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The techniques of multidimensional scaling were used to study the numerical 
behavior of twelve measures of distance between partitions, as apptied to partition 
lattices of four different sizes. The results offer additional support for a system of 
classifying partition metrics, as proposed by Boorman (1970), and Boorman and 
Arabie (1972). While the scaling solutions illuminated differences between the measures, 
at the same time the particular data with which the measures were concerned offered 
a basis both for counterexamples to some common assumptions about multidimensional 
scaling and for some conjectures as to the nature of scaling solutions. The implications 
of the latter findings for selected examples from the literature are considered. in 
addition, the methods of partition data analysis discussed here are applied to an 
example using sociobiological data. Finally, an argument is made against undue 
emphasis upon interpreting dimensions in nonmetric scaling solutions. 

INTRODUCTION 

There is an extensive behavioral science literature dealing with the construction and 
use of numerical measures for quantitative description of relational structures. 
Structural measures of various kinds have been employed for describing and comparing 
sets, partitions, orderings, trees, graphs, groups and semigroups, grammars, and 
other kinds of complex relational entities. Any of a large number of information- 
theoretic measures fall in this category, as do various measures of Grammatik com- 
plexity (Chomsky and Miller, 1963) and hierarchical structure (Landau, 1951; 
Boorman, 1970). Partly because of the substantive importance of structural equivalence 
concepts in many behavioral problems, see Lorrain (in press), structural measures 
dealing with partitions (their complexity, similarity, etc.) are probably the single 
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most important class of measures of relational structure. A systematic approach 
to structural measures on partitions and trees is developed from a lattice-theoretic 
viewpoint in previous papers of the present authors (Boorman, 1970; Boorman and 
Arabie, 1972; Boorman and Olivier, in press). This development is more algebraically 

oriented than earlier comparative and survey work for other kinds of structural 
measures, e.g., Restle (1959), for set metrics; Attneave ( 1959) for information measures; 
Flament, (1962, 1963) for measures of graphical structure ; Dalrymple-Alford (1970) 
Frankel and Cole (1971), and Roenker, Thompson, and Brown (1971) for clustering 
in free recall. 

In the absence of substantive or theoretical constraints, measures proliferate, and 
it is often unclear what is being captured by any particular one; see, for example, the 
critical survey of alternative measures of the “centrality” of a graph in Sabidussi 
(1967). To gain some kind of methodological control over this proliferation is the 
motivation of the comparative work just cited. A major problem, however, is that 
overwhelmingly the existing literature deals only with abstract formulas defining 

structural measures and highly qualitative deductions from the formulas. Because all 
relational structure is intrinsically complex, such qualitative discussions are frequently 
very weak and conclusions drawn from them are unreliable. A good example is the 
provocative but impractical discussion of Bavelas’s (1950) centrality index from the 

standpoint of the automorphism group of the graph in Flament (1963, pp. 50-52). 
Empirically-oriented users, on the other hand, are interested in the details of the 
numerical behavior of a particular measure. Despite some distribution and estimation 
work on entropy and related information-theoretic measures, e.g., Kullback (1955), 
and detailed knowledge of the mean and variance of Landau’s hierarchy index (Landau, 
1951; Holland, 1971) under a variety of interesting conditions, relatively little is 
known about the numerical behavior of most structural measures. There is essentially 

no literature for any kind of structural measure which seriously attacks the problem of 
quantitatively comparing different measures and classifying them according to their 
numerical output. 

The present study is one specialized attempt to study this problem of comparison 
from a particular viewpoint, namely, that of nonmetric multidimensional scaling and 

related techniques. Concretely, we will report the results of extensive application of 
scaling to representation of measures of distance between partitions of a finite set. It 
was hoped that scaling could elucidate differences among the distance geometries which 
distance measures can impose on partition spaces. For example, one of our findings 

(Section 2) was that by no means do information-theoretic measures necessarily have 
more desirable performance characteristics than do alternative measures of partition 
structure. This fact has very practical implications as far as the use of entropy-based 
structural measures is concerned. Although the influence of information-theoretic 
formalism in behavioral science investigations has clearly diminished in the past 
decade, there is still a strong tendency on the part of investigators to introduce in- 
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formation-theoretic measures without considering their appropriateness for the 
problem at hand. To some extent, this tendency derives from confidence in axiomatic 

justifications of the entropy measure, e.g., Khinchin (1957), which is frequently cited 
in the literature. The relevance and utility of these axiomatic derivations is effectively 
attacked by Mandelbrot (1966) f  rom a theoretical standpoint, but his context (certain 
models in psycholinguistics) is very limited. One of the few investigators to consider 

empirically the need for a systematic comparison of the entropy measure with rival 
structural measures is Levins (1968a, 1968b), but his focus is on a particular set of 
ecological niche breadth data, and is, hence, again too restricted to be very informative. 

Measurement problems related to partitions have intrinsic importance because 
partitions are a kind of mathematical structure underlying much behavioral data, for 
example, that generated by the method of sorting. Stimuli to be sorted have ranged 

from color patches (Rapoport and Fillenbaum, 1972) to common nouns (Miller, 1969), 
and the method of the Q-sort has been extensively employed by George Kelly and 
other clinicians (Block, 1961). The relative ease with which data can be collected by 
sorting methods has led possible questions to outrun systematic techniques in many 
aspects of the study of semantic and associative structures to which sorting may be 

applied. To a large extent, existing formal work on sorting methods, e.g., Miller 
(1969), has been confined to analyzing cooccurrence incidence matrices which can be 
derived from any family of partitions. This analysis poses a simpler problem, but one 
which involves discarding a large amount of the structure inherent in partition data. 
In particular, once the data are reduced to incidence matrix form in this manner, it no 
longer becomes possible to analyze the obtained family of partitions for homogeneous 
clusters or to discuss individual differences between sorters. Such problems naturally 

arise, for example, in the practical use of sorting to differentiate diagnosed schizo- 
phrenics from a control group of normals (Pavy, 1968). 

Formally similar problems arise in the study of social systems consisting of freely 
forming small groups (White, 1962; C o h en, 1971). At any observation time, such a 
system may be described as a partition of its individual members among the groups 

they form, and we may ask questions about structural changes over time in terms of 
distance between partitions. Using scaling of partition distances, it is possible, for 
example, to differentiate systematic trends from random drift effects. An application 
of this type to a sociobiological example arising in primate behavior studies is developed 
in Section 7. 

At the same time that a better understanding of partition distance measures is 
relevant for behavioral data analysis, the present study has methodological implications 
for the use of multidimensional scaling. It should be emphasized that there is no 
a priori guarantee that geometric modeling of the multidimensional scaling variety 
will provide meaningful information in any particular application to partition data. 
Shepard’s original conjecture, that the interpoint distance orderings asymptotically 
define a given configuration of points in a Minkowski r-space up to the similarity 
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group (Shepard, 1962, 1966; Benzecri, 1964, 1965), has the nature of a unique recovery 

property, rather than an existence result. Moreover, prior to the present study, little 
systematic attempt appears to have been made to assess the possibility of fruitfully 
scaling discrete spaces, though there is a growing body of literature which performs 
such scalings on concrete empirical data of various kinds. For justification of the 
scaling of continuous spaces there is, by contrast, the well-known work of Beals, 
Krantz, and Tversky (1968). Although much of the early work using multidimensional 

scaling was for stimulus spaces which could at least in principle be treated as con- 
tinuous, e.g., Ekman (1954), all semantic spaces are discrete, and it is only recently 
that the theoretical issues concerning the application of Shepard-Kruskal methods 
to such spaces have been investigated, e.g., Arnold (1971). 

1. PROCEDURE 

In the present study, 12 distance measures were applied to partitions of a finite set 

and the obtained proximity matrices were scaled in Euclidean and city-block spaces 
of two and three dimensions, using Kruskal’s (1964a, 1964b) scaling algorithm. The 
data on which our conclusions are based involved well over 500 runs of Kruskal’s 
MDSCAL-4 and MDSCAL-5 programs, as well as various supplementary programs 

described later. As is clear from Table I, most of the scaling runs involved between 
50 and 60 points, and consequently the present study is one of the most extensive 
tests of MDSCAL for large input configurations which has been undertaken to date. 

Because of space limitations, the present report reproduces only a limited sample of the 
obtained scalings; Table I gives summary statistics on the runs made (see also Table 

XI below for summary statistics on the obtained stresses for stress formula 1). 
We first introduce some minimal formal background material on partition lattices; 

see Ore (1942), Birkhoff (1967), and S&z (1963) for more extensive treatments. A 
partition P of a finite set S is a division of that set into a collection of nonempty, 
pairwise disjoint, and collectively exhausitive subsets. We employ parenthetical 
notation to describe specific partitions; thus P = ((ab)(cd)) is a partition of S ye 

{a, b, c, d} with two components (ab) and (cd) which we will term cells. 

DEFINITION 1.1. A partition P is finer than a partition Q(P < Q) if and only if 
each cell c E P is contained in some cell d E Q (dually, we say that Q is coarser than P). 
We write P < Q if P < Q and P # Q. 

DEFINITION 1.2. The intersection P n Q of two partitions is defined as follows: 
two elements a, b E S are in the same cell of P n Q if and only if they are in the same 
cell of P and also in the same cell of Q. 

For example, if P = ((ab)(cd)) and Q = ((abc)(d)), then P n Q is ((ah)(c)(d)). 
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TABLE I 

Inventory of Runs on Which the Present Study is Based 

2 dimensions, Both Without Without Without 
Euclidean metric Peplitter and Aumper Aumper Psplitter either 

___. 

4-lattice 6 5 10 14 
( 15 points) 

Slattice 8 6 8 9 
(52 points) 

6-lattice sample 16 24 22 14 
(60 points) 

IO-lattice sample 9 25 I 15 
(60 points) 

2 dimensions, Both Without Without Without 
City-block metric Pspirtter and Plumper Plumper Psplitter either 

~ .-~-_ 

4-lattice 0 2 10 14 

5-lattice 8 10 12 16 

6-lattice sample 8 3 0 0 

lo-lattice sample 18 9 30 11 

3 dimensions, Both Without Without Without 
Euclidean metric Paplitter and Plumper Plumper Pspmer either 

4-lattice 6 5 10 14 

5-lattice 4 5 6 8 

6-lattice sample 0 0 0 0 

lo-lattice sample 0 0 0 0 

3 dimensions, Both Without Without Without 
City-block metric Psplitter and Aumper Phn,er Psplitter either 

4-lattice 0 2 10 16 
Slattice 8 10 12 16 
6-lattice sample 0 0 0 0 
lo-lattice sample 0 0 0 0 

Note-Each entry includes all nondegenerate runs obtained summed over all 12 measures 
and all scalings repeated with different random initial configuration(s). A degenerate run is 
defined to be one which separates the partitions scaled into two clusters whose radii approach 
zero as iterations continue. If a resealing of a run with a different initial configuration produced 
a degeneracy, neither run is counted in the tabulation. 



DISTANCE BETWEEN PARTITIONS I 53 

There is a dual concept of the union of two partitions (this will be explici’tly used in 

what follows only in connection with the discussion of alternatives to the measure 
TI2MINUS in Section 4). 

DEFINITION 1.3. The union P u Q of two partitions P and Q is defined as follows: 
two elements a, b E S are in the same cell of P u Q if and only if there is a finite 
sequence a, = a, a, ,..., a, = 6 of elements of S such that a,, aj+r cooccur either 
in a cell of P or in a cell of Q. In the above example, P u Q = ((abed)). 

We will refer in general to the partition which lumps all elements of S together as 
P lumper and that which splits all elements of S into singleton cells as Psplitter . Thus 

if S = {a, b, C, d}, Plumper = ((abed)) and Psplitter = ((u)(b)(c)(d)). Because of the 
geometric position of these partitions in the Hasse diagram of a finite lattice, we will 
have occasion later to refer to Psprrtrer and Plumper as (lattice) endpoints. 

We now have the following basic fact: 

THEOREM. The set B(S) of all partitions of Sforms a lattice under <‘, i.e., every pair 
of partitions P and Q will have a unique least upper bound, P u Q, and a unique greatest 
lower bound, P n Q, in the lattice ordering. 

Proof. See Szasz (1963) for proof of this assertion, together with a much fuller 
characterization of the lattice structure. 

By a partition space we mean simply a family of partitions constituting a subset of 
some partition lattice. Four basic partition spaces were endowed with metrics and 
submitted as inputs to multidimensional scaling algorithms: the full lattice of all 
15 partitions of a four-element set (henceforth termed the 4-lattice); the full lattice 

of all 52 partitions of a five-element set (5-lattice); and two 60-element random samples 
from the partition lattices on six and ten objects (which will be termed, respectively, 
the 6- and lo-lattice samples). These last samples were obtained by a procedure for 

generating random partitions. This procedure (described in Appendix A) quite 

closely approximates the uniform distribution on the entire partition lattice over a 
reasonably small underlying set S. In the case of the 6-lattice the ratio of the sample 
to the full lattice size was 

601203 = 0.296, 

while in the case of the lo-lattice it was 

60/l 15,975 = 0.0005 = 5 x lO-3. 

