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Abstract

Data of temperature, salinity, dissolved oxygen, nutrients and chlorophyll measured on samples of surface seawater and
collected monthly during 2 years in different sites of the Gulf of Trieste are modeled by means of three-way principal component
analysis (PCA). Missing values are handled using an expectation maximization algorithm, regression or substitution with
random numbers, depending on their origin. Physicochemical parameters are described by three different components that
explain the effect of the river input on the seawater pattern, the effect of temperature, and metabolic–catabolic activity of
the phytoplankton, respectively. One spatial component accounts for the gradient of influence of the estuarine waters in
the Gulf, and three temporal components characterize three main seasonal conditions. Anomalous situations, generated by
meteoclimatic events, are highlighted. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Environmental monitoring programs often produce
huge data sets describing spatial and temporal varia-
tions of many physical, chemical and biological pa-
rameters. Data reduction methods are required to ex-
tract useful and interpretable information which is able
to explain physicochemical parameter patterns as well
as spatial and temporal ones. Among these methods,
three-way, and generallyN-way principal component
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analysis (PCA) methods [1] are generating growing
interest [2–5]. Beside methodological works aimed es-
sentially at proving the applicability of theN-way ap-
proach to environmental systems, there is a lack of
applications to real case studies in this field. The main
purpose of this paper is to present a three-way model
built from a three-dimensional data array produced
during a survey, covering 2 years, on the quality of
surface seawaters sampled with monthly frequency at
eight stations in the Gulf of Trieste, near the Isonzo
river estuary. Temperature, salinity, dissolved oxygen,
micronutrients and chlorophylls were the measured
variables. As it often happens in real field surveys, the
data set contained several cases of missing values.
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Fig. 1. Map showing the position of sampling sites.

2. Experimental

2.1. Physicochemical parameters

Surface seawater samples were collected with
monthly frequency from April 1995 to March 1997
by the oceanographic ship Effevigi of the Labora-
tory of Marine Biology of Trieste; the positions of
the eight sampling stations are indicated in Fig. 1.
The 11 physicochemical parameters are: temperature
(Temp), salinity, dissolved oxygen (DO), nitrogen
as ammonia (NH4), nitrite (NO2) and nitrate (NO3),
ortho-phosphate (PO4), total phosphorous (Ptot),
dissolved silica (SiO2), chlorophyll-a (Chlo.a) and
phaeopigments (Phaeop). It typically lasted 3 days to
complete the collection of samples at all eight sites.

Temperature and salinity were determined in situ
with a multiparametric probe, an Idronaut CTD 401
profiler. Dissolved oxygen was measured by a mod-
ified Winkler method [6] in the laboratory later on
the day of sampling. Ammonium, nitrite, nitrate,
ortho-phosphate, total phosphorous and dissolved
silica were determined by segmented continuous
flow analysis (SCFA) as in [7], using an Autoanal-

izer Alliance Integral instrument. Chlorophyll-a and
pheopigments were extracted with acetone from the
filtered seawater, and measured by spectrofluorimetry
[8] using a Perkin–Elmer Model LS50 fluorimeter.
Their concentrations were evaluated as in [9]. Cali-
bration and quality control of the analytical methods
were checked periodically by interlaboratory calibra-
tions within a monitoring program concerning the
whole Adriatic Sea [10].

2.2. Mathematical methods: multi-way analysis

The data were collected in an array that can be vi-
sualized as a parallelepiped of dimensions: 11 (pa-
rameters)× 8 (sites)× 24 (months). Physicochemical
parameters, sampling sites and sampling months con-
stitute the three ways, or modes, of the array. Differ-
ent methods, namely ‘unfolding’ [11,12], Tucker mod-
els [11,13–15], and PARFAC/CANDCOMP [16–18],
have been applied to multi-way arrays in order to gen-
eralize the classical PCA [19].

