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We present a new algorithm, MAPCLUS (MAthematical Programming CLUStering), for fit- 
ting the Shepard-Arabie ADCLUS (for ADditive CLUStering) model. MAPCLUS utilizes an al- 
ternating least squares method combined with a mathematical programming optimization proce- 
dure based on a penalty function approach, to impose discrete (0,1) constraints on parameters 
defining cluster membership. This procedure is supplemented by several other numerical tech- 
niques (notably a heuristically based combinatorial optimization procedure) to provide an effi- 
cient general-purpose computer implemented algorithm for obtaining ADCLUS representations. 
MAPCLUS is illustrated with an application to one of the examples given by Shepard and Arabic 
using the older ADCLUS procedure. The MAPCLUS solution uses half as many dusters to 
achieve nearly the same level of goodness-of-fit. Finally, we consider an extension of the present 
approach to fitting a three-way generalization of the ADCLUS model, called INDCLUS (INdi- 
vidual Differences CLUStering). 

Key words: additive clustering, nonhierarchical clustering, alternating least squares. 

S h e p a r d  and  A r a b i e  [1979] have  recent ly  given a de ta i l ed  expos i t ion  o f  the i r  A D -  
C L U S  (for "add i t ive  c lus ter ing")  model ,  which  represents  in ters t imulus  p rox imi t ies  as 
combina t ions  o f  discrete  ove r l app ing  proper t ies .  More  concrete ly ,  an  A D C L U S  represen-  
ta t ion  consists o f  a set o f  m (poss ib ly  over lapp ing)  subsets  or  dus te r s ,  each  hav ing  an  asso- 
c ia ted  numer ica l  weight,  wk (where  k = 1, - - - ,  m). F o r  a n y  pa i r  o f  st imuli ,  the p red i c t ed  
s imi la r i ty  is s imply  the  sum o f  the  weights  o f  those  subsets  con ta in ing  the g iven  pa i r  o f  
s t imuli .  Shepa rd  a n d  A r a b i e  descr ibed  the  A D C L U S  model at  cons iderab le  length  a n d  
also p r o v i d e d  i l lus t ra t ive  app l i ca t ions  to  several  d a t a  sets. In  the  presen t  pape r ,  we wish  
on ly  to p rov ide  a b r i e f  r ecap i tu la t ion  o f  this  model ,  s ince ourprimary emphasis is upon an 
alternative algorithm, MAPCLUS (and associated computer program),for fitting that same 
model ( M A P C L U S  is an  a c r o n y m  for M A t h e m a t i c a l  P r o g r a m m i n g  CLUStering.) M o r e -  
over,  we shah  argue that  the  numer i ca l  a p p r o a c h  descr ibed  here  offers several  advan tages  
over  the  a lgor i thm descr ibed  b y  S h e p a r d  and  A r a b i e  [1979] for  fitt ing the  A D C L U S  
model .  
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In matrix notation, the ADCLUS model is written 

(1) g = PWP '  

where ~ is an n x n symmetric matrix of  reconstructed similarities gu (with ones in the 
principal diagonal), W is an m x m diagonal matrix with the weights wk (k = 1, . .- ,  m) in 
the principal diagonal (and zeroes elsewhere), and P is the n X m rectangular matrix of  
binao,  values P,k. Here P'  is the m x n matrix transpose of  the matrix P. 

The following qualifications to the preceding variables should be noted. The input 
data to which the model is fitted are assumed to be the M -- n(n - 1)/2 entries con- 
stituting a two-way symmetric (or symmetrized) proximity matrix having no missing en- 
tries. Although the raw data may be in the form of either similarities or dissimilarities, we 
first transform them linearly to be similarities on the interval [0,1]. (Since the data are as- 
sumed to be on an interval scale, this transformation in no way effects the goodness-of-fit, 
but does allow for the standardization of various parameters in the program described be- 
l o w . )  S - IIsuII will always refer to these transformed proximities, to which the fitted g ma- 
trix is being compared. Turning to the P matrix, note that each column represents one of  
the m subsets (or clusters--we use the terms interchangeably), with the ones of  that col- 
umn defining constituency of stimuli within the respective subset. Shepard and Arabic 
imposed the constraint that the m th subset (and only that subset) was a column of  all ones, 
whose weight was in effect an additive constant for (1), as required for the use of  variance 
accounted for to gauge the goodness-of-fit. In the present usage, we prefer to express the 
model as 

(2) S = PWP '  + C 

where C is an n × n matrix having zeroes in the principal diagonal, and the (fitted) addi- 
tive constant c in all the remaining entries. [That constant is simply the weight wm fitted 
for the complete subset in (1).] Strictly speaking, m in (1) and in the Shepard and Arabie 
[1979] description corresponds to m - 1 in (2). However, we feel that this inconsistency is 
sufficiently transparent as to allow uniform references below to m as the number of  sub- 
sets, plus an (m + 1) st weight as the additive constant. 

Overview 

The ADCLUS program described by Shepard and Arabic [1979] is briefly summa- 
rized as follows. In the first phase, the ordinal information in S is used to extract the com- 
plete set of  all m' "elevated" subsets (i.e., maximal complete subgraphs) for each distinct 
proximity value and thus define the P matrix. In practice m' turns out to be too large vis- 
A-vis either substantive interpretation, or parsimonious, nonredundant representation and 
reduction of  data, not to mention the amount of  core required to handle even medium- 
sized (e.g., n = 30) data sets. (The upper bound for m' can be obtained from results of  
Moon and Moser, 1965.) A crude initial estimate of  each weight, w,, is also obtained, us- 
ing interval scale assumptions. The second phase of  the ADCLUS program uses an itera- 
tire procedure with a modified gradient approach to reduce the large number, m', of  sub- 
sets, while approximately maximizing the variance accounted for (VAF). The final 
decision as to what constitutes an acceptable tradeoff between m, the final number of  re- 
tained subsets to be substantively interpreted, and VAF remains the responsibility of the 
data analyst. 

The most obvious difference between the ADCLUS and MAPCLUS programs is 
that, for the latter, the (fairly small) number of subsets, m, is specified by the user at the 
beginning of an analysis and never changes throughout the computation. Thus the differ- 
ence between the two programs, with respect to the number of clusters, parallels the dff- 
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ferent approaches to dimensionality taken by Shepard [1962a,b] and Kxuskal [1964a, b] in 
the earliest developments of nonmetric multidimensional scaling. In practice, MAPCLUS 
has been able to obtain solutions that were acceptable in terms of both interpretability 
and goodness-of-fit, using considerably fewer clusters for various data sets, than was ever 
possible with the ADCLUS program. Moreover, the subsets in MAPCLUS are not con- 
strained to be maximal complete subgraphs either at the beginning or conclusion of an 
analysis. As with all the numerical computation after the ADCLUS program defines its 
initial configuration, MAPCLUS assumes the data are on an interval scale. 

Since the detailed description of the MAPCLUS algorithm in the next section of this 
paper may strike some readers as being difficult to follow, we offer the following cursory 
overview of MAPCLUS. The P matrix is initially considered to have continuously varying 
p,k in spite of the ultimate binary nature of P. The initial values of P can be taken from 
any of several sources (detailed below), and W is initially all zeroes. We use a gradient 
approach to minimizing a loss function which is the weighted sum of an A- and a B-part. 
The former is simply a normalized measure of sum of squared error. The more novel B- 
part consists of a "penalty function" in the form of a polynomial designed to move all 
pairwise products p,~p~ toward 0,1. Thus the overall algorithm comprises a "'mathematical 
programming" approach to solving a discrete problem by treating it as a continuous prob- 
lem with constraints allowing only a particular set of discrete values of parameters. An- 
other way of looking at this specific "penalty function" approach is that we attempt to ap- 
proach the discrete solution by a sequence of  increasingly close cont inuous 
approximations. 

