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Impact Scaling: Method and Application 

PHIPPS ARABIE, CARMAN J. MASCHMEYER, and J. DOUGLAS CARROLL 

ABSTRACT 

Impact scaling is a method of forecasting, using expert panelists’ judgments of conditional and unconditional 

probabilities of selected possible future events, as well as the events’ likely effects on such indicators as business 

parameters. Impact scaling to date has used the psychologically plausible INDSCAL (INdividual Differences 

SCALing) model of Carroll and Chang, to yield a graphic portrayal of the selected events in weighted Euclidean 

spaces, and to depict differences among individual panelists. Given the recent availability of a discrete psy- 

chological mode1 (INDCLUS, for INdividual Differences CLUStering) for representing structure of the events 

as well as differences among panelists, we demonstrate a more elaborate and versatile set of models for 

implementing impact scaling. An illustration is provided using panelists of varied professional status to give 

judgments about impacts of possible future events on various indices of stock market performance. Finally, 

we consider further extensions of impact scaling to enhance the utility and precision as a model of judgment 

and method of forecasting. 

Introduction 
For deriving predictions for a panel of experts, the Delphi technique (Dalkey [14]) 

has seen extensive use in forecasts involving risks and a tradeoff among incompatible 
goals (e.g., Cicarelli [ 121, Nelms and Porter [34], and Preble [35]). As a practical approach 
for attempting to improve decision making by a committee, the Delphi technique has 
enjoyed considerable success. Moreover, its extensive practice has led to studies of 
procedures for eliciting panelists’ judgments (Gustafson, Shukla, Delbecq, and Walster 
[25], and Press [36]) and methods of aggregating the panelists’ subjective probability 
forecasts (Fischer [21] and Friedman [24]). However, because this procedure has no 
underlying model of judgment or choice behavior and yields little more than summary 
statistics, Delphi has not produced any new insights about the structures underlying 
panelists’ judgments. 

For representing such structures, the spatial models employed in multidimensional 
scaling and related techniques have proved useful for depicting perceptions of potential 
future events (e.g., Lundberg [30]). In advocating the use of such methods for studying 
the perception of risk of possible future events, Vlek and Stallen [46, p. 2701 argued that 
“ . * . multidimensional scaling analyses of data matrices containing direct personal judg- 
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ments [of risk] are excellently suited for inferring relevant cognitive foundations under- 
lying such judgments. As such, they [i.e., the analyses] provide for less explicit, less 
obtrusive, and therefore, perhaps more reliable ways of uncovering structures of human 
beliefs and values than the explicit and often prestructured questioning procedures of 
formal decision analysis (e.g., Keeney [26]).” 

Impact Scaling (Carroll [3] and Carroll and Sen [8]) seeks to combine the practical 
utility of the Delphi Technique with psychologically plausible models developed in mul- 
tidimensional scaling. The former benefit has been heavily exploited through in-house 
practice of Impact Scaling (see Sen and Bozzomo [38]) by various units of the American 
Telephone and Telegraph Company (AT&T). However, such usage has been extremely 
applied and pragmatic, with little effort to interrelate underlying judgmental processes or 
various details of the scaling results to psychological research. In the present article, we 
seek to emphasize the INDSCAL model (Carroll and Chang [7]) that has been assumed 
in studies to date and also to introduce a more recent discrete model, INDCLUS (Carroll 
and Arabie [6]) that is potentially more appropriate to forecasting than the (continuous) 
INDSCAL model. Both the INDSCAL and INDCLUS models depict individual differ- 
ences among the panelists from whom the data are elicited. 

In evaluating the success of such a methodology, one can hardly do better than 
consult Keeney’s [27, 281 eloquent overview of decision analysis: “Decision analysis 
will not solve a decision problem, nor is it intended to. Its purpose is to produce insight 
and promote creativity to help decision makers make better decisions. It does this by 
providing a methodology and procedures to decompose the problem into parts that can 
be meaningfully analyzed, a logic to integrate the parts, and documentation for supporting 
a decision to others. No analysis includes everything of importance in a decision problem. 
In selecting an alternative the decision makers should jointly weigh the complications of 
an analysis together with other factors not in the analysis. [27, p. 51 . . . Decision analysis 
captures the dynamic nature of decision processes. It prescribes a decision strategy that 
indicates what action should be chosen initially and what further actions should be selected 
for each subsequent event that could occur [27, p. 61.” 

These quotes are reproduced here at length because they are as appropriate to 

Impact Scaling as to decision analysis. 

Design of Study 

EVENTS AND INDICES 

As with the Delphi technique, a successful application of impact scaling requires a) 
a forecasting problem perceived as important by a group of panelists who b) qualify as 
experts in their familiarity with the problem. In the present study, the 14 potential future 
events are listed in Table 1. Selection was based on relative prominence given these and 
related topics by the media during the summer of 1983. 

In addition to offering a graphic portrayal of the structure among these 14 events, 
impact scaling also seeks to represent the potential impact of these events on a series of 
indices or indicators gauging the performance of some typically business-related concerns. 
In this application, we have chosen 15 commonly cited indices, listed in Table 2, focusing 
on various aspects of the stock market. Selection was based largely on common inclusion 
in a large number of financial reports in such newspapers as the New York Times and the 
Wall Street Journal. As will be discussed below, a potential drawback of these particular 
indices is that most of our panelists perceived all pairs of the indices to be positively 
correlated in response to occurrence of the 14 events. (See Feeney and Hester [20] for 
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TABLE 1 
14 Economic Events Used in Impact Scaling Study 

Code Used 

for Plotting Probability” Economic Event 

PR+ 0.738 
PR- 0.302 
TX+ 0.670 
TX- 0.255 
IM+ 0.465 
IM- 0.383 
o- 0.21 I 
o+ 0.331 

NUC 0.279 

TDR 0.511 There is further deregulation of the airline and the trucking industry 

An increase of at least 1% in the prime interest rate occurs 

A decrease of at least 1% in the prime interest rate occurs 

There is an increase in U.S. Income Tax 

There is a cut in U.S. Income Tax 

The U.S. makes more money available to International Monetary Fund 

The U.S. makes less money available to International Monetary Fund 

An oil embargo occurs (causing a shortage in the U.S.) 

An oil glut occurs 

A breakthrough in safety and economy for nuclear electric power is 

achieved 

MMT 0.209 

OSH 0.376 

IMQ 0.259 

EBT 0.404 

Much more money is made available for mass transit 

OSHA guidelines are relaxed 

U.S. imposes import quotas on a large variety of manufactured 

products 

A new electronic breakthrough, comparable to the invention of the 

transistor. is announced 

“Probabilities are means from the 29 panelists of subjective unconditional probabilities 

a study of stock market indices and numerous conjectures about investors’ perceptions 
of those indices.) In many forecasting problems amenable to impact scaling, one would 
expect some negatively correlated indices, representative of conflicting or at least some- 
what incompatible indices (e.g., the cost of employee training and advancement programs 
versus employee turnover). 

