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Recent improvements in imaging photoelectron spectroscopy enhance lateral and vertical characterization
of heterogeneous samples at the cost of increasing complexity in the XPS data sets acquired. These imaging
data sets require more sophisticated analysis methods than visual inspection if the data are to be interpreted
effectively. Multivariate analysis (MVA) methods are increasingly utilized in surface spectroscopies to aid
the analyst in interpreting the vast amount of information resulting from these multidimensional data set
acquisitions.

In this work, image processing analysis methods are tested on XPS data sets acquired from polymer
blends. Images from the blends, acquired as a function of composition, time or energy, provide
multidimensional data sets for algorithm evaluation. Multivariate image analysis (MIA) methods such as
scatter diagrams, principal component analysis (PCA) and classification methods are used to extract maps
of pure components from degradation and images-to-spectra data sets. In some cases the MVA results can
be compared directly with the XPS spectra or images, which provide a critical reference point. This work
will demonstrate that additional information can result from the application of MIA methods, even when

direct spectral or image interpretation is possible. Copyright © 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

Recent advances in XPS instrumentation enhance lateral
and vertical characterization of heterogeneous samples, at
the cost of increasing complexity in the data sets that are
acquired. Multidimensional data sets quickly follow the
development of imaging capabilities in an analytical tech-
nique. In an XPS images-to-spectra experiment, for example,
images are acquired as a function of binding energy. The
intensities from a single pixel or groups of pixels then can
be plotted as a function of energy, providing spectra from
smaller areas than is possible using more traditional spectro-
scopic acquisitions. The resulting multispectral imaging data
sets are a complex data structure that requires more sophisti-
cated analysis methods than visual inspection if the data are
to be interpreted effectively.! Appropriate methods for mul-
tispectral image analysis of complex imaging data sets have
been developed for Earth satellite image processing and are
directly applicable to surface microanalysis.>® Multivariate
analysis (MVA) methods increasingly are being utilized in
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surface spectroscopies to aid the analyst in interpreting the
vast amount of information resulting from multidimensional
data set acquisitions.

Although the application of MVA methods to surface
analysis data is increasing, there has been no systematic
comparison of the numerous approaches available for the
analysis of multidimensional data. This comparison has been
made in the areas of separation science and near-infrared
spectroscopy but the conclusions are not applicable directly
due to the differences in signal/noise and data structure.*~”
Multivariate analysis methods have been used in the analysis
of surface science data by several groups. The application of
scatter diagrams, as well as factor and principal component
analysis, has been illustrated for the surface analysis of semi-
conducting, catalytic and magnetic structures for MULSAM
instrumentation.%? Several groups have used classification
and scatter diagrams for time-of-flight secondary ion mass
spectrometry (ToF-SIMS) depth profile analysis.!*!! Some of
the applications of MVA methods to surface analysis data
have been limited to the use of software provided by the
instrument manufacturers. The software for MVA methods,
neural nets and other classification methods is now readily
available, however, and most instruments produce spectra
and images in a format that can be ported readily into inde-
pendent software. It has, thus, only recently become possible
to evaluate fully the application of MVA and classification
methods to surface analysis data.
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X-ray photoelectron spectroscopy data sets are gener-
ally less complex than the hyperspectral data sets that can
be obtained using ToF-SIMS or Fourier transform infrared
(FTIR), making them useful for an evaluation of MVA meth-
ods. In this work, we use XPS data from a heterogeneous
polymer blend in the evaluation of results from a variety
of MVA approaches. Multivariate methods are tested by
comparing the extracted information (number and iden-
tification of components) with the chemical information
obtained directly from the XPS data. Direct comparison
of the MVA results to the spectra or images provides a
critical reference point. A multispectral images-to-spectra
data set and images acquired from poly(vinyl chloride)
(PVC)/poly(methyl methacrylate) (PMMA) blends as a func-
tion of x-ray exposure time provide the multidimensional
data sets for algorithm evaluation. The PVC degrades upon
prolonged exposure to the x-ray beam through a dehydro-
halogenation process in which carbon-chlorine bonds are
replaced by double bonds, with a release of hydrogen chlo-
ride. The PVC degradation thus results in changes in peak
intensities and positions in both survey and high-resolution
spectra, affecting image appearance.!?-14

THEORY BEHIND MULTIVARIATE IMAGE
ANALYSIS

Multivariate analysis has been explained in a number of
sources.’>"? The data types and analysis methods used
in this comparison are briefly described below. All of the
methods discussed can be implemented using commercially
available software, as listed in the Experimental section.

Imaging data set types

The simplest imaging data type is a single image, resulting
from acquisition of a map of a specific elemental or chemical
state distribution. For multicomponent samples, several
images from the same area of a specimen frequently are
acquired. A static series, composed of several different
images or maps of different elemental or chemical states,
results in a bivariate data set. Multispectral data sets contain
a series of images acquired as a function of, for example,
the binding energy for XPS, the m/z for ToF-SIMS or the
wavelength for FTIR. Finally, multitemporal data sets consist
of a dynamic series in which the elemental or chemical
content is studied as a function of an external parameter,
which can be a space coordinate (depth profiling), time
(time-resolved imaging), temperature, etc.

