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Abstract

Three different calibration approaches: Partial Least Squares, Unfold Partial Least Squares andn-way Partial Least
Squares are compared in terms of explained variance, root mean square error of calibration and root mean square error
of cross-validation. Attention is also focused on the application of genetic algorithms to spectral data as a way to obtain
an improvement in calibration accuracy. Influence of initial starting conditions for the genetic algorithms (population size,
mutation probability, % initial terms etc.) was investigated by means of factorial experimental designs. A simple flow injection
manifold coupled to a diode array spectrophotometer and multivariate calibration were employed in order to determine Ni,
Cd, Pb, Cu, Zn and Mn. Calibration was not successful for the three first elements. Rapid determination of the microamounts
of Cu, Zn and Mn was performed in the presence of concomitant ions with a sample throughput of 180 samples h−1. Since
three metals were simultaneously determined, this corresponds to 540 determinations h−1. The effect of different matrix
interferences (Fe, Al, Ca, Mg, Cr, Sr, Co) was studied in natural and synthetic water samples. Chemical masking with NaF
was assayed for the interferent ions Fe and Al. The typical recoveries ranged from 91 to 94% with typical relative standard
deviation between 5 and 10 %. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The determination of heavy metals in water samples
is one of the most important issues in environmental
monitoring considering the characteristics of bioavail-
ability, persistency and toxicity of these metals even
at very low concentrations.

Several analytical techniques are employed for this
purpose — i.e. atomic absorption spectrometry (AAS),
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inductively coupled plasma coupled to atomic emis-
sion spectrometry (ICP-AES) or mass spectrometry
(ICP-MS), etc. These techniques are sensitive and se-
lective enough for determination but require expensive
equipment.

Chemical complexation followed by UV-visible
spectrophotometry could be a cheap solution except
for the big loss in selectivity. Nevertheless, as En-
gström and Karlberg have quoted [1]: “if multivariate
calibration methods are applied, those complexes
formed with a non-selective complexing agent that
only differ slightly from metal to metal with respect
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to their spectral characteristics may be used for iden-
tification and quantification of individual metal ions.”

Multivariate calibration provides a great advantage
keeping the pre-treatment of samples to a minimum
and reducing, by the employment of high-speed com-
puters, the time spent in collecting data [2,3].

Several regression methods can be adopted being
Principal Component Regression (PCR) and Partial
Least Squares Regression (PLS), the most widespread
[4,5]. Both of them involve spectral decomposition
into latent variables (LV). PCR is based only on spec-
tral decomposition and PLS is based on spectral and
concentration matrix decomposition. PLS seems to be
a better choice for prediction when there are random
linear baselines or, major spectral components (inde-
pendently varying) which overlap with the spectral
features of the analytes [6].

Several authors have described the application of
multivariate calibration to UV-Vis spectrophotometry
in batch systems [1,5,7–11] using PLS or PCR as al-
gorithm for calibration. However, not much work has
been done in real samples and, mostly, synthetic ones
have been chosen. Thus, the system performance is
observed in a quasi-ideal situation. Only one working
group has dealt with PLS-PDA determination of trace
metals in both real and synthetic problems [1,11].
Moreover, the enhancement in sample throughput
obtained by the use of a simultaneous calibration is
not fully exploited in batch procedures as manual
pre-treatment of the sample limits the velocity of the
whole process.

The combination between a multivariate calibration
method and flow injection (FI) offers more precision
with the subsequent decrease in the root mean square
error of calibration (RMSEC) and cross-validation
(RMSECV). A more rapid screening system is also
obtained since the tedious batch procedure is replaced
by ‘on-line’ operation.

Several papers have been published on the simulta-
neous FI determinations of metal ions using multivari-
ate calibration and spectral data. Both, major sample
components as Ca and Mg [12–14], and minor com-
ponents (transition metals) [15–18] have been deter-
mined. However, these papers involve only binary or
ternary mixtures which is not the usual situation in real
problems. In these cases more ions are expected to be
present, so, it is necessary to develop calibration mod-
els for samples involving more than three analytes.