TABLE 2 
Stock Market Indices Used in Impact Scaling Study and Plotting Codes for 

Corresponding Fitted Vectors 

Large Established Firms 

Dow Jones Industrial Average = DJIA 

NYSE Industrial Index = NYSEII 

Dow Jones Transportation Average = DJTA 

NYSE Transportation Index = NYSETI 

Dow Jones Utilities Average = DJUA 

NYSE Utilities Index = NYSEUI 
NYSE Financial Index = NYSEFI 

Smaller Newer Firms 

NASDAQ Industrial Index = NQII 

NASDAQ Banks Index = NQBI 

NASDAQ Insurance Index = NQINI 
Composite Parameters 

Dow Jones Composite Average = DJCA 
NYSE Composite Index = NYSECI 
American Exchange Market Value Index = AEMVI 

NASDAQ Composite Index = NQCI 
Value Line Composite Average = VLCA 

Subjective Unconditional Probabilities for 14 events (also referred to as scenario judged 

most likely) = SUCP 

Subjective Unconditional Probabilities for Optimistic Scenario = SUCPI 
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The academic application described below sought to model the impact that various 
events and combinations of such events might have on the different indices. In a typical 
business application, planners would have to decide which indices were beneficial (and 
thus to be maximized) and which were harmful (and thus to be minimized) to the spon- 
soring agency/corporation. The planners would then seek to allocate available resources 
to influence the probabilities of possible future events so as to produce the desired mix 
of values on the indicators. A hypothetical example would be to lobby for a tax break 
to construct a new manufacturing plant (the event) with economical facilities for employee 
training (Index A) to reduce employee turnover (Index B). 

PANELISTS 

The present study used three groups of panelists: 13 MBA students, eight Ph.D. 
students, and eight stock brokers for a total of m = 29 panelists. The first two groups 
were all specializing in finance at the Business School of the University of Illinois at 
Urbana-Champaign, and the members of the third group were all employed by the Cham- 
paign office of a national firm belonging to the New York Stock Exchange. (Data from 
another Ph.D. student and a ninth stock broker were not used because those participants 
failed to follow the instructions described below.) Completing the two questionnaires 
required 2-2.5 hours for most subjects. Students were paid $60 and brokers $100 for 
their participation. 

DATA COLLECTION 

Impact Scaling requires three types of data: a) subjective unconditional probabilities 
of the occurrence of each of the events (see Table 1); b) subjective judgments (e.g., 
conditional probabilities) of the impact of each event on each of the other events; and 
c) subjective judgments of the percentage change in each index if each given event were 
to occur. 

Elaborating on b), these data are obtained by asking each panelist to judge the 
(subjective) conditional probability of event Ej occurring given that event E, has recently 
occurred. Note that both probabilities P(EjIEk) and P(E,IEj) are needed for impact scaling; 
in the former Ej is the impacted event and in the latter is the impacting event. The events 
are viewed both as having impact on each other and on business parameters as well. (See 
Moskowitz and Sarin [32] and Moskowitz and Wallenius [33] for a comprehensive 
discussion of assessing subjective conditional probabilities.) 

The data were collected over two sessions per panelist. Panelists worked alone and 
were not permitted to confer with each other while completing the questionnaires described 
below. The graduate students participated during 19 April-4 May 1984 and the stock 
brokers during 1 l-18 July 1984. The questionnaire used in the first session began with 
a list of the 14 events. Then, after an explanation of probabilities (viz., defining the unit 
range and using the toss of a die as an example), the events were presented in a different 
random order for each panelist, and the task was to give a subjective (unconditional) 
estimate of the probability that each event would happen in the near future. The rest of 
the first session’s questionnaire was devoted to obtaining the subjective conditional prob- 
abilities for all distinct pairs of events. Considering the events in the same order (unique 
for each subject) as for the unconditional probabilities, panelists were told to assume that 
the first event has indeed occurred. Then with that event serving as a “standard,” subjective 
conditional probabilities were elicited for all remaining 13 events. On the next page, the 
second event served as standard for comparison with the first, third, fourth, etc. Thus, 
after completing the first questionnaire, each subject had given 14 unconditional proba- 
bility judgments and 14 x 13 = 182 conditional probability judgments. 
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Since the judgments described in c) above require detailed familiarity with the stock 
market indices listed in Table 2, the authors prepared a 40-page tutorial explaining the 
computation of and stocks included in each index, and copies were given to the panelists 
to study prior to the second session. Copies of the tutorial were also available to the 
panelists while participating in the second session. The questionnaire for that session 
began with a listing of the 15 indices in a format slightly more elaborate than Table 2. 
Following on successive pages were the 14 events, randomly permuted for each panelist, 
with the request to assume that the given event had occurred. Under the event were the 
15 indices, always in the order given in Table 2. Respondents were asked to estimate 
the magnitude of change (and the sign) of each index as a percentage if the event occurred 
“in the near future.” For example, if the event were occurrence of an oil shortage, a 
respondent might indicate that the NASDAQ Industrial Index would change by -5%. 
In more limited and constrained practical applications, a more specific time interval (e.g., 
the end of the fiscal quarter) would be appropriate. At the end of the second questionnaire, 
each respondent had provided 15 estimates of percentage change for each of the 14 events. 

Models 

REVIEW OF MODELS BASIC TO IMPACT SCALING 

Impact Scaling relies heavily on three models developed in the psychometric liter- 
ature. Readers already familiar with these models may wish to turn to the next section. 

1. Tersely stated, the INDSCAL (for INdividual Differences SCALing) method 
places n stimuli (events) in a Euclidean space of specified dimensionality, so that events 
perceived to be closely related are positioned near each other, whereas relatively unrelated 
events are distantly placed from each other. Differences among subjects (panelists) are 
depicted by stretching or shrinking (i.e., weighting) axes (dimensions) according to the 

salience (w,,, defined below) imputed to those axes by the individual panelists’ data. AS 
a result, the INDSCAL model is sometimes referred to as the “weighted Euclidean model.” 

Formally, the estimated distance between a pair of events Ej and Ek in the weighted 
Euclidean space can be written as 

(i) 

where Djk is the distance between the events Ej and Ek for the ith panelist, wir is the 
weight for panelist i in the rth dimension, and xi, is the coordinate of event Ej on the ah 
dimension. 

Graphically, the 14 events are represented in a space of r dimensions, and the panelists 
are positioned in a separate space of the same dimensionality r. Two points should be 
mentioned about the panelists’ weight space. First, the coordinates for the panelists 
(represented as points in the space) are given by the weights, Wir. Second, in impact 
scaling, each panelist is represented in the weight space by two points: one for judg- 
ments of impacting events and another for impacted events. Since the impact data consist 
of a series (viz., two from each panelist) of square n x n matrices derived from the sub- 
jective probabilities elicited from the panelists, the impact data are three-way: 
panelists X events X events. 

A noteworthy aspect of the INDSCAL model is that, unlike two-way nonmetric 
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multidimensional scaling in Euclidean space and most approaches to factor analysis, the 
axes in an INDSCAL event space have a mathematically preferred orientation. As such, 
the goodness-of-fit (variance accounted for; see [9], pp. 83-89) of a spatial solution is 
only invariant over reflections and permutations of the axes. (The data analyst, of course, 
is responsible for the substantive interpretation of these axes or dimensions.) The preferred 
orientation is conferred upon the event space by the presence of the weights, Wit, in eq. 
(1). As noted above, these weights are the coordinates of the panelists’ space. Although 
not constrained to be positive, the weights empirically are nearly always in the positive 
orthant of the space. Psychologically, the weights w;, gauge the salience of dimension t 
for panelist i by differentially stretching or shrinking that dimension so that differences 
in projections along corresponding axes contribute more or less, respectively, to the 
estimated distance in eq. (1). Statistically, the size of the weights gives an indication of 
the variance accounted for in the data from a given panelist. 