Multivariate imaging analysis methods

Scatter diagrams

Elemental or chemical variations in images lead to pixel
populations in coherent clusters. To identify different
features in the image space, the frequency distribution
of these populations is determined. The histogram of
the digital image is a plot or graph of the frequency
of occurrence of each grey level (pixel intensity) in the
image. A scatter diagram, or two-dimensional histogram,
yields information about the intensity relationships between
two or more elemental or chemical maps, leading to the
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calculation of chemical phase maps.!>!¢ Scatter diagrams
can be used to display simultaneously the information in
bivariate data sets containing two elemental or chemical
maps. The scatter diagram results in groupings of points that
reflect different classes of pixels present in the two images.
This approach provides a rapid analysis of image content in
terms of correlation (points along the first diagonal) and anti-
correlation (clusters of points along the second diagonal). If
a cluster of representative points, or part of a cluster, in a
scatter diagram is selected, the group of points can be back-
projected to the regions of the image that contribute to the
cluster. After the back-projection, the spatial relationship of
pixels possessing a chemical similarity can be studied. This
method is sometimes called interactive correlation partitioning
(ICP). The basis of the scatter plot and ICP is illustrated in
Plate 1 for two simulated images.

Principal component analysis

It is difficult to evaluate more than three images with scatter
diagrams or ICP. Larger image data sets can be analyzed
using multivariate image analysis (MIA). The goal of MIA
methods is to extract significant information from an image
data set while reducing the dimensionality of the data.'”!®
Principal component analysis (PCA) divides information into
orthogonal components by transforming multivariate images
into a number of factorial (also called latent or principal
component or score) images that carry information related to
these orthogonal components. The first principal component
accounts for as much of the variability in the data as possible
and has the largest eigenvalue, A, associated with it, and each
succeeding component accounts for as much of the remaining
variability as possible. The primary components are those
corresponding to the largest r eigenvalues and represent
the set of r components that are required to reproduce
the original data within experimental error. The remaining
factors, each describing a low variance, represent the noise in
the data set. The idea behind PCA is presented in Fig. 1. The
objective is to identify images that are globally correlated or
anti-correlated. This information can be displayed as loadings
of the different maps, whereas the pixels that are responsible
for the correlations can be displayed as component images.
Component images may be easier to interpret than pure
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Figure 1. Introduction into the Image Principal Component
Analysis algorithm. A series of k images is decomposed via
PCA into r principal component images (score images) and
loadings associated with each principal component image. The
r components represent significant variation within the original
data set D, whereas (k — r) components represent noise in the
data and are included into error E.
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Plate 1. Scatter plot and interactive correlative partitioning: (a) two original images; (b) scatter plot; (c) back-projected areas from
the scatter plot to the original image. The scatter plot results in five clouds representing different parts of images in terms of their
correlation and anticorrelation. Five phases are back-projected to the original image.
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Plate 2. Photoelectron C 1s (a), O 1s (b) and Cl 2p (c) images acquired from the same area on the sample. The C 1s image is a
homogeneous, featureless image to which both polymers contribute. Bright areas in the O 1s image are enriched in PMMA, whereas
bright areas in the Cl 2p image are enriched in PVC. Note an anti-correlation between the O 1s and Cl 2p images, indicating phase
separation between polymers.
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Plate 3. The PCA results applied to the images-to-spectra data set: (a) scores and (b) loadings for first (i) and second (ii) components;
(c) scree plot and (d) ICP of first vs. second principal component images. The knee in a scree plot (c) shows a two-component system.
The scatter plot of principal component image 1 vs. principal component image 2 is divided into two parts: and back-projected to
region of the original image. The phase distribution resembles the Cl 2p image.
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Plate 4. The PCA results applied to the degradation data set: Plate 5. Spectral fitting classification of multispectral data set
scores and loadings for first and second components. using Spectral Angle Mapper (a) and Linear Unmixing (b)

algorithms. Two phases are shown.
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variable images. One of the most important uses of principal
components is in scatter plots of one principal component
image against another.

Classification
This is the process of assigning data to one of a fixed
number of possible classes.!'? The goal is to convert the
numerical image data into descriptive labels that categorize
different surface materials or conditions. Similarity between
pixels or groups of pixels is a fundamental concept behind
classification, because the same labels are assigned to areas
on the sample that have similar chemical or physical
characteristics. Phase maps—images that show the spatial
distribution of a particular phase or pixel category—are
obtained from classification methods.

Traditionally, thematic classification of an image involves
several steps, as shown in Fig. 2:

(1) Feature extraction is used to simplify the image series
by applying a spatial or spectral transform to a feature
image. Examples include selection of a subset of bands,
a PCA to reduce the data dimensionality or a spatial
smoothing filter. This step is optional.

(2) Extraction of training pixels is required to identify the
pixels to be used for training the classifier to recognize
certain categories of classes. In order to classify an image
into specific categories, the classification algorithm needs
to be trained to distinguish between those categories.
Representative category samples, known as prototypes,
exemplars or simply training samples, are used for this
purpose. The discriminant function built on the basis of
these training regions is used to assign a class label to
each pixel.

(3) Labeling applies the discriminant function to the entire
image and labels all pixels. The rules developed during
training are used to assign each pixel in the image to one
of the training categories. The output map consists of one
label for each pixel.

The training of a classification algorithm can be either super-
vised or unsupervised. In supervised classification, the training
samples are labeled by the analyst based upon external
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Figure 2. Introduction to the Image Classification algorithm.
For step descriptions, refer to the text.
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knowledge. In unsupervised classification, the training pix-
els are not labeled based upon predetermined phases but
are evaluated statistically to identify distinguishing intrinsic
data characteristics.

Supervised training. If the multivariate images contain suffi-
ciently distinct visual cues, it may be possible to find suitable
training areas by visual examination. Frequently, however,
one must resort to additional information to find representa-
tive areas for each class. The process of finding and verifying
training areas therefore can be rather labor intensive. With
supervised training, it is important that the training area be a
homogeneous sample of the respective class but at the same
time include the range of variability expected for the class.
Thus, more than one training area per class often is used.