As FIA is a source of dynamic and kinetic infor-
mation [19], this kinetic information can be employed
for regression. A possible approach is to unfold each
signal matrix (spectra vs. time) into a single vector
(‘unfolding methods’). If this operation is repeated for
all the standards, a signal matrix is constructed where
each row contains the spectra collected for each stan-
dard. After this matrix is built, PLS is performed. A
typical signal is shown in Fig. 1.

Another calibration approach suitable for three-way
data — as obtained with FI-PDA — could be multiway
partial least squares. Since in some cases, multiway
methods seem to be more robust and interpretable than
unfolding methods [20,21],N-way partial least squares
(N-PLS) [20] was assayed in this work. The potential-
ities of Unfolding and Multi-Way calibration methods
on FI-PDA data haven’t been compared with tradi-
tional simultaneous determinations before this study.

If the complete spectrum is used for calibration,
wavelengths that may introduce unnecessary informa-
tion such as noise or non-linearities are processed to-
gether with the useful ones. The use of certain wave-
lengths with better selectivity for prediction can im-
prove results in comparison with the full spectrum
methodology [22–24]. Genetic Algorithms (GA) have
been used as a powerful tool for wavelength selection
and optimization of a given response function [25,26].

In this work, a rapid screening method (180 sam-
ples h−1) for the detection of trace levels of Cu, Zn and
Mn in the presence of other ions occurring in natural
waters is presented. PLS, UNFOLD-PLS and N-PLS
are assayed on the datasets. Wavelength selection with
GA is also investigated. Figures of merit for the dif-
ferent approaches are compared.

2. Experimental

2.1. Reagents and standards

Metal ion standards were prepared from AAS
1.000 g l−1 stock solutions (Merck, Darmstadt, Ger-
many). Doubly de-ionized water (DIW, 18 M� cm)
was obtained from a Milli-Q water system (Millipore,
Bedford, MA, USA).

A 10−3 M solution of the colorimetric reagent
(PAR, (4-(2-pyridylazo) resorcinol), (Merck) in bo-
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Fig. 1. Typical signal obtained from a FI-PDA system.

rate buffer (0.1 M, pH = 9.2 as recommended [27])
was prepared monthly and stored at 4◦C. Solutions
kept at 4◦C in the dark during 2 months showed a
3% decrease in absorbance at 406 nm (maximum ab-
sorption of the reagent). NaF 0.1 M was added to the
PAR solution as a masking agent for Fe and Al (see
Interference Study).

Samples were filtered through a 0.22mm membrane
(Millipore) and kept in clean Nalgene flasks (Nalge,
Rochester, NY, USA) until analysed.

2.2. Apparatus and flow Injection manifold

The flow injection manifold used is depicted in Fig.
2. An Ismatec 8-roller, 12-channel pump was used
(Glattbrugg, Germany). The volume of the injected

sample was 120ml and the reactor coil was 27 cm
long and 0.5 mm i.d. (53ml). A 6-port Cheminert®

Valco valve (Valco Instruments, Houston, TX, USA)
was employed to inject the sample into the DIW

Fig. 2. Schematic flow system. Flow rates are detailed under
experimental conditions.
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carrier stream. The valve was equipped with an elec-
tric actuator triggered simultaneously with the de-
tector. The manifold was assembled with zero dead
volume Cheminert® fittings (Valco). All the manifold
tubing was made of PTFE (0.5 mm i.d.).

The sample, PAR and carrier flow rates were 0.24,
0.15 and 5.2 ml min−1, respectively.

The detector was a Hewlett-Packard HP 8452A
Diode Array Spectrometer connected to an AT486
PC-compatible computer via an HPIB protocol
(Hewlett-Packard, Palo Alto, CA, USA). Data were
acquired between 400 and 600 nm (201 absorbance
values) for a 10 s. period, sampling each 0.5 s. (0.2 s
integration). The spectrophotometer was furnished
with a 80ml, 1 cm optical path flow cell (Hellma,
Mülheim/Baden, Germany).

Metal ion concentration in river water samples was
validated by flame (Cu, Zn, Mn and Ni) and graphite
furnace (Cd, Pb) atomic absorption spectrometry in
a Shimadzu 6701 atomic absorption spectrometer
equipped with a graphite furnace Shimadzu GFA
6000 and an autosampler Shimadzu ASC 6000.