To summarize the description of the INDSCAL model and link it to the equa- 
tions below, it is helpful to note the following details concerning several variables: The 
INDSCAL model seeks to place the events Ek in an r-dimensional Euclidean space, 
with the n X r matrix X containing the coordinates of each of the n events. The dimension 
weighs for the panelists in a separate r-dimensional space are given by the r X m 

matrix W. (In impact scaling, the dimensions of W are r X 2m, since each panelist is 
represented twice.) Both of these matrices, X and W, are fitted to the data by the INDSCAL 
program. The other variables that appear in the following discussion are derived from 
the panelists’data and from X and W, using regression techniques and the properties of 
Euclidean distance. 

2. The vector model, as used in impact scaling, assumes that a spatial solution for 
the events has already been obtained, and that a vector pI is to be fitted, defined as a 
length, and a set of cosines defined by the angles between vectors and the axes of the 
events space. An example of such a vector would be the subjective unconditional p;ob- 
abilities for each of the fifteen events as judged by the ith panelist. Figure 1 shows an 
example of five events A . . . E (in circles) positioned in a two-dimensional event space. 
Two subjects’ vectors have been fitted through this space. Interpreting the direction 
indicated by the vectors’ arrows as one of greater (judged subjective) probability, one 
panelist has given a set of unconditional probabilities with EC as most and Eh as least 
likely. The other vector depicts likelihood in reverse alphabetical order. 

Note that the assumption in this artificial example is that, although the events are 
positioned in an INDSCAL-derived multidimensional space, probability of future occur- 
rence can be represented as an embedded one-dimensional manifold, pointing from the 
most to least likely of the events. This geometric assumption is central to the 
multidimensional scaling as the basic model of forecasting in impact scaling. 

As noted by Carroll [4], the vector model as fitted for ratings of subjective 
bilities can be formulated algebraically as 

use of 

proba- 

(2) 

where Tij = transformed subjective unconditional probability of event j for panelist i, 
pij = observed estimate of probability for Ej by the ith panelist, xj, = INDSCAL CO- 

ordinate of jth event on tth dimension, bi, = importance of dimension t for panelist i (it 
is, technically, a direction number, or proportional to the “direction cosine” of the angle 
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Fig. 1. Illustration of vector model, with events represented as circled letters whose projections 
on the vector reconstruct subjective unconditional probabilities of the corresponding events, as elicited 
from panelists. (Reproduced from Figure 1 of Carroll [4]). 

subject i’s vector makes with the dimension I coordinate axis), and r = number of 
dimensions. In matrix form 

II = BX, (3) 

where l-I E {nij} is the matrix of transformed subjective probability values nij linearly 
transformed by the function Fi, which takes observed probability scale values (p) into 
underlying values (IT). 

3. INDCLUS (for INdividual Differences CLUStering) describes a model and algo- 
rithm (Carroll and Arabie [5,6]) that constitutes a discrete counterpart to the INDSCAL spa- 
tial model. In principle, INDCLUS is applicable to any data suitable for an INDSCAL 
analysis and is an individual differences generalization of the Shepard-Arabie [42] AD- 
CLUS model for overlapping clustering and the Arabic-Carroll MAPCLUS [l] algorithm for 
fitting the ADCLUS model. 

The crucial difference between INDSCAL and INDCLUS is that the former represents 
structure by a set of dimensions that are common to all panelists, whereas the latter uses 
(discrete) clusters or subsets of events (for which overlap is allowed-in keeping with 
the fact that INDCLUS is a generalization of ADCLUS/MAPCLUS) common to all 
panelists. These clusters are often interpreted as “features” (cf. Tversky [45]) of the set 
of events (or other stimuli). The dimensions (INDSCAL) or clusters (INDCLUS) are 
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useful aids to planners in the crucial problem of determining relevant variables in fore- 
casting (Einhom and Hogarth [ 171). In both models, individual differences among panel- 
ists are represented by weights fitted to individual panelists’ data, in order to gauge 
salience of the dimensions (INDSCAL) or of the clusters (INDCLUS) in the solution (cf. 
Dietz, Fogler, and Smith [16]). 

The INDCLUS model is described in terms of similarities as input data. Use of 
impact scaling (described above) to date has employed dissimilarities data, as discussed 
below in detail. Since INDCLUS, like INDSCAL, is a linear model assuming interval 
scale data, the dissimilarities for impacting and impacted events are first linearly trans- 
formed to be similarities, with two matrices per panelist, so that there are a total of 2m 
matrices, just as in the analyses using INDSCAL. If we let s;~ be the derived similarity 
between events E, and Ek for the ith similarities matrix (i = 1, . . , 2m), then the 
INDCLUS model states that 

where ?,k is the predicted similarity between events Ej and Ek, for the ith similarity matrix, 
r is the number of clusters (specified by the data analyst) with index t, w,, is the weight 
(assumed to be nonnegative) fitted to the rth subset (cluster) of events for input matrix 
i, and g,, is unity if Ej is present in cluster t, otherwise zero. Finally, ui is simply an 
additive constant for the ith similarity matrix, corresponding to the first (unit) column 
vector in eq. (17). Alternatively, Ui can be viewed as the weight (not assumed to be 
nonnegative) of an (r + 1)st “universal” cluster comprising the complete set of n events. 
Finally, it should be noted that the weights wi, for the INDCLUS model in eq. (4) are 
unrelated to the weights for INDSCAL in eq. (1). 

Verbally, the similarity between a pair of events (as derived from the data of an 
individual panelist) is simply the sum of the weights (fitted to that panelist’s data) of the 
clusters that contain both those events. (The product of ,&& will be zero unless both 
terms are unity, implying that both E, and Ek are constituents of cluster t.) Note that all 
panelists are assumed to use the same set of r clusters (of the n events), but are assumed 
to be differentially weighting those clusters. Thus, the weights of the clusters vary both 
as a function of cluster and panelist. 

Equation (4) can be recast in matrix notation as 

$1 = GW’i’G’ + U”’ (3 

where scn is the symmetric n x n similarities matrix estimated for the ith input matrix, 
G is the n x r binary matrix whose unities within a column define the constituency of 
the column corresponding to the tih cluster (t = 1, . , r), W”’ is an r X r diagonal 
matrix having weights for the r clusters in its principal diagonal, as fitted to the ith input 
matrix, G’ is the r x n matrix transpose of G, and II(‘) is the constant matrix supplying 
the additive constant required by linear regression for the ith input matrix. Thus, to the 
input similarities data S(‘) (i = 1, . . , 2m), INDCLUS simultaneously fits the r clusters 

(G) and their weights (W(l)). If it were not for the binary constraint on G in eq. (4), 
then this model would simply be a generalization of principal components analysis, with 
W corresponding to eigenvalues and G to eigenvectors, and with the attendant rotational 
invariance leading to the “rotation problem.” However, the discrete, binary constraint on 
G requires much more elaborate procedures for fitting the INDCLUS model. 
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One point should be made to help the reader bridge the gap from INDSCAL to 
INDCLUS. Specifically, in an INDSCAL analysis, the events are positioned in a weighted 
Euclidean space having r dimensions (where r is specified by the data analyst) with 
continuously valued coordinates along those dimensions. Although programs for fitting 
the INDSCAL model (Pruzansky [37]) generally do not constrain the axes (dimensions) 
to be orthogonal (i.e., uncorrelated), they usually turn out to be approximately so. An 
INDCLUS solution can be viewed as a discrete version of principal components, for 
which each axis is a cluster, and each event has a coordinate of either 1 (if a constituent 
member of the cluster), or 0 otherwise, for each dimension. These “cluster axes” will 
not be orthogonal, however, unless the clustering happens to be a partition. Also, 
the origin of an INDCLUS solution, interpreted in this spatial framework, is nonarbi- 
trary, unlike the situation for models like INDSCAL that enjoy a more familiar spatial 
interpretation. 