After selecting the training regions for each class/group
in the sample, the location of the point that represents the
means for all variables in the multivariate space, called group
centroids, is determined. Interclass separability or similarity
between pixels is used to assign each pixel to a particu-
lar class. Measures of the separation of means include the
Euclidean, Mahalanobis and angular distances.!® The Maha-
lanobis distance measure is a multivariate generalization of
the Euclidean measure for normal distributions. For each
pixel the distances of the respective pixel from each of
the group centroids are computed. Linkages of groups are
then determined based upon the method used to determine
association between groups.

Unsupervised classification. This uses statistical techniques to
group n-dimensional data into their natural spectral classes
and does not require training or preconceived notions of
pixel classes. This method is based purely on grouping or
clustering the data. In defining image areas for unsupervised
training, the analyst does not need to be concerned with the
homogeneity of the sites. Heterogeneous sites can be chosen
deliberately to insure that all classes of interest, as well as
within-class variabilities, are included. It is possible also to
use the entire image in the clustering algorithm for a ‘wall-
to-wall” description. The assignment of identifying labels to
each cluster may be done by the analyst after training or
after classification of the image. For unsupervised training,
such as K-means or the Isodata clustering algorithm, the
analyst employs an algorithm that locates concentrations of
feature vectors within a heterogeneous sample of pixels.!®
These so-called clusters then are assumed to represent classes
in the image and are used to calculate class signatures.
However, they may or may not correspond to classes of
interest to the analyst. Supervised and unsupervised training
thus complement each other. In supervised classification,
the analyst imposes knowledge on the process to constrain
classes and their characteristics, whereas in unsupervised
classification an algorithm determines the inherent structure
of the data, unconstrained by external knowledge.

A critical question is how well do the class data signatures
in the image correspond to the class physical characteris-
tics that actually distinguish one category from another?
The spectral signature of a given surface material is not
characterized by a single spectral vector, but rather by a dis-
tribution of vectors. To a large extent the ability to perform an
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accurate classification of a given multivariate image is deter-
mined by the extent of overlap between class signatures.'
The notion of a thematic map presumes that every spot on
the material can be labeled as belonging to one, and only
one, category. Such discrete categorization is convenient and
appealing in its simplicity but is not a particularly accurate
portrayal of real surfaces and, in fact, is inconsistent with the
high-resolution numerical nature of hyperspectral data. Non-
parametric algorithms based on such discrete categorizations
(similarity-based) make no assumptions about the probabil-
ity distribution, whereas parametric classification algorithms
assume a particular statistical class distribution, commonly
the normal distributions. Non-parametric methods often are
considered robust because they may work well for a wide
variety of class distribution, as long as the class signatures
are reasonably distinct.

Artificial neural network (ANN) classification is a
recently popular non-parametric approach used for non-
linear classification.!> It differs significantly from other
methods, such as the Mahalanobis distance algorithm, in
that the decision boundaries are not fixed by a deterministic
rule applied to the prototype training signatures, but are
determined in an iterative fashion by minimizing an error
criterion on the labeling of the training data. In that sense,
ANNSs are similar to unsupervised clustering algorithms.
A neural network is a system composed of many simple
processing elements operating in parallel whose function is
determined by network structure, connection strengths and
the processing performed at computing elements or nodes.
The discrimination ability of an ANN is contained in its inter-
unit connection strengths or weights obtained by a process
of adaptation to, or learning from, a set of training patterns.
During training, they are iteratively adjusted towards a
configuration that allows the network to distinguish the
prototype patterns of interest. A back-propagation algorithm
minimizes the squared error over all patterns at the output
of the network.

Parametric algorithms rely on assumptions about the
form of the probability distribution for each class and
require estimates of the distribution parameter, such as
the mean vector and covariance matrix, for classification.
The most notable example is Maximum Likelihood, which
explicitly uses a probability model to determine the decision
boundaries.!®> The necessary parameters for the model
are estimated from training data. If a sufficiently large
number of representative training pixels are available in
each class, the class histograms can be calculated and used
as approximations to the continuous probability density
functions of an infinite data sample. To make a classification
decision for a pixel, it is necessary to know a posteriori
probabilities that the pixel belongs to each of the training
classes, given that the pixel has a feature vector. It is
intuitively satisfying to assign the pixel to a particular
class if its a posteriori probability is greater than that for
all other classes; this is the rule for the Maximum Likelihood
classifier.

Various spectral fitting algorithms also exist. In these
algorithms, external information is the basis for assigning
each pixel to a particular phase, utilizing idealized pure
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signatures for a class (end-member collection).’>? As a result
of noise and within-class signature variability, end-members
exist only as a conceptual convenience and as an idealization
in real images.

Mixed pixel classification is the process by which the
proportions of the pure components that are present in
the part of the image giving rise to the mixed pixel are
inferred.’ The process is otherwise known as ‘spectral
unmixing’. The basic assumption behind classification using
the Linear Spectral Unmixing algorithm is that the spectrum
of a mixed pixel has been created by the linear superposition
of the spectra of the pure components. The coefficients of
the linear superposition are equal to the fraction of the pixel
area covered by the corresponding pure components (Fig. 3).
Pixels represent a spatial average over some sampling area,
therefore it is inevitable that multiple spectral categories
will be included in some of them. An increase in spatial
resolution may reduce the percentage of mixed pixels,
but mixed pixels will still occur at the boundary between
objects regardless of spatial resolution. The class fraction
determines the location of the mixed-pixel vector in feature
space. The inversion problem, termed unmixing, is to
estimate the fractions of each class from a given pixel
vector.