2.3. Software and data processing

Data acquired with the HP 8452A was transferred
to a different computer for processing via a Local
Area Network (LAN). A 166 MHz Pentium®-based
PC with 32 MB RAM operating under Windows 95TM

was employed. Multivariate regression and data pro-
cessing were carried out with the PLSToolbox version
1.5 (Eigenvector Research, Manson, WA, USA). Ex-
perimental designs were constructed with Statgraph-
ics 7.0. The ASCII data produced by the HP 8452A
(*.wav format) was edited with Excel 7.0 to erase
headers and make the conversion to *.dat format. The
N-PLS algorithm was obtained from the World Wide
Web: http:\\newton.foodsci.kvl.dk\foodtech.

No crossvalidation routine was available for this al-
gorithm, the optimum number of latent variables (LV)
was selected according to the increase in explained
variance (EV%) produced for each LV added to the
model. LV improving less than 2% the explained vari-
ance, were discarded.

Data were mean-centered in all cases. In PLS mod-
els Venetian Blinds cross-validation was employed and
the optimum number of LV was selected at the mini-

mum in the Prediction Error Sum of Squares (PRESS).
PLS was assayed both, as PLS1 (one dependent vari-
able) and PLS2 (multiple dependent variables). PLS1
showed better results and was used through this work.

3. Results and discussions

3.1. Optimization of FI conditions

The parameters influencing the degree of mixing
and reaction between the metal ions and the PAR
reagent were investigated. The flow rate of the car-
rier and reagent solutions varied between 5.2 and
10.4 ml min−1 and 0.15 and 0.30 ml min−1, respec-
tively. Sample loop volumes varied between 80 and
150ml. Reactor coil lengths varied between 8 and
100 cm. When short reactors were used (<15 cm),
a significant loss in sensitivity was observed due to
incomplete mixing. The optimum variables were se-
lected as a compromise situation between the highest
sample throughput (>100 samples h−1) compatible
with the maximum sensitivity at the sub-mg l−1 level.

Under the optimized FI conditions, the sequence of
sample injection and acquisition of data took 10 s per
sample and the saving of data to the PC hard disk
took 8 s. This gives a sampling frequency of about 180
samples h−1.

3.2. Feasibility study

A feasibility study was carried out in order to assess
the potentialities of the method. Among the analytes
of environmental interest, those presenting major dif-
ferences among their pure spectra, Pb, Cu and Cd,
were employed for the study. The experimental design
was a 23+star factorial design (see Fig. 3). Concentra-
tion levels were chosen in accordance with the linear
ranges obtained for single analyte experiments and
reproducing the expected concentrations in natural
waters. Results are shown in Table 1.

Feasibility studies were performed in a ‘batch’ sys-
tem and a FI system. The latter shows only slight im-
provement in the number of LV needed to model the
data but a great one in the RMSEC and RMSECV er-
ror values (see Table 1). This fact is connected to the
capability of FIA for highly repetitive measurements.
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Table 1
Feasibility studya

BATCH PLS LV% EV% RMSECVb (mg/l) RMSECc (mg/l)

Pb(0.15–0.25)mg/l 4 99.19 0.048 0.038
Cu(0.10–0.4)mg/l 5 98.48 0.014 0.010
Cd(0.03–0.1)mg/l 5 99.08 0.017 0.012

FIA
Pb(0.15–0.25)mg/l 4 98.68 0.009 0.007
Cu(0.10–0.4)mg/l 3 99.44 0.012 0.009
Cd(0.03–0.1)mg/l 5 98.22 0.008 0.004

UNFOLD
Pb(0.15–0.25)mg/l 6 99.50 0.022 0.004
Cu(0.10–0.4)mg/l 4 99.69 0.018 0.007
Cd(0.03–0.1)mg/l 6 99.02 0.017 0.003

N-PLS
Pb(0.15–0.25)mg/l 3 96.58
Cu(0.10–0.4)mg/l 2 99.07
Cd(0.03–0.1)mg/l 2 82.73

a Data were mean-centered in all cases, and Venetian Blinds cross-validation employed (11 test sets).
b RMSECV = Root mean square error in cross-validation.
c RMSEC = Root mean square error in calibration.