Tables II and III display the specific samples used. 
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Given ‘any partition lattice 2, a semimetric on that lattice is a mapping 
m: LZ x LZ --f R which satisfies 

(i) m(P, Q) > 0 and = 0 if and only if P = Q, 

(ii) m(P, Q) = m(Q, P) for all P, Q E 9, 

see Blumenthal (1953) for discussion of semimetrics and Shepard (1969, 1972). If, 
in addition, m satisfies 

(iii) W’, R) < m(p, 8) + m(Q, R) (triangle inequality), 

for all P, Q, R E L?, then m is a metric. All measures of partition distance considered 
in the present study are semimetrics, and the majority are either metrics or derived 
from metrics in some simple way. Twelve such measures were studied in all. For the 
sake of easy reference, their defining formulas are collected in Tabel IV. The measures 

TABLE II 

6-lattice Sample of 58 Partitions with Plumper and Psplitter Adjoined 

(123456) 

(146)(235) 

(1236)(45) 

(126)(345) 

(1245)(36) 

(13)(2456) 

(1 WW(3) 
( ~4W6)(3) 
(1WW3) 
(12W’3(4) 
(123)(46)(5) 
(1 WW(5) 
(1X2346)(5) 
(136X2)(45) 
(1 WW(6) 
(12WW(6) 
(1‘WCW6) 
(1 WW(6) 
(W(W(6) 
(1234X5)(6) 
(123)(45)(6) 

(1 W‘W(6) 
(1 WWW 
(1 KW(W 
(1WW(W 
(1WWW 
(14GWW 
(1WWW 
(1XW456) 
(1WWW 
(1KWW(4 
(1 WW)(4) 
(1KWW4 
(1 ‘XWW) 
UWWW) 
(1W6)W(5) 
(126)(3(4)(5) 
(1 W6)(4)(5) 
(12)(36)(4(5) 
UW9(36)(5) 
(1)WW3(5) 
(1KWW5) 

(1)CW6)(45) 
(14W)W(6) 
(1 W4)(3)(6) 
(1WWW6) 
(lWCV(4(6) 
UW5)(4)(6) 
UUW4(6) 
(1 WW4(6) 
(W(3)(5)(6) 
(14WWX6) 
(1KWW(6) 
(15)(2)(3)(46) 
(1 W)W(W 
(1 W)(3)(56) 
(1)CWW(N6) 
(1 -W)(4)(5)(6) 
(1K9W(W6) 
(1X2)W(W)(6) 
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TABLE III 

lo-lattice Sample of 58 Partitions with PI Umrler and Paplitter Adjoined 
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(1234567890) 

(1WW(6)WW) 
(10)(23458)(679) 

(1)(2689)(30)(4)(5)(7) 

(1 WW(356)(4)P) 
(I 236)(49)(578)(O) 

(1 W2%(W(4)(6M) 
(1)(2)(37)(490)(5)(6)(8) 

(18)(2)(35)(4)(6)(7)(9)(O) 
(148)(20)(3679)(5) 

(157)(239)(46)(80) 

(~WW(4W6W) 

(~7’W’W’)(WW 

(1370)(2)(4)(5)(6)(S)(9) 

(I 350)(268)(49)(7) 

(1 )GW(37)(W(~W) 
(1 WW9)(‘W(W 
(146)(28)(3)(5)(7)(9)(O) 
(19)(26)(3)(457)@0) 
(1 W(.W%(‘W@) 
(I 35)(2)(469)(780) 

(1 WX34WW)W) 
(1 @WW(3)(45)(67) 
(1 WGNW(W(W 
(147)(269)(350)(8) 

(1)(24)(3)(59)(6)(780) 

(I24’NW(5WN% 

(I 3480)(2679)(5) 

(I35W2%(4)(6W’) 

(1 W5)(47)(6W”4 
(15)(2)(36)(4)(7)(89)(O) 
(1578)(20)(349)(6) 

(I 358)(20)(49)(67) 

(I 57)(290)(38)(46) 

(I 6)(2390)(4578) 

(160)(247)(3)(589) 

(19)(26)(358)(470) 

(1 WW37)(4)(W9) 
(1)(2)(3)(4)(560)(7)(89) 
(135)(26)(4)(7)(89)(o) 

(1)(2)(3)(468)(590)(7) 

(1)(2)(3)(45)(60)(78)(9) 

(~2W3)(4~)(WNO) 
(1)(2479)(3680)(5) 

(1)(20)(3)(4)(58)(69)(7) 
( 1 W(27W)(4W(9) 
(16)(2)(3)(459)(78)(O) 

( 1 )W(W(4~6W(O) 
( I %9(38W(4)(fJ) 
(~4W258)(3)(60)(7) 

(1 KWW5’=‘XO) 
(l’N2459)(3)(67)(8) 
(14789)(260)(3)(5) 

(125)(3790)(46)(8) 

(I 48)(2)(35690)(7) 

(14WW3)(57)(W 

(126)(3)(4)(5)(7)(8)(9)(O) 

(128)(3470)(59)(6) 

(1249)(37)(58)(60) 

i1)(2)(3)(4)(5)(6)(7)18)(9)(0) 

PAIRBONDS, INFOTWO, and MULTINOM are all metrics derived from super- 

valuations on partition lattices and are discussed in Section 2; INFOTHRY, l- 
NT/SQP, I -NT/I + 2, INVRHEIT, and NVRNTROP are essentially all normaliza- 
tions of these metrics and are treated in Section 3; APPROX and TIZMINUS are 
characterized by a high proportion of interpoint distance ties and are analyzed in 
Section 4, while Section 5 handles I-LAMDA and CHISQUAR, which are simple 
linear transformations of the two classical measures of association from which their 

names are taken. 
Given the partition spaces we have described, the actual distance values for the 

12 measures were computed for each space by means of a FORTRAN IV program 
written by the auth0rs.l This program produced halfmatrices of distances which were 

1 Copies of this program are available from Phipps Arabie upon request. 
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then used as input data for the programs in the MDSCAL series. Finally, the resulting 
scaling configuration was rotated to congruence with a given target configuration by 

means of a program of D. C. Olivier [Olivier (1970) gives a description of the 
mathematical foundations of this least-squares procedure]. This rotation was per- 
formed only for Euclidean solutions and was designed to orient the natural lattice 
dimension from PlumPer to PSpritrer along the x-axis for all plots and, hence, permitted 
comparison of metrics more easily than would otherwise have been the case.2 

Computation of some of the 12 measures revealed degeneracies in the multidimen- 
sional scalings owing to their behavior on the lattice endpoints, Pspritter and Prumper . 

TABLE IV 

Structural Measures of Partition Distance 

In what follows, we employ the following abbreviations and conventions (where 1 1 is used to 

denote the cardinality of a set, not alsolute value in the arithmetic sense): 

n = ISI (sizeofS); 

p = {Cl , c2 ,..., 4, where the c, are the cells of P; 

Q = {d, , d, ,..., d,}, where the dj are the cells of Q; 

P n Q = {zij}; 

m= lPi,~= lQl;lPnQl = size of P n Q (number of nonempty 23; 

D(P) = T (’ “; ‘); 

M(P) = 1 log,(l cj I!); 
i 

E(P) = --$$log,!+; 
i 

V(P) = log,?2 - E(P); 

1 C Imax = max{l C I : C E P} (largest cell size in P); 

I d Imax = max{l d I : d f Q} (largest cell size in Q}; 

I.zi-I =max{lzijI:djeQ}; 

I z. j 1 = max{i ztj 1 : c, E P}. 

Table continued 

’ Specifically, the one-dimensional target configuration used in the Olivier program was 
obtained by associating each partition in the lattice with its cardinality, which is a crude but, 
in this instance, effective quantification of the lattice dimension which orders partitions by 
fineness as in Definition 1.1. 
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TABLE 1V (continued) 

Name of measure Defining formula 

PAIRBONDS D(P) + D(Q) - 2mp n Q) 

INFOTWO V(P) + V(Q) - 2T’(P n Q, 

MULTINOM M(P) + n/r(Q) ~ 2-WP n Q) 

INFOTHRY” INFOTWO/E(P n Q) 

1 - NT/SQP” I - [D(P n QN/[D(p) WQYi2 

1 -. NT/I + 2’ 
2WP n Q) PAIRBONDS 

’ ~ D(p) + D(Q) = D(p) + D(Q) 

APPROX IPnQl -min(lPl,lQI) 

1 - LAMBDA 

TIZMINUS 

CHISQUAR” 

2lPnQl~ IPI- IQ; 

1 ~ Cx’U’,Q)/(n min(I p I ~ I, IQ I - I))] 

INVRHEIT” 

NVRNTROP” 

PAIRBONDS i(i3 - Y(pnQ))l 
[INFOTW0/(2 log, n - E(P) - E(Q))] 

5 The denominator vanishes if and only if P = Q : PI,,,,, , and in this case we define 
INFOTHRY and INVRHEIT to be 0. 

* If D(P) or D(Q) is 0 then either P or Q is P~plitt,, . In this case, we define I -- NTjSQP 

from Peplitter to itself to be 0, and between PsDlitter and any other partition to be I. 
c The denominator vanishes if and only if D(P) = D(Q) = 0, and hence P = Q = PaPlittPr. 

In this case we define 1 - NT/l + 2 to be 0. 
d As in(b): CHISQUAR from Plumper to itself is 0, and from PI ,lmger to any other partition is I. 

e The denominator vanishes if and only if P = Q = PRplitter , and in this case. we define 
NVRNTROP to be 0. 

Specifically, various of the normalized measures place either E’sartrrer or Prumper a 
maximum (unit) distance from any other point. The result is to make the designated 
endpoint behave somewhat like the point at infinity in standard metrizations of the 
Riemann sphere, for example, stereographic projection. This phenomenon leads to 
degeneracies when we try to scale the space with the given distance measure, since 
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the algorithm attempts to place the endpoint at a maximum (unit) distance from all 
other points, subject to the constraint (Kruskal, 1964b) 

so that the remaining points collapse into a cluster whose radius approaches zero as 
iterations continue. In order to eliminate this difficulty, we considered various subspace 
scalings involving removal of one or both endpoints. A complete list of the degeneracies 
is given in Table V. Thus, in the case of a measure on a given lattice with no endpoint 

TABLE V 

Endpoint Degeneracies for the Distance Measures of Table IV 

Both Without Without Without 
Name of measure Plumper and PBpmer Plumper PaDlitter either 

PAIRBONDS 

INFOTWO 

MULTINOM 

INFOTHRY * 

1 - NTjSQP * * 

1 - NT/l + 2 * * 

APPROX 

1 - LAMBDA * * 

TIZMINUS 

CHISQUAR * * 

INVRHEIT * * 

NRVNTROP * * 

Note-A star (*) indicates that with the indicated endpoint(s) present the configuration 
degenerates because one or the other of the endpoints present is maximal (unit) distance from 
all other points in the space. 

degeneracies, we computed up to four scalings for each choice of dimensionality and 
output metric (compare Table I). Even where there were no degeneracies, these 

alternative scalings provided a useful record of the extent to which the endpoints 
dominate the behavior of the scaling solutions ; see Section 2. 

Various MDSCAL parameter options were tried, involving choice of initial con- 
figuration (L-, random, or rational), dimension (2- or 3-), and metric of the scaling 
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solution (city-block or Euclidean).3 In all cases scaled, the stress formula employed 
was stress formula 1, which is the original badness-of-fit function suggested by 

Kruskal (1964a, 1964b ; see also Kruskal and Carroll, (1969)).” There is a published 
literature on the expected behavior of stress formula 1 which is lacking for stress 
formula 2; see, e.g., Klahr (1969) and Stenson and Knoll (1969). In all cases scaled, 
moreover, we employed the primary stress approach to ties, which does not treat tied 
interpoint distances as constraints, as opposed to the secondary stress approach 
option, which accepts ties as constraints (Kruskal, 1964b). In view of the large number 
of interpoint distance ties given by our distance measures (see Appendix B), this 

restriction to the primary stress approach should be emphasized. As far as input 
configurations are concerned, the standard L-configuration frequently led to local 
minima, and in certain cases to quite severe ones, with an arrangement of points 
which was considerably less interpretable than that produced by the algorithm from 
a random initial configuration. Consider a particular 5-tuple ilattice, presence/ 

absense of endpoint(s), input distance measure, output dimensionality, Minkowski Y :, 
which completely describes a scaling run except for selection of the initial configuration. 
Of the 154 such 5-tuples initially scaled with the L-configuration and then resealed 
with a random initial configuration (in some cases more than once), 73 achieved stress 
reduction in the best of the random solutions when compared with theL-configuration 
solution. In the 41 of such 5-tuples resealed more than once with random initial 
configuration(s), the overwhelming majority (37) achieved stress reduction. Most of the 
repeated resealings were done on the 6-lattice with the Euclidean metric or on the 

IO-lattice with the city-block and Euclidean metrics. Table ‘\‘I describes relevant 
statistics of average stress reduction for these cases. Since, for the data considered here, 
random initial configurations give appreciable decrease in stress (typically an absolute 

3 The L-initial configuration for the MDSCAL gradient algorithm is obtained in the following 

way, where d is the dimensionality imposed on the scaling solution and r is the number of 

points being scaled. We form the following list of vectors in d-space: 

.Ol (I,0 ,...) 0) 

.Ol (0, I,...) 0) 

.Ol (0, 0 ,..., I) 

.Ol (2, 0 ,..., 0) 

.Ol (0, 2 ,..., 0) 

and select the first r vectors in the sequence as the starting configuration. 

4 In Kruskal’s notation, stress formula 1 is [xicj (di, - &)z/&<j dtj] ; stress formula 2 is 

L&i (do - J<j12/Cto (4, - @I, where d = CW d<j/(:) and n is the number of points in the 

scahng. 
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TABLE VI 

Reduction of Stress Values by Resealing with 
Random Initial Configuration; Dirnensionality = 2 

Number of 5-tuples” Stress reductiot9 
__- 

6-lattice, Euclidean metric 22 3.7 % 

lo-lattice, Euclidean metric 13 2.0 56 

lo-lattice, city-block metric 10 1.2% 

a This is the number of ordered pairs {input distance measure,presence/absence of endpoint(s)) 
which were repeatedly resealed for given lattice, output dimensionality, and Minkowski r. 

b This is given by the formula: 

where summation is over all ordered pairs considered in the preceding note, K is the total number 
of such pairs (given by entries in the first column of the table), Sr. is the L-configuration stress 
obtained for a given pair, and min{S,,,dOm } is the minimum stress obtained over all scalings 
with random initial configurations. For the 6-lattice with r = 2 the average number of resealings 
over which this minimum was taken was 2.2; for the lo-lattice with r = 2 it was 2.6; for the 
lo-lattice with T = I it was 3.8. 

reduction of l-3%), it may well be the case that other data analyzed with the L- 
configuration, including that of the two most useful Monte Carlo studies, Klahr (1969) 
and Stenson and Knoll (1969), 1 a so h ave inflated stress values and fail to achieve the 
configuration associated with minimum stress. 

In addition to random configurations, a version of MDSCAL-3 was run, which was 

designed so as to have inputs obtained from a Torgerson metric analysis of the original 
data; see Young and Torgerson (1967). The objective was to test the hypothesis that a 
metric principal components analysis of the proximity matrix might provide a starting 
configuration for the nonmetric gradient algorithm more nearly optimal than either 
the L-configuration or a random one. In the eight cases scaled, however, the obtained 
stress was considerably higher than that produced by the L-configuration and a random 

one; in consequence, for data of the type we are considering, a Torgerson metric 
input seems by no means necessarily better than the L- or random initial configurations. 