INDCLUS offers a more natural way of representing aggregates of events than does 
INDSCAL. As noted, however, INDSCAL was the most relevant approach available 
during the original development of impact scaling, and INDCLUS was not yet available. 
The conceptual and other advantages INDCLUS offers for impact scaling should greatly 
improve the usefulness of this approach to forecasting. 

MODEL UNDERLYING IMPACT SCALING 

Representing the events. As noted above, each panelist i gives a subjective uncon- 
ditional probability estimate of each event Ej at time T: 

&j (j = 1, . . . , n; i = 1, . , . , WZ). 

Also, each panelist i provides subjective conditional probabilities of event Ek occurring 
at time T + 1, given that E, occurred at time T: 

P(EI, at T + 1 ) E, at T) = p;i o’= I)..., n;k= l)..., n;j#k). 

Note that a tilde above a probability denotes that the variable (data) was elicited from a 
panelist. For the ith panelist, the “cross-impact” of Ej on Ek is defined as 

that is, the subjective conditional probability of Ek given Ej minus the subjective uncon- 
ditional probability of Ek. (In addition, each panelist estimates impacts of each event on 
each of s external business parameters, but those data will be discussed below.) 

Two methodological points should be noted. First, unpublished applications of impact 
scaling where all panelists participated simultaneously often used consensual procedures 
for eliciting unconditional probabilities. Since many of our panelists were run in separate 
sessions, we obtained unconditional probabilities from each panelist, and subtracted the 
unconditional probability specific to each panelist in eq. (6). Second, some readers may 
be surprised that we used the unmodified estimates of probabilities provided by the 
panelists, instead of attempting to “improve” (Lindley [29]) or “update” (Diaconis and 
Zabell [15]) their probabilities. While the future may allow adopting some of these 
strategies, the inherent drawback is that most of them rely on being able to state, determine, 
or otherwise assume a base rate for a given event. Many of the events listed in Table 1 



254 P. ARABIE, C. J. MASCHMEYER, AND J. D. CARROLL 

(e.g., a new electronic breakthrough) defy such a determination, but there can be little 
doubt that an announcement of their occurrence can have impact on the stock market. 

Returning to our explication of the model (Carroll [3] and Carroll and Sen [S]) 
underlying impact scaling, note that the vector of hypothetical unconditional probabilities 
has the form pT, = (p,, p2 . . . 1 * * . p,,) where the 1 constitutes the jth component. 
Impact scaling assumes the panelist is using a model of the form 

pr = mTX’ + error, (7) 

where pT is the unconditional probability (dependent variable), nT is an r-element row 
vector of relative probabilities (that can be normalized to a total of unity across the r 

dimensions) unrelated to previous usage of the same variable name, and X’ is the r X n 

transpose of the coordinates matrix fitted by INDSCAL in past usage. If the INDCLUS 
model is instead used to supply the coordinates, then in the present notation X’ = G’, 
where G’ is the matrix of binary (0,l) values [assumed in the INDCLUS model of eq. 
(4) and (5)] defining cluster membership in each of r (possibly overlapping) clusters fitted 
by the INDCLUS computer program. 

Standard least squares regression techniques yield an estimate of the vector of relative 
probabilities (associated with the dimensions and later used for predicting the likelihood 
of various scenarios): 

+Tj = PTj X(X’X)-‘. (8) 

To estimate relative probabilities at time T + 1, it is necessary to solve for an r X r 

transition matrix K: 

=r(T+ I,J = fi,K. (9) 

Using eq. (7), the unconditional theoretical probability of E, at Time T + 1 is thus 

A 

PtT+ lb = *(T+ ,)jx’. (10) 

Combining the results of the preceding equations, we have 

A 

P(T+ 1)~ = pv X (X’X)-’ K X’ (11) 

= PT,X z X’, 

where 

Z = (X’X)-’ K. (12) 

(Z is an r X r matrix that can be interpreted as a matrix of impacts among the r 
dimensions.) 

Consider the situation if we had begun with the assumption that Ej did nut occur, 
SO that PTy = (p,,p2. . ’ 0. . . p,) with a zero for the jth component. 

Then we can form a vector of cross-impacts of Ej on events l-n [cf. eq. (6)] as 

c, G P(T+ I)j - PcT+ 1); 

= (P7j - PTJ) X z X’ 

= E,XZX), 

(13) 

where Ej = (0, 0 . . . 1 . . . 0). 
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In matrix notation, 

c = IXZX’ = XZX’, (14) 

where C, a panelist’s cross-impact matrix, has the vectors cj 0’ = 1, . . , n) of eq. 
(13) for its rows. I is the identity matrix, which happens to be the matrix whose rows 
are the row vectors ~~ defined above. 

For estimating X and K, recall that the cross-impacts (data) Ejk were defined in eq. 
(6). To use them as input to either Pruzansky’s [37] SINDSCAL program for fitting 
INDSCAL (Carroll and Chang [7]) model, or INDCLUS (Carroll and Arabie [5, 6]), 
some preprocessing is required to render the data as an n x n matrix of “profile” (Cron- 
bath and Gleser [ 131) or “indirect” (Shepard [41]) dissimilarities between all pairs of 
events E, and Ej’. As noted earlier, we can regard each event as impacting and being 
impacted upon by the other events, so that in actuality we form IWO such matrices of 
indirect dissimilarities for each panelist. 

Define Dpw) e d$Y) as 

and define Djc”‘) EE dg.7’) by 

cj = x Z,X’, i = 1,2,. . . ,m, 

and that X is of the form 

X (rtl) = . 

I 

k. - 
k . 
k . 

* X,4 
. . 
. . 

k- - 

where 1X(,., = 0 (i.e., X,,, is column-centered). 
Then, if we transform Dirow) and Dp’) to 

Torgerson [44, p. 2581) equations [i.e., b,r = 

(15) 

(16) 

(17) 

scalar products B via standard (e.g., 
-f (& - df,, - 4. + &..), where 
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the * indicates a mean of the squared distances over the corresponding subscript(s)], it 
can be shown that 

where 

Let 

0 1 0 ... 
0 0 1 *.. 
. . . 
. . . 
. . . 

0 0 0 ... 

0' (19) 

JZi X’~r+lAr+L~Zi J’ = Wil, (20) 

JZIX’<r+ ~&r+ 1) ZJ’ = W;>. 