The subsets and weights are computed as follows. Given whatever estimates we have 
for the first subset [p(1,1), . . . ,  p(n,1)], univariate regression is used to estimate w~, and af- 
terward the p,~ values are improved iteratively. Then, following an alternating least 
squares approach, we take residuals and fit them with a second subset, and so on, until the 
fit of the m 'h subset has been iteratively improved and its weight estimated. We also apply 
multiple linear regression to improve our estimates of all the wk weights simultaneously. 
The whole procedure is then repeated with increases in the weight for the B-part relative 
to the A-part of the loss function, until asymptotically, the (0,1) constraint holds essen- 
tially perfectly. When no further improvement in goodness-of-fit is forthcoming, we apply 
three additional techniques ("polishing", de novo iterations, and combinatorial opti- 
mization) to refine the fit still further. 

We now turn to a detailed description of MAPCLUS. 

The Algorithm 

The Penalty Function Approach 

The iterative maximization of objective functions in clustering and scaling methods 
[e.g., Hubert, 1972; Katz, 1947; Kruskal, 1964a,b] has heralded much of the current prog- 
ress in these areas of research. A further step, taken in more recent years, is the combina- 
tion within a single loss function of several objective functions suitable to different goals, 
with weights for the different components reflecting importance of  the associated "goal". 
In particular, if one "goal" (e.g., imposition of certain constraints) is to be met precisely, 
the weight for that goal is (asymptotically) infinitely large relative to other weights. Re- 
cent examples of this practice are Cunningham and Shepard [1974], Shepard and Craw- 
ford [1975, Note 1], and Carroll and Pruzansky [1975, Note 2; 1980]. In the latter appli- 
cation, objective functions suitable to maximizing variance accounted for and satisfying 
the ultrametric inequality were imposed while fitting multiple tree structures to data. In 
the present instance, we seek to maximize the variance accounted for, subject to the con- 
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straint that P is asymptotically binary. As explained in detail below, our loss function 
takes the form 

( 3 )  = 

Considering first the left side of (3), note that the loss function is computed only for subset 
k. Moreover, we do not sum the penalty function over k. The reason is that we are using 
an alternating least squares approach [Wold, 1966] which underlies the iterative fitting in 
turn of each subset p~(i = 1, ..., n) and its associated weight w,. Wold has shown that for 
problems posed in a continuous form, the alternating least squares approach will asymp- 
totically lead to at least a local optimum (minimum) for the overall least squares problem 
for all m subsets of parameters in the model. (In cases where there is only a single opti- 
mum this solution will, under very general conditions, be that global optimum, but this 
situation will generally not hold for the kind of highly nonlinear model we are fitting in 
the present case.) Since we are only fitting the k 'h subset at any instant, A in (3) refers to 
the (centered) residuals computed for the remaining m - 1 subsets and the reader may 
wish to associate an implicit subscript "k" with A. For the present, the reader is asked only 
to note this statement of the procedure, since we feel that the explanation is most easily 
presented in the next two subsections, which explain in detail the alternating least squares 
implementation in MAPCLUS. 

In the right side of (3), the term a~Ak refers to the weight ak applied to the normalized 
sum of squared error, A,. Specifically, 

ak 
O )  = 

where 

(5) a ,  = Z ( ~ i j -  WkPikl)jk) 2 ' 
i > j 

and 

(6) 

n--I 

d k  _~ i > j 
M 

In (5), ak is simply the sum of squared error, the minimization of which is equivalent 
to maximizing VAF. The denominator of A, d~, is a normalization factor interpreted as 
the variance of the residuals, 8~ computed over the remaining subsets. The factor of 4 
represents the maximum variance of ~ that could be obtained from the input data s~ 
which, as noted earlier, are in the range [0,1]. 

If our loss function consisted only of the A term (i.e., the B weight fl = 0), then our 
problem would reduce to performing principal components analysis, for which well- 
known continuous methods are available. However, our model demands that P,k = 0, 1 
and the B-part of the loss function is designed, by successively closer continuous approxi- 
mations, to enforce this discrete constraint. We refer to this as a "mathematical program- 
ming'" approach, since it entails optimizing a nonlinear function (Ak) with constraints on 
parameters imposed by use of the "penalty function" method. 

Elaborating on the right side of (3), we have 

(7) Bk = U_.kk, 
Vk 
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where 

(8) 

and 

(9)  

u ,  = ~ , , [ ( p , , p j , -  l ) p , , p , , l  2 , 

v~ = Y~ ( p , ~ p , ~ -  rk )  2 , 
i > 3- 

where T~ is simply the mean of the pairwise products ofplkpjk, namely 

(10) Tk = . ~  , P,kP:k . 
> j 

The numerator of Bk, Uk, is designed to force the pairwise products PikPjk to be 0,1. B 
is deliberately nonhomogeneous, since otherwise, the P~k could approach any  relatively 
distinct pair of values, instead of only 0,1. That is, B could be made arbitrarily small by 
making one of the P,k very large and all the others very small, so that the product of the 
large P,k with the small ones is equal either to 1.0 or near 0.0. Such a pattern is not consis- 
tent with the ADCLUS model. Products o f  pairs  of the formp~kP:k are emphasized in order 
to reduce the likelihood of singleton subsets (i.e., all but one of the p,k(i = 1, "", n) being 
zero) occurring. We deliberately include the diagonal terms in the numerator of B~, but 
exclude them in the denominator. If we included the diagonal terms in the variance-like 
normalizing factor that forms the denominator of B~, a singleton subset would satisfy the 
constraint, since the denominator would be nonzero (owing to the one diagonal term dif- 
fering from all the other diagonal and off-diagonal terms). Singletons are unacceptable in 
the present context since they cannot account for any of the variance in the n(n - 1)/2 
interstimulus proximities. Recent theoretical emphases upon self-similarities [Krumhansl, 
1978; Podgorny & Garner, 1979] suggest that permitting input of the diagonal entries 
(when available) of a proximity matrix and allowing their participation in determining 
the solution may be a promising future development for both clustering and scaling tech- 
niques. 

We feel that the penalty function defined by the B-part of the loss function is poten- 
tially applicable to a fairly large range of models where coefficients are constrained to as- 
sume a small number of discrete values. However, selection of the "right" form for B has 
proved to be crucial in the development of MAPCLUS. The present formula is based on 
intuition and our previous experiences with three alternatives for B which were succes- 
sively discarded, viz., 

~, [p,k(1--p,k)] ~ ~, [p,k(1--p,k)] 2 

i i 

and 

(11) 

p p,~ 
i i 

I v , k ( 1 -  p ,k)] '  
i 

i n i l l  l " i k  

Since MAPCLUS relies on a minimization procedure, we require the gradient of the 
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loss function Lk, VL~, with respect to p,k. It is straightforward that the z 'z component of  VLk 
(V,L,) is: 

(12) 
Vk ~ -- Uk 

a FOal, l + fl Op 

where 

(13) 

(14) 

and 

(15) 

Oct,_ 
i ~ - -  -2w,  E pj~(8o - wkp,J, pj~), 

OUk = 2p,'k ~ [(P,*PJk -- 1) (P~k) (2p,kpjk -- 1)1, 

Ovk 1 p~} - Tk). Op,k= 2 ~ (Pj,-- ~ ~ . (P,~Pjk 

Finally, returning to the weights, a~ and flk in the loss function of  O) and (12), we use 
the constraint that ak + fl~ = 1. We typically begin with otk = oto = .50, and as computation 
proceeds, we increase the value offl~ relative to ot~ (details given below), to ensure that the 
final values of the P,k = 0,1. This adjustment of  ak and flk is done according to 

, Otk and t~C = Klflk 
(16) ak = ak + KJ3k "-" ak + K~flk' 

where K, is currently defined as 2.0. Also, a~ is not permitted to be less than 10 -~, so as to 
avoid annoying underttow messages from various FORTRAN compilers. 