2. COMPARISON OF THREE BASIC MEASURES 

The present section is devoted to detailed discussion of multidimensional scaling 
results forthe three distance measures PAIRBONDS,INFOTWO, and MULTINOM ; 
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see again Table IV for defining equations. These three measures are each derived from 

a particular supervaluation on the partition lattice Y(n) on a set of n elements, i.e., 
a real-valued function v  on g(n) satisfying the supervaluation inequality 

Any supervaluation v  which is strictly increasing in the lattice ordering5 can be shown 

(Boorman and Arabie, 1972) to induce a metric p on s(n) by a distance formula 
which is formally reminiscent of the law of cosines 

EL(P, Q) = v(P) + v(Q) - 24p f-7 (2). (2) 

The three distance measures under consideration (PAIRBONDS, INFOTWO, and 
MULTINOM) are each induced in this way from supervaluations which are labeled 
D, V, and M, respectively, in Table IV. Of the three measures, PAIRBONDS is the 
most frequently used in the literature and has been introduced in a wide variety of 

statistical applications, e.g., Johnson (1968) ; Bersted, Brown, and Evans (1970), 
Mirkin and Chorny (1970); and Rand (1971). INFOTWO is a standard distance 
metric of information theory (Csiszhr, 1967; Parry, 1969; Jardine and Sibson, 1971, 
p. 12 f f ,  Boyd, 1972). MULTINOM is a variant information measure whose behavior 

may be compared with INFOTWO by results of Boulton and Wallace (1969). Both 
INFOTWO and MULTINOM are closely related to a variety of other information- 
theoretic measures connected with correlation, redundancy, and other structural 
concepts (Kotz, 1966; Pearson, 1966). 

In order to examine the output configurations generated by the three metrics, we 
need to consider the structure of the partition lattice in somewhat greater detail. 

DEFINITION 2.1. The type of a partition P = (cl , cz ,..., c,} is the distribution 
of its cell sizes (1 ci I}. 

For example, the type of ((ab)(cd)(e)) can be coded as 2-2-l) which is, of course, 
one partition of the integer 5, since 2 + 2 + 1 = 5. As further examples, we note 

that the type of Plumper for the n-lattice is just n, while the type of splitter is 

1 - 1 ~ . . . - 1. 
V / 

n times 

For the 5-lattice, we display all possible types in Table VII; for any positive integer 71 
there are well-known algorithms for generating all corresponding types (Wells, 1971; 

see also Appendix B). 
The significance of considering types is evident from Fig. 1, which displays the 

5-lattice scaled with the PAIRBONDS measure with both Plumper and Psputter 

5 I.e., for which P < Q s v(P) < v(Q). 

480/10/z-4 
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TABLE VII 

Partition Isomorphism Types for the 5-lattice 

TYPE 

5 I 

4-l 5 

3-2 10 

3-l-l 10 

2-2-l 15 

2-l-l-l 10 

l-l-l-l-l 1 

Number of distinct partitions 
having that type Code 

Height (D(P) in 
Table IV) 

A 10 

B 6 

C 4 

D 3 

E 2 

F I 

G 0 

A 

FIG. 1. Scaling of PAIRBONDS on 5-lattice with both endpoints present. 2 dimensions, 
Euclidean metric, L-configuration. Stress formula 1 = 23.9 %. The points are labeled by type 
according to the coding in Table VII. 

present. The points are coded by type, following the notation of Table VII. There is 
clearly good recovery of the lattice types as contour lines in the scaling representation. 

The algorithm behaves much as though Psputter and PnnrrBer were opposing attrac- 
tors, each trying to organize the types around itself as circular isosimilarity contours. 
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The terminology here is reminiscent of McGee (1966), but the motivation at present 
is purely geometrical. Hence, in the multidimensional scalings we have a clear conflict 
between the “attraction” exerted by P lumper and the conflicting attraction exerted by 
P splitter . The Psprrtter attractor is more effective than the Plumper one (we shall see 
the opposite effect for certain normalizations of PAIRBONDS in Section 3), though 
the effect of Plumper is evident in rendering the outer contours essentially elliptical 
with the points on these contours contracted on a limited arc. These effects vanish 
when we remove Plumper and the contours become very nearly circular with points 
of the same type spaced about equidistantly on each contour. Note, moreover, that the 
radial distances of the contours from G (Pspritter) as origin fall very nearly in the 
proportions 10 : 6 : 4 : 3 : 2 : 1. These proportions coincide with the ratios of the 
heights of the partitions of the different types (see Table 7). Algebraically, this in- 
variance may be restated by saying that, for all partitions P and Q in the lattice, the 
scaling algorithm is attempting to produce a solution satisfying the equations 

PAIRBONDS (P, P splitter)/PAIRBONDS (Q, Psplitter) ==- II u (P) Ii,/11 u(Q) 112 , (3) 

where u(P), u(Q) are the images of P and Q in the two-dimensional Euclidean scaling. 
The only essential errors in the contour recovery are one “E” type which is mis- 

placed close to what should be the D-contour and one “F” type on the E-contour. 
It is also noteworthy that the recovery appears to become more elastic as we move 

toward Psplitter (F-contour), where there are many relatively small distances to be 
taken into account (it is a general characteristic of partition lattices that the lattices 
are more dense near Pspritter and, moreover, small distances are clearly less important 
in the stress function than are large ones). When Pspritter is removed, the basic scaling 

is similar but the contours near the missing Psprttrer attractor tend to become somewhat 
more blurred, thus further confirming the structural role of the splitter partition. 

As we shall see consistently later, this contour structure of the lattice scalings tends 
to be a general fact underlying the interpretation of the solutions. One consequence 
of this contour organization was that when hierarchical clustering [see Johnson (1967) 
for both the connectedness and the diameter method] was applied to the same input 
proximity data on which the scaling in Fig. 1 was based, as well as to numerous other 

lattices and distance measure combinations, the results were typically degenerate 
in the sense that the clusterings were weak and uninterpretable. 

On page 1.58 we noted that for some of the normalized measures, the removal of the 
endpoint(s) is a prerequisite for obtaining nondegenerate solutions. This constitutes 
a dramatic example in support of Nelson Goodman’s (1972) objections to the strong 

demands of Lute and Galanter (1963) f  or stability of a spatial representation when 
additional points must be incorporated. The present analysis of the obtained scalings in 
terms of the structural role of the endpoints is a further justification of the Goodman 
position. 

Figures 2 and 3 display additional PAIRBONDS plots for the IO-lattice sample for 
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two different initial configurations. Again, the basic observation to make is that contour 
recovery in both cases is surprisingly good (we have indicated roughly where the 
“complete” contours should fall if we increased the sample size), especially since the 
random nature of the partitions scaled eliminates possible peculiarities owing to the 

specialized symmetries possessed by the full n-lattice, which as an aZgebraic structure 
has an automorphism group containing at least the full symmetric group and, hence, 
n! elements; this algebraic structure is related in detail to the metric structure of the 
full lattice in Boorman (1970). It is probable, however, that the genera1 phenomenon 

FIG. 2. Scaling of PAIRBONDS on IO-lattice sample with Plumper removed and Paputter 
present. 2 dimensions, Euclidean metric, L-configuration. Stress formula 1 = 28.4%. The 
points are labeled by the height D(P) of the corresponding partition (compare Table IV for 
definition of D). 

which we are observing here is a consequence of the fact that the metrics PAIRBONDS, 
INFOTWO, and MULTINOM (and, in fact, all the measures we consider in the 
present study) are permutation-inaariant in the sense that any relabeling of the elements 
of S leaves distances in the partition lattice on 5’ invariant; see Boorman (1970). In 
fact, it can be shown that in the case of any of the three metrics, the orbits of the 
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16 

14 

FIG. 3. Scaling of PAIRBONDS on IO-lattice sample with Aumper removed and PBpiitter 
present. 2 dimensions, Euclidean metric, random initial configuration. Stress formula 1 == 27.5 ““. 
Points labeled as in Fig. 2. 

autometry group of the metric will be precisely partitions of the same type.6 One 

way of describing Figs. 2 and 3 would be to say that the scaling algorithm is mapping 
partitions of a given type into orbits of the autometry group of Euclidean space with 
a fixed origin (namely, circles).’ 

Juxtaposing the two plots in Figs. 2 and 3, an additional feature is clear from direct 
inspection and can be formally verified by rotating the two plots to maximum con- 
gruence by the algorithm of Olivier (1970). Both plots recover the contour structure 

of partition types to about the same degree; but within contour lines the recoveries are 

6 For any metric space M with metric II, an autometry 0!of M is a bijection a: M + M which 
is distance-preserving, i.e., for which ~(x, y) = p(acX, G’y), for all x, y EM. The set of all 
autometries clearly forms a group under composition. That the autometry group of all our 
supervaluation-induced metrics is precisely given by relabeling the elements of the underlying 
set being partitioned is not completely trivial, and was proved by Jonsson (personal communica- 
tion). 

’ Another study of the present authors suggests that a general feature of the MDSCAL 
algorithm in Euclidean space appears to be this observed priority given to the recovery of 
symmetries possessed by the input proximity matrix. 
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very different. The stresses obtained are very similar, to about 0.9% discrepancy in 
favor of the latter initial configuration. Thus, unless we want to take stress values very 
seriously indeed-which goes against much additional evidence that has accumulated 
in the literature-we must conclude that the MDSCAL solutions are essentially 
nonunique for the data considered here, being interpretable only up to recovery of 

contours [compare remarks on multiple solutions in Torgerson (1965, pp. 381-382)]. 
Despite the restricted context of the present investigation, this finding is worth 
emphasizing in view of the tendency of many users of multidimensional scaling to 
take their scaling solutions seriously at the level of individual points rather than merely 
at the level of clusters and contours [compare the similar emphasis of Shepard (1969, 

pp. 50 ff.)]. 
As compared with the PAIRBONDS measure, of which we have been considering 

various scalings, INFOTWO does not recover lattice types as contours to nearly such 
a perfect extent. One particular plot for the lo-lattice sample is shown in Fig. 4, 
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FIG. 4. Scaling of INFOTWO on lo-lattice sample with Plumper removed and PBplitter 
present. 2 dimensions, Euclidean metric, random initial configuration. Stress formula 1 = 32.2 %. 
Points are labeled by entropy according to the following code: 

A = 1.36 F = 1.85 K = 1.97 P = 2.32 U = 2.72 
B = 1.49 G = 1.87 L = 2.07 Q = 2.37 v = 2.82 
c = 1.52 H = 1.90 M = 2.12 R = 2.45 W = 2.85 
D = 1.69 I = 1.92 N = 2.17 s = 2.52 X = 2.92 
E = 1.72 / = 1.96 0 = 2.25 T = 2.65 Y = 3.32 

where each value represents the entropy E(P) [ = - X( I ci i/n) 1og.J / ci j/n)] of the corresponding 
partition. 
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which labels partitions in the scaling according to the entropy. The recovery of 
contours is clearly fuzzy at best, and similar fuzziness prevails in other parameter 
cases scaled with INFOTWO. For example, Fig. 5 illustrates the 5-lattice scaling 
analogous to that for PAIRBONDS in Fig. I. Once again, recovery of contour structure 
is considerably inferior to that of PAIRBONDS. This inferior recovery, which is 

quite a general phenomenon over lattice sizes and parameter configurations, suggests 
that INFOTWO may be considerably less useful for scaling purposes than is 
PAIRBONDS. 
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FIG. 5. Scaling of INFOTWO on 54attice with both endpoints present. 2 dimensions, 
Euclidean metric, L-configuration. Stress formula 1 -= 31.89/,. Points are labeled by type 
according to Table VII. 

A more theoretical analysis sheds additional light on the comparative behavior of 
the two metrics. Following Boorman and Arabie (1972), consider the PAIRBONDS 
distance generated by moving a subset of size s from a cell of size R to another cell of 
size R’. The three parameters s, k, and k’ are sufficient to compute this distance, which 
is 

2((k - s)s + k’s), (4) 

and, for s small relative to R, we have (4) reducing to 

2(k + Q, (5) 



168 ARABIE AND BOORMAN 

which is linear in all three parameters taken separately. By contrast, in the case of the 
same problem for INFOTWO, the distance generated is 

k”(k’ + sy+s 
2 k’“‘(k _ s)k-ss2s 1 . 

It can be shown that ifs is small relative to k and k’, then (6) is asymptotic to 

( 1 lG& + lo&‘) (7) 

for large k and k’. Comparison of (5) with (7) s h ows that, by contrast to PAIRBONDS, 
INFOTWO shows convex behavior (decreasing returns to scale) in both k and k’. 
Consequently, it can be expected to discriminate less clearly than PAIRBONDS when 
k and k’ are large, i.e., in the region of the lattice near Plumper and the most important 

region from the point of view of the way in which distances enter into the target 
function. This blurring effect is quite clear in the outer contours of Figs. 4 and 5s 

It can also be shown (Boulton and Wallace, 1969; Boorman and Arabie, 1972) that 
MULTINOM behaves asymptotically like INFOTWO where expressions analogous 
to (5) and (7) are concerned. More generally, MULTINOM is asymptotically ordinally 

similar to INFOTWO, in the sense that as lattice size increases the induced interpoint 
distance orderings of the two measures become arbitrarily similar in the rank-order 
correlation sense. Hence, on mathematical grounds we can expect that MULTINOM 
will give a blurring of contours similar to INFOTWO for lattices on perhaps ten or 

more elements. In fact, however, the failure of MULTINOM to discriminate is 
already clear for the 5-lattice, as is demonstrated by Fig. 6. 