The best results were obtained with PLS at the max-
imum of the FI peak. The cross-validation error was
of the same magnitude as the calibration error, which
demonstrates no overfitting. The obtained errors are
in the mg l−1 range which is about 10% of the mea-
sured concentrations. Good quality of the regression
encourages repeat of the calibration in the presence of
more metal ions.

UNFOLD-PLS and N-PLS were also assayed but
less satisfactory results were obtained.

Fig. 3. Experimental design used for the feasibility study.

3.3. Screening of calibration algorithms for
6-analyte data

In order to explore different algorithms for six
analytes calibration standards, Continuum Regres-
sion [28] (CR) was employed. CR is a continu-
ously adjustable technique which encompasses PLS
and includes PCR and MLR. When CR is used,
cross-validation must be done to determine both, the
optimum number of factors and the technique that
produces the optimum model. CR was applied to the
spectra at the peak maximum in order to select the
best technique for calibration.

Prediction Error Sum of Squares (PRESS) had a
minimum at 10 LV with a Singular Value Decompo-
sition (SVD) Power of 1.68. The obtained power is
close to a PLS model [29]. This verifies that PLS is the
better choice as well as a fast and simple algorithm.

3.4. Calibration with six metal ions

In order to perform calibration with six metal ions,
a careful design of calibration standards is needed. On
the one hand the number of runs for calibration must
be kept to a minimum to avoid an increment of the time
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Fig. 4. Experimental design for 6-analyte calibration.

Table 2
Six metals’ calibration results

PLSa UNFOLD PLSa n-PLS

Metal (Concentration (EV% & LV) RMSECV RMSEC (EV% & LV) RMSECV RMSEC (EV% & LV)
range, mg l−1) (at min. PRESS) (mg/l) (mg/l) (at min. PRESS) (mg/l) (mg/l) (at min PRESS)

Cu (0.30–0.60) 99.18 (6) 0.026 0.013 99.19 (9) 0.041 0.013 98.03 (10)
Zn (0.30–0.60) 98.31 (5) 0.028 0.018 99.33 (8)b 0.032 0.011 97.77 (8)
Mn (0.18–0.36) 97.95 (6) 0.022 0.012 99.44 (12) 0.050 0.006 93.57 (8)
Pb (0.15–0.25) 94.98 (8) 0.031 0.011 97.97(12)c 0.058 0.007 93.88 (13)d

Ni (0.24–0.48) 92.09 (7) 0.062 0.031 93.66(11)c 0.222 0.028 55.56 (6)d

Cd (0.05–0.15) 94.32 (11) 0.065 0.010 81.40 (8)c 0.049 0.018 48.65 (5)b

a Data were mean-centered in all cases, and Venetian Blinds cross-validation employed (11 test sets).
b LV were selected up to the one that produces less than 1% improvement in the EV%.
c Also present a local min. in PRESS at 1 LV
d It is a local minimum in PRESS.

of analysis. But on the other, each metal concentration
needs to be varied independently which increases the
number of experiments.

The experimental design shown in Fig. 4 (Draper-
Lin, one block) was used to cover the linear range
of concentrations for all the metals. The chosen de-
sign allows to make all the measurements in a few
hours with a reasonable number of standards (30 stan-
dards + blank).

The regression algorithms tested under the feasi-
bility study were applied to the 6-analyte data. Re-
sults are given in Table 2. PLS at the peak maximum

presents the best calibration results (similarly to the
feasibility study). RMSECV and RMSEC values are
closer for Cu, Zn, Mn and Pb which indicates that the
models are stable (no overfitting). Cu, Zn and Mn de-
termination is performed with good quality of regres-
sion. Even though Ni, Cd and Pb showed acceptable
explained variances they should not be predicted due
to a higher number of latent variables.

As stated above under the feasibility study, no im-
provement was achieved with UNFOLD-PLS (See
Table 2). In order to find out in which situation PLS
and UNFOLD-PLS may show different performances,
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Table 3
Screening of initial conditions for GA wavelength selection

Pop % Initial Mutation PRESS−1 (from the
size terms rate best chromosome)

100 80 0.005 136.2
200 30 0.005 186.9
200 80 0.01 143.6
100 30 0.01 144.4

the system was tested in conditions where the FI
profile stores kinetic information. Thus, just for ex-
ploratory purposes, experiments were carried out in
deficiency of ligand as a way to exploit the non-
equilibrium conditions in FI.