The Alternating Least Squares Structure of MA P CL US 

Thus far, we have presented the loss function and the associated gradient required 
for steepest descent, as well as the strategy for changing the weights (ak and ilk) to assure 
satisfaction of the (0,1) constraints. In this and the two following subsections, we cover the 
essential details of the numerical methods used in MAPCLUS. 

Characteristic of  alternating least squares approaches, MAPCLUS has iterative com- 
puting nested to several levels of  depth. Figure 1 gives an overview of  this nesting, as well 
as an indication of the terminology employed here. Unfortunately, it is necessary for the 
reader to master our usage of  "major," "outer," and "inner" iterations, as we will be mak- 
ing extensive use of these terms throughout the rest of the paper. An inner iteration is used 
for obtaining an estimate via univariate linear regression of  the weight w~ and the additive 
constant ck specific to subset k, as well as moving each of  the p,k (i -- 1, .-.,  n) elements by 
one step of  the computed gradient. Details of these procedures are given in the following 
two subsections of this paper, but for the present it is sufficient to note that an inner itera- 
tion consists of  the description in the preceding sentence plus subsequent checking for 
convergence. 

The basic principle on which the alternating least squares (ALS) approach is based in 
the present instance is quite simple. In seeking a least squares solution for a model of  the 
form 

(17) so-~ £ wkp,kpjk + C, 
" k l |  
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MAJOR ITERATION OUTER ITERATIONS 

(m OUTER ITERATIONS 
PER MAJOR ITERATION) 

COMP,.UTE ,RESIDUALS I 

GLOBAL REGRESSION 
FOR ALL w, ; 

COMPUTE VAF 

COMPUTE RESIDUALS .] 

GLOBAL REGRESSION I 
FOR ALL wk ; 

COMPUTE VAF ....... 

INNER ITERATIONS 

t ESTIMATE wt AND Pif  
( i = t  . . . . .  n);  

CHECK CONVERGENCE 
(RE-)ESTIMATE w t AND Pit 

( i= l , . .- . ,n);  
CHECK CONVERGENCE 

! 

ESTIMATE w 2 AND PiZ 
( i= t ..... n); 

CHECK CONVERGENCE 
(RE-) ESTIMATE w z AND PiZ 

( i= I . . . .  ,n); 
CHECK CONVERGENCE 

I 

COMPUTE RESIDUALS I I ESTIMATE w m AND Pim 
......... [ (i=1 ..... n); 

I CHECK CONVERGENCE 
I(RE-) ESTIMATE w m AND Plm 

GLOBAL REGRESSION I I ( i = l , . . . , n ) ;  
FOR ALL wk; [ I CHECK CONVERGENCE 

COMPUTE VAF I 
FIGURE 1 

Structure of major, outer, and inner iterations in the alternating least squares approach used in MAPCLUS. 

we are using a least squares (overall) loss function; that is, we solve for the pik and wk by  
nalmmlztng 

(18) E 2 = s o -  w k p , k p j k  - -  C " 
i > j k 

In  an ALS approach, we divide our parameters  into subsets, and solve the c o n d i t i o n a l  

least squares problem for one subset holding all others fixed. In the present case, the sub- 
sets correspond to the Pk vectors (excluding the m + 1 .... constant" vector) and associated 
wk (k = 1, 2, . - . ,  m). It is easy to see, then, that the conditional least squares problem for 
parameter  subset k defines 

(19) B~k, = stj - ~ w @ , p j t  - c 
/~k 
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and fits p~ and w, via least squares to ~(k); thus the conditional least squares problem is to 
minimize 

n n - - I  

(20) g k, = Y,  ( B y ' -  w,p, pjk) 2 . 
i > j 

This is exactly the least squares problem whose solution is sought via the "mathematical 
programming" algorithm described earlier. 

We can, without loss of  generality, center the residuals (the 8~* )) after computing 
them, because we calculate, for each inner iteration, a constant (G) as well as an estimate 
of the weight (~,) for the k 'h subset, using least squares univariate linear regression. The 
constant G is, in effect, absorbed into the weight for the (m + 1)" implicit subset (corre- 
sponding to the complete set); i.e., into the estimate of the constant c. In effect, the current 
estimate of  c is thus ~ = G + b,, where bk is the negative of the constant added to the re- 
siduals in centering them. Therefore, we are in fact reestimating c each time we update 
the estimate of each p~ vector. 

A series of  these inner iterations, for successively better estimates of  the parameters 
of  the k t~ subset, are the core of an outer iteration. To elaborate, an outer iteration consists 
of  (a) taking the residuals (i.e., the difference between S and the values of ~ computed 
over all the other subsets and additive constant, but excluding subset k) and centering 
them, (b) a series of inner iterations, each refining the estimated parameters for subset k, 
and (c) "global" multiple linear regression for reestimating all m weights (plus c) simulta- 
neously, and subsequent computation of VAF. 

The number of inner iterations in an outer iteration will vary, depending on con- 
vergence criteria and arbitrary limits. However, there will always be m outer iterations 
(one for each subset) within a single major iteration. In the computation of a major itera- 
tion, the subsets are considered in the order 1, 2, . . . ,  m on odd-numbered major itera- 
tions, and in reverse (descending) order on even iterations. Without this alternating re- 
versal, we have found that the comparative fit of the m different subsets is often subject to 
sequential problems (e.g., the lion's share goes to subset 1, and few morsels remain for 
subset m), and that goodness-of-fit is unduly sensitive to the number of inner iterations 
allowed in the outer iterations. Finally, a distinction will later be made between "pre- 
polishing" major iterations versus "polishing" major iterations, where the latter refer to 
the process of forcing/~, --~ 1, so that the p,, are "polished off" at 0,1. 

Description of Computation in Inner, Outer, and Major Iterations 

An outer iteration is essentially a shell for the inner iterations, in which most of the 
real computational work in MAPCLUS is done. Accordingly, the present subsection of  
the paper is largely concerned with the proceedings of an inner iteration. 

In the flow chart given in Figure 2, the inner iteration consists of  the procedures be- 
tween junctures 1 and 6. The computation preceding juncture 1 and following 6 is the en- 
veloping outer iteration. The latter begins by taking the default value of  ?~ (currently 1) as 
the initial step-size, but retaining the values of  otk and 134 from any previous computation 
on that subset. It is then necessary to compute the residuals A to which subset k is being 
fitted. We have 

(21) 3 'y ) = s , / -  Y~ wlp,tpjl. 

The residuals a' <a) _ ,j are then centered on their mean to form A = ]]3,/[], which will be 
used as starting values throughout the outer iteration. Henceforthv-we have dropped from 
3 the superscript k, understanding that the latter is implicitly present. [If "global" regres- 
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sion of  all wk (explained in the next section) were applied at the end of  each inner itera- 
tion, then the residuals would have to be computed anew for each inner iteration; how- 
ever, we have chosen to apply global regression only at the end of  an outer iteration.] 