We next consider Euclidean solutions in three dimensions. For even the most 
interpretable of the 2-dimensional cases for example, PAIRBONDS on the 5-lattice 
as shown in Fig. 1, the corresponding 3-dimensional solutions were not easily inter- 
pretable in spite of the fact that Olivier’s rotation procedure was employed to orient the 
solutions along the natural lattice axis from plumper to Psplitter see p. 156 and footnote 2. 
Discrimination of contour surfaces formed by different partition types ranged from 

poor to totally unrecognizable. Specifically, after the 3-space solution was rotated by 
Olivier’s algorithm, none of the three 2-dimensional projections perpendicular to an 
axis proved interpretable. In consequence, it appears that an escalation of dimension- 
ality in this case actually decreases the effectiveness of the procedure. This supports 
an observation of Shepard (1969) to the effect that if an MDSCAL configuration is 
interpretable, then it is almost certainly interpretable in two dimensions. The only 

s It should also be noted, however, that precisely the linear behavior (5) which effectively 
discriminates types also causes the PAIRBONDS scalings to degenerate on the lo-lattice 
sample where Plumper is present, while INFOTWO does not degenerate in this case. If, however, 
Plumper is removed, the behavior of PAIRBONDS is more satisfactory than that of INFOTWO, 
as earlier figures demonstrate. 
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FIG. 6. Scaling of MULTINOM on 5-lattice with both endpoints present. 2 dimensions, 
Euclidean metric, L-configuration. Stress formula 1 = 3 1.1 OC,. Points are labeled by type 
according to Table VII. 

exception to this failure of interpretability was in the 4-lattice case, where there were 
at most only 15 points in the scalings and the 3-dimensional solutions took approxima- 
tely the form of an ice-cream cone, with Pspiitrer at the center of the hemisphere and 
PrumDer at the point of the cone. This result did not, however, generalize to the 

5-lattice, where only in the PAIRBONDS case was a provisionally acceptable solution 
of ice-cream cone type obtained, and this solution manifested considerable noise. 

Given the current revival of interest in non-Euclidean solutions, e.g., Arnold ( 197 l), 
Fischer and Micko (1972) and Shepard, and Cermak (1973), we were interested in 
exploring such representations for the partition metrics. In spite of the early interest 

in the city-block metric (Attneave, 1950), it is probably fair to say that most psycho- 
logical investigations have been restricted to Euclidean spaces. Shepard (1969, p. 34) 
argued that this limitation (for continuous spaces) was not objectionable: 

As long as there is a continuous underlying space of well-defined dimensionality 
that is at all isotropic and uncontorted, anyway, the data so over-determine the 
representation that the erroneous assumption of a Euclidean metric will still permit a 
satisfactory recovery of the true underlying structure and, indeed, even a determination 
of the nature of the unknown metric. 

In support of Shepard’s conjecture, Arnold (1971) has pointed out that Henley’s 
(1969) data on semantic (discrete) spaces evince the (r = 1, r = co) unit disc quite 
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strikingly, despite the fact that she imposed a Euclidean metric on the solution. The 
same observation holds for data from a study by Nummenmaa (1964) on the perceived 
similarity of 21 facial expressions. For technical reasons, Nummenmaa included only 
eight of the stimuli in his analysis; a reconsideration of these eight stimuli by Ekman 

(1970), whose analysis assumed linearity and a Euclidean space, is reproduced here as 
Fig. 7 and again suggest that an underlying non-Euclidean metric may be appropriate. 

FIG. 7. Scaling solution for a study of the similarity of eight facial expressions (Nummenmaa, 
1964). The analysis in the figure is from Ekman (1970). 

The fact that a scaling solution shows a pattern of squares or diamonds symmetrically 
placed around some central point does not, of course, constitute a rigorous demonstra- 
tion that the “natural” metric of the space being scaled is non-Euclidean; in fact, as 
is the case with partition lattices, there is no sense in which we can characterize the 

behavior of a distance measure from a unit ball, and, hence, the algorithm for recovering 
the unit ball for Euclidean scalings of Minkowski spaces described in Shepard (1969) 
is inapplicable. Despite these caveats, we may again focus on the contour lines defined 
by partition types in the scaling representations and argue from the geometry of these 
contours that the partition data conform quite nicely to the preferences of an in- 
vestigator who has the choice of a Euclidean or a city-block solution. 

Specifically, in Fig. 5 the choice of r = 2 gives slightly noisy circles evident of an 
underlying Euclidean space; in the typical city-block plot shown in Fig. 8 the choice of 
r = 1 gives for the same data a clear pattern of diamonds, indicative of the city-block 
metric, even though considerable confusion of contours occurs. This pattern of 
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diamond-like contour recovery occurred again and again in the Y = 1 scalings under- 
taken in the course of the present study, and usually allowed for identification of the 

imposed metric even before points were labeled. (The pattern could also be representa- 
tive of the supremum metric [r = co], since the supremum and city-block metrics 
cannot be distinguished in imposed Euclidean 2-dimensional solutions, as pointed out 
by Arnold (1971)). 
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FIG. 8. Scaling of INFOTWO on 5-lattice with PI umper present and Peputter removed. 
2 dimensions, city-block metric, random configuration. Stress formula 1 = 36.8 s/n. Points are 
labeled by type according to Table VII. 

In general, we conjecture that for any given measure of partition distance which is 
permutation invariant, the scaling algorithm will recover the partition space in such 
a way that the orbits of the automorphism group of the lattice are mapped as well as 
possible into isometric contours in the output metric. In short, the artificial data 

considered here adapt to whatever output metric the investigator chooses to impose. 
Thus, it would seem that a representation theorem is needed to decide when the data 
allow recovery of the underlying metric, as conjectured by Shepard and others, e.g., 
Shepard (1969) and Wender (1969). The theoretical significance of such a recovery 
has been demonstrated by the elegant work of Cross (1965a, 1965b) in multidimensional 
stimulus generalization. 
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3. ALTERNATIVE NORMALIZATIONS 

Normalizations of structural measures can be used for essentially two different 

purposes: to provide a uniform range permitting meaningful comparison between 

measures of distance on lattices of different sizes; or to factor out the effects of an 
unwanted dimension of variability, thus, in effect, providing a conditional measure 
of the remaining structure (the classic case being conditional probability). In the 

present study, we considered five different normalizations of PAIRBONDS and 
INFOTWO. The measures 1 - NT/l + 2 and 1 - NTjSQP are essentially suggested 
in Johnson (1968). Johnson (personal communication) has proved by a Euclidean 
embedding argument that 1 - NT/SQP is a metric; the metric status of 1 - NT/l + 2 

remains uncertain, though the behavior of the two measures is highly similar, and they 
are closely related as arithmetic to geometric mean, see again Table IV. The distance 

measure INFOTHRY is developed in some detail by Rajski (1961), who proves the 
triangle inequality by an intricate argument, see also Kotz (1966); Boorman (1970) 
gives a proof of the triangle inequality by a lattice-theoretic argument. INVRHEIT 
and NVRNTROP do not seem to have appeared in the literature. 

These alternative normalizations are all designed to study the effect of controlling 
for the natural (lumper-splitter) dimension which orients the partition lattice. The 
five measures studied are organized in Table VIII, which classifies them by underlying 
measure (PAIRBONDS or INFOTWO) and by the normalization strategy employed. 

TABLE VIII 

Alternative Normalizations of Supervaluation-based Partition Metrics 

Underlying supervaluation (0) 

Strategy Entropy (V) Height (D) 

Divide by 
(e(P~um,er) - W= n Q)) INFOTHRY INVRHEIT 

Divide by 

W) + O(Q) NVRNTROP (arithmetic 1 - NT/l + 2 
mean) 

(geometric 1 - NT/SQP 
mean) 

The main result of scaling these derived measures is verifications of the fact that 
the strategy of normalization may be very important in controlling the behavior of 
the derived measure. In some cases (INFOTHRY and INVRHEIT), the effect of 
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an apparent normalization is essentially negligible in the scaling output. In other 
cases, the result of normalization is dramatic, and the resulting measure must be 
interpreted as measuring a quantity fundamentally different from the original one 

(NVRNTROP, 1 - NT/SQP, 1 - NT/l + 2). This is already evident from the 
rank-order correlations of Table IX, where these measures provide the only negative 
value in the rank-order correlation matrices. We will henceforth call normalizations 
of the first kind mild and those of the second kind strong. 

At the level of the MDSCAL representations, we find that the strong normalizations 
make a kind of inversion of the data, turning the MDSCAL plots inside out (compare 

Fig. 9). The effect is similar to the conformal mapping < + 1 /c in the complex plane, 

FIG. 9. Scaling of I ~ NT/I + 2 on 5-lattice with A umper present and Psplitter removed. 
2 dimensions, Euclidean metric, L-configuration. Stress formula 1 = 20.0”,,. Points are labeled 
by type according to Table VII. 

which again suggests an analogy between the lattice endpoints and the point at infinity 
or, dually, zero. The result is that the contour lines nearest Pspntrer are now outermost 
and those nearest PtumBer are innermost; again (as previously) the outer contours are 
regularly recovered. 

The explanation of this effect may be obtained by analyzing the normalization 
procedure in more detail. In the case of the first strategy in Table VIII, which leads 
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to mild normalizations, as P and Q increase toward Plumper in the lattice ordering, 
P n Q likewise approaches Plumper . The function 0 is monotone increasing, hence 

O(Pllumper) - B(P n Q) is monotone decreasing toward 0 as P n Q + Plumper. 
Consequently, distances between partitions at the Plumper end of the lattice will be 
expanded relative to distances at the PsDlitter end in comparison with the unnormalized 

metric. This expansion in the region of Plumper is, however, merely an intensification 

of a similar dilation already present in the unnormalized distances (compare again 
Figs. l&6), and again Psplitter will be placed at the origin and Plumper at the periphery 

of the plot. The result is that we would expect INFOTHRY to recover contour lines 
better than INFOTWO or MULTINOM for the same reason that PAIRBONDS 
does: namely, it inflates distances more than do INFOTWO and MULTINOM as 
we move up in the lattice ; in fact, the scaling results strongly bear out this presumption. 

In the case of the strong normalizations, by contrast, the denominator will increase as 
P and Q approach Plumper . Thus, a countervailing influence to the dilation of distances 
at the upper end of the lattice is established, and, in fact, is sufficiently strong so that 

the PlumBer region is actually contracted relative to the Psplitter region. 

4. THE EFFECT OF INTERPOINT DISTANCE TIES 

We now focus on the behavior of the two measures which gave the highest percen- 

tage of interpoint distance ties, namely, APPROX and TI2MINUS (see Table IV for 
defining formulas). A comment on the motivation of these measures is in order. 

The measure APPROX is a closed-form approximation to the following least-moves 

measure proposed in Boorman and Arabie (1970). Define a set moue transforming one 
partition into another to be the transfer of a subset of a cell of the first partition to 
another cell or to form a new cell. The metric B may be defined as the least number of 
set moves needed to transform any partition into any other given partition. Clearly, 
the range of B is contained in the set of integers (0, I,..., 7t - l}, and it can be shown 
that B has no closed-form representation but is computable as a Hitchcock problem of 
optimal assignment type (Ford and Fulkerson, 1962). The formula defining APPROX, 
namely, 

APPROX(P,Q)=lPnQI--min(lPj,IQI). (8) 

is derived from the definition of B by assuming essentially no interaction among 
allocation decisions in the optimal assignment problem associated with its computation; 
see Boorman (1970) for details. 

The measure TIZMINUS can be expressed by a formula very similar to APPROX: 

TI2MINUS = 2(1 P n Q 1 - (I P 1 + 1 Q 1)). (9) 

TI2MINUS is a distance concept dual to the metric C discussed in Boorman and 
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Arabie (1972), which is a standard lattice metric often employed in pure mathematics 
(Birkhoff, 1967) and which may be defined by 

Given the apparent similarity of their defining formulas (8) and (9) respectively, 

the remarkable feature of the two measures APPROX and TI2MINUS is the striking 
and consistent difference between the qualitative nature of their MDSCAL representa- 
tions, using the primary approach to ties as previously indicated. The APPROX plots 
are roughly linear along the lumper-splitter dimension, with types arranged in linear 

segments perpendicular to this axis (Fig. 10). The TI2MINUS plots attempt to 

(4) 

FIG. 10. Scaling of APPROX on IO-lattice sample with both endpoints present. 2 dimen- 
sions, Euclidean metric, random initial configuration. Stress formula 1 = 19.146. Points are 
labeled by the cardinality / P 1 of the corresponding partition. Numbers in parentheses classify 
segments of the plot by the cardinality of the partitions which they contain. 

replicate contours as closed curves, but customarily become badly confused as to 
whether Z’tumper or Psplitter should be dominant, and sometimes end up placing these 
two partitions on top of one another (Fig. 11). 

It remains somewhat unclear why APPROX gives the extreme contour structure 
evinced by Fig. 10 while TI2MINUS gives a contour structure which can be explained 

by reasoning as in the last section. This question would not be interesting were it not 
for the fact that the behavior of APPROX makes it discriminate cardinalities as linear 
segments with such accuracy that a visual scan of an unlabeled output plot can usually 
differentiate partitions by size, which is not possible for PAIRBONDS, INFOTWO, 
or any of the less “degenerate” metrics. The success of MDSCAL in handling this 
tie-bound metric is all the more surprising if one considers the assertions of Roskam 
(1969) that Kruskal’s algorithm is particularly vulnerable to degenerate solutions for 
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data containing ties. Since APPROX clearly will give even more interpoint ties than 
does TI2MINUS, in going from the latter measure to the former we have apparently 
achieved a situation where confusion of cardinalities (in the TI2MINUS plots) is 
replaced by a superficial clarity in the APPROX scaling, at least as long as the primary 
stress approach is used. In fact, however, all that APPROX is really doing is decoupling 
partitions of different sizes, so that classes of partitions of a fixed size can be scaled 
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FIG. 11. Scaling of TIZMINUS on lo-lattice sample with both endpoints removed. 2 
dimensions, Euclidean metric, random initial configuration. Stress formula 1 = 29.8 %. Points 
are labeled by cardinality. 

essentially as line segments, with little emphasis being given by the algorithm to the 
relation between different segments as long as they are kept distinct (compare again 

Fig. 10). 
The implication is that scaling representations may be highly sensitive to the exact 

form of the input proximity measure if an excessive number of interpoint distance ties 
is permitted and the primary stress approach is employed. Since many structural 
measures suggested solely on the basis of mathematical considerations tend to produce 
many interpoint distance ties [compare Hays (1965)], there is need for considerable 
caution in practical employment of such measures in scaling or scaling-related applica- 
tions. In fact, as Appendix B demonstrates, there are powerful constraints which 
force any permutation-invariant partition distance measure to have many interpoint 
distance ties for large lattices. 
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5. MEASURES OF ASSOCIATION 

The remaining measures to be discussed are both derived from standard measures 
of association by linear transformations. CHISQUAR (in Table IV) is based on a 
suggested normalization of ~2 proposed by Cram& (1946) ; see also Goodman and 
Kruskal (1954). The measure 1 - LAMBDA ( g a ain see Table IV) is the obvious 

conversion to a distance measure of the measure of association h, which is discussed 
at length in Goodman and Kruskal (I 954) and which h as various desirable invariance 

and normalization properties. 
MDSCAL solutions were computed for both CHISQUAR and 1 - LAMBDA 

for both the 6- and the lo-lattices, with r = 2 (Euclidean metric) and r = I (city- 
block metric). Figures 12 and 13 show the obtained solutions for 1 - LAMBDA and 
CHISQUAR, respectively, in two typical cases. In both cases the points are labeled 
according to the number of cells of the corresponding partition. 
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FIG. 12. Scaling of 1 - LAMBDA on IO-lattice sample with Aumper removed and Pnolittrr 
present. 2 dimensions, Euclidean metric, random initial configuration. Stress formula 1 : 32.1*“. 
Points are labeled by cardinality. 