These experiments show a significant improvement
in CVEV for Mn and Ni (5.3 and 9.3%, respectively)
with UNFOLD-PLS. Mn and Ni probably show lower
reaction rate with PAR [30]. Thus, the inclusion of the
tail improves the calibration results.

Calibration results with N-PLS were poor probably
because the data obtained did not have a distinctive
third mode. This approach was not further employed.

3.5. Genetic algorithm variable selection

Genetic Algorithms (GA) were developed by Hol-
land [31] and co-workers in the 1960s and since then
much work has been done in the fields of evolution-
ary computation [32]. GA have been used in the field
of Chemometrics for wavelength selection in multi-
variate calibration. GA use evolution (in a biological
sense) as an inspiration for optimization. GAs will not
be described here; for an overview see Refs. [32] and
[33].

Genetic Algorithms require setting the initial val-
ues of several parameters before optimization itself:
the initial population size, the mutation rate and the
percentage of initial wavelengths employed to build
the chromosomes. The experimental design used to
select the initial parameters was a Fractional Facto-
rial Design (23−1) . The reciprocal of the prediction
error (PRESS−1) was employed as the response func-
tion for exploring the initial conditions. A model with
good response implies low prediction error (good pre-
dictive ability). The results for the screening of initial
conditions are shown in Table 3.

A population size of 200 spectra was selected as the
optimum initial population. This population must be

high in order to explore more possible solutions dur-
ing the optimization procedure. Taking into account
that the spectra are severely overlapped and probably
not every wavelength has further information, the per-
centage of the initial terms must be low. The optimum
value was set at 30%. Also, to assure that good genes
‘survive’ from one generation to another, the mutation
rate must be kept low.

Calibration with PLS at the peak maximum after
GA wavelength selection makes an improvement in
the RMSECV and RMSEC values and decreases the
number of LV needed to model the calibration set
(Table 4). Even though RMSEC values for Zn are
higher, the minimum number of LV obtained with GA
generates a simpler model for data analysis. Selected
wavelengths are given in Fig. 5.

3.6. Interference study

The potential interferent ions that frequently accom-
pany Cu, Zn and Mn in real samples were investigated
in a synthetic solution containing several metal ions.
A given ion was considered interferent if its presence
produces an error above 10% in the determination of
Cu, Zn and Mn for a mixture containing 0.45 mg l−1

Cu, 0.45 mg l−1 Zn, 0.275 mg l−1 Mn, 0.2 mg l−1 Pb,
0.10 mg l−1 Cd and 0.35 mg l−1 Ni.

Ca, Mg and Sr showed little effect on the analyte
signals. Cr and Co become a serious interference at a
concentration of 0.30 mg l−1, since they form strong
complexes with PAR. Usually these levels of Cr and
Co are not found in natural waters. However if high
contents of Cr and/or Co are expected, they must be
included in the calibration set. Fe and Al interferences
are reduced or even eliminated by masking them with
fluoride salts, since they form highly stable complexes
with this anion. Masking was achieved by making the
colorimetric reagent 0.1 M in NaF. Table 5 shows the
concentration ratio at which interferences are tolerated
in the determination of the three analysis.

3.7. Validation

River water samples were spiked with different ana-
lytes. The final concentration (original + spiked) of the
analytes was determined by flame or graphite furnace
atomic spectrometry and with the proposed methodol-
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Table 4
Comparison between PLS with full spectra and spectra after GA optimization

PLS Full spectraa PLS GAa

EV & LV RMSECV RMSEC EV & LV RMSECV RMSECV
(at min. PRESS %) (mg/l) (mg/l) (at min. PRESS %) (mg/l) (mg/l)

Cu (0.30–0.60)mg/l 99.18 (6) 0.026 0.013 99.67 (6) 0.013 0.008
Zn (0.30–0.60)mg/l 98.31 (5) 0.028 0.018 98.04 (3) 0.023 0.020
Mn(0.18–0.36)mg/l 97.95 (6) 0.022 0.012 98.96 (6) 0.014 0.008

a Data were mean-centered in all cases, and Venetian Blinds cross-validation employed (11 test sets).