Given the residuals to which the loss function Lk is to be applied, we are now ready 
to begin an inner iteration (juncture 1 of  Figure 2). I f  this is the very first time thep,, (i = 
1, .- . ,  n) are being considered (i.e., the first inner iteration of outer iteration k in the first 
major iteration), then initial values for the p,~ must come from one of  the three methods 
given below. Given those values, we use univariate linear regression to estimate the 
weight, 

n n - - I  

(22) ~'k = i > j 

PTkP;k - -  --~ P ,kP jk 
i > j > j 

and the regression constant c~ for that subset's weight, 

(23) e ~ = - - f f k T ~ + ~  ,- > J 

We then translate the residuals by that regression constant, so that 

(24) 6,~ °w = 80'a - ek. 

The translated residuals are used for computation during the remainder of the given inner 
iteration. 

The next step is to compute the gradient, VL~, according to (12) through (15). Given 
this quantity, we are now faced with the perennial problem of  determining the best step- 
size. That is, we are adjusting the old p,k (i = l, . . . ,  n) values according to 

, OLk 
(25) P,k = P,k - X Op,--~k ' 

where X is a "trial" value of  the step size. Having taken that step for each of  the p,k (i = 1, 
• --, n), we then evaluate the loss function Lk, using (3) through (10). We now have all the 
information needed to estimate what the value of  X s h o u l d  have been, 3,=a~, to minimize 
the loss function. The procedure we use for estimating X~t~ is described, among other 
places, in Adby and Dempster [1974, pp. 62-64], and has also been used successfully by 
Carroll and Pruzansky [1980]. Although this procedure has worked well in practice, such 
quadratic approximation techniques perform poorly in various circumstances [Robinson, 
1979]. Therefore, when this procedure fails on a given inner iteration to improve the loss 
function, we use an auxiliary method based on the product-moment correlation between 
the present and past gradient (cf. reliance upon the cosine of the angle between successive 
gradients, as used in Kruskal, 1964b, 1977; and Kruskal & Carroll, 1969). Both the quad- 
ratic interpolation and the auxiliary correlation procedures could be replaced by other nu- 
merical techniques, but the latter appear to us to be considerably more expensive compu- 
tationally. 

The next step is to check for satisfaction of various convergence criteria; see junctures 
3 and 5 in Figure 2. A more detailed flow chart for that segment of  an inner iteration is 
given in Figure 3. We will depend largely on t h a t  graphic summary to convey the details 
of  the decision structure since (a) the comparisons and outcomes are rather complicated, 
(b) it is obviously ad hoc, and (c) with further development of MAPCLUS, modifications 
and revisions are likely (of. Ramsay, 1977, p. 249 on nonmetric multidimensional scaling 
algorithms). 
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A summary of the computation is as follows. Three quantities are compared with ar- 
bitrary critical values or thresholds. The three quantities are G, the "relative gradient" 
(defined as the product of the length of the gradient times the length of  the pk vector), the 
B-part of  the loss function, and the estimated step-size )~m~. Currently, the default values 
for the criteria are: Gcn, = .005, B,i, = .05, 2,¢~, = .005. When various combinations of  these 
criteria are met, either the outer iteration terminates, or flk is increased relative to a~, as in 
(16), up to a previously specified number of  times. 

Which of  the two preceding alternatives is taken depends largely on whether the ma- 
jor iteration is designated as "prepolishing," or "polishing." To elaborate, on the first sev- 
eral outer iterations, we have found that it is useful to pay closer attention to the A-part of  
the penalty function. After a specified number of  "prepolished" major iterations, we are 
ready to begin the first "polishing" major iteration. When that happens, we revert to the 
default values for a~ and flk (i.e., reduce flk back to its initial value) and include 30 addi- 
tional inner iterations in each outer iteration. During those additional inner iterations, we 
repeatedly adjust fl~ so that flk ~ 1. (Later on in these "polishing" major iterations, at the 
end of  the outer iteration we set flk = 1 to "polish" the p,~ to 0,1, as explained below.) 

At the end of an inner iteration, we recenter the residuals 8u. I f  this is not the last in- 
her iteration of  the given outer iteration, we return to juncture 1 of  Figure 2; otherwise we 
have reached juncture 6 and the final stages of  an outer iteration. Here, the first check is 
to see that the signs of  the p~ are "correct." That is, since the B-part of  the penalty func- 
tion [see equations (8) and (9)] uses the pairwise products (P,kpjk), the signs of  all the p,~ 
could be reversed without affecting the value of B~. The simplest remedy for this possi- 
bility is to set p~ (where that entry corresponds to max,lp,~l) positive and to multiply the 
rest of the p,k by that same sign. 

If  the major iteration is designated as "prepolishing," we are now ready for multiple 
linear regression of all the weights wk(k = 1, . . . ,  m), as explained below. For a "polishing" 
major iteration, however, we first consider each of the p,~ (i = 1, --., n) and redefine them 
a s  

p t k = f l  if  pu,>~2 -'/2 
(26) "to if P,k < 2 -1/2 • 

This redefinition is equivalent to setting flk -- I and forces the condition P,k = 0,1. I f  the 
cutoff chosen here creates a singleton subset (i.e., only one of  the n values pu, is unity, and 
the rest are zeroes), then the second largest of  the originalp,~ values is redefined as 1. Con- 
versely, if  all the original P,k values are greater than the cutoff, then the smallest of  the 
original values is redefined as 0. The rationale for the cutoff used in (26) is as follows. The 
B-part of  the loss function emphasizes pairwise products, P,kPjk, since these are the values 
being pushed toward 0,1. If  we consider the pairwise threshold to be 0.5, then a reasonable 
value for an individual P,k would seem to be 0.5 t/2. Empirically, this slight advantage for 
zero entries ofp,k seems reasonable, since one of the symptoms of a bad solution (e.g., one 
in which the data analyst requested too many clusters) is too many ponderous subsets. 

We then apply multiple linear regression to the model of (2) to obtain best-fitting es- 
timates of all the weights wk(k = 1, . . . ,  m) as explained in the next subsection. Finally the 
VAF over all m subsets is computed. At this point, we could apply the Miles-Kruskal al- 
gorithm for monotone regression [Kruskal, 1964b] and thus render MAPCLUS fully non- 
metric, but we have not yet done so. 

Multiple Linear Regression Estimates o f  the Weights 

The technique to be discussed in this section is the use of  multiple linear regression 
simultaneously to fit the weights wk (k = 1, ---, m) and the additive constant. While there 
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is nothing original in our present use of  regression, we think that as an application of  the 
ADCLUS model to an hypothesized set of  (binary) distinctive features, this "stand-alone" 
regression for fitting a constrained ADCLUS model has wide applicability to feature-ori- 
ented research [cf., Carroll &Arabie ,  1980; Hubert & Baker, 1977; Tversky, 1977] and 
thus merits explicit discussion. Shepard and Arabie [1979], for example, used the regres- 
sion approach in evaluating the distinctive features proposed by Gibson, Osser, Schiff, 
and Smith [1963, Note 3] to account for confusions between upper-case Roman letters. 