A similar analysis to that performed earlier for PAIRBONDS and INFOTWO 

(pp. 167-168 previously) provides insight into the scaling behavior of these measures of 
association. Specifically, consider the 1 - LAMBDA distance produced by moving a 

480/10/z-5 
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FIG. 13. Scaling of CHISQUAR on lo-lattice sample with Aumner removed and PBplitter 
present. 2 dimensions, Euclidean metric, L-configuration. Stress formula 1 = 36.2%. Points 
are labeled by cardinality. 

single element from a cell of size k to one of size k’. Then 1 - LAMBDA may 
straightforwardly be computed: 

1 _ LAMBDA = 2n - [(k - 1) + k’ + (n - 12 -k’) + (k - 1) + k’ + (n-k-k’)] 
2n - I c Imax - I d lmsx 

-__ 7 

(11) 

where the notation in the denominator is as in Table 4 and we are assuming A, A’ > 1. 
This expression reduces to 

1 

n - +(I c lmax + I d Imax) -;I1 +$$clmax+ldlmax)/, (12) 

for I c Imax, I d Imax small compared with n. Hence, if k is the largest cell size in the 
original partition we have a 1 - LAMBDA distance linearly dependent on k. If, 
however, we have the polar case where [ c Imax = / d Imax = n - k - k’, then the 
1 - LAMBDA distance (12) reduces to (I /(k + k’)) an , unlike either the corresponding d 
computation for PAIRBONDS ((5) f  or s = l), or that for INFOTWO (7), this expres- 
sion is monotone decreasing as a function of k and k’. This behavior is not sufficient 
to cause inversion to occur, though contour recovery is considerably confused. 

In the case of CHISQUAR, consider again the effect of moving a single element from 
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a non-singleton cell of size k to a cell of size k’. Then the cardinality of the partition 

remains invariant. Let this cardinality be 2. Then the distance generated is 

CHISQUAR 

= I-- -1 + Ck- I)“, 
[C 

l 
k(k - 1) W’ + 1) 

(13) 
Equation (13) may be simplified to obtain 

CHISQUAR = 1 - 
[i 

- 1 
k + k(k’: 1) + 7% 

+ z - 2)/p - l)]. (14) 

The relevant (k- and k’-dependent) part of this last expression may now be rewritten 

Y(k, k’) z 1 I’ - ’ 
k’ 

2 - 1 k k(k’ + 1) -3iqT 
] 

(15) 
This expression is again monotone decreasing in both k and k’. I f  k’ is large, then, for 
fixed k, (I 5) is approximately a linear function of 1 /k’ ; and for fixed k’, ( 15) is a linear 
function of l/k in any case. From an empirical scaling standpoint, as is clear from 

Fig. 13, CHISQUAR rather effectively differentiates contours according to cardinality. 
In fact, CHISQUAR typically gives better scalings by cardinality than does 
TI2MINUS, which is defined explicitly in terms of cardinality. At the same time, 
since cardinality is a much cruder structural property than height, as used to define 
PAIRBONDS, there is no question that CHISQUAR is less sensitive to the fine 
structure of types than is PAIRBONDS; this is not surprising, since PAIRBONDS is 
defined explicitly with reference to the lattice structure of partitions while CHISQITAR 

is not. 

6. COMPARISON OF THE BEHAVIOR OF THE MEASURES: 

RANK-ORDER CORRELATION, INDSCAL, STRESSES 

Several approaches were employed to the problem of classifying the measures we 
have been considering with reference to their scaling and other numerical behavior. 
The motivation for this comparison originally derived from abstract typology of 

partition distance measures (Boorman, 1970; Boorman and Arabie, 1972) based on 
purely lattice-theoretic considerations. In view of the current interest in classifying 
different kinds of metrics in various psychological applications (Cross, 1965a, 1965b, 
Shepard, 1969, 1972; Micko and Fischer, 1970; Fischer and Micko, 1972), it is 
relevant to see how well an abstract classification correlates with the concrete numerical 
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behavior of distance measures, and what further classificatory information comes out 
of such numerical output. 

Table IX gives rank-order correlation coefficients between each pair of distinct 

partition distance measures on each of the spaces considered (4-lattice, 5-lattice, 
6-lattice sample, lo-lattice sample). The metrics on each particular space induce a 
(nonstrict) linear ordering of unordered pairs of partitions (P, Q) according to their 
assigned metric distance; this linear ordering involves ties, usually a substantial 

number (see Appendix B). Kendall’s rank-order correlation coefficient 70 (one way 
of extending the standard 7 to take care of ties [see Kendall (1962)]) was then employed 
to give each entry of Table IX. A fb value of +1 indicates that the two distance 
measures are ordinally similar in the strict sense (i.e., there is a monotone transforma- 
tion taking one into the other, and by definition of Kruskal’s algorithm their Shepard- 
Kruskal scaling behavior is identical). A 7b value near 0 means little or no correlation 
between the metrics under the 7b measure of rank-order correlation. 

Because Table 9 is difficult to synthesize as a whole, Shepard-Kruskal scalings of 
the entries in the table were made. Figures 14 and 15 illustrate, respectively, the 
Euclidean and city-block scalings of the 70 matrices for each of the four lattices. In order 

to minimize the possibility of achieving a seriously distorted solution corresponding 
to a local minimum of stress formula 1, each of the scalings was rerun eight times 
with different random initial configurations and the solutions with lowest obtained 
stresses were selected for inclusion in Figs. 14 and 15. The final stresses obtained were 
excellent. The four Euclidean solutions were then rotated to maximum congruence 
using the algorithm of Olivier (1970); the four city-block solutions were eyeballed to 
maximum congruence by reflections, since rotation invariance does not hold for 
city-block spaces. 

The eight solutions contained in Figs. 14 and 15 are seen to be remarkably similar 
and correspond closely to the qualitative analysis of Boorman and Arabie (1972) and 
the comparative MDSCAL analysis of the present paper. The strong normalizations 
1 - NT/l + 2, 1 - NT/SQP, and NVRNTROP (which may also be defined as 
those distance measures placing PI umper at the center of the scaling solution) form a 
tight and isolated cluster in all cases. The measures APPROX and TI2MINUS fall 
between this outlying cluster and the rest of the distance measures, though they are 
typically not close enough to one another to be designated a cluster. The remaining 
seven measures (PAIRBONDS, INFOTWO, MULTINOM, INFOTHRY, l- 
LAMBDA, CHISQUAR, and INVRHEIT) form a loose cluster, in which 
CHISQUAR often appears as an outlying point. All other measures in this loose cluster 
except 1 - LAMBDA are either supervaluation-based (PAIRBONDS, INFOTWO, 
MULTINOM) or derived from these metrics by a mild normalization (INFOTHRY, 
INVRHEIT). There is a strong, though not universal, tendency for the scalings to 
place PAIRBONDS and INVRHEIT close to one another, as also INFOTWO and 
MULTINOM. It is also noteworthy that 1 - LAMBDA tends consistently to fall 
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between CHISQUAR and the lattice-based measures, and itself falls close to PAIR- 

BONDS and INFOTHRY in most of the plots. 
A more formal analysis of the same data is shown in Fig. 16, which displays the 

result of applying Johnson’s (1967) d’ iameter method of hierarchical clustering to the 
71, matrix for the IO-lattice and then superimposing the obtained clusterings on the 
relevant MDSCAL solution in Fig. 14. It is clear that the Johnson algorithm replicates 
our major qualitative observations and supports Shepard’s (1969) argument for the 

combined use of hierarchical clustering and multidimensional scaling. 
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FIG. 14. Euclidean scaling of ‘TV matrices for each of the four lattice sizes (4-lattice, Slattice, 
6-lattice sample, IO-lattice sample). Respectively, stress formula I values were: 1 I’(,, 1.6”,, 
1.4”sb, 1 “,,. 

A different approach to the classification problem was also tried, employing the 
INDSCAL algorithm for the metric analysis of individual differences via canonical 
decomposition of 3-way tables (Carroll and Chang, 1970; Carroll, 1972; Schonemann, 

1972). The objective of INDSCAL is to take proximity data from several subjects, 
pool this data and to analyze it by an iterative least-squares algorithm (thus, giving a 
stimulus space), and concurrently to analyze differences between subjects (producing 

a subject space). 
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NVRNTROP 

hi-NT/412 

4-NTfSQP n2M’Y 

b AFPROX 
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. MULTINOM 
cPAlRBOND 

i-LAMBDA 

lNFO?HRY 
0 CHISQUAR 

. INVRHEIT 

4 - LATTICE 

APToX 

k-4-NT/4+2 0 
4-NT/SIP Tl2MINUS 

MULTINOM 

INFOTWO ‘i-LAMBDA 

CH&UAR 
NVR:TROP 

5 - LATTICE 
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INFOTWC 
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/r 
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.INFOTHRY 

. 0 MuLTINOM 

l 
I-LAMBDA 

CH ISQUAR 
0 

6 - LATTICE 

APPROX 

IO - LATTICE 
FIG. 15. City-block scaling of 7) matrices for each of the four lattice sizes (4-lattice, S-lattice, 

6-lattice sample, lo-lattice sample). Respectively, stress formula 1 values were: 2.5 %, 3.6x, 
1.7x, 2.3%. 

FIG. 16. Superposition of hierarchical clustering of the I( matrix for the lo-lattice sample, 
Johnson’s diameter method (1967), on MDSCAL solution in Fig. 15. 
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In the present application, the points of a given partition lattice corresponded to 

stimuli in the standard interpretation of the INDSCAL model, while the partition 
distance measures corresponded to the subjects. Following the procedure described 
by Carroll and Chang (1970, p. 288), each partition distance measure p was normalized 
so as to equate the variance for each subject (measure). Using the INDIFF data 
structure, INDSCAL solutions in each of dimensions 5, 4, 3, and 2 were then deter- 
mined for the partition spaces obtained by truncating both Plumper and Psptitter from 

the 5-, 6- and lo-lattice samples. The obtained stimulus spaces were, in general, 
interpretable with very clear differentiation of partition types as contour lines and 
the partitions near Pspritter in the center of the plot. The subject space solutions, 
however, were degenerate for the 5- and 6-lattices in the sense that the solutions fell 
very nearly on a ray through the origin and, hence, corresponded to an attempt on the 

part of the model to treat all the input distance measures as if they were identical 
up to a positive constant. By contrast, a meaningful IO-lattice INDSCAL solution 
was obtained for both the stimulus and subject spaces. Figure 17 gives the two- 

FIG. 17. Two-dimensional INDSCAL subject space representation for the 12 partition 

distance measures. 

dimensional subject space representation. As in Figs. 14 and 15, 1 - NT/l + 2, 
1 - NT/SQP, and NVRNTROP appear in a cluster, as do APPROX and TIZMINUS. 
The supervaluation-based lattice metrics (PAIRBONDS, MULTINOM and 

INFOTWO), however, become strongly separated from 1 -LAMBDA, INFOTHRY, 
and INVRHEIT in the INDSCAL solution, whereas these measures form a loose 
but single cluster in the MDSCAL solution based on the 7b matrix. 

A third kind of numerical comparison of the distance measures is more indirect 
and simply involves ordering the obtained stress values (all computed by means 



186 ARABIE AND BOORMAN 

of Kruskal’s stress formula 1). Although various recent investigators, e.g., Zinnes 
(1969) and Young (1970), have de-emphasized the importance of stress as a summary 
statistic, except to indicate obviously degenerate solutions, various results of interest 
were obtained from stress comparisons. Table X records stress values obtained by the 
following averaging procedure designed to give a reasonable number of replications 

in each cell (on the order of 10). A given partition measure, a given dimensionality 
(=2 or 3), and a given Minkowski r (Euclidean or city-block) were fixed, and the 
obtained stresses were first minimized over the initial configuration with presence/ 
absence of endpoint(s) held fixed, and then averaged over the latter. Thus if TV is a 

partition distance measure (on a particular lattice), r is the Minkowski r, and d is the 
scaling dimensionality, then the corresponding entry in Table X is: stressav(p; r, d) = 
(l/4) ((stress minimum with both endpoints) 

+ (stress minimum without Plumper) 

+ (stress minimum without Psplttter) 

+ (stress minimum without Plumper and Psplitter)). (16) 

The averaging over presence/absence of endpoint(s) was done in order to provide 
greater stability in the entries. Missing entries in the table indicate that no scalings 

were done for the particular (p, Y, d) configuration corresponding to the cell. Only 
eight metrics were scaled with enough different configurations to make reporting 
useful. 

The following interpretation of Table X is of interest. Let us partially order the 
stress vectors in this table (for the eight metrics) in the standard product ordering: 

x < y  if and only if x, < yn for all coordinate dimensions i. Fig. 18 shows that a 
remarkably close approximation to a hear ordering emerges. This figure indicates 
that stress may, in fact, be a more fundamental statistic than commonly thought, for 
not only is the ordering very close to being linear (which indicates that stress is 
essentially an ordinal invariant over lattice size, Minkowski r, and dimensionality), but 
also the ordering is highly interpretable in terms of our previous results. The informa- 
tion-theoretic lattice metrics and their mild normalization INFOTHRY are at the 
top of Fig. 18. PAIRBONDS is next in sequence, followed by its strong normalizations 

1 - NTjSQP and I - NT/l + 2. 1 - LAMBDA is an outlying point in the ordering 
but is contained in the segment (INFOTWO, PAIRBONDS) and, hence, is closer to 
this cluster than to APPROX or to 1 - NT/l + 2 and 1 - NTjSQP (compare again 
Figs. 14 and 15). APPROX is a minimal element in the ordering, as is to be expected 
since the stress approach is primary and, hence, APPROX has the fewest operative 
constraints. 

