach a minimum. At that point, the 
multiplier 0 of the standard matrix is equal to the concentration of this 
compound in the mixture, relative to its concentration in the standard 
solution. 

As shown earlier [ 21, the accuracy of this determination is proportional 
to the fluorescence intensity of the analyte at unit concentration (al), and 
to the uniqueness of the analyte relative to the other components in the 
mixture. The uniqueness of the emission spectrum of the first compound in 
the mixture is defined [ 21 as 

qw = (1 - sTs-’ s) (2) 

where sP = C,~~~x~iCp > 1) and S,,, = Z+riq (p, q > 1). The uniqueness of 
the excitation spectrum, q,,, is similarly defined. The uniqueness of either 
spectrum depends on the overlap of the analyte spectrum with the spectra of 
the other compounds in the mixture. If the spectrum of the analyte is very 
similar to a superposition of the other spectra, the uniqueness will be close 
to zero; if the spectrum is very different, the uniqueness will be close to one. 

The error in the estimated concentration caused by errors in the measured 
data matrix is 

a*(@) = (a*.$‘/ap*)-’ a* (M) (3) 

if the error in the data matrix does not depend on wavelength [3]. At the 
minimum oft*, 

a%*/ao* = 2 (d)* 4db (4) 

so the sensitivity of the analysis by rank annihilation, which is defined here 
as a *p/ap*, is proportional to qxqy . 

This paper presents an extension of this two-dimensional data-processing 
technique to the problem of processing a three-dimensional array of data 
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obtained, for example, from liquid chromatographic separation with video- 
fluorimetic detection (v.fJ1.c.) [4]. These data are in the form of an array 
M irk, which measures the fluorescence emission intensity at wavelength h, 
when the sample collected at elution time tk is excited by light with wave- 
length hi. For dilute solutions, this array, like its two-dimensional counter- 
part, is a linear combination of products of one-dimensional spectra: 

M.. = f. 
1Jk “pxipYjpzkp 

p=l 
(5) 

where zkp is the h .p .l .c . profile of compound p. 
To start the calculation, the three covariance matrices C(X), C(y), and C(z) 

are eigen-analyzed, where 

Cii’(X) = f MiikMij.k 

Cal(Y) = f MijkMif’k 

Ckk’(Z) = C MijkMijk’ 
ii 

For error-free data, the number of non-zero eigenvalues of each matrix 
should be equal to the number of components in the sample. In practice, 
because of errors in the data, an estimate must be made of the number of 
eigenvalues which are large compared to zero. This number is then used as 
an estimate of the number of detectable components in the sample. Then, a 
procedure analogous to 2-D rank annihilation is followed. Some of a stan- 
dard 3-D data array N for one component is subtracted from the mixture 
array: Eij, = M,k - PNijk. Then one of the covariance matrices of E is 
formed and eigen-analyzed. The value of p which makes the lowest non-zero 
eigenvalue a minimum is the concentration of this component in the sample 
relative to its concentration in the standard solution. To reduce the calcula- 
tions involved, the original data array and the standard array can be trans- 
formed to a reduced space as described earlier [ 1,4] . 

As before [2], the accuracy of the calculated concentration will depend 
on how sensitive the lowest eigenvalue is to changes in concentration near 
the minimum. In two dimensions, this depends on the intensity of the stan- 
dard at unit concentration and the uniqueness of the standard emission and 
excitation spectra (Eqn. 3). For threedimensional data, there are three co- 
variance matrix eigenvalues that could be examined, and these give three 
different sensitivity criteria: 

~2~2(~)l@Z = 2(cW 4X4VZ (7) 

aWy)iap 2 = 2(cG)2 QVQXZ (8) 

W(z)/a0 2 = 2(oY)2 4&x (9) 

The q’s with a single subscript are the same uniqueness indices which are cal- 
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culated for 2-D data, and just depend on the overlap of the standard emis- 
sion, excitation, and chromatograms with those of the other components in 
solution. However, the doubly subscripted q’s are calculated from two- 
dimensional overlaps. For qyz in Eqn. (7) for instance, 

Qyz = (1 - sT [YZI 9-l [YZI s[yzl) (19) 

where S,(YZ) = (~Y,Y,,)(~~~~z,,) 

and %(Yz) = (~‘Y~Y,~)(F~~L~) 03, 4 > 1) 

The factor qyz in Eqn. (7) will always be larger than qr in Eqn. (4) and qx2 in 
Eqn. (8) will be larger than qx in Eqn. (4), so the use of 3-D processing may 
provide better sensitivity than a 2-D processing if the signal intensity is the 
same. 