In MAPCLUS, regression can be invoked either (a) to fit weights wk to a user-sup- 
plied set of binary features (represented as subsets; see Shepard and Arabie, 1979, and the 
subsection below on initial configurations) in a "stand-alone" mode, without recourse to 
any of  the iterative computation described above, or (b) at the end of each outer iteration 
(see Figure 2), using the iteratively fitted values ofp,k. 

For either usage, we begin with (2), considering S and P to be fixed, while solving for 
the diagonal matrix W and the off-diagonal constant matrix C. Equation (2) can be recast 
in summation notation as 

(27) g,~ = ~ wkp,kp jk  + C. 
k ~ l  

Now let 

(28) q~jk --- P l k P j k .  

At this point, it is easier to view S as a (singly subscripted) one-dimensional array, and Q 
as a two-dimensional array. To achieve this reduction in dimensionality, we concatenate 
subscripts i , j  a s  ( i j )  where ( i j )  = 1, . . .  , M (where M = n ( n  - -  1)/2). We may now rewrite 
(27) as 

r n + !  

(29) s(,-o = ~ w,,q(o~,, 
k = l  

where wm+~ --- c and q(o),,+, = 1. In vector-matrix notation, we have 

(30) s = Qw 

where s is the column vector of M elements with sw) as the general entry, Q is the M × (m 
+ 1) matrix with q(o)k as the general entry, and w is the (m + 1)-dimensional column vec- 
tor with general entry wk (with win+, = c). 

As a standard least squares result, we estimate the weights 

(31) ~ = Q÷s 

where Q÷ is the Moore-Penrose generalized inverse [see Kruskal, 1975; R a t  & Mitra, 
1971] of Q. Under most conditions, in particular if Q is of full column rank (f.c.r.), 

(32) Q+ - (Q'Q)-'Q'.  

I f  Q is not of f.c.r., Q'Q will be singular and (Q'Q)-' nonexistent, so that a more com- 
plex definition of Q÷ is required. In practice, however, we have been able to use the al- 
gorithm of  Bunch, Kaufman, and Partlett [1976] to solve for (Q'Q)-~. In our experience 
the only difficulties that have arisen have resulted from inadvertent duplication of  a sub- 
set 0.e., two columns of  P are identical) in the initial configuration. When a feature is thus 
present in duplicate, the simplest remedy is to remove the duplicate(s) and reduce m ac- 
cordingly. Although other difficulties are conceivable (e.g., when several disjoint subsets 
and their union as an additional subset are all in P), they have yet to occur. 

In passing, we should note that P can be of less than f.c.r., while Q is  nevertheless of 
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f.c.r. For example if P corresponds to a partition of the n stimuli, or to a hierarchical clus- 
tering (i.e., nested partitions) of the stimuli, P will necessarily be of  less than f.c.r., but Q 
will frequently be of f.c.r., so that (Q'Q) will be invertible and Q+ will thus exist. 

Sharpening the Output 

Taking stock of the computational description thus far, we have covered inner and 
outer iterations, as well as the distinction between prepolishing and polishing major itera- 
tions. In one sense, MAPCLUS is now complete, since the elements of P are 0,1, and the 
variance accounted for has been approximately maximized. However, varying certain of 
the parameters (e.g., the initial values of a and t ,  the weights in the loss function) has 
sometimes resulted in improved solutions, and negative weights (wk < 0) have occasion- 
ally been encountered. We have therefore devised two additional procedures which are 
appended to the algorithm. 

Shepard and Arabic [1979] noted that negative weights are uninterpretable for the 
ADCLUS model, just as they are in INDSCAL [Carroll & Chang, 1970]. Although in our 
experience, negative weights have been infrequent, they are sufficiently annoying that we 
have developed a procedure that has generally been successful in eliminating this prob- 
lem. Our approach differs markedly in rationale from various well-known techniques for 
non.negative least squares regression. Such methods, if employed in MAPCLUS, would 
upon finding a negative weight reduce the effective number of clusters, so that the number 
originally specified by the data analyst would just be an upper bound. Moreover, we have 
observed that weights which become negative often do so only temporarily during the 
iterative process of fitting the ADCLUS model via MAPCLUS. Thus, we prefer to retain 
subsets whose weights become negative, but use a method (described below) which en- 
courages those weights to become positive. 

It will be recalled from the earlier discussion that the first polishing major iteration 
for subset k involves redefining p,k ~ 2 -~/2 (where i -- 1, -.-, n) as unity, or otherwise as 
zero. This redefinition satisfies the requirement that elements of P be 0,1 and is equivalent 
to setting flk = 1. There is little advantage in conducting a second major iteration with po- 
fishing. If we were to do so and retain the flk ---- 1 or even flk ~- 1, then the p,k would hardly 
budge; reverting to the default initial value of a and fl would, computationally speaking, 
be a return to whence we came. 

An alternative that has worked well, which we have called a "de novo'" major itera- 
tion, works as follows: For the second (and succeeding) major iteration(s) with polishing, 
we begin each outer iteration for subset k by "zeroing out" both the weight, Wk, and the 
fitted subset p,k (i ffi 1, . . . ,  n). We then reestimate the subset (i.e., the P,k) using (42) 
through (48) given below for obtaining a rational initial configuration. Then, starting with 
a~ and flk at their default values, we gradually increase flk (relative to a~) over successive 
inner iterations. The de novo approach in effect lets the remaining m - 1 subsets com- 
pletely determine the k 'h during the latter subset's outer iteration. This technique appears 
to eliminate negative weights. The VAF sometimes drops slightly on the first de novo ma- 
jor iteration (i.e., the second polishing major iteration), but generally tends to recover in 
succeeding de novo iterations, often to a higher value than before the start of  the de novo 
iterations. When improvement in VAF becomes negligible, the iterative computation is 
terminated. 

We now turn to combinatorial optimization, the final procedure in the MAPCLUS 
program. Shepard and Arabie [1979] noted that for n stimuli, there are 22"-t - 1 distinct 
ADCLUS clusterings. Any attempt at exhaustive enumeration (to get the maximum 
VAF) would be infeasible; for as few as n -- 5 stimuli, there are more than 109 possible 
solutions. However, one strategy, often employed in fitting discrete models, is the exhaus- 
tive exploration of a subset of all possible solutions, typically those related to a very good 
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starting solution. (In the present application, the last item is furnished by the output from 
the d e  n o v o  major iterations.) 

In their discussion of  the ADCLUS representation of  some of  the Roethlisberger and 
Dickson [1939] data, Shepard and Arabie [1979] noted that several of  the subsets with rel- 
atively small weights were "ott" by one stimulus. That is, i f  one member were added to or 
dropped from these subsets, then interpretability would have been enhanced. This obser- 
vation suggests one avenue of  combinatorial optimization, namely reversing each of  the 
individual p,k values in turn (i.e., p,'~ = 1 - p,~) to see if VAF increases. To develop this 
idea formally, we begin with V~, the variance accounted for by the k 'h subset (and only 
that subset, as distinct from VAF computed over all m subsets) and by the associated re- 
gression constant ck. That  is, 

81jpikPjk 
(33) V~ = ' > : = ~ 

where the function H in the denominator is simply 

X 2 
(34) H ( x ) =  x M '  

and the residuals 8o have been centered. It follows that if we reverse an entry P,k, the re- 
suiting variance accounted for by subset k becomes 

[Ek - -  (2p,k - 1)g,,] z 
Vkr = 

H ( F ~  - ( 2 p , ~  - 1)h,D ' 
(35) 

where 

(36) 

and 

(37) 

I f  we consider all "doubleton" reversals (i.e., p,'~ = 1 - P,k a n d  P'jk = 1 - Pjk, i ~ j ) ,  the ap- 
propriate formula is 

(38) [ E ~  - ( 2 p , ,  - 1 ) g , ~  - (2p;, - 1 ) g j ,  + u, ,~l  2 

where 

(39) ~'u~ = (2p,k - l)(2pj~ - 1), 

and 

(40) u,j~ = p,j,,8,j. 