We choose to apply the Tucker3 model. According
to Kiers and Bro [11,18], the Tucker3 model, exten-
sively treated in [14], can improve data-reduction per-
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formances of the unfolding method since it models the
data set with fewer degrees of freedom, keeping, at
the same time, the three-way structure of information.
Moreover, Smilde indicates [1] how Tucker3 models
— having both the same number of components in
each mode and a super-diagonal structure of the core
arrayG (see below) — can provide the analyst with
hints for building simpler PARAFAC models.

In the following, we will briefly recall the main
elements of the theory about the Tucker3 model,
which are useful for our discussion. Such a model
can be formulated as a factorization of the data array
X ={xijk} of dimensions (n× p× q), wherexijk is,
in our case, the value of the measurement referring
to the ith physicochemical parameter, thejth site and
thekth sampling month:

xijk =
r∑

u=1

s∑

v=1

t∑

w=1

aiu · bjv · ckw.guvw + eijk

(i = 1 . . . n, j = 1 . . . p, k = 1 . . . q) (1)

The valuesr, s andt are the number of components
selected to describe the first, the second and the third
mode, respectively, of the data array. The elements
aiu, bjv andckw belong, respectively, to the compo-
nent matrixA (n× r), describing the physicochemical
parameters,B (p× s), describing the sampling sites,
andC (q× t), describing the sampling months. Each
of these matrices can be interpreted as a loading ma-
trix in the classical two-way PCA. The elementsguvw

weighs the products between componentu of the first
mode, componentv of the second mode, and compo-
nentw of the third one, and are stored inG, an array of
dimensions (r × s× t), called ‘the core of the model’.
Generally,A, B andC are constrained to be orthogo-
nal and the columns of the matrices are scaled to have
unit length. In this way, the magnitude of the squared
element of the core (g2

uvw) indicates as to what is the
importance of the interaction between the components
u, v and w, in the model ofX. The termeijk is the
residual, or error term.

The Tucker3 model can be computed by iterative
algorithms [20,21], generally referred to as alternating
least squares (ALS) algorithms, and the least square
solution allows the partitioning of the sum of squares
of X as

SS(XXX) = SS(model) + SS(residuals) (2)

The ratio SS(model)/SS(X) can be used to evalu-
ate the descriptive performance of the model. More-
over, the product of the total number of components
in each different mode (r × s× t) can be used as an
indication of the number of possible interactions, and
hence of the complexity of the model. Plotting the ra-
tio SS(model)/SS(X) versus the product (r × s× t) for
possible models can help in evaluating as to which
models realize good compromises between the ex-
plained fraction of the sum of square of the data and
undesired complexity.

For the specific case study, the data array was
pre-processed by a procedure called ‘j-normalization’
[4,14]; physicochemical parameters were standard-
ized within the combined modes of sampling stations
and months, allowing us to focus on the spatial and
temporal variations [14,15]. TheX array was unfolded
to have dimensions (r × st), and the (r × st) unfolding
was centered and scaled to unit variance row-wise. In
this way, differences in the physicochemical parame-
ters that are irrelevant for the present purposes, being
due to the choices of unit of measurement and due to
the range of the data for each single physicochemical
variable, are removed. The algorithms that have been
applied are implemented on theN-Way Toolbox [22]
for the MATLAB® [23] computing environment.

2.3. Missing value treatment

Within the data array, there were some missing val-
ues; 143 missing values were detected in a total of
2112 measurements (data array: 11 (parameters)× 8
(sites)× 24 (months)), i.e. 6.8% of the required entries
were missing.

The resulting composite procedure for handling
missing data emerges from a trial and error process in
which the results from the imputation methods were
checked against available experimental information
as follows.