This analysis in terms of comparative stress behavior hence integrates closely with 
the classification of different measures by MDSCAL and INDSCAL. Normalization 
appears in all cases to reduce stress, especially severe normalization (1 - NT/l + 2 
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, I N FOTWO 

/// 
I (I) 

MULTINOM 

4-LAMBDA (2) 

\ 
\ IN FOTHRY 

\ 1 
PAIRBONDS 

*-NT/ SOP 4-NT/i+2 

\/ 
APPROX 

FIG. 18. Partial ordering of eight measures of partition distance on the basis of obtained 
stress formula 1 values. One measure is above another in the ordering if its stresses are higher, 
component by component, in Table X, with the following exceptions: (1) Except for 1 y’ 
discrepancy for 4-lattice, I = 1, d = 3; (2) Except for I y0 discrepancy for 5-lattice, r = 1, 
d = 3; (3) Except for 3% discrepancy for lo-lattice, r = 1, d = 2; (4) Except for 2-3% 
discrepancy for 5-lattice, T = 1, d = 2. 

and 1 - NT/SQP. PAIRBONDS-derived measures give consistently lower stress 

than information-theoretic ones, and-if stress is taken seriously as a badness-of-fit 
function-this situationreinforces our earlier comments to the effect that PAIRBONDS 
is better adapted to multidimensional scaling applications than are information- 
theoretic measures. 

7. APPLICATION TO A SOCIOBIOLOGICAL EXAMPLE 

In a study which provides the data base of a recent stochastic model by Cohen 

(1970), Struhsaker (1967a, 196713) h as g iven detailed reportings of the sleeping groups 
formed by vervet monkeys (Cercopithecus aethiops) over a six month observation 
period. These sleeping groups are recorded in Table XI and constitute ideal data for 
partition analysis because of the comparative clarity of their operational definition, 
which Struhsaker gives as follows (1967b, p. 110): “Nearly every evening, just before 
sunset (between 1830 and 1900 hours), the vervet groups divided into sleeping sub- 
groups that spent the night separated from one another by at least one impassable 
break in the tree canopy.” 

Cohen (1970) has analyzed the size distribution of these sleeping groups in terms of 
a family of stochastic processes (which he terms LOST dynamics), and has found that 
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TABLE XI 

Sleeping Groups Formed by a Vervet Monkey Troop on Successive Nights” 

I 

II 

III 

IV 

v 

VI 

VII 

VIII 

IX 

X 

XI 

XII 

XIII 

XIV 

xv 

XVI 

(1) 4-5 Jan. 1964 

(2) 29-30 Jan. 1964 

(3) 4-5 Feb. 1964 

(4) 9-10 Feb. 1964 

(5) 23-24 Feb. 1964 

(6) 24-25 Feb. 1964 

(7) l-2 March 1964 

(8) 9-10 March 1964 

(9) 31 March 1964- 
1 April 1964 

(10) l-2 April 1964 

adult male SG 

the older adult male (left the troop between 17-l 8 April and 
27-28 April 1964) 

adult male LP 

adult female DK 

juvenile male LYA 

adult female TK 

young juvenile female D 

young juvenile female B 

young juvenile female DR 

juvenile female NN 

subadult female N 

adult female TBW 

two young indistinguishable juvenile males 

infant male DK (son of IV) 

infant female TBW (born to XII between 4-5 Jan. and 
29-30 Jan. 1964) 

infant male TK (born to VI between 29-30 Jan and 4-5 Feb. 1964) 

(IV, XIV, XIII), (I, III, v, XII, XIII), (XI, IX, X), (II), 
(VIII, VII, VI) 

(VI, x, VIII, VII, IX), (I, II, III, IV, XIV, XII, xv, v, XI, 
XIII, XIII) 

(V, XIII, XIII, IV, XIV, II, XII. xv, XI), (I), (III), (VIII, IX, 
VII, x, VI, XVI) 

(III, II, V), (I, XI, XIII, XIII), (X, IX), (VIII, VII, VI, XVI, IV, 
XIV, XII, XV) 

(XII, XV, XI), (other 14) 

(I, III, XI), (other 14) 

(XII, XV, XI, III), (other 13) 

(X), (XI, III, XIII, XII, XV), (V, I, IX, VII, VIII, VI, XVI, IV, 
XIV, II, XIII) 

(III, XIII, X), (XI, IX), (II, XII, XV), (I, VII, VIII, v, IV, XIV, 
VI, XVI, XIII) 

(II, XII, XV), (XI, XIII, IX), (IV, XIV, XIII), (VI, XVI, VII. 
VIII, III, I, v, X) 

Table continued 
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TABLE XI (continued) 

(11) 

(12) 

(13) 

(14) 

(13 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

4-5 April 1964 

6-7 April 1964 

17-18 April 1964 

27-28 April 1964 

30 April 1964- 
1 May 1964 

4-5 May 1964 

9-10 May 1964 

11-12 May 1964 

19-20 May 1964 

21-22 May 1964 

l-2 June 1964 

44.5 June 1964 

(I, II), (VI, XVI), (III, X), (V), (VII, VIII, IX, XII, xv, XIII, 
XIII, XI, IV, XIV) 

(IV, XIV, XIII, XIII, XI, IX), (III, XII, xv, VI, XVI, VIII, X), 
(II, I, VII, V) 

(X), (IV, XIV, XIII, XIII, IX, XI), (III, XII, XV), (I, v, VI, XVI, 
VII, VIII), (II) 

(I, IX, v, x, XIII, III), (XII, XV), (XI), (IV, XIV, XIII, VIII, 
VII, VI, XVI) 

(IV, XIV, XIII, IX, X), (I, XI, XII, XV), (VI, XVI, VII, VIII, 
XIII, V), (III) 

(VI, XVI), (IV, XIV, XIII), (III, XII, XV), (I, XI), (X, XIII, VII, 
VIII, IX), (V) 

(XIII, IX, XI), (III, I, v, XIII), (XII, XV), (VI, XVI, VII, VIII), 

(IV, XIV), (W 

(XII, XV), (IX, III, XIII, X), (XI), (I, v, IV, XIV, XIII), (VI, XVI, 
VII, VIII) 

(XI, IX, I), (III), (V, XII, xv, VII, VIII, x, VI, XVI, XIII), 
(XII I, IV, XIV) 

(VI, XVI, VII, VIII), (III), (XI, IX), (XII, XV), (I), (IV, XIV, 
XIII, XIII, x, V) 

(XII, XV), (XI), (XIII, v, x, IV, XIV, IX, I), (XIII, VI, XVI, 

VII, VIII), (III) 

(XII, xv, V), (XI), (VIII, IV, XIV), (I, x, IX, XIII), (VI, XVI, 
VII, VIII), (III) 

5 Taken from Cohen (1970). Reproduced by permission of Harvard University Press. 

these processes predict well the size distribution found (which is essentially truncated 
negative binomial), by contrast to a variety of other possible random processes. 

Employing scaling methods for partition spaces described and analyzed above, 
another analysis of the Struhsaker data was undertaken, with an end to seeing whether 
any systematic temporal variation would emerge from a partition distance analysis. 
The only technical problems were that the underlying set of individuals varied slightly 
with time, and two specific individuals were indistinguishable to the observer (both 
labeled XIII in Table XI). The first problem can be handled for each of our measures 

simply by computing ci , dj , and xii as if the sets underlying two given partitions P 
and Q were always identical. For each given sleeping group observation we took the 
two possible ways of assigning individual identity to the indistinguishables and 
identified the observation with a pair (PI , PJ of partitions. Given two such pairs, 
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an assigned distance for any partition distance measure m may be computed by: 

m*((P, , pd, (!A , !A)) = miN(Wl 7 !2J, mPl , !&)I; 
m* can be shown to be a metric if m is. 

(17) 

Scalings were then performed for each one of the 12 measures in Table IV, in two 
and three dimensions with the Euclidean metric on the output configuration. (Several 
different random initial configurations were employed as a control on the result.) 
Figure 19 gives the obtained PAIRBONDS configuration in two dimensions; as 

6 

7 5 

6 

II 9 

13 15 21 
14 

IO 

12 
I6 $2” 

I9 I 3 

4 2 

FIG. 19. PAIRBONDS scaling of Struhsaker’s data on vervet sleeping groups over a six- 

month observation period. 2 dimensions, Euclidean metric, random initial configuration. 

Stress formula I == 18. I “&. Points are labeled according to the observation numbers in Table XI. 

previous analysis has indicated, this metric gives more information on lattice structure 

than various of the other measures. A similar picture was obtained for city-block 
scaling of PAIRBONDS. 

Figure 19 clearly shows that the points corresponding to early observations tend 
to fall on the outside of the plot, while points corresponding to late observations tend 
to cluster at the center. The distance between successive observations tends to be 

large at first, but rapidly diminishes as the data points near the compact central cluster. 
These trends are somewhat noisy, since the observation point I is very close to the 
central cluster, as is the observation 9, while 11 and 12 are clearly outlying points. 
Despite this fluctuation, the partitions in periods l-8 have an average height (lumpi- 
ness): 

B = z (’ “; ‘) = 63.75, 
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while those in the subsequent observation periods have an average height of only 
32.0 (see Table IV for definition of D). A finer breakdown of more minor temporal 
fluctuations shows several clusters among the outlying points, especially (2, 3,4) and 
(5, 6, 7, 8). The greater tendency of the group to sleep in larger units in the early 

time periods may have been connected with the onset of the copulating season (in 
May) and the termination of the normal birth season (the last actual birth in this 
particular troop was in the period between 29-30 January and 4-5 February, 1964) ; 
see Struhsaker (1967a) for more detailed discussion of seasonal variation in reproductive 

behavior. 
Although Cohen (1971, pp. 26-27) makes a brief examination of temporal variation 

in mean group size, which is proportional to the reciprocal of the number of cells in the 
observed partitions and is hence a simple cardinality measure, he discovers no syste- 
matic variation of this quantity in time. In fact, however, this is probably in large part 
owing to the crudeness of cardinality as a measure, which we have already seen can 

lead to degeneracies and instabilities in connection with attempted scaling. Moreover, 
Cohen’s emphasis is on an attempt to capture temporal variation by a time-varying 
Poisson process with a parameter possessing a gamma distribution. Since the Poisson 
parameter is assumed to be separately generated at each discrete time point, it is not 

surprising that the resulting process fails to capture systematic diachronic variation. 
Struhsaker (1967a, 1967b) undertakes the technically easier task of searching for 

nonrandom entries in the incidence matrix defined by the frequency with which 
particular pairs slept in the same group [an analysis similar to that performed for a 
semantic space by Miller (1969)J. It is not surprising that he found such nonrando- 
micities (mother-infant being the single most important). The present results indicate 
that the data analyzed by Struhsaker and Cohen possess yet another level of structure 
which is important in the medium run, on a time scale of perhaps several months. This 

structure may be important in confronting the inadequately understood question+ 
derived ultimately from evolutionary sociobiology-as to what adaptive function the 
propensity to form sleeping groups may serve. In this particular application, the 
MDSCAL algorithm reveals itself as a method of extracting trend from fluctuation 
in a structural space (the partition lattice) considerably wilder than the standard 

n-dimensional random walk familiar from statistical physics. 

8. DISCUSSION 

Most existing methodological studies of multidimensional scaling deal either with 
Minkowski r-space configurations (at most perturbed by noise), which it is the job 
of the program to recover, or with highly general proximity matrices without much 
structure. The present study is an attempt to enter the problem at an intermediate 
level, where we are scaling proximity matrices about whose structure we can say 
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something analytically, but which are not even close to being Minkowskian for any 

r. The partition lattice is an ideal starting point for such an analysis, because of its 
very rich combinatorial structure, e.g., Whitman (1946), combined with the simplicity 
of basic partition algebra. 

Our major qualitative conclusions for our particular data have already been stated. 
They are (1) the difficulty of specifying a unique combination rule (i.e., the value of Y 
in the Minkowski metric) associated with a particular partition space; (2) the utility 

of stress as ordinal evidence of badness-of-fit, and (3) the nonuniqueness of MDSCAL 
solutions at the level of individual points. We believe that the last conclusion, combined 
with the results of other studies, suggests a particular way of viewing spatial representa- 
tions of the stimulus domain. 

In discussing the nonunique nature of scaling solutions for the partition lattice under 
a given metric, it was argued that such solutions are interpretable only to the level 
of contours and clusters, not necessarily down to the location of single points. Similarly, 
we would like to suggest that the traditional emphasis on the dimensions of nonmetric 
multidimensional scaling solutions may be unjustified; see parallel arguments in 

Shepard (1969, pp. 52 ff.). 
For partition metrics of the kind considered in the present study, we have argued 

that a three-dimensional solution is largely uninterpretable and that a two-dimensional 
solution is governed by the location along the lumper-splitter axis of the family of 
partitions being scaled (i.e., the range of types (Definition 2.1) represented in the 
family) so that psychological “explanations” of such data can reflect little more than 

differential placement of the given sorter along this lumper-splitter axis. 
One consequence of this finding is that the investigator’s attempt to attach psycholog- 

ically appropriate attributes to orthogonal axes in such a space becomes a matter of 
little importance, contrary of the legacy of factor analysis. It may be countered that 
the artificial data considered here constitute a very special case. However, our position 
is reinforced by the author of a particularly competent investigation using semantic 

stimuli (Arnold, 1971, p. 367), who has denigrated the naming of dimensions: “The 
writer knows that an attempt to assign names to dimensions descriptive of verbal 
concepts can amount to no more than a self-administered word-association test.” 

Perhaps the strongest emphasis on dimensions has come from Beals, Krantz, and 
Tversky (1968) who have argued that metric and dimensional representations should 
be viewed as psychological theories of similarity, rather than as methods of organizing, 
summarizing, or displaying data, in contrast to the viewpoint of Shepard (1962) and 
Shepard and Carroll (1966, p. 566). Beals, et al. (1968) have stated that “...if 
multidimensional scaling models are regarded as useful data reduction models 
rather than as theoretical models one may ask what is the source of their usefulness” 
(p. 141). Two studies, in both of which the psychological dimensions were of minimal 
importance, may be cited to answer this question. 