The Spectral Angle Mapper is a physically-based spectral
classification that uses an n-dimensional angle to match
pixels to end-member spectra.”® The algorithm determines
the spectral similarity between two spectra by calculating
the angle between the spectra, treating them as vectors
in a space with dimensionality equal to the number of
bands. The spectral-angle distance is independent of the
magnitude of the spectral vectors and therefore is insensitive
to topographic variations.

The Spectral Angle Mapper and Linear Spectral Unmix-
ing classifiers should provide more reliable phase distribu-
tion than the supervised classification method, in which the
user may influence the outcome of classification by choos-
ing different training regions, thus in some cases ‘under’-
and in some cases ‘over-classifying’ the phases at the risk of
obtaining unreal phase distributions.

A single pixel in image
has three materials:
A,Band C

Material
A 0.50
BN 0.25
C# 0.25

fraction

Each endmember has v
a unique spectrum

A mixed spectrum is a
weighted average:
Mix=0.5*A+0.25%B+0.25*C

Figure 3. Introduction to Linear Spectral Mixing algorithm.
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EXPERIMENTAL

Sample preparation

(Poly(vinyl chloride) (PVC) of molecular weight 77.3 kDa
and poly(methyl methacrylate) (PMMA) of molecular weight
100 kDa were obtained from Scientific Polymer Products,
Inc. As-received materials were used in 2% w.v. solutions
of PVC and PMMA in HPLC-grade tetrahydrofuran (THF).
Solutions containing a 50:50 mixture of the two polymers
were allowed to sit for 24 h before deposition onto teflon
watch glasses using pipettes. The resulting films were air-
dried for 24-48 h. The films were peeled from the teflon
substrate before analysis by XPS. The PVC and PMMA
standards were prepared in a similar manner. The air-facing
side of the samples was analyzed by XPS.

X-ray photoelectron spectroscopy Instrumentation
The XPS spectra and images were acquired on a Kratos AXIS
Ultra photoelectron spectrometer using a monochromatic
Al Ka source operating at 300 W. The base pressure was
2 x 1071° Torr and the operating pressure was 2 x 10~° Torr.
Charge compensation was accomplished using low-energy
electrons. Standard operating conditions for good charge
compensation are —2.8V bias voltage, —1.0V filament
voltage and a filament current of 2.1 A.

Data acquisition
In order to evaluate different algorithms for MIA, three XPS
data sets were acquired from the same area on the sample.
Medium-magnification 350 x 350 um O 1s, Cl 2p and C 1s
images were acquired for 3 min each at a pass energy of
80 eV, producing a bivariate data set of size [256 x 256 x 3].
The images-to-spectra experiment acquires images as a
function of binding energy. Medium-magnification images
were acquired over the binding energy range of 289-279 eV
with a 0.2 eV step. This corresponds to a binding energy
range of 291-281 eV after charge correction. A pass energy
of 80eV and an acquisition time of 2min per image
were employed. This experiment creates a multispectral
data set, consisting of 50 images, of size [256 x 256 x 50].
In parallel with the images-to-spectra experiment, a C 1s
image at a binding energy of 283 eV (285eV after charge
correction) was acquired after each image in the images-to-
spectra acquisition. This binding energy corresponds to the
peak maximum in the high-resolution C 1s spectrum. This
multitemporal degradation image data set is the same size
as the multispectral set, using standard conditions of 80 eV
pass energy and 2 min acquisition times.

Programs used

All image data files were transferred from the KRATOS
format to a format supported by MATLAB* and ENVI?,
which is ASCII and a generalized raster data format
consisting of a simple ‘flat binary file’ and a small associated
ASCII (text) header file, respectively.

Image analysis was performed using both MATLAB and
ENVI. Image processing methods, including scatter diagrams
and multivariate image analysis, utilized ENVI. The image
PCA routine in the PLS_Toolbox* in MATLAB is used to
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extract spectral or intensity profiles/loadings from images-
to-spectra and degradation data, respectively.

Procedure applied

The CI 2p, O 1s and C 1s photoelectron images are used as
references for the evaluation of algorithm performance. The
evaluation of the image processing and analysis methods
involves several steps. Initially, the Cl 2p, O 1s and C
1s reference images are analyzed using two-dimensional
scatter diagrams of different pairs of images in order to
find correlations between the images and to identify unique
pixels and phases present in the blend.

The MIA methods are tested using the multispectral
and multitemporal data sets. The goal is to resolve compo-
nents, component maps, spectral and intensity profiles and
to compare these with chemical XPS images and spectra for
identification. First, the number of components present in the
data set is determined and component images are extracted
in the ENVI PCA routine; then, the corresponding spectral
and intensity profiles are resolved in the imagepca routine
in PLS_Toolbox. The resulting principal component images
(scores) and corresponding spectral/intensity profiles (load-
ings) then are evaluated further. Principal component maps
are analyzed individually using scatter plots. Unique corre-
lated and/or anti-correlated clusters in the scatter diagrams
can be back-projected to chemical images to identify areas of
interest.

Different classification algorithms then are applied to
classify chemical phases in the images-to-spectra and
degradation data sets. For supervised classification, different
training regions are selected and used for evaluation
of the performance of two non-parametric algorithms
(Mahalanobis Distance and Neural Net) and one parametric
algorithm (Maximum Likelihood). An unsupervised K-
means classifier using different numbers of classes is applied
to the identification of phases in the images without external
constraints. High-resolution C 1s spectra of PYC and PMMA
are used as reference spectra in the Spectral Angle Mapper
and Linear Spectral Unmixing classification methods. The
classification produces an approximation to the original
image, which allows for evaluation of the classifier on the
basis of the accuracy of this approximation. We will use this
approach to compare classification results with the original
chemical images.