We make the simplifying assumptions that W,, and W, are diagonal for all i. Then 

BY) = Xc,,Wi,X’<,,, 

BI=“) = Xc,,Wi2X’(,,. (21) 

The substantive meaning of these two simplifying assumptions is hard to state precisely, 
but, roughly speaking, it embodies a kind of generalized statistical independence or lack 
of correlation among the superevents corresponding to INDSCAL dimensions or IND- 
CLUS clusters. That is, we are not assuming that the events are orthogonal, but that 
some specific but unknown linear combinations of the events are. 

Let fi be the n X n x 2m array defined by combining Dpw) and Dp’) for the m 
subjects, so that B is the n x n x 2m array whose two-way (events X events) slices 
are Bpw) and BIco’) for i = 1,2, . . , m. 

Then an INDSCAL analysis of fi is equivalent to a symmetric CANDECOMP 
(Carroll and Chang [7]) analysis of B, and so provides estimates of Xc,, and of Wi, and 
Wi2 for all i. 

Given this estimate of X,,,, we may define Xc,.+ ,) by appending an additional column 
defined as kl’ (k = l/V%) and then estimate Zi for each i by least squares procedures. 
Given the estimate Zi, of this matrix, we may then estimate Kj by 

ii; = (X’X)i,. (22) 

In general, we are only interested in the r x r submatrix of Ki (or of Z,) that corresponds 
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to Xcr) containing the coordinates of the events in an r-dimensional weighted Euclidean 
space. It will turn out, however (because of orthogonality of 1’ and X,,,), that i<icr) 
calculated from X,,, alone will identically equal the approximate r X r submatrix of 

&(r+ 1). 

By way of summary, we have defined a cross-impact matrix for each of them panelists 
[by subtracting the relevant subjective unconditional probabilities from the subjective 
conditional probabilities for each panelist, as defined in eq. (6)]. Then, two matrices of 
event dissimilarities for each panelist are defined by eqs. (15) and (16). The resulting 2m 
matrices of dissimilarities among the n events define an II x n x 2m array suitable for an 
INDSCAL (or an INDCLUS) analysis. The dimensions (of the preferred orientation in the 

INDSCAL solution) define the matrix X,,,, which is supplemented by a constant (column) 
vector to define the “superevents” matrix X. The columns of this matrix can be viewed as 
defining coordinates of the actual manifest events on the (r + 1) underlying superevents; 
the (I + 1)st vector of constants corresponds to an average of the manifest events and is 
required by the mechanics of linear regression. In practice, the dimensions of this superevent 
space have been shown to provide useful feedback to managers and planners at AT&T 
(Carroll [3]). Moreover, using straightforward regression techniques, one can obtain 
estimates of the probabilities of occurrence of each of the superevents. The dimensions can 
be conceptualized as defining “areas of concern” that are continuously valued collections of 
actual events. Note that the probability of each manifest event can be viewed as a monotonic 
function of the value of the underlying superevent. Each dimension, or superevent, can be 
thought of as being defined by certain events that are compatible with or symptomatic of 
that superevent, and others that are incompatible with it (or antisymptomatic of its occur- 
rence). These would be events that have highly positive and highly negative coordinates on 
the dimension, respectively. Those events with intermediate, or near-zero, coordinates 
could be viewed as unrelated, or irrelevant, to the superevent. 

Note that, in the preceding discussion of “superevents,” we are having to consider 
(continuous) linear combinations of (discrete) events, since INDSCAL dimensions are 
inherently part of a space posited to be continuous. In contrast, the clusters from an 
INDCLUS analysis are discrete (viz., an event either is or is not included in a cluster), 

and this discrete representation of events may extend the applicability and enhance the 
utility of impact scaling. 

IMPACT OF EVENTS ON EXTERNAL PARAMETERS OR INDICATORS 

In the beginning of the section on data collection, we noted that in addition to 
eliciting subjective conditional and unconditional probabilities for events, estimates of 
predicted impacts of the n events on each of s selected external business parameters 
(listed in Table 2) are also collected. Concretely, panelists are asked to estimate the 
percentage (which is not constrained to be positive) change for a given parameter (e.g., 
size of work force) if a specific event occurs. 

Formally, let Yjy be the judged impact of Ej on parameter (or indicator variable) V. 
yy is a (column) vector of impacts on variable V. Y, = {y$?} is the n X s matrix of the 
impacts for panelist i. Let qi be this matrix of hypothesized impacts of the latent su- 
perevents on parameters. We then assume the following linear model: 

Y, = XW, + error (= V, + error), (23) 

leading to the following least squares estimate of the r X s matrix ‘Pi (having coordinates 
of the y vectors): 
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+; = (X'X)_'X'Yj, (24) 

so that 

+i = X(X’X)-‘X’Yi. (25) 

The “subjective expected value” of (percentage change in) the parameters may be defined 
using the model as 

ei = (f?ii ,er2 * * * eis) = PiYj (26) 

= pi (X’X)Wj. 

Analogously, estimated subjectively expected values (of change) are provided by 

c, = a;Y; = &(X’X)@‘, (27) 

= @iX( X’X) - ‘X’Yj. 

In practice, the vector y,, is usually the mean percentage of change estimated by all the 
panelists for a given business parameter. Considering this vector of data as input, the 
program PROFIT (Chang and Carroll [lo]) uses linear regression to fit a vector ?; in 
the INDSCAL or INDCLUS space of events (cf. Figure 1) so that the projections of the 
n events on the vector optimally reconstruct the observed percentages of yy. 

Thus, the INDSCAL or INDCLUS solution can be used to embed a vector for each 
of the 15 business parameters (viz., stock market indices) used in this study. The cosine 
of the angle between the vector for a given parameter and the axis of any particular 
dimension in a space can be viewed as gauging the impact the events associated with the 
dimension would have on that parameter. 

As noted earlier, yet another vector to be fitted in the events space is the one based 
on the mean unconditional probability estimates over all the panelists. The direction of 
the corresponding vector fitted by PROFIT can be regarded as the (unidimensional) 
“scenario judged most likely” in the multidimensional event space. Of course, one of the 
purposes to which forecasting is often directed is to seek a strategy for influencing certain 
future events so as to optimize some parameter or combination of parameters. Thus, if 
a committee of panelists decides that resources can be directed toward changing the 
probability of one or more of the events, then a new yi vector, corresponding to the more 
optimistic scenario, can be positioned by PROFIT in the event space, so as to see how 
the revised scenario would affect each of the business parameters. Although somewhat 
more tenuous, there is the possibility of a group of planners also revising their estimates 
of the percentage change for selected indices in response to occurrence of given events. 
For example, a conglomerate enterprise seeking to maximize overall profit could offset 
the expected effect of (for example) a change in the NASDAQ Insurance Index with a 
contingency plan of selling its holdings in insurance companies. 

Results 

SINDSCAL EVENT SPACE 

Fifty-eight matrices (two from each panelist), generated according to eqs. (15) and 
(16), served as input to Pruzansky’s [37] SINDSCAL program for fitting the INDSCAL 
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Fig. 2. Dimensions 1 and 2 of four-dimensional SINDSCAL event space. Plotting codes for events 
are given in Table 1. 

model. Using several different initial configurations, the best fitting solutions in six through 
two dimensions gave variances accounted for (VAF), respectively, of 44.1, 39.7, 34.3, 
28.6, and 21.8%. The four-dimensional solution was selected for giving the best tradeoff 
between goodness-of-fit and interpretability. 

