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ABSTRACT 

Upper bounds are given for the maximal rank of an element of the tensor product 
of three vector spaces. 

1. BACKGROUND 

Let Xi, X,, . . , X, be vector spaces of finite dimension d,, d,, . . . , d, 

over some field K. Let X be the tensor product X, 0 X, 0 *.* 8 X,. Then a 
vector x in X is defined to be decomposable [8] if there exist vectors xi in Xi 
(for i = 1,2, . . , n> such that x = xi 6~ x2 8 **. 8 x,. The rank of a general 
vector r is defined to be the smallest integer rK(x) such that x is a sum of 
rK(x) decomposable vectors: see [4, II, $7, No. 81. 

We write rK rather than r to emphasize the dependence on the field K. 
If L is a field containing K, and Yi is the L-vector space Xi % L for 
i = 1,2, . , n, then we may reasonably regard an element x of X as an 
element of Y, @ Y, 63 *a* @ Y,. If n = 2 then rK(x) = rL(x) (see [4, II, $7, 
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No. 911, but [2, 131 gi ve examples with n = 3, K = R, and L = C in which 

t-&9 < f-k(X). 
The maximal rank of X is defined to be 

Since this depends on X only through the dimensions d,, d,, . . , d, and the 
field K, we define the maximal-rank function f,, by 

fn(dl, d,, . . . , d,; K) = max{(r,( x)): x E Kdl 8 Kd2 8 *** @ K”n). 

It seems plausible that, in general, the values of fn may also change with K, 
although we have no evidence of this yet. However, it is well known that, for 
all fields K, 

f,(d,, 4,; K) = min(dl, 4) (1) 

and 

f,(d,,dz,...,d,_l,l;K) =fn_l(dl,dz,...,d,-1;K). (2) 

Various weak bounds are known on the values off, (see [9, 13, 15]), such 
as 

d,d, 0.. d, d,d, 1.0 d, 

d, + d, + ... +d, - n + 1 
,<f,(d,,d,,...,d,;K) G max,d, 7 (3) 

t I 

and 

<f,(dl,dz,...,d,;K). (4) 

However, for n > 3, very little is known about the exact values of fn for 
general fields except for the result of Ja’Ja’ in [lo]: 

fs(2, d, e; K) = min{d, e} + min(min{d, e), I$ max{d, e}J.} (5) 
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for all sufficiently large fields K. “Sufficiently large” is defined by a slowly 
growing function of d and e: in particular, Equation (5) is true whenever K 
is infinite. It has the important special case 

f3(2,2,2; K) = 3. (6) 

Further, Ja’Ja’ shows that 

for all sufficiently large fields K. 
Atkinson and his coworkers [l, 31 give some upper bounds on fa for 

algebraically closed fields K: 

f3(d, d, e; K) G 

f3(dl.d2,e; K) < min{d,,d,} + i m={dl,dz}, I 1 (9) 

j-d 4, 4, d,d, - u) = d,d, - if u < min{4, d,, d,}. (10) 

One application of such bounds is to the approximation of arrays of data 
by low-rank tensors. Even though the typical rank introduced in 1141 may be 
more relevant to such questions, there is still some statistical interest in 
determining the values off,, for K = R, especially when 72 = 3: see [S-7, 11, 

131. It is not known whether (8)-(10) hold when K = R. Thus we feel it 
worthwhile to present an upper bound on fs which is an improvement on (3) 
but which has a fairly short proof. Henceforth we abbreviate fs to f. 