The first finding comes from an investigation of the space of color names carried 

480/10/z-6 
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out by Rapoport and Fillenbaum (1972). On the basis of prior analyses, e.g., Shepard 
(1962), these authors had expected to find a circular representation, and their results 
confirmed that expectation. Now at this point, the traditional emphasis would demand 
names for two attributes underlying the circular representation (an especially difficult 

task, given the rotation invariance of MDSCAL solutions). 
Instead, Rapoport and Fillenbaum suggested the use of polar coordinates, in which 

the “intrinsic” dimensionality is now equal to one, and the topic of interest is the 

ordering of colors along this one “dimension. ” Considering the result in polar coordi- 

nates renders useless most of the elegant theoretical tests for dimensional representa- 
tion, e.g., Beals et al. (1968) and Tversky and Krantz (1969). Nonetheless, we think 
most investigators would agree that the imaginative approach taken by Rapoport and 
Fillenbaum renders the data much more meaningful psychologically than would an 
insistence upon questions of dimensional representations. The advantage obtained 
from using polar coordinates for this particular set of data suggests that strict adherence 

to Cartesian coordinate systems may be unwise; see Coolidge (1963, p. 171), for a 
survey of alternatives. 

The second investigation is a superb study by Rumelhart and Abrahamson (1971) 
of the multidimensional space of animal names obtained by Henley (1969). I f  one 

asks the names of the dimensions Henley obtained, the answer-size, ferocity, 
“humanness’‘-can hardly be surprising. The important result from her experiments 
is surely not the names given to the dimensions; rather, the replicated spatial re- 
presentation per se and the underlying non-Euclidean metric, pointed out by Arnold 
(1971), are the important findings. The validity of the space Henley obtained was 
dramatically confirmed in a series of experiments by Rumelhart and Abrahamson, 
using an “analogical paradigm.” It is noteworthy that their experimental task made 

no reference to the three dimensions listed above. Instead, the subjects made analogical 
judgments of the form: Animal A is to animal B as animal C is to [x1 , x2 , x3 , xp] 
(four-alternative forced choice). By means of this experimental design, Rumelhart and 
Abrahamson verified the results of Henley (1969), but it should be noted that the 

data upon which their study was based were the relative locations of points (animals) 
within the spatial representation, rather than orientation with respect to any particular 
set of psychological dimensions. 

Finally, perhaps the strongest emprirical evidence against the traditional emphasis 
upon dimensions has come from Lockhead’s (1970) study of multidimensional discrimi- 
nation space. Lockhead argues that S’s task is one of locating the multidimensional 
stimulus in a psychological space without the requirement that the stimulus be analyzed 
according to its separate components. An implication of this theory is that,in the design 
of a discrimination experiment, the set of stimuli that will be identified most accurately 
is that for which the sum of the distances between each stimulus and its immediate 
neighbors is a maximum and the variance of these distances is a minimum. Lockhead 
offers data to support this implication for cases in which the underlying physical 
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dimensions of the stimuli are “analyzable” as well as other “unanalyzable” cases 

(Shepard, 1964). Lockhead further argues that the (physical) dimension of importance 
is actually the relative location of the information in a multidimensional space, and he 
again offers experimental results in support of this thesis. 

The studies by Rapoport and Fillenbaum and by Rumelhart and Abrahamson were 
cited as evidence that a better understanding of psychological processes may be 

obtained by foregoing the usual emphasis upon psychological dimensions. Lockhead’s 
results suggest that the traditional approach to discrimination learning places undue 
emphasis upon the physical dimensions of the stimuli, since it is the relative locations 
of the stimuli within the space that are important. I f  the underlying (physical) 
dimensions are of as little consequence as his study suggests, then it would seem that 

the usual emphasis given to the possible recovery of corresponding psychological 
dimensions in multidimensional scaling solutions may also be ill-spent. 

APPENDIX A: PROCEDURE FOR RANDOM GENERATION OF PARTITIONS 

We describe here a procedure for generating random partition P of a set S of fixed 
size n. 

Enumerate the elements of S, (S = e,}i=ln, and consider the class C of II x n 
matrices whose entires are drawn from the set { - 1, 0, + I)-. We may code any partition 

P of S as a matrix M = [Ujk]nxn in C by setting: 

ajk = 
\ - 1 ej , e, not in the same cell of P 
( + 1 ej , ek in the same cell of P. 

The converse, however, is not true, since most of the matrices in C do not correspond 

to partitions. The intuitive idea underlying our random generation procedure will be 
to start with the zero matrix 0 = [O],,, and to fill in -l’s and + l’s according to a 
probabilistic procedure consistent with the requirement that we will eventually 

produce a matrix M corresponding to some partition Q of S. 
To simplify the problem somewhat, we henceforth restrict attention to the half 

regionabove the main diagonal of the matrices we are considering. It will benotationally 
convenient to refer to the entries of an upper halfmatrix by unordered subscripts. 

Thus, if g f  k a{~ = atg,ht (= amin(s,h),max(TL,y) in the ordered subscript notation 

traditional for matrices). The restriction to upper halfmatrices clearly sacrifices no 
generality, since all matrices M corresponding to partitions of S are symmetric about 
the main diagonal (aij = aji) and have main diagonal elements identically =- +l. 
We hence start with the upper halfmatrix whose entires are all 0 and consider a 
procedure for randomly changing the O’s to -1’s and + l’s without violating the 
remaining constraint that the final result be consistent with the transitivity of cell 
membership. 
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For present purposes, we may define this consistency requirement as follows: 

DEFINITION. An upper halfmatrix H is consistent with transitivity if the matrix K 

which results when 

(i) All 0 entires in H are changed to -I, producing an upper halfmatrix G; 

(ii) The upper halfregion of K is set to be G; 

(iii) The lower halfregion of K is defined by symmetry (so that Kij = R,,); and 

(iv) Diagonal elements of K are set = + 1 

is the incidence matrix of some partition Q. 
We are in a position to define the random generation procedure. Starting with the 

upper halfmatrix, all of whose entires are 0, we select an entry at random and fill it 

with a +l (with probability p) or a - 1 (with probability 4 = 1 - p). In the first 
contingency, we refer to the change as a p-decision and, in the second contingency, as 
aq-decision. Then we select another entry at random and repeat the process. In general, 
however, after the second p-or p-decision, the procedure becomes slightly more 
complicated because we must in general fill one or more additional 0 entires following 

each p- or g-decision in order to preserve consistency in the above sense. In general, 
suppose that we are given an upper halfmatrix H consistent with transitivity. I f  H has 
no 0 entries, H corresponds to the completely defined incidence matrix of a partition. 
If  H still has 0 entries, select a 0 entry at random and fill it with a + 1 (with probability 
p) or a - 1 (with probability 4 = 1 - p). Suppose the entry in question is a(,,,) . 

We now fill in further entries as follows, depending upon whether a(,,,) was set equal 
to +l or to -1. 

If  a(,,,) = +l, consider all entries u(,,~) which 

are nonzero. If  a specific u(,,~) = 1 but 

u(,,~) = 0 in H, we set uth,~) = 1. If  u(,,~) = - 1 

but a(,,~ = 0 in H, we set a(,,~ = - 1. 

We fill in entries similarly with the roles of g and h interchanged. 

If  a(,,,) = - 1, consider again all entries ~(,,~l 

which are nonzero. If  a specific u(,,~) = 1 but 

u(,,~) = 0, we set u(,,~) = 1. If  u{,,~) = -1, we 

make no change in a(*,~ . 

Again, we repeat the procedure with the roles of g and h interchanged. 
It is easy to see that the resulting halfmatrix H, when these substitutions are com- 

pleted, is consistent with transitivity in the sense of the preceding definition. Since 
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H will have fewer 0 entries than H, the procedure we have specified will always 
terminate in a halfmatrix, defining the incidence matrix of a specific partition after 

no more than (F) steps. 
For any choice of p E (0, l), each partition in the n-lattice has some positive pro- 

bability of occurrence, and hence the procedure defines a one-parameter probability 
measure on the n-lattice as a function of p. The choice of p gives the investigator 
control over the centering of the obtained distribution in the lattice ordering: p -+ 0 
corresponds to centering of the distribution in the neighborhood of Psplirrer , while 

p + 1 corresponds to centering near Prumper . 
Monte Carlo studies indicate that the obtained probability measure is most nearly 

uniform for p = p, , which equates the likelihood of Plumger and Psplirter, i.e., for 
which 

pn-’ = (1 - p u u ,(2). (l-1) 

For large n the solution of this equation can be shown to be well approximated by 

p, c (In n)/(n - 1). (I-2) 

The 6-lattice and lo-lattice samples in Tables II and III were genrated by solving 
(1 - 1) numerically to obtain p, = 0.31767 for the 6-lattice and p, = 0.24512 for 
the lo-lattice. 

An alternative method for generating random partitions has been used by Miller 
(1969, pp. 190-191) in connection with an application to the method of sorting. The 
present method is of independent interest owing to the role of transitivity constraints 
in our inductive generation procedure and, in particular, the interaction of p- and 

q-decisions with these constraints. This interaction reveals a surprising degree of 

nonapparent complexity in the process of sorting a set of stimuli. 

APPENDIX B: INTERPOINT DISTANCE TIES FOR CERTAIN PARTITION MEASURES 

Let us first note that aZZ our measures except 1 - LAMBDA and CHISQUAR 

obviously have the general form 

W, Q> = f(p, Q, p n Q). 
Moreover, as we see from inspection of these measures, if we denote by t(P) the 

type of P, we in fact have 

W', Q) = f(W t(Q), V' n Q>). 
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Thus, d(P, Q) can assume at most Tn3 values, where T, is the number of types in 
the n-lattice. 

But by a result initially due to Hardy and Ramanujan (1918), see also Gupta et al. 
(1958) we have 

T, N (1/(4nd/J)) end= as n -+ 00. (2-l) 

Now if the size of the n-lattice is denoted by En , we can use an unpublished result 
of Joyal, Labelle, and Lorrain (n.d.) to simplify a formula owing to Moser and Wyman 
(1955) and obtain 

In En N n In n, (2-2) 

where in fact for 10 < n < 100 the ratio (In EJ(n In n)) is very close to 4; see table in 
Joyal, Labelle, and Lorrain (n.d.). Now the quantity we want to show approaches 
zero as n -+ 03 is 

I Range d I/(>) < Tn3/(2). 

By (2 - 1) and (2 - 2) we see that: 

In [I Range d I/(?)] < 3 In T, - In (2) 

z 3~r(n/6)l/~ - 3 ln[4n(3)l12] - 71 Inn + -co 

and hence 

1 Range d I/(:) + 0. 

(2-3) 

(2-4) 

This result says that the number of interpoint distance ties becomes necessarily very 
large as n gets large as a consequence of the symmetries of the lattice and the in- 
variance of our measures. Stronger results may be obtained by more detailed analysis 
of I Range d I. For example, if d is APPROX or TI2MINUS, then 1 Range 1 = n and 
we have in the range 71 = 10 to n = 100 

In [I Range d I/(?)] - ~Inn-2lnE,~lnn-~lnn=(1-~)lnn. (2-5) 

ACKNOWLEDGMENTS 

We are most indebted to Paul W. Holland, Donald C. Olivier, and David V. Cross, without 
whose practical and moral support this study would have been impossible. We must also thank 
Nelson Goodman, David H. Krantz, Joseph B. Kruskal, Paul R. Levitt, G. R. Lockhead, 



DISTANCE BETWEEN PARTITIONS 199 

Roger N. Shepard, and Amos Tversky for discussion of conceptual and technical aspects of 
the present study. The information in Table XI is reproduced from unpublished data of Thomas 
T. Struhsaker; we are indebted to him and to Harvard University Press for permission to use 
this material in the form in which it is published in Cohen (1971), as well as to Joel E. Cohen 
for discussion of relevant substantive issues. Figure 7, originally published by the late Gosta 
Ekman, is reproduced here with the kind permission of Dr. Teodor Kiinnapas. Funding for 
the computation on which the present work is based was obtained from several sources. Thanks 
are most especially owing to Ann E. Moskol of the Division of Engineering and Applied Physics 
of Harvard University; to the Cambridge Project for a research grant during the academic 
year 1970-71; to Richard C. Atkinson of Stanford University, through NSF Grant GJ-443X2; 
to Harrison C. White of Harvard University, through NSF Grant GS-2689; and to the Society 
of Fellows of Harvard University, which authorized use of computer funds for the present 
project through the generosity of its chairman Wassily Leontief. Finally, we are grateful to 
A. P. Dempster for administration of Cambridge Project funds through the Harvard Department 
of Statistics, and to D. B. Yntema for his cooperation as director of the Cambridge Project in 
the logistically difficult task of transcontinental coordination. 

REFERENCES 

ARNOLD, J. B. A multidimensional scaling study of semantic distance. ~oz~rnal of Esperimetztal 
Psychology Monograph, 1971, 90, 2, 349-372. 

ATTNEAVE, F. Dimensions of similarity. American Journal of Psychology, 1950, 63, 5 16-556. 

ATTNEAVE, F. Applications of information theory to psychology. New York: Holt, Rinehart and 
Winston, 1959. 

BAVELAS, A. Communication patterns in task-oriented groups. Joa~nal of the Acoustical Society 

of America, 1950, 22, 725-730. 
BEALS, R., KRANTZ, D. H., AND TVERSKY, A. Foundations of multidimensional scaling. Psy- 

chological Review, 1968, 75, 127-142. 
BENZBCRI, J. P. Analyse factorielle des proximites. Publications de l’lnstitute de Statistique de 

1’UniversitP de Paris, I. 1964, 13; II. 1965, 14. 
BERSTED, C. T., BROWN, B. R., AND EVANS, S. H. Evaluation of unconstrained sorting data. 

Behavioral Research Methodology and Instrumentation, 1970, 2, 108-1 IO. 

BIRRHOFF, G. Lattice theory, Revised edition. Providence, R. I.: American Mathematical Society, 
1967. 

BLOCK, J. The Q-sort method in personality assessment and psychiatric research. Springfield, Ill.: 
Charles C. Thomas, 1961. 

BLUMENTHAL, L. M. Theory and applications of distance geometry. Oxford: Clarendon Press, 1953. 
BOORMAN, S. A. Metric spaces of complex objects. Unpublished senior honors thesis, Harvard 

College, Division of Engineering and Applied Physics, 1970. 
BOORMAN, S. A. AND ARABIE, P. Structural measures and the method of sorting. In R. N. Shepard, 

A. K. Romney, and S. Nerlove (Eds.), Multidimensional scaling: Theory and applications in the 

behavioral sciences, Vol. 1, New York: Seminar Press, 1972. 
BOORMAN, S. A. AND OLIVIER, D. C. Metrics on spaces of finite trees. Journal of Muthemnticcrl 

Psychology, 1973, 10, 7, 26-59. 
BOULTON, D. M. AND WALLACE, C. S. The information content of a multistate distribution. 