More generally, for an "l-tuple" reversal, we have 

(41) ,,~I ,, < . (Gi~,E/3 
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where 1 = (i~,/2, "" ,  0 is the subset of subscripts denoting the elements being reversed in 
the l-tuple change. 

Two points should be noted. First, for all the types of reversals of the P,k considered 
thus far, the only permissible ones are those leaving subset k with a cardinality of more 
than 1 and less than n stimuli. Second, it is possible for a reversal to result in improved 
VAF while causing previously positive weight(s) of any of the subsets to become negative. 
Our approach begins by evaluating (38) for each of thep,~ andpj~ values in subset 1. If any 
of the permissible trial values of the n(n  - 1)/2 different predicted V,,,~ exceeds V~ as com- 
puted in (33), then we execute the reversals corresponding to the largest such value (if 
any), arbitrarily breaking a tie if necessary, and apply global regression to see if the im- 
proved VAF entails any newly negative weights. If so, the reversal is not implemented, 
and the procedure goes to the next subset. Otherwise, the reversal is retained, and (38) is 
once again used to look for further advantageous changes within the subset. If any are 
found, they are tested just as the first such change was. The search for further reversals 
within a subset ends when (38) fails to yield a value superior to that from (33), which will 
have been updated whenever an advantageous reversal has been made. We proceed to do 
the same in turn for subsets 2, . . . ,  m. We are then ready for the second part of our com- 
binatorial optimization approach, which considers singletons. Specifically, we use (35) to 
compute the admissible values of the n different predicted Vko~, and look at the largest 
one, again arbitrarily breaking ties if necessary. The rest of the singleton strategy follows 
along in the same manner as was described for doubletons. 

The doubleton and singleton strategies are integrated in a "round robin" arrange- 
ment as follows. We make repeated passes through the two consecutive procedures until 
no advantageous reversals are found in a complete loop. When there are no changes made 
in either of the two procedures on consecutive passes, the optimization is terminated. If 
the alternating least squares procedure has worked well, then our combinatorial opti- 
mization typically finds no advantageous changes and therefore terminates after one 
"round robin" loop. On the other hand, when the iterative solution is not a good one, as 
many as five or six loops of combinatorial optimization can occur before no more im- 
provement in the VAF is forthcoming.* By way of evaluation, we note that our approach 
to combinatorial optimization typically uses a nonnegligible amount of computer time, 
and sometimes produces a worthwhile increase in VAF, but not always. This somewhat 
disappointing state of affairs cannot, as far as we can determine, be ameliorated by known 
methods. We note that, in particular, an ostensibly promising method of Ivanescu and 
Rudeanu [1966] would require an explicit representation of Wk as a function of the re- 
maining subsets and their weights (p,t, wl, l ~ k) and is therefore of no use in the present 
situation. A more recent proposal by Bantield and Bassill [1977] is extremely limited in its 
scope of application. For instance, if the starting point were subsets constituting a parti- 
tion of the stimuli (i.e., no overlap), the Banfield and Bassill approach would only test 
other partitions, without ever considering overlapping subsets. 

In developing MAPCLUS and varying initial values of a, fl, and 2~ on the same set(s) 
of data, we have occasionally found different solutions, each with over 90% VAF, using 
the same number m of subsets. The solutions occasionally differed by as little as .4% VAF 
(absolute) but had few subsets in common. Subjectively, these solutions were discrepant 
in that one or two stimuli seemed to "float" around to different subsets across the two so- 
lutions. This observation was in fact part of the motivation for developing the com- 
binatorial optimization procedure just described. Unfortunately, that procedure has not 
eliminated the problem of nonunique (approximately) best solutions, and we realize that 

* The  variable run times that ensue from the appended combinatorial  optimization preclude our  giving any  
guidelines as to compute t ime required for specific combinat ions o f  n, m. 
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some data analysts will view this situation with discomfort. However, we have come to 
suspect that this nonuniqueness is inherent in a fairly wide class of discrete models such as 
ADCLUS. Consider, for example the competing proposals for sets of distinctive features 
for the perception of consonant phonemes [see Arabie& Soil, 1980; Soli & Arabie, 1979]. 
Formally, that research may be viewed as the comparison of different sets of discrete and 
(typically) correlated predictor variables applied to data from a specific psychological 
context. The fact that no consensus as to a preferred set of such features has yet to emerge 
(cf., Wang & Bilger, 1973) closely parallels the nonuniqueness of different MAPCLUS so- 
lutions, each with a highly acceptable VAF. Moreover, the nonuniqueness we believe to 
be inherent in ADCLUS and similar models is also present in the method of hierarchical 
clustering most frequently used by psychologists, namely the complete-link approach. Al- 
though many data analysts appear unaware of this fact, the latter method yields not a 
single tree or dendrogram, but rather a class of such structures, when certain patterns of 
tied proximity values are encountered [Hubert, 1973; Peay, 1975]. Although the complete- 
link procedure can be modified (see Hubert, 1973, or the first article describing complete- 
link clustering, SCrenson, 1948) to avoid this lack of uniqueness, most data analysts seem 
uninterested in doing so. Finally, we note that various results from the theory of hyper- 
graphs can be used in principle to suggest that discrete representations such as those of the 
ADCLUS model may not be unique [Lawrence J. Hubert, Note 7]. 

Initial Configurations 

The initial configuration for MAPCLUS simply refers to the starting values for the 
entries of matrix P in (2). There are three possible sources for this matrix: user-supplied 
entries, the output from a random number generator, and a rational strategy. We now 
consider each of these procedures in turn. 

A user-supplied list of subsets (P,k(i - 1, . . . ,  n), k = 1, . . . ,  m) may be read as input by 
the MAPCLUS program. Those values of P, plus the input proximities (transformed to be 
similarities, S) are sufficient for calling the multiple linear regression procedure (described 
above) and obtaining least squares estimates of the weights, wk, and the additive constant. 

In Shepard and Arabie [1978], the distinctive features proposed by E. J. Gibson 
[Gibson, Osser, Schiff, & Smith, 1963, Note 3] for confusions between upper-case Roman 
letters were used as an initial configuration. Those binary features defined P, and regres- 
sion was then used to estimate the weights and evaluate the goodness-of-fit of those fea- 
tures vis-A-vis the model in (2). In "stand-alone" regression applications such as this one 
(i.e., no iterative computation is involved), it is necessary for the user-supplied subsets to 
be binary if the additive model is to be valid. In addition, each subset should be unique, 
and with cardinality greater than 1 and less than n. 

There are of course many situations in which a user might wish to supply an initial 
configuration at the start of the iterative computation. In this type of usage, multiple lin- 
ear regression is called after the initial configuration is read in, to obtain initial estimates 
of the weights and constant, prior to the first (prepolishing) major iteration. In such an 
application, there is no requirement that the user-supplied matrix P be binary. 

For the second source of starting values of P, a random initial configuration is sup- 
plied in MAPCLUS by using Kruskal's [1969] random number generator that was de- 
signed for extreme portability across computers with different word lengths. The imple- 
mentation of that random number generator in MAPCLUS is similar to the usage in the 
multidimensional scaling program KYST [Kruskal, Young, & Seery, 1973, Note 4]. 