In the first approach, the algorithm that builds the
Tucker model and that can impute values for missing
data by means of an expectation maximization (EM)
scheme has been applied in a straightforward man-
ner to the data array with all 143 missing values. The
selection of the number of components to be consid-
ered in each mode has been supported by the exam-
ination of the plot of the ratio SS(model)/SS(X) ver-
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sus the product (r × s× t) for models having one to
five components in each of the modes, driving to the
same choice as that discussed in detail in the results.
Missing values that were clustered in blocks of sam-
plings of all sites in a certain month for a parameter
were detectable as hard-to-interpret discontinuities in
the trends of temporal components of theCmatrix.
For some of the physicochemical parameters present-
ing such missing blocks — namely dissolved oxygen,
chlorophyll-a and phaeopigments — in situ measure-
ments were available from multiparametric Idronaut
CTD 401 probe equipped with Sea-Tech fluorometer
and PNF-300 fluorometer; hard-to-interpret disconti-
nuities correspond to imputed data having mismatch-
ing trends with in situ measurements. Moreover, val-
ues imputed for undetermined data known to be below
the limit of detection (LOD) of the considered ana-
lytical methods were, in several cases, unrealistically
high.

In the second approach, we have tried to obtain
realistic estimates for the missing values by applica-
tion to the unfolded array of iterative schemes built in
two-way PCA algorithms implemented in the Missing
Toolbox [24] and in PLS Toolbox [25] for MatLab®.
Estimates obtained using one to five principal com-
ponents drove to the same kind of problems of mis-
matching trends and unrealistic values for data known
to be below the LOD.

Consequently, in order to overcome these problems,
we decided to address separately the problems brought
by different classes of missing values. These classes
are (i) data below the LOD, (ii) data missing as blocks
for samples collected at all sampling sites in certain
months (due mostly to operator or instrumental faults),
but for which estimates from in situ measurements
were available, and (iii) all remaining missing values.

The three classes of missing data were treated as
follows:
1. To fill in the data recorded as below the LOD,

(44 cases), numbers lying between the LOD and
a value two orders of magnitude smaller than the
LOD [26] were randomly generated. The alterna-
tive choice of filling the data with fixed values
corresponding to the LOD of the parameter yields
only a difference on the second figure of merit of
the amount of variation explained by the model.

2. When two estimates were available for a param-
eter, one coming from more precise laboratory

measurement and the other from in situ probe
recording, the missing values were estimated by
orthogonal distance regression [27,28], using the
probe measurements as predictors. This regression
method was chosen since it is suitable for deal-
ing with predictors and target variables, both be-
ing subject to experimental errors. This allowed us
to impute values for chlorophyll-a and phaeopig-
ments in August–September 1995 and dissolved
oxygen in January and February 1997, when lab-
oratory data were not available for any sampling
site. In fact, a lack of blocks of values structured
in this way does not allow the proper application
of the EM method since the assumption of ‘miss-
ing at random’ is violated [29].

3. The EM estimates for the remaining missing val-
ues (53 cases) were computed by the algorithm
that builds the Tucker models [23].

3. Results and discussion

In general, one prefers parsimonious models, i.e.
models with few components, and models which de-
scribe a relatively high fraction of variation in the
model. A compromise is needed as more variation is
explained when the model contains more components.
Several possible models, having different numbers of
components in each mode, were considered. We have
evaluated all possible models withr, s, t = 1–5, con-
sidering both fitting performances (Eq. (2)) and com-
plexity. In Fig. 2, the ratio SS(model)/SS(X) versus the

Fig. 2. Diagram of the modeled sum of squares (%) as function
of the product of the number of components in different modes
for the considered Tucker models. SSqs of models with (2,1,2),
(3,1,3) and (4,1,4) components are indicated by an arrow.
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product (r × s× t) is plotted for all these models: one
observes that a significant increase in fitting is gained
only by losing much of the parsimony of description.
In this case, the models explain 18 to 59% of the total
sum of squares of the pre-processed data.