RESULTS AND DISCUSSION

The PVC/PMMA system

Background information

In order to be able to compare information extracted by
MIA methods with the knowledge about the PVC/PMMA
system, the degradation of PVC under x-ray exposure and
the morphology of PVC/PMMA blend should be well
understood. Polymer blends containing PVC have been
studied extensively by XPS?*~34 as a result of both theoretical
and practical interests. A variety of methods have been used
to characterize blends containing PVC and PMMA, leading to
inconsistencies and conflicting conclusions regarding surface
structure.?*?¢-28 The inconsistencies are the consequence of
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different sampling areas utilized in the various studies,
because the level of heterogeneity detected depends upon
the analysis area of the characterization technique and the
number of areas/film analyzed.

The PVC/PMMA films prepared from THF solutions
show heterogenous features that are evident from visual
inspection in some cases. Surface analysis of the blends using
current XPS instruments with small sampling areas and ToF-
SIMS imaging of such films demonstrated heterogeneous
surface composition with an enrichment of PMMA at the
surface.®>?3! Extensive analysis of this polymer blend by
a combination of spectroscopy and imaging in our group
shows a phase separation of the two polymers on the air side
of the films, whereas the substrate side is more homogeneous
and mainly contains PVC.3!-34 Scanning electron microscopy
analysis revealed bulk phase separation extending to the
outermost 1 um.?® A comparison of XPS linescans with SEM
micrographs of the film suggested either a thin film of PMMA
on top of the PVC or smaller PVC domains contained within
large PMMA domains.®*® Results obtained by Briggs et al.
from ToF-SIMS studies also suggested the presence of a thin
overlayer of PMMA.?

Halogenated compounds, particularly chlorinated ones,
are especially sensitive to x-ray exposure, resulting in a
decrease in the halogen peak intensity and an increase
in the C 1s peak intensity in photoelectron spectra.!>-14
The degradation process probably involves a series of free-
radical reactions initiated by both x-ray impact-induced and
thermal bond cleavage accompanied by HCI release. The
labile chlorine, when cleaved, attacks the methylene protons
leading to dehydrochlorination by a free radical mechanism,
followed by the formation of conjugated double bonds.*

It has been shown that the dehydrochlorination rates of
PVC in complex multicomponent polymer samples depend
on the method of blending, the solvent used and the affinity
of the polymers.*% The PVC/PMMA polymer blend system
phase separates with the formation of two phases: one
enriched in PVC and the second enriched in PMMA, although
both PMMA and PVC are present in each phase. The rate of
degradation of PVC, thus, potentially will be affected by the
presence of PMMA.

This extensive prior characterization makes the data a
suitable test case for the evaluation of MIA methods.

Original data sets

The CI 2p, O 1s and C 1s images acquired from the same
area on the sample are shown in Plate 2. The Cl 2p image, in
which bright areas are enriched in PVC, shows the highest
contrast, and contains a large circular feature in the center
of the image. The O 1s image, in which the bright areas are
enriched in PMMA, has lower contrast but still shows a good
anti-correlation with the Cl 2p image. The C 1s image, to
which both polymers contribute approximately equally, is
the most featureless and the spatial distribution of phases is
not clear.

Selected images from the multispectral and multitempo-
ral data sets are shown in Fig. 4(a) and 4(b), respectively.
The images-to-spectra data set consists of images acquired
over the energy range of 291-281 eV in 0.2 eV steps, whereas
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Figure 4. (a) Multispectral data from the images-to-spectra
experiment. Note that images at different binding energies
possess different spatial information. (b) Multitemporal C 1s
data from degradation experiment. Note that all images within
the data set are featureless.

the degradation data set consists of 50 images acquired
at the same binding energy (285 eV). In the multispectral
image data set, images are acquired over the binding energy
range corresponding to the high-resolution C 1s spectrum.
The high-resolution C 1s spectrum is a convolution of over-
lapping peaks from PVC and PMMA. Representative C 1s
degradation spectra for the pure polymers are shown in
Fig. 5. The PMMA has a distinct peak where there is no
signal from PVC around 289 eV due to the O-C=0O bond,
whereas PVC has a distinct peak at 287 eV that is the C-Cl
component of PVC. This separation of chemical features
within the C 1s binding energy range means that images
at some energies in the images-to-spectra experiment will
have a dominant contribution from one of the polymers
and therefore will possess spatial information related to the
distribution of this polymer. Indeed, some of the images in
Fig. 4(a) show a feature similar to that in the Cl 2p image,
which is representative of PVC. The images-to-spectra data
set is thus used for the initial evaluation of the performance
of MIA methods.

The multitemporal data set consists of a series of images
acquired at the constant binding energy of 285 eV, at which
both polymers contribute equally, resulting in a featureless
image with no spatial structure [Fig.4(b)]. This data set
thus provides a more difficult analysis problem than the
multispectral data set.

Bivariate image analysis

Scatter plots for C 1s vs. O 1s, C 1s vs. Cl 2p and Cl 2p
vs. O 1s images are shown in Fig. 6(i). The first scatter
plot has a cluster of points concentrated along the first
diagonal, indicating a high degree of correlation between
the C 1s and O 1s images (Plate 2). Indeed, the C 1s and
O 1s images are different only in the central portion of the
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Figure 5. High-resolution C 1s spectra from pure PMMA (a)
and pure PVC (b). These spectra are used as a reference for
Spectral Fitting Classification algorithm.