Figure 2 shows a plot of the first two dimensions of the four-dimensional event 
space. (The abbreviated codes used for plotting the events are given in Table 1.) The 
first dimension is easily interpreted as governmentally controlled and/or influenced eco- 
nomic policies. Specifically, the dimension is anchored by increase versus decrease of 
the prime rate, with tax increase and more funds for the International Monetary Fund 
(IMF) also prominent. The second dimension obviously reflects a concern about energy 
and pits an oil shortage against all the remaining 13 events. The first two dimensions 
accounted for approximately 12.2 and 8.4% of the variance, while the third and fourth, 
respectively, accounted for 7.2 and 6.5%. Figure 3 shows a plot of these dimensions. 
The third depicts fiscal (e.g., tax increase) versus monetary (e.g., increase in the prime 
rate) events. The interpretation of the fourth dimension of the INDSCAL event space is 
somewhat problematic. With the notable exception of changes in the oil supply, this 
dimension seems to contrast events associated with a stable U. S. economy (e.g., less 
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Fig. 3. Dimensions 3 and 4 of four-dimensional SINDSCAL event space. Plotting codes for events 
are given in Table 1. 

money for IMF, enhanced safety, and efficiency for nuclear power) versus those that 
perturb it (e.g., changes in the prime rate). 

We noted above that fitting the INDSCAL model also results in a subject or panelist 
space, separate from but having the same dimensionality as the event space. Figure 4 
presents the panelist space corresponding to the first two dimensions of the event space 
shown in Figure 2. The plotting codes used in Figure 4 require some explanation. An 
“R” (row) as the first character denotes a panelist’s judgment of the events impacting 
each other, whereas a “C” (column) denotes judgments of events being impacted [cf. 
eqs. (15) and (16) above]. The eight brokers are designated by BRKA, BRKB, etc. For 
student panelists, the two digits after the “C” or “R” are simply for clerical purposes. 
Following that number, as “M” indicates MBA, and “P” indicates Ph.D. The final digit 
tells the student’s year of study. 

The most striking aspect of Figure 4 is the differential impacted/impacting weights 
for the two dimensions. Concretely, the first dimension is much more salient (viz., heavily 
weighted) when its events are viewed as effects (impacted), whereas the second dimension 
is more salient when the events are judged as causes (impacting). Carroll [3, p. 5141 
noted that a similar finding often occurred for one or two of the dimensions in unpublished 
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Fig. 4. Dimensions 1 and 2 of four-dimensional SINDSCAL panelist space. 

studies conducted by AT&T. Although not presented here, the plot for dimensions one 
and three shows a similar although not quite as clear-cut pattern, with the first dimension 
again being more heavily weighted when viewed as impacted. In the plot (again, not 
presented) of dimensions one and four, the same pattern is still somewhat in evidence. 
Considering differences among panelists in Figure 4, it is interesting to note that the 
stock brokers (with the exception of points CBRKB and CBRKE) gave greater emphasis 
to the second dimension (energy). There is a less pronounced tendency for the Masters 
students to emphasize the first dimension more heavily. Weights for students in the 
doctoral program seemed to be evenly distributed over the two dimensions. 

In Figure 5, showing dimensions three and four of the panelist space, no predis- 
position toward the impacting/impacted emphasis is apparent. There is, however, some 
evidence that the Masters students emphasize the third dimension more than they do the 
fourth dimension. A similar tendency is less marked for the doctoral students. 

We noted earlier that impact scaling also yields spatial representations depicting the 
interrelationships of the events and the business parameters, with the latter represented 
as vectors embedded in the event space. As a practical detail, it should be added that the 
program PROFIT (Chang and Carroll [lo]) fits the data described above on the left side 
of eq. (23) as vectors in the INDSCAL-supplied event space. Figure 6 presents the same 
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Fig. 5. Dimensions 3 and 4 of four dimensional SINDSCAL panelist space. 

event space as in Figure 2, but with vectors representing the 15 stock market indices and 
the unconditional probabilities embedded in the space. The direction in which the vectors 
for all the market indices point in Figure 6 indicates that our panelists viewed an electronic 
breakthrough (EBT), relaxation of OSHA rules, etc., as beneficial to the stock market, 
in contrast to such deleterious events as an oil shortage (0 - ). (It might be noted that 
the length of each vector is proportional to the square root of its variance accounted for, 
also interpretable as a multiple correlation [RI, and that all vectors pass through the origin 
because INDSCAL coordinates are centered, i.e., have a mean of zero, for each dimen- 
sion.) 

The most striking aspect of Figure 6 is that the scenario judged most likely (the 
vector for subjective unconditional probabilities, labeled SUCP) is approximately or- 
thogonal to the vectors for the parameters (stock market indices). The implication is that 
the panelists’ mean judgment saw the future (along these two dimensions) as neither 
helping nor hindering the performance of the stock market. Such a view would be 
consistent with the hypothesis of the efficient market (Fama [19]), contending that pre- 
dictions based on past events are useless in forecasting price changes. Of course, our 
panelists were asked to make judgments about future events, but the panelists may have 
viewed the task as an extrapolation based on knowledge of the past. Note that the 
(unidimensional) path judged for the future is directed toward an increase in the prime 
lending rate, less money for the International Monetary Fund, etc. However, it should 
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Fig. 6. Stock market indices and subjective unconditional probabilities (SUCP) represented as 

vectors embedded in dimensions 1 and 2 of four-dimensional SINDSCAL event space. 

be noted that the events space we obtained for INDSCAL was four-dimensional, and the 
figures in this paper necessarily present only two-dimensional projections of the four- 
dimensional space. The orthogonality just noted was apparent in the two-dimensional 
projection shown in Figure 6, but not in the other five possible projections, one of which 
(Figure 7) will be presented below. 

A reassuring aspect of that figure is that the business parameters are grouped together 
in Table 2 as “composite indices” are all positioned closely together. Most of the indices 
for “large established firms” fell together, but the Financial and the Industrial Indices of 
the NYSE were mixed with the other two types of indices, as presented in Table 2. 

Figure 7 shows the same event space as Figure 3, but with the vectors now embedded. 
Unlike their directions in Figure 6 (and in the other four two-dimensional projections not 
presented), the vectors now show some divergence. Specifically, the two indices relevant 
to utilities (Dow Jones Utilities Average and NYSE Utilities Index) are pointing toward 
quadrant one, whereas the other vectors are in the direction of quadrants three and four. 
The scenario judged most likely (SUCP), however, would not be propitious toward these 
two indices. 