The variation accounted for by each single element
of the core was examined for the models fitting the
data the best (sum of squares >40%). For all these
models, the elements explaining the largest fractions
of the total sum of squares are due to the first three
components of the first mode (physicochemical vari-
ables) and the third one (months), while only one
component is important for the second mode (sam-
pling sites). We, therefore, decided to base our inter-
pretation on the model which has three components
in the physicochemical parameters mode, one compo-
nent in the sampling site mode, and three components
in the time mode. This model, indicated for short as
Model 3-1-3, explains 41% of the variation: Fig. 2
shows that this is one of the best compromises, con-
sidering both fit and complexity. Models with higher
number of components were discarded because they
were less interpretable. We further verified the dimen-
sionality of the model by applying a generally appli-
cable approach that utilizes the rotational abilities of
the Tucker3 model. We estimated a model with four
components in each mode. In such a core, the varia-
tion is dispersed over the many (64) elements. In order
to see as to what extent the core could be simplified,
we optimized the variance-of-squares measure [30] by
orthogonal rotations to preserve fit. In the initial core,
89% of the sum of squares of the core entries were
dispersed over four components in the first mode, two
in the second mode and three in the third mode. Upon
rotation, three factors in the first mode, one factor in
the second mode and three factors in the third mode
covered 94% of the core variation. Thus, by optimiz-
ing the variance-of-squares of the core to reveal the
latent number of significant combinations of factors,
the Tucker model could be simplified and it could still
provide a satisfactory fit to data.

A systematic and safe approach for finding the op-
timal model dimensionality is required as the optimal
model dimensionality for exploratory purposes lies be-
tween a high fit to data on one hand and a low num-
ber of factors representing the systematic variation in
the data on the other hand. If too many factors are in-
cluded, there is the risk of over-interpretation causing

Fig. 3. Plot of loading values for the three components (A1, A2
and A3) describing the physicochemical parameters.

extrapolated conclusions that may be correct only for
the data set at hand but not valid for future, and essen-
tially similar data sets. Furthermore, if the data cannot
be projected onto a low-dimensional space, the model
becomes too difficult to overview and interpret and
the analyst may be better off keeping with the original
raw data. Thus, only the combinations of factors that
have high weights in the core array should be used for
interpretation. Accordingly, factor rotation is applied
to simplify the core. When the core has been brought
to its simplest form, we may interpret the distribution
over factors. As described, the approach based on ro-
tations verified the dimensionality found from evalu-
ating fit over model dimensionality.

First, we will discuss the components of each mode
separately, and then the relevance of the interactions
between the different modes will be addressed.

The loadings of each physicochemical variable on
the three components of matrixA are displayed in Fig.
3. The first component A1 has high positive loadings
of temperature, and high negative loadings for dis-
solved oxygen, chlorophyll-a, phaeopigments and ni-
trite. This latent variable explains some of the effects
of temperature on the composition of the waters. The
contrast in sign between the temperature of water and
the amount of dissolved gases can be explained by the
fact that a gas dissolves less at high temperature. The
contrast between temperature and chlorophyll is inter-
preted in terms of the activities of phytoplankton in
seawaters, which is particularly relevant for the algal
bloom of early spring [31] when waters are cold and
rich in oxygen. The loading of nitrite (intermediate
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oxidation state for nitrogen) is linked to the loading
of dissolved oxygen.

Salinity is positively loaded on the component A2,
while temperature, nitrate and chlorophyll-a have high
negative loadings. Since the Gulf receives an input
of freshwaters from the Isonzo river, this latent vari-
able can be interpreted as being related to the river
input of relatively warmer water low in salinity, rich
in nitrate, from leachate of agricultural soils. Nitrates
are nutrients feeding the phytoplankton, which in turn
produces chlorophyll pigments.

The negative loadings of oxygen and nutrients
(NO3 and PO4) on A3, and the positive ones of salin-
ity, chlorophyll-a and phaeopigments suggest that the
third latent variable could be explained in terms of
the metabolic and the catabolic activity of planktonic
species. In fact, phytoplankton consumes NO3 and
PO4, producing chlorophylls; the decay of dead or-
ganisms consumes dissolved oxygen, and produces
phaeopigments. All this happens when waters have a
relatively high salinity.

To describe the spatial information, the loadings
of each sampling site on the single component B1
extracted for the second mode are reported in Fig. 4.