Journal of Theoretical Biology, 1969, 23, 269-278. 
BOND, J. Information distance for discrete structures. In R. N. Shepard, A. K. Romnev, and 



200 ARABIE AND BOORMAN 

S. Nerlove (Eds), Multidimensional scaling: Theory and applications in the behavioral sciences, 
Vol. 1, New York: Seminar Press, 1972. 

CARROLL, J. D. Individual differences and multidimensional scaling. In R. N. Shepard, A. K. 
Romney, and S. Nerlove (Eds.), Multidimensional scaling: Theory and applications in the 
behavioral sciences, Vol. 1, New York: Seminar Press, 1972. 

CARROLL, J. D. AND CHANG, J. J. Analysis of individual differences in multidimensional scaling 
via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 1970, 35, 
283-319. 

CHOMSKY, N. AND MILLER, G. A. Introduction to the formal analysis of natural languages. In 
R. D. Lute, R. R. Bush, and E. Galanter (Eds.), Handbook of mathematical psychology, Vol. 2, 
New York: Wiley, 1963. 

COHEN, J. E. Casual groups of monkeys and men. Cambridge, Mass.: Harvard University Press, 
1970. 

COOLIDGE, J. L. A history of geometrical methods. New York: Dover, 1963. 
CRAMER, H. Mathematical methods of statistics. Princeton, N. J,: Princeton University Press, 

1946. 
CROSS, D. V. Multidimensional stimulus control of the discriminative response in experimental 

conditioning and psychophysics. Technical Report No. 05613-4-F (78[d]), University of 
Michigan, 1965a. 

CROSS, D. V. Metric properties of multidimensional stimulus generalization. In D. I. Mostofsky 
(Ed.), Stimulus generalization. Stanford: Stanford University Press, 1965b. 

CSISZAR, I. Information-type measures of difference of probability distributions and indirect 
observations. Studia Scientiarum Mathematicum Hungaricae, 1967, 2, 299-318. 

DALRYMPLE-ALFORD, E. C. Measurement of clustering in free recall. Psychological Bulletin, 
1970, 74, 32-34. 

EKMAN, G. Dimensions of color vision. Journal of Psychology, 1954, 38, 467-474. 
EKMAN, G. Comparative studies on multidimensional scaling and related techniques. Reports 

from the Psychological Laboratories, University of Stockholm, Supplement 3, November, 
1970. 

FISCHER, W. AND MICKO, H. C. More about metrics of subjective spaces and attention distribu- 
tions. Journal of Mathematical Psychology, 1972, 9, 36-54. 

FLAMENT, C. La mesure en psychologie sociale. In J. M. Faverge et al. (Eds.), Les problemes de 
la mesure en psychologie. Paris: Presses Universitaires de France, 1962. 

FLAMENT, C. Applications of graph theory to group structure. Englewood Cliffs, N. J.: Prentice- 
Hall, 1963. 

FORD, L. R., JR. AND FULKERSON, D. R. Flows in networks. Princeton, N. J.: Princeton University 
Press, 1962. 

FRANKEL, F. AND COLE, M. Measures of category clustering in free recall. Psychological Bulletin, 
1971, 76, 39-44. 

GOODMAN, L. A. AND KRUSKAL, W. H. Measures of association for cross-classifications. Journal 
of the American Statistical Association, 1954, 49, 732-764. 

GOODMAN, N. Order from indifference. Problems andprojects. Indianapolis: Bobbs-Merrill, 1972. 
GUPTA, H., GWYTHER, C. E., AND MILLER, J. C. P. Tables of partitions, Royal Society Mathe- 

matical Tables, Vol. 4, Cambridge: Cambridge University Press, 1959. 
HARDY, G. H. AND RAMANUJAN, S. Asymptotic formulae in combinatory analysis. Proceedings 

of the London Mathematical Society, 1918, 17, 75-l 15. 
HAYS, W. L. Lattice models in psychological scaling. Unpublished, University of Michigan, 1965. 
HENLEY, N. M. A psychological study of the semantics of animal terms. Journal of Verbal 

Learning and Verbal Behavior, 1969, 8, 176-l 84. 



DISTANCE BETWEEN PARTITIONS 201 

HOLLAND, P. W. Reexpressing Landau’s h in terms of triad frequencies. Unpublished, Depart- 
ment of Statistics, Harvard University, 1971. 

JARDINE, N. AND SIBSON, R. Mathematical taxonomy London: Wiley, 1971. 
JOHNSON, S. C. Hierarchical clustering schemes. Psychometrika, 1967, 32, 241-254. 
JOHNSON, S. C. Metric clustering. Unpublished, Bell Laboratories, 1968. 
JOHNSON, S. C. Personal communication, May, 1968. 
J~NSSON, B. Personal communication, January, 1971. 
JOYAL, A., LABELLE, G., AND LORRAIN, F. Equivalence relations and linear operations. Cn- 

published, Universite de Montreal, no date. 
KENDALL, M. G. Rank correlation methods, 3rd edition. London: Griffin, 1962. 
KHINCHIN, A. I. Mathematical foundations of information theory. New York: Dover, 1957. 
KI.AHR, D. A Monte Carlo investigation of the statistical significance of Kruskal’s nonmetric 

scaling procedure. Psychometrika, 1969, 34, 3 19-330. 
KOTZ, S. Recent results in information theory. ]ournal of Applied Probability, 1966, 3, l-93. 
KRUSKAL, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. 

Psychometrika, 1964a, 29, l-28. 
KRUSKAL, J. B. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 

1964b, 29, II 5-129. 
KRUSKAL, J. B. AND CARROLL, J. D. Geometrical models and badness-of-fit functions. In P. R. 

Krishnaiah (Ed.), Multivariate analysis II. New York: Academic Press, 1969. 
KIILLBACK, S. Information theory and statistics. New York: Wiley, 1955. 
LANDAU, H. G. On dominance relations and the structure of animal societies: 1. Effect of inherent 

characteristics. Bulletin of Mathematical Biophysics, 195 1, 13, 1- 18. 
LEVINS, R. Toward an evolutionary theory of the niche. In E. T. Drake (Ed.), Evolution and 

environment. New Haven: Yale University Press, 1968a. 
LEVINS, R. Evolution in changing environments. Princeton, N. J.: Princeton University Press, 

1968b. 
LOCKHEAD, G. R. Identification and the form of multidimensional discrimination space. Journal 

of Experimental Psychology, 1970, 85, l-10. 
LORRAIN, F. RPseaux sociaux et classifications sociales. Paris: Editions du Hermann, in press; 

English-language version: doctoral thesis, Department of Sociology, Harvard University, 
1972. 

LIICE, R. D. AND GALANTER, E. Discrimination. In R. D. Lute, R. R. Bush, and E. Galanter 
(Eds.), Handbook of mathematical psychology, Vol. 1, New York: Wiley, 1963. 

LUCE, R. D., BUSH, R. R., AND GALANTER, E., Eds. Handbook of mathematical psychology. 3 vol., 
New York: Wiley, 1963. 

MANDELBROT, B. Information theory and psycholinguistics: A theory of word frequencies. In 
P. F. Lazarsfeld and N. W. Henry (Eds.), Readings in mathematical social science. Chicago: 
Science Research Associates, 1966. 

MCGEE, V. E. The multidimensional scaling of “elastic” distances. The British Journal of 
Mathematical and Statistical Psychology, 1966, 19, Part 2, I8 l-l 96. 

MICKO, H. C. AND FISCHER, W. The metric of multidimensional psychological spaces as a 
function of the differential attention to subjective attributes. jorrrnal of Mathematical Psy- 
chology, 1970, 7, 118-143. 

MILLER, G. A. A psychological method to investigate verbal concepts. Journal of Mathematical 
Psychology, 1969, 6, 169-l 91. 

MIRKIN, C. G. AND CHORNY, L. B. Ob izmerenii bliznosti mezhdu razlichnymi konechnovo 
mnozhestva ob’ektov. (On measurement of proximity between various partitions of a finite 
set.) Avtomatika i Telemekhanika, No. 5, 1970, 12&127. 



202 ARABIE AND BOORMAN 

MOSER, L. AND WYMAN, M. An asymptotical formula for the Bell numbers. Transactions of the 

Royal Society of Canada, Section 3 (Series III), 1955, 49, 49-53. 

NUMMENMAA, T. The language of the face. Jyviiskyll Studies in Education Psychology and 

Social Research, University of Jyvaskyhi (Finland), 1964, No. 9. 

OLIVIER, D. C. Metrics for comparison of multidimensional scalings. Unpublished, Harvard 

University, 1970. 

ORE, 0. Theory of equivalence relations. Duke Mathematical Journal, 1942, 9, 573-627. 

PARRY, W. Entropy and generators in ergodic theory. New York: Benjamin, 1969. 

PAVY, D. Personal communication, January, 1968. 

PEARSON, W. H. Estimation of a correlation coefficient from an uncertainty measure. Psycho- 

metrika, 1966, 31, 421-433. 
RAJSKI, C. A metric space of discrete probability distributions. Information and Control, 1961, 

4, 371-377. 

RAND, W. M. Objective criteria for the evaluation of clustering methods. Journal of the American 
Statistical Association, 1971, 66, 846-850. 

RAPOPORT, A. AND FILLENBAUM, S. Experimental studies of semantic structure. In R. N. Shepard, 

A. K. Romney, and S. Nerlove (Eds.), Multidimensional scaling: Theory and applications in 

the behavioral sciences, Vol. 2, New York: Seminar Press, 1972. 

RESTLE, F. A metric and an ordering on sets. Psychometrika, 1959, 24, 207-220. 

ROENKER, D. L., THOMPSON, C. P., AND BROWN, S. C. Comparison of measures for the estimation 

of clustering in free recall. Psychological Bulletin, 1971, 76, 39-44. 

ROSKAM, E. E. A comparison of principles for algorithm construction in nonmetric scaling. 

Michigan Mathematical Psychology Program Report 692. Ann Arbor, Mich.: 1969. 

RUMELHART, D. E. AND ABRAHAMSON, A. A. Toward a theory of analogical reasoning. Technical 

Report 18, Center for Human Information Processing, University of California, San Diego, 
1971. 

SABIDUSSI, G. The centrality index of a graph. In Theory of Graphs, International Symposium 
(Rome, 1966). New York: Gordon and Breach, 1967. 

SCH~NEMANN,~. H. An algebraic solution for a class of subjective metrics models. Psychometrika, 
1972, 37, 4, 441-451. 

SHEPARD. R. N. The analysis of proximities: Multidimensional scaling with an unknown distance 

function. I. Psychometrika, 1962, 27, 125-140; II. Psychometrika, 1962, 27, 219-246. 

SHEPARD, R. N. Attention and the metric structure of the stimulus space. Journal of Mathematical 
Psychology, 1964, 1, 54-87. 

SHEPARD, R. N. Metric structures in ordinal data. Journal of Mathematical Psychology, 1966, 

3, 287-315. 

SHEPARD, R. N. Some principles and prospects for the spatial representation of behavioral 

science data. Paper presented at the Mathematical Social Science Board Advanced Research 

Seminar, Irvine, California, June 13-l 8, 1969. 

SHEPARD, R. N. A taxonomy of some principal types of data and of multidimensional methods 

for their analysis. In R. N. Shepard, A. K. Romney, and S. Nerlove (Eds.), Multidimensional 
scaling: Theory and applications in the behavioral sciences, Vol. 1, New York: Seminar Press 1972. 

SHEPARD, R. N. AND CARROLL, J. D. Parametric representation of nonlinear data structures. 

In P. R. Krishnaiah (Ed.), International symposium on multivariate analysis, Dayton, Ohio, 
1965. New York: Academic Press, 1966. 

SHEPARD, R. N. AND CERMAK, G. W. Perceptual-cognitive explorations of a toroidal set of free- 

form stimuli. Cognitive Psychology, in press. 

SHEPARD, R. N., ROMNEY, A. K., AND NERLOVE, S. (Eds.). Multidimensional scaling: Theory and 
applications in the behavioral sciences. 2 vol., New York: Seminar Press, 1972. 



DISTANCE BETWEEN PARTITIONS 203 

STENSON, H. H. AND KNOLL, R. L. Goodness of fit for random rankings in Kruskal’s nonmetric 
scaling procedure. Psychological Bulletin, 1969, 71, 122-l 26. 

STRUHSAKER, T. T. Behavior of vervet monkeys (Cercopithecus aethiops). University of California 
Publications in Zoology, Vol. 82, Berkeley and Los Angeles: University of California Press, 
1967a. 

STRUHSAKER, T. T. Social structure among vervet monkeys (Cercopithecus aethiops). Behavior, 
1967b, 29, 83-121. 

SzAsz, G. Introduction to lattice theory, 3rd revised edition. New York: Academic Press, 1963. 
TORGERSON, W. S. Multidimensional scaling of similarity. Psychometrika, 1965, 30, 379-393. 
TVERSKY, A. AND KRANTZ, D. H. Similarity of schematic faces: A test of inter-dimensional 

additivity. Perception U Psychophysics, 1969, 5, 124-l 28. 
WELLS, M. B. Elements of combinatorial computing. Oxford: Pergamon Press, 197 1. 
WENDER, K. Die psychologische Interpretation nichteuklidischer Metriken in der multidimen- 

sionalen Skalierung. Doctoral dissertation, Technical Univ. Darmstadt, 1969. 
WHITE, H. C. Chance models of systems of casual groups. Sociometry, 1962, 25, 153-172. 
WHITMAN, P. Lattices, equivalence relations and subgroups. Bulletin of the American Mathe- 

matical Society, 1946, 52, 507-522. 
YOUNG, F. W. Nonmetric multidimensional scaling: Recovery of metric information. Psy- 

chometrika, 1970, 35, 455-473. 
YOUNG, F. W. AND TORGERSON, W. S. TORSCA, A FORTRAN IV program for Shepard- 

Kruskal multidimensional scaling analysis. Behaoioral Science, 1967, 12, 498. 
ZINNES, J. L. Scaling. In Annual Review of Psychology, Vol. 20. Palo Alto, Calif.: Annual Reviews, 

Inc., 1969. 

RECEIVED: July 1, 1972 