ClsvsOls Cl1svsCl2p Cl2pvsOls

() .

c)

Figure 6. Bivariate analysis. (i) scatter plot of photoelectron
images, (ii) scatter plot divided into two regions by first
diagonal and (jii) back-projected regions to original image for
(@ C1svs. 0 1s,(b) C1svs. Cl2p and (c) Cl 2p vs. O 1s.

images, corresponding to the bright PVC-enriched feature
in the Cl 2p image. The scatter plot for C 1s vs. Cl 2p
images is more disperse, indicating less correlation between
these images. Thus, the PMMA distribution (O 1s image)
has a higher correlation with the blend distribution C 1s
image) than the PVC distribution (Cl 2p image) does. In
other words, within the C 1s image of the blend there
are areas where there is essentially no PVC, whereas most
areas in the image have a contribution from PMMA. This
points towards the existence of a PMMA overlayer, as was
concluded previously by different groups, including ours,
using multiple techniques.”?=% The third scatter plot of
Cl 2p vs. O 1s also shows a significant spread in the data
without any particular trend.

To understand better the phase distribution, ICP can be
utilized. Initially, all of the scatter plots are divided into two
parts by the first diagonal, as shown in Fig. 6(ii). The parts

Copyright © 2002 John Wiley & Sons, Ltd.
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of the image contributing to specific areas in the scatter plots
are determined by back-projecting these two parts of the
cluster to the original image. In this example, two phases
are distinguished: one corresponding to the bright circular
feature in the CI 2p image and a second corresponding to
the bright area on the O 1s image [Fig. 6(iii)]. There is no
distinct interface between the two phases obtained from the
first scatter plot C 1s vs. O 1s in Fig. 6(iii-a). This is probably
because the O 1s signal from PMMA and the C 1s signal from
both polymers are highly correlated as a result of the PMMA
overlayer. The other two scatter plots produce high contrast
phase maps, resembling the Cl 2p image overlaid with the O
1s image.

The ICP is an interactive process in which the user decides
how to divide the scatter diagram into parts. A different
example is shown in Fig. 7(i). In this case, the Cl 2p vs. O 1s
scatter plot is divided into three parts by two lines parallel
to the first diagonal (the direction of highest correlation).
This division results in three back-projected phases. The
region of highest correlation between the two images is
concentrated along the first diagonal (darkest part on the
scatter diagram), corresponding to the intermediate region
between two other phases. This region can be identified as
a 50:50 blend, because O (PMMA) and Cl (PVC) contribute
equally to the intensity in this region. The cluster to the right
of the central region on the scatter diagram corresponds
to the part of the image in which the signal from O 1s is
low, whereas the signal from Cl 2p is high. This region
thus represents a PVC-enriched area, similar to the circular
region on the Cl 2p image. The cluster to the left of the central
diagonals represents the region enriched in PMMA. External
knowledge of the sample structure, available directly from
the XPS images, was obviously helpful in the attribution of
a particular part of the scatter diagram to a specific phase. It
is worth noting that although the ICP method is a somewhat
subjective procedure, variation in the method of dividing the
scatter diagram into three parts caused only minor changes
in the intermediate region between the two phases, while the
overall spatial structure was not affected [Fig. 7(b)].

(i)

a)

Figure 7. Bivariate analysis: (a) and (b) represent two different
divisions of the scatter plot of Cl 2p and O 1s images (i) and
back-projected regions to the original image (ii). Although the
distribution of phases is slightly changed, the overall spatial
structure is the same from both divisions.
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Multivariate image analysis

Applying PCA to the multispectral images-to-spectra data
set results in component maps (scores) and corresponding
spectral profiles (loadings), as shown in Plates 3(a) and 3(b).
Two principal components are determined to be present in
the system. This conclusion is based upon the location of
the knee in the scree plot [Plate 3(c)], which is a plot of total
variance captured by the eigenvalues versus the number of
the eigenvalue.

It is possible to identify components based on the visual
inspection of principal component images. For this purpose
we use elemental C 1s, O 1s and Cl 2p photoelectron images
(Plate 2) as the reference for comparison. The principal
component map of the first component is similar to the C 1s
image acquired at 285 eV [Plate 2(a)], in which peaks from
both polymers overlap. There is also a pronounced feature
in the map of the first component that is similar to the PVC-
enriched area in the center of the C12p image [Plate 2(c)]. This
images-to-spectra experiment takes ~12 h to acquire. During
this time PVC degrades through a dehydrochlorination
mechanism. The product of PVC degradation—hydrocarbon
(HC)—will contribute to the intensity and photopeak shape
of the C 1s peak. In C 1s images, therefore, the HC
contribution will be most pronounced in the areas enriched
with PVC, which is the bright circular feature in the CI
2p image. Based on this comparison, the first extracted
component can be identified as resulting from the 50:50
blend after pronounced PVC degradation. The map of the
second extracted component is similar to the O 1s image
[Plate 2(b)] or an inverse of the C1 2p image. Identification of
this component based only on principal component image
appearance is not possible.

A scatter diagram for the two principal component
images is shown in Plate 3(d). Interactive correlative par-
titioning by division of the scatter diagram into two clusters,
followed by back-projection to the original image, results in
a more readily interpretable image. Plate 3(d) shows the spa-
tial distribution of two phases present in the blend, one phase
enriched in PVC and a second phase enriched in PMMA.

The spectral profiles (loadings) extracted by PCA
[Plate 3(b)] allow for the identification of both components
based upon a comparison of component shapes to the high-
resolution C 1s spectra of the pure polymers as shown in
Fig. 5. The shape of the first extracted loading is similar to
the C 1s spectrum of the blend with a high HC content from
degradation. This result is in good agreement with the identi-
fication of the first component from the principal component
image inspection. The loading of the second component is
negative with respect to the baseline peaks, and a chemi-
cal identification is not justified. Mathematically, however,
two peaks are observed in the second spectral profile at
~284 eV and ~288.5 eV, which can be attributed to HC as
a product of PVC degradation and O-C=0 from PMMA,
respectively. The contribution from PMMA to the second
loading may explain the similarity of the second compo-
nent image to the O 1s image. An unexpected correlation
between a product of PVC dehydrochlorination (HC) and
the O 1s signal from PMMA is thus observed. The authors
initially expected that a component representative only of
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the HC would be extracted by PCA, because the degradation
product concentration increases with x-ray exposure time.