It can be observed that all loadings have a positive
sign, which means that this component simply ranks
all stations; such a component is sometimes referred
to as a ‘size component’ [28]. We note that sites that
are spatially close have similar loadings so that the sta-
tions could be roughly grouped in the following three
classes: class I (loadings greater than 0.35) contains
sites 7, 8 and 4, in class II (loadings between 0.35 and

Fig. 4. Plot of loading values for the component (B1) describing
the spatial pattern.

Table 1
Core array (G) of the 3-1-3 model in the unfolded form

C1 C2 C3
B1 B1 B1

A1 19.2605 0.0000 0.0000
A2 0.0000 18.1401 0.0000
A3 0.0000 0.0000 11.8597

0.30) there are sites 1, 2, 3 and 6, while site 5 belongs
to class III (loading lower than 0.30). This classifica-
tion is reported on the map of Fig. 1: a spatial gradient
of the influence of the river estuary on the seawaters
is clearly shown.

The loadings of the components explaining the vari-
ation of data in time (third mode) are shown in Fig.
5. The first temporal component C1 shows seasonal
oscillations; there are positive values for summer and
autumn, while winter and spring months have nega-
tive values. Loadings on C2 are high and positive in
winter, high and negative in late spring (June 1995,
May 1996). Loadings on C3 are positive for May and
November 1995 and December 1996, and negative in
June 1995 and April 1996.

The core arrayG of the model, which can be vi-
sualized as a parallelepiped having, as dimensions,
3 (physicochemical components)× 1 (spatial compo-
nent)× 3 (temporal components), is displayed in the
unfolded form in Table 1. The elementguvw reflects
the extent of the interaction between Au, Bv and Cw

(u= 1,2,3,v= 1,w= 1,2,3). It is noteworthy that, in the
present case, there are only three relevant elements in
the core, the ones for whichu= w. Recalling Eq. (1),
we note that the sign ofguvw depends on the algebraic
multiplication of the signs of Au, Bv and Cw. Since Bv

is always positive, it will be sufficient to focus on the
signs of Au and Cw.

The element of the coreg111 (19.2605) explains
the interaction among the first factors of each of the
modes. The seasonal variation of the physicochemi-
cal pattern of the waters (A1), related to the variation
of temperature, affects all locations (B1), according to
the spatial gradient displayed in Fig. 1 (waters near
the river estuary are more oxygenated), and oscillates
in time (C1) between the maxima in summer–autumn
and the minima in winter–spring. During summer and
autumn (positive C1), high values of temperature have,
as a consequence, low values of dissolved oxygen in
the waters (A1); in winter and spring, the effect of
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Fig. 5. Plot of loading values for the three components (C1, C2 and C3) describing the temporal pattern.

temperature is opposite. The positive value of the ele-
mentg212 (18.1401) can be explained by the fact that
in winter (positive values of C2), the waters have a
relatively high salinity, while temperature, nutrients
and phytoplankton activity are low (A2). The positive
g212 also implies that, in late spring (negative values
of C2), the waters of the Gulf become less saline,
richer in nitrates and warmer (change of sign for A2)
as a consequence of the input of freshwaters from the
Isonzo river bringing nitrate fertilizers drained from
the agricultural soils; waters flowing through the soils
become warmer. The high chlorophyll concentration
in the waters demonstrates that the physicochemical
pattern of the waters is favorable for phytoplankton
activity. Again, the importance of this phenomenon
depend on the spatial pattern, described by B1. Since
all interactions involve B1, there being only one B
component, this is true for all interactions and will no
longer be mentioned.

The last relevant interaction among components in
the Model 3-1-3 is accounted for by the element of the
core g313 (11.8597), which shows that the metabolic
and catabolic activities of phytoplankton (A3), con-
suming nutrients and dissolved oxygen and produc-
ing pigments, were particularly relevant in May and
November 1995 and in December 1996 (positive C3);
in June 1995 and April 1996 (negative C3), this de-
crease in nutrients and dissolved oxygen is contrasted
and masked by the river water input and seasonal