Finally, our strategy for a rational initial configuration uses a simple linear approxi- 
mation to fit a vector (which is a column of P) of bimodally distributed entries to the re- 
siduals for each subset. 
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Formally, we begin with 

(42) z = 1A, 

where there is a column vector z with an entry z, for each of the n stimuli, I is a 1 x n row 
vector of  unities, and A is the n x n symmetric and centered matrix of residuals with ze- 
roes in the principal diagonal (i.e., ~,, = 0). Next, we center the entries of the z vector so 
that 

(43) ~ z, = O. 

Then, assuming A was not a double-centered matrix, we tally the number of positive ele- 
ments in z as n+ and negative ones as n_. Wc then compute the mean, g+, of the positive 
centered zj values and, g_, of  the negative values. That is 

(44) g+ = ~+ ,~, (z,) + and g_ = n~ ,_, 

where 

{0 '  i f z , > 0  and ( z , ) - = { O '  
(45) (zi)+ = otherwise 

Our goal is to define 

(46) p,k = a + bz,, 

ffz, < 0 
otherwise. 

l - g_  
(48) b =  ~ and a - -  

g+-- g_ g+ -- g_ 

After the values of  a and b have been determined, (46) is used routinely to supply the 
initial values for subset k. Note in Figure 2 that the rational initial configuration is com- 
puted for one subset at a time, just before the very first outer iteration dealing with the k ~ 
subset. Thus, when the initial configuration for the (k + 1)~ subset is computed, the ma- 
trix of  residuals A has changed since the computation of the z vector for subset k. In prac- 
tice, our strategy for a rational initial configuration has worked fairly well, and we also 
routinely use several different random initial configurations when analyzing any given set 
of data. 

An anonymous referee has suggested an alternative means of  obtaining a rational 
initial configuration, beginning with the two objects having the greatest similarity. To this 
dyad single stimuli are accrued in a stepwise manner until VAF fails to increase. The pro- 
cedure is to be applied iterativcly to the residuals. 

Application to Confusions Between 16 Consonant Phonemes  

Shepard and Arabic [1979] presented an ADCLUS representation of the data from 
the Miller-Nicely [1955] experimental investigation of  subjects' errors of  identification of  
16 English consonant phonemes under different conditions of  filtering and added noise. 
The (two-way) data from the so-called "fiat noise" masking conditions have been studied 

(47) a + bg+ = l and a + bg_ -- O. 

Thus 

where p~(i = 1, ---, n) is each clement in turn of  subset k for which the rational initial 
configuration is being obtained. The coefficients a and b (unrelated to the same variable 
names used earlier) in this tinear approximation are defined so that 
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by (two-way) multidimensional scaling methods [Arabic & Soli, 1980; Shepard, 1972] as 
well as by complete-link hierarchical clustering [Shepard, 1972]. 

Since psychologists and phoneticians have for many  years sought a preferred set o f  
discrete underlying perceptual features of  consonant phonemes [Jakobson, Fant, & Halle, 
1963; Klatt, 1968; Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967; Wickel- 
gren, 1966], A D C L U S  seemed like a natural  vehicle for pursuing such discrete features. 
Accordingly, Shepard and Arabic [1979] obtained the solution reproduced here as Table 
1. The 16 subsets plus the additive constant accounted for 94.5% of  the variance in the 
original confusions data. An extensive substantive discussion of  this solution is given in 

TABLE 1 

Shepard-Arabie ADCLUS Solution for 
Confusions Between 16 Consonant Phonemes 

Rank Weight Elements of Subset Interpretation a 

1 .730 f 0 

2 .575 d g 

3 .479 p t k 

4 .464 p k 

5 .340 v 

6 .296 s 0 

7 .281 m n 

8 .267 b v 

9 .197 s J" 

10 .191 p f 0 

11 .190 z 

12 .156 d g z 

13 .153 b v 

14 .114 v z 

15 .081 g z 

16 .009 z 

front unvoiced fricatives 

back voiced stops 

unvoiced stops 

unvoiced stops, omitting t 

front voiced fricatives 

middle unvoiced fricatives 

nasals 

(front voiced consonants) 

back unvoiced fricatives 

(front unvoiced consonants) 

middle voiced fricatives 

back voiced consonants 

(front voiced consonants) 

front and middle voiced fricatives 

back voiced consonants 

back voiced fricatives 

Note: The data are from Miller and Nicely [1955]. Variance accounted for = 94.5% with 16 
subsets and additive constant (corresponding to the complete set of 16 consonants) = 0.057. 

°Subsets of questionable interpretation are in parentheses. 
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Shepard and Arabic (see also below). For the moment, however, it should be noted that 
the representation in Table 1 came from the ADCLUS computer program, for which de- 
velopment was subsequently terminated. By way of review, that program generated the 
entire list of all maximal complete subgraphs from the input proximity matrix, and then 
used an iterative procedure for simultaneously estimating weights of  the subsets while re- 
ducing the overall number of  such subsets. Subsequently, multiple linear regression (de- 
tails given above) was used to sharpen the estimates of the weights and additive constant. 

It is naturally of interest to compare the performance of MAPCLUS and ADCLUS 
in analyzing the Miller-Nicely data. We therefore used MAPCLUS on these data, stipu- 
lating 16 subsets (plus an additive constant) and a rational initial configuration. The re- 
suiting MAPCLUS solution accounted for 98.1% of the variance. Although we will not be 
presenting the 16-cluster MAPCLUS solution, we note by way of comparison that the 
most heavily weighted clusters (and the pattern of their weights) compared favorably with 
the ADCLUS solution (Table 1), whereas for the least weighted subsets, the ADCLUS so- 
lution was substantively preferable. It has been our experience that for those data sets 
which were tractable to the ADCLUS program, MAPCLUS has typically given better fits 
using considerably fewer subsets. For example, the ADCLUS solution in Table 1 for the 
Miller-Nicely [1955] data represents the minimum number of clusters for which the AD- 
CLUS program gave a convergent solution. (Owing to problems with the iterative adjust- 
ment of the weights and the lack of close control over the number of subsets present at 
any given stage of the iterative procedure, ADCLUS often failed to yield a usable solu- 
tion for many sets of data.) To demonstrate the facility with which MAPCLUS usually 
requires fewer subsets, we present in Table 2 an 8-cluster solution accounting for 89.6% of 
the variance. These subsets are portrayed graphically in Figure 4, where they are embed- 
ded in a two-dimensional scaling configuration obtained by metric procedures developed 
by Shepard and Chang [Chang & Shepard, 1966, Note 5; Shepard, 1972]. In passing, we 
note that other MAPCLUS solutions with 8 dusters (plus the additive constant) some- 
times gave still better fit (90.7% VAF) but were less interpretable. 

In Table 2, the subsets have been rank ordered according to their fitted weights. To 
facilitate comparison with Table 1, the leftmost column of Table 2 shows the rank from 
the ADCLUS solution for the six subsets common to both the MAPCLUS and ADCLUS 
solutions. 