Figures 2-7 graphically depict the panelists’ perceptions of the events and their 
impacts upon the indices. In-house use of impact scaling at AT&T has demonstrated that 
planners have found the dimensional representations of events useful for organizing their 
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Fig. 7. Stock market indices and subjective unconditional probabilities (SUCP) represented as 

vectors embedded in dimensions 3 and 4 of four-dimensional SINDSCAL event space. 

conceptualizations of possible scenarios of the future (Sen and Bozzomo [38]). However, 
we noted above in the discussions of Figures 6 and 7 that trying to visualize vectors from 
a four-dimensional space in two-dimensional projections of that space can be misleading. 
Carroll and Sen [8], therefore, devised a useful auxiliary way of presenting the vectors 
so as to note which events were of strategic importance to the parameter corresponding 
to a given vector. Concretely, those authors provided the “impact plot” as a straightforward 
scatterplot of projections of the events on the subjective unconditional probability vector 
versus projections on the vector corresponding to any given index. If an index is to be 
maximized in the future scenario, then such an impact plot should suggest strong positive 
correlation between these two sets of projections. 

Figure 8 shows an “impact plot” using the NASDAQ Insurance Index. (Note that 
centering of the coordinates accounts for the negative coordinates or scale values.) Planners 
seeking to maximize this parameter would wish to increase the probability of a drop in 
the prime lending rate (moving its point into quadrant one) and decrease the probabilities 
of a tax increase and of an increase in the prime rate (moving their points from quadrant 
four to quadrant three). Further moving the point for an oil shortage to the left (i.e., 
reducing the probability of occurrence) would also facilitate a scatterplot indicative of 
high positive correlation. 
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Fig. 8. Impact plot of projections of NASDAQ Insurance Index against projections for subjective 
unconditional probabilities, using INDSCAL solution. 

The following procedural points should be noted. First, if our panelists had been 
actively engaged in trying to influence the probabilities of one or more of the events, 
then vectors for scenarios alternative to the one judged most likely could have replaced 
the SUCP data vectors graphically portrayed in Figures 6, 7, and 8. A second point is 
that the investigators designing an impact scaling study can also devise their own com- 
posite index, using a weighted average of the (separate) business parameters to get a 
summary description of the outlook for the market (or whatever interest, corporate or 
otherwise, is of concern). Assignment of weights in such a composite index necessitates 
decisions about tradeoffs among potentially conflicting or incompatible goals and con- 
sideration of willingness to accept the ensuing risks. Such a (weighted) composite average 
constitutes, in effect, a utility function aggregated over the separate indices of stock 
market behavior. We have not included such a composite in our study because a) as 
noted at the bottom of Table 2, we already have several widely known composite indices 
and b) Figures 6 and 7 already give a good indication of the direction in which the 
corresponding vector would lie, unless a pathological weighting scheme were adopted. 
In the absence of these two considerations, practitioners of any practical application would 
be well advised to include one or more such composites, particularly as ways of gauging 
the possible consequences of risky decisions involving tradeoffs among corporate goals. 
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TABLE 3 

INDCLUS Solution for the 14 Economic Events’ 

Cluster Weight Probability Events Contained in Cluster 

1 0.425 0.871* PR- TX- IM+ o- o+ 
NUC TDR MMT OSH IMQ EBT 

2 0.133 0.092* PR- IM+ MMT EBT 
3 0.132 0.071* PR+ TX+ IM- o+ NUC MMT 

OSH IMQ EBT 
4 0.129 0.457* TX- O- NUC MMT OSH tMQ 
5 0.124 0.107 TX- NUC TDR MMT tMQ EBT 
6 0.109 o.oos* PR+ PR- TX+ TX- o+ TDR 

OSH 1MQ EBT 
7 0.101 0.089 TX+ IM- OSH IMQ 

“These seven clusters, plus an additive constant of 0.085, accounted for 33.4% of the variance. See text for 

interpretation of clusters and Table 1 for explanation of codes used for events. Probabilities were estimated as 

cosines using PROFIT, and the values with asterisks apply to the complements of respective clusters. 

The same 58 matrices used as input to generate Figures 2-5 were also used to obtain 
the INDCLUS solution in Table 3.The seven-cluster solution is presented along the weights 
for the aggregate data set; otherwise, it would be necessary to list the 7 x 58 = 406 
weights fitted for each cluster in each matrix. This solution shows considerable overlap 
among the seven clusters and accounts for 33.4% of the variance present in the 58 matrices, 
roughly the same VAF as the four-dimensional INDSCAL solution presented earlier. 

Considering the clusters by descending order of weights, we note that the first cluster 
comprises all the events except increases in income tax and the prime lending rate. Viewed 
from a conservative political stance, these two events are often dreaded and viewed as 
choking the economy. The events that are included in the cluster span issues of regulation, 
technology, energy, and transportation. The four events in the second cluster (drop in 
prime rate, more funding for mass transit, electronics breakthrough, and more money for 
IMF) would stimulate industrial growth in the United States and elsewhere. Interpretation 
of the third cluster is very problematic, and we do not have a parsimonious explanation. 

The fourth cluster can be viewed as governmental responses (e.g., relaxation of 
OSHA rules, more money for mass transit) to such crises as an oil shortage. A tax break 
and the technological advances in cluster five are the types of events usually associated 
with a booming economy. Note that the governmental actions included here would be 
expected to stimulate U.S. industrial growth. The sixth cluster emphasizes government 
options in regulation, taxation, and monetary issues. The inclusion of an oil surplus, 
however, is surprising. The final cluster can be viewed as the scenario for the government 
raising money through increased taxation in an express effort to strengthen U.S. industry. 

We noted earlier that this INDCLUS representation in Table 3 could be viewed as 
a seven-dimensional spatial solution, with each event having a coordinate of 1 (if included 
in the cluster now viewed as a spatial dimension) or 0. Because such a representation is 
not easily visualized, embedding the clusters in the first two dimensions of the SINDSCAL 
solution for the 14 events, as in Figure 9, may be more easily interpreted. Note that the 
axes have been permuted from their order in Figure 2 so that the clusters fit more easily 
in the available space. Also, there is no contour to represent the sixth cluster simply 
because its inclusion would have made Figure 9 too cluttered. 

Although a seven-dimensional spatial solution with binary coordinates is not easily 
visualized, it is appropriate for embedding the vector of subjective unconditional prob- 
abilities (“scenario judged most likely”) to predict the probabilities of the various clusters 
as discrete “superevents.” The program PROFIT (Chang and Carroll [lo]) provides the 
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Fig. 9. INCLUS event clusters embedded in first two dimensions of INDSCAL event space. (Note 
that axes are reversed from Figure 2.) 

direction cosines for fitting the scenario judged most likely (as well as the vectors for 
each of the fifteen stock market indices). In Table 3, these cosines are given as probabilities 
for the clusters or, where asterisks are included, for the complement of the respective 
cluster. (The complement arises when the estimated cosines are negative.) For example, 
the model predicts that, according to the panelists’ judgments, the probability of increases 
in income tax and the prime rate (viz., the two events not included in the first cluster) 
is 0.871. Similarly, the probability of the scenario suggested above for the events in 
cluster seven is 0.089. (It should be noted that these probability estimates assume that 
with respect to causality, the clusters are mutually exclusive.) If the INDSCAL dimensions 
presented in Figures 2 and 3 are regarded as superevents, then the probabilities corre- 
sponding to dimensions one through four are 0.765, 0.258, 0.221, and 0.546. But these 
latter probabilities apply to continuous dimensions, in contrast to the probabilities in Table 
3, where an event either is or is not (with no continuous intermediate gradations) relevant 
to a given superevent, to which the corresponding probability is assigned. 