increase in oxygen (inversion of sign for A3). The
three-dimensional scatter plot of the components C1,
C2 and C3 of Fig. 6 shows June 1995, April 1996,
and December 1996 as anomalous sampling condi-
tions within the monitoring period. These three out-
liers can be interpreted with the help of meteorologi-
cal data. In June 1995, the freshwater input from the
Isonzo river was exceptionally abundant (high negative
C2), and this is reflected mainly by salinity and nitrate
parameters, scoring, during this month, the lowest and
the highest values, respectively, of the whole survey,
this being associated with low values of C3, related to
phytoplankton catabolism (consumption of dissolved
oxygen). In April 1996, low temperatures caused the
C1 value to be low, that is, caused the value for dis-
solved oxygen to be high, and the C3 value to be low.
December 1996 was the warmest winter month in the
last 35 years [32]: this special meteoclimatic situation
provoked an anomalous algal bloom, with the related
metabolic and catabolic activities. For these reasons,
December 1996 has loadings similar to spring months
in C1, and to summer–autumn ones in C3.

4. Conclusions

This study represents a further step in our project
aimed at finding methods describing the dynamics and
fate of chemicals in a highly anthropized area, the
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Fig. 6. Three-dimensional score plot of components C1, C2 and C3, pointing out anomalous sampling conditions.

Gulf of Trieste [33,34]. From a methodological point
of view, it demonstrates how a Tucker3 model suc-
ceeds in capturing a significant part of the systematic
variations present in this data set, collected during 2
years in open-field conditions. Such a result is also
obtained if the model accounts for a relatively small
portion of the total sum of squares of the data since
Tucker3 tends to model data in a more parsimonious
way with respect to the classic two-way PCA.

After having tried to apply some algorithms to fill
in all missing data, we decided to apply different ap-
proaches to handle missing values generated in differ-
ent stages of the experimental collection. We remark
that algorithms filling holes in the data sets have to
be supervised carefully in order to obtain consistent
results. The choice of the appropriate number of com-
ponents for each mode is a critical point in building
a model for the data set since it represents our com-
prehension of the structure of the information present
in the considered data. A simple plot of degree of fit
versus complexity of the examined models helped us
in this selection, pointing at the Model 3-1-3 as the
best interpretable model; and the optimization of the
variance of squares of the core confirmed the choice
of the number of combination of factors.

The issue of validation is a cardinal point in the cur-
rent work. In addition to validating the model dimen-
sionality, the solutions have been validated in terms
of their geophysical context. The patterns and system-
atic variations that have been resolved substantiate
findings from other research projects. Mechanisms of,
e.g., light, temperature and flow, are found to consis-
tently explain the covariation in the observed data. We
have outlined a robust and feasible approach to the
analysis of a very complex data structure that, quickly
and in a cognitive easy way (graphical outputs),
presents the significant variations of data and allows
for interpretation in the context of the Gulf of Trieste.
The path from variable scaling and pre-treatment,
handling of missing values, estimation of model
dimensionality and presentation of the solutions
is generally applicable to multi-way analysis; also
for monitoring studies concerning different kind of
ecosystems [35] and in areas other than environmental
studies.

It is worth noting that, in the considered model, the
factors defining the physicochemical composition of
these surface waters are all related to the chlorophyll
concentration, and consequently, to both the photo-
synthetic activity of phytoplankton and the primary
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production. This gives us a highly detailed image of
the processes involved in chlorophyll production in
the Gulf, and at the same time, it realizes an effective
synthesis of information from the data collection.

Since Tucker models allow exploration when and
where these factors are important, such models seem
to be suited for further examination of the complex
pattern ruling the basic stage of the trophic chain in
seawaters. The model also allowed highlighting of the
environmentally anomalous situations by means of the
examination of the three-dimensional plot of the tem-
poral components.

We have to note that, in this study, only surface wa-
ters were considered, without taking into account the
vertical dynamics in the water column. These surely
condition the quality of these waters, for instance, at
the overturn of waters, generally occurring in spring
and autumn, due to the disappearance of thermal strat-
ification [36]. Tucker models for four-way arrays are
currently being studied, allowing us to consider dif-
ferent layers, and hopefully, to integrate vertical dy-
namics in our models.
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