Visual analysis of the C 1s degradation data set [Fig. 4(b)]
shows very few features in the image series. Plate 4 shows the
two components determined by PCA. The extracted maps are
very similar to those extracted from the images-to-spectra set
[Plate 3(a)]; the only significant difference is the decreased
contrast in the map of the second component extracted
from the degradation data set. It is possible, based on the
PCA analysis, to elucidate the existence of phase-separated
regions from the set of images acquired at a constant binding
energy without any additional information or experiments.
The loadings show component contribution as a function
of time. The decrease of the first component with time
correlates with the polymer blend degradation, confirming
the identification of the first component as a degraded
50:50 blend. The increase of the second component confirms
identification of the second component as a degradation
product, because the signal from HC increases with time.

Although the PVC/PMMA blend was chosen as a well-
studied and understood system, the PCA applied to the XPS
image series indicates that the degradation behavior of PVC
within the blend is more complex than was expected. The
product of PVC degradation within a blend is HC correlated
with oxygen-containing moieties of PMMA. Confirmation
of this result was obtained by MVA of degradation spectral
data; a more detailed discussion of the PVC/PMMA blend
degradation is presented elsewhere. 3% It is apparent that
without application of MVA to the spectra and images, some
aspects of the degradation behavior of PVC in the polymer
blend would be readily overlooked.

Classification

Different classification algorithms are applied to both the
degradation and images-to-spectra data sets. It is most
appealing to obtain phase information from the C 1s degra-
dation set [Fig. 4(b)] because this series of featureless images
does not contain any spatial information, contrary to the
images in the images-to-spectra experiment [Fig. 4(a)] that
possess significant spatial distribution information. Super-
vised and unsupervised classification methods were tested
using the multispectral (images-to-spectra) and multitempo-
ral (degradation) data sets.

For supervised classification, two regions—representing
phases enriched in PVC and in PMMA —were defined for
the multispectral and multitemporal data sets. As discussed
previously, in order to find the area best representing each
class, multiple areas per class should be selected. Several
rectangular areas were chosen from bright and dark areas on
the second principal component image to represent the two
classes or phases [Fig. 8(a)].

In Figs 8(b)—(d) the first two images are phase maps,
which show the distribution of pixels assigned to each
of the two specified classes. The third image in each set
is a composition map, which is an overlay of the two
phase maps. The phase and composition maps extracted
from the multispectral data set by Mahalanobis Distance,
Maximum Likelihood and Neural Net algorithms are shown.
All three algorithms utilized the training regions marked in
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Figure 8. Supervised classification applied to multispectral
data set. (a) Training regions selected. Maps of two phases and
compositional maps are shown for Mahalanobis Distance (b),
Maximum Likelihood (c) and Neural Net (d) algorithms.

Fig. 8(a) and provide compositional maps from which the
spatial structure of the polymer blend can be discerned. The
Mahalanobis Distance and Neural Net methods gave almost
identical results, classifying two phases that are inverses.
Phase image 1 is similar in both size and shape to the Cl 2p
image and can be identified as a PVC-enriched phase. The
second phase, however, cannot be identified as a PMMA-
enriched phase in the blend because it is not entirely similar
to the O 1s image. In the PVC/PMMA system, the polymers
form phases enriched in PVC or PMMA rather than the
pure components. The discrete categorization of each pixel
that results from non-parametric classification is thus an
approximation of the real surfaces, in which overlap between
the two phases is present.

The Maximum Likelihood algorithm is a parametric
algorithm. It results in a compositional map with less contrast
than those generated from the non-parametric algorithms.
As shown in Fig 8(c), the first phase image is similar to the
Cl 2p image, although the central feature has less distinct
edges. The PVC-enriched area thus occupies a larger portion
of the image field than in the Cl 2p image (Plate 2). The
second phase is a more homogeneous, featureless image that
is similar to the C 1s image.

The performance of all supervised classification methods
depends very strongly on the training regions selected.

Copyright © 2002 John Wiley & Sons, Ltd.
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Slight deviations from the selected regions cause poor
classification. To achieve successful classification, the user
must find the training set that best represents the phases.
Figure 9 has results from a Mahalanobis classification using
three different sets of training regions. The first set is the
one used for classification in Fig.8, the second set is a
different selection of multiple rectangular areas representing
PMMA and PVC-enriched phases and the third set consists
of two areas obtained by back-projecting the areas of
highest correlation between the first and second principal
components on the scatter plot (Fig. 9 insert) to the original
image. The second set of training regions gives results
[Fig. 9(b)] similar to the first [Fig. 9(a)], whereas the third
training region results in poor classification [Fig. 9(c)]. If
there is considerable within-class variability, the selection
of training sites can be laborious and it is impossible to be
entirely certain that a comprehensive set of training samples
for each class has been specified. For many data sets it is
impossible to obtain homogeneous training sites.

Composition maps extracted from the multitemporal
degradation data set by the same three algorithms (Fig. 10) do
not show the same distinct phases as those developed from
the images-to-spectra experiment. The Maximum Likelihood
and Mahalanobis Distance algorithms perform similarly in
this example. The composition map is similar to the last
C 1s image in the degradation data set, where the feature
resembling the CI 2p image is most obvious. Applying the
Neural Net algorithm to the degradation data set fails to
identifying spatial phase distributions, which may be due to
the fact that it did not reach a global minimum.

a) b) c)

Figure 9. Influence of training regions selected on
Mahalanobis Distance classification performance. Three sets
of regions are compared: (a) set of multiple rectangular areas
(used in Fig. 8); (b) different selection of rectangular areas;

(c) two regions back-projected from areas of highest density in
the scatter plot of PC1 vs. PC2 (insert). Middle row, training
regions, lower row, compositional map classified. The results
show that supervised classification is sensitive to training
region selection.