It is usually the case that the lowest eigenvalue of one of the three co- 
variance matrices is less sensitive to errors in the data than the other two. 
Therefore, the concentration corresponding to the minimum of that eigen- 
value is more accurate than that determined by the other two. In extreme 
cases, when the spectrum of the analyte totally overlaps the spectra of the 
other components in one of the dimensions (e.g., the emission spectrum), a 
change in the subtracted concentration will have no effect on the lowest 
eigenvalue of the corresponding covariance matrix. In that case, one of the 
other covariance matrices must be used to determine the true concentration 
of the standard. In this way, a 3-D array gives more flexibility in choosing 
the most appropriate covariance matrix, and in the extreme case, can provide 
results when a 2-D procedure would fail completely. 

Equation (9) can be evaluated only if all of the components in the solu- 
tion are known. Because rank annihilation is designed to work without this 
knowledge, an alternative formula must be used to estimate the sensitivity. 
For noise-free data, when the minimum of the lowest eigenvalue has been 
found, the uniqueness can be calculated from the overlap of the eigenvector 
corresponding to this eigenvalue with the corresponding eigenvector from 
the standard analyte spectrum. For instance, if there are K components in 
the mixture, the Kth eigenvalue should reach a minimum; and for a standard 
with normalized spectral vectors x, y, and z, 

Qx = ZXiUix 
I 

(11) 

where VK is the Kth eigenvector of the emission covariance matrix of E. To 
calculate q yz, it is necessary to form the covariance matrix: 

D(jk)(,‘k’)(YZ) = F Ei(+jk)Eio’k’) (12) 

This matrix has a row index of (jh) and a column index of (j’k’). For a K- 
component mixture, the Kth eigenvalue of this matrix will reach a minimum 
for the same choice of p. The Kth eigenvector, wx, can be used to compute 
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qyz =iYjzkw(jk) K (13) 

The uniqueness indices q ,, , q xz, qz , and qxy can be calculated in a similar way. 

RESULTS AND DISCUSSION 

The excitation and emission spectra for perylene, fluoranthene, tetracene 
and 9,lOdimethylanthracene were obtained by eigenanalysis of EEM’s taken 
with a video-fluorimeter [2]. Then, h.p.1.c. elution profiles for each com- 
pound were simulated as strongly overlapping Gaussian peaks and random 
noise was added. The noise had a uniform distribution with a maximum 
magnitude which was 10% of the root-mean-square value of the data array. 
Table 1 lists the true relative concentrations of the components in the 
simulated data, as well as the concentrations calculated by rank annihilation. 

Table 2 compares the uniqueness indices calculated by Eqn. (2) to those 
calculated by Eqn. (10). As can be seen, the 3-D indices for excitation and 
emission are larger than the corresponding 2-D index. Even a partial h.p.1.c. 
separation into overlapping peaks improves the sensitivity. Table 2 also com- 
pares the 3-D uniqueness indices calculated by Eqn. (10) to those calculated 
by Eqns. (11-13). The difference between these last two columns of Table 2 
is caused by the random noise. 

When the uniqueness indices in this table are considered, it can be seen, 
for example, that to obtain the most sensitive determination of fluoran- 
thene, the lowest non-zero eigenvalue of the excitation covariance matrix 
should be minimized. It is also seen that because of the large overlap put into 
the h.p .l.c. simulation, the h.p.1.c. covariance matrix is predicted to give the 
least sensitive results. These predictions are supported by Table 1. 

TABLE 1 

Relative concentrations of compounds for the simulated data matrix 

True Calculated Error 

Perylene 

Fluoranthene 

Tetracene 

9,10-Dimethyl- 
anthracene 

5.638 5.691a 
5.694b 
5.729c 

1.122 1.140a 
1.177b 
1 .236c 

11.13 11.128 
ll.lob 
11.15c 

22.26 22.27’ 
22.29n 
22.28’ 

+ 0.053 
+0.056 
+ 0.091 
+ 0.018 
+ 0.055 
+0.114 
-0.01 
-0.03 
+ 0.02 
+O.Ol 
+0.03 
+0.02 

Walculated from excitation covariance matrix. bCalculated from emission covariance 
matrix. ‘Calculated from h.p.1.c. covariance matrix. 
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TABLE 2 

Square of uniqueness indices for the simulated data matrix 

2-D 3-D 

Truea Calculatedb 

Perylene 0.0677 0.1827’ 0.1708c 
0.1962d 0.2107d 
0.2251e 0.2098e 

Fluoranthene 0.0750 0.2915e 0.2775c 
0.1016d 0.0938d 
0.0918e 0.082ge 

Tetracene 0.1274 0.2536c 0.2527c 
0.3055d 0.2718d 
0.072ge 0.0821e 

9,10-Dimethyl- 0.2647 0.5615c 0.5527c 
anthracene 0.4257d 0.4237d 

0.1960e 0.2066e 

aEqns (7)--(g) and Eqn. (10). bEqns. (7)--(g) and (ll)--(13). CCalculated for excitation 
covariance matrix. %alculated for emission covariance matrix. eCalculated for h.p.1.c. 
covariance matrix. 
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