To offer a final comparison of INDSCAL and INDCLUS as vehicles for impact 
scaling, we note that the impact plot for the NASDAQ Insurance Index, using the 
INDSCAL solution and presented in Figure 8, has its INDCLUS counterpart in Figure 
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Fig. 10. Impact plot of projections of NASDAQ Insurance Index against projections for 
subjective unconditional probabilities, using INDCLIJS solution. 

10. That is, the projections being plotted in Figure 10 are taken from the INDCLUS 
solution, regarded here as a seven-dimensional space with binary coordinates. As in 
Figure 8, increases in the prime rate and income tax are events whose probabilities should 
be decreased in order to maximize linear correlation and increase the NASDAQ Insurance 
Index. An interesting detail of Figure 10 not found in Figure 8 is that more funding for 
mass transit is an event whose probability should be increased to maximize the NASDAQ 
Insurance Index. Given the highly publicized misgivings of many insurance companies 
to provide automobile policies and coverage, this result seems noteworthy. 

We noted in the discussion of Figure 8 that planners having actual resources to 
influence the outcomes of various events could revise the probabilities constituting the 
“scenario judged most likely” and represented by the vector labeled SUCP (subjective 
unconditional probabilities) in Figures 6 and 7. As an example of this procedure, we 
return to the example of the NASDAQ Insurance Index. Consider as a hypothetical 

example a situation where the Federal Reserve Board might wish to bolster a sagging 
value for this index. Clearly, that Board can influence the probabilities of changes in the 
prime lending rate and conceivably might be able to influence the probability of govem- 
mental agencies providing more funding for mass transit. Accordingly, we have changed 
the following three unconditional probabilities listed in Table 1 to obtain a new “opti- 
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Fig. 11. Histograms for expected changes (in percentage points) in the indices as a function of the 
scenario judged most likely and of the optimistic scenario. The latter are represented by bars filled 
with diagonal lines. 

mistic” scenario for the NASDAQ Insurance Index: the probability of an increase in the 
prime interest rate goes from 0.738 to 0.25; a decrease in the prime rate goes from 0.302 
to 0.60; and more funding for mass transit goes from 0.209 to 0.50. These three altered 
values plus the original values for the remaining 11 events constitute the probabilities 
whose corresponding vector is labeled SUCPl in Figures 6 and 7 and which is interpretable 
as an optimistic scenario. 

In either Figure 8 or 10, the effects of redefining probabilities of these events can 
be seen by simply adjusting the abscissae of the points representing these three events. 
To go a step further, eq. (27) can be used to estimate the predicted change for each of 
the 15 indices, using either the SUCP or the SUCPI values. (Either the INDSCAL or 
the INDCLUS solution could be used for this purpose; our illustration below uses the 
latter.) Following Sen (personal communication) and Bozzomo [2], we are using a his- 
togram to present the expected changes in the fifteen parameters, as a function of the 
two different scenarios. Note that, in Figure 11, the two indices deemed to drop the most 
in the scenario judged most likely (SUCP) were the Dow Jones Transportation Index 
(- 2.5%) and the NASDAQ Insurance Index ( - 1.3%). Under the optimistic scenario, 
the former index would now increase by 4.8% and the latter would drop by only 0.04%. 
All the other indices would increase as well. The complete absence of any tradeoff among 
indices suggests that additional indices (e.g., to gauge inflation, or other such economic 
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factors more remote from these rather narrowly defined stock market indices) not included 
in the present study would also have to be considered. (Otherwise, one assumes that the 
obviousness and simplicity of this strategy would have already caused it to be adopted.) 
Again, we would like to emphasize that the preceding illustration was hypothetical and 
was intended only to give a concrete example of how impact scaling can be used for 
managerial planning. 

In summary, we advocate the use of both the INDSCAL and INDCLUS models for 
representing the data required for impact scaling, since the models offer complementary 
ways of representing structure of the events. Another point we have not emphasized is 
that impact scaling can be used iteratively in attempting to reach greater convergence 
and consensus of the panelists’ views, or, alternatively, to explore the nature of and 
reasons for important systematic discrepancies and divergencies in these points of view. 
Limitations of time and expense prevented us from doing so, but with an intact group 
of panelists all employed within the same organization, these difficulties become less 
prohibitive. 

Future Prospects 
For improving the quality of group judgment (Einhom, Hogarth, and Klempner 

[ 181)) a number of strategies have been advanced for weighting subjective probability 
estimates from different panelists (e.g., Chemous’ko [ll], Freeling [22], Morris [31], 
and Shneiderman [43]). Similarly, Keeney [28, p. 8281 called for greater attention to 
individual differences among panelists. 

We noted earlier that both the INDSCAL and INDCLUS models are designed to 
depict such differences among panelists. In the discussion of Figure 4, we observed 
revealed differences among groups of the panelists in that INDSCAL solution. Although 
somewhat more difficult to present in this paper, a similar presentation could have been 
offered for the INDCLUS solution. In addition to the facility these models offer for 
depicting individual differences among panelists, it should be apparent that weights for 
panelists could easily be introduced in eqs. (15) and (16), defining the impact matrices. 
(The INDSCAL analysis equated the variances of each of the 58 impact matrices, but 
the INDCLUS analysis used no such standardization.) Such weights could implement 
any of various schemes for weighting panelists’ probability estimates, and represent a 
next step for developments in Impact Scaling. 

Yet another application of the INDCLUS model to the psychology of judgment and 
subjective probabilities concerns one of the better known and most elaborately formalized 
approaches to “vague probabilities” (i.e., probabilities as interval rather than point es- 
timates) given by Shafer’s [39, 401 approach to belief functions. A terse summary begins 
with the observation that empirical evidence rarely bears a one-to-one relation with a 
single event, but is instead associated with a set of X events. Then a panelist’s “belief 
function” for a given item of evidence becomes a function of the probability distribution 
over the power set of X. As Freeling [23, pp. 4.3-4.91 notes: “After the receipt of a 
given piece of evidence we model the entire belief structure, by assessing the basic 
probability assignment over every subset of X . . . [T]he basis of the theory is the prob- 
ability assignment nz, which is simply a distribution over [all] the solutions of X. In fact, 
m defines a random subset of X.” Given this framework, the next step is to assume a 
convenient distribution of probabilities over all subsets of X and proceed from there. 

Shafer’s [39, 401 approach is highly ingenious and possesses great formal elegance. 
However, formidable difficulties arise in trying to apply Shafer’s theory to real situations 
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(cf., Freeling [23, p. 4.121). We would like to suggest that INDCLUS offers a way to render 
Shafer’s approach applicable to date from empirical problems. Concretely, we being by 
noting that Shafer’s dependence on the set X (“evidence in support of 

,, 
) 

could be obtained from panelists. Then instead of looking at the power set of X, we need 

look only at the INDCLUS-supplied clusters involving X. That is, instead of looking at 
random subsets of X, we would look at rationally obtained subsets (clusters), based on 
panelists’ data. Shafer’s preoccupation with the power set of X is reasonable enough from 
the standpoint of formal elegance, but immediately isolates the theory from data-oriented 
tests. We propose to make the problem more tractable by considering only those subsets of 
X that are relevant to the subjects’ perceptions of evidence. INDCLUS, through the use of 
impact scaling, offers the vehicle for winnowing the power set ofX to a manageable size. 
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