2. RESULTS 

THEOREM 1. Let K be any jeld. Zf d, > 2 and d, > 2 then 

f(d,,d,,d,; K) G d, +j-(d, - l,d, - Ld,; K). 
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Proof. Let (x1, x2,. . . , xd,l, {yl, yz,. . . , yd,), and {z,, z2,. . . , zd,l be 
bases for X,, X,, and X, respectively. Then every vector x in X has the 
form 

c “ijkXi ’ Yj @ ‘k 
i,j,k 

for some ‘Yi# in K. The idea of the proof is as follows. If any q ‘k is nonzero, 
then we can find a decomposable vector which agrees wrt 4 x on two 

directions through the cell (i, j, k) and takes any prescribed values on the 
third direction. Making these prescribed values nonzero enables us to repeat 
the process at the other cells in the third direction thrugh (i, j, k) until both 
of the S-dimensional slabs through this direction have been reduced to zero. 

Since the zero vector is itself decomposable, we may assume that x is 
nonzero and hence, without loss of generality, that on1 # 0. Put 

u1 = Caillxi 

u1 = C aljl Yj 

w1= T;lh + c a~li(allk - l)zk, 
k>2 

and let X’ = x - u1 8 q 8 wl. Thus if x’ = &j) &jkxi @ yj @ zk then 

Pill = O 

Pljl = 0 

for all i , 

for all j, 

P 1 Ilk = for k>2. 

For k = 2,3, . . , d,, put 

uk = CpilkXiT 
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and let x” = X’ - c$L2~k 8 IJ~ Q ok. Then if X” = Ci,j,kYijkxi @ Yj @ zk 

we have 

Yilk = o for all i and k, 

Yljk = 0 for all j and k 

In other words, x” E Xi @ Xi 8 X,, where Xi is spanned by {xi,. . , xd,) 
and Xi is spanned by { y2, . , , yd,}. Thus x” is a sum of at most f(d, - 1, 
d, - 1, d,; K) decomposable vectors, and we have constructed z” so that 
x - X” is a sum of (at most) d, decomposable vectors. n 

The following corollary gives an explicit bound on f in certain special 
cases. It is proved by repeated application of Theorem 1 until (1) and (2) can 
be used. 

COROLLARY 2. Zfd3=dl+dz-2 u and 0 < u < min(dr, d,} then 

f(d,, d,,dz) G d,d, - u2> 

while ifd, = d, + d, - (2t + 1) and 0 < t < min{d,, d,} then 

f(d,, d,,ds) G 44 - t(t + 1). 

Proof. Applying Theorem 1 u times and then using (3) gives 

f(dl,d,,d,;K) ~4 +f(d, -u,d, -u,d,;K) 

< ud, + (d, - u)(dz - u) 

= u(d, + d, - 2u) + (d, - u)(dz -u) 

= d,d, - u’. 

The second case is proved similarly. n 

Corollary 2 can be rephrased in the following symmetric form. 

COROLLARY~. lfd,<d,<d,andd,<dd,+d,then 

f(d,, d,,d,; K) G I (d, + d, + da)2 - 2(dl” + d; + d;) 

4 1. 
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3. DISCUSSION 

Since it clear that f(2,2,2; K) > 2, our results give a rather quick proof 
of (6). However, our bounds, although much better than (3) in general, are 
far from being sharp. For example, Kruskal (personal communication) has 
shown that f(3,3,3; R) = 5, while Corollary 3 gives only j-(3,3,3; K 1 B 7. 
Atkinson and Stephens [31 claim that f(3,3,3; K) = 5 for all algebraically 
closed fields K, but details of their proof are omitted. 

For algebraically closed fields, Corollary 3 is no improvement on (8) and 
(9) unless the upper bound in (3) makes both of the other bounds superllu- 
ous. For example, if d 6 e G 2d then the upper bounds b, b,, bAs, and b,, 
on f(d, d, e; K) given by (31, (7), (81, and Corollary 3 are 

b =d2, 
3de 

b,=q> , b,,= [e(4dq-e)]. 

Then b,, < b, except in the case that e = d and d is odd, so Corollary 3 is 
an improvement over (7) for all fields. However, bAs < b,, unless e = 2d, 
in which case b = b,, < bAs. Thus Corollary 3 would not be useful if the 
results (8) and (9) could be extended to fields which are not algebraically 
closed. 
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