Fig. 5. Spectra of pure metal–PAR complexes at the maximum of the FI peak and variables selected by GAs.[Metal]=5.10−5, [PAR]=1.10−3

Table 5
Interference study. Table shows concentration ratios at which in-
terferents are tolerated

Interferent

Fe+3 Ca Mg Cr+3 Al Sr Co

Cu 1 : 2 1 : 100 1 : 100 <1 : 1 1 : 50 1 : 50 <1 : 1
Zn 1 : 10 1 : 100 1 : 100 <1 : 1 1 : 50 1 : 50 <1 : 1
Mn 1 : 2 1 : 50 1 : 100 1 : 1 1 : 50 1 : 50 <1 : 1

ogy. From an analytical point of view and in order to
establish the performance of the method in real sam-
ples the determinations need to be carried out with
no spiking. Unfortunately, since the collected samples
(surface river waters) showed very low levels of the

three analytes (they were not detected even when AAS
was employed), we decided to spike them in order
to perform the study in the presence of a real matrix
and trace them against a referee method. The determi-
nation of Ca, Mg, Fe, Al, Co and Cr in the samples
showed that they were not at the interfering level. Ta-
ble 6 shows the results obtained in synthetic samples
and spiked river water samples. In most cases, predic-
tion with the GA optimized model improves the re-
sults. The mean recoveries for Cu, Zn and Mn were
105, 94 and 104%, respectively. The results are good
enough to be used in practice as the analytical figures
of merit (i.e. detection limit, precision etc.) are able
to attend the expectancies of the regulations for drink-
able water.
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Table 6
Determination of Cu, Zn, Mn and Pb in real samples

Synthetic samples (n= 7) Natural Water Samplesa(n= 15)
Concentration range (mg l−1) % Recovery Concentration range (mg/l) % Recovery

Full spectra GA Full spectra GA

Cu (0.30–0.45) 110 105 (0.29–0.50) 109 105
Zn (0.30–0.45) 101 101 (0.38–0.59) 89 88
Mn (0.12–0.30) 94 101 (0.28–0.39) 110 106

a Spiked river water (filtered through 0.22mm Millipore membrane).

Table 7
Analytical figures of merita

Concentration range (mg l−1) Estimated Detection Limit (mg l−1) Repeatability (RSD%,n= 10)

Full spectra GA Full spectra GA

Cu (0.30–0.60) 0.126 0.096 3.3 4.0
Zn (0.30–0.60) 0.094 0.072 2.6 3.7
Mn (0.18–0.36) 0.058 0.045 8.6 6.6

a Detection Limit = 3*RMSEPSynthetic samples

3.8. Detection limits and repeatability

The study of the theoretical concept of limit of de-
tection (LOD) in multicomponent systems is recent
[34]. Its practical applications are limited to a few tech-
niques such as ICP-OES, HPLC-PDA and GC-MS.
Some calculations have been reported for direct cali-
bration [21] and inverse calibration methods [35] but,
these calculations are not easily performed. In this pa-
per LOD has been calculated in a simpler way: three
times the prediction error (RMSEP) obtained for the
synthetic test set [1]. Obtained values are listed in
Table 7. LODs for Cu and Mn are close to those ob-
tained by AAS. Zn shows a relatively higher value due
to its great sensitivity in AAS. LODs are lower when
GAs are employed due to the lower prediction error
obtained through this approach.

Repeatabilities range between 3.3 and 8.6%, which
is good enough for screening. The use of GA slightly
impoverishes repeatability because prediction is done
with fewer wavelengths.

4. Conclusions

The proposed system allows the determination of
three metal ions simultaneously with a sampling fre-
quency of 180 samples h−1 and low operating cost.

Calibration algorithms that use the complete FI profile
(UNFOLD-PLS, N-PLS) give the same information
than those that employ only one spectrum. Wavelength
selection with GA produces improved detection limits
and prediction errors with little effect on repeatability.
Best results are obtained with simple PLS at the peak
maximum.
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