Surf. Interface Anal. 2002; 33: 185-195

193



194

K. Artyushkova and J. E. Fulghum

Mahalanobis

Figure 10. Supervised classification applied to multitemporal
data set. Maps of two phases and compositional maps are
shown for Mahalanobis Distance (a), Maximum Likelihood (b)
and Neural Net (c) algorithms.

Both image data sets were analyzed also using unsu-
pervised classification algorithms. For the unsupervised
K-means classifier, two and three classes were selected to
be identified in the data sets using the default param-
eters of the algorithm. Phase maps extracted from both
data sets, using two- and three-phase classification, are
shown in Fig.11. The phase maps are virtually identi-
cal, with slightly sharper interfaces between phases for
the images-to-spectra data set. This algorithm does not
result in composition maps that can be compared with
the chemical images. At best, part of the circular feature
observed in the Cl 2p image is recovered using a three-phase
classification.

®

(i)

a)

Figure 11. Unsupervised K-means classification of (i)
multispectral and (ii) multitemporal data sets using two (a) and
three (b) classes.

Copyright © 2002 John Wiley & Sons, Ltd.

Spectral-fitting algorithms also can be used to classify
the images in the images-to-spectra data set. The Spectral
Angle Mapper and Linear Spectra Unmixing algorithms
classify pixels in the multispectral data set using reference
spectra of pure PVC and PMMA (Fig.5). The Spectral
Angle Mapper classifier compares the spectral profiles
of pure components—provided by the user—with the
spectrum for each pixel. The pixel then is assigned to
one or another class based on the best match. A Spectral
Angle Mapper classification using the PVC spectrum as
the reference spectrum resolves an image resembling the
inverse of the Cl 2p image, whereas using PMMA as the
reference results in a homogeneous image with no contrast
[Plate 5(a)]. Application of the Linear Spectral Unmixing
classifier using the same two reference spectra results in two
phases: one resembles the Cl 2p image and the second
is similar to the C 1s image. From this classification it
can be concluded that the first phase corresponds to PVC
degradation within the blend, whereas the second phase
represents the blend [Plate 5(b)]. Results obtained from both
spectral and multivariate image analysis thus result in the
same two components.3* Spectral fitting methods show
obvious advantages over the supervised or unsupervised
algorithm because they use external chemical knowledge
about the system in study and results are less dependent on
user interaction with the algorithm. Unfortunately spectral
signatures of pure compounds may not always be available.

CONCLUSIONS

In this study, the goal was the evaluation of different MIA
algorithms that can be applied to XPS imaging data sets in
order to discover and identify the number of species existing
in a multicomponent system and to extract morphological
information. The performance of multivariate methods was
tested by comparing the extracted information with the
chemical information from the PVC/PMMA polymer blend.

Scatter diagrams provide a rapid analysis of the image
content in terms of correlation and anti-correlation. Interac-
tive correlation partitioning allows for a rapid determination
of the spatial relation of pixels possessing a chemical simi-
larity to be studied, thus identifying phases.

Principal component analysis applied to the multispectral
data set allows for the identification of both components
based upon the principal component image and loading
shape: the first component is the blend after degradation
and the second component is a degradation product (HC
correlated with the O—-C=0 part of PMMA). It is possible,
based on the PCA analysis of the multitemporal image data,
to elucidate the existence of phase-separated regions without
any additional information or experiments.

Supervised classification methods work well for classifi-
cation of the two phases in the images-to-spectra data set.
The two phases classified by non-parametric methods are
inverses, as a result of the discrete categorization of each
pixel into one of the classes. In the case of the polymer
blend system, though, the polymers separate into phases
enriched with one or another component and not into the
pure polymer phases. The Maximum Likelihood algorithm,
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which relies on assumptions about the form of the probabil-
ity distribution for each class, results in a more chemically
reasonable solution than non-parametric algorithms.

Composition maps extracted from the multitemporal
degradation data set by the same three algorithms are not as
well-defined as those developed from the images-to-spectra
experiment. The Neural Net applied to the degradation data
set fails in identifying spatial phase distributions, which
is probably due to the fact that it did not reach a global
minimum.

The sensitivity and subjectivity of supervised methods to
training region selection are demonstrated. Slight deviations
from the selected regions cause poor classification. To achieve
successful classification, the user must find the training set
that best represents the phases and variations in values.

Unsupervised classification does a poorer job in classi-
fying phases for both data sets. Only the part of the central
circular feature responsible for the enriched PVC area in the
blend image is identified, and the total spatial representation
of phases within the image is not clear.

The spectral fitting methods show obvious advantages
over the supervised and unsupervised algorithm, because
they use real external chemical knowledge about the
system and are less dependent on user interaction with the
algorithm. Correlating these results to those obtained from
PCA, where one component is from the blend and another is
a product of degradation, phases resembling the blend and
product of PVC degradation (which is an HC correlating
with the oxygen signal from PMMA) are identified.

The PVC/PMMA blend was initially chosen as a test
system for the evaluation of various algorithms because
the authors considered it to be a well-studied system.
Multivariate image analysis techniques applied to the XPS
images indicate that the degradation behavior of PVC within
the blend is more complex than was expected. This study
thus also demonstrates that the appropriate application of
surface chemometrics can extract ‘hidden” information from
complex data.
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