Although brief interpretations of the MAPCLUS subsets are given in Table 2, fur- 
ther comments and comparisons with Table 1 (ADCLUS solution) are in order. Consid- 
ering the most heavily weighted subsets, we note that the top two consist of parallel clus- 
ters of  front unvoiced fricatives/f  8 /and  front voiced fricatives/v 8/. A priori, these 
subsets are plausible contenders for the largest weights, since the stimuli within each pair 
are quite easily confused in the presence of masking noise [Wang & Bilger, 1973, p. 1252]. 
A similar pairing of clusters by weights holds for the third and fourth subsets, correspond- 
hag to back voiced s tops /d  g/and unvoiced s tops/p t k/.  However, these two clusters are 
not completely parallel, since all the unvoiced s tops /p  t k / a r e  included in Cluster 4, 
whe reas /b / i s  excluded from the remaining back voiced s tops /d  g / i n  Cluster 3, consis- 
tent with Shepard's [1972] results based on complete-link hierarchical clustering analyses 
of the same data. The voiced s top /b / ,  although similar phonetically t o / d  g/, is presum- 
ably segregated because, of those three voiced s tops , /b / a lone  has a rising second for- 
mant. It has been noted elsewhere that the shape of that formant's transition is a sufficient 
cue for distinguishing the voiced stops [Arabic & Soli, 1980; Soli &Arabie, 1979]. 

The fifth subset, /b v/, was noted by Shepard and Arabic [1979] to be of dubious in- 
terpretation. The fact that MAPCLUS gives that pair of front voiced consonants an even 
higher ranked (5) weight than did ADCLUS (13) is therefore all the more perplexing. 
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TABLE 2 

MAPCLUS Solution for Confusions 

Between 16 Consonant Phonemes 
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ADCLUS MAPCLUS MAPCLUS Elements of 

Rank o Rank Weight Subset Interpretation b 

1 1 0.814 f 0 

5 2 0.729 v 

2 3 0.577 d g 

3 4 0.487 p t k 

13 5 0.428 b v 

4 6 0.348 p k 

7 0.162 b d g~z  

- 8 0.116 p k f 0 s f  

front unvoiced fricatives 

front voiced fricatives 

back voiced stops 

unvoiced stops 

(front voiced consonants) 

unvoiced stops, omitting t 

voiced consonants,  omitting v 

(unvoiced consonants,  omitting t) 

Note: As in Table 1, the data are from Miller and Nicely [1955]. Variance accounted for = 

89.6% with 8 subsets (additive constant = 0.049). 

°Ranks are given only for the six subsets common to both the ADCLUS and the 

MAPCLUS solutions. 

bSubsets of questionable interpretation are in parentheses. 

However, in general, it is fair to say that the weights of the top five MAPCLUS subsets 
are intuitively more appealing than those of the Shepard-Arabie solution (Table 1). 

The sixth subset simply d r o p s / t / f r o m  the fourth. This grouping o f / k  p~ to form 
Subset 6 is not surprising, since both phonemes have relatively low frequency noise 
spectra at the time of burst release, unlike the corresponding high frequency f o r / t / i n  the 
context of the vowel/a/[Liberman, Delattre, & Cooper, 1952, p. 504]. (Speech spectro- 
grams for the 16 phonemes are given in Carroll & Wish, 1974, and are also reprinted in 
Arabic & Soli, 1980, and Soli & Arabie, 1979.) 

We now turn to the two least weighted subsets. Cluster 7 consists of the voiced con- 
sonants, omitting/v/. The exclusion of that phoneme is explained by the fact that, of the 
voiced consonant phonemes, /v/alone has the weakest voiced formant transitions; thus, 
/v/may be the most vulnerable to the masking noise [cf. Soli & Arabic, 1979]. The un- 
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FIGURE 4 
MAPCLUS solution for the 16 consonant phonemes used in the Miller-Nicely [1955] study. Variance accounted 

for -- 89.6% with 8 subsets. 

voiced consonant phonemes, excluding/t/,  comprise the eighth subset. The same reasons 
given for the exclusion o f / t / f r o m  Subset 6 are again relevant to the composition of this 
cluster. 

We suspect that some readers will be substantively perturbed, as we were, by the lack 
of a cluster for the nasals,/m n/, which were Subset 7 in the ADCLUS solution (Table l). 
First, we note that each of the five clusters in Table 2 which were dyad subsets correspond 
to entries having greater pairwise confusability in the Miller-Nicely data [reprinted in 
Shepard, 1972, p. 75] than fo r /m n/. Thus, if the nasals were included instead of some of 
the substantively and traditionally less expected dyad subsets, the result would have been 
a decrease in VAF. However, the absence of the nasals subset in all of our 8-cluster solu- 
tions raises the question of how many clusters are required before this highly familiar pair 
is included. (Note that they are the seventh cluster in the ADCLUS solution of Table 1.) 
We therefore obtained a series of 10-cluster MAPCLUS solutions, accounting for 91.5 to 
93.7% of the variance, and none of them included the nasals. We found that by specifying 
12 clusters (and getting 94.1 to 95.6% VAF) , /m n~ were sometimes present in the solu- 
tions. Thus, we suspect that the nasals are not as clearly present as a feature underlying 
the two-way MiUer-Nicely data ("fiat noise" conditions) as traditional phonology might 
insist. (In the 10- and 12-cluster solutions, the most heavily weighted subsets generally in- 
cluded the first six of those listed in the 8-cluster solution (Table 2), but the ordering of 
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the weights was variable. The lesser weighted subsets tended to vary greatly in composi- 
tion, although the cardinahty was typically in the range of four to six.) 

We would like to emphasize that with only 8 clusters MAPCLUS accounted for 
89.6% of the variance, whereas the ADCLUS program required 16 to account for 94.5% 
and was unable to obtain a solution with fewer subsets. Computationally, MAPCLUS has 
a considerable advantage over the ADCLUS program of Shepard and Arabie [1979] with 
respect both to core requirements and computation involved in obtaining a rational initial 
configuration. These two considerations are closely related since the ADCLUS strategy of 
obtaining an exhaustive fist of maximal complete subgraphs demands much computation 
and often results in matrices of large dimensions. Moreover, the computational advantage 
of the MAPCLUS algorithm mounts dramatically with increasing n. 

Future Prospects: INDCLUS as the Three-Way Generalization 

We are currently extending this general approach to the three-way case. The three- 
way model, called INDCLUS (for INdividual Differences CLUStering) is of the form: 

(49) ~ -  Wh~p,kPjk + Ch, 

where ~ is the similarity between stimuli (or other objects) i and j for subject (or other 
data source) h, Whk is a weight for subject h on subset k (closely analogous to INDSCAL 
dimension weights), while Ch is a constant (or weight for the complete subset) for subject 
h. A fairly straightforward extension of the MAPCLUS procedure allows fitting of this 
INDCLUS model [Carroll & Arable, Note 6, 1979]. We hope that this model and method 
will have many of the same advantages that the INDSCAL model and method have for 
three-way multidimensional scaling. One particular advantage we anticipate is a some- 
what greater stability of  the solution (i.e., of subset definition). The reasoning on which 
this is based is that the (two-way) ADCLUS model may suffer from a quasi-in- 
determinacy analogous in some ways to a rotational problem in two-way MDS. This 
quasi-indeterminacy may in fact underlie the general tendency of this model (and other 
discrete models such as the Carroll-Pruzansky multiple tree structure model) to exhibit 
multiple local optima having about the same value of the least squares (or other) loss 
function measuring goodness-of-fit. The three-way INDCLUS model, it is hoped, may 
have a property analogous to the "'dimensional uniqueness" property of INDSCAL that 
may tend to diminish or eliminate this tendency to multiple solutions. In addition, many 
of the other advantages of INDSCAL should accrue to INDCLUS--in  particular, the dif- 
ferential subject weights may prove to be important individual differences parameters. 
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