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Abstract

Chemical analyses (total hardness, HARD; dissolved oxygen, DO; chlorides; sulfates; nitrates; nitrites; ammonia;

orthophosphates; and UV-absorbing organic constituents, UV-ORG), physical data (turbidity, TURB; temperature, TEMP;

conductivity, COND), and biological monitors (total and faecal coliforms, FAEC; faecal streptococci, STREPTO) constitute the

15 parameters, monitored with monthly frequency in the space of 4 years on freshwaters sampled at seven sites in a karstic area

of northeastern Italy. The data set was used for a three-way principal factor analysis aimed at exploring the pattern of

information about the environmental quality of the monitored freshwaters, since four wells are feeding the municipal water

supply of the Province of Trieste, and the other water courses can influence them. The selected three-way (3,3,2) model uses

three components for describing the analytical parameters, three for temporal variations and two for spatial variations. The

method optimising the ‘variance of squares’ of the core elements has permitted a simple and meaningful interpretation of the

Tucker-3 solution. The procedure succeeded in decomposing the overall temporal variation in three parts, thus highlighting

nonperiodic critical events, a periodic seasonal component and a constant term. The seasonality has been confirmed by the

examination of the autocorrelation function of the second temporal component. An environmental interpretation and an estimate

of the relative relevance of phenomena conditioning the considered water body, detected by the multiway analysis, have been

proposed. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For years, we have studied the quality of fresh-

water of the karstic area surrounding the town of

Trieste (northeastern Italy) [1–4]. Due to the cal-

citic–dolomitic nature of this area, many of the water

courses flowing here are subterranean: i.e., the case of

the Timavo River that has a surficial course of about

50 km in Slovenia, then sinks into a limestone fissure

near the Italian border, and assumes a variety of

routes, mainly hypogeous, before emerging near the

coast and flowing into the Adriatic Sea. This con-

dition is favourable for preserving the quality of these

waters, but, at the same time, hinders not only a

detailed knowledge of the hydrology of the subterra-

nean water courses, but also the sampling and mon-

itoring operations necessary for an adequate under-

standing of the behaviour and properties of this

complex hydrological system. A further factor of
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complexity is due to the permeability of the karstic

soils that induces mutual overflowing among the

contiguous watersheds of this area. In a previous

work [2], we have verified these overflowing phe-

nomena, which obviously depend on the different

seasonal rain conditions and produce occasional

intrusions of waters from the northern Isonzo and

Vipacco rivers into the southern karstic wells related

to Timavo River.

Besides the speculative interest for such a com-plex

hydrological system, these waters are relevant because

they feed the municipal supply of the Province of

Trieste. In particular, the waters of the three wells

indicated in Fig. 1 as SB, MN, and SA are collected

since the 19th century for drinking use. For satisfying

the always increasing need of water, new wells were

drilled in recent years on the left side of Isonzo River:

the addition of this new source of freshwater (dis-

played as NS in Fig. 1) assures, since the late 1980s of

the past century, a delivery capacity that largely

exceeds the water request (estimated about 150,000

mc/day) of the Province of Trieste, also in the summer

dry period when water use reaches its maximum.

In this work, we consider not only the freshwaters

sampled at the abovementioned sites, but also for the

sake of comparison, the waters taken at three mon-

itoring stations relative to the three main rivers of this

area: Isonzo, Vipacco, and Timavo rivers, respectively

(IS, VI, and TI in Fig. 1).

We report here a study based on chemical analyses

(total hardness, dissolved oxygen, chlorides, sulfates,

nitrates, nitrites, ammonia, orthophosphates, and UV-

absorbing organic constituents), on physical data

(turbidity, temperature, conductivity), and on biolog-

ical monitors (total and faecal coliforms, faecal

streptococci) relative to these waters. All data have

been determined on samples collected with monthly

frequency within 4 years (from January 1995 to

December 1998) at the seven stations abovemen-

tioned.

While our previous works were based on monitor-

ing campaigns focused on seasonal critical events

covering at most the space of 2 years, the present

work faces time series of monthly samplings being

collected during 4 years. The longer temporal range

being covered should evidence in a clearer way both

regularities and anomalous events in the variations of

the measured parameters.

It has already been shown [4–10] that the three-

way principal component analysis (PCA) succeeds in

rationalising efficaciously the information underlying

data arrays of analytical parameters collected at vari-

ous sampling times and at various sites. The (i)

chemical–physical–biological parameters, (ii) the

sampling months, and (iii) the sampling sites constitute

the three ways that allow us to identify the data under

study. The two types of multiway methods that have

been mainly applied in environmental pattern recog-

nition are Tucker-3 and PARAFAC [11,12]. Recently,

the multilinear engine ME has been proposed [13].

In environmental field, Tucker-3 models, consider-

ing the same number of components (often two) for

each way with diagonalisation of the core, have been

mostly used [7–10,14]. It has also been shown [4] how

Tucker-3 models are selected, having the same number

of significant components in each way identifying the

data and, in case they have a simple information

structure, detected after diagonalisation of cubic cores

of the model, it can be appropriate to use simpler

PARAFAC models.

In the present paper, we aim at exploring the

amount of information provided by multiway PCA

for environmental quality monitoring with relatively

long time series, considering also the possibility of

different number of components in each way. In the

case that different numbers of components are

retained for the three ways, the ‘‘variance of squares’’

method [15] of rotation could be used for improving

the interpretability of the model. This kind of rotation

seems very effective [6]; however, it has not yet been

applied widely for modelling environmental data.

The number of components to be retained as

significant for each way can be selected by means

of graphical methods helping the visualisation of the

compromise between fitting performances and com-

plexity for different models, as we proposed in pre-

vious works [4,6].

2. Experimental

2.1. Sampling

Sampling operations were made at seven sites.

Sardos (SA), Sablici (SB), Moschenizze Nord (MN)

are the three historical karstic wells that feed the
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municipality of Trieste together with the more recent

northern source (NS). The other three sites are

devoted to monitor the main rivers flowing in this

area, i.e., Isonzo (IS), Vipacco (VI), and Timavo (TI)

rivers (see Fig. 1). Water samples were taken with

monthly frequency from January 1995 to December

1998, and analysed within 48 h in the Laboratory for

Analysis and Control of ACEGAS of Trieste. The

analytical determinations followed the official proce-

dures of the Italian Law [16] and the standard methods

of the American Public Heath Association [17].

Turbidity (TURB, measure unit: Jackson turbidity

unit, JTU), temperature (TEMP, jC), and conductivity

(COND, AS/cm, corrected to 25 jC) were determined

in situ, while all the other parameters were measured

in the laboratory. They were: chlorides (Cl, mg/l),

sulfates (SO4, mg/l), total hardness (HARD, jF),
dissolved oxygen (DO, mg/l), nitrates (NO3, mg/l),

nitrites (NO2, mg/l), ammonia (NH3, mg/l), ortho-

phosphates (PO4, mg/l), UV-absorbing organic con-

stituents determined by spectrophotometry at 253.7

nm wavelength using cells of 5 cm path length (UV-

ORG, A), total coliforms (COLI, most probable

number MPN/100 ml), faecal coliforms (FAEC,

MPN/100 ml), and faecal streptococci (STREPTO,

MPN/100 ml).

2.2. Statistical analysis

In this work, a three-way principal component

analysis using the Tucker-3 model [5,11,18] will be

applied to a data set, which represents 15 parameters

reflecting the water quality, collected for 48 months

from January 1995 to December 1998 at seven sites.

The dimensions of the three ways (i.e., the quality

parameters, the sampling months, and the sampling

sites that identify each datum) are 15, 48, and 7,

respectively, for a total of 5040 data. The missing data

are 43 (0.85% of the total).

The Tucker-3 model constitutes a factorisation of

the X={xijk} data array of (n�p�q) dimensions. In

our case, xijk is the value of the chemical, physical, or

biological parameter i (going from 1 to n=15), on j

month (from 1 to p=48), at k site (from 1 to q=7),

accordingly the following equation:

xijk ¼
Xr

u¼1

Xs

v¼1

Xt

w¼1

aiubjvckwguvw þ eijk :

In this equation, the r, s and t indexes represent the

number of components chosen for describing the first,

the second, or the third way of the data array,

respectively, while aiu, bjv, and ckw are the elements

of the three component matrices A, B, and C. The

A(n�r) matrix describes the measured parameters,

while B( p�s) the sampling months, and C( q�t)

the sampling sites. Each of these matrices can be

interpreted in the same manner as a loading matrix of

the classical two-way PCA, since they are all column-

wise orthogonal. The equation term guvw represents an

element of G, an array with (r�s�t) dimensions,

called the ‘core’ of the model. guvw weighs the

products of the u component of the first way by the

v component of the second way, and the w component

of the third way. The component matrices A, B, and C

are constrained to be orthogonal, and the matrix

columns are scaled to unity length. In this way, the

squared value of the core element, i.e., (guvw
2 ), shows

the entity of the interactions among the u, v, w

components of the X={xijk} data array. The last

element, eijk, constitutes the residual, i.e., the part of

data not represented by the model. The Tucker-3

model is computed by an iterative procedure based

on the ‘alternating least square’ (ALS) algorithm

[12,18], and the solution permits to partition the

sum of squares of the X elements as:

SSðX Þ ¼ SSðmodelÞ þ SSðresidualÞ:

The SS(model)/SS(X) ratio can be used for evalu-

ating the strength of the model in representing its

objects. In the following, we will call this ratio

‘explained variation’ of the model. The data array

was pretreated, by centring and scaling each chemical,

physical, and biological parameter [4,6,18], so as to

remove differences due to their different units of

measure.

The A, B, C matrices and the G core array can be

rotated, as well as in classical factor analysis. A

recently proposed rotation method, the ‘‘variance of

squares’’ [15], optimises the variance of the squared

core elements, by distributing the total variance

among a little number of elements that permits to

obtain models more easy to interpret. This rotation

method can be used with advantage on models with

different component numbers in the different ways.

All calculations were performed by MatLab 5.0
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computing environment [19], using the N-way tool-

box of Andersson and Bro [20,21], which estimates

the missing data by an expectation/maximisation-type

algorithm.

3. Results and discussion

We will rationalise here the spatial–temporal var-

iations of freshwaters related to municipal water

supply of Trieste on the basis of 15 chemical–phys-

ical–biological parameters, intended as indicators of

water quality. These parameters were determined in

samples collected at seven monitoring stations with

monthly frequency, for a total of 48 sampling events.

The basic statistics of these experimental data are

reported in Table 1.

We have taken into account many Tucker-3 mod-

els, with different component numbers in the different

ways. As a rule, we prefer to handle models with few

components, but, at the same time, it is advisable to

use models providing maximum explained variation,

i.e., SS(model)/SS(X) ratio. Since more variation is

explained when more components are included in the

model, it is necessary to reach a compromise. Thus,

we have computed the SS(model)/SS(X) ratios for all

possible models with r, s, and t varying from 1 to 5.

The (r�s�t) product of the component numbers in

each different way can be considered as an indicator

for the number of possible interactions and, conse-

quently, for the complexity of the model. The models

here considered explicate a percent of the SS ranging

from 28% to 69%.

In previous works [4,6], we proposed a diagram for

the selection of optimal models, where the SS(model)/

SS(X) ratios were plotted vs. the (r�s�t)products,

retained as indicator of complexity. In the diagram, the

SS(model)/SS(X) ratios of the models were sorted

along the x-axis on the basis of growing (r�s�t)

products so that from left to the right, the values of

the indicator of complexity increased monotonically.

Relevant gains in the fitting performances at the

increase of complexity could be appreciated. Even

clearer, for highlighting interesting models and for

the selection of the number of factors to be considered

in each of the three ways, is the scatter plot of

SS(model)/SS(X) ratios vs. (r�s�t) products, repor-

ted in Fig. 2 for our data set.

The models providing the highest SS(model)/

SS(X) ratios for each (r�s�t) product can be evi-

denced in this plot. They present the more interesting

fit complexity trade-off. The model (3,3,2)—indicated

in Fig. 2 by an arrow—uses three components for

describing the analytical parameters, three compo-

nents for the temporal variations, and two components

for spatial variations, and it explicates the 50.17% of

the data variation. It is the model with lower complex-

ity (3�3�2=18 possible interactions to be consid-

ered) overcoming 50% of the parameter of fit, and it

has been chosen as a reasonable compromise to be

discussed in more detail.

With the aim of getting an easily interpretable

solution, we have rotated the A, B, C matrices of this

(3,3,2) model by optimising the ‘variance of squares’

[15]. With this procedure, the number of core ele-

ments with significant figures is minimised by orthog-

onal transformations. The result is that the model is

rearranged so as to obtain a little number of chem-

ical–physical–biological factors, which are well char-

acterised both temporally and spatially. The so

obtained factors are plotted in Figs. 3–5.

The three factors of parameters are displayed in

Fig. 3. We note that A1 shows negative values for

TEMP, COND, Cl, SO4, HARD, NO3 (i.e., parame-

ters related to the water salinity), while positive values

for NO2, UV-ORG, COLI, FAEC, STREPTO (i.e.,

indicators of contamination), and DO that is high in

surficial waters. The second factor A2 has positive

values for TURB, DO, NO3, STREPTO (signs of

runoff of agricultural soils). The third factor has the

highest loadings for TURB and NH3 (parameter

related to sewage contamination).

The three temporal factors are plotted in Fig. 4.

The first factor B1 shows few positive peaks, occur-

ring without evident periodicity. On the contrary, the

second factor B2 alternates positive values in colder

months with negative ones in warmer season. No

temporal variations are related by the third factor

B3, which has rather constant values.

The two spatial factors are plotted in Fig. 5. The

factor C1 has positive values for VI and IS (surficial

rivers), while negative ones for the karstic wells (TI

and SA), and very low loading for the deepest NS. The

second factor C2 displays a very high value for VI.

It could be interesting to verify in more detail the

seasonality emerging from the multiway treatment.
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Table 1

Basic statistics of the 15 parameters, relative to seven sampling sites: yearly mean values (m) and standard deviations (S.D.); n.d.= not determinable (below LOD); n.r .= negative

reactions for bacterial tests

Site Year TURB TEMP COND CL SO4 HARD DO NO3 NO2 NH3 PO4 UV-ORG COLI FAEC STREPTO

TI 1995 m 6.1 11.7 386 6.5 12.5 21.8 9.1 6.6 < 0.01 < 0.03 0.04 0.11 363 60 30

S.D. 13.0 1.1 26 2.0 4.3 1.4 0.9 0.8 n.d. n.d. 0.02 0.04 391 42 43

1996 m 5.6 11.9 383 6.8 12.0 21.5 8.8 6.5 < 0.01 < 0.03 < 0.03 0.11 558 117 54

S.D. 7.1 1.0 33 2.1 4.7 2.0 0.8 1.2 n.d. n.d. n.d. 0.06 596 113 63

1997 m 1.8 11.9 375 7.2 10.7 21.2 8.0 6.3 < 0.01 < 0.03 0.04 0.09 150 54 28

S.D. 1.8 0.8 17 1.8 1.0 1.7 1.0 1.1 n.d. n.d. 0.02 0.04 124 70 35

1998 m 4.1 12.4 387 7.2 11.9 21.9 9.0 6.7 < 0.01 < 0.03 < 0.03 0.09 449 64 32

S.D. 5.2 1.0 22 1.8 4.8 1.3 1.5 0.5 n.d. n.d. n.d. 0.05 683 101 44

SA 1995 m 2.6 12.5 385 7.2 10.5 21.9 8.8 7.5 < 0.01 < 0.03 < 0.03 0.05 299 46 25

S.D. 3.5 0.4 31 1.3 1.8 1.8 0.6 1.5 n.d. n.d. n.d. 0.02 346 48 41

1996 m 2.4 12.4 396 7.4 10.4 22.2 9.0 6.8 < 0.01 < 0.03 < 0.03 0.06 282 58 44

S.D. 1.8 0.5 35 1.5 0.8 2.1 0.5 1.2 n.d. n.d. n.d. 0.02 182 53 50

1997 m 1.0 12.6 368 6.8 10.7 20.8 8.1 6.7 < 0.01 < 0.03 < 0.03 0.06 105 29 26

S.D. 0.5 1.2 43 0.9 1.0 2.3 0.7 1.0 n.d. n.d. n.d. 0.02 84 27 25

1998 m 1.9 12.7 378 7.5 10.0 21.5 8.2 7.0 < 0.01 < 0.03 < 0.03 0.06 375 61 24

S.D. 1.7 1.2 41 1.8 0.8 2.4 3.0 0.6 n.d. n.d. n.d. 0.02 565 84 35

SB 1995 m 0.9 12.1 341 4.9 10.3 19.1 8.7 6.6 < 0.01 < .03 < 0.03 0.06 301 43 25

S.D. 0.4 0.8 27 0.8 0.9 1.6 0.6 0.8 n.d. n.d. n.d. 0.02 298 35 53

1996 m 0.9 12.0 341 4.9 10.3 19.1 8.7 6.6 < 0.01 < 0.03 < 0.03 0.06 301 43 25

S.D. 0.4 0.8 27 0.8 0.9 1.6 0.6 0.8 n.d. n.d. n.d. 0.01 298 35 53

1997 m 0.6 11.8 323 5.0 9.5 18.4 8.0 6.1 < 0.01 < 0.03 < 0.03 0.06 110 26 17

S.D. 0.3 1.0 31 0.9 0.8 1.7 1.0 1.0 n.d. n.d. n.d. 0.01 50 18 17

1998 m 0.9 12.2 333 4.6 8.8 19.1 8.2 6.5 < 0.01 < 0.03 < 0.03 0.07 375 68 24

S.D. 0.5 0.9 39 0.5 0.8 2.2 0.9 0.6 n.d. n.d. n.d. 0.03 655 96 33

MN 1995 m 0.9 12.1 340 4.6 10.5 19.1 8.5 6.8 < 0.01 < 0.03 < 0.03 0.06 277 38 23

S.D. 0.5 0.7 27 1.0 1.0 1.6 0.8 0.7 n.d. n.d. n.d. 0.02 279 36 55

1996 m 0.8 11.8 349 4.5 9.6 19.9 8.5 6.6 < 0.01 < 0.03 < 0.03 0.06 218 43 34

S.D. 0.2 1.0 34 0.7 0.9 2.2 0.6 0.7 n.d. n.d. n.d. 0.01 131 49 50
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1997 m 0.5 11.9 323 4.9 9.3 18.6 8.0 6.2 < 0.01 < 0.03 < 0.03 0.06 94 18 15

S.D. 0.3 1.0 31 0.9 0.7 1.6 1.0 1.0 n.d. n.d. n.d. 0.01 48 13 13

1998 m 1.1 12.2 335 4.4 8.8 19.1 7.3 6.6 < 0.01 < 0.03 < 0.03 0.06 312 60 22

S.D. 0.6 0.7 38 0.7 0.8 2.3 2.6 0.5 n.d. n.d. n.d. 0.03 516 91 31

DN 1995 m 0.7 12.0 374 19.1 12.1 18.8 8.0 7.9 < 0.01 < 0.03 < 0.03 < 0.01 n.r. n.r. n.r.

S.D. 0.5 0.4 14 1.5 0.9 0.4 0.2 0.8 n.d. n.d. n.d. n.d. n.r. n.r. n.r.

1996 m 0.2 12.1 389 21.7 12.3 19.4 8.1 8.4 < 0.01 < 0.03 < 0.03 < 0.01 n.r. n.r. n.r.

S.D. 0.1 0.5 11 1.8 0.6 0.5 0.4 0.3 n.d. n.d. n.d. n.d. n.r. n.r. n.r.

1997 m 0.2 12.1 387 23.2 13.0 19.7 7.7 8.7 < 0.01 < 0.03 < 0.03 < 0.01 n.r. n.r. n.r.

S.D. 0.2 0.6 12 1.1 0.4 0.2 0.6 1.2 n.d. n.d. n.d. n.d. n.r. n.r. n.r.

1998 m 0.2 12.4 380 18.4 12.3 19.4 6.5 9.1 < 0.01 < 0.03 < 0.03 < 0.01 n.r. n.r. n.r.

S.D. 0.1 0.8 19 2.2 0.6 0.5 3.2 0.9 n.d. n.d. n.d. n.d. n.r. n.r. n.r.

VI 1995 m 3.8 11.2 332 3.9 11.3 18.4 10.5 7.6 0.08 0.04 0.08 0.13 30692 3318 313

S.D. 4.9 6.4 18 1.2 1.9 1.1 1.4 2.1 0.09 0.03 0.03 0.05 35371 3172 318

1996 m 4.4 12.0 328 3.6 10.9 18.2 10.4 6.5 0.05 0.05 0.06 0.12 27350 3379 418

S.D. 7.3 5.9 36 0.9 2.1 1.9 1.4 1.4 0.05 0.04 0.03 0.03 35539 4602 706

1997 m 1.4 12.5 316 3.8 11.0 17.9 10.0 5.6 0.07 0.04 0.18 0.15 35808 5400 323

S.D. 0.7 5.8 22 0.5 1.2 1.2 1.8 1.6 0.06 0.03 0.27 0.04 84040 14075 480

1998 m 26.3 12.7 318 3.6 10.3 17.8 10.7 6.9 0.06 0.04 0.08 0.17 28283 2183 190

S.D. 55.3 6.3 20 1.0 1.8 1.4 1.8 3.2 0.04 0.01 0.05 0.06 41353 2440 226

IS 1995 m 4.3 10.1 264 2.8 8.0 14.9 10.9 3.4 0.04 < 0.03 0.05 0.11 47250 7925 514

S.D. 6.2 4.9 20 1.5 1.3 0.8 2.3 0.5 0.04 n.d. 0.02 0.03 35428 6977 492

1996 m 4.3 10.0 264 2.8 8.0 14.9 10.9 3.4 0.04 < 0.03 0.05 0.08 47250 7925 514

S.D. 6.2 4.9 20 1.5 1.3 0.8 2.3 0.5 0.04 n.d. 0.02 0.02 35428 6977 492

1997 m 1.5 11.3 264 2.8 7.0 15.0 10.8 3.3 0.03 0.04 0.06 0.11 34583 9267 518

S.D. 0.8 4.6 30 1.3 1.9 1.1 1.4 0.4 0.04 0.02 0.03 0.05 41649 18554 319

1998 m 7.0 11.0 247 1.7 6.0 14.6 11.4 3.6 0.02 < 0.03 0.04 0.10 26500 3367 429

S.D. 8.4 4.5 20 0.6 1.3 0.9 1.3 0.6 0.02 n.d. 0.02 0.03 20774 3589 550

Measure units are reported in Experimental section.
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For this purpose, we have performed an autocorrela-

tion study on the values of factor B2. The autocorre-

lation coefficients [22] for different lags are plotted in

Fig. 6 together with the confidence limits. Autocorre-

lation coefficients have significant positive values for

lags corresponding to a delay of 12F1 months, while

significantly negative ones for 6F1 months: all con-

firm the annual periodicity for our data set.

The environmental meaning of all these factors will

be discussed commenting the parameter–temporal–

spatial interactions related to the core elements of the

(3,3,2) model, which are reported in Table 2. The

percentage importance of each core-array element is

also displayed in the same table. We see here that the

maximum importance (55.67%) for interpreting the

variance that the model is able to explicate is associated

to (i) the (A1, B3, C1) core elements. They follow— as

of importance— (ii) the (A3, B1, C2) core elements

(15.52%), (iii) the (A2, B2, C2) elements (9.52%), (iv)

the (A3, B3, C2) elements (6.85%), and (v) the (A2,

B2, C1) elements (5.85%). The remaining core ele-

ments show rapidly decreasing importance: more than

half of them have importance smaller than 1x.

With regard to the first (55.67% as importance)

core array (A1, B3, C1), A1 (first component charac-

terising the analytical parameters) has positive load-

ings for TURB, DO, NO2, NH3, PO4, UV-ORG,

COLI, FAEC, and STREPTO for parameters all

referable (with the exception of DO) to bad water

quality, while it has negative loadings for TEMP,

COND, Cl, SO4, HARD, NO3 (see Fig. 3). B3 (third

component characterising the temporal variations) has

loading values practically constant along all the 48

considered months (see Fig. 4), indicating scarce

variability in time for this core element. Finally, C1

(first component describing the site variations) has

positive loadings for Isonzo and Vipacco rivers, while

negative ones for the typically karstic waters, for

Timavo river and all the wells, with a minimum value

for the deepest one NS (see Fig. 5). Therefore, the

main systematic variation of the data set, emerging

from this most important core element, appears corre-

lated to the contrast between the surficial rivers

(Isonzo and Vipacco) on one side and all the other

‘Timavo-like’ freshwaters on the other side. The

surficial rivers have lower salinity, but are more

turbid, more oxygenated, and more exposed to con-

tamination by nitrites, ammonia, phosphates, organic

constituents, coliforms, and faecal streptococci with

respect to the hypogeous Timavo River and the karstic

wells.

The (A3, B1, C2) core elements—second in impor-

tance (15.52%)—has A3 ‘parameter’ component with

positive loadings for TURB, TEMP, COND, Cl, SO4,

HARD, NO3, NO2, NH3, PO4, UV-ORG, COLI,

FAEC, STREPTO, while negative values for DO.

The B1 ‘temporal’ component has negative loadings

along the cold months and occasional positive ones in

December 1995, September 1996, July 1997, and

April 1998 (see Fig. 4). The C2 ‘spatial’ component

displays a very high value for Vipacco River only.

This data set variation, characterised by the (A3, B1,

C2) components, can be referred to turbidity phenom-

ena in Vipacco River (which has torrent-like behav-

iour) occasionally producing waters of poor quality.

The high A3 loadings are related to high concentra-

Fig. 2. Scatter plot of modelled sum of squares (%) as function of

the product of the number of components in different modes for the

considered Tucker models. SS of the model (3,3,2) components is

indicated by an arrow.

Fig. 3. Three factors of chemical–physical–biological parameters.
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tions of solutes as nitrates, nitrites, ammonia, phos-

phates, chlorides, and sulfates, together with coliforms

and streptococci, partly due to leaching of soils and

partly to sewage runoff.

The third and fourth core elements are, as the

second one, referable to the peculiarity of Vipacco

rivers, since they share the same spatial component

C2. In particular, the (A2, B2, C2) core elements

(9.56%) has A2 ‘parameter’ component with high

TURB, DO, NO3, and low TEMP, PO4. The B2

‘temporal’ component shows positive values for cold

months, while negative ones in warm months. Excep-

tional values correspond to April 1998 (spring flood)

and September 1997 (end summer dry period): soil

leaching produces turbidity and high concentration of

nitrate fertilisers. The fourth (A3, B3, C2) core

element has positive values for all parameters (partic-

ularly high for ammonia and turbidity) and a negative

value only for dissolved oxygen. B3 has positive,

fairly constant values suggesting that Vipacco River

constitute a steady source of contamination, not only

during critical (B1) or seasonal (B2) episodes.

The fifth core element (A2, B2, C1) share the same

‘parameter’ and ‘temporal’ components with the third

one. These were interpreted as representing an agri-

cultural pollution typical of cold, rainy months. The

‘spatial’ component C1 stresses, this time, the contrast

Fig. 4. Three factors of temporal parameters.

Fig. 5. Two factors of spatial parameters.

Fig. 6. Autocorrelation coefficients for the temporal component B2

and their confidence limits.

P. Barbieri et al. / Chemometrics and Intelligent Laboratory Systems 62 (2002) 89–100 97



between surficial rivers (Vipacco, but also Isonzo) and

the high quality water reservoirs of NS.

At this point, some comments can be useful regard-

ing the benefits of the multiway approach with respect

to more conventional two-way factorial techniques,

where data are organised in a table whose columns

represent measured parameters, while rows represent

samples that are collected at different times and sites.

Several two-way principal component analysis and

principal factor analysis models have also been built

for the considered data set. For comparison purposes, a

model can be considered, extracting three Varimax

rotated [22] principal factors, which succeeds in find-

ing reasonably interpretable latent variables, explain-

ing 58% of the total variance on the whole. These new

variables represent, in decreasing order of importance,

variation of water composition due to (a) bacterial and

chemical contaminations (high loadings for COLI,

FAEC, STREPTO, NH3, NO2, PO4), (b) change of

ionic contents (high loadings for COND, Cl, SO4,

HARD, NO3), and (c) influence of meteorological

events on the water parameters (high loadings for

TEMP (with negative sign), DO, TURB). The graphic

inspection of factor scores allows the discussion of

both site specific and temporal variations of the water

composition. Such scores indeed mix the temporal and

spatial information on samples that should be isolated a

posteriori by separate visualisations. Scatter plots and

sequence plot of the scores of three factors for the seven

sampling sites (not reported here, for the sake of

brevity) should be examined in order to gain a detailed

insight in the information content of the data set. Most

of the results obtained by considering the output of the

three-way PFA have been discovered as well as with

two-way PCA; however, the number of scatter plots

and sequence plots to be considered in the two-way

case is huge: three bivariate scatter plots (PF1 vs. PF2,

PF1 vs. PF3, PF2 vs. PF3) and three sequence plots

(PF1 vs. time, PF2 vs. time, PF3 vs. time) for each of

seven sites sum to 42 plots. On the contrary, the three

figures numbered as 3, 4, and 5 in this paper, plus the

core matrix reported in Table 2, are sufficient to discuss

the proposed three-way model. Moreover, some of the

features clearly obtained by our Tucker-3 model—for

instance, the separation of nonperiodic, periodic, and

constant temporal factors and the exceptionality of the

VIPACCO site—result only implicitly in the two-way

models.

On the whole, the most important benefit of multi-

way PCA on data collected with a multiway design is

the clear identification of factors characterising each

of the way designed for the data collection. This is not

possible in applying conventional two-way PCA to

the same data since two or more ways result to be

mixed.

4. Conclusions

. This study has shown a factor analysis procedure

suitable for an exploratory analysis of a set of data

describing variations of 15 freshwater quality param-

eters, sampled monthly for 4 years, at seven sampling

sites.
. The visual inspection of the scatter-plot report-

ing explained variation of data vs. the product of the

number of components in the three modes retained as

indicator of complexity for 125 models has supported

the choice of three factors for characterising the

quality parameters, three for their temporal variations,

and further two for their spatial pattern.
. The method optimising the ‘‘variance of

squares’’ of the core elements has allowed a mean-

ingful and simple interpretation of the Tucker-3 sol-

ution for the (3,3,2) model.
. In particular, the procedure succeeded in decom-

posing nicely the overall temporal variations in three

parts, thus highlighting nonperiodic critical events, a

periodic seasonal component, and a constant term.
. The seasonality has been confirmed by the study

of the autocorrelation function of the dimensional

component B2 of the Tucker-3 model, showing sig-

Table 2

Core-array elements of the (3,3,2) model obtained by ‘variance of

squares’ rotation method

C1 C1 C1 C2 C2 C2

B1 B2 B3 B1 B2 B3

A1 1.13 �0.11 37.25 7.56 �2.43 1.44

(0.05) (0.00) (55.67) (2.29) (0.24) (0.08)

A2 �0.38 12.08 �0.18 �0.62 15.40 �1.62

(0.01) (5.85) (0.00) (0.02) (9.56) (0.11)

A3 8.98 �3.30 1.04 19.70 1.11 13.10

(3.23) (0.44) (0.04) (15.52) (0.05) (6.85)

The percentage importance of each core-array element is displayed

in brackets. Bold characters refer to the five element cores discussed

in the text.
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nificant positive coefficients for lags of 12F1 months

and negative ones for lags of 6F1 months.
. A quantitative estimate of the environmental

relevance of phenomena conditioning the considered

water body, given by the squared elements of the

rotated core and their environmental interpretations,

has been proposed here.
. The main detected variations of the data set are

correlated to a contrast between river waters, exposed

to seasonal variations and to exceptional meteoric

phenomena (as rainfall inducing turbidity and leach-

ing of agricultural soils) on one side, and profound

waters of the karstic wells on the other side.
. The Vipacco River is responsible for the highest

variations in parameters since during episodic events

(its floods), waters of poor quality appear.
. Besides the environmental considerations strictly

connected to the present case study, in general terms,

we remark the suitability of the proposed procedure to

handle data coming from environmental monitoring

programmes that are typically collected on the basis of

a multiway sampling plan. The ability to detect

periodic patterns of multivariate time series within a

pool of sampling points that can be hindered by both

anomalous events and site specific features constitute

a relevant advantage of the procedure.
. Again, in general terms, while analysing envi-

ronmental monitoring data that report about multiple

measurements in several locations and sampling

times, the output of the Tucker-3 principal factor

analysis is relatively more compact than the one from

classical two-way factorial techniques as PCA and

PFA for detecting spatial and temporal patterns from

the same data. Moreover, factors extracted by multi-

way models are explicitly linked to the modes used to

identify the data and this fact can help the interpreta-

tion of numerical/graphical results.
. The statistical multivariate control of environ-

mental dynamic systems, as the water system related

to the municipal water supply here described, is one of

the main aims of monitoring programmes. Multiway

factorial techniques can play a role in this field,

besides other system identification techniques [23];

however, some refinement of the presented modelling

procedure are needed. Once the major sources of

nonperiodical variation and eventual outliers in the

multiway data structure had been identified, these

should be removed, then reconstructing the var-

iance–covariance structure filtered from anomalous

events. Besides factorisation, the problem of outlier

detection for such multiway data arises here. There is

room for theoretical work on the subject. The filtered

variance–covariance structure could be used for sim-

ulating the behaviour of the system in absence of

critical events—possibly identifiable as pollution—

and then for a further characterisation of regional

typical values for the monitored parameters. Proba-

bilities of the occurrence of natural nonperiodic

events—as the alteration of quality standards due only

to meteorological events—could be also estimated,

thus stepping forward towards a true environmental

control grounded on statistical bases. The understand-

ing and rationalisation of modifications of environ-

mental quality parameters is a process intrinsically

dependent on the comprehension and visualisation of

the multiway structure of the gathered information.

All of these make the multiway chemometrical tech-

niques very promising tools to be integrated in envi-

ronmental decision